1
|
Qin Z, Liu S, Zheng Y, Wang Y, Chen Y, Peng X, Jia L. Co-targeting BMI1 and MYC to eliminate cancer stem cells in squamous cell carcinoma. Cell Rep Med 2025:102077. [PMID: 40239645 DOI: 10.1016/j.xcrm.2025.102077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/28/2024] [Accepted: 03/18/2025] [Indexed: 04/18/2025]
Abstract
Bmi1+ tumor cells act as cancer stem cells (CSCs) driving relapse and therapy resistance in head and neck squamous cell carcinoma (HNSCC). Although BMI1 inhibitors reduce CSCs, combined cisplatin treatment targeting non-stem tumor cells is more effective in eliminating CSCs. Non-stem tumor cells may revert to CSCs post-treatment. However, in vivo evidence and underlying mechanisms remain unclear. Here, we demonstrate that BMI1 inhibitors induce temporary tumor regression followed by relapse. Lineage tracing reveals that keratin 16-marked non-stem tumor cells revert to Bmi1+ CSCs, which drive compensatory tumor growth after BMI1 targeting therapy. Mechanistically, BMI1 inhibitors activate DNA damage/nuclear factor κB (NF-κB) signaling and inflammatory cytokine secretion, subsequently stimulating myelocytomatosis viral oncogene homolog (MYC) expression in non-stem tumor cells to promote the reversion process. Genetic and pharmacological inhibition of MYC synergizes with BMI1 targeting, achieving sustained CSC eradication and relapse prevention. These findings provide insights into CSCs' plasticity and suggest dual BMI1/MYC blockade as an effective HNSCC treatment strategy.
Collapse
Affiliation(s)
- Zhen Qin
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Shuo Liu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Yujia Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Yiwen Chen
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Xin Peng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China.
| | - Lingfei Jia
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, P.R. China; Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Institute of Advanced Clinical Medicine, Peking University, Beijing 100091, P.R. China.
| |
Collapse
|
2
|
Luo J, Bishop JA, DuBois SG, Hanna GJ, Sholl LM, Stelow EB, Thompson LDR, Shapiro GI, French CA. Hiding in plain sight: NUT carcinoma is an unrecognized subtype of squamous cell carcinoma of the lungs and head and neck. Nat Rev Clin Oncol 2025; 22:292-306. [PMID: 39900969 DOI: 10.1038/s41571-025-00986-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 02/05/2025]
Abstract
In the past two decades, treatment for non-small-cell lung cancers (NSCLCs) and head and neck squamous cell carcinoma (HNSCC) has advanced considerably, owing largely to the characterization of distinct oncological subtypes, the development of targeted therapies for each subtype and the advent of immunotherapy. Data emerging over the past two decades suggest that NUT carcinoma, a highly aggressive malignancy driven by a NUT fusion oncoprotein and arising in the lungs, head and neck, and rarely in other sites, is a squamous cell carcinoma (SCC) based on transcriptional, histopathological, cell-of-origin and molecular characteristics. NUT carcinoma has an estimated incidence of 1,400 cases per year in the United States, surpassing that of some rare NSCLC and HNSCC subtypes. However, NUT carcinoma is currently not recognized as an SCC of the lungs or head and neck. The orphan classification of NUT carcinoma as a distinct entity leads to a lack of awareness of this malignancy among oncologists and surgeons, despite early diagnosis being crucial for this cancer type with a median survival of only ~6.5 months. Consequently, NUT carcinoma is underdiagnosed and often misdiagnosed, resulting in limited research and progress in developing effective treatments in one of the most aggressive forms of lung and head and neck cancer. With a growing number of targeted agents that can potentially be used to treat NUT carcinoma, improved recognition through reclassification and inclusion of NUT carcinoma as a squamous NSCLC or an HNSCC when arising in these locations will accelerate the development of effective therapies for this disease. Thus, in the Perspective, we propose such a reclassification of NUT carcinoma as an SCC and discuss the supporting evidence.
Collapse
Affiliation(s)
- Jia Luo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Justin A Bishop
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Glenn J Hanna
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward B Stelow
- Department of Pathology, University of Virginia Medical Center, Charlottesville, VA, USA
| | | | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher A French
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Zhang J, Zeng L, Song G, Peng G, Chen Z, Yuan Y, Chen T, Zhong T, Chen S, Luo Z, Xiao J, Liu L. A novel tertiary lymphoid structure-associated signature accurately predicts patient prognosis and facilitates the selection of personalized treatment strategies for HNSCC. Front Immunol 2025; 16:1551844. [PMID: 40181975 PMCID: PMC11965918 DOI: 10.3389/fimmu.2025.1551844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is the most common type of head and neck cancer and is characterized by its aggressive nature and variable prognosis and response to immunotherapy. Tertiary lymphoid structures (TLSs) play crucial roles in creating a favourable immune microenvironment to control tumour progression. However, the specific impact of these structures on HNSCC has not been thoroughly studied. Methods In this study, a comprehensive review of tertiary lymphoid structures was conducted by analysing 9 TLS-associated genes in a cohort of 871 HNSCC patients. Distinct TLS-related subgroups were identified through unsupervised clustering analysis, and the associated genes were explored. Prognostic genes were identified via univariate Cox and Boruta algorithms, and a novel TLS-related scoring system was developed via the GSVA algorithm. Results Our study revealed that patients with higher TLS-related scores had improved overall survival and were more likely to benefit from immunotherapy. Furthermore, we observed a significant negative correlation between sensitivity to traditional chemotherapeutic agents and the TLS-related signature score. Conclusions Our findings suggest that the TLS-related features of HNSCC patients hold promise as predictive indicators for immunotherapy efficacy and may offer novel insights for tailoring personalized treatment strategies in clinical practice.
Collapse
Affiliation(s)
- Jinhao Zhang
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| | - Lu Zeng
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, China
| | - Guobin Song
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| | - Gaoge Peng
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhezheng Chen
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, China
| | - Yamin Yuan
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| | - Taowu Chen
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| | - Tao Zhong
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| | - Shixi Chen
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhengzhou Luo
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, China
| | - Jingang Xiao
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, China
| | - Lin Liu
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Wang A, Xia H, Li J, Diao P, Cheng J. Development of a novel prognostic signature derived from super-enhancer-associated gene by machine learning in head and neck squamous cell carcinoma. Oral Oncol 2024; 159:107016. [PMID: 39244857 DOI: 10.1016/j.oraloncology.2024.107016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Dysregulated super-enhancer (SE) results in aberrant transcription that drives cancer initiation and progression. SEs have been demonstrated as novel promising diagnostic/prognostic biomarkers and therapeutic targets across multiple human cancers. Here, we sought to develop a novel prognostic signature derived from SE-associated genes for head and neck squamous cell carcinoma (HNSCC). SE was identified from H3K27ac ChIP-seq datasets in HNSCC cell lines by ROSE algorithm and SE-associated genes were further mapped and functionally annotated. A total number of 133 SE-associated genes with mRNA upregulation and prognostic significance was screened via differentially-expressed genes (DEGs) and Cox regression analyses. These candidates were subjected for prognostic model constructions by machine learning approaches using three independent HNSCC cohorts (TCGA-HNSC dataset as training cohort, GSE41613 and GSE42743 as validation cohorts). Among dozens of prognostic models, the random survival forest algorithm (RSF) stood out with the best performance as evidenced by the highest average concordance index (C-index). A prognostic nomogram integrating this SE-associated gene signature (SEAGS) plus tumor size demonstrated satisfactory predictive power and excellent calibration and discrimination. Moreover, WNT7A from SEARG was validated as a putative oncogene with transcriptional activation by SE to promote malignant phenotypes. Pharmacological disruption of SE functions by BRD4 or EP300 inhibitor significantly impaired tumor growth and diminished WNT7A expression in a HNSCC patient-derived xenograft model. Taken together, our results establish a novel, robust SE-derived prognostic model for HNSCC and suggest the translational potentials of SEs as promising therapeutic targets for HNSCC.
Collapse
Affiliation(s)
- An Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Nanjing Medical University, Jiangsu 210029, People's Republic of China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Jiangsu 210029, People's Republic of China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Jiangsu 210029, People's Republic of China
| | - He Xia
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Nanjing Medical University, Jiangsu 210029, People's Republic of China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Jiangsu 210029, People's Republic of China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Jiangsu 210029, People's Republic of China
| | - Jin Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Nanjing Medical University, Jiangsu 210029, People's Republic of China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Jiangsu 210029, People's Republic of China
| | - Pengfei Diao
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Nanjing Medical University, Jiangsu 210029, People's Republic of China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Jiangsu 210029, People's Republic of China
| | - Jie Cheng
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Nanjing Medical University, Jiangsu 210029, People's Republic of China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Jiangsu 210029, People's Republic of China.
| |
Collapse
|
5
|
Tang J, Chen H, Fan H, Chen T, Pu C, Guo Y. Research progress of BRD4 in head and neck squamous cell carcinoma: Therapeutic application of novel strategies and mechanisms. Bioorg Med Chem 2024; 113:117929. [PMID: 39317007 DOI: 10.1016/j.bmc.2024.117929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Bromodomain-containing protein 4 (BRD4) belongs to the bromodomain and extra-terminal domain (BET) protein family, which plays a crucial role in recognizing acetylated lysine residues in chromatin. The abnormal expression of BRD4 contributes to the development of various human malignant tumors, including head and neck squamous cell carcinoma (HNSCC). Recent studies have shown that BRD4 inhibition can effectively prevent the proliferation and growth of HNSCC. However, the specific role and mechanism of BRD4 in HNSCC are not yet fully clarified. This article will briefly summarize the critical role of BRD4 in the pathogenesis of HNSCC and discuss the potential clinical applications of targeting BRD4 in HNSCC therapy. We further inquiry the challenges and opportunities for HNSCC therapies based on BRD4 inhibition, including BRD4 inhibitor combination with conventional chemotherapy, radiotherapy, and immunotherapy, as well as new strategies of BRD4-targeting drugs and BRD4 proteolysis-targeting chimeras (PROTACs). Moreover, we will also offer outlook on the associated challenges and future directions of targeting BRD4 for the treatment of patients with HNSCC.
