1
|
Zhu H, Chan CY, Heng JZX, Tang KY, Chai CHT, Tan HL, Loh XJ, Ye E, Li Z. Bioactive metal sulfide nanomaterials as photo-enhanced chemodynamic nanoreactors for tumor therapy. NANOSCALE HORIZONS 2025. [PMID: 40293306 DOI: 10.1039/d5nh00122f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Metal sulfide nanomaterials (MeSNs) are highly promising for biomedical applications due to their low toxicity, good dispersibility, high stability, adjustable particle sizes, and good biocompatibility. Their unique chemical and light-conversion properties also enable them to function as photothermal or photodynamic agents, enhancing chemodynamic therapy (CDT) of tumors. This makes MeSNs valuable as photo-enhanced CDT nanoagents, advancing precision and multi-modal tumor treatment. This review examines recent advancements in MeSNs for photo-enhanced chemodynamic tumor ablation, comparing their effectiveness in CDT. It highlights the roles of photothermal, photodynamic, and photocatalytic effects in enhancing treatment efficacy. MeSN-based nanoreactors are categorized by composition into iron sulfide, copper sulfide, other unary, and multi-MeSNs for their applications in tumor therapy. Additionally, this review discusses challenges, limitations, and future biomedical applications of MeSNs, offering insights into their potential for next-generation cancer treatments.
Collapse
Affiliation(s)
- Houjuan Zhu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore.
| | - Chui Yu Chan
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore.
| | - Jerry Zhi Xiong Heng
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore.
| | - Karen Yuanting Tang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore.
| | - Casandra Hui Teng Chai
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore.
| | - Hui Ling Tan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore.
| | - Enyi Ye
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore.
| | - Zibiao Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore.
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| |
Collapse
|
2
|
Ouyang R, Xue W, Cao P, Sun Z, Wang H, Zhang X, Zhou S, Miao Y. Superhydrophilic Bi-methylimidazole for preferred pH-responsive, targeted drug delivery to tumor. Colloids Surf B Biointerfaces 2025; 253:114701. [PMID: 40245558 DOI: 10.1016/j.colsurfb.2025.114701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/29/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
Doxorubicin (DOX), a widely used chemotherapeutic agent, is severely limited by systemic toxicity. Conventional nanomaterials exhibit limited drug-carrying capacity and targeted delivery efficiency, while the biocompatibility of these materials remains a critical consideration. Here we report a novel type of superhydrophilic mesoporous nanomaterial, synthesized by combining bismuth and 2-methylimidazole (Bi-MEI), designed as a biocompatible and pH-sensitive drug carrier for the delivery of the anticancer drug DOX to combat tumor proliferation and metastasis. Superhydrophilic Bi-MEI pH-responsive nanoplatform (Bi-MEI PSNs) was prepared using bismuth-oxo clusters, 2-methylimidazole ligands, and electronegative citrate under high-temperature and hypoxic conditions. The resulting material demonstrated excellent blood compatibility and low cytotoxicity in vitro due to the superhydrophilicity. DOX was effectively loaded into Bi-MEI PSNs without further surface modification, which exhibited a pH-sensitive release profile. Additionally, the citrate incorporated into Bi-MEI PSNs significantly enhanced its drug-loading efficiency. In acidic environments, such as those found in cancer tissues or subcellular endosomes, Bi-MEI PSNs disintegrated, releasing the free drug, which significantly facilitated the intravenous delivery of DOX into cancer cells for chemotherapy and effectively minimized the side effects. Furthermore, the synthesized Bi-MEI PSNs exhibited strong performance in computed tomography (CT) imaging and was successfully applied for CT imaging-guided tumor treatment. In a nude mouse model of transplanted lung tumors, remarkable therapeutic effects were achieved as predicted. This stable and efficient nanoplatform offers a promising strategy for more effective tumor treatment and improved prognosis.
Collapse
Affiliation(s)
- Ruizhuo Ouyang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China; USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Weixian Xue
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China; USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Penghui Cao
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China; USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhengang Sun
- Affiliated Middle School of Henan Normal University, Xinxiang 453007, China
| | - Huihui Wang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China; USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaoqing Zhang
- Department of Pharmacy, The International PeaceMaternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China.
| | - Shuang Zhou
- Cancer Institute, Tongji University School of Medicine, Shanghai 200092, China.
| | - Yuqing Miao
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China; USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
3
|
Chen B, Dai Y, Yang S, Chen C, Wang L. Recent progress on transition metal dichalcogenide-based composites for cancer therapy. NANOSCALE 2025; 17:7552-7573. [PMID: 40029716 DOI: 10.1039/d4nr05510a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Cancer remains a global health challenge, driving the need for advanced treatments. While transition metal dichalcogenides (TMDs) show promise in cancer therapy, their stability and efficacy require improvement. This study explores TMD-based composites as a solution to enhance their therapeutic potential. This review begins by providing an overview of TMDs and emphasizing their preparation techniques and fundamental properties. The focus is then shifted to categorizing TMD-based composites based on their constituent materials, delving into various types, such as TMD-organic, TMD-carbon, TMD-metal chalcogenide, TMD-metal, and TMD-oxide composites, as well as more complex ternary and multinary systems. We further explore key fabrication strategies, including hydrothermal/solvothermal methods and surface deposition/coating techniques. Subsequently, the focus shifted to their applications in cancer treatment, including chemotherapy, photothermal therapy, phototherapy, and integrated combination therapies. Finally, critical challenges in the field and perspectives on potential directions for future research are presented.
Collapse
Affiliation(s)
- Bo Chen
- State Key Laboratory of Flexible Electronics & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Yue Dai
- State Key Laboratory of Flexible Electronics & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Suxiang Yang
- State Key Laboratory of Flexible Electronics & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Chunhong Chen
- State Key Laboratory of Flexible Electronics & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Lianhui Wang
- State Key Laboratory of Flexible Electronics & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
4
|
Parihar A, Gaur K, Sarbadhikary P. Advanced 2D Nanomaterials for Phototheranostics of Breast Cancer: A Paradigm Shift. Adv Biol (Weinh) 2025; 9:e2400441. [PMID: 39543015 DOI: 10.1002/adbi.202400441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/29/2024] [Indexed: 11/17/2024]
Abstract
Breast cancer is the leading cause of women's deaths and associated comorbidities. The advanced and targeted strategies against breast cancer have gained considerable attention due to their potential enhanced therapeutic efficacy over conventional therapies. In this context, phototherapies like photodynamic therapy (PDT) and photothermal therapy (PTT) have shown promise as an effective and alternative strategy due to reduced side effects, noninvasiveness, and spatiotemporal specificity. With the advent of nanotechnology, several types of nanomaterials that have shown excellent prospects in increasing the efficacy of photo therapies have been exploited in cancer treatment. In recent years, 2D nanomaterials have stood out promising because of their unique ultrathin planar structure, chemical, physical, tunable characteristics, and corresponding remarkable physiochemical/biological properties. In this review, the potential and the current status of several types of 2D nanomaterials such as graphene-based nanomaterials, Mxenes, Black phosphorous, and Transition Metal Dichalcogenides for photo/thermo and combination-based imaging and therapy of breast cancer have been discussed. The current challenges and prospects in terms of translational potential in future clinical oncology are highlighted.
Collapse
Affiliation(s)
- Arpana Parihar
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462020, India
| | - Kritika Gaur
- Central Sheep and wool research institute, ICAR- Indian Council of Agricultural Research, Avikanagr, Malpura, Rajasthan, 304501, India
| | - Paromita Sarbadhikary
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg, 2028, South Africa
| |
Collapse
|
5
|
Yang X, Li L, Shang G, Zhuo M, Zhu H, Xu S, Zhao J, Hou X, Shi Y. Oral Curcumin through Mesoporous Silica Nanomaterials with Distinct Morphologies: Synthesis, Characterization, Biosafety Evaluation, and Antioxidant Activity In Vivo. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27216-27227. [PMID: 39694634 DOI: 10.1021/acs.langmuir.4c02871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Antioxidant play a crucial role in the prevention and treatment of diseases associated with oxidative stress. Curcumin (CUR), as a natural antioxidant, exhibits numerous therapeutic properties, including antioxidant, anti-inflammatory, antibacterial, and antitumor activities. However, its limited bioavailability and poor water solubility hinder its application as an effective antioxidant. In this study, a series of mesoporous silica nanomaterials with distinct morphologies, i.e., mesoporous silica nanoparticles (MSN) and mesoporous silica nanorods (MSR) were synthesized by a template-sediment-etching method. CUR was selected as a model drug and encapsulated into these nanomaterials to improve its bioavailability in vivo. The morphology and size distribution of MSN and MSR were determined through transmission electron microscopy (TEM) imaging and Zetasizer analysis. Fourier transform infrared spectroscopy (FTIR) spectra confirmed the successful encapsulation of CUR within these nanomaterials. Furthermore, these CUR-loaded silica nanomaterials, denoted as CUR@MSN and CUR@MSR, exhibited excellent DPPH and ABTS free radical scavenging activity in vitro. Furthermore, CUR@MSN and CUR@MSR also exhibited obvious in vivo antioxidant activity. This study opens up new avenues for the development of enhanced antioxidants through the utilization of mesoporous silica nanomaterials.
