1
|
Mukerjee N, Bhattacharya A, Maitra S, Kaur M, Ganesan S, Mishra S, Ashraf A, Rizwan M, Kesari KK, Tabish TA, Thorat ND. Exosome isolation and characterization for advanced diagnostic and therapeutic applications. Mater Today Bio 2025; 31:101613. [PMID: 40161926 PMCID: PMC11950786 DOI: 10.1016/j.mtbio.2025.101613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/01/2025] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Advancements in exosome isolation technologies are pivotal for transforming personalized medicine and enhancing clinical diagnostics. Exosomes, small extracellular vesicles with diameters ranging between 30 and 150 nm, are secreted into bodily fluids by a variety of cells and play essential roles in intercellular communication. These vesicles facilitate the transfer of nucleic acids, lipids, and proteins, affecting a wide range of biological and pathological processes. Given their importance in disease diagnostics, therapy, and as biomarkers, there has been a surge in developing methods to isolate them from fluids such as urine, saliva, blood, and cerebrospinal fluid. While traditional isolation techniques like ultracentrifugation and polymer-based precipitation have been foundational, recent technological advances have introduced more precise methods like microfluidics and immunoaffinity capture. These newer methods enable high-throughput and specific exosome isolation by targeting surface markers, thus enhancing purity. However, challenges such as balancing purity with yield and the lack of standardized protocols across different laboratories persist, impacting the consistency of findings. By integrating advanced isolation techniques and discussing their implications in diagnostics and therapy, this review aims to catalyze further research and adoption of exosome-based technologies in medicine, marking a significant stride towards tailored healthcare solutions.
Collapse
Affiliation(s)
- Nobendu Mukerjee
- Centre for Infectious Diseases & Microbiology, School of Public Health Sciences and Technology, Malla Reddy Vishwavidyapeeth, Hyderabad 500 055, Telangana, India
| | - Arghya Bhattacharya
- Department of Pharmacology, Bengal School of Technology, West Bengal, Kolkata, 712102, India
| | - Swastika Maitra
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Shivang Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Ayash Ashraf
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, 140307, Punjab, India
| | - Muhammad Rizwan
- Department of Biomedical Engineering, Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Tanveer A. Tabish
- Radcliffe Department of Medicine, University of Oxford, OX3 7BN, United Kingdom
| | - Nanasaheb D. Thorat
- Department of Physics and Bernal Institute, University of Limerick, Castletroy, Limerick V94T9PX, Ireland
- Limerick Digital Cancer Research Centre (LDCRC) University of Limerick, Castletroy, Limerick, V94T9PX, Ireland
| |
Collapse
|
2
|
Zhang L, Ma D, Yu Y, Luo W, Jiang S, Feng S, Chen Z. Advances in biomacromolecule-functionalized magnetic particles for phytopathogen detection. Talanta 2025; 281:126876. [PMID: 39277940 DOI: 10.1016/j.talanta.2024.126876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/20/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Due to the increasing crop losses caused by common and newly emerging phytopathogens, there is a pressing need for the development of rapid and reliable methods for phytopathogen detection and analysis. Leveraging advancements in biochemical engineering technologies and nanomaterial sciences, researchers have put considerable efforts on utilizing biofunctionalized magnetic micro- and nanoparticles (MPs) to develop rapid and reliable systems for phytopathogen detection. MPs facilitate the rapid, high-throughput analysis and in-field applications, while the biomacromolecules, which play key roles in the biorecognitions, interactions and signal amplification, determine the specificity, sensitivity, reliability, and portability of pathogen detection systems. The integration of MPs and biomacromolecules provides dimensionality- and composition-dependent properties, representing a novel approach to develop phytopathogen detection systems. In this review, we summarize and discuss the general properties, synthesis and characterization of MPs, and focus on biomacromolecule-functionalized MPs as well as their representative applications for phytopathogen detection and analysis reported over the past decade. Extensively studied bioreceptors, such as antibodies, phages and phage proteins, nucleic acids, and glycans that are involved in the recognitions and interactions, are covered and discussed. Additionally, the integration of MPs-based detection system with portable microfluidic devices to facilitate their in-field applications is also discussed. Overall, this review focuses on biomacromolecule-functionalized MPs and their applications for phytopathogen detection, aiming to highlight their potential in developing advanced biosensing systems for effective plant protection.
