1
|
Zhang R, Jin W, Wang K. Glycolysis-Driven Prognostic Model for Acute Myeloid Leukemia: Insights into the Immune Landscape and Drug Sensitivity. Biomedicines 2025; 13:834. [PMID: 40299448 PMCID: PMC12024913 DOI: 10.3390/biomedicines13040834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Acute myeloid leukemia (AML), a malignant blood disease, is caused by the excessive growth of undifferentiated myeloid cells, which disrupt normal hematopoiesis and may invade several organs. Given the high heterogeneity in prognosis, identifying stable prognostic biomarkers is crucial for improved risk stratification and personalized treatment strategies. Although glycolysis has been extensively studied in cancer, its prognostic significance in AML remains unclear. Methods: Glycolysis-related prognostic genes were identified by differential expression profiles. We modeled prognostic risk by least absolute shrinkage and selection operator (LASSO) regression and validated it by Kaplan-Meier (KM) survival analysis, receiver operating characteristic (ROC) curves, and independent datasets (BeatAML2.0, GSE37642, GSE71014). Mechanisms were further explored through immune microenvironment analysis and drug sensitivity scores. Results: Differential expression and survival correlation analysis across the genes associated with glycolysis revealed multiple glycolytic genes associated with the outcomes of AML. We constructed a seven-gene prognostic model (G6PD, TFF3, GALM, SOD1, NT5E, CTH, FUT8). Kaplan-Meier analysis demonstrated significantly reduced survival in high-risk patients (hazard ratio (HR) = 3.4, p < 0.01). The model predicted the 1-, 3-, and 5-year survival outcomes, achieving area under the curve (AUC) values greater than 0.8. Immune profiling indicated distinct cellular compositions between risk groups: high-risk patients exhibited elevated monocytes and neutrophils but reduced Th1 cell infiltration. Drug sensitivity analysis showed that high-risk patients exhibited resistance to crizotinib and lapatinib but were more sensitive to motesanib. Conclusions: We established a novel glycolysis-related gene signature for AML prognosis, enabling effective risk classification. Combined with immune microenvironment analysis and drug sensitivity analysis, we screened metabolic characteristics and identified an immune signature to provide deeper insight into AML. Our findings may assist in identifying new therapeutic targets and more effective personalized treatment regimes.
Collapse
Affiliation(s)
- Rongsheng Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China; (R.Z.); (W.J.)
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Wen Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China; (R.Z.); (W.J.)
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China; (R.Z.); (W.J.)
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd., Shanghai 200025, China
| |
Collapse
|
2
|
Sun HT. Helicobacter pylori-related serum indicators: Cutting-edge advances to enhance the efficacy of gastric cancer screening. World J Gastrointest Oncol 2025; 17:100739. [PMID: 40092953 PMCID: PMC11866254 DOI: 10.4251/wjgo.v17.i3.100739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/08/2024] [Accepted: 01/03/2025] [Indexed: 02/14/2025] Open
Abstract
Helicobacter pylori (H. pylori) infection induces pathological changes via chronic inflammation and virulence factors, thereby increasing the risk of gastric cancer development. Compared with invasive examination methods, H. pylori-related serum indicators are cost-effective and valuable for the early detection of gastric cancer (GC); however, large-scale clinical validation and sufficient understanding of the specific molecular mechanisms involved are lacking. Therefore, a comprehensive review and analysis of recent advances in this field is necessary. In this review, we systematically analyze the relationship between H. pylori and GC and discuss the application of new molecular biomarkers in GC screening. We also summarize the screening potential and application of anti-H. pylori immunoglobulin G and virulence factor-related serum antibodies for identifying GC risk. These indicators provide early warning of infection and enhance screening accuracy. Additionally, we discuss the potential combination of multiple screening indicators for the comprehensive analysis and development of emerging testing methods to improve the accuracy and efficiency of GC screening. Although this review may lack sufficient evidence due to limitations in existing studies, including small sample sizes, regional variations, and inconsistent testing methods, it contributes to advancing personalized precision medicine in high-risk populations and developing GC screening strategies.
Collapse
Affiliation(s)
- Hao-Tian Sun
- Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
3
|
Zhang S, Tan YQ, Zhang X, Basappa B, Zhu T, Pandey V, Lobie PE. TFF3 drives Hippo dependent EGFR-TKI resistance in lung adenocarcinoma. Oncogene 2025; 44:753-768. [PMID: 39658649 DOI: 10.1038/s41388-024-03244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024]
Abstract
Intrinsic and acquired resistance represent major obstacles to optimize outcomes in epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) targeted therapy in lung adenocarcinoma (LUAD). Hence, a deeper understanding of EGFR-TKI resistance mechanisms in LUAD will potentially assist in formulating strategies to delay or overcome such resistance. Herein, it was observed that trefoil factor 3 (TFF3) is a crucial mediator of the LUAD EGFR-TKI response. TFF3 conferred intrinsic resistance to EGFR inhibition in LUAD by promotion of EGFR activation. TFF3 expression was also increased in acquired EGFR-TKI resistant LUAD, accompanied by reduced EGFR activation. YAP, a key mediator of the Hippo signaling, was positively regulated by TFF3 by post-transcriptional mechanisms and was responsible for acquired EGFR-TKI resistance mediated by TFF3. Inhibition of TFF3 by a small molecule inhibitor not only enhanced EGFR-TKI sensitivity in LUAD cells but also restored the sensitivity of acquired EGFR-TKI resistant LUAD cells to EGFR-TKIs in vitro and in vivo. These findings demonstrate a pivotal function of TFF3 in mediating both intrinsic and acquired EGFR-TKI resistance in LUAD and may offer a potential therapeutic mechanism for delaying or overcoming resistance to EGFR-TKIs.
Collapse
Affiliation(s)
- Shuwei Zhang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Yan Qin Tan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
- Guangdong Provincial Key Laboratory IRADS and Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, 519087, Guangdong, PR China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, PR China
| | - Basappa Basappa
- Labortory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore, 570005, India
| | - Tao Zhu
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, PR China
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
- Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China.
| | - Peter E Lobie
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, PR China.
| |
Collapse
|
4
|
Lutz F, Han SY, Büyücek S, Möller K, Viehweger F, Schlichter R, Menz A, Luebke AM, Bawahab AA, Reiswich V, Kluth M, Hube-Magg C, Hinsch A, Weidemann S, Lennartz M, Dum D, Bernreuther C, Lebok P, Sauter G, Marx AH, Simon R, Krech T, Fraune C, Gorbokon N, Burandt E, Minner S, Steurer S, Clauditz TS, Jacobsen F. Expression of Trefoil Factor 1 (TFF1) in Cancer: A Tissue Microarray Study Involving 18,878 Tumors. Diagnostics (Basel) 2024; 14:2157. [PMID: 39410561 PMCID: PMC11475926 DOI: 10.3390/diagnostics14192157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Trefoil factor 1 (TFF1) plays a role in the mucus barrier. Methods: To evaluate the prevalence of TFF1 expression in cancer, a tissue microarray containing 18,878 samples from 149 tumor types and 608 samples of 76 normal tissue types was analyzed through immunohistochemistry (IHC). Results: TFF1 staining was detectable in 65 of 149 tumor categories. The highest rates of TFF1 positivity were found in mucinous ovarian carcinomas (76.2%), colorectal adenomas and adenocarcinomas (47.1-75%), breast neoplasms (up to 72.9%), bilio-pancreatic adenocarcinomas (42.1-62.5%), gastro-esophageal adenocarcinomas (40.4-50.0%), neuroendocrine neoplasms (up to 45.5%), cervical adenocarcinomas (39.1%), and urothelial neoplasms (up to 24.3%). High TFF1 expression was related to a low grade of malignancy in non-invasive urothelial carcinomas of the bladder (p = 0.0225), low grade of malignancy (p = 0.0003), estrogen and progesterone receptor expression (p < 0.0001), non-triple negativity (p = 0.0005) in invasive breast cancer of no special type, and right-sided tumor location (p = 0.0021) in colorectal adenocarcinomas. Conclusions: TFF1 IHC has only limited utility for the discrimination of different tumor entities given its expression in many tumor entities. The link between TFF1 expression and parameters of malignancy argues for a relevant biological role of TFF1 in cancer. TFF1 may represent a suitable therapeutic target due to its expression in only a few normal cell types.
Collapse
Affiliation(s)
- Florian Lutz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Soo-Young Han
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Seyma Büyücek
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Ria Schlichter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Andreas M. Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Ahmed Abdulwahab Bawahab
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah 21589, Saudi Arabia;
| | - Viktor Reiswich
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
- Institute of Pathology, Clinical Center Osnabrueck, 49078 Osnabrueck, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Andreas H. Marx
- Department of Pathology, Academic Hospital Fuerth, 90766 Fuerth, Germany;
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
- Institute of Pathology, Clinical Center Osnabrueck, 49078 Osnabrueck, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
- Institute of Pathology, Clinical Center Osnabrueck, 49078 Osnabrueck, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Till S. Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| |
Collapse
|
5
|
Zhao J, Tian W, Zhang X, Dong S, Shen Y, Gao X, Yang M, Lv J, Hu F, Han J, Zhan Q, An F. The diagnostic value of serum trefoil factor 3 and pepsinogen combination in chronic atrophic gastritis: a retrospective study based on a gastric cancer screening cohort in the community population. Biomarkers 2024; 29:384-392. [PMID: 39234749 DOI: 10.1080/1354750x.2024.2400927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Chronic atrophic gastritis (CAG) is an important precursor of gastric cancer(GC), and there is currently a lack of reliable non-invasive diagnostic markers. This study aims to find a biomarker for non-invasive screening of CAG in the community. METHODS A total of 540 individuals were enrolled (test set = 385, validation set = 155). ROC curve analysis was used to evaluate the diagnostic significance of serum Trefoil Factor 3 (TFF3) alone or in combination with pepsinogen (PG) for CAG in the test and validation set. Furthermore, the diagnostic value of TFF3 and PG in different Helicobacter pylori (H. pylori) infection states was studied. RESULTS When compared with chronic superficial gastritis (CSG), the expression level of serum TFF3 in the CAG was higher (27 ng/ml vs 19.61, P < 0.001). ROC curve analysis found that the sensitivity, specificity, and area under the curve (AUC) of CAG diagnosis using serum TFF3 alone at the optimal cut-off value of 26.55 ng/ml were 0.529, 0.87, and 0.739, respectively. When TFF3 was combined with The Ratio of PGI to PGII (PGR), the AUC and specificity reached 0.755 and 0.825, respectively. TFF3 individual or combined with PGR had good predictive value, especially in the H. Pylori negative patients. CONCLUSION TFF3 combined with PGR can effectively predict CAG, especially in patients with H. pylori negative.