Collapse
Affiliation(s)
- Xue Yang
- College of pharmacy, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Lu Li
- College of pharmacy, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Guoshuo Shang
- College of pharmacy, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Meng Zhuo
- College of pharmacy, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Huiqing Zhu
- College of pharmacy, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Suyue Xu
- College of pharmacy, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Jingya Zhao
- College of pharmacy, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Xueyan Hou
- College of pharmacy, Xinxiang Medical University, Xinxiang 453003, PR China
- Pingyuan Laboratory, Xinxiang, Henan 453007, PR China
| | - Yongli Shi
- College of pharmacy, Xinxiang Medical University, Xinxiang 453003, PR China
| |
Collapse
|
6
|
Zhang J, Liu Z, Zhang Z, Yang H, Wang H, Yang Z, Xu Y, Li S, Yang D. Recent Advances in Silica-Based Nanomaterials for Enhanced Tumor Imaging and Therapy. ACS APPLIED BIO MATERIALS 2024; 7:7133-7169. [PMID: 39495482 DOI: 10.1021/acsabm.4c01318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Cancer remains a formidable challenge, inflicting profound physical, psychological, and financial burdens on patients. In this context, silica-based nanomaterials have garnered significant attention for their potential in tumor imaging and therapy owing to their exceptional properties, such as biocompatibility, customizable porosity, and versatile functionalization capabilities. This review meticulously examines the latest advancements in the application of silica-based nanomaterials for tumor imaging and therapy. It underscores their potential in enhancing various cancer imaging modalities, including fluorescence imaging, magnetic resonance imaging, computed tomography, positron emission tomography, ultrasound imaging, and multimodal imaging approaches. Moreover, the review delves into their therapeutic efficacy in chemotherapy, radiotherapy, phototherapy, immunotherapy, gas therapy, sonodynamic therapy, chemodynamic therapy, starvation therapy, and gene therapy. Critical evaluations of the biosafety profiles and degradation pathways of these nanomaterials within biological environments are also presented. By discussing the current challenges and prospects, this review aims to provide a nuanced perspective on the clinical translation of silica-based nanomaterials, thereby highlighting their promise in revolutionizing cancer diagnostics, enabling real-time monitoring of therapeutic responses, and advancing personalized medicine.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Zilu Liu
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Zhijing Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Hui Yang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Hui Wang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Zhenlu Yang
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550000, China
| | - Yunjian Xu
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271000, China
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Shengke Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
7
|
Akbarian M, Chen IN, Lu PH, Do QT, Tzeng SF, Chou HH, Chen SH. Chaperone/Polymer Complexation of Protein-Based Fluorescent Nanoclusters against Silica Encapsulation-Induced Physicochemical Stresses. Biomacromolecules 2024; 25:6515-6525. [PMID: 39289809 PMCID: PMC11480988 DOI: 10.1021/acs.biomac.4c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Silica encapsulation under ambient conditions is commonly used to shield protein-based nanosystems from chemical stress. However, encapsulation-induced photo- and structural instabilities at elevated temperatures have been overlooked. Using bovine serum albumin-capped fluorescent gold nanoclusters (BSA-AuNCs) as a model, we demonstrated that chaperone/polymer layer-by-layer complexation can stabilize the template to resist encapsulation-induced fragmentation/reorganization and emission increases at 37 °C or higher temperatures. We first wrapped BSA-AuNCs with α-crystallin chaperones (α-Crys) to gain the highest thermal stability at a 1:50 molar ratio and then enfolded BSA-AuNC/α-Crys with thermoresponsive poly-N-isopropylacrylamide (PNIPAM) at 60 °C to shield silica interaction and increase the chaperone-client protein accessibility. The resulting BSA-AuNC/α-Crys/PNIPAM (BαP) was encapsulated by a sol-gel process to yield BαP-Si (∼80 ± 4.5 nm), which exhibited excellent structural integrity and photostability against chemical and thermal stresses. Moreover, targeted BαP-Si demonstrated prolonged fluorescence stability for cancer cell imaging. This template stabilization strategy for silica encapsulation is biocompatible and applicable to other protein-based nanosystems.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Department
of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan
- Marquette
University School of Dentistry, Milwaukee, Wisconsin 53233, United States
| | - I.-Ni Chen
- Department
of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan
| | - Pei-Hsuan Lu
- Department
of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan
| | - Quynh-Trang Do
- Department
of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan
| | - Shun-Fen Tzeng
- Department
of Life Science, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ho-Hsuan Chou
- Department
of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan
| | - Shu-Hui Chen
- Department
of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
8
|
Truong DH, Tran PTT, Tran TH. Nanoparticles as carriers of photosensitizers to improve photodynamic therapy in cancer. Pharm Dev Technol 2024; 29:221-235. [PMID: 38407140 DOI: 10.1080/10837450.2024.2322570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Photodynamic therapy (PDT) has emerged as a promising non invasive therapeutic approach for cancer treatment, offering unique advantages over conventional treatments. The combination of light activation and photosensitizing agents allows for targeted and localized destruction of cancer cells, reducing damage to surrounding healthy tissues. In recent years, the integration of nanoparticles with PDT has garnered significant attention due to their potential to enhance therapeutic outcomes. This review article aims to provide a comprehensive overview of the current state-of-the-art in utilizing nanoparticles for photodynamic therapy in cancer treatment. We summarized various nanoparticle-based approaches, their properties, and their implications in optimizing PDT efficacy, and discussed challenges and prospects in the field.
Collapse
Affiliation(s)
| | - Phuong Thi Thu Tran
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Hanoi, Vietnam
| |
Collapse
|
9
|
Qiu C, Zhang JZ, Wu B, Xu CC, Pang HH, Tu QC, Lu YQ, Guo QY, Xia F, Wang JG. Advanced application of nanotechnology in active constituents of Traditional Chinese Medicines. J Nanobiotechnology 2023; 21:456. [PMID: 38017573 PMCID: PMC10685519 DOI: 10.1186/s12951-023-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023] Open
Abstract
Traditional Chinese Medicines (TCMs) have been used for centuries for the treatment and management of various diseases. However, their effective delivery to targeted sites may be a major challenge due to their poor water solubility, low bioavailability, and potential toxicity. Nanocarriers, such as liposomes, polymeric nanoparticles, inorganic nanoparticles and organic/inorganic nanohybrids based on active constituents from TCMs have been extensively studied as a promising strategy to improve the delivery of active constituents from TCMs to achieve a higher therapeutic effect with fewer side effects compared to conventional formulations. This review summarizes the recent advances in nanocarrier-based delivery systems for various types of active constituents of TCMs, including terpenoids, polyphenols, alkaloids, flavonoids, and quinones, from different natural sources. This review covers the design and preparation of nanocarriers, their characterization, and in vitro/vivo evaluations. Additionally, this review highlights the challenges and opportunities in the field and suggests future directions for research. Nanocarrier-based delivery systems have shown great potential in improving the therapeutic efficacy of TCMs, and this review may serve as a comprehensive resource to researchers in this field.
Collapse
Affiliation(s)
- Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Zhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bo Wu
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing, 100037, China
| | - Cheng Chao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huan Huan Pang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qing Chao Tu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Qian Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiu Yan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ji Gang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
10
|
Xu B, Li S, Shi R, Liu H. Multifunctional mesoporous silica nanoparticles for biomedical applications. Signal Transduct Target Ther 2023; 8:435. [PMID: 37996406 PMCID: PMC10667354 DOI: 10.1038/s41392-023-01654-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 11/25/2023] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are recognized as a prime example of nanotechnology applied in the biomedical field, due to their easily tunable structure and composition, diverse surface functionalization properties, and excellent biocompatibility. Over the past two decades, researchers have developed a wide variety of MSNs-based nanoplatforms through careful design and controlled preparation techniques, demonstrating their adaptability to various biomedical application scenarios. With the continuous breakthroughs of MSNs in the fields of biosensing, disease diagnosis and treatment, tissue engineering, etc., MSNs are gradually moving from basic research to clinical trials. In this review, we provide a detailed summary of MSNs in the biomedical field, beginning with a comprehensive overview of their development history. We then discuss the types of MSNs-based nanostructured architectures, as well as the classification of MSNs-based nanocomposites according to the elements existed in various inorganic functional components. Subsequently, we summarize the primary purposes of surface-functionalized modifications of MSNs. In the following, we discuss the biomedical applications of MSNs, and highlight the MSNs-based targeted therapeutic modalities currently developed. Given the importance of clinical translation, we also summarize the progress of MSNs in clinical trials. Finally, we take a perspective on the future direction and remaining challenges of MSNs in the biomedical field.
Collapse
Affiliation(s)
- Bolong Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Shanshan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Rui Shi
- National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, 100035, Beijing, China.
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China.
| |
Collapse
|
11
|
Wu S, Zhang Q, Zhao Q, Jiang Y, Qu X, Zhou Y, Zhao T, Cang F, Li Y. Cobalt-doped hollow polydopamine for oxygen generation and GSH consumption enhanced chemo-PTT combined cancer therapy. BIOMATERIALS ADVANCES 2023; 154:213593. [PMID: 37657278 DOI: 10.1016/j.bioadv.2023.213593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023]
Abstract
Nanotechnology has revolutionized the field of therapeutics by introducing a plethora of nanomaterials capable of enhancing traditional drug efficacy or paving the way for innovative treatment methods. Within this domain, we propose a novel Cobalt-doped hollow polydopamine nanosphere system. This system, incorporating Doxorubicin loading and hyaluronic acid (HA) surface coating (CoHPDA@DOX-HA), is designed for combined tumor therapy. The overarching aim is to diminish the administration dosage, mitigate the cytotoxic side effects of chemotherapy drugs, augment chemosensitivity within neoplastic tissues, and attain superior results in tumor treatment via combined therapeutic strategies. The targeted molecule, hyaluronic acid (HA), amplifies the biocompatibility of CoHPDA@DOX-HA throughout circulation and fosters endocytosis of the nanoparticle system within cancer cells. This nanosphere system possesses pH sensitivity properties, allowing for a meticulous drug release within the acidic microenvironment of tumor cells. Concurrently, Polydopamine (PDA) facilitates proficient photothermal therapy upon exposure to 808 nm laser irradiation. This process further amplifies the Glutathione (GSH) depletion, and when coupled with the oxygen production capabilities of the Cobalt-doped hollow PDA, significantly enhances the chemo-photothermal therapeutic efficiency. Findings from the treatment of tumor-bearing mice substantiate that even at dosages equivalent to a singular DOX administration, the CoHPDA@DOX-HA can provide efficacious synergistic therapy. Therefore, it is anticipated that multifunctional nanomaterials with Photoacoustic Tomography (PAT) imaging capabilities, targeted delivery, and a controlled collaborative therapeutic framework may serve as promising alternatives for accurate diagnostics and efficacious treatment strategies.