Collapse
Affiliation(s)
- Jiao Tang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Laboratory Medicine, Xindu District People's Hospital, Chengdu, Sichuan 610500, China
| | - Huaqiu Chen
- Department of Laboratory Medicine, Xichang People's Hospital, Xichang, Sichuan 615000, China
| | - Hengrui Fan
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, China
| | - Tao Chen
- Department of Laboratory Medicine, Xindu District People's Hospital, Chengdu, Sichuan 610500, China
| | - Chunlan Pu
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, China.
| | - Yuanbiao Guo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, China.
| |
Collapse
|
6
|
Wang Y, Wang Y, Xu Y, Kang L, Tocci D, Wang C. The Development and Evaluation of a Novel Highly Selective PET Radiotracer for Targeting BET BD1. Pharmaceuticals (Basel) 2024; 17:1289. [PMID: 39458928 PMCID: PMC11509907 DOI: 10.3390/ph17101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Small molecules that interfere with the interaction between acetylated protein tails and the tandem bromodomains of BET (bromodomain and extra-terminal) family proteins are pivotal in modulating immune/inflammatory and neoplastic diseases. This study aimed to develop a novel PET imaging tracer, [11C]GSK023, that targets the N-terminal bromodomain (BD1) of BET family proteins with high selectivity and potency, thereby enriching the chemical probe toolbox for epigenetic imaging. Methods: [11C]GSK023, a radio-chemical probe, was designed and synthesized to specifically target the BET BD1. In vivo PET imaging evaluations were conducted on rodents, focusing on the tracer's distribution and binding specificity in various tissues. Blocking studies were performed to confirm the probe's selectivity and specificity. Results: The evaluations revealed that [11C]GSK023 demonstrated good uptake in peripheral organs with limited brain penetration. Further blocking studies confirmed the probe's high binding specificity and selectivity for the BET BD1 protein, underscoring its potential utility in epigenetic imaging. Conclusions: The findings suggest that [11C]GSK023 is a promising PET probe for imaging the BET BD1 protein, offering the potential to deepen our understanding of the roles of BET bro-modomains in disease and their application in clinical settings to monitor disease progression and therapeutic responses.
Collapse
Affiliation(s)
| | | | | | | | | | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (Y.W.); (Y.W.); (Y.X.); (L.K.); (D.T.)
| |
Collapse
|
7
|
Yongprayoon V, Wattanakul N, Khomate W, Apithanangsiri N, Kasitipradit T, Nantajit D, Tavassoli M. Targeting BRD4: Potential therapeutic strategy for head and neck squamous cell carcinoma (Review). Oncol Rep 2024; 51:74. [PMID: 38606512 DOI: 10.3892/or.2024.8733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
As a member of BET (bromodomain and extra-terminal) protein family, BRD4 (bromodomain‑containing protein 4) is a chromatin‑associated protein that interacts with acetylated histones and actively recruits regulatory proteins, leading to the modulation of gene expression and chromatin remodeling. The cellular and epigenetic functions of BRD4 implicate normal development, fibrosis and inflammation. BRD4 has been suggested as a potential therapeutic target as it is often overexpressed and plays a critical role in regulating gene expression programs that drive tumor cell proliferation, survival, migration and drug resistance. To address the roles of BRD4 in cancer, several drugs that specifically target BRD4 have been developed. Inhibition of BRD4 has shown promising results in preclinical models, with several BRD4 inhibitors undergoing clinical trials for the treatment of various cancers. Head and neck squamous cell carcinoma (HNSCC), a heterogeneous group of cancers, remains a health challenge with a high incidence rate and poor prognosis. Conventional therapies for HNSCC often cause adverse effects to the patients. Targeting BRD4, therefore, represents a promising strategy to sensitize HNSCC to chemo‑ and radiotherapy allowing de‑intensification of the current therapeutic regime and subsequent reduced side effects. However, further studies are required to fully understand the underlying mechanisms of action of BRD4 in HNSCC in order to determine the optimal dosing and administration of BRD4‑targeted drugs for the treatment of patients with HNSCC.
Collapse
Affiliation(s)
- Voraporn Yongprayoon
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Napasporn Wattanakul
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Winnada Khomate
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Nathakrit Apithanangsiri
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Tarathip Kasitipradit
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Danupon Nantajit
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Mahvash Tavassoli
- Centre for Host Microbiome Interactions, King's College London, London SE1 1UL, UK
| |
Collapse
|
8
|
Cai H, Liang J, Jiang Y, Wang Z, Li H, Wang W, Wang C, Hou J. KLF7 regulates super-enhancer-driven IGF2BP2 overexpression to promote the progression of head and neck squamous cell carcinoma. J Exp Clin Cancer Res 2024; 43:69. [PMID: 38443991 PMCID: PMC10913600 DOI: 10.1186/s13046-024-02996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Head and neck squamous carcinoma (HNSCC) is known for its high aggressiveness and susceptibility to cervical lymph node metastasis, which greatly contributes to its poor prognosis. During tumorigenesis, many types of cancer cells acquire oncogenic super-enhancers (SEs) that drive the overexpression of oncogenes, thereby maintaining malignant progression. This study aimed to identify and validate the role of oncogenic SE-associated genes in the malignant progression of HNSCC. METHODS We identified HNSCC cell-specific SE-associated genes through H3K27Ac ChIP-seq and overlapped them with HNSCC-associated genes obtained from The Cancer Genome Atlas (TCGA) dataset and Gene Expression Omnibus (GEO) datasets using weighted gene coexpression network analysis (WGCNA) to identify hub genes. The expression of IGF2BP2 and KLF7 in HNSCC was detected using clinical samples. To determine the biological role of IGF2BP2, we performed CCK-8, colony formation assay, Transwell migration assay, invasion assay, and orthotopic xenograft model experiments. Furthermore, we utilized a CRISPR/Cas9 gene-editing system, small-molecule inhibitors, ChIP-qPCR, and dual-luciferase reporter assays to investigate the molecular mechanisms of IGF2BP2 and its upstream transcription factors. RESULTS Our study identified IGF2BP2 as a hub SE-associated gene that exhibited aberrant expression in HNSCC tissues. Increased expression of IGF2BP2 was observed to be linked with malignant progression and unfavorable prognosis in HNSCC patients. Both in vitro and in vivo experiments confirmed that IGF2BP2 promotes the tumorigenicity and metastasis of HNSCC by promoting cell proliferation, migration, and invasion. Mechanistically, the IGF2BP2-SE region displayed enrichment for H3K27Ac, BRD4, and MED1, which led to the inhibition of IGF2BP2 transcription and expression through deactivation of the SE-associated transcriptional program. Additionally, KLF7 was found to induce the transcription of IGF2BP2 and directly bind to its promoter and SE regions. Moreover, the abundance of KLF7 exhibited a positive correlation with the abundance of IGF2BP2 in HNSCC. Patients with high expression of both KLF7 and IGF2BP2 showed poorer prognosis. Lastly, we demonstrated that the small molecule inhibitor JQ1, targeting BRD4, attenuated the proliferation and metastatic abilities of HNSCC cells. CONCLUSIONS Our study reveals the critical role of IGF2BP2 overexpression mediated by SE and KLF7 in promoting HNSCC progression. Targeting SE-associated transcriptional programs may represent a potential therapeutic strategy in managing HNSCC.
Collapse
Affiliation(s)
- Hongshi Cai
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology,, Sun Yat-Sen University, Guangzhou, 51055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jianfeng Liang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology,, Sun Yat-Sen University, Guangzhou, 51055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yaoqi Jiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology,, Sun Yat-Sen University, Guangzhou, 51055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ziyi Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology,, Sun Yat-Sen University, Guangzhou, 51055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hongyu Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology,, Sun Yat-Sen University, Guangzhou, 51055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wenjin Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology,, Sun Yat-Sen University, Guangzhou, 51055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Cheng Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology,, Sun Yat-Sen University, Guangzhou, 51055, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Jinsong Hou
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology,, Sun Yat-Sen University, Guangzhou, 51055, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
9
|
Talukdar PD, Chatterji U. Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:427. [PMID: 37953273 PMCID: PMC10641101 DOI: 10.1038/s41392-023-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 11/14/2023] Open
Abstract
Specific cell states in metazoans are established by the symphony of gene expression programs that necessitate intricate synergic interactions between transcription factors and the co-activators. Deregulation of these regulatory molecules is associated with cell state transitions, which in turn is accountable for diverse maladies, including developmental disorders, metabolic disorders, and most significantly, cancer. A decade back most transcription factors, the key enablers of disease development, were historically viewed as 'undruggable'; however, in the intervening years, a wealth of literature validated that they can be targeted indirectly through transcriptional co-activators, their confederates in various physiological and molecular processes. These co-activators, along with transcription factors, have the ability to initiate and modulate transcription of diverse genes necessary for normal physiological functions, whereby, deregulation of such interactions may foster tissue-specific disease phenotype. Hence, it is essential to analyze how these co-activators modulate specific multilateral processes in coordination with other factors. The proposed review attempts to elaborate an in-depth account of the transcription co-activators, their involvement in transcription regulation, and context-specific contributions to pathophysiological conditions. This review also addresses an issue that has not been dealt with in a comprehensive manner and hopes to direct attention towards future research that will encompass patient-friendly therapeutic strategies, where drugs targeting co-activators will have enhanced benefits and reduced side effects. Additional insights into currently available therapeutic interventions and the associated constraints will eventually reveal multitudes of advanced therapeutic targets aiming for disease amelioration and good patient prognosis.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
10
|
Duan W, Yu M, Chen J. BRD4: New Hope in the Battle Against Glioblastoma. Pharmacol Res 2023; 191:106767. [PMID: 37061146 DOI: 10.1016/j.phrs.2023.106767] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
The BET family proteins, comprising BRD2, BRD3 and BRD4, represent epigenetic readers of acetylated histone marks that play pleiotropic roles in the tumorigenesis and growth of multiple human malignancies, including glioblastoma (GBM). A growing body of investigation has proven BET proteins as valuable therapeutic targets for cancer treatment. Recently, several BRD4 inhibitors and degraders have been reported to successfully suppress GBM in preclinical and clinical studies. However, the precise role and mechanism of BRD4 in the pathogenesis of GBM have not been fully elucidated or summarized. This review focuses on summarizing the roles and mechanisms of BRD4 in the context of the initiation and development of GBM. In addition, several BRD4 inhibitors have been evaluated for therapeutic purposes as monotherapy or in combination with chemotherapy, radiotherapy, and immune therapies. Here, we provide a critical appraisal of studies evaluating various BRD4 inhibitors and degraders as novel treatment strategies against GBM.