Collapse
Affiliation(s)
- Jiamin Zhao
- Department of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, China
| | - Wenying Tian
- Department of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, China
| | - Xiaoxue Zhang
- Department of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, China
| | - Shengrong Dong
- Department of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, China
| | - Yao Shen
- Department of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, China
| | - Xiaojuan Gao
- Department of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, China
| | - Mei Yang
- Department of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, China
| | - Jiale Lv
- Department of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, China
| | - Feifan Hu
- Department of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, China
| | - Jinglue Han
- Department of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, China
| | - Qiang Zhan
- Department of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, China
| | - Fangmei An
- Department of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, China
| |
Collapse
|
6
|
Kozina N, Jukić I, Mihaljević Z, Matić A, Dobrivojević Radmilović M, Barić A, Drenjančević I. The Effect of High-Salt Diet on Oxidative Stress Production and Vascular Function in Tff3-/-/C57BL/6N Knockout and Wild Type (C57BL/6N) Mice. J Vasc Res 2024; 61:214-224. [PMID: 39074455 DOI: 10.1159/000539614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/25/2024] [Indexed: 07/31/2024] Open
Abstract
INTRODUCTION It is well documented that high-salt (HS) diet increases systemic and vascular oxidative stress in various animal models and in humans, leading to impairment of vascular reactivity. The present study examined the interaction of genotype and HS diet intake and the potential effects of oxidative stress - antioxidative system balance on the flow-induced dilation (FID) in pressurized carotid arteries of normotensive Tff3-/-/C57BL/6N knockout mice and their wild-type (WT) controls. METHODS Male, ten-week-old transgenic Tff3-/-/C57BL/6N (Tff3-/-) knockout mice and WT/C57BL/6N (WT) (parental strain) healthy mice were divided in LS (0.4% NaCl in rodent chow) and HS (4% NaCl in rodent chow fed for 1 week) groups. Additionally, LS and HS groups were treated with 1 mmol/L 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPOL) dissolved in the drinking water. After anesthesia with ketamine chloride (100 mg/kg) and midazolam (5 mg/kg), blood pressure was measured, carotid arteries and aortas were isolated, and blood samples were collected. RESULTS FID was decreased in WT_HS mice and restored by superoxide scavenger TEMPOL in vivo. On the other hand, attenuated FID of Tff3-/- mice was not further affected by HS diet or TEMPOL in vivo treatment. Vascular superoxide/reactive oxygen species levels were increased with HS diet in both strains and restored by TEMPOL. HS upregulated glutathione peroxidase 1 (GPx1) gene expression in WT_HS and Tff3-/-_HS mice, while GPx activity was significantly decreased only in WT_HS group. Systemic (serum) markers of oxidative stress (oxLDL and AOPP) and arterial blood pressure were similar among groups. CONCLUSION HS diet increases vascular oxidative stress and impairs vasodilation in WT mice. Tff3 gene deficiency attenuates vasodilation per se, without further effects of HS intake. This can be attributed to vascular upregulation of antioxidative enzyme GPx1 in Tff3-/-/C57BL/6N mice conferring protection from oxidative stress.
Collapse
Affiliation(s)
- Nataša Kozina
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia,
- Scientific Centre of Excellence for Personalized Health Care University of Osijek, Osijek, Croatia,
| | - Ivana Jukić
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Scientific Centre of Excellence for Personalized Health Care University of Osijek, Osijek, Croatia
| | - Zrinka Mihaljević
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Scientific Centre of Excellence for Personalized Health Care University of Osijek, Osijek, Croatia
| | - Anita Matić
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Institute for Integrative Medicine, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | | | - Anja Barić
- Croatian Institute for Brain Research, University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Ines Drenjančević
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Scientific Centre of Excellence for Personalized Health Care University of Osijek, Osijek, Croatia
| |
Collapse
|
7
|
Minegishi K, Dobashi Y, Koyama T, Ishibashi Y, Furuya M, Tsubochi H, Ohmoto Y, Yasuda T, Nomura S. Diagnostic utility of trefoil factor families for the early detection of lung cancer and their correlation with tissue expression. Oncol Lett 2023; 25:139. [PMID: 36909373 PMCID: PMC9996639 DOI: 10.3892/ol.2023.13725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/22/2022] [Indexed: 02/23/2023] Open
Abstract
Trefoil factors (TFFs) are upregulated in numerous types of cancer, including those of the breast, the colon, the lung and the pancreas, suggesting their potential utility as biomarkers for screening. In the present study, the clinical relevance of serum or urinary TFFs as biomarkers were comprehensively evaluated and the correlation with TFF expression levels in lung cancer tissue was examined. Serum and urine were collected from 199 patients with lung cancer and 198 healthy individuals. Concentrations of serum and urinary TFF1, TFF2 and TFF3 were measured using ELISA and the potential of TFF levels to discriminate between cancer and non-cancer samples was evaluated. In 100 of the cancer cases, expression of TFF1-3 was analyzed using immunohistochemical staining of paraffin sections. Furthermore, the relationship between TFF levels and clinicopathological factors among these cancer cases was analyzed using immunohistochemistry of tissue specimens, quantified and statistically analyzed. While serum levels of all TFFs measured using ELISA were significantly higher in patients with lung cancer compared with those in healthy individuals, urinary TFFs were lower. Areas under the curve (AUC) of the receiver operating characteristic curves for serum/urinary TFF1, TFF2 and TFF3 were 0.709/0.594, 0.722/0.501 and 0.663/0.665, respectively. Furthermore, the combination of serum TFF1, TFF2, TFF3 and urinary TFF1 and TFF3 demonstrated the highest AUC (0.826). In the clinicopathological analysis, serum TFF1 was higher in the early pathological T-stage (pTis/1/2) compared with the later stage (pT3/4) and TFF2 was higher in the pN0/1 than the pN2 group. With regards to the histological types, urinary TFF1 was higher in squamous cell carcinoma than adenocarcinoma (AC), but TFF2 tended to be higher in AC. Using immunohistochemical analysis, although TFF1 and TFF3 expression showed positive correlation with serum concentrations, TFF2 was inversely correlated. In conclusion, serum and urinary TFF levels are promising predictive biomarkers, and their measurements provide a useful in vivo and non-invasive diagnostic screening tool. In particular, TFF1 and TFF3 could be surrogate markers of clinicopathological profiles of human lung cancer.
Collapse
Affiliation(s)
- Kentaro Minegishi
- Department of Thoracic Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Saitama 330-8500, Japan
| | - Yoh Dobashi
- Department of Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Saitama 330-8500, Japan.,Department of Pathology, School of Medicine, International University of Health and Welfare Hospital, Nasushiobara, Tochigi 329-2763, Japan
| | - Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Yuko Ishibashi
- Department of Surgery, Breast Surgery, Tokyo Women's Medical University, Adachi Medical Center, Adachi, Tokyo 123-8558, Japan
| | - Miki Furuya
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hiroyoshi Tsubochi
- Department of Thoracic Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Saitama 330-8500, Japan
| | - Yasukazu Ohmoto
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Tokushima 770-8505, Japan
| | - Tomohiko Yasuda
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.,Department of Gastrointestinal Surgery, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba 270-1694, Japan
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
8
|
Xu M, Yang A, Xia J, Jiang J, Liu CF, Ye Z, Ma J, Yang S. Protein glycosylation in urine as a biomarker of diseases. Transl Res 2023; 253:95-107. [PMID: 35952983 DOI: 10.1016/j.trsl.2022.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023]
Abstract
Human body fluids have become an indispensable resource for clinical research, diagnosis and prognosis. Urine is widely used to discover disease-specific glycoprotein biomarkers because of its recurrently non-invasive collection and disease-indicating properties. While urine is an unstable fluid in that its composition changes with ingested nutrients and further as it is excreted through micturition, urinary proteins are more stable and their abnormal glycosylation is associated with diseases. It is known that aberrant glycosylation can define tumor malignancy and indicate disease initiation and progression. However, a thorough and translational survey of urinary glycosylation in diseases has not been performed. In this article, we evaluate the clinical applications of urine, introduce methods for urine glycosylation analysis, and discuss urine glycoprotein biomarkers. We emphasize the importance of mining urinary glycoproteins and searching for disease-specific glycosylation in various diseases (including cancer, neurodegenerative diseases, diabetes, and viral infections). With advances in mass spectrometry-based glycomics/glycoproteomics/glycopeptidomics, characterization of disease-specific glycosylation will optimistically lead to the discovery of disease-related urinary biomarkers with better sensitivity and specificity in the near future.
Collapse
Affiliation(s)
- Mingming Xu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Arthur Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jun Xia
- Clinical Laboratory Center, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Junhong Jiang
- Department of Pulmonary and Critical Care Medicine, Dushu Lake Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhenyu Ye
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia.
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
9
|
Flores AR, Castro M, Rêma A, Mesquita JR, Taulescu M, Gärtner F, Seixas F, Amorim I. Immunoexpression of Trefoil Factor 1 in Non-Neoplastic and Neoplastic Canine Gastric Tissues. Animals (Basel) 2021; 11:2855. [PMID: 34679875 PMCID: PMC8532865 DOI: 10.3390/ani11102855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/25/2022] Open
Abstract
TFF1 expression is markedly reduced in human GCs, suggesting that TFF1 is a tumor suppressor for human gastric cancer. The present study evaluated the expression and distribution pattern of TFF1 in paraffin-embedded canine gastric tissue samples, including normal mucosa (n = 3), polyps (n = 8), carcinomas (n = 31) and their adjacent non-neoplastic mucosa (n = 30), neoplastic emboli (n = 14), and metastatic lesions (n = 9), by immunohistochemistry (IHC). All normal gastric tissues expressed TFF1 in the superficial foveolar epithelium and mucopeptic cells of the neck region. Most gastric polyps (GPs) displayed immunoreactivity for TFF1 in >75% of the epithelial component. In GCs, the expression of TFF1 was found reduced in 74.2% of the cases. The level of TFF1 expression had a decreased tendency from normal gastric mucosa to GPs and GCs (p < 0.05). No significant differences in the expression of TFF1 were found in GCs, according to age, sex, histological type based on World Health Organization (WHO) and Lauren classification, tumor location, depth of tumor invasion, presence of neoplastic emboli or metastatic lesions. The median survival time of GC patients with preserved and reduced TFF1 immunoexpression were 30 and 12 days, respectively. Kaplan-Meier analysis revealed no significant survival differences between the two groups (p > 0.05). These findings suggest that TFF1 protein may play a role in canine gastric carcinogenesis, and further studies are necessary to define its usefulness as a prognostic indicator in canine gastric carcinoma.