Collapse
Affiliation(s)
- Shilong Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China
| | - Qin Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Qiyao Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Yu Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China
| | - Xiaomeng Qu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Yifan Zhou
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China
| | - Tingting Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China
| | - Feng Cang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China
| | - Yanyan Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China.
| |
Collapse
|
12
|
Ma S, Xu W, Fei Y, Li D, Jia X, Wang J, Wang E. Mn 2+ /Ir 3+ -Doped and CaCO 3 -Covered Prussian Blue Nanoparticles with Indocyanine Green Encapsulation for Tumor Microenvironment Modulation and Image-Guided Synergistic Cancer Therapy. Adv Healthc Mater 2023; 12:e2301413. [PMID: 37657182 DOI: 10.1002/adhm.202301413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/20/2023] [Indexed: 09/03/2023]
Abstract
The development of smart theranostic nanoplatforms has gained great interest in effective cancer treatment against the complex tumor microenvironment (TME), including weak acidity, hypoxia, and glutathione (GSH) overexpression. Herein, a TME-responsive nanoplatform named PMICApt /ICG, based on PB:Mn&Ir@CaCO3 Aptamer /ICG, is designed for the competent synergistic photothermal therapy and photodynamic therapy (PDT) under the guidance of photothermal and magnetic resonance imaging. The nanoplatform's aptamer modification targeting the transferrin receptor and the epithelial cell adhesion molecule on breast cancer cells, and the acid degradable CaCO3 shell allow for effective tumor accumulation and TME-responsive payload release in situ. The nanoplatform also exhibits excellent PDT properties due to its ability to generate O2 and consume antioxidant GSH in tumors. Additionally, the synergistic therapy is achieved by a single wavelength of near-infrared laser. RNA sequencing is performed to identify differentially expressed genes, which show that the expressions of proliferation and migration-associated genes are inhibited, while the apoptosis and immune response gene expressions are upregulated after the synergistic treatments. This multifunctional nanoplatform that responds to the TME to realize the on-demand payload release and enhance PDT induced by TME modulation holds great promise for clinical applications in tumor therapy.
Collapse
Affiliation(s)
- Shuaining Ma
- College of Physics, Jilin University, Changchun, Jilin, 130012, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Key Laboratory of Polymer Ecomaterials (W. Xu), Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Weiguo Xu
- State Key Laboratory of Electroanalytical Chemistry, Key Laboratory of Polymer Ecomaterials (W. Xu), Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Yunwei Fei
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Dan Li
- State Key Laboratory of Electroanalytical Chemistry, Key Laboratory of Polymer Ecomaterials (W. Xu), Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Xiuna Jia
- State Key Laboratory of Electroanalytical Chemistry, Key Laboratory of Polymer Ecomaterials (W. Xu), Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Jin Wang
- Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400, USA
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Key Laboratory of Polymer Ecomaterials (W. Xu), Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| |
Collapse
|
13
|
Xia L, Chen J, Xie Y, Zhang S, Xia W, Feng W, Chen Y. Photo-/piezo-activated ultrathin molybdenum disulfide nanomedicine for synergistic tumor therapy. J Mater Chem B 2023; 11:2895-2903. [PMID: 36919643 DOI: 10.1039/d3tb00209h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Molybdenum disulfide (MoS2), as a transition metal dichalcogenide, has attracted tremendous attention owing to its remarkable electronic, physical, and chemical properties. In this study, based on the energy-converting nanomedicine, we report multifunctional two-dimensional (2D) MoS2 nanosheets with inherent plasmonic property and piezocatalytic activity for imaging-guided synergistic tumor therapy. MoS2 nanosheets display strong plasmon resonances in the near-infrared (NIR) region, especially in the second NIR biological window, possessing a notable light energy to heat effect under 1064 nm laser irradiation, which not only serves as a robust photothermal agent for cancer cell ablation but also acts as a contrast-enhanced agent for thermal imaging and photoacoustic imaging. Meanwhile, MoS2 nanosheets feature a remarkable piezotronic effect, exhibiting mechanical vibration energy to electricity under the stimulation of ultrasound-mediated microscopic pressure for reactive oxygen species generation to further kill cancer cells. The new function for old materials may open up the in-depth exploration of MoS2-based functional biomaterials in the future clinical application of imaging-guided photothermal and piezocatalytic synergetic treatment.
Collapse
Affiliation(s)
- Lili Xia
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China.
| | - Junjie Chen
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China.
| | - Shan Zhang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Weiwei Xia
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China. .,Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China. .,School of Medicine, Shanghai University, Shanghai, 200444, P. R. China. .,Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
14
|
Ding Y, Pan Q, Gao W, Pu Y, Luo K, He B. Reactive oxygen species-upregulating nanomedicines towards enhanced cancer therapy. Biomater Sci 2023; 11:1182-1214. [PMID: 36606593 DOI: 10.1039/d2bm01833k] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS) play a crucial role in physiological and pathological processes, emerging as a therapeutic target in cancer. Owing to the high concentration of ROS in solid tumor tissues, ROS-based treatments, such as photodynamic therapy and chemodynamic therapy, and ROS-responsive drug delivery systems have been widely explored to powerfully and specifically suppress tumors. However, their anticancer efficacy is still hampered by the heterogeneous ROS levels, and thus comprehensively upregulating the ROS levels in tumor tissues can ensure an enhanced therapeutic effect, which can further sensitize and/or synergize with other therapies to inhibit tumor growth and metastasis. Herein, we review the recently emerging drug delivery strategies and technologies for increasing the H2O2, ˙OH, 1O2, and ˙O2- concentrations in cancer cells, including the efficient delivery of natural enzymes, nanozymes, small molecular biological molecules, and nanoscale Fenton-reagents and semiconductors and neutralization of intracellular antioxidant substances and localized input of mechanical and electromagnetic waves (such as ultrasound, near infrared light, microwaves, and X-rays). The applications of these ROS-upregulating nanosystems in enhancing and synergizing cancer therapies including chemotherapy, chemodynamic therapy, phototherapy, and immunotherapy are surveyed. In addition, we discuss the challenges of ROS-upregulating systems and the prospects for future studies.
Collapse
Affiliation(s)
- Yuanyuan Ding
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
15
|
Zhang G, Guo M, Ma H, Wang J, Zhang XD. Catalytic nanotechnology of X-ray photodynamics for cancer treatments. Biomater Sci 2023; 11:1153-1181. [PMID: 36602259 DOI: 10.1039/d2bm01698b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photodynamic therapy (PDT) has been applied in cancer treatment because of its high selectivity, low toxicity, and non-invasiveness. However, the limited penetration depth of the light still hampers from reaching deep-seated tumors. Considering the penetrating ability of high-energy radiotherapy, X-ray-induced photodynamic therapy (X-PDT) has evolved as an alternative to overcome tissue blocks. As the basic principle of X-PDT, X-rays stimulate the nanoparticles to emit scintillating or persistent luminescence and further activate the photosensitizers to generate reactive oxygen species (ROS), which would cause a series of molecular and cellular damages, immune response, and eventually break down the tumor tissue. In recent years, catalytic nanosystems with unique structures and functions have emerged that can enhance X-PDT therapeutic effects via an immune response. The anti-cancer effect of X-PDT is closely related to the following factors: energy conversion efficiency of the material, the radiation dose of X-rays, quantum yield of the material, tumor resistance, and biocompatibility. Based on the latest research in this field and the classical theories of nanoscience, this paper systematically elucidates the current development of the X-PDT and related immunotherapy, and highlights its broad prospects in medical applications, discussing the connection between fundamental science and clinical translation.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China.
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China.
| | - Huizhen Ma
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China.
| | - Junying Wang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China. .,Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
16
|
Recent advances in multi-configurable nanomaterials for improved chemodynamic therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Nanoarchitectured assembly and surface of two-dimensional (2D) transition metal dichalcogenides (TMDCs) for cancer therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Zhou Z, Li X, Hu T, Xue B, Chen H, Ma L, Liang R, Tan C. Molybdenum‐Based Nanomaterials for Photothermal Cancer Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Zhan Zhou
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P.R. China
| | - Xiangqian Li
- School of Chemical and Environmental Engineering (Key Lab of Ecological Restoration in Hilly Areas) Pingdingshan University Pingdingshan 467000 P.R. China
| | - Tingting Hu
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P.R. China
| | - Baoli Xue
- Luoyang Key Laboratory of Organic Functional Molecules College of Food and Drug Luoyang Normal University Luoyang 471934 P.R. China
- College of Biological and Pharmaceutical Sciences China Three Gorges University Yichang 443002 P.R. China
| | - Hong Chen
- Luoyang Key Laboratory of Organic Functional Molecules College of Food and Drug Luoyang Normal University Luoyang 471934 P.R. China
- College of Biological and Pharmaceutical Sciences China Three Gorges University Yichang 443002 P.R. China
| | - Lufang Ma
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P.R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P.R. China
| | - Chaoliang Tan
- Center of Super-Diamond and Advanced Films (COSDAF) Department of Chemistry City University of Hong Kong Kowloon Hong Kong SAR 999077 P.R. China
- Department of Electrical Engineering City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR 999077 P.R. China
- Shenzhen Research Institute City University of Hong Kong Shenzhen 518057 P.R. China
| |
Collapse
|
19
|
|
20
|
Jia X, Liu D, Yu C, Niu N, Li D, Wang J, Wang E. Tumor Microenvironment Stimuli-Responsive Single-NIR-Laser Activated Synergistic Phototherapy for Hypoxic Cancer by Perylene Functionalized Dual-Targeted Upconversion Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203292. [PMID: 36031411 PMCID: PMC9596832 DOI: 10.1002/advs.202203292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Although synergistic therapy has shown great promise for effective treatment of cancer, the unsatisfactory therapeutic efficacy of photothermal therapy/photodynamic therapy is resulted from the absorption wavelength mismatch, tumor hypoxia, photosensitizer leakage, and inability in intelligent on-demand activation. Herein, based on the characteristics of tumor microenvironment (TME), such as the slight acidity, hypoxia, and overexpression of H2 O2 , a TME stimuli-responsive and dual-targeted composite nanoplatform (UCTTD-PC4) is strategically explored by coating a tannic acid (TA)/Fe3+ nanofilm with good biocompatibility onto the upconversion nanoparticles in an ultrafast, green and simple way. The pH-responsive feature of UCTTD-PC4 remains stable during the blood circulation, while rapidly releases Fe3+ in the slightly acidic tumor cells, which results in catalyzing H2 O2 to produce O2 and overcoming the tumor hypoxia. Notably, the emission spectrum of the UCTTD perfectly matches the absorption spectrum of the photosensitizer (perylene probe (PC4)) to achieve the enhanced therapeutic effect triggered by a single laser. This study provides a new strategy for the rational design and development of the safe and efficient single near-infrared laser-triggered synergistic treatment platform for hypoxic cancer under the guidance of multimodal imaging.