Collapse
Affiliation(s)
- Weichen Duan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Miao Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jiajia Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
11
|
Diao P, Huang R, Shi Y, Yao Q, Dai Y, Yuan H, Wang Y, Cheng J. Development of a novel prognostic signature derived from enhancer RNA-regulated genes in head neck squamous cell carcinoma. Head Neck 2023; 45:900-912. [PMID: 36786387 DOI: 10.1002/hed.27316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Enhancer RNAs (eRNAs) are increasingly recognized as prognostic biomarkers-across human cancers. Here, we sought to develop a novel eRNA-regulated genes (ERGs)-derived prognostic signature for head neck squamous cell carcinoma (HNSCC). METHODS Candidate ERGs were identified via co-expression between individual survival-related eRNAs and their putative targets by Spearman's correlation analyses. The ERG signature was developed by univariate Cox regression, Kaplan-Meier survival analysis and maximum AUC in 1000 iterations of LASSO-penalized multivariate Cox regression. An ERG nomogram incorporating ERG signature and selected clinicopathological parameters were constructed by multivariate Cox regression. Biological roles of eRNA of interest were further explored in vitro. RESULTS The ERG signature successfully stratified patients into subgroups with distinct survival in multiple cohorts. An ERG nomogram was developed with satisfactory performance in prognostication. Inhibition of ENSR00000165816 significantly reduced transcript level of SLC2A9 and impaired cell proliferation and invasion. CONCLUSION Our results establish ERG signature and nomogram as powerful prognostic predictors for HNSCC.
Collapse
Affiliation(s)
- Pengfei Diao
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Rong Huang
- School of Medical Technology, Taizhou Polytechnic College, Taizhou, China
| | - Yawei Shi
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Qin Yao
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Yibin Dai
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Yanling Wang
- Jiangsu Province Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Jie Cheng
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Wang Q, Li B, Zhang W, Li Z, Jiang B, Hou S, Ma S, Qin C. Lethal activity of BRD4 PROTAC degrader QCA570 against bladder cancer cells. Front Chem 2023; 11:1121724. [PMID: 36733715 PMCID: PMC9887192 DOI: 10.3389/fchem.2023.1121724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Bladder cancer is the most common malignancy of the urinary system. Efforts to identify innovative and effective therapies for bladder cancer are urgently needed. Recent studies have identified the BRD4 protein as the critical factor in regulation of cell proliferation and apoptosis in bladder cancer, and it shows promising potential for pharmacologic treatment against bladder cancer. In this study, we have evaluated the biological function of QCA570, a novel BET degrader, on multiple bladder cancer cells and explore its underlying mechanisms. QCA570 potently induces degradation of BRD4 protein at nanomolar concentrations, with a DC50 of ∼ 1 nM. It decreases EZH2 and c-MYC levels by transcriptional suppression and protein degradation. Moreover, the degrader significantly induces cell apoptosis and cycle arrest and shows antiproliferation activity against bladder cancer cells. These findings support the potential efficacy of QCA570 on bladder cancer.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China,Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Baohu Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Wenkai Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Zhuoyue Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Bo Jiang
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China,*Correspondence: Bo Jiang, ; Sichuan Hou, ; Shumin Ma, ; Chong Qin,
| | - Sichuan Hou
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China,*Correspondence: Bo Jiang, ; Sichuan Hou, ; Shumin Ma, ; Chong Qin,
| | - Shumin Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China,*Correspondence: Bo Jiang, ; Sichuan Hou, ; Shumin Ma, ; Chong Qin,
| | - Chong Qin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,*Correspondence: Bo Jiang, ; Sichuan Hou, ; Shumin Ma, ; Chong Qin,
| |
Collapse
|
13
|
Liu S, Qin Z, Mao Y, Zhang W, Wang Y, Jia L, Peng X. Therapeutic Targeting of MYC in Head and Neck Squamous Cell Carcinoma. Oncoimmunology 2022; 11:2130583. [PMID: 36211811 PMCID: PMC9543056 DOI: 10.1080/2162402x.2022.2130583] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
MYC plays critical roles in tumorigenesis and is considered an attractive cancer therapeutic target. Small molecules that directly target MYC and are well tolerated in vivo represent invaluable anti-cancer therapeutic agents. Here, we aimed to investigate the therapeutic effect of MYC inhibitors in head and neck squamous cell carcinoma (HNSCC). The results showed that pharmacological and genetic inhibition of MYC inhibited HNSCC proliferation and migration. MYC inhibitor 975 (MYCi975), inhibited HNSCC growth in both cell line-derived xenograft and syngeneic murine models. MYC inhibition also induced tumor cell-intrinsic immune responses, and promoted CD8+ T cell infiltration. Mechanistically, MYC inhibition increased CD8+ T cell-recruiting chemokines by inducing the DNA damage related cGAS-STING pathway. High expression of MYC combined with a low level of infiltrated CD8+ T cell in HNSCC correlated with poor prognosis. These results suggested the potential of small-molecule MYC inhibitors as anti-cancer therapeutic agents in HNSCC.
Collapse
Affiliation(s)
- Shuo Liu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Zhen Qin
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Department of Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yaqing Mao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Wenbo Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Yujia Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Department of Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Lingfei Jia
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Department of Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xin Peng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| |
Collapse
|
14
|
Zhang M, Wang G, Ma Z, Xiong G, Wang W, Huang Z, Wan Y, Xu X, Hoyle RG, Yi C, Hou J, Liu X, Chen D, Li J, Wang C. BET inhibition triggers antitumor immunity by enhancing MHC class I expression in head and neck squamous cell carcinoma. Mol Ther 2022; 30:3394-3413. [PMID: 35923111 PMCID: PMC9637808 DOI: 10.1016/j.ymthe.2022.07.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 06/02/2022] [Accepted: 07/30/2022] [Indexed: 12/24/2022] Open
Abstract
BET inhibition has been shown to have a promising antitumor effect in multiple tumors. However, the impact of BET inhibition on antitumor immunity was still not well documented in HNSCC. In this study, we aim to assess the functional role of BET inhibition in antitumor immunity and clarify its mechanism. We show that BRD4 is highly expressed in HNSCC and inversely correlated with the infiltration of CD8+ T cells. BET inhibition potentiates CD8+ T cell-based antitumor immunity in vitro and in vivo. Mechanistically, BRD4 acts as a transcriptional suppressor and represses the expression of MHC class I molecules by recruiting G9a. Pharmacological inhibition or genetic depletion of BRD4 potently increases the expression of MHC class I molecules in the absence and presence of IFN-γ. Moreover, compared to PD-1 blocking antibody treatment or JQ1 treatment individually, the combination of BET inhibition with anti-PD-1 antibody treatment significantly enhances the antitumor response in HNSCC. Taken together, our data unveil a novel mechanism by which BET inhibition potentiates antitumor immunity via promoting the expression of MHC class I molecules and provides a rationale for the combination of ICBs with BET inhibitors for HNSCC treatment.
Collapse
Affiliation(s)
- Ming Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 51055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 51055, China
| | - Ganping Wang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Zhikun Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0540, USA; Institute for Structural Biology, Drug Discovery, and Development, Virginia Commonwealth University, Richmond, VA 23298-0540, USA
| | - Gan Xiong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 51055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 51055, China
| | - Wenjin Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 51055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 51055, China
| | - Zhengxian Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 51055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 51055, China
| | - Yuehan Wan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 51055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 51055, China
| | - Xiuyun Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 51055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 51055, China
| | - Rosalie G Hoyle
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0540, USA; Institute for Structural Biology, Drug Discovery, and Development, Virginia Commonwealth University, Richmond, VA 23298-0540, USA
| | - Chen Yi
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 51055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 51055, China
| | - Jinsong Hou
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 51055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 51055, China
| | - Xiqiang Liu
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Demeng Chen
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiong Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0540, USA; Institute for Structural Biology, Drug Discovery, and Development, Virginia Commonwealth University, Richmond, VA 23298-0540, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298-0540, USA; Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298-0540, USA; Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298-0540, USA.
| | - Cheng Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 51055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 51055, China.
| |
Collapse
|
15
|
Peng A, Peng W, Wang R, Zhao H, Yu X, Sun Y. Regulation of 3D Organization and Its Role in Cancer Biology. Front Cell Dev Biol 2022; 10:879465. [PMID: 35757006 PMCID: PMC9213882 DOI: 10.3389/fcell.2022.879465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Three-dimensional (3D) genomics is the frontier field in the post-genomics era, its foremost content is the relationship between chromatin spatial conformation and regulation of gene transcription. Cancer biology is a complex system resulting from genetic alterations in key tumor oncogenes and suppressor genes for cell proliferation, DNA replication, cell differentiation, and homeostatic functions. Although scientific research in recent decades has revealed how the genome sequence is mutated in many cancers, high-order chromosomal structures involved in the development and fate of cancer cells represent a crucial but rarely explored aspect of cancer genomics. Hence, dissection of the 3D genome conformation of cancer helps understand the unique epigenetic patterns and gene regulation processes that distinguish cancer biology from normal physiological states. In recent years, research in tumor 3D genomics has grown quickly. With the rapid progress of 3D genomics technology, we can now better determine the relationship between cancer pathogenesis and the chromatin structure of cancer cells. It is becoming increasingly explicit that changes in 3D chromatin structure play a vital role in controlling oncogene transcription. This review focuses on the relationships between tumor gene expression regulation, tumor 3D chromatin structure, and cancer phenotypic plasticity. Furthermore, based on the functional consequences of spatial disorganization in the cancer genome, we look forward to the clinical application prospects of 3D genomic biomarkers.
Collapse
Affiliation(s)
- Anghui Peng
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Wang Peng
- Department of Oncology, Liuzhou People's Hospital, Liuzhou, China
| | - Ruiqi Wang
- Department of Pharmacy, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Hao Zhao
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Xinyang Yu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Yihao Sun
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| |
Collapse
|
16
|
YAP1 maintains active chromatin state in head and neck squamous cell carcinomas that promotes tumorigenesis through cooperation with BRD4. Cell Rep 2022; 39:110970. [PMID: 35705032 DOI: 10.1016/j.celrep.2022.110970] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 02/23/2022] [Accepted: 05/25/2022] [Indexed: 11/21/2022] Open
Abstract
Analysis of The Cancer Genome Atlas and other published data of head and neck squamous cell carcinoma (HNSCC) reveals somatic alterations of the Hippo-YAP pathway in approximately 50% of HNSCC. Better strategies to target the YAP1 transcriptional complex are sought. Here, we show that FAT1, an upstream inhibitor of YAP1, is mutated either by missense or by truncating mutation in 29% of HNSCC. Comprehensive proteomic and drug-screening studies across pan-cancer models confirm that FAT1-mutant HNSCC exhibits selective and higher sensitivity to BRD4 inhibition by JQ1. Epigenomic analysis reveals an active chromatin state in FAT1-mutant HNSCC cells that is driven by the YAP/TAZ transcriptional complex through recruitment of BRD4 to deposit active histone marks, thereby maintaining an oncogenic transcriptional state. This study reveals a detailed cooperative mechanism between YAP1 and BRD4 in HNSCC and suggests a specific therapeutic opportunity for the treatment of this subset of head and neck cancer patients.