Collapse
Affiliation(s)
- Ana R. Flores
- Department of Pathology and Molecular Immunology of the Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal; (A.R.F.); (M.C.); (A.R.); (F.G.); (I.A.)
- Institute of Pathology and Molecular Immunology of the University of Porto (IPATIMUP), 4200-465 Porto, Portugal
- Animal and Veterinary Research Center (CECAV), Associate Laboratory AL4AnimalS, University of Trás-os-Montes e Alto Douro (UTAD), 5001-801 Vila Real, Portugal;
| | - Marisa Castro
- Department of Pathology and Molecular Immunology of the Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal; (A.R.F.); (M.C.); (A.R.); (F.G.); (I.A.)
| | - Alexandra Rêma
- Department of Pathology and Molecular Immunology of the Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal; (A.R.F.); (M.C.); (A.R.); (F.G.); (I.A.)
| | - João R. Mesquita
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto (ISPUP), 4050-600 Porto, Portugal;
| | - Marian Taulescu
- Department of Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Synevovet Laboratory, 81 Pache Protopopescu, 021408 Bucharest, Romania
| | - Fátima Gärtner
- Department of Pathology and Molecular Immunology of the Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal; (A.R.F.); (M.C.); (A.R.); (F.G.); (I.A.)
- Institute of Pathology and Molecular Immunology of the University of Porto (IPATIMUP), 4200-465 Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Fernanda Seixas
- Animal and Veterinary Research Center (CECAV), Associate Laboratory AL4AnimalS, University of Trás-os-Montes e Alto Douro (UTAD), 5001-801 Vila Real, Portugal;
| | - Irina Amorim
- Department of Pathology and Molecular Immunology of the Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal; (A.R.F.); (M.C.); (A.R.); (F.G.); (I.A.)
- Institute of Pathology and Molecular Immunology of the University of Porto (IPATIMUP), 4200-465 Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
10
|
Trefoil Factor 3 Inhibits Thyroid Cancer Cell Progression Related to IL-6/JAK/STAT3 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2130229. [PMID: 34567204 PMCID: PMC8457945 DOI: 10.1155/2021/2130229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/27/2021] [Indexed: 11/18/2022]
Abstract
Objectives Abnormal expression of trefoil factor 3 (TFF3) in breast, stomach, and colon tumors may be related to the occurrence of tumors, suggesting its role in angiogenesis. In this study, the aim was to explore the role of TFF3 in thyroid cancer. Methods TFF3 expression analysis was performed via GEPIA and RT-PCR. To explore the effects of TFF3 on thyroid cancer cell motility, cell function assays were performed. Furthermore, GSEA pathway analysis and western blot were used to explore the mechanism by which TFF3 represses the progression of thyroid cancer cells. Results Here, we showed that low expression level of TFF3 in thyroid cancer is related to thyroid cancer nodal metastasis. The patients with low TFF3 expression showed worse disease-free survival than those with high level of TFF3. Underexpressed TFF3 increased cell motility and inhibited cell apoptosis. We found that the levels of IL-6, p-JAK2/JAK2, and pSTAT3/STAT3 were inhibited in the pcDNA-TFF3 group compared to the pcDNA-NC group and these factors were upregulated in the si-TFF3 group compared to the si-NC group in BCPAP and TPC-1 cells. Conclusion TFF3 inhibits thyroid cancer cell progression related to IL-6/JAK/STAT3 signaling pathway.
Collapse
|
11
|
Ghouraba MH, Masad RJ, Mpingirika EZ, Abdelraheem OM, Zeghlache R, Alserw AM, Amleh A. Role of NELF-B in supporting epithelial-mesenchymal transition and cell proliferation during hepatocellular carcinoma progression. Oncol Lett 2021; 22:761. [PMID: 34539865 PMCID: PMC8436359 DOI: 10.3892/ol.2021.13022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
Negative elongation factor-B (NELF-B), also known as cofactor of BRCA1 (COBRA1), is one of the four subunits of the NELF complex. It interacts with BRCA1, in addition to other transcription complexes in various tissues. The NELF complex represses the transcription of several genes by stalling RNA polymerase II during the early phase of transcription elongation. The role of NELF-B in liver cancer and hepatocellular carcinoma (HCC), the most prevalent type of liver cancer, remains to be elucidated. It has been previously demonstrated that silencing of NELF-B inhibits the proliferation and migration of HepG2 cells. The present study aimed to investigate the consequences of ectopic expression and silencing of NELF-B in liver cancer HepG2 and SNU449 cell lines. Functional assays were performed to examine the effects on gene and protein expression, viability, migration and invasion of cells. Overexpression of NELF-B did not alter the proliferation and migration of HepG2 cells, or the expression of tested genes, indicating that overexpression alone may not be sufficient for altering these features in HepG2 cells. By contrast, knockdown of NELF-B in SNU449 cells resulted in decreased cell proliferation, together with induction of apoptosis and decreased expression levels of Ki-67 and survivin, which are markers of proliferation and inhibition of apoptosis, respectively. Additionally, silencing of NELF-B resulted in a significant decrease in the hallmarks of epithelial-mesenchymal transition (EMT), including cell migration and invasion, and decreased the expression levels of EMT markers, such as N-cadherin, vimentin and β-catenin. Decreased expression levels of forkhead box F2 transcription factor and increased mRNA levels of trefoil factor 1, a putative tumor suppressor, were also detected following the silencing of NELF-B. The current results demonstrated that NELF-B enhanced the manifestation of most hallmarks of cancer, including cell proliferation, migration, invasion and inhibition of apoptosis, indicating its critical role in the progression of HCC.
Collapse
Affiliation(s)
- Mennatallah Hani Ghouraba
- Department of Biotechnology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Razan Jamil Masad
- Department of Biotechnology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Eric Zadok Mpingirika
- Department of Biotechnology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Omnia Mahmoud Abdelraheem
- Department of Biotechnology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Rached Zeghlache
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Aya M Alserw
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Asma Amleh
- Department of Biotechnology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt.,Department of Biology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
12
|
Zhang CX, Wu CT, Xiao L, Tang SH. The diagnostic and clinicopathological value of trefoil factor 3 in patients with gastric cancer: a systematic review and meta-analysis. Biomarkers 2021; 26:95-102. [PMID: 33401971 DOI: 10.1080/1354750x.2020.1871411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE To assess the diagnostic value of Trefoil factor 3 (TFF3) and the correlation between TFF3 expression and clinicopathological features in patients with gastric cancer (GC). METHODS PubMed, The Cochrane, EMbase, and Web of Science were retrieved comprehensively to collect relevant literature. The search ended on 31 May 2020. All data were analyzed using PubMed, The Cochrane, EMbase, and Web of Science were retrieved to collect relevant articles. All data from the included studies were subjected to meta-analysis using Stata 12.0 software. RESULTS Seventeen studies involved 4654 subjects were included. For the diagnostic value of TFF3 for GC, the sensitivity, specificity, and AUC were 0.71, 0.80, and 0.80, respectively. For the clinicopathological value of TFF3, tissue TFF3 expression showed a higher risk of lymph node metastasis (OR 2.20, 95% CI 1.75-2.78, p < 0.001) and muscularis propria invasion (≥T2) (1.51, 1.13-2.03, p = 0.006), as well as worse TNM stage (2.26, 1.63-3.12, p < 0.001) and histological type (1.72, 1.34-2.20, p < 0.001), while no apparent relationship was found for serous membrane invasion (T4), venous invasion, and peritoneal metastasis. CONCLUSION TFF3 may be a promising biomarker for GC, and the TFF3 expression is likely to be involved in the invasion, metastasis, and differentiation of GC.
Collapse
Affiliation(s)
- Chen-Xing Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, P. R. China.,The First Clinical Medical College, Jinan University, Guangzhou, P. R. China
| | - Chu-Tian Wu
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, P. R. China.,The First Clinical Medical College, Jinan University, Guangzhou, P. R. China
| | - Lin Xiao
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, P. R. China.,The First Clinical Medical College, Jinan University, Guangzhou, P. R. China
| | - Shao-Hui Tang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, P. R. China.,The First Clinical Medical College, Jinan University, Guangzhou, P. R. China
| |
Collapse
|
13
|
Braga Emidio N, Brierley SM, Schroeder CI, Muttenthaler M. Structure, Function, and Therapeutic Potential of the Trefoil Factor Family in the Gastrointestinal Tract. ACS Pharmacol Transl Sci 2020; 3:583-597. [PMID: 32832864 DOI: 10.1021/acsptsci.0c00023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Indexed: 12/20/2022]
Abstract
Trefoil factor family peptides (TFF1, TFF2, and TFF3) are key players in protecting, maintaining, and repairing the gastrointestinal tract. Accordingly, they have the therapeutic potential to treat and prevent a variety of gastrointestinal disorders associated with mucosal damage. TFF peptides share a conserved motif, including three disulfide bonds that stabilize a well-defined three-loop-structure reminiscent of a trefoil. Although multiple functions have been described for TFF peptides, their mechanisms at the molecular level remain poorly understood. This review presents the status quo of TFF research relating to gastrointestinal disorders. Putative TFF receptors and protein partners are described and critically evaluated. The therapeutic potential of these peptides in gastrointestinal disorders where altered mucosal biology plays a crucial role in the underlying etiology is discussed. Finally, areas of investigation that require further research are addressed. Thus, this review provides a comprehensive update on TFF literature as well as guidance toward future research to better understand this peptide family and its therapeutic potential for the treatment of gastrointestinal disorders.