Collapse
Affiliation(s)
- Xiuna Jia
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Deming Liu
- State Key Laboratory of Luminescence and ApplicationsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchunJilin130033P. R. China
| | - Cong Yu
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Niu Niu
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Dan Li
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Jin Wang
- Department of Chemistry and PhysicsState University of New York at Stony BrookNew York11794‐3400USA
| | - Erkang Wang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- College of ChemistryJilin UniversityChangchunJilin130012P. R. China
| |
Collapse
|
21
|
de la Asunción-Nadal V, Franco C, Veciana A, Ning S, Terzopoulou A, Sevim S, Chen XZ, Gong D, Cai J, Wendel-Garcia PD, Jurado-Sánchez B, Escarpa A, Puigmartí-Luis J, Pané S. MoSBOTs: Magnetically Driven Biotemplated MoS 2 -Based Microrobots for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203821. [PMID: 35867042 DOI: 10.1002/smll.202203821] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 06/15/2023]
Abstract
2D layered molybdenum disulfide (MoS2 ) nanomaterials are a promising platform for biomedical applications, particularly due to its high biocompatibility characteristics, mechanical and electrical properties, and flexible functionalization. Additionally, the bandgap of MoS2 can be engineered to absorb light over a wide range of wavelengths, which can then be transformed into local heat for applications in photothermal tissue ablation and regeneration. However, limitations such as poor stability of aqueous dispersions and low accumulation in affected tissues impair the full realization of MoS2 for biomedical applications. To overcome such challenges, herein, multifunctional MoS2 -based magnetic helical microrobots (MoSBOTs) using cyanobacterium Spirulina platensis are proposed as biotemplate for therapeutic and biorecognition applications. The cytocompatible microrobots combine remote magnetic navigation with MoS2 photothermal activity under near-infrared irradiation. The resulting photoabsorbent features of the MoSBOTs are exploited for targeted photothermal ablation of cancer cells and on-the-fly biorecognition in minimally invasive oncotherapy applications. The proposed multi-therapeutic MoSBOTs hold considerable potential for a myriad of cancer treatment and diagnostic-related applications, circumventing current challenges of ablative procedures.
Collapse
Affiliation(s)
- Victor de la Asunción-Nadal
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Universidad de Alcalá, Alcalá de Henares, Madrid, E-28871, Spain
| | - Carlos Franco
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | - Andrea Veciana
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | - Shen Ning
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | - Anastasia Terzopoulou
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | - Semih Sevim
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | - Xiang-Zhong Chen
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | - De Gong
- School of Mechanical Engineering and Automation Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Jun Cai
- School of Mechanical Engineering and Automation Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Pedro D Wendel-Garcia
- Institute of Intensive Care Medicine, University Hospital of Zurich, Rämistrasse 100, Zurich, CH 8091, Switzerland
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Universidad de Alcalá, Alcalá de Henares, Madrid, E-28871, Spain
- Chemical Research Institute "Andres M. Del Rio", Universidad de Alcalá, Alcalá de Henares, Madrid, E-28871, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Universidad de Alcalá, Alcalá de Henares, Madrid, E-28871, Spain
- Chemical Research Institute "Andres M. Del Rio", Universidad de Alcalá, Alcalá de Henares, Madrid, E-28871, Spain
| | - Josep Puigmartí-Luis
- Departament de Ciència dels Materials i Química Física Institut de Química Teòrica i Computacional, Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Salvador Pané
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| |
Collapse
|
22
|
Koohi Moftakhari Esfahani M, Alavi SE, Cabot PJ, Islam N, Izake EL. Application of Mesoporous Silica Nanoparticles in Cancer Therapy and Delivery of Repurposed Anthelmintics for Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14081579. [PMID: 36015204 PMCID: PMC9415106 DOI: 10.3390/pharmaceutics14081579] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
This review focuses on the biomedical application of mesoporous silica nanoparticles (MSNs), mainly focusing on the therapeutic application of MSNs for cancer treatment and specifically on overcoming the challenges of currently available anthelmintics (e.g., low water solubility) as repurposed drugs for cancer treatment. MSNs, due to their promising features, such as tunable pore size and volume, ability to control the drug release, and ability to convert the crystalline state of drugs to an amorphous state, are appropriate carriers for drug delivery with the improved solubility of hydrophobic drugs. The biomedical applications of MSNs can be further improved by the development of MSN-based multimodal anticancer therapeutics (e.g., photosensitizer-, photothermal-, and chemotherapeutics-modified MSNs) and chemical modifications, such as poly ethyleneglycol (PEG)ylation. In this review, various applications of MSNs (photodynamic and sonodynamic therapies, chemotherapy, radiation therapy, gene therapy, immunotherapy) and, in particular, as the carrier of anthelmintics for cancer therapy have been discussed. Additionally, the issues related to the safety of these nanoparticles have been deeply discussed. According to the findings of this literature review, the applications of MSN nanosystems for cancer therapy are a promising approach to improving the efficacy of the diagnostic and chemotherapeutic agents. Moreover, the MSN systems seem to be an efficient strategy to further help to decrease treatment costs by reducing the drug dose.
Collapse
Affiliation(s)
- Maedeh Koohi Moftakhari Esfahani
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia;
| | - Peter J. Cabot
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia;
| | - Nazrul Islam
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia;
- Centre for Immunology and Infection Control (CIIC), Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Emad L. Izake
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Correspondence: ; Tel.: +61-7-3138-2501
| |
Collapse
|
23
|
Lu J, Mao Y, Feng S, Li X, Gao Y, Zhao Q, Wang S. Biomimetic smart mesoporous carbon nanozyme as a dual-GSH depletion agent and O 2 generator for enhanced photodynamic therapy. Acta Biomater 2022; 148:310-322. [PMID: 35675892 DOI: 10.1016/j.actbio.2022.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/07/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023]
Abstract
Photodynamic therapy (PDT) has been thriving in the theranostics of cancer in recent years. However, due to a series of problems such as high concentration of GSH and insufficient O2 partial pressure in the tumor micro-environment, it is difficult to achieve the desired therapeutic effects with single PDT. Mesoporous carbon (MC-COOH) has been widely used in photothermal therapy (PTT) due to its high photothermal conversion efficiency and drug loading. In addition, we have discovered that MC-COOH owned high-efficiency glutathione oxidase-like activity for intracellular lasting GSH consumption. Hence, a smart mesoporous carbon nanozyme (CCM) was designed as a dual-GSH depletion agent and O2 generator combined with PTT to overcome the dilemma of PDT. MnO2-doped carbon nanozyme (MC-Mn) was developed as the photothermal vehicles for the efficient loading of photosensitizer (Ce6). Subsequently, 4T1 membrane-coated nanozyme (Ce6/CCM) was constructed to achieve homologous targeting capability. The carbon nanozyme owned the sustained dual-GSH depletion function through MC-COOH and MnO2, which greatly destroyed the antioxidant system of the tumor. Meanwhile, MnO2 could produce affluent O2 in the presence of H2O2, thereby alleviating the hypoxic state of tumor tissues and further promoting the generation of ROS. In addition, the novel carbon nanozyme was designed as photoacoustic imaging (PAI) agent and magnetic resonance imaging (MRI) contrast for real-time imaging during tumor therapy. In summary, this work showed that the biomimetic carbon nanozyme could be used as dual-GSH depletion agent and O2 generator for dual-mode imaging-guided PTT-PDT. STATEMENT OF SIGNIFICANCE: - MC-COOH with highly efficient GSH-OXD activity was first discovered and applied in PDT. - MnO2 acted as an O2 generator and GSH depletion agent to enhance PDT. - The tumor-targeting ability of the nanozyme was improved by cell membrane camouflage. - CCM nanozyme possesses both PAI and MRI dual-mode imaging modalities to guide PDT/PTT.
Collapse
|
24
|
Peng Q, Qian Z, Gao H, Zhang K. Recent Advances in Transition-Metal Based Nanomaterials for Noninvasive Oncology Thermal Ablation and Imaging Diagnosis. Front Chem 2022; 10:899321. [PMID: 35494651 PMCID: PMC9047733 DOI: 10.3389/fchem.2022.899321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 12/26/2022] Open
Abstract
With the developments of nanobiotechnology and nanomedicine, non-invasive thermal ablation with fewer side effects than traditional tumor treatment methods has received extensive attention in tumor treatment. Non-invasive thermal ablation has the advantages of non-invasiveness and fewer side effects compared with traditional treatment methods. However, the clinical efficiency and biological safety are low, which limits their clinical application. Transition-metal based nanomaterials as contrast agents have aroused increasing interest due to its unique optical properties, low toxicity, and high potentials in tumor diagnosis. Transition-metal based nanomaterials have high conversion efficiency of converting light energy into heat energy, good near-infrared absorption characteristics, which also can targetedly deliver those loaded drugs to tumor tissue, thereby improving the therapeutic effect and reducing the damage to the surrounding normal tissues and organs. This article mainly reviews the synthesis of transition-metal based nanomaterials in recent years, and discussed their applications in tumor thermal ablation and diagnosis, hopefully guiding the development of new transition metal-based nanomaterials in enhancing thermal ablation.
Collapse
Affiliation(s)
- Qiuxia Peng
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Zhangbo Qian
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Huali Gao
- Orthopedic Surgery Department, Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Huali Gao, ; Kun Zhang,
| | - Kun Zhang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, China
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People’s Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Huali Gao, ; Kun Zhang,
| |
Collapse
|
25
|
Yu XT, Sui SY, He YX, Yu CH, Peng Q. Nanomaterials-based photosensitizers and delivery systems for photodynamic cancer therapy. BIOMATERIALS ADVANCES 2022; 135:212725. [PMID: 35929205 DOI: 10.1016/j.bioadv.2022.212725] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
Abstract
The increasing cancer morbidity and mortality requires the development of high-efficiency and low-toxicity anticancer approaches. In recent years, photodynamic therapy (PDT) has attracted much attention in cancer therapy due to its non-invasive features and low side effects. Photosensitizer (PS) is one of the key factors of PDT, and its successful delivery largely determines the outcome of PDT. Although a few PS molecules have been approved for clinical use, PDT is still limited by the low stability and poor tumor targeting capacity of PSs. Various nanomaterial systems have shown great potentials in improving PDT, such as metal nanoparticles, graphene-based nanomaterials, liposomes, ROS-sensitive nanocarriers and supramolecular nanomaterials. The small molecular PSs can be loaded in functional nanomaterials to enhance the PS stability and tumor targeted delivery, and some functionalized nanomaterials themselves can be directly used as PSs. Herein, we aim to provide a comprehensive understanding of PDT, and summarize the recent progress of nanomaterials-based PSs and delivery systems in anticancer PDT. In addition, the concerns of nanomaterials-based PDT including low tumor targeting capacity, limited light penetration, hypoxia and nonspecific protein corona formation are discussed. The possible solutions to these concerns are also discussed.