Collapse
Affiliation(s)
- Libo Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Dumei Ma
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Youbo Yu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Wiewei Luo
- The Ninth Medical Center of Chinese PLA General Hospital, Chaoyang District, Beijing, 100101, China
| | - Shilong Jiang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Sheng Feng
- Department of Pathology and Laboratory Medicine, Boston University, Boston, MA, 02118, USA
| | - Zhuo Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
3
|
Li X, Wen D, He Y, Liu Y, Han F, Su J, Lai S, Zhuang M, Gao F, Li Z. Progresses and Prospects on Glucosinolate Detection in Cruciferous Plants. Foods 2024; 13:4141. [PMID: 39767081 PMCID: PMC11675635 DOI: 10.3390/foods13244141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/14/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
This review provides a comprehensive summary of the latest international research on detection methods for glucosinolates in cruciferous plants. This article examines various analytical techniques, including high-performance liquid chromatography (HPLC), liquid chromatography-mass spectrometry (LC-MS), enzyme-linked immunosorbent assay (ELISA), and capillary electrophoresis (CE), while highlighting their respective advantages and limitations. Additionally, this review delves into recent advancements in sample preparation, extraction, and quantification methods, offering valuable insights into the accurate and efficient determination of glucosinolate content across diverse plant materials. Furthermore, it underscores the critical importance of the standardization and validation of these methodologies to ensure reliable glucosinolate analyses in both scientific research and industrial applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhansheng Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.)
| |
Collapse
|
4
|
Moghassemi S, Dadashzadeh A, Sousa MJ, Vlieghe H, Yang J, León-Félix CM, Amorim CA. Extracellular vesicles in nanomedicine and regenerative medicine: A review over the last decade. Bioact Mater 2024; 36:126-156. [PMID: 38450204 PMCID: PMC10915394 DOI: 10.1016/j.bioactmat.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Small extracellular vesicles (sEVs) are known to be secreted by a vast majority of cells. These sEVs, specifically exosomes, induce specific cell-to-cell interactions and can activate signaling pathways in recipient cells through fusion or interaction. These nanovesicles possess several desirable properties, making them ideal for regenerative medicine and nanomedicine applications. These properties include exceptional stability, biocompatibility, wide biodistribution, and minimal immunogenicity. However, the practical utilization of sEVs, particularly in clinical settings and at a large scale, is hindered by the expensive procedures required for their isolation, limited circulation lifetime, and suboptimal targeting capacity. Despite these challenges, sEVs have demonstrated a remarkable ability to accommodate various cargoes and have found extensive applications in the biomedical sciences. To overcome the limitations of sEVs and broaden their potential applications, researchers should strive to deepen their understanding of current isolation, loading, and characterization techniques. Additionally, acquiring fundamental knowledge about sEVs origins and employing state-of-the-art methodologies in nanomedicine and regenerative medicine can expand the sEVs research scope. This review provides a comprehensive overview of state-of-the-art exosome-based strategies in diverse nanomedicine domains, encompassing cancer therapy, immunotherapy, and biomarker applications. Furthermore, we emphasize the immense potential of exosomes in regenerative medicine.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Maria João Sousa
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jie Yang
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Cecibel María León-Félix
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
5
|
Tiryaki E, Zorlu T. Recent Advances in Metallic Nanostructures-assisted Biosensors for Medical Diagnosis and Therapy. Curr Top Med Chem 2024; 24:930-951. [PMID: 38243934 DOI: 10.2174/0115680266282489240109050225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/22/2024]
Abstract
The field of nanotechnology has witnessed remarkable progress in recent years, particularly in its application to medical diagnosis and therapy. Metallic nanostructures-assisted biosensors have emerged as a powerful and versatile platform, offering unprecedented opportunities for sensitive, specific, and minimally invasive diagnostic techniques, as well as innovative therapeutic interventions. These biosensors exploit the molecular interactions occurring between biomolecules, such as antibodies, enzymes, aptamers, or nucleic acids, and metallic surfaces to induce observable alterations in multiple physical attributes, encompassing electrical, optical, colorimetric, and electrochemical signals. These interactions yield measurable data concerning the existence and concentration of particular biomolecules. The inherent characteristics of metal nanostructures, such as conductivity, plasmon resonance, and catalytic activity, serve to amplify both sensitivity and specificity in these biosensors. This review provides an in-depth exploration of the latest advancements in metallic nanostructures-assisted biosensors, highlighting their transformative impact on medical science and envisioning their potential in shaping the future of personalized healthcare.