Collapse
Affiliation(s)
- Nayara Braga Emidio
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medicial Research Insittitue (FHMRI), Flinders University, Bedford Park, South Australia 5042, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia.,Discipline of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Markus Muttenthaler
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
14
|
Yusufu A, Shayimu P, Tuerdi R, Fang C, Wang F, Wang H. TFF3 and TFF1 expression levels are elevated in colorectal cancer and promote the malignant behavior of colon cancer by activating the EMT process. Int J Oncol 2019; 55:789-804. [PMID: 31432157 PMCID: PMC6741840 DOI: 10.3892/ijo.2019.4854] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/27/2019] [Indexed: 12/19/2022] Open
Abstract
Reports on the roles of the secreted trefoil factor (TFF)1 and 3 in colorectal cancer (CRC) and their underlying mechanisms of action in tumorigenesis are not common and are controversial. In the present study, the mRNA expression and promoter methylation of TFF1 and TFF3 in cancer and adjacent normal tissues were investigated, and their association with other clinical factors and patient prognosis were evaluated. Moreover, the association between TFF3 and epithelial mesenchymal transition (EMT) was explored by overexpressing or inhibiting TFF3 expression. The results revealed that the mRNA level of TFF1 and TFF3 in the cancer tissues was significantly higher than that in the matched adjacent normal tissues (P=0.034 and P=0.007, respectively), and a higher expression of TFF3, but not TFF1, was predominantly associated with clinicopathological factors and a poorer prognosis. No correlation was observed between promoter methylation and the expression of TFF1 or TFF3. The overexpression of TFF3 promoted the proliferation, migration and invasiveness of HT29 cells, and induced an increase in the expression of Twist1, Snail and Vimentin, while causing a decrease in E-cadherin expression. On the contrary, the knockdown of TFF3 resulted in opposite effects in the LoVo cells. On the whole, the findings of this study indicate that TFF3 may be a promising new factor for the estimation of the survival of patients with CRC, and may promote the malignant progression of CRC by activating the EMT process. Therefore, TFF3 may be a future potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Aikeremu Yusufu
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Xin Jiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Paerhati Shayimu
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Xin Jiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Rousidan Tuerdi
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Xin Jiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Cheng Fang
- Department of Gastrointestinal Surgery, Xi Jing Digestive Disease Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fei Wang
- Department of Gastrointestinal Surgery, Xi Jing Digestive Disease Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Haijiang Wang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Xin Jiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| |
Collapse
|
15
|
Taniguchi Y, Kurokawa Y, Takahashi T, Mikami J, Miyazaki Y, Tanaka K, Makino T, Yamasaki M, Nakajima K, Mori M, Doki Y. Prognostic Value of Trefoil Factor 3 Expression in Patients with Gastric Cancer. World J Surg 2019; 42:3997-4004. [PMID: 30039286 DOI: 10.1007/s00268-018-4737-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Trefoil factor 3 (TFF3) is a small molecule secreted by the mammalian gastrointestinal tract and is overexpressed in some human malignant tumors. We investigated the prognostic values of immunohistochemical (IHC) TFF3 expression and serum TFF3 levels in patients with gastric cancer, and whether TFF3 influenced tumor proliferation and invasion in vitro. METHODS We examined 111 patients who underwent R0 gastrectomy for gastric cancer between April 2012 and April 2015. IHC TFF3 expression and serum TFF3 levels were evaluated regarding their associations with clinicopathological factors and recurrence-free survival (RFS). In vitro cell proliferation and migration assays were used to explore the biological role of TFF3 in human gastric cancer cell lines following transfection with a lentivirus-based shRNA plasmid. RESULTS IHC TFF3 expression showed significant associations with depth of invasion (p = 0.024), lymph node metastasis (p = 0.008), and RFS (log-rank p = 0.002). Serum TFF3 levels were correlated with IHC TFF3 expression (p = 0.013). RFS was significantly poorer in patients with high (n = 27) compared to low (n = 84) serum TFF3 levels (log-rank p = 0.003). Cox multivariate analysis indicated that serum TFF3 level was an independent prognostic factor for RFS (p = 0.024). In vitro assays, TFF3 downregulation significantly inhibited both proliferation and invasion of gastric cancer cells. CONCLUSIONS Serum TFF3 levels could be useful prognostic markers in patients with gastric cancer. TFF3 may play various biological roles in proliferation and invasion of gastric cancer cells.
Collapse
Affiliation(s)
- Yoshiki Taniguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2, Yamadaoka, Suita, Osaka, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2, Yamadaoka, Suita, Osaka, Japan.
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2, Yamadaoka, Suita, Osaka, Japan
| | - Jota Mikami
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2, Yamadaoka, Suita, Osaka, Japan
| | - Yasuhiro Miyazaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2, Yamadaoka, Suita, Osaka, Japan
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2, Yamadaoka, Suita, Osaka, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2, Yamadaoka, Suita, Osaka, Japan
| | - Makoto Yamasaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2, Yamadaoka, Suita, Osaka, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2, Yamadaoka, Suita, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2, Yamadaoka, Suita, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2, Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
16
|
TFF1 Promotes EMT-Like Changes through an Auto-Induction Mechanism. Int J Mol Sci 2018; 19:ijms19072018. [PMID: 29997345 PMCID: PMC6073196 DOI: 10.3390/ijms19072018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 02/07/2023] Open
Abstract
Trefoil factor 1 (TFF1) is a small secreted protein expressed in the gastrointestinal tract where, together with the other two members of its family, it plays an essential role in mucosal protection and repair against injury. The molecular mechanisms involved in the protective function of all three TFF proteins are not fully elucidated. In this paper, we investigated the role of TFF1 in epithelial to mesenchymal transition (EMT) events. The effects of TFF1 on cellular models in normoxia and/or hypoxia were evaluated by western blot, immunofluorescence, qRT-PCR and trans-well invasion assays. Luciferase reporter assays were used to assess the existence of an auto-regulatory mechanism of TFF1. The methylation status of TFF1 promoter was measured by high-resolution melting (HRM) analysis. We demonstrate a TFF1 auto-induction mechanism with the identification of a specific responsive element located between −583 and −212 bp of its promoter. Our results suggest that TFF1 can regulate its own expression in normoxic, as well as in hypoxic, conditions acting synergistically with the hypoxia-inducible factor 1 (HIF-1α) pathway. Functionally, this auto-induction mechanism seems to promote cell invasion and EMT-like modifications in vitro. Additionally, exogenously added human recombinant TFF1 protein was sufficient to observe similar effects. Together, these findings suggest that the hypoxic conditions, which can be induced by gastric injury, promote TFF1 up-regulation, strengthened by an auto-induction mechanism, and that the trefoil peptide takes part in the epithelial-mesenchymal transition events eventually triggered to repair the damage.
Collapse
|
17
|
Esposito R, Morello S, Vllahu M, Eletto D, Porta A, Tosco A. Gastric TFF1 Expression from Acute to Chronic Helicobacter Infection. Front Cell Infect Microbiol 2017; 7:434. [PMID: 29085807 PMCID: PMC5649190 DOI: 10.3389/fcimb.2017.00434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/21/2017] [Indexed: 12/26/2022] Open
Abstract
TFF1, a mucin-associated secreted peptide of gastric mucous cells, is known as a protective agent for stomach epithelium under different stimuli, but its role upon Helicobacter infection is still not clear. In this paper we characterized TFFs expression, with particular attention to TFF1, under Helicobacter infection in gastric cell lines. A mouse model was used to distinguish TFF1 mRNA expression between acute and chronic stages of Helicobacter infection. Our results show that TFF1 expression is induced in infected cells; in addition, the inflammatory response upon Helicobacter infection is inversely associated to pre-existing TFF1 protein levels. In infected mice, TFF1 is initially upregulated in gastric antrum in the acute phase of infection, along with IL-1β and IL-6. Then, expression of TFF1 is gradually silenced when the infection becomes chronic and IFN-γ, CXCL5, and CXCL15 reach higher levels. Our data suggest that TFF1 might help cells to counteract bacteria colonization and the development of a chronic inflammation.
Collapse
Affiliation(s)
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Megi Vllahu
- Department of Pharmacy, University of Salerno, Fisciano, Italy.,PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, Italy
| | - Daniela Eletto
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Amalia Porta
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | | |
Collapse
|
18
|
Pandey V, Zhang M, Chong QY, You M, Raquib AR, Pandey AK, Liu DX, Liu L, Ma L, Jha S, Wu ZS, Zhu T, Lobie PE. Hypomethylation associated enhanced transcription of trefoil factor-3 mediates tamoxifen-stimulated oncogenicity of ER+ endometrial carcinoma cells. Oncotarget 2017; 8:77268-77291. [PMID: 29100386 PMCID: PMC5652779 DOI: 10.18632/oncotarget.20461] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/16/2017] [Indexed: 12/20/2022] Open
Abstract
Tamoxifen (TAM) is widely used as an adjuvant therapy for women with breast cancer (BC). However, TAM possesses partial oestrogenic activity in the uterus and its use has been associated with an increased incidence of endometrial carcinoma (EC). The molecular mechanism for these observations is not well understood. Herein, we demonstrated that forced expression of Trefoil factor 3 (TFF3), in oestrogen receptor-positive (ER+) EC cells significantly increased cell cycle progression, cell survival, anchorage-independent growth, invasiveness and tumour growth in xenograft models. Clinically, elevated TFF3 protein expression was observed in EC compared with normal endometrial tissue, and its increased expression in EC was significantly associated with myometrial invasion. TAM exposure increased expression of TFF3 in ER+ EC cells and its elevated expression resulted in increased oncogenicity and invasiveness. TAM-stimulated expression of TFF3 in EC cells was associated with hypomethylation of the TFF3 promoter sequence and c-JUN/SP1-dependent transcriptional activation. In addition, small interfering (si) RNA-mediated depletion or polyclonal antibody inhibition of TFF3 significantly abrogated oncogenicity and invasiveness in EC cells consequent to TAM induction or forced expression of TFF3. Hence, TAM-stimulated upregulation of TFF3 in EC cells was critical in promoting EC progression associated with TAM treatment. Importantly, inhibition of TFF3 function might be an attractive molecular modality to abrogate the stimulatory effects of TAM on endometrial tissue and to limit the progression of EC.
Collapse
Affiliation(s)
- Vijay Pandey
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Min Zhang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, P.R. China
| | - Qing-Yun Chong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Mingliang You
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Amit K. Pandey
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Dong-Xu Liu
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Liang Liu
- Department of Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, P.R China
- Department of Radiology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, P.R China
| | - Lan Ma
- Tsinghua Berkeley Shenzhen Institute, Division of Life Sciences & Health, Tsinghua University Graduate School, Shenzhen, P.R China
| | - Sudhakar Jha
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Zheng-Sheng Wu
- Department of Pathology, Anhui Medical University, Hefei, P.R China
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, P.R. China
| | - Peter E. Lobie
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore
- Tsinghua Berkeley Shenzhen Institute, Division of Life Sciences & Health, Tsinghua University Graduate School, Shenzhen, P.R China
| |
Collapse
|
19
|
Chong QY, You ML, Pandey V, Banerjee A, Chen YJ, Poh HM, Zhang M, Ma L, Zhu T, Basappa S, Liu L, Lobie PE. Release of HER2 repression of trefoil factor 3 (TFF3) expression mediates trastuzumab resistance in HER2+/ER+ mammary carcinoma. Oncotarget 2017; 8:74188-74208. [PMID: 29088778 PMCID: PMC5650333 DOI: 10.18632/oncotarget.18431] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 05/10/2017] [Indexed: 12/15/2022] Open
Abstract
HER2+/ER+ breast cancer, a subset of the luminal B subtype, makes up approximately 10% of all breast cancers. The bidirectional crosstalk between HER2 and estrogen receptor (ER) in HER2+/ER+ breast cancer contributes to resistance towards both anti-estrogens and HER2-targeted therapies. TFF3 promotes breast cancer progression and has been implicated in anti-estrogen resistance in breast cancer. Herein, we investigated the cross-regulation between HER2 and estrogen-responsive TFF3, and the role of TFF3 in mediating trastuzumab resistance in HER2+/ER+ breast cancer. TFF3 expression was decreased by HER2 activation, and increased by inhibition of HER2 with trastuzumab in HER2+/ER+ breast cancer cells, partially in an ERα-independent manner. In contrast, the forced expression of TFF3 activated the entire HER family of receptor tyrosine kinases (HER1-4). Hence, HER2 negatively regulates its own signalling through the transcriptional repression of TFF3, while trastuzumab inhibition of HER2 results in increased TFF3 expression to compensate for the loss of HER2 signalling. In HER2+/ER+ breast cancer cells with acquired trastuzumab resistance, TFF3 expression was markedly upregulated and associated with a corresponding decrease in HER signalling. siRNA mediated depletion or small molecule inhibition of TFF3 decreased the survival and growth advantage of the trastuzumab resistant cells without re-sensitization to trastuzumab. Furthermore, TFF3 inhibition abrogated the enhanced cancer stem cell-like behaviour in trastuzumab resistant HER2+/ER+ breast cancer cells. Collectively, TFF3 may function as a potential biomarker and therapeutic target in trastuzumab resistant HER2+/ER+ breast cancer.