Collapse
|
17
|
Wang Y, Wu Y, Jiang J, Zhang Y, Fu Y, Zheng M, Tao X, Yi J, Mu D, Cao X. The prognostic significance of bromodomain protein 4 expression in solid tumor patients: A meta-analysis. Pathol Res Pract 2022; 234:153918. [PMID: 35561521 DOI: 10.1016/j.prp.2022.153918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/15/2022] [Accepted: 04/24/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cancer is a leading cause of death worldwide. At present, several inhibitors of bromodomain protein 4 have shown promising anti-tumor responses in clinical trials. Numerous studies have reported the value of bromodomain protein 4 expression in predicting the prognosis of patients with cancers, but their conclusions remain controversial. Therefore, we conducted a meta-analysis to explore the association between bromodomain protein 4 and patient prognosis with the aim to provide new directions for the development of strategies for targeted cancer therapy. METHODS The meta-analysis was registered in the International Prospective Register of Systematic Reviews (https://www.crd.york.ac.uk/prospero/; Registration No. CRD42020184948) and followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. PubMed Central, PubMed, Cochrane Library and Embase were thoroughly searched to identify eligible studies published through March 31, 2021. Odds ratios with 95% confidence intervals were calculated to demonstrate the relationship between bromodomain protein 4 expression and clinicopathological features. We computed pooled estimated hazard ratios with 95% confidence intervals using Stata 12.0 software to clarify the relationship between bromodomain protein 4 expression and overall survival of various cancers. A quality assessment of the eligible articles was performed based on the Newcastle-Ottawa scale. RESULTS A total of 974 patients from 10 studies were enrolled in the meta-analysis. Our results revealed that compared to low bromodomain protein 4 expression, high bromodomain protein 4 expression in cancer tissues was significantly associated with lymph node metastasis (Odds ratio = 3.59, 95% confidence interval: 2.62-4.91), distant metastasis (Odds ratio = 4.22, 95% confidence interval: 2.40-7.45), advanced TNM stage (III+IV vs. I+II: Odds ratio = 3.23, 95% confidence interval: 1.29-8.08), and poorly differentiated tumors (Odds ratio = 1.87, 95% confidence interval: 1.33-2.63). In addition, an elevated expression of bromodomain protein 4 tended to shorten survival time (Hazard ratio = 2.23, 95% confidence interval: 1.62-3.07). The subgroup analysis results showed that bromodomain protein 4 upregulation was related to poor prognosis in patients with digestive system cancers (Hazard ratio = 2.54, 95% confidence interval: 1.85-3.50). CONCLUSION This meta-analysis indicated that bromodomain protein 4 may serve as a promising prognostic biomarker for cancers and a direct effective cancer treatment target.
Collapse
Affiliation(s)
- Yueqi Wang
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Yanhua Wu
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Jing Jiang
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Yangyu Zhang
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Yingli Fu
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Min Zheng
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Xuerong Tao
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Jiaxin Yi
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Dongmei Mu
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Xueyuan Cao
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
18
|
Wang JH, Li CR, Hou PL. Feature screening for survival trait with application to TCGA high-dimensional genomic data. PeerJ 2022; 10:e13098. [PMID: 35291482 PMCID: PMC8918142 DOI: 10.7717/peerj.13098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/21/2022] [Indexed: 01/12/2023] Open
Abstract
Background In high-dimensional survival genomic data, identifying cancer-related genes is a challenging and important subject in the field of bioinformatics. In recent years, many feature screening approaches for survival outcomes with high-dimensional survival genomic data have been developed; however, few studies have systematically compared these methods. The primary purpose of this article is to conduct a series of simulation studies for systematic comparison; the second purpose of this article is to use these feature screening methods to further establish a more accurate prediction model for patient survival based on the survival genomic datasets of The Cancer Genome Atlas (TCGA). Results Simulation studies prove that network-adjusted feature screening measurement performs well and outperforms existing popular univariate independent feature screening methods. In the application of real data, we show that the proposed network-adjusted feature screening approach leads to more accurate survival prediction than alternative methods that do not account for gene-gene dependency information. We also use TCGA clinical survival genetic data to identify biomarkers associated with clinical survival outcomes in patients with various cancers including esophageal, pancreatic, head and neck squamous cell, lung, and breast invasive carcinomas. Conclusions These applications reveal advantages of the new proposed network-adjusted feature selection method over alternative methods that do not consider gene-gene dependency information. We also identify cancer-related genes that are almost detected in the literature. As a result, the network-based screening method is reliable and credible.
Collapse
|
19
|
Liu T, Zhang Z, Wang C, Huang H, Li Y. BRD4 promotes the migration and invasion of bladder cancer cells through the Sonic hedgehog signaling pathway and enhances cisplatin resistance. Biochem Cell Biol 2022; 100:179-187. [PMID: 35167374 DOI: 10.1139/bcb-2021-0552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Platinum-based chemotherapy is a widely used strategy for bladder cancer (BCa) treatment. However, its clinical efficacy is affected by chemotherapy resistance via complex molecular mechanisms. Therefore, there is an urgent need to explore new targets for BCa therapy. Here, we showed that bromodomain-4 protein (BRD4) expression is upregulated in BCa tissues and cells. Inhibition of BRD4 attenuated the migration and invasion of BCa cells, which was rescued by the Sonic hedgehog (SHH) pathway activator recombinant human Sonic hedgehog peptide (rhSHH). We further found that cisplatin (DDP) suppressed the migration and invasion of BCa cells in vitro and inhibited tumor growth in vivo. However, overexpression of BRD4 weakened the pharmacological effects of DDP. In brief, our research revealed that BRD4 promotes migration and invasion by positively regulating the SHH pathway, drives DDP resistance in BCa, and is a novel therapeutic target for the treatment of BCa.
Collapse
Affiliation(s)
- Tiantian Liu
- Department of Urology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, 519000 Guangdong, P.R. China.,Department of Urology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001 Anhui, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, 241001 Anhui, China
| | - Ze Zhang
- Department of Urology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, 519000 Guangdong, P.R. China.,Department of Urology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001 Anhui, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, 241001 Anhui, China
| | - Chong Wang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001 Anhui, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, 241001 Anhui, China
| | - Houbao Huang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001 Anhui, China
| | - Yawei Li
- Department of Urology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, 519000 Guangdong, P.R. China
| |
Collapse
|
20
|
Kawaharada M, Yamazaki M, Maruyama S, AbÉ T, Chan NN, Kitano T, Kobayashi T, Maeda T, Tanuma JI. Novel cytological model for the identification of early oral cancer diagnostic markers: The carcinoma sequence model. Oncol Lett 2022; 23:76. [PMID: 35111245 PMCID: PMC8771650 DOI: 10.3892/ol.2022.13196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023] Open
Abstract
Most oral squamous cell carcinomas (OSCCs) arise from a premalignant lesion, oral epithelial dysplasia; however, useful markers for the early detection of OSCC are lacking. The present study aimed to establish a novel experimental model to observe changes in the sequential expression patterns of mRNAs and proteins in a rat model of tongue cancer using liquid-based cytology techniques. Cytology specimens were collected at 2, 5, 8, 11, 14, 17 and 21 weeks from rats treated with 4-nitroquinoline 1-oxide to induce tongue cancer. The expression of candidate biomarkers was examined by performing immunocytochemistry and reverse transcription-quantitative PCR. The percentage of positively stained nuclei was calculated as the labeling index (LI). All rats developed OSCC of the tongue at 21 weeks. The mRNA expression levels of bromodomain protein 4 (Brd4), c-Myc and Tp53 were upregulated during the progression from negative for intraepithelial lesion or malignancy to squamous cell carcinoma (SCC). Brd4- and c-Myc-LI increased in low-grade squamous intraepithelial lesion, high-grade squamous intraepithelial lesion and SCC specimens. p53-LI was significantly increased in SCC specimens. This novel experimental model allowed the observation of sequential morphological changes and the expression patterns of mRNAs and proteins during carcinogenesis. Combining immunocytochemistry with cytology-based diagnoses may potentially improve the diagnostic accuracy of OSCC.
Collapse
Affiliation(s)
- Masami Kawaharada
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8514, Japan.,Division of Oral Pathology, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8514, Japan
| | - Manabu Yamazaki
- Division of Oral Pathology, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8514, Japan
| | - Satoshi Maruyama
- Oral Pathology Section, Department of Surgical Pathology, Niigata University Hospital, Chuo-ku, Niigata 951-8520, Japan
| | - Tatsuya AbÉ
- Division of Oral Pathology, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8514, Japan
| | - Nyein Nyein Chan
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8514, Japan.,Division of Oral Pathology, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8514, Japan
| | - Taiichi Kitano
- Oral Pathology Section, Department of Surgical Pathology, Niigata University Hospital, Chuo-ku, Niigata 951-8520, Japan
| | - Tadaharu Kobayashi
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8514, Japan
| | - Takeyasu Maeda
- Research Center for Advanced Oral Science, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8514, Japan
| | - Jun-Ichi Tanuma
- Division of Oral Pathology, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8514, Japan
| |
Collapse
|
21
|
Kumar S, Rangarajan A, Pal D. Somatic mutation analyses of stem-like cells in gingivobuccal oral squamous cell carcinoma reveals DNA damage response genes. Genomics 2022; 114:110308. [DOI: 10.1016/j.ygeno.2022.110308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/10/2022] [Accepted: 02/01/2022] [Indexed: 12/24/2022]
|
22
|
Liang Y, Tian J, Wu T. BRD4 in physiology and pathology: ''BET'' on its partners. Bioessays 2021; 43:e2100180. [PMID: 34697817 DOI: 10.1002/bies.202100180] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 12/20/2022]
Abstract
Bromodomain-containing 4 (BRD4), a member of Bromo and Extra-Terminal (BET) family, recognizes acetylated histones and is of importance in transcription, replication, and DNA repair. It also binds non-histone proteins, DNA and RNA, contributing to development, tissue growth, and various physiological processes. Additionally, BRD4 has been implicated in driving diverse diseases, ranging from cancer, viral infection, inflammation to neurological disorders. Inhibiting its functions with BET inhibitors (BETis) suppresses the progression of several types of cancer, creating an impetus for translating these chemicals to the clinic. The diverse roles of BRD4 are largely dependent on its interaction partners in different contexts. In this review we discuss the molecular mechanisms of BRD4 with its interacting partners in physiology and pathology. Current development of BETis is also summarized. Further understanding the functions of BRD4 and its partners will facilitate resolving the liabilities of present BETis and accelerate their clinical translation.