Collapse
Affiliation(s)
- Xiao-Tong Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shang-Yan Sui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu-Xuan He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chen-Hao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
26
|
Wen M, Yu N, Wu S, Huang M, Qiu P, Ren Q, Zhu M, Chen Z. On-demand assembly of polymeric nanoparticles for longer-blood-circulation and disassembly in tumor for boosting sonodynamic therapy. Bioact Mater 2022; 18:242-253. [PMID: 35387175 PMCID: PMC8961299 DOI: 10.1016/j.bioactmat.2022.03.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/18/2022] [Accepted: 03/06/2022] [Indexed: 12/14/2022] Open
Abstract
Sonodynamic therapy (SDT) is one of the promising strategies for tumor therapy, but its application is usually hindered by fast clearance in blood-circulation, abnormal tumor microenvironment, and inefficient generation of reactive oxygen species. To solve these problems, we proposed an on-demand assembly-disassembly strategy, where the assembly is favorable for longer-blood-circulation and then the disassembly in tumor is favorable for boosting SDT. Hematoporphyrin monomethyl ether (HMME) as the model of organic sonosensitizers were conjugated with hyaluronic acid (HA). Then HA-HMME was mixed with catalase (CAT) and assembled into polymeric nanoparticles (CAT@HA-HMME NPs) with size of ∼80 nm. CAT@HA-HMME NPs exhibit good biocompatibility and a longer blood half-time (t1/2 = 4.17 h) which is obviously longer than that (∼0.82 h) of HMME molecules. After HA receptor-mediated endocytosis of cancer cells, CAT@HA-HMME NPs can be cleaved by endogenous hyaluronidase, resulting in the on-demand disassembly in tumor to release HA-HMME molecules and CAT. The CAT catalyzes the endogenous H2O2 into O2 to relieve the hypoxic microenvironment, and the released HA-HMME exhibits a higher ROS generation ability, greatly boosting SDT for the inhibition of tumor growth. Therefore, the on-demand assembly-disassembly strategy may provide some insight in the design and development of nanoagents for tumor therapy. On-demand assembly from molecules to nanoparticles for longer-blood-circulation. On-demand disassembly in presence of hyaluronidase (in tumor) for boosting sonodynamic effects. Efficient damage on cancer cells in-vitro and Significant inhibition of the tumor growth due to the enhanced SDT.
Collapse
|
27
|
Peng S, Zhang F, Huang B, Wang J, Zhang L. Mesoporous Silica Nanoprodrug Encapsulated with Near-Infrared Absorption Dye for Photothermal Therapy Combined with Chemotherapy. ACS APPLIED BIO MATERIALS 2021; 4:8225-8235. [PMID: 35005934 DOI: 10.1021/acsabm.1c00751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Based on the tumor microenvironment with weak acidic characteristics, a nano-drug delivery system that achieves controlled release of drugs through the pH response has been a popular strategy to improve the effectiveness of tumor therapy and reduce toxic side effects, and combining photothermal therapy (PTT) on this basis can help improve the antitumor effect. In this study, mesoporous silica nanoparticles (MSNs) were surface-modified with polymer poly(PEGMA-co-HEMA) via surface-initiated atom transfer radical polymerization, and a multifunctional nanoplatform MSN@poly(PEGMA-co-HEMA-g-doxorubicin (DOX)/indocyanine green (ICG) was designed for effective photothermal/chemotherapy combination therapy. The anticancer drug DOX was anchored to the polymer on the surface of MSN by reversible covalent bond cis-aconitic anhydride with a drug loading of 10%. Meanwhile, the small-molecule dye was loaded into the pores of MSN, and PTT mediated by near-infrared (NIR) radiation could further kill cancer cells. Under low-pH stimulation, the cis-aconitic anhydride bond breaks and DOX is released, with a 65% increase in cumulative drug release over 50 h compared to that at pH 7.4 (normal physiological environment). The high temperature induced by photothermal conversion accelerated the reversible covalent bond breakage, and the cumulative drug release at pH 5.0 for 3 h at elevated temperature up to 50 °C increased by 24.3% compared with that under normal physiological conditions (T = 37 °C), demonstrating that increasing the temperature can reduce the time required to reach blood drug concentration. In vitro cytotoxicity results revealed that the prodrug delivery system showed stronger cytotoxicity under NIR light irradiation compared with free DOX, with more than 90% of tumor cells killed after 48 h. Therefore, MSN@poly(PEGMA-co-HEMA-g-DOX)/ICG enhanced the synergistic effect of chemotherapy through photothermal action and accelerated reversible chemical bond cleavage, which has great potential in the combined therapy of cancer.
Collapse
Affiliation(s)
- Shiyuan Peng
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Fusheng Zhang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Baihao Huang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Lijuan Zhang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
28
|
Hierarchical dual-responsive cleavable nanosystem for synergetic photodynamic/photothermal therapy against melanoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112524. [PMID: 34857303 DOI: 10.1016/j.msec.2021.112524] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 02/06/2023]
Abstract
Currently, the combining photodynamic therapy (PDT) with photothermal therapy (PTT) modalities based on a single near infrared (NIR) laser irradiation and highly selective internalization still remain a challenge. Herein, a hierarchical dual-responsive cleavable nanosystem for synergetic NIR triggered PDT/PTT is reported. The engineered nanoplatform (Au NRs/Cur/UCNPs@PBE) is designed by loading curcumin (Cur, photosensitizer) on gold nanarods (Au NRs) to build PDT/PTT therapy system, which was encapsulated outside with upconversion nanoparticles (UCNPs) and then modified with phenylboronic double ester (PBE). The pH and ROS-responsive feature made Au NRs/Cur/UCNPs@PBE provide a fundamental structural evolution and improve the specificity and intracellular accumulation to tumors. Au NRs/Cur/UCNPs@PBE exhibited significant PDT and PTT efficiency against two type melanoma cells due to upconversion nanoparticles and Au NRs induced by an 808 nm laser. Notably, the platform can mainly activate apoptosis and partial ferroptosis to achieve the synergistic PDT/PTT, furthermore, the integrated PDT with PTT using Au NRs/Cur/UCNPs@PBE showcased a great antitumor efficacy in vivo superior to the other alone treatment. Our findings highlight that this intelligent nanoagents for synergistic phototherapy facilitate enhanced fighting melanoma and provide a promising strategy for melanoma theranostics.
Collapse
|
29
|
Ding L, Wu Y, Wu M, Zhao Q, Li H, Liu J, Liu X, Zhang X, Zeng Y. Engineered Red Blood Cell Biomimetic Nanovesicle with Oxygen Self-Supply for Near-Infrared-II Fluorescence-Guided Synergetic Chemo-Photodynamic Therapy against Hypoxic Tumors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52435-52449. [PMID: 34705421 DOI: 10.1021/acsami.1c19096] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The low bioavailability of photosensitizers (PSs) and the hypoxia nature of tumors often limit the efficacy of current photodynamic therapy (PDT). Therefore, improving the utilization of three essential components (PS, light, and O2) in tumors will enhance PDT efficacy substantially. Herein, we have developed a red blood cell (RBC) biomimetic theranostic nanovesicle (named SPN-Hb@RBCM) with improved photostability, accumulation of PSs, and oxygen self-supply ability to enhance PDT efficacy upon near-infrared (NIR) laser irradiation. Such a biomimetic nanovesicle was prepared by a red blood cell membrane (RBCM)-camouflaged hemoglobin (Hb)-linked semiconducting polymer nanoparticle (SPN-Hb). The RBCM coating enables the long-term circulation of SPN-Hb due to the membrane-mediated immune evasion, allowing for more effective PS accumulation in tumors. Under 808 nm laser irradiation, the photostable SPN can serve as both a photodynamic and a second-near-infrared-window (NIR-II) fluorescence imaging agent; meanwhile, the conjugated Hb can be used as an oxygen carrier to relieve tumor hypoxia for enhancing PDT efficacy. In addition, Hb can also react with the tumor microenvironment overproduced H2O2 to generate cytotoxic hydroxyl radicals (•OHs) for chemodynamic therapy (CDT), which further achieve synergistic effects for PDT. Thus, this study proposed a promising biomimetic theranostic nanoagent for enhancing tumor oxygenation and NIR-II fluorescence-guided synergetic CDT/PDT against hypoxic tumors.
Collapse
Affiliation(s)
- Lei Ding
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- School of Rare Earths, University of Science and Technology of China, Hefei 230022, P. R. China
| | - Yanni Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Qingfu Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Hongsheng Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- School of Rare Earths, University of Science and Technology of China, Hefei 230022, P. R. China
| | - Xiaolong Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, P. R. China
| |
Collapse
|
30
|
Wang K, Lu J, Li J, Gao Y, Mao Y, Zhao Q, Wang S. Current trends in smart mesoporous silica-based nanovehicles for photoactivated cancer therapy. J Control Release 2021; 339:445-472. [PMID: 34637819 DOI: 10.1016/j.jconrel.2021.10.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
Photoactivated therapeutic strategies (photothermal therapy and photodynamic therapy), due to the adjusted therapeutic area, time and light dosage, have prevailed for the fight against tumors. Currently, the monotherapy with limited treatment effect and undesired side effects is gradually replaced by multimodal and multifunctional nanosystems. Mesoporous silica nanoparticles (MSNs) with unique physicochemical advantages, such as huge specific surface area, controllable pore size and morphology, functionalized modification, satisfying biocompatibility and biodegradability, are considered as promising candidates for multimodal photoactivated cancer therapy. Excitingly, the innovative nanoplatforms based on the mesoporous silica nanoparticles provide more and more effective treatment strategies and display excellent antitumor potential. Given the rapid development of antitumor strategies based on MSNs, this review summarizes the current progress in MSNs-based photoactivated cancer therapy, mainly consists of (1) photothermal therapy-related theranostics; (2) photodynamic therapy-related theranostics; (3) multimodal synergistic therapy, such as chemo-photothermal-photodynamic therapy, phototherapy-immunotherapy and phototherapy-radio therapy. Based on the limited penetration of irradiation light in photoactivated therapy, the challenges faced by deep-seated tumor therapy are fully discussed, and future clinical translation of MSNs-based photoactivated cancer therapy are highlighted.