Collapse
Affiliation(s)
- Ecem Tiryaki
- Nanomaterials for Biomedical Applications, Italian Institute of Technology, 16163, Genova, Italy
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220, Esenler, Istanbul, Turkey
| | - Tolga Zorlu
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Carrer de Marcel∙lí Domingo s/n, 43007, Tarragona, Spain
| |
Collapse
|
6
|
Zhou C, Liu Y, Li Y, Shi L. Recent advances and prospects in nanomaterials for bacterial sepsis management. J Mater Chem B 2023; 11:10778-10792. [PMID: 37901894 DOI: 10.1039/d3tb02220j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Bacterial sepsis is a life-threatening condition caused by bacteria entering the bloodstream and triggering an immune response, underscoring the importance of early recognition and prompt treatment. Nanomedicine holds promise for addressing sepsis through improved diagnostics, nanoparticle biosensors for detection and imaging, enhanced antibiotic delivery, combating resistance, and immune modulation. However, challenges remain in ensuring safety, regulatory compliance, scalability, and cost-effectiveness before clinical implementation. Further research is needed to optimize design, efficacy, safety, and regulatory strategies for effective utilization of nanomedicines in bacterial sepsis diagnosis and treatment. This review highlights the significant potential of nanomedicines, including improved drug delivery, enhanced diagnostics, and immunomodulation for bacterial sepsis. It also emphasizes the need for further research to optimize design, efficacy, safety profiles, and address regulatory challenges to facilitate clinical translation.
Collapse
Affiliation(s)
- Chaoyang Zhou
- Department of Critical Care Medicine, The People's Hospital of Yuhuan, Taizhou, Zhejiang 317600, China.
| | - Yong Liu
- Department of Critical Care Medicine, The People's Hospital of Yuhuan, Taizhou, Zhejiang 317600, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Yuanfeng Li
- Department of Critical Care Medicine, The People's Hospital of Yuhuan, Taizhou, Zhejiang 317600, China.
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Lin AA, Shen H, Spychalski G, Carpenter EL, Issadore D. Modeling and optimization of parallelized immunomagnetic nanopore sorting for surface marker specific isolation of extracellular vesicles from complex media. Sci Rep 2023; 13:13292. [PMID: 37587235 PMCID: PMC10432479 DOI: 10.1038/s41598-023-39746-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/30/2023] [Indexed: 08/18/2023] Open
Abstract
The isolation of specific subpopulations of extracellular vesicles (EVs) based on their expression of surface markers poses a significant challenge due to their nanoscale size (< 800 nm), their heterogeneous surface marker expression, and the vast number of background EVs present in clinical specimens (1010-1012 EVs/mL in blood). Highly parallelized nanomagnetic sorting using track etched magnetic nanopore (TENPO) chips has achieved precise immunospecific sorting with high throughput and resilience to clogging. However, there has not yet been a systematic study of the design parameters that control the trade-offs in throughput, target EV recovery, and ability to discard background EVs in this approach. We combine finite-element simulation and experimental characterization of TENPO chips to elucidate design rules to isolate EV subpopulations from blood. We demonstrate the utility of this approach by reducing device background > 10× relative to prior published designs without sacrificing recovery of the target EVs by selecting pore diameter, number of membranes placed in series, and flow rate. We compare TENPO-isolated EVs to those of gold-standard methods of EV isolation and demonstrate its utility for wide application and modularity by targeting subpopulations of EVs from multiple models of disease including lung cancer, pancreatic cancer, and liver cancer.