Collapse
Affiliation(s)
- Yin Liang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jieyi Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Tao Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
23
|
Jiang Y, Li Y, Ge H, Wu Y, Zhang Y, Guo S, Zhang P, Cheng J, Wang Y. Identification of an autophagy-related prognostic signature in head and neck squamous cell carcinoma. J Oral Pathol Med 2021; 50:1040-1049. [PMID: 34358365 DOI: 10.1111/jop.13231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Autophagy-related genes (ARGs) have been significantly implicated in tumorigenesis and served as promising prognostic biomarkers for human cancer. Hence, this study was aimed to develop an ARGs-based prognostic signature for Head and neck squamous cell carcinoma (HNSCC). METHODS Prognostic ARG candidates were identified by univariate and multivariate Cox regression analysis in the training dataset (TCGA-HNSC) and incorporated into a 3-ARGs (EGFR, FADD, and PARK2) prognostic signature which was further verified in two independent validation cohorts (GSE41613 and GSE42743). Kaplan-Meier plots, Cox regression analyses, and receiver operating characteristics curves (ROC) were employed to evaluate the prognostic prediction of 3-ARGs signature. Differential expression of these 3 ARG between cancer and normal counterparts as well as their associations with autophagy markers were assessed in 60 pairs of freshly collected HNSCC and adjacent non-tumor samples and datasets from Human Protein Atlas, respectively. RESULTS Patients with high-risk score had significantly inferior overall survival. Multivariate regression analyses revealed that 3-ARGs signature could be an independent prognostic factor after adjusting various clinicopathological parameters. ROC analyses revealed high predictive accuracy and sensitivity of the 3-ARGs signature. Increased mRNA and protein expression of EGFR, FADD, and PARK2 were found in HNSCC samples, and their expression significantly correlated with the abundances of ATG5, Beclin1, and LC3. CONCLUSION Our results reveal that 3-ARGs signature is a powerful prognostic biomarker for HNSCC, which could be integrated into the current prognostic regime to realize individualized outcome prediction. EGFR, FADD, and PARK2 likely contributed to autophagy during HNSCC tumorigenesis.
Collapse
Affiliation(s)
- Yue Jiang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China
| | - Yuanyuan Li
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China
| | - Han Ge
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China
| | - Yaping Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yuchao Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Songsong Guo
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ping Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yanling Wang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China
| |
Collapse
|
24
|
Jing C, Liu D, Lai Q, Li L, Zhou M, Ye B, Wu Y, Li H, Yue K, Wu Y, Duan Y, Wang X. JOSD1 promotes proliferation and chemoresistance of head and neck squamous cell carcinoma under the epigenetic regulation of BRD4. Cancer Cell Int 2021; 21:375. [PMID: 34261480 PMCID: PMC8278721 DOI: 10.1186/s12935-021-02060-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Deubiquitinating enzymes (DUBs) play critical roles in various cancers by modulating functional proteins post-translationally. Previous studies have demonstrated that DUB Josephin Domain Containing 1 (JOSD1) is implicated in tumor progression, however, the role and mechanism of JOSD1 in head and neck squamous cell carcinoma (HNSCC) remain to be explored. In this study, we aimed to identify the clinical significance and function of JOSD1 in HNSCC. METHODS The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were analyzed to find novel DUBs in HNSCC. Immunohistochemistry assay was performed to determine the expression of JOSD1 in our cohort of 42 patients suffered with HNSCC. Kaplan-Meier analysis was used to identify the correlation between JOSD1 and the prognosis of HNSCC patients. The regulation of BRD4 on JOSD1 was determined by using pharmacological inhibition and gene depletion. The in vitro and in vivo experiments were conducted to elucidate the role of JOSD1 in HNSCC. RESULTS The results of IHC showed that JOSD1 was aberrantly expressed in HNSCC specimens, especially in the chemoresistant ones. The overexpression of JOSD1 indicated poor clinical outcome of HNSCC patients. Moreover, JOSD1 depletion dramatically impaired cell proliferation and colony formation, and promoted cisplatin-induced apoptosis of HNSCC cells in vitro. Additionally, JOSD1 suppression inhibited the tumor growth and improved chemosensitivity in vivo. The epigenetic regulator BRD4 contributed to the upregulation of JOSD1 in HNSCC. CONCLUSIONS These results demonstrate that JOSD1 functions as an oncogene in HNSCC progression, and provide a promising target for clinical diagnosis and therapy of HNSCC.
Collapse
Affiliation(s)
- Chao Jing
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Dandan Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Qingchuan Lai
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Linqi Li
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Mengqian Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Beibei Ye
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yue Wu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hong Li
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Kai Yue
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yansheng Wu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Yuansheng Duan
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
25
|
Wang S, Chen X, Qiao T. Long non‑coding RNA MIR4435‑2HG promotes the progression of head and neck squamous cell carcinoma by regulating the miR‑383‑5p/RBM3 axis. Oncol Rep 2021; 45:99. [PMID: 33846802 PMCID: PMC8054316 DOI: 10.3892/or.2021.8050] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
Recent studies have shown that long non-coding RNAs (lncRNAs) are strongly related to the progression of various types of cancer. The lncRNA MIR4435-2 host gene (MIR4435-2HG) has been recently recognized as a tumor-related lncRNA that is upregulated in several tumors. However, its possible functions in head and neck squamous cell carcinoma (HNSCC) remain unclear. In tShe present study, we observed that MIR4435-2HG expression was markedly upregulated in HNSCC tissues based on a Gene Expression Profiling Interactive Analysis dataset. This result was further confirmed in HNSCC tissues and cell lines using quantitative real-time polymerase chain reaction. In addition, the high expression level of MIR4435-2HG was significantly associated with poor disease-free survival and overall survival in all HNSCC cases and was associated with advanced tumor-metastasis-node stage and poor prognosis. In vitro and in vivo assays demonstrated that MIR4435-2HG knockdown suppressed HNSCC cell proliferation and invasion, epithelial-mesenchymal transition (EMT), and tumor growth as determined by Cell Counting Kit-8, Transwell assays and western blotting. Furthermore, MIR4435-2HG affected HNSCC cell proliferation and migration and EMT by modulating the microRNA miR-383-5p to positively regulate the protein expression level of RNA-binding motif protein 3 (RBM3). In conclusion, we provide a detailed analysis of the roles of MIR4435-2HG in HNSCC and identified the MIR4435-2HG/miR-383-5p/RBM3 axis as a potential therapeutic target for HNSCC treatment.
Collapse
Affiliation(s)
- Shu Wang
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Xianfeng Chen
- Department of Pharmacy, Tinglin Hospital, Shanghai 201505, P.R. China
| | - Tiankui Qiao
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| |
Collapse
|
26
|
Jiang Y, Yao Y, Li J, Wang Y, Cheng J, Zhu Y. Functional Dissection of CD26 and Its Pharmacological Inhibition by Sitagliptin During Skin Wound Healing. Med Sci Monit 2021; 27:e928933. [PMID: 33735157 PMCID: PMC7986725 DOI: 10.12659/msm.928933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Skin fibroblasts are primary mediators underlying wound healing and therapeutic targets in scar prevention and treatment. CD26 is a molecular marker to distinguish fibroblast subpopulations and plays an important role in modulating the biological behaviors of dermal fibroblasts and influencing skin wound repair. Therapeutic targeting of specific fibroblast subsets is expected to reduce skin scar formation more efficiently. MATERIAL AND METHODS Skin burn and excisional wound healing models were surgically established in mice. The expression patterns of CD26 during wound healing were determined by immunohistochemical staining, real-time RT-PCR, and western blot assays. Normal fibroblasts from intact skin (NFs) and fibroblasts in wounds (WFs) were isolated and sorted by fluorescence-activated cell sorting (FACS) into 4 subgroups - CD26⁺ NFs, CD26⁻ NFs, CD26⁺ WFs, and CD26⁻ WFs - for comparisons of their capacities of proliferation, migration, and collagen synthesis. Pharmacological inhibition of CD26 by sitagliptin in skin fibroblasts and during wound healing were further assessed both in vitro and in vivo. RESULTS Increased CD26 expression was observed during skin wound healing in both models. The CD26⁺ fibroblasts isolated from wounds had significantly stronger abilities to proliferate, migrate, and synthesize collagen than other fibroblast subsets. Sitagliptin treatment potently diminished CD26 expression, impaired the proliferation, migration, and collagen synthesis of fibroblasts in vitro, and diminished scar formation in vivo. CONCLUSIONS Our data reveal that CD26 is functionally involved in skin wound healing by regulating cell proliferation, migration, and collagen synthesis in fibroblasts. Pharmacological inhibition of CD26 by sitagliptin might be a viable strategy to reduce skin scar formation.