Collapse
Affiliation(s)
- Kaili Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Junya Lu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Jiali Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Yinlu Gao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| |
Collapse
|
31
|
Wang J, Sui L, Huang J, Miao L, Nie Y, Wang K, Yang Z, Huang Q, Gong X, Nan Y, Ai K. MoS 2-based nanocomposites for cancer diagnosis and therapy. Bioact Mater 2021; 6:4209-4242. [PMID: 33997503 PMCID: PMC8102209 DOI: 10.1016/j.bioactmat.2021.04.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 12/24/2022] Open
Abstract
Molybdenum is a trace dietary element necessary for the survival of humans. Some molybdenum-bearing enzymes are involved in key metabolic activities in the human body (such as xanthine oxidase, aldehyde oxidase and sulfite oxidase). Many molybdenum-based compounds have been widely used in biomedical research. Especially, MoS2-nanomaterials have attracted more attention in cancer diagnosis and treatment recently because of their unique physical and chemical properties. MoS2 can adsorb various biomolecules and drug molecules via covalent or non-covalent interactions because it is easy to modify and possess a high specific surface area, improving its tumor targeting and colloidal stability, as well as accuracy and sensitivity for detecting specific biomarkers. At the same time, in the near-infrared (NIR) window, MoS2 has excellent optical absorption and prominent photothermal conversion efficiency, which can achieve NIR-based phototherapy and NIR-responsive controlled drug-release. Significantly, the modified MoS2-nanocomposite can specifically respond to the tumor microenvironment, leading to drug accumulation in the tumor site increased, reducing its side effects on non-cancerous tissues, and improved therapeutic effect. In this review, we introduced the latest developments of MoS2-nanocomposites in cancer diagnosis and therapy, mainly focusing on biosensors, bioimaging, chemotherapy, phototherapy, microwave hyperthermia, and combination therapy. Furthermore, we also discuss the current challenges and prospects of MoS2-nanocomposites in cancer treatment.
Collapse
Affiliation(s)
- Jianling Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Lihua Sui
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Jia Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Lu Miao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yubing Nie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Kuansong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Zhichun Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Qiong Huang
- Department of Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xue Gong
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Yayun Nan
- Geriatric Medical Center, Ningxia People's Hospital, Yinchuan, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
32
|
Sarbadhikary P, George BP, Abrahamse H. Recent Advances in Photosensitizers as Multifunctional Theranostic Agents for Imaging-Guided Photodynamic Therapy of Cancer. Theranostics 2021; 11:9054-9088. [PMID: 34522227 PMCID: PMC8419035 DOI: 10.7150/thno.62479] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
In recent years tremendous effort has been invested in the field of cancer diagnosis and treatment with an overall goal of improving cancer management, therapeutic outcome, patient survival, and quality of life. Photodynamic Therapy (PDT), which works on the principle of light-induced activation of photosensitizers (PS) leading to Reactive Oxygen Species (ROS) mediated cancer cell killing has received increased attention as a promising alternative to overcome several limitations of conventional cancer therapies. Compared to conventional therapies, PDT offers the advantages of selectivity, minimal invasiveness, localized treatment, and spatio-temporal control which minimizes the overall therapeutic side effects and can be repeated as needed without interfering with other treatments and inducing treatment resistance. Overall PDT efficacy requires proper planning of various parameters like localization and concentration of PS at the tumor site, light dose, oxygen concentration and heterogeneity of the tumor microenvironment, which can be achieved with advanced imaging techniques. Consequently, there has been tremendous interest in the rationale design of PS formulations to exploit their theranostic potential to unleash the imperative contribution of medical imaging in the context of successful PDT outcomes. Further, recent advances in PS formulations as activatable phototheranostic agents have shown promising potential for finely controlled imaging-guided PDT due to their propensity to specifically turning on diagnostic signals simultaneously with photodynamic effects in response to the tumor-specific stimuli. In this review, we have summarized the recent progress in the development of PS-based multifunctional theranostic agents for biomedical applications in multimodal imaging combined with PDT. We also present the role of different imaging modalities; magnetic resonance, optical, nuclear, acoustic, and photoacoustic in improving the pre-and post-PDT effects. We anticipate that the information presented in this review will encourage future development and design of PSs for improved image-guided PDT for cancer treatment.
Collapse
Affiliation(s)
| | - Blassan P. George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | | |
Collapse
|
33
|
Wu M, He S, Hu X, Chen J, Ha E, Ai F, Ji T, Hu J, Ruan S. A Near-Infrared Light Triggered Composite Nanoplatform for Synergetic Therapy and Multimodal Tumor Imaging. Front Chem 2021; 9:695511. [PMID: 34368079 PMCID: PMC8339317 DOI: 10.3389/fchem.2021.695511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
Transition-metal chalcogenide compounds with facile preparation and multifunctional elements act as ideal photothermal agents for cancer theranostics. This work synthesizes Cu7.2S4/5MoS2 composite nanoflowers and investigates the crystal growth mechanism to optimize the synthesis strategy and obtain excellent photothermal therapy agents. Cu7.2S4/5MoS2 exhibits a high photothermal conversion efficiency of 58.7% and acts as a theranostic nanoplatform and demonstrated an effective photothermal–chemodynamic–photodynamic synergetic therapeutic effect in both in vitro and in vivo tests. Moreover, Cu7.2S4/5MoS2 shows strong photoacoustic signal amplitudes and computed tomographic contrast enhancement in vivo. These results suggest a potential application of Cu7.2S4/5MoS2 composite nanoflowers as photo/H2O2-responsive therapeutic agents against tumors.
Collapse
Affiliation(s)
- Mingzhou Wu
- Shenzhen Key Laboratory of Laser Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China.,College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Shuqing He
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Xin Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Jingqin Chen
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Enna Ha
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Fujin Ai
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Tao Ji
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Junqing Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Shuangchen Ruan
- Shenzhen Key Laboratory of Laser Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China.,Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
34
|
Rastegari E, Hsiao YJ, Lai WY, Lai YH, Yang TC, Chen SJ, Huang PI, Chiou SH, Mou CY, Chien Y. An Update on Mesoporous Silica Nanoparticle Applications in Nanomedicine. Pharmaceutics 2021; 13:1067. [PMID: 34371758 PMCID: PMC8309088 DOI: 10.3390/pharmaceutics13071067] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 01/09/2023] Open
Abstract
The efficient and safe delivery of therapeutic drugs, proteins, and nucleic acids are essential for meaningful therapeutic benefits. The field of nanomedicine shows promising implications in the development of therapeutics by delivering diagnostic and therapeutic compounds. Nanomedicine development has led to significant advances in the design and engineering of nanocarrier systems with supra-molecular structures. Smart mesoporous silica nanoparticles (MSNs), with excellent biocompatibility, tunable physicochemical properties, and site-specific functionalization, offer efficient and high loading capacity as well as robust and targeted delivery of a variety of payloads in a controlled fashion. Such unique nanocarriers should have great potential for challenging biomedical applications, such as tissue engineering, bioimaging techniques, stem cell research, and cancer therapies. However, in vivo applications of these nanocarriers should be further validated before clinical translation. To this end, this review begins with a brief introduction of MSNs properties, targeted drug delivery, and controlled release with a particular emphasis on their most recent diagnostic and therapeutic applications.
Collapse
Grants
- MOST 108-2320-B-010 -019 -MY3; MOST 109-2327-B-010-007 Ministry of Science and Technology
- MOHW108-TDU-B-211-133001, MOHW109-TDU-B-211-114001 Ministry of Health and Welfare
- VN109-16 VGH, NTUH Joint Research Program
- VTA107-V1-5-1, VTA108-V1-5-3, VTA109-V1-4-1 VGH, TSGH, NDMC, AS Joint Research Program
- IBMS-CRC109-P04 AS Clinical Research Center
- the "Cancer Progression Research Center, National Yang-Ming University" from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan the "Cancer Progression Research Center, National Yang-Ming University" from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan
- and the Ministry of Education through the SPROUT Project- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) of National Chiao Tung University and, Taiwan. and the Ministry of Education through the SPROUT Project- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) of National Chiao Tung University and, Taiwan.
Collapse
Affiliation(s)
- Elham Rastegari
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Yun-Hsien Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Tien-Chun Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Shih-Jen Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Pin-I Huang
- Department of Oncology, Taipei Veterans General Hospital, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| |
Collapse
|
35
|
Yuan A, Zhang Y, Fang G, Chen W, Zeng X, Zhou H, Cai H, Zhong X. Ultrasmall MoS 2 nanodots-wrapped perfluorohexane nanodroplets for dual-modal imaging and enhanced photothermal therapy. Colloids Surf B Biointerfaces 2021; 205:111880. [PMID: 34116399 DOI: 10.1016/j.colsurfb.2021.111880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 12/30/2022]
Abstract
Development of a multifunctional nanotherapeutic agent with high contrast-enhanced dual-modal imaging and photothermal therapy (PTT) efficacy is of great interest. Combination of ultrasound (US) and computed tomography (CT) imaging offers high spatial resolution images, showing great potential in medical imaging. Herein, the semiconducting perfluorohexane (PFH) nanodroplets, MoS2-PFH-PLLAs, are developed by stabilizing PFH droplets with the coating shell of poly (lactic-co-glycolic acid) (PLLA) and encapsulating the droplets with photoabsorbers of ultrasmall molybdenum disulfide (MoS2) nanodots. Upon near-infrared (NIR) irradiation, the MoS2-PFH-PLLAs can absorb the NIR light and convert it into heat, which not only promotes liquid-to-gas phase transition of PFH but also triggers photothermal heating, resulting in contrast-enhanced US/CT imaging and photothermal killing effect in vitro. Furthermore, the production of microbubbles can serve as the blasting agents to collaboratively enhance PTT efficacy after NIR irradiation. When intravenously injected into tumor-bearing mice, the MoS2-PFH-PLLAs exhibit a dual-modal US/CT imaging-guided synergistically therapeutic efficacy under NIR irradiation, resulting in tumor ablation. These nanotherapeutic agents demonstrate good biocompatibility, highly contrast-enhanced US/CT imaging, and combinational enhanced PTT efficacy.