Collapse
Affiliation(s)
- Qing-Yun Chong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ming-Liang You
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vijay Pandey
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Arindam Banerjee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yi-Jun Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Han-Ming Poh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mengyi Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lan Ma
- Tsinghua Berkeley Shenzhen Institute, Tsinghua University Graduate School at Shenzhen, Shenzhen, China
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Salundi Basappa
- Laboratory of Chemical Biology, Department of Chemistry, Bangalore University, Central College Campus, Bangalore, India
| | - Liang Liu
- Department of Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Radiology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Peter E. Lobie
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Tsinghua Berkeley Shenzhen Institute, Tsinghua University Graduate School at Shenzhen, Shenzhen, China
- National University Cancer Institute, Singapore
| |
Collapse
|
20
|
Fujimoto A, Ishikawa Y, Ishii T, Yamada A, Igarashi Y, Ohmoto Y, Kaise M. Differences between gastric signet-ring cell carcinoma and poorly differentiated adenocarcinoma: A comparison of histopathologic features determined by mucin core protein and trefoil factor family peptide immunohistochemistry. Pathol Int 2017; 67:398-403. [PMID: 28691258 DOI: 10.1111/pin.12559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 06/09/2017] [Indexed: 12/22/2022]
Abstract
We investigated differences between the pathological features of gastric signet-ring cell carcinoma (sig) and poorly differentiated adenocarcinoma (por) by examining the expressions of the trefoil factor family peptides (TFFs) and mucin core proteins (MUCs). Ninety-seven tissues of 97 gastric cancer patients were selected for this study. After gastrectomy, the major histopathologic types were determined to be sig, solid-type poorly differentiated adenocarcinoma (por1), non-solid type poorly differentiated adenocarcinoma (por2), and well-differentiated tubular adenocarcinoma (tub1). We evaluated the prevalence of positive staining for MUCs (MUC5AC and MUC2) and TFFs (TFF1 and TFF3) and assessed the correlation between MUCs and TFFs in each histopathological type. The rate of MUC2 expression significantly differed between sig and por2 (50.0% vs 11.7%, P = 0.011). TFF3 expression in sig significantly differed from TFF3 expression in both por2 (100% vs 17.6%, P < 0.0001) and por1 (100% vs 33.3%, P = 0.0004). MUC5AC and TFF1 expressions were significantly correlated in por1 (r = 0.705, P = 0.002), por2 (r = 0.535, P = 0.0009), and tub1 (r = 0.470, P = 0.0034), while MUC2 and TFF3 expressions were significantly correlated only in sig (r = 0.593, P = 0.040). The expression and correlation patterns of the TFFs and MUCs suggest that the histopathologic features of gastric sig differ from those of por.
Collapse
Affiliation(s)
- Ai Fujimoto
- Department of Gastroenterology and Hepatology, Toho University Omori Medical Center, Tokyo, Japan.,Division for Research and Development of Minimally Invasive Treatment, Cancer Center, Keio University, Tokyo, Japan
| | | | | | - Akihiro Yamada
- Department of Gastroenterology, Toranomon Hospital, Tokyo, Japan
| | - Yoshinori Igarashi
- Department of Gastroenterology and Hepatology, Toho University Omori Medical Center, Tokyo, Japan
| | - Yasukazu Ohmoto
- Institute of Biomedical Innovation, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Mitsuru Kaise
- Department of Gastroenterology, Toranomon Hospital, Tokyo, Japan
| |
Collapse
|
21
|
Choi B, Lee HJ, Min J, Choe HN, Choi YS, Son YG, Ahn HS, Suh YS, Goldenring JR, Yang HK. Plasma expression of the intestinal metaplasia markers CDH17 and TFF3 in patients with gastric cancer. Cancer Biomark 2017; 19:231-239. [DOI: 10.3233/cbm-160147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Boram Choi
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Hyuk-Joon Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Surgery,
| | - Jimin Min
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hwi-Nyeong Choe
- Department of Nursing, Seoul National University Hospital, Seoul, Korea
| | | | | | | | | | - James R. Goldenring
- Department of Surgery, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, and the Nashville VA Medical Center, Nashville, TN, USA
| | - Han-Kwang Yang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Surgery,
| |
Collapse
|
22
|
You ML, Chen YJ, Chong QY, Wu MM, Pandey V, Chen RM, Liu L, Ma L, Wu ZS, Zhu T, Lobie PE. Trefoil factor 3 mediation of oncogenicity and chemoresistance in hepatocellular carcinoma is AKT-BCL-2 dependent. Oncotarget 2017; 8:39323-39344. [PMID: 28445151 PMCID: PMC5503616 DOI: 10.18632/oncotarget.16950] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/07/2017] [Indexed: 12/14/2022] Open
Abstract
The efficacious treatment of hepatocellular carcinoma (HCC) remains a challenge, partially being attributed to intrinsic chemoresistance. Previous reports have observed increased TFF3 expression in HCC. Herein, we investigated the functional role of TFF3 in progression of HCC, and in both intrinsic and acquired chemoresistance. TFF3 expression was observed to be upregulated in HCC and associated with poor clinicopathological features and worse patient survival outcome. Functionally, forced expression of TFF3 in HCC cell lines increased cell proliferation, cell survival, anchorage-independent and 3D matrigel growth, cell invasion and migration, and in vivo tumor growth. In contrast, depleted expression of TFF3 decreased the oncogenicity of HCC cells as indicated by the above parameters. Furthermore, forced expression of TFF3 decreased doxorubicin sensitivity of HCC cells, which was attributed to increased doxorubicin efflux and cancer stem cell-like behavior of Hep3B cells. In contrast, depletion of TFF3 increased doxorubicin sensitivity and decreased cancer stem cell-like behavior of Hep3B cells. Correspondingly, TFF3 expression was markedly increased in Hep3B cells with acquired doxorubicin resistance, while the depletion of TFF3 resulted in re-sensitization of the Hep3B cells to doxorubicin. The increased doxorubicin efflux and enhanced cancer stem cell-like behavior of the doxorubicin-resistant Hep3B cells was observed to be dependent on TFF3 expression. In addition, we determined that TFF3-stimulated oncogenicity and chemoresistance in HCC cells was mediated by AKT-dependent expression of BCL-2. Hence, therapeutic inhibition of TFF3 should be considered to hinder HCC progression and overcome intrinsic and acquired chemoresistance in HCC.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Apoptosis/drug effects
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Proliferation/drug effects
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm
- Female
- Follow-Up Studies
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- Prognosis
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Survival Rate
- Trefoil Factor-3/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ming-Liang You
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore
| | - Yi-Jun Chen
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore
| | - Qing-Yun Chong
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore
| | - Ming-Ming Wu
- Hefei National Laboratory for Physical Sciences at Microscale Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Vijay Pandey
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore
| | - Ru-Mei Chen
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore
| | - Liang Liu
- Department of Oncology and Department of Radiology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Lan Ma
- Tsinghua Berkeley Shenzhen Institute (TBSI), Shenzhen, China
| | - Zheng-Sheng Wu
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Peter E Lobie
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore
- Tsinghua Berkeley Shenzhen Institute (TBSI), Shenzhen, China
| |
Collapse
|
23
|
Yusup A, Huji B, Fang C, Wang F, Dadihan T, Wang HJ, Upur H. Expression of trefoil factors and TWIST1 in colorectal cancer and their correlation with metastatic potential and prognosis. World J Gastroenterol 2017; 23:110-120. [PMID: 28104986 PMCID: PMC5221274 DOI: 10.3748/wjg.v23.i1.110] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/19/2016] [Accepted: 12/02/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To detect the expression of trefoil factors (TFFs) and TWIST1 in colorectal cancer (CRC) and analyze their correlation with metastasis and survival.
METHODS This study examined the expression of TFF1, TFF3 and TWIST1 in a total of 75 tumor samples, 47 matched normal samples (15 cm from the lesion margin), 30 metastatic lymph nodes, and 10 liver metastatic cancer samples from patients with CRC. The relationship was then analyzed between the protein expression and different clinical records. TFF1, TFF3, TWIST1,E-cadherin, vimentin and β-catenin mRNA and protein expression levels were measured in colon cancer cell lines with different metastatic potentials (HIEC, HT29, SW620, and LoVo cells), and the correlation of the expression levels with epithelial-mesenchymal transition (EMT) was discussed.
RESULTS It was found that 66.7% (50/75), 78.7% (59/75) and 54.7% (41/75) of tumor tissue samples exhibited positive staining for TFF1, TFF3 and TWIST1 and so did 27.3% (13/47), 100% (47/47) and 17% (8/47) of adjacent normal colorectal tissues. Compared with adjacent normal tissues, significant differences were found in the expression of all three proteins in different cancerous tissues (P < 0.05). Higher expression of TFF3 and TWIST1 was significantly correlated with lymph node metastasis (P = 0.034, P = 0.000), advanced stage (P = 0.031, P = 0.003), and poorer survival (P = 0.042 for the TFF3 group, P = 0.003 for the TWIST1 group). The expression of TFF3 and TWIST1 in cancer cell lines was higher than that in HIEC (a normal human intestinal epithelial cell line)(P < 0.05), and the expression intensity demonstrated a tendency to rise with increased metastatic potential both at the protein and mRNA levels. However, TFF1 expression demonstrated the opposite tendency. It was also observed that the expression of E-cadherin and β-catenin tended to decrease while that of vimentin, TWIST1 and Snail tended to rise with the increase in metastatic potential.