Collapse
Affiliation(s)
- Yue Jiang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yuan Yao
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Jin Li
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yanling Wang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Jie Cheng
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yumin Zhu
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
27
|
Zhao X, Zhou HB, Liu J, Xie J, Hu R. Apigenin suppresses proliferation, invasion, and epithelial-mesenchymal transition of cervical carcinoma cells by regulation of miR-152/BRD4 axis. Kaohsiung J Med Sci 2021; 37:583-593. [PMID: 33611824 DOI: 10.1002/kjm2.12370] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 01/01/2023] Open
Abstract
The present study aimed to investigate the role of apigenin and the molecular mechanism of miR-152-5p and bromodomain containing 4 (BRD4) in the proliferation, invasion, and epithelial-mesenchymal transition (EMT) of cervical carcinoma cells. Quantitative real-time PCR was used to detect the transfection efficiency and the expression of miR-152-5p and BRD4. Western blotting was conducted to evaluate the protein level of BRD4, E-cadherin, N-cadherin, and MMP9. Luciferase reporter assay was performed to confirm whether miR-152-5p bound to BRD4. MTT and Transwell invasion assay were applied to determine the cell proliferation and invasion, respectively. MiR-152-5p was downregulated and BRD4 was upregulated in cervical carcinoma tissue. Besides, miR-152-5p could directly bind to BRD4 in Hela and CaSki cells. In addition, apigenin inhibited proliferation, invasion, and EMT of Hela and CaSki cells by regulating miR-152-5p/BRD4 axis. Apigenin suppresses proliferation, invasion, and induced EMT of cervical carcinoma cells by regulation of miR-152-5p/BRD4 axis.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Obstetrics and Gynecology, The first Affiliated Hospital of University of South China, Hengyang, China
| | - Hua-Bo Zhou
- Department of Intensive Care Unit, Hengyang City Central Hospital, Hengyang, China
| | - Jie Liu
- Department of Obstetrics and Gynecology, The first Affiliated Hospital of University of South China, Hengyang, China
| | - Jing Xie
- Department of Obstetrics and Gynecology, The first Affiliated Hospital of University of South China, Hengyang, China
| | - Rong Hu
- Department of Radiology, The first Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
28
|
Ge H, Yao Y, Jiang Y, Wu X, Wang Y. Pharmacological inhibition of CDK7 by THZ1 impairs tumor growth in p53-mutated HNSCC. Oral Dis 2021; 28:611-620. [PMID: 33503275 DOI: 10.1111/odi.13783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 11/30/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Cyclin-dependent kinase 7 (CDK7) has been critically linked to human cancer. However, the roles of CDK7 in head and neck squamous cell carcinoma (HNSCC) remain incompletely known. Here, we sought to dissect the functions of CDK7 underlying HNSCC tumorigenesis and explore whether pharmacological inhibition of CDK7 could induce anti-cancer effects. METHODS CDK7 expression was measured in a panel of HNSCC cell lines with p53 mutation and 20 pairs of HNSCC samples and adjacent non-tumor tissues. Genetic targeting and pharmacological inhibition of CDK7 were conducted to dissect the biological roles of CDK7 in p53-mutated HNSCC cells. An HNSCC xenograft model was developed to determine the therapeutic effects of THZ1 in vivo. Potential genes and pathways responsible for therapeutic effects of THZ1 were identified by genome-wide RNA-sequencing and bioinformatics interrogations. RESULTS CDK7 expression was significantly elevated in cancerous cells and samples as compared with their adjacent non-tumor counterparts. Impaired cell proliferation, migration, and invasion as well increased apoptosis were observed in cells upon CDK7 knockdown or THZ1 exposure. THZ1 administration potently inhibited tumor overgrowth in vivo. Mechanistically, hundreds of genes enriched in cell proliferation, apoptosis, and cancer-related categories were identified to be potentially mediated the therapeutic effects of THZ1 in HNSCC. CONCLUSION Our findings reveal that CDK7 might serve as a novel putative pro-oncogenic gene underlying HNSCC tumorigenesis and therapeutic targeting of CDK7 might be a promising strategy for p53-mutated HNSCC.
Collapse
Affiliation(s)
- Han Ge
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China PRC.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China PRC
| | - Yuan Yao
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China PRC.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China PRC
| | - Yue Jiang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China PRC.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China PRC
| | - Xiang Wu
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China PRC.,Department of Oral Pathology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China PRC
| | - Yanling Wang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China PRC.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China PRC
| |
Collapse
|
29
|
Yang GJ, Wang W, Lei PM, Leung CH, Ma DL. A 7-methoxybicoumarin derivative selectively inhibits BRD4 BD2 for anti-melanoma therapy. Int J Biol Macromol 2020; 164:3204-3220. [DOI: 10.1016/j.ijbiomac.2020.08.194] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 01/07/2023]
|
30
|
Zhang Y, Duan S, Jang A, Mao L, Liu X, Huang G. JQ1, a selective inhibitor of BRD4, suppresses retinoblastoma cell growth by inducing cell cycle arrest and apoptosis. Exp Eye Res 2020; 202:108304. [PMID: 33080301 DOI: 10.1016/j.exer.2020.108304] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Retinoblastoma (RB) is the most common intraocular cancer in children, and chemotherapy has been the first-line treatment. However, due to the side effects of chemotherapy drugs, novel treatments must be developed. JQ1, a selective inhibitor of BRD4, suppresses cell growth in several cancers in which BRD4 is overexpressed. In the present study, BRD4 was overexpressed in retinoblastoma, and JQ1 effectively inhibited RB cell proliferation and colony formation by inducing cell cycle arrest and promoting apoptosis. Furthermore, the Myc-P21-CDK2 and Myc-cyclinD3/CDK6 pathways were activated in RB cells treated with JQ1, and an animal experiment suggested that JQ1 significantly inhibited tumour growth in vivo. In conclusion, JQ1 may be a potential drug treatment for retinoblastoma.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Ophthalmology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China; Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China; Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Sujuan Duan
- Department of Ophthalmology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China; Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Alan Jang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Longbing Mao
- Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xing Liu
- Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Guofu Huang
- Department of Ophthalmology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China; Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China.
| |
Collapse
|
31
|
Xie F, Xiao X, Tao D, Huang C, Wang L, Liu F, Zhang H, Niu H, Jiang G. circNR3C1 Suppresses Bladder Cancer Progression through Acting as an Endogenous Blocker of BRD4/C-myc Complex. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:510-519. [PMID: 33230453 PMCID: PMC7648093 DOI: 10.1016/j.omtn.2020.09.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/11/2020] [Indexed: 12/29/2022]
Abstract
Bromodomain-containing protein 4 (BRD4), the core component of transcriptional regulatory elements, plays a significant role in tumorigenesis and aggressiveness. However, the mechanisms regulating the functions of BRD4 in bladder cancer (BC) still remain elusive. Herein, we identify one exonic circular RNA (circRNA) generated from NR3C1 gene (circNR3C1) as a regulator of BRD4/C-myc complex. Our previous study indicated that BRD4 and C-myc promoter region form a complex, allowing C-myc to function as a transcription factor for BC progression. In the present study, mechanism studies reveal that circNR3C1 could interact with BRD4 protein, dissociating the formation of BRD4/C-myc complex. In vivo, ectopic expression of C-myc partly reverses the tumorigenesis of xenografts circNR3C1-induced in nude mice. Conclusively, these results demonstrate that circNR3C1 inhibits BC progression through acting as endogenous blocker of BRD4/C-myc complex.
Collapse
Affiliation(s)
- Fei Xie
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Department of Urology, Affiliated Hospital of Qingdao University, Qingdao 266013, China
| | - Xingyuan Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dan Tao
- Department of Oncology, The Fifth Hospital of Wuhan, Wuhan 430050, China
| | - Chao Huang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haitao Niu
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao 266013, China
| | - Guosong Jiang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
32
|
Schuch LF, Silveira FM, Wagner VP, Borgato GB, Rocha GZ, Castilho RM, Vargas PA, Martins MD. Head and neck cancer patient-derived xenograft models - A systematic review. Crit Rev Oncol Hematol 2020; 155:103087. [PMID: 32992152 DOI: 10.1016/j.critrevonc.2020.103087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Patient-derived xenograft (PDX) involve the direct surgical transfer of fresh human tumor samples to immunodeficient mice. This systematic review aimed to identify publications of head and neck cancer PDX (HNC-PDX) models, describing the main methodological characteristics and outcomes. METHODS An electronic search was undertaken in four databases, including publications having used HNC-PDX. Data were analyzed descriptively. RESULTS 63 articles were yielded. The nude mouse was one most commonly animal model used (38.8 %), and squamous cell carcinoma accounted for the majority of HNC-PDX (80.6 %). Tumors were mostly implanted in the flank (86.3 %), and the latency period ranged from 30 to 401 days. The successful rate ranged from 17 % to 100 %. Different drugs and pathways were identified. CONCLUSION HNC-PDX appears to significantly recapitulate the morphology of the original HNC and represents a valuable method in translational research for the assessment of the in vivo effect of novel therapies for HNC.
Collapse
Affiliation(s)
- Lauren F Schuch
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Felipe M Silveira
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Vivian P Wagner
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Gabriell B Borgato
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Guilherme Z Rocha
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Rogerio M Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109-1078, United States; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Pablo A Vargas
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Manoela D Martins
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil; Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
33
|
Yamamoto T, Hirosue A, Nakamoto M, Yoshida R, Sakata J, Matsuoka Y, Kawahara K, Nagao Y, Nagata M, Takahashi N, Hiraki A, Shinohara M, Nakao M, Saitoh N, Nakayama H. BRD4 promotes metastatic potential in oral squamous cell carcinoma through the epigenetic regulation of the MMP2 gene. Br J Cancer 2020; 123:580-590. [PMID: 32499570 PMCID: PMC7435185 DOI: 10.1038/s41416-020-0907-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) has increased morbidity, and its high metastatic potential affects patient survival. Bromodomain containing 4 (BRD4) is a chromatin protein that associates with acetylated histone lysines and facilitates transcription. BRD4 has been implicated in cell proliferation, metastasis, and prognosis in several types of cancer. However, the role of BRD4 in OSCC remains to be elucidated. METHODS We investigated the role of BRD4 and its potential utility as a therapeutic target in OSCC. RESULTS JQ1, the BRD4 inhibitor, suppressed the cell proliferation, migration, and invasion in the OSCC cell lines and in vivo. JQ1 reduced the expression levels of 15 metastasis genes in OSCC, including matrix metallopeptidase 2 (MMP2). Our chromatin immunoprecipitation assay showed that JQ1 reduced the BRD4 binding to the histone H3 lysine 27 acetylation-enriched sites in the MMP2 locus. Analyses of biopsy specimens from OSCC patients revealed that the BRD4 and MMP2 expression levels were correlated in the cancerous regions, and both were highly expressed in lymph node metastasis cases, including delayed metastasis. CONCLUSIONS BRD4 contributes to metastasis in OSCC, through the epigenetic regulation of the MMP2 gene, and thus BRD4 may represent a therapeutic target and a novel prediction indicator for metastasis.
Collapse
Affiliation(s)
- Tatsuro Yamamoto
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Division of Cancer Biology, The Cancer Institute of JFCR, Tokyo, 135-8550, Japan
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Akiyuki Hirosue
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| | - Masafumi Nakamoto
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Ryoji Yoshida
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Junki Sakata
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Yuichiro Matsuoka
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Kenta Kawahara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Yuka Nagao
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Masashi Nagata
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Nozomu Takahashi
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Akimitsu Hiraki
- Section of Oral Oncology, Department of Oral and Maxillofacial Surgery, Fukuoka Dental College, Fukuoka, 814-0193, Japan
| | - Masanori Shinohara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Noriko Saitoh
- Division of Cancer Biology, The Cancer Institute of JFCR, Tokyo, 135-8550, Japan.