Collapse
Affiliation(s)
- Anna Yuan
- Department of Ultrasonography, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Yuping Zhang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Guiting Fang
- Department of Ultrasonography, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Weijian Chen
- Department of Ultrasonography, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Xueyi Zeng
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Haibo Zhou
- Institute of Pharmaceutical Analysis and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Huaihong Cai
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.
| | - Xing Zhong
- Department of Ultrasonography, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
36
|
Zhao L, Yang Q, Guo W, Zhang F, Yu K, Yang C, Qu F. Non-stoichiometric cobalt sulfide nanodots enhance photothermal and chemodynamic therapies against solid tumor. J Colloid Interface Sci 2021; 600:390-402. [PMID: 34023700 DOI: 10.1016/j.jcis.2021.05.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/18/2021] [Accepted: 05/10/2021] [Indexed: 01/15/2023]
Abstract
Photodynamic therapy (PDT) mainly relies on reactive oxygen species generated by light- activated photosensitizers and oxygen to kill tumor cells. However, a critical limitation of the current PDT is that it is less effective in solid tumors where the microenvironment is hypoxic, and, therefore, repeated treatment is required. Here, non-stoichiometric Co2.19S4 nanodots (NDs), which can be rapidly degraded to cobalt (Co2+) and sulfur (S2-) ions, were developed to enhance tumor photothermal therapy (PTT) and chemodynamic therapy (CDT) via the capture of copper (Cu2+) ions (starvation therapy) in the hypoxic tumor microenvironment under near-infrared irradiation. Co2.19S4 NDs with excellent photothermal conversion efficiency (ɳ = 52%) can be used for PTT, and the Co2+ ions produced by their degradation can catalyze the endogenous hydrogen peroxide of tumor cells to produce highly toxic hydroxyl radicals to achieve tumor CDT. The mechanism of starvation therapy was explored using western blotting, and the results indicated that blocking the uptake of Cu2+ ions could restrain the growth and proliferation of tumors by inhibiting the BRAF/mitogen-activated extracellular signal regulated kinase (MEK)/extracellular regulated protein kinases (ERK) signaling pathway. Our work highlights the great potential of Co2.19S4 NDs as a theranostic agent for implementing photoacoustic/photothermal imaging and starvation therapy-enhanced PTT/CDT.
Collapse
Affiliation(s)
- Le Zhao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Qingzhu Yang
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006, China
| | - Wei Guo
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China; Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China.
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Kai Yu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Chunyu Yang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China.
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China.
| |
Collapse
|
37
|
Hu T, Wang Z, Shen W, Liang R, Yan D, Wei M. Recent advances in innovative strategies for enhanced cancer photodynamic therapy. Theranostics 2021; 11:3278-3300. [PMID: 33537087 PMCID: PMC7847668 DOI: 10.7150/thno.54227] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/05/2020] [Indexed: 12/24/2022] Open
Abstract
Photodynamic therapy (PDT), a non-invasive therapeutic modality, has received increasing attention owing to its high selectivity and limited side effects. Although significant clinical research progress has been made in PDT, the breadth and depth of its clinical application have not been fully realized due to the limitations such as inadequate light penetration depth, non-targeting photosensitizers (PSs), and tumor hypoxia. Consequently, numerous investigations put their emphasis on innovative strategies to overcome the aforementioned limitations and enhance the therapeutic effect of PDT. Herein, up-to-date advances in these innovative methods for PDT are summarized by introducing the design of PS systems, their working mechanisms and application examples. In addition, current challenges of these innovative strategies for clinical application, and future perspectives on further improvement of PDT are also discussed.
Collapse
Affiliation(s)
- Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhengdi Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Weicheng Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Dan Yan
- Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P. R. China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
38
|
Yang J, Zhao C, Lim J, Zhao L, Tourneau RL, Zhang Q, Dobson D, Joshi S, Pang J, Zhang X, Pal S, Andreou C, Zhang H, Kircher MF, Schmitthenner H. Structurally symmetric near-infrared fluorophore IRDye78-protein complex enables multimodal cancer imaging. Theranostics 2021; 11:2534-2549. [PMID: 33456558 PMCID: PMC7806473 DOI: 10.7150/thno.54928] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Most contemporary cancer therapeutic paradigms involve initial imaging as a treatment roadmap, followed by the active engagement of surgical operations. Current approved intraoperative contrast agents exemplified by indocyanine green (ICG) have a few drawbacks including the inability of pre-surgical localization. Alternative near-infrared (NIR) dyes including IRDye800cw are being explored in advanced clinical trials but often encounter low chemical yields and complex purifications owing to the asymmetric synthesis. A single contrast agent with ease of synthesis that works in multiple cancer types and simultaneously allows presurgical imaging, intraoperative deep-tissue three-dimensional visualization, and high-speed microscopic visualization of tumor margins via spatiotemporally complementary modalities would be beneficial. Methods: Due to the lack of commercial availability and the absence of detailed synthesis and characterization, we proposed a facile and scalable synthesis pathway for the symmetric NIR water-soluble heptamethine sulfoindocyanine IRDye78. The synthesis can be accomplished in four steps from commercially-available building blocks. Its symmetric resonant structure avoided asymmetric synthesis problems while still preserving the benefits of analogous IRDye800cw with commensurable optical properties. Next, we introduced a low-molecular-weight protein alpha-lactalbumin (α-LA) as the carrier that effectively modulates the hepatic clearance of IRDye78 into the preferred renal excretion pathway. We further implemented 89Zr radiolabeling onto the protein scaffold for positron emission tomography (PET). The multimodal imaging capability of the fluorophore-protein complex was validated in breast cancer and glioblastoma. Results: The scalable synthesis resulted in high chemical yields, typically 95% yield in the final step of the chloro dye. Chemical structures of intermediates and the final fluorophore were confirmed. Asymmetric IRDye78 exhibited comparable optical features as symmetric IRDye800cw. Its well-balanced quantum yield affords concurrent dual fluorescence and optoacoustic contrast without self-quenching nor concentration-dependent absorption. The NHS ester functionality modulates efficient covalent coupling to reactive side-chain amines to the protein carrier, along with desferrioxamine (DFO) for stable radiolabeling of 89Zr. The fluorophore-protein complex advantageously shifted the biodistribution and can be effectively cleared through the urinary pathway. The agent accumulates in tumors and enables triple-modal visualization in mouse xenograft models of both breast and brain cancers. Conclusion: This study described in detail a generalized strategic modulation of clearance routes towards the favorable renal clearance, via the introduction of α-LA. IRDye78 as a feasible alternative of IRDye800cw currently in clinical phases was proposed with a facile synthesis and fully characterized for the first time. This fluorophore-protein complex with stable radiolabeling should have great potential for clinical translation where it could enable an elegant workflow from preoperative planning to intraoperative deep tissue and high-resolution image-guided resection.
Collapse
|
39
|
Dhas N, Kudarha R, Garkal A, Ghate V, Sharma S, Panzade P, Khot S, Chaudhari P, Singh A, Paryani M, Lewis S, Garg N, Singh N, Bangar P, Mehta T. Molybdenum-based hetero-nanocomposites for cancer therapy, diagnosis and biosensing application: Current advancement and future breakthroughs. J Control Release 2020; 330:257-283. [PMID: 33345832 DOI: 10.1016/j.jconrel.2020.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/11/2020] [Indexed: 02/08/2023]
Abstract
In recent years, there have been significant advancements in the nanotechnology for cancer therapy. Even though molybdenum disulphide (MoS2)-based nanocomposites demonstrated extensive applications in biosensing, bioimaging, phototherapy, the review article focusing on MoS2 nanocomposite platform has not been accounted for yet. The review summarizes recent strategies on design and fabrication of MoS2-based nanocomposites and their modulated properties in cancer treatment. The review also discussed several therapeutic strategies (photothermal, photodynamic, immunotherapy, gene therapy and chemotherapy) and their combinations for efficient cancer therapy along with certain case studies. The review also inculcates various diagnostic techniques viz. magnetic resonance imaging, computed tomography, photoacoustic imaging and fluorescence imaging for diagnosis of cancer.
Collapse
Affiliation(s)
- Namdev Dhas
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Ritu Kudarha
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Vivek Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Shilpa Sharma
- Department of Chemistry, Indian Institute of Technology, Ropar, Rupnagar, Punjab 140001, India
| | - Prabhakar Panzade
- Department of Pharmaceutics, Srinath College of Pharmacy, Dr. Babasaheb Ambedkar Technological University, Aurangabad, Maharashtra 431133, India
| | - Shubham Khot
- Sinhgad Institute of Pharmacy, Narhe, Pune, Maharashtra 411041, India
| | - Pinal Chaudhari
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Ashutosh Singh
- School of Basic Sciences, Indian Institute of Technology, Mandi, Kamand, Himachal Pradesh 175005, India
| | - Mitali Paryani
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Shaila Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi, Uttar Pradesh 221005, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology, Ropar, Rupnagar, Punjab 140001, India
| | - Priyanka Bangar
- Intas Pharmaceuticals Ltd., Ahmedabad, Gujarat 382213, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
40
|
Recent advances on TMDCs for medical diagnosis. Biomaterials 2020; 269:120471. [PMID: 33160702 DOI: 10.1016/j.biomaterials.2020.120471] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/30/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023]
Abstract
Transition metal dichalcogenides (TMDCs), such as MoS2 and WS2, have attracted much attention in biosensing and bioimaging due to its excellent stability, biocompatibility, high specific surface area, and wide varieties. In this review, we overviewed the application of TMDCs in biosensing and bioimaging. Firstly, the synthesis methods and surface functionalization methods of TMDCs were summarized. Secondly, according to the working mechanism, we classified and gave a detailed account of the latest research progress of TMDC-based biosensing for the detection of the enzyme, DNA, and other biological molecules. Then, we outlined the recent progress of applying TMDCs in bio-imaging, including fluorescence, X-ray computed tomographic, magnetic response imaging, photographic and multimodal imaging, respectively. Finally, we discussed the future challenges and development direction of the application of TMDCs in medical diagnosis. Also, we put forward our view on the opportunity of TMDCs in the big data of modern medical diagnosis.