CONCLUSION The expression of TFF3 and TWIST1 might be associated with the survival of patients with CRC after curative resection and might be pivotal predictors of disease progression. TFF3 may be correlated to the invasiveness of CRC.
Collapse
|
24
|
Rivas-Ortiz CI, Lopez-Vidal Y, Arredondo-Hernandez LJR, Castillo-Rojas G. Genetic Alterations in Gastric Cancer Associated with Helicobacter pylori Infection. Front Med (Lausanne) 2017; 4:47. [PMID: 28512631 PMCID: PMC5411440 DOI: 10.3389/fmed.2017.00047] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/07/2017] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer is a world health problem and depicts the fourth leading mortality cause from malignancy in Mexico. Causation of gastric cancer is not only due to the combined effects of environmental factors and genetic variants. Recent molecular studies have transgressed a number of genes involved in gastric carcinogenesis. The aim of this review is to understand the recent basics of gene expression in the development of the process of gastric carcinogenesis. Genetic variants, polymorphisms, desoxyribonucleic acid methylation, and genes involved in mediating inflammation have been associated with the development of gastric carcinogenesis. Recently, these genes (interleukin 10, Il-17, mucin 1, β-catenin, CDX1, SMAD4, SERPINE1, hypoxia-inducible factor 1 subunit alpha, GSK3β, CDH17, matrix metalloproteinase 7, RUNX3, RASSF1A, TFF1, HAI-2, and COX-2) have been studied in association with oncogenic activation or inactivation of tumor suppressor genes. All these mechanisms have been investigated to elucidate the process of gastric carcinogenesis, as well as their potential use as biomarkers and/or molecular targets to treatment of disease.
Collapse
Affiliation(s)
- Claudia I. Rivas-Ortiz
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Yolanda Lopez-Vidal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | - Gonzalo Castillo-Rojas
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- *Correspondence: Gonzalo Castillo-Rojas,
| |
Collapse
|
25
|
Khaidakov M, Lai KK, Roudachevski D, Sargsyan J, Goyne HE, Pai RK, Lamps LW, Hagedorn CH. Gastric Proteins MUC5AC and TFF1 as Potential Diagnostic Markers of Colonic Sessile Serrated Adenomas/Polyps. Am J Clin Pathol 2016; 146:530-537. [PMID: 28430953 PMCID: PMC5377921 DOI: 10.1093/ajcp/aqw142] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES A subset of colon cancers originates from sessile serrated adenomas/polyps (SSA/Ps). Our goal was to identify markers for SSA/Ps that could aid in distinguishing them from hyperplastic polyps (HPs). METHODS We performed immunostaining for gastric proteins MUC5AC and TFF1 in formalin-fixed, paraffin-embedded (FFPE) samples of HPs (n = 47), SSA/Ps (n = 37), and normal colon (n = 30). RESULTS Control mucosa expressed only trace amounts of MUC5AC and TFF1. HPs exhibited an 11.3- and 11.4-fold increase in MUC5AC and TFF1 expression confined to the upper segments of the crypts near the luminal surface of the polyps. SSA/Ps displayed on average 1.6-fold (MUC5AC, P < .008) and 1.4-fold (TFF1, P < .03) higher signal intensity for these markers than HPs, with a dramatic coexpression of MUC5AC and TFF1 typically occupying the entire length of the crypt. Immunoperoxidase results were similar to immunofluorescence staining for both MUC5AC and TFF1. CONCLUSIONS Our results suggest that the analysis of expression of MUC5AC and TFF1 may be useful for differentiating SSA/Ps from HPs. We also suggest the possibility that crypt morphology may be at least partly due to overproduction of highly viscous gastric mucins and that these proteins may play a role in the serrated pathway to colon carcinogenesis.
Collapse
Affiliation(s)
- Magomed Khaidakov
- From the Department of Medicine
- Central Arkansas Veterans Healthcare System, Little Rock
| | - Keith K. Lai
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock
| | | | | | - Hannah E. Goyne
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock
| | - Rish K. Pai
- Department of Pathology, Mayo Clinic, Scottsdale, AZ
| | - Laura W. Lamps
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock
| | - Curt H. Hagedorn
- From the Department of Medicine
- Central Arkansas Veterans Healthcare System, Little Rock
| |
Collapse
|
26
|
Soutto M, Romero-Gallo J, Krishna U, Piazuelo MB, Washington MK, Belkhiri A, Peek RM, El-Rifai W. Loss of TFF1 promotes Helicobacter pylori-induced β-catenin activation and gastric tumorigenesis. Oncotarget 2016; 6:17911-22. [PMID: 25980439 PMCID: PMC4627225 DOI: 10.18632/oncotarget.3772] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/14/2015] [Indexed: 12/14/2022] Open
Abstract
Using in vitro and in vivo models, we investigated the role of TFF1 in suppressing H. pylori-mediated activation of oncogenic β-catenin in gastric tumorigenesis. A reconstitution of TFF1 expression in gastric cancer cells decreased H. pylori-induced β-catenin nuclear translocation, as compared to control (p < 0.001). These cells exhibited significantly lower β-catenin transcriptional activity, measured by pTopFlash reporter, and induction of its target genes (CCND1 and c-MYC), as compared to control. Because of the role of AKT in regulating β-catenin, we performed Western blot analysis and demonstrated that TFF1 reconstitution abrogates H. pylori-induced p-AKT (Ser473), p-β-catenin (Ser552), c-MYC, and CCND1 protein levels. For in vivo validation, we utilized the Tff1-KO gastric neoplasm mouse model. Following infection with PMSS1 H. pylori strain, we detected an increase in the nuclear staining for β-catenin and Ki-67 with a significant induction in the levels of Ccnd1 and c-Myc in the stomach of the Tff1-KO, as compared to Tff1-WT mice (p < 0.05). Only 10% of uninfected Tff1-KO mice, as opposed to one-third of H. pylori-infected Tff1-KO mice, developed invasive adenocarcinoma (p = 0.03). These findings suggest that loss of TFF1 could be a critical step in promoting the H. pylori-mediated oncogenic activation of β-catenin and gastric tumorigenesis.
Collapse
Affiliation(s)
- Mohammed Soutto
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA.,Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Judith Romero-Gallo
- Division of Gastroenterology, Hepatology, & Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Uma Krishna
- Division of Gastroenterology, Hepatology, & Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M Blanca Piazuelo
- Division of Gastroenterology, Hepatology, & Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M Kay Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Abbes Belkhiri
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Richard M Peek
- Division of Gastroenterology, Hepatology, & Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Wael El-Rifai
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA.,Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
27
|
Xiao P, Ling H, Lan G, Liu J, Hu H, Yang R. Trefoil factors: Gastrointestinal-specific proteins associated with gastric cancer. Clin Chim Acta 2015; 450:127-34. [PMID: 26265233 DOI: 10.1016/j.cca.2015.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 12/11/2022]
Abstract
Trefoil factor family (TFF), composed of TFF1, TFF2, and TFF3, is a cluster of secreted peptides characterized by trefoil domain (s) and C-terminal dimerization domain. TFF1, a gastric tumor suppressor, is a single trefoil peptide originally detected in breast cancer cell lines but expressed mainly in the stomach; TFF2, a candidate of gastric cancer suppressor with two trefoil domains, is abundant in the stomach and duodenal Brunner's glands; and TFF3 is another single trefoil peptide expressed throughout the intestine which can promote the development of gastric carcinoma. According to multiple studies, TFFs play a regulatory function in the mammals' digestive system, namely in mucosal protection and epithelial cell reconstruction, tumor suppression or promotion, signal transduction and the regulation of proliferation and apoptosis. Action mechanisms of TFFs remain unresolved, but the recent demonstration of a GKN (gastrokine) 2-TFF1 heterodimer implicates structural and functional interplay with gastrokines. This review aims to encapsulate the structural and biological characteristics of TFF.
Collapse
Affiliation(s)
- Ping Xiao
- Key Laboratory of Tumor Cellular and Molecular Pathology, University of South China, College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, PR China; Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China
| | - Hui Ling
- Key Laboratory of Tumor Cellular and Molecular Pathology, University of South China, College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, PR China; Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China.
| | - Gang Lan
- Key Laboratory for Atherosclerology of Hunan Province, Cardiovascular Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Jiao Liu
- Key Laboratory of Tumor Cellular and Molecular Pathology, University of South China, College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, PR China; Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China
| | - Haobin Hu
- Key Laboratory of Tumor Cellular and Molecular Pathology, University of South China, College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, PR China; Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China
| | - Ruirui Yang
- Key Laboratory of Tumor Cellular and Molecular Pathology, University of South China, College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, PR China; Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China
| |
Collapse
|
28
|
Jin EH, Lee SI, Kim J, Seo EY, Lee SY, Hur GM, Shin S, Hong JH. Association between Promoter Polymorphisms of TFF1, TFF2, and TFF3 and the Risk of Gastric and Diffuse Gastric Cancers in a Korean Population. J Korean Med Sci 2015; 30:1035-41. [PMID: 26240479 PMCID: PMC4520932 DOI: 10.3346/jkms.2015.30.8.1035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/17/2015] [Indexed: 01/26/2023] Open
Abstract
Gastric cancer is one of the most common cancers in the world. The aims of this study were to evaluate the association between polymorphisms in TFF gene family, TFF1, TFF2, and TFF3 and the risk of gastric cancer (GC) and GC subgroups in a Korean population via a case-control study. The eight polymorphisms in TFF gene family were identified by sequencing and genotyped with 377 GC patients and 396 controls by using TaqMan genotyping assay. The rs184432 TT genotype of TFF1 was significantly associated with a reduced risk of GC (odds ratio, [OR) = 0.45; 95% confidence interval, [CI] = 0.25-0.82; P = 0.009), more protective against diffuse-type GC (OR = 0.20; 95% CI = 0.05-0.89; P = 0.035) than GC (OR = 0.34; 95% CI = 0.14-0.82; P = 0.017) in subjects aged < 60 yr, and correlated with lymph node metastasis negative GC and diffuse-type GC (OR = 0.44; 95% CI = 0.23-0.86; P = 0.016 and OR = 0.20; 95% CI = 0.05-0.87; P = 0.031, respectively). In addition, a decreased risk of lymph node metastasis negative GC and diffuse-type GC was observed for rs225359 TT genotype of TFF1 (OR = 0.46, 95% CI = 0.24-0.88; P = 0.020 and OR = 0.21, 95% CI = 0.05-0.88; P = 0.033, respectively). These findings suggest that the rs184432 and rs225359 polymorphisms in TFF1 have protective effects for GC and contribute to the development of GC in Korean individuals.