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| |
Collapse
|
34
|
Identification of a stemness-related gene panel associated with BET inhibition in triple negative breast cancer. Cell Oncol (Dordr) 2020; 43:431-444. [PMID: 32166583 PMCID: PMC7214516 DOI: 10.1007/s13402-020-00497-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Triple negative breast cancers (TNBCs) are enriched in cells bearing stem-like features, i.e., cancer stem cells (CSCs), which underlie cancer progression. Thus, targeting stemness may be an interesting treatment approach. The epigenetic machinery is crucial for maintaining the stemness phenotype. Bromodomain and extra-terminal domain (BET) epigenetic reader family members are emerging as novel targets for cancer therapy, and have already shown preclinical effects in breast cancer. Here, we aimed to evaluate the effect of the BET inhibitor JQ1 on stemness in TNBC. Methods Transcriptomic, functional annotation and qRT-PCR studies were performed on JQ1-exposed TNBC cells in culture. The results obtained were confirmed in spheroids and spheroid-derived tumours. In addition, limiting dilution, secondary and tertiary tumour sphere formation, matrigel invasion, immunofluorescence and flow cytometry assays were performed to evaluate the effect of JQ1 on CSC features. For clinical outcome analyses, the online tool Kaplan-Meier Plotter and an integrated response database were used. Results We found that JQ1 modified the expression of stemness-related genes in two TNBC-derived cell lines, MDA-MB-231 and BT549. Among these changes, the CD44 Antigen/CD24 Antigen (CD44/CD24) ratio and Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1) expression level, i.e., both classical stemness markers, were found to be decreased by JQ1. Using a validated spheroid model to mimic the intrinsic characteristics of CSCs, we found that JQ1 decreased surface CD44 expression, inhibited self-renewal and invasion, and induced cell cycle arrest in G0/G1, thereby altering the stemness phenotype. We also found associations between four of the identified stemness genes, Gap Junction Protein Alpha 1 (GJA1), CD24, Epithelial Adhesion Molecule (EPCAM) and SRY-related HMG-box gene 9 (SOX9), and a worse TNBC patient outcome. The expression of another two of the stemness-related genes was found to be decreased by JQ1, i.e., ATP Binding Cassette Subfamily G Member 2 (ABCG2) and RUNX2, and predicted a low response to chemotherapy in TNBC patients, which supports a role for RUNX2 as a potential predictive marker for chemotherapy response in TNBC. Conclusions We identified a stemness-related gene panel associated with JQ1 and describe how this inhibitor modifies the stemness landscape in TNBC. Therefore, we propose a novel role for JQ1 as a stemness-targeting drug. Loss of the stem cell phenotype via JQ1 treatment could lead to less aggressive and more chemo-sensitive tumours, reflecting a better patient prognosis. Thus, the identified gene panel may be of interest for the clinical management of patients with aggressive TNBC. Electronic supplementary material The online version of this article (10.1007/s13402-020-00497-6) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Huang R, Wang Y, Ge H, Wang D, Wang Y, Zhang W, Yang J, Cheng J. Restoration of TET2 deficiency inhibits tumor growth in head neck squamous cell carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:329. [PMID: 32355773 PMCID: PMC7186610 DOI: 10.21037/atm.2020.02.145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Tet methylcytosine dioxygenase 2 (TET2) has been increasingly recognized as an important tumor suppressor involved in tumorigenesis. Here, we aimed to explore the expression pattern of TET2, its clinical significance as well as functional roles in head neck squamous cell carcinoma (HNSCC). Methods Both mRNA and protein levels of TET2 in primary HNSCC samples were detected via immunohistochemistry and qRT-PCR, respectively. Correlations between TET2 expression with multiple clinicopathological parameters and patient survival were determined. The biological roles of TET2 in HNSCC were assessed via a gain-of-function approach and in 4-nitroquinoline-1-oxide (4NQO)-induced HNSCC model. Restoration of TET2 by chemicals including 5-Aza-2'-deoxycytidine (5-AZA), metformin or Vitamin C (VC) to inhibit tumor growth was determined in vitro and in a xenograft animal model. Results Reduced TET2 expression was found in a large fraction of HNSCC samples. Downregulated TET2 significantly correlated with larger tumor size, advanced clinical stage and inferior prognosis. Reduced TET2 and 5-hydroxymethylcytosine (5hmC) were observed along with disease progression in the 4NQO-induced HNSCC model. Enforced TET2 overexpression significantly inhibited cell proliferation, migration and enhanced the chemosensitivity of cisplatin in HNSCC cells. Restoration of TET2 following 5-AZA, metformin or VC exposure impaired cell proliferation and migration in vitro. Moreover, VC alone or in synergistic with cisplatin potently inhibited tumor growth in vivo. Conclusions Our data reveal that reduced TET2 associates with tumor aggressiveness and reduced survival in HNSCC. Genetic or pharmacological restoration of TET2 might be a viable therapeutic strategy for HNSCC patients with TET2 deficiency.
Collapse
Affiliation(s)
- Rong Huang
- Jiangsu Key Laboratory of Oral Disease, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China.,Department of Medical Technology, Taizhou Polytechnic College, Taizhou 225300, China
| | - Yi Wang
- Department of Stomatology, The First Affiliated Hospital of USTC and Anhui Provincial Hospital, Hefei 23000, China
| | - Han Ge
- Jiangsu Key Laboratory of Oral Disease, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Dongmiao Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Yanling Wang
- Jiangsu Key Laboratory of Oral Disease, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Wei Zhang
- Department of Oral Pathology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Jianrong Yang
- Jiangsu Key Laboratory of Oral Disease, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Disease, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
36
|
Zhang W, Cheng J, Diao P, Wang D, Zhang W, Jiang H, Wang Y. Therapeutically targeting head and neck squamous cell carcinoma through synergistic inhibition of LSD1 and JMJD3 by TCP and GSK-J1. Br J Cancer 2019; 122:528-538. [PMID: 31848446 PMCID: PMC7028736 DOI: 10.1038/s41416-019-0680-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 10/29/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The histone demethylase LSD1 is a key mediator driving tumorigenesis, which holds potential as a promising therapeutic target. However, treatment with LSD1 inhibitors alone failed to result in complete cancer regression. METHODS The synergistic effects of TCP (a LSD1 inhibitor) and GSK-J1 (a JMJD3 inhibitor) against HNSCC were determined in vitro and in preclinical animal models. Genes modulated by chemical agents or siRNAs in HNSCC cells were identified by RNA-seq and further functionally interrogated by bioinformatics approach. Integrative siRNA-mediated gene knockdown, rescue experiment and ChIP-qPCR assays were utilised to characterise the mediators underlying the therapeutic effects conferred by TCP and GSK-J1. RESULTS Treatment with TCP and GSK-J1 impaired cell proliferation, induced apoptosis and senescence in vitro, which were largely recapitulated by simultaneous LSD1 and JMJD3 knockdown. Combinational treatment inhibited tumour growth and progression in vivo. Differentially expressed genes modulated by TCP and GSK-J1 were significantly enriched in cell proliferation, apoptosis and cancer-related pathways. SPP1 was identified as the mediator of synergy underlying the pro-apoptosis effects conferred by TCP and GSK-J1. Co-upregulation of LSD1 and JMJD3 associated with worse prognosis in patients with HNSCC. CONCLUSIONS Our findings revealed a novel therapeutic strategy of simultaneous LSD1 and JMJD3 inhibition against HNSCC.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, 210029, Nanjing, P. R. China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, 210029, Nanjing, P. R. China
| | - Pengfei Diao
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, 210029, Nanjing, P. R. China
| | - Dongmiao Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, 210029, Nanjing, P. R. China
| | - Wei Zhang
- Department of Oral Pathology, Affiliated Stomatological Hospital, Nanjing Medical University, 210029, Nanjing, P. R. China
| | - Hongbing Jiang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, 210029, Nanjing, P. R. China
| | - Yanling Wang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, 210029, Nanjing, P. R. China.
| |
Collapse
|
37
|
Santos-de-Frutos K, Segrelles C, Lorz C. Hippo Pathway and YAP Signaling Alterations in Squamous Cancer of the Head and Neck. J Clin Med 2019; 8:jcm8122131. [PMID: 31817001 PMCID: PMC6947155 DOI: 10.3390/jcm8122131] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022] Open
Abstract
Head and neck cancer affects the upper aerodigestive tract and is the sixth leading cancer worldwide by incidence and the seventh by cause of death. Despite significant advances in surgery and chemotherapy, molecularly targeted therapeutic options for this type of cancer are scarce and long term survival rates remain low. Recently, comprehensive genomic studies have highlighted the most commonly altered genes and signaling pathways in this cancer. The Hippo-YAP pathway has been identified as a key oncogenic pathway in multiple tumors. Expression of genes controlled by the Hippo downstream transcriptional coactivators YAP (Yes-associated protein 1) and TAZ (WWTR1, WW domain containing transcription regulator 1) is widely deregulated in human cancer including head and neck squamous cell carcinoma (HNSCC). Interestingly, YAP/TAZ signaling might not be as essential for the normal homeostasis of adult tissues as for oncogenic growth, altogether making the pathway an amenable therapeutic target in cancer. Recent advances in the role of Hippo-YAP pathway in HNSCC have provided evidence that genetic alterations frequent in this type of cancer such as PIK3CA (phosphatidylinositide 3-kinase catalytic subunit alpha) overexpression or FAT1 (FAT atypical cadherin 1) functional loss can result in YAP activation. We discuss current therapeutic options targeting this pathway which are currently in use for other tumor types.
Collapse
Affiliation(s)
- Karla Santos-de-Frutos
- Molecular Oncology Unit, CIEMAT (ed 70A), Ave Complutense 40, 28040 Madrid, Spain; (K.S.-d.-F.); (C.S.)
- Molecular Oncology, Research Institute 12 de Octubre i+12, University Hospital 12 de Octubre, Ave Córdoba s/n, 28041 Madrid, Spain
| | - Carmen Segrelles
- Molecular Oncology Unit, CIEMAT (ed 70A), Ave Complutense 40, 28040 Madrid, Spain; (K.S.-d.-F.); (C.S.)