Collapse
|
41
|
Hapuarachchige S, Artemov D. Theranostic Pretargeting Drug Delivery and Imaging Platforms in Cancer Precision Medicine. Front Oncol 2020; 10:1131. [PMID: 32793481 PMCID: PMC7387661 DOI: 10.3389/fonc.2020.01131] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/05/2020] [Indexed: 12/29/2022] Open
Abstract
Theranostics are nano-size or molecular-level agents serving for both diagnosis and therapy. Structurally, they are drug delivery systems integrated with molecular or targeted imaging agents. Theranostics are becoming popular because they are targeted therapeutics and can be used with no or minimal changes for diagnostic imaging to aid in precision medicine. Thus, there is a close relation between theranostics and image-guided therapy (IGT), and theranostics are actually a subclass of IGT in which both therapeutic and imaging functionalities are attributed to a single platform. An important theranostics strategy is biological pretargeting. In pretargeted IGT, first, the target is identified by a target-specific natural or synthetic bioligand followed by a nano-scale or molecular drug delivery component, which form therapeutic clusters by in situ conjugation reactions. If pretargeted drug delivery platforms are labeled with multimodal imaging probes, they can be used as theranostics for both diagnostic imaging and therapy. Optical and nuclear imaging techniques have mostly been used in proof-of-concept studies with pretargeted theranostics. The concept of pretargeting in theranostics is comparatively novel and generally requires a confirmed overexpression of surface receptors on targeted cells/tissue. In addition, the receptors should have natural or synthetic bioligands to be used as pretargeting components. Therefore, applications of pretargeting theranostics are still limited to several cancer types, which overexpress cell-surface markers on the target cancer cells. In this review, recent discoveries of pretargeting theranostics in breast, ovarian, prostate, and colorectal cancers are discussed to highlight main strengths and potential limitations the strategy.
Collapse
Affiliation(s)
- Sudath Hapuarachchige
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dmitri Artemov
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
42
|
Qu Z, Shen J, Li Q, Xu F, Wang F, Zhang X, Fan C. Near-IR emissive rare-earth nanoparticles for guided surgery. Theranostics 2020; 10:2631-2644. [PMID: 32194825 PMCID: PMC7052904 DOI: 10.7150/thno.40808] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
Intraoperative image-guided surgery (IGS) has attracted extensive research interests in determination of tumor margins from surrounding normal tissues. Introduction of near infrared (NIR) fluorophores into IGS could significantly improve the in vivo imaging quality thus benefit IGS. Among the reported NIR fluorophores, rare-earth nanoparticles exhibit unparalleled advantages in disease theranostics by taking advantages such as large Stokes shift, sharp emission spectra, and high chemical/photochemical stability. The recent advances in elements doping and morphologies controlling endow the rare-earth nanoparticles with intriguing optical properties, including emission span to NIR-II region and long life-time photoluminescence. Particularly, NIR emissive rare earth nanoparticles hold advantages in reduction of light scattering, photon absorption and autofluorescence, largely improve the performance of nanoparticles in biological and pre-clinical applications. In this review, we systematically compared the benefits of RE nanoparticles with other NIR probes, and summarized the recent advances of NIR emissive RE nanoparticles in bioimaging, photodynamic therapy, drug delivery and NIR fluorescent IGS. The future challenges and promises of NIR emissive RE nanoparticles for IGS were also discussed.
Collapse
Affiliation(s)
- Zhibei Qu
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Xu
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Fei Wang
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xueli Zhang
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
43
|
Chen J, Fan T, Xie Z, Zeng Q, Xue P, Zheng T, Chen Y, Luo X, Zhang H. Advances in nanomaterials for photodynamic therapy applications: Status and challenges. Biomaterials 2020; 237:119827. [PMID: 32036302 DOI: 10.1016/j.biomaterials.2020.119827] [Citation(s) in RCA: 416] [Impact Index Per Article: 83.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/13/2020] [Accepted: 01/25/2020] [Indexed: 12/24/2022]
Abstract
Photodynamic therapy (PDT), as a non-invasive therapeutic modality that is alternative to radiotherapy and chemotherapy, is extensively investigated for cancer treatments. Although conventional organic photosensitizers (PSs) are still widely used and have achieved great progresses in PDT, the disadvantages such as hydrophobicity, poor stability within PDT environment and low cell/tissue specificity largely limit their clinical applications. Consequently, nano-agents with promising physicochemical and optical properties have emerged as an attractive alternative to overcome these drawbacks of traditional PSs. Herein, the up-to-date advances in the fabrication and fascinating applications of various nanomaterials in PDT have been summarized, including various types of nanoparticles, carbon-based nanomaterials, and two-dimensional nanomaterials, etc. In addition, the current challenges for the clinical use of PDT, and the corresponding strategies to address these issues, as well as future perspectives on further improvement of PDT have also been discussed.
Collapse
Affiliation(s)
- Jianming Chen
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Taojian Fan
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Zhongjian Xie
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Qiqiao Zeng
- Department of Ophthalmology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen City, Guangdong Province, 518020, PR China
| | - Ping Xue
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Tingting Zheng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Yun Chen
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Xiaoling Luo
- Department of Ophthalmology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen City, Guangdong Province, 518020, PR China.
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
44
|
Jin Z, Chen D, Zhao P, Wen Y, Fan M, Zhou G, Wang Y, He Q. Coordination-induced exfoliation to monolayer Bi-anchored MnB 2 nanosheets for multimodal imaging-guided photothermal therapy of cancer. Theranostics 2020; 10:1861-1872. [PMID: 32042341 PMCID: PMC6993225 DOI: 10.7150/thno.39715] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Rapid advance in biomedicine has recently vitalized the development of multifunctional two-dimensional (2D) nanomaterials for cancer theranostics. However, it is still challenging to develop new strategy to produce new types of 2D nanomaterials with flexible structure and function for enhanced disease theranostics. Method: We explore the monolayer Bi-anchored manganese boride nanosheets (MBBN) as a new type of MBene (metal boride), and discover their unique near infrared (NIR)-photothermal and photoacoustic effects, X-ray absorption and MRI imaging properties, and develop them as a new nanotheranostic agent for multimodal imaging-guided photothermal therapy of cancer. A microwave-assisted chemical etching route was utilized to exfoliate the manganese boride bulk into the nanosheets-constructed flower-like manganese boride nanoparticle (MBN), and a coordination-induced exfoliation strategy was further developed to separate the MBN into the dispersive monolayer MBBN by the coordination between Bi and B on the surface, and the B-OH group on the surface of MBBN enabled facile surface modification with hyaluronic acid (HA) by the borate esterification reaction in favor of enhanced monodispersion and active tumor targeting. Result: The constructed MBBN displays superior NIR-photothermal conversion efficiency (η=59.4%) as well as high photothermal stability, and possesses versatile imaging functionality including photoacoustic, photothermal, CT and T1 -wighted MRI imagings. In vitro and in vivo evaluations indicate that MBBN had high photothermal ablation and multimodal imaging performances, realizing high efficacy of imaging-guided cancer therapy. Conclusion: We have proposed new MBene concept and exfloliation strategy to impart the integration of structural modification and functional enhancement for cancer theranostics, which would open an avenue to facile fabrication and extended application of multifunctional 2D nanomaterials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen 518060, Guangdong, China
| |
Collapse
|
45
|
Mei L, Zhu S, Yin W, Chen C, Nie G, Gu Z, Zhao Y. Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. Theranostics 2020; 10:757-781. [PMID: 31903149 PMCID: PMC6929992 DOI: 10.7150/thno.39701] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/21/2019] [Indexed: 12/12/2022] Open
Abstract
The marked augment of drug-resistance to traditional antibiotics underlines the crying need for novel replaceable antibacterials. Research advances have revealed the considerable sterilization potential of two-dimension graphene-based nanomaterials. Subsequently, two-dimensional nanomaterials beyond graphene (2D NBG) as novel antibacterials have also demonstrated their power for disinfection due to their unique physicochemical properties and good biocompatibility. Therefore, the exploration of antibacterial mechanisms of 2D NBG is vital to manipulate antibacterials for future applications. Herein, we summarize the recent research progress of 2D NBG-based antibacterial agents, starting with a detailed introduction of the relevant antibacterial mechanisms, including direct contact destruction, oxidative stress, photo-induced antibacterial, control drug/metallic ions releasing, and the multi-mode synergistic antibacterial. Then, the effect of the physicochemical properties of 2D NBG on their antibacterial activities is also discussed. Additionally, a summary of the different kinds of 2D NBG is given, such as transition-metal dichalcogenides/oxides, metal-based compounds, nitride-based nanomaterials, black phosphorus, transition metal carbides, and nitrides. Finally, we rationally analyze the current challenges and new perspectives for future study of more effective antibacterial agents. This review not only can help researchers grasp the current status of 2D NBG antibacterials, but also may catalyze breakthroughs in this fast-growing field.
Collapse
Affiliation(s)
- Linqiang Mei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wenyan Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Chen
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China
| | - Guangjun Nie
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Feng Y, Ding D, Sun W, Qiu Y, Luo L, Shi T, Meng S, Chen X, Chen H. Magnetic Manganese Oxide Sweetgum-Ball Nanospheres with Large Mesopores Regulate Tumor Microenvironments for Enhanced Tumor Nanotheranostics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37461-37470. [PMID: 31577423 DOI: 10.1021/acsami.9b11843] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
An important objective of cancer nanomedicine is to improve the delivery efficacy of functional agents to solid tumors for effective cancer imaging and therapy. Stimulus-responsive nanoplatforms can target and regulate the tumor microenvironment (TME) for the optimization of cancer theranostics. Here, we developed magnetic manganese oxide sweetgum-ball nanospheres (MMOSs) with large mesopores as tools for improved cancer theranostics. MMOSs contain magnetic iron oxide nanoparticles and mesoporous manganese oxide (MnO2) nanosheets, which are assembled into gumball-like structures on magnetic iron oxides. The large mesopores of MMOSs are suited for cargo loading with chlorin e6 (Ce6) and doxorubicin (DOX), thus producing so-called CD@MMOSs. The core of magnetic iron oxides could achieve magnetic targeting of tumors under a magnetic field (0.25 mT), and the targeted CD@MMOSs may decompose under TME conditions, thereby releasing loaded cargo molecules and reacting with endogenous hydrogen peroxide (H2O2) to generate oxygen (O2) and manganese (II) ions (Mn2+). Investigation in vivo in tumor-bearing mice models showed that the CD@MMOS nanoplatforms achieved TME-responsive cargo release, which might be applied in chemotherapy and photodynamic therapy. A remarkable in vivo synergy of diagnostic and therapeutic functionalities was achieved by the decomposition of CD@MMOSs and coadministration with chemo-photodynamic therapy of tumors using the magnetic targeting mechanism. Thus, the result of this study demonstrates the feasibility of smart nanotheranostics to achieve tumor-specific enhanced combination therapy.
Collapse
Affiliation(s)
- Yushuo Feng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Dandan Ding
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Wenjing Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Yuwei Qiu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Li Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Tianhang Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Shanshan Meng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Hongmin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| |
Collapse
|