Collapse
Affiliation(s)
- Eun-Heui Jin
- Clinical Trials Center, Chungnam National University Hospital, Daejeon, Korea
| | - Sang-Il Lee
- Department of Surgery, Chungnam National University Hospital, Daejeon, Korea
| | - JaeWoo Kim
- Clinical Trials Center, Chungnam National University Hospital, Daejeon, Korea
| | - Eun Young Seo
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| | - Su Yel Lee
- National Biobank of Korea, Chungnam National University Hospital, Daejeon, Korea
| | - Gang Min Hur
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Sanghee Shin
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Jang Hee Hong
- Clinical Trials Center, Chungnam National University Hospital, Daejeon, Korea
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
29
|
Ge H, Gardner J, Wu X, Rulifson I, Wang J, Xiong Y, Ye J, Belouski E, Cao P, Tang J, Lee KJ, Coberly S, Wu X, Gupte J, Miao L, Yang L, Nguyen N, Shan B, Yeh WC, Véniant MM, Li Y, Baribault H. Trefoil Factor 3 (TFF3) Is Regulated by Food Intake, Improves Glucose Tolerance and Induces Mucinous Metaplasia. PLoS One 2015; 10:e0126924. [PMID: 26083576 PMCID: PMC4471263 DOI: 10.1371/journal.pone.0126924] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 04/09/2015] [Indexed: 02/06/2023] Open
Abstract
Trefoil factor 3 (TFF3), also called intestinal trefoil factor or Itf, is a 59 amino acid peptide found as a homodimer predominantly along the gastrointestinal tract and in serum. TFF3 expression is elevated during gastrointestinal adenoma progression and has been shown to promote mucosal wound healing. Here we show that in contrast to other trefoil factor family members, TFF1 and TFF2, TFF3 is highly expressed in mouse duodenum, jejunum and ileum and that its expression is regulated by food intake. Overexpression of TFF3 using a recombinant adeno-associated virus (AAV) vector, or daily administration of recombinant TFF3 protein in vivo improved glucose tolerance in a diet-induced obesity mouse model. Body weight, fasting insulin, triglyceride, cholesterol and leptin levels were not affected by TFF3 treatment. Induction of mucinous metaplasia was observed in mice with AAV-mediated TFF3 overexpression, however, no such adverse histological effect was seen after the administration of recombinant TFF3 protein. Altogether these results suggest that the therapeutic potential of targeting TFF3 to treat T2D may be limited.
Collapse
Affiliation(s)
- Hongfei Ge
- Amgen, Metabolic Disorders, South San Francisco, California, United States of America
| | - Jonitha Gardner
- Amgen, Metabolic Disorders, South San Francisco, California, United States of America
| | - Xiaosu Wu
- Amgen, Metabolic Disorders, South San Francisco, California, United States of America
| | - Ingrid Rulifson
- Amgen, Metabolic Disorders, South San Francisco, California, United States of America
| | - Jinghong Wang
- Amgen, Metabolic Disorders, South San Francisco, California, United States of America
| | - Yumei Xiong
- Amgen, Metabolic Disorders, South San Francisco, California, United States of America
| | - Jingjing Ye
- Amgen, Protein Technologies, South San Francisco, California, United States of America
| | - Edward Belouski
- Amgen, Protein Technologies, South San Francisco, California, United States of America
| | - Ping Cao
- Amgen, Protein Technologies, South San Francisco, California, United States of America
| | - Jie Tang
- Amgen, Protein Technologies, South San Francisco, California, United States of America
| | - Ki Jeong Lee
- Amgen, Lead Discovery, Thousand Oaks, California, United States of America
| | - Suzanne Coberly
- Amgen, Pathology, South San Francisco, California, United States of America
| | - Xinle Wu
- Amgen, Metabolic Disorders, South San Francisco, California, United States of America
| | - Jamila Gupte
- Amgen, Metabolic Disorders, South San Francisco, California, United States of America
| | - Lynn Miao
- Amgen, Metabolic Disorders, South San Francisco, California, United States of America
| | - Li Yang
- Amgen, Metabolic Disorders, South San Francisco, California, United States of America
| | - Natalie Nguyen
- Amgen, Metabolic Disorders, South San Francisco, California, United States of America
| | - Bei Shan
- Amgen, Metabolic Disorders, South San Francisco, California, United States of America
| | - Wen-Chen Yeh
- Amgen, Metabolic Disorders, South San Francisco, California, United States of America
| | - Murielle M. Véniant
- Amgen, Metabolic Disorders, Thousand Oaks, California, United States of America
| | - Yang Li
- Amgen, Metabolic Disorders, South San Francisco, California, United States of America
| | - Helene Baribault
- Amgen, Metabolic Disorders, South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Wang XN, Wang SJ, Pandey V, Chen P, Li Q, Wu ZS, Wu Q, Lobie PE. Trefoil factor 3 as a novel biomarker to distinguish between adenocarcinoma and squamous cell carcinoma. Medicine (Baltimore) 2015; 94:e860. [PMID: 25997063 PMCID: PMC4602872 DOI: 10.1097/md.0000000000000860] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In carcinoma, such as of the lung, the histological subtype is important to select an appropriate therapeutic strategy for patients. However, carcinomas with poor differentiation cannot always be distinguished on the basis of morphology alone nor on clinical findings. Hence, delineation of poorly differentiated adenocarcinoma and squamous cell carcinoma, the 2 most common epithelial-origin carcinomas, is pivotal for selection of optimum therapy. Herein, we explored the potential utility of trefoil factor 3 (TFF3) as a biomarker for primary lung adenocarcinoma and extrapulmonary adenocarcinomas derived from different organs. We observed that 90.9% of lung adenocarcinomas were TFF3-positive, whereas no expression of TFF3 was observed in squamous cell carcinomas. The subtype of lung carcinoma was confirmed by four established biomarkers, cytokeratin 7 and thyroid transcription factor 1 for adenocarcinoma and P63 and cytokeratin 5/6 for squamous cell carcinoma. Furthermore, expression of TFF3 mRNA was observed by quantitative PCR in all of 11 human lung adenocarcinoma cell lines and highly correlated with markers of the adenocarcinomatous lineage. In contrast, little or no expression of TFF3 was observed in 4 lung squamous cell carcinoma cell lines. By use of forced expression, or siRNA-mediated depletion of TFF3, we determined that TFF3 appeared to maintain rather than promote glandular differentiation of lung carcinoma cells. In addition, TFF3 expression was also determined in adenocarcinomas from colorectum, stomach, cervix, esophagus, and larynx. Among all these extrapulmonary carcinomas, 93.7% of adenocarcinomas exhibited TFF3 positivity, whereas only 2.9% of squamous cell carcinomas were TFF3-positive. Totally, 92.9% of both pulmonary and extrapulmonary adenocarcinomas exhibited TFF3 positivity, whereas only 1.5% of squamous cell carcinomas were TFF3-positive. In conclusion, TFF3 is preferentially expressed in adenocarcinoma and may function as an additional biomarker for distinguishing adenocarcinoma from squamous cell carcinoma.
Collapse
Affiliation(s)
- Xiao-Nan Wang
- From the Department of Pathology (X-NW, S-JW, PC, QL, Z-SW, QW); Laboratory of Pathogenic Microbiology and Immunology, Anhui Medical University, Hefei, Anhui, People's Republic of China (X-NW); Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore (VP, PEL); and National Cancer Institute of Singapore, National University Health System, Singapore (PEL). These authors contributed equally to this work
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Lin F, Liu H. Immunohistochemistry in undifferentiated neoplasm/tumor of uncertain origin. Arch Pathol Lab Med 2015; 138:1583-610. [PMID: 25427040 DOI: 10.5858/arpa.2014-0061-ra] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Immunohistochemistry has become an indispensable ancillary study in the identification and classification of undifferentiated neoplasms/tumors of uncertain origin. The diagnostic accuracy has significantly improved because of the continuous discoveries of tissue-specific biomarkers and the development of effective immunohistochemical panels. OBJECTIVES To identify and classify undifferentiated neoplasms/tumors of uncertain origin by immunohistochemistry. DATA SOURCES Literature review and authors' research data and personal practice experience were used. CONCLUSIONS To better guide therapeutic decisions and predict prognostic outcomes, it is crucial to differentiate the specific lineage of an undifferentiated neoplasm. Application of appropriate immunohistochemical panels enables the accurate classification of most undifferentiated neoplasms. Knowing the utilities and pitfalls of each tissue-specific biomarker is essential for avoiding potential diagnostic errors because an absolutely tissue-specific biomarker is exceptionally rare. We review frequently used tissue-specific biomarkers, provide effective panels, and recommend diagnostic algorithms as a standard approach to undifferentiated neoplasms.
Collapse
Affiliation(s)
- Fan Lin
- From the Department of Laboratory Medicine, Geisinger Medical Center, Danville, Pennsylvania
| | | |
Collapse
|
32
|
Pandey V, Wu ZS, Zhang M, Li R, Zhang J, Zhu T, Lobie PE. Trefoil factor 3 promotes metastatic seeding and predicts poor survival outcome of patients with mammary carcinoma. Breast Cancer Res 2014; 16:429. [PMID: 25266665 PMCID: PMC4303111 DOI: 10.1186/s13058-014-0429-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 08/15/2014] [Indexed: 12/14/2022] Open
Abstract
Introduction Recurrence or early metastasis remains the predominant cause of mortality in patients with estrogen receptor positive (ER+) mammary carcinoma (MC). However, the molecular mechanisms underlying the initial progression of ER+ MC to metastasis remains poorly understood. Trefoil factor 3 (TFF3) is an estrogen-responsive oncogene in MC. Herein, we provide evidence for a functional role of TFF3 in metastatic progression of ER+ MC. Methods The association of TFF3 expression with clinicopathological parameters and survival outcome in a cohort of MC patients was assessed by immunohistochemistry. The expression of TFF3 in MCF7 and T47D cells was modulated by forced expression or siRNA-mediated depletion of TFF3. mRNA and protein levels were determined using qPCR and western blot. The functional effect of modulation of TFF3 expression in MC cells was determined in vitro and in vivo. Mechanistic analyses were performed using reporter constructs, modulation of signal transducer and activator of transcription 3 (STAT3) expression, and pharmacological inhibitors against c-SRC and STAT3 activity. Results TFF3 protein expression was positively associated with larger tumour size, lymph node metastasis, higher stage, and poor survival outcome. Forced expression of TFF3 in ER+ MC cells stimulated colony scattering, cell adhesion to a Collagen I-coated matrix, colony formation on a Collagen I- or Matrigel-coated matrix, endothelial cell adhesion, and transmigration through an endothelial cell barrier. In vivo, forced expression of TFF3 in MCF7 cells stimulated the formation of metastatic nodules in animal lungs. TFF3 regulation of the mRNA levels of epithelial, mesenchymal, and metastatic-related genes in ER+ MC cells were consistent with the altered cell behaviour. Forced expression of TFF3 in ER+ MC cells stimulated phosphorylation of c-SRC that subsequently increased STAT3 activity, which lead to the downregulation of E-cadherin. siRNA-mediated depletion of TFF3 reduced the invasiveness of ER+ MC cells. Conclusions TFF3 expression predicts metastasis and poor survival outcome of patients with MC and functionally stimulates cellular invasion and metastasis of ER+ MC cells. Adjuvant functional inhibition of TFF3 may therefore be considered to ameliorate outcome of ER+ MC patients. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0429-3) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
D’Angelo G, Rienzo TD, Ojetti V. Microarray analysis in gastric cancer: A review. World J Gastroenterol 2014; 20:11972-11976. [PMID: 25232233 PMCID: PMC4161784 DOI: 10.3748/wjg.v20.i34.11972] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/03/2014] [Accepted: 04/23/2014] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is one of the most common tumors worldwide. Although several treatment options have been developed, the mortality rate is increasing. Lymph node involvement is considered the most reliable prognostic indicator in gastric cancer. Early diagnosis improves the survival rate of patients and increases the likelihood of successful treatment. The most reliable diagnostic method is endoscopic examination, however, it is expensive and not feasible in poorer countries. Therefore, many innovative techniques have been studied to develop a new non-invasive screening test and to identify specific serum biomarkers. DNA microarray analysis is one of the new technologies able to measure the expression levels of a large number of genes simultaneously. It is possible to define the gene expression profile of the tumor and to correlate it with the prognosis and metastasis formation. Several studies in the literature have been published on the role of microarray analysis in gastric cancer and the mechanisms of proliferation and metastasis formation. The aim of this review is to analyze the importance of microarray analysis and its clinical applications to better define the genetic characteristics of gastric cancer and its possible implications in a more decisive treatment.