- Molecular Oncology, Research Institute 12 de Octubre i+12, University Hospital 12 de Octubre, Ave Córdoba s/n, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Ave Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Corina Lorz
- Molecular Oncology Unit, CIEMAT (ed 70A), Ave Complutense 40, 28040 Madrid, Spain; (K.S.-d.-F.); (C.S.)
- Molecular Oncology, Research Institute 12 de Octubre i+12, University Hospital 12 de Octubre, Ave Córdoba s/n, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Ave Monforte de Lemos 3-5, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-91-4962-521; Fax: +34-91-3466-484
| |
Collapse
|
38
|
Zhang W, Ge H, Jiang Y, Huang R, Wu Y, Wang D, Guo S, Li S, Wang Y, Jiang H, Cheng J. Combinational therapeutic targeting of BRD4 and CDK7 synergistically induces anticancer effects in head and neck squamous cell carcinoma. Cancer Lett 2019; 469:510-523. [PMID: 31765738 DOI: 10.1016/j.canlet.2019.11.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/15/2019] [Accepted: 11/18/2019] [Indexed: 12/27/2022]
Abstract
The bromodomain and extra-terminal domain protein BRD4 has been recognized as a key oncogenic driver and a druggable target against cancer. However, these BRD4 inhibitors as monotherapy were moderate in efficacy in preclinical models. Here we utilized a small-scale drug synergy screen that combined the BRD4 inhibitor (JQ1) with 8 epigenetic or transcriptional targeted chemicals and identified THZ1 (a CDK7 inhibitor) acting synergistically with JQ1 against head neck squamous cell carcinoma (HNSCC). Combinational JQ1 and THZ1 treatment impaired cell proliferation, induced apoptosis and senescence, which were largely recapitulated by dual BRD4 and CDK7 knockdown. Combinational treatment inhibited tumor growth and progression in 4NQO-induced HNSCC and xenograft animal models. RNA-sequencing analyses identified hundreds of differentially expressed genes modulated by JQ1 and THZ1, which were significantly enriched in categories including cell cycle and apoptosis. Mechanistically, combinational treatment reduced H3K27ac enrichment in the super-enhancer region of YAP1, which inactivated its transcription and in turn induced anti-proliferative and pro-apoptotic effects. Combined BRD4 and CDK7 upregulation associated with worst prognosis in HNSCC patients. Collectively, our findings reveal a novel therapeutic strategy of pharmacological inhibitions of BRD4 and CDK7 against HNSCC.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, 210029, People's Republic of China; Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Han Ge
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, 210029, People's Republic of China; Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Yue Jiang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, 210029, People's Republic of China
| | - Rong Huang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, 210029, People's Republic of China
| | - Yaping Wu
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, 210029, People's Republic of China
| | - Dongmiao Wang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, 210029, People's Republic of China
| | - Songsong Guo
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Sheng Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Yanling Wang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, 210029, People's Republic of China
| | - Hongbing Jiang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, 210029, People's Republic of China; Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
39
|
Morel D, Jeffery D, Aspeslagh S, Almouzni G, Postel-Vinay S. Combining epigenetic drugs with other therapies for solid tumours - past lessons and future promise. Nat Rev Clin Oncol 2019; 17:91-107. [PMID: 31570827 DOI: 10.1038/s41571-019-0267-4] [Citation(s) in RCA: 291] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 12/16/2022]
Abstract
Epigenetic dysregulation has long been recognized as a key factor contributing to tumorigenesis and tumour maintenance that can influence all of the recognized hallmarks of cancer. Despite regulatory approvals for the treatment of certain haematological malignancies, the efficacy of the first generation of epigenetic drugs (epi-drugs) in patients with solid tumours has been disappointing; however, successes have now been achieved in selected solid tumour subtypes, thanks to the development of novel compounds and a better understanding of cancer biology that have enabled precision medicine approaches. Several lines of evidence support that, beyond their potential as monotherapies, epigenetic drugs could have important roles in synergy with other anticancer therapies or in reversing acquired therapy resistance. Herein, we review the mechanisms by which epi-drugs can modulate the sensitivity of cancer cells to other forms of anticancer therapy, including chemotherapy, radiation therapy, hormone therapy, molecularly targeted therapy and immunotherapy. We provide a critical appraisal of the preclinical rationale, completed clinical studies and ongoing clinical trials relating to combination therapies incorporating epi-drugs. Finally, we propose and discuss rational clinical trial designs and drug development strategies, considering key factors including patient selection, tumour biomarker evaluation, drug scheduling and response assessment and study end points, with the aim of optimizing the development of such combinations.
Collapse
Affiliation(s)
- Daphné Morel
- ATIP-Avenir Group, UMR981, INSERM (French National Institute of Health and Medical Research), Gustave Roussy Cancer Campus, Villejuif, France
| | - Daniel Jeffery
- Nuclear Dynamics Unit - UMR3664, National Centre for Scientific Research, Institut Curie, Paris, France
| | | | - Geneviève Almouzni
- Nuclear Dynamics Unit - UMR3664, National Centre for Scientific Research, Institut Curie, Paris, France.
| | - Sophie Postel-Vinay
- ATIP-Avenir Group, UMR981, INSERM (French National Institute of Health and Medical Research), Gustave Roussy Cancer Campus, Villejuif, France. .,Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France.
| |
Collapse
|
40
|
Li G, Xu W, Zhang L, Liu T, Jin G, Song J, Wu J, Wang Y, Chen W, Zhang C, Chen X, Ding Z, Zhu P, Zhang B. Development and validation of a CIMP-associated prognostic model for hepatocellular carcinoma. EBioMedicine 2019; 47:128-141. [PMID: 31492561 PMCID: PMC6796541 DOI: 10.1016/j.ebiom.2019.08.064] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND CpG island methylator phenotype (CIMP), a common biological phenomenon characterized by a subset of concurrently methylated genes, can have an influence on the progression of multiple cancers. However, the potential mechanism of CIMP in hepatocarcinogenesis and its clinical relevance remains only partially understood. METHODS We used a methylation array from the cancer genome atlas (TCGA) to stratify HCC patients into different CIMP subtypes, and evaluated their correlation with clinical characteristics. In addition, mutation, CNV, and transcriptome profiles were also utilized to evaluate the distinctive genomic patterns correlated with CIMP. Finally, a CIMP-associated prognostic model (CPM) was trained and validated using four independent datasets. FINDINGS A subgroup of patients was identified as having CIMP-H, which was associated with worse OS and DFS. Gene enrichment analysis indicated that the terms "liver cancer with EPCAM up", "tumor invasiveness up", "methyltransferase complex", and "translational initiation" were enriched in CIMP-H subgroup. Notably, somatic mutation analysis indicated that CIMP-H patients presented with a higher mutation burden of BRD4, DDIAS and NOX1. Moreover, four CPM associated genes could significantly categorize patients into low- and high-risk groups in the training dataset and another 3 independent validation datasets. Finally, a nomogram incorporating a classifier based on four mRNAs, pathological M stage and CIMP status was established, which showed a favorable discriminating ability and might contribute to clinical decision-making for HCC. INTERPRETATION Our work highlights the potential clinical application value of CPM in predicting the overall survival of HCC patients and the mechanisms underlying the role of CIMP in hepatocarcinogenesis. FUND: This work was supported by the State Key Project on Infectious Diseases of China (2018ZX10723204-003), the National Nature Science Foundation of China (Nos. 81874065, 81500565, 81874149, 81572427, and 81401997), the Hepato-Biliary-Pancreatic Malignant Tumor Investigation Fund of Chen Xiao-ping Foundation for the Development of Science and Technology of Hubei Province (CXPJJH11800001-2018356).
Collapse
Affiliation(s)
- Ganxun Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiqi Xu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongtong Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guannan Jin
- Institute of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Wu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuwei Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weixun Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanhan Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Peng Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
41
|
Li J, Li Z, Wu Y, Wang Y, Wang D, Zhang W, Yuan H, Ye J, Song X, Yang J, Jiang H, Cheng J. The Hippo effector TAZ promotes cancer stemness by transcriptional activation of SOX2 in head neck squamous cell carcinoma. Cell Death Dis 2019; 10:603. [PMID: 31399556 PMCID: PMC6689034 DOI: 10.1038/s41419-019-1838-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 01/06/2023]
Abstract
The Hippo-TAZ signaling has emerged as a fundamental regulator underlying cancer stem cells (CSCs) stemness which intricately associates with local recurrence and metastatic spreading in head neck squamous cell carcinoma (HNSCC). However, the precise downstream targets of TAZ responsible for HNSCC CSCs maintenance remain largely underexplored. Here, we identified Sex determining region Y box 2 (SOX2) as a putative downstream target of TAZ to promote CSCs maintenance and tumorigenicity in HNSCC. Both TAZ and SOX2 were significantly enriched in CSCs subpopulation (CD44+CD133+) isolated from Cal27 and Fadu cells via fluorescence-activated cell sorting. TAZ knockdown significantly reduced expression of SOX2 at both mRNA and protein levels, whereas its ectopic overexpression markedly increased its abundance in HNSCC cells. Moreover, reintroduction of ectopic SOX2 abolished, at least in part, the reduced tumorsphere formation and tumorigenicity in vivo induced by TAZ knockdown. Mechanistically, transcriptional complex formed by TAZ and TEAD4 was recruited to two binding sites in SOX2 promoter, which in turn facilitated transcription of SOX2 in HNSCC cells. In addition, the abundance of TAZ and SOX2 was positively correlated in HNSCC clinical samples, and both upregulations of TAZ and SOX2 associated with the worst survival. Taken together, our data reveal a previously unknown mechanistic linkage between TAZ and SOX2 and identify SOX2 as a direct downstream target of TAZ in modulating CSCs self-renewal and maintenance in HNSCC. These findings suggest that targeting TAZ-SOX2 axis might be a promising therapeutic strategy for HNSCC.
Collapse
Affiliation(s)
- Jin Li
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029, PR China
| | - Zhongwu Li
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029, PR China
| | - Yaping Wu
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029, PR China
| | - Yanling Wang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029, PR China
| | - Dongmiao Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, PR China
| | - Wei Zhang
- Department of Oral Pathology, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, PR China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, PR China
| | - Jinhai Ye
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, PR China
| | - Xiaomeng Song
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, PR China
| | - Jianrong Yang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, PR China
| | - Hongbing Jiang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, PR China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029, PR China.
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, PR China.
| |
Collapse
|