Collapse
|
34
|
Xiao L, Liu YP, Xiao CX, Ren JL, Guleng B. Serum TFF3 may be a pharamcodynamic marker of responses to chemotherapy in gastrointestinal cancers. BMC Clin Pathol 2014; 14:26. [PMID: 25031551 PMCID: PMC4099389 DOI: 10.1186/1472-6890-14-26] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 06/10/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND As a secreted protein, serum trefoil factor 3 (TFF3) has been reported to be a biomarker of several malignancies. We further investigated whether TFF3 can be applied as a biomarker for and predictor of responses to chemotherapy in gastrointestinal cancer. METHODS Serum and urine samples were collected from 90 patients with gastric cancer, 128 patients with colorectal cancer and 91 healthy individuals. Serum and urine TFF3 levels were measured using an ELISA. RESULTS Serum and urine TFF3 levels were significantly higher in the patients with gastric and colorectal cancer compared with the healthy individuals (P < 0.05). Higher serum levels of TFF3 were significantly correlated with distant metastasis and an advanced stage in the two types of cancer (P < 0.05). Age and the number of lymph node metastases were significantly correlated with serum TFF3 levels in colorectal cancer, and decreased serum TFF3 levels were significantly correlated with responses to chemotherapy in both the gastric and the colorectal cancer partial response (PR) groups. A combination of serum and urine data did not significantly improve the detection of either cancer, although urine levels have shown a significant negative relationship with the glomerular filtration rate (GFR). CONCLUSIONS Our data indicate that TFF3 may be an effective biomarker of tumor stage and the presence of distant metastasis, and may be a pharmacodynamic marker of response to chemotherapy in gastrointestinal cancer.
Collapse
Affiliation(s)
- Li Xiao
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, 201 Hubin South Road, Xiamen 361004, Fujian Province, China
| | - Yun-Peng Liu
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, 201 Hubin South Road, Xiamen 361004, Fujian Province, China
| | - Chuan-Xing Xiao
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, 201 Hubin South Road, Xiamen 361004, Fujian Province, China
| | - Jian-Lin Ren
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, 201 Hubin South Road, Xiamen 361004, Fujian Province, China
| | - Bayasi Guleng
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, 201 Hubin South Road, Xiamen 361004, Fujian Province, China.,Faculty of Clinical Medicine, Medical College of Xiamen University, Xiangan South Road, Xiangan District, Xiamen 361102, Fujian Province, China
| |
Collapse
|
35
|
Li P, Turner JH. Chronic rhinosinusitis without nasal polyps is associated with increased expression of trefoil factor family peptides. Int Forum Allergy Rhinol 2014; 4:571-6. [DOI: 10.1002/alr.21334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 02/08/2014] [Accepted: 03/15/2014] [Indexed: 01/10/2023]
Affiliation(s)
- Ping Li
- Department of Otolaryngology-Head and Neck Surgery; Vanderbilt University School of Medicine; Nashville TN
| | - Justin H. Turner
- Department of Otolaryngology-Head and Neck Surgery; Vanderbilt University School of Medicine; Nashville TN
| |
Collapse
|
36
|
Huang Z, Zhang X, Lu H, Wu L, Wang D, Zhang Q, Ding H. Serum trefoil factor 3 is a promising non-invasive biomarker for gastric cancer screening: a monocentric cohort study in China. BMC Gastroenterol 2014; 14:74. [PMID: 24720760 PMCID: PMC4012276 DOI: 10.1186/1471-230x-14-74] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/24/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The search for better non-invasive biomarkers for gastric cancer remains ongoing. We investigated the predictive power of serum trefoil factor (TFF) levels as biomarkers for gastric cancer in comparison with the pepsinogen (PG) test. METHODS Patients with gastric cancer, chronic atrophic gastritis (CAG) or chronic non-atrophic gastritis (CNAG), and healthy people were recruited. Serum concentrations of TFFs, PG I, and PG II, as well as the presence of antibodies against Helicobacter pylori, were measured by enzyme-linked immunosorbent assays (ELISA). Receiver operating characteristics (ROC) were used to compare the predictive powers of the selected factors. RESULTS The serum concentrations of TFF1, TFF2, and TFF3 in the control groups were significantly lower than those in the gastric cancer group with the exception of TFF2 which was elevated in CAG. The area under the ROC curve for TFF3 was greater than that for the PG I/II ratio (0.81 vs 0.78). TFF3 also had a significantly higher predictive power for distinguishing gastric cancer than the PG test (odds ratio: 10.33 vs 2.57). Moreover, combining the serum TFF3 and PG tests for gastric cancer had better predictive power than either alone. CONCLUSIONS Serum TFF3 may be a better predictor of gastric cancer than the PG test, while the combined testing of serum PG and TFF3 could further improve the efficacy of gastric cancer screening.
Collapse
Affiliation(s)
- Zhigang Huang
- Department of Gastroenterology, Lihuili Hospital of Ningbo Medical Center, 57# Xingning Road, Ningbo 315000, China.
| | | | | | | | | | | | | |
Collapse
|
37
|
O'Seaghdha CM, Hwang SJ, Larson MG, Meigs JB, Vasan RS, Fox CS. Analysis of a urinary biomarker panel for incident kidney disease and clinical outcomes. J Am Soc Nephrol 2013; 24:1880-8. [PMID: 23990678 DOI: 10.1681/asn.2013010019] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Whether novel biomarkers improve the assessment of incident kidney disease and related adverse outcomes remains to be tested in longitudinal observational studies. We tested 14 urinary biomarkers for association with incident kidney, cardiovascular, and mortality outcomes in 2948 Framingham Heart Study participants. Baseline examinations were performed between 1995 and 1998; mean follow-up was 10.1 years for renal outcomes and 11.2 years for survival analyses. Primary outcomes were incident CKD, incident albuminuria, incident cardiovascular disease, and all-cause mortality. Secondary analyses assessed incident congestive heart failure (CHF) and mortality with coexistent kidney disease. Biomarkers were tested for association with renal end points using logistic regression and incident cardiovascular and mortality outcomes in proportional hazards models; α1-microglobulin, Kim-1, and TFF-3 predicted all-cause mortality (hazard ratio per SD increase in log-transformed biomarker [HR] range, 1.15 to 1.21; 95% confidence interval [CI] range, 1.04 to 1.34; P values=0.007 to <0.001), whereas α1-microglobulin, β2-microglobulin, KIM-1, and TFF-3 associated with death with coexistent kidney disease (HR range, 1.72-2.25; 95% CI, 1.17 to 3.24; P values<0.01). KIM-1 also associated with the risk of incident CHF (HR, 1.32; 95% CI, 1.07 to 1.63; P=0.008). CTGF associated nominally with CKD (HR, 0.83; 95% CI, 0.71 to 0.98; P=0.03), but no other biomarkers associated with incident CKD or albuminuria. Addition of α1-microglobulin and TFF-3 resulted in a nonsignificant net reclassification index (NRI) of 3% for all-cause mortality beyond clinical risk factors. In conclusion, components of a panel of 14 subclinical biomarkers of kidney injury were associated with important clinical outcomes and merit additional investigation.
Collapse
Affiliation(s)
- Conall M O'Seaghdha
- National Heart, Lung and Blood Institute's Framingham Heart Study, Framingham, Massachusetts
| | | | | | | | | | | |
Collapse
|
38
|
Schildberg C, Abbas M, Merkel S, Agaimy A, Dimmler A, Schlabrakowski A, Croner R, Leupolt J, Hohenberger W, Allgayer H. COX-2, TFF1, and Src define better prognosis in young patients with gastric cancer. J Surg Oncol 2013; 108:409-13. [PMID: 24037722 DOI: 10.1002/jso.23416] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/31/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND OBJECTIVES Despite its dwindling occurrence, gastric cancer remains a leading cause of cancer related mortality worldwide. Molecular determinants of prognosis that impact survival are being sought out as a means to facilitate rational clinical decision-making and enhance patient management. In this study, we evaluated three molecules implicated in gastric carcinogenesis and demonstrated that the differential expression of cyclooxygenase-2 (COX-2) and the viral oncogene homolog Src proteins could explain the differences in survival observed in patients older and younger than 50 years of age. METHODS We evaluated 5-year survival in a cohort of 423 gastric cancer patients using chronological age as a variable. Additionally, we assessed the protein expression of three molecules (COX-2, TFF1, Src) implicated in the pathogenesis of gastric cancer using immunohistochemistry. RESULTS We found that patients younger than 50 years of age had a better 5-year survival rate in all tumor stages. We found that the expression of COX-2 and Src correlated significantly with survival in this group without any significant impact attributable to TFF1. CONCLUSIONS Our study demonstrates that young gastric cancer patients have a better prognostic outlook that could in part be explained by the differential expression of COX-2 and Src.
Collapse
|