Collapse
Affiliation(s)
- Andrew A Lin
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd St., Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Hanfei Shen
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd St., Philadelphia, PA, 19104, USA
| | - Griffin Spychalski
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd St., Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Erica L Carpenter
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd St., Philadelphia, PA, 19104, USA.
| |
Collapse
|
8
|
Lin AA, Shen H, Spychalski G, Carpenter EL, Issadore D. Parallelized immunomagnetic nanopore sorting: modeling, scaling, and optimization of surface marker specific isolation of extracellular vesicles from complex media. RESEARCH SQUARE 2023:rs.3.rs-2913647. [PMID: 37292737 PMCID: PMC10246262 DOI: 10.21203/rs.3.rs-2913647/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The isolation of specific subpopulations of extracellular vesicles (EVs) based on their expression of surface markers poses a significant challenge due to their nanoscale size (< 800 nm), their heterogeneous surface marker expression, and the vast number of background EVs present in clinical specimens (10 10 -10 12 EVs/mL in blood). Highly parallelized nanomagnetic sorting using track etched magnetic nanopore (TENPO) chips has achieved precise immunospecific sorting with high throughput and resilience to clogging. However, there has not yet been a systematic study of the design parameters that control the trade-offs in throughput, target EV recovery, and specificity in this approach. We combine finite-element simulation and experimental characterization of TENPO chips to elucidate design rules to isolate EV subpopulations from blood. We demonstrate the utility of this approach by increasing specificity > 10x relative to prior published designs without sacrificing recovery of the target EVs by selecting pore diameter, number of membranes placed in series, and flow rate. We compare TENPO-isolated EVs to those of gold-standard methods of EV isolation and demonstrate its utility for wide application and modularity by targeting subpopulations of EVs from multiple models of disease including lung cancer, pancreatic cancer, and liver cancer.
Collapse
|
9
|
Zhang D, Lin H, Chen L, Wu Y, Xie J, Shi X, Guo Z. Cluster-bomb type magnetic biosensor for ultrasensitive detection of Vibrio parahaemolyticus based on low field nuclear magnetic resonance. Anal Chim Acta 2023; 1248:340906. [PMID: 36813458 DOI: 10.1016/j.aca.2023.340906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
Herein, a novel cluster-bomb type signal sensing and amplification strategy in low field nuclear magnetic resonance was proposed, and a magnetic biosensor for ultrasensitive homogeneous immunoassay of Vibrio parahaemolyticus (VP) was developed. The capture unit MGO@Ab was magnetic graphene oxide (MGO) immobilized by VP antibody (Ab) to capture VP. And, the signal unit PS@Gd-CQDs@Ab was polystyrene (PS) pellets covered by Ab to recognize VP and Gd-CQDs i.e. carbon quantum dots (CQDs) containing lots of magnetic signal labels Gd3+. In presence of VP, the immunocomplex signal unit-VP-capture unit could be formed and separated by magnetic force conveniently from the sample matrix. With the successive introduction of disulfide threitol and hydrochloric acid, signal units were cleaved and disintegrated, resulting in a homogeneous dispersion of Gd3+. Thus, cluster-bomb type dual signal amplification was achieved through increasing the amount and the dispersity of signal labels simultaneously. Under optimal experimental conditions, VP could be detected in the concentration range of 5-1.0 × 106 CFU/mL, with a limit of quantitation (LOQ) 4 CFU/mL. In addition, satisfactory selectivity, stability and reliability could be obtained. Therefore, this cluster-bomb type signal sensing and amplification strategy is powerful in designing magnetic biosensor and detecting pathogenic bacteria.
Collapse
Affiliation(s)
- Dongyu Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Han Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Le Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Yangbo Wu
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Jianjun Xie
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Science, Ningbo University, Ningbo, 315211, PR China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
10
|
Li Z, Bao Q, Liu C, Li Y, Yang Y, Liu M. Recent advances in microfluidics-based bioNMR analysis. LAB ON A CHIP 2023; 23:1213-1225. [PMID: 36651305 DOI: 10.1039/d2lc00876a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nuclear magnetic resonance (NMR) has been used in a variety of fields due to its powerful analytical capability. To facilitate biochemical NMR (bioNMR) analysis for samples with a limited mass, a number of integrated systems have been developed by coupling microfluidics and NMR. However, there are few review papers that summarize the recent advances in the development of microfluidics-based NMR (μNMR) systems. Herein, we review the advancements in μNMR systems built on high-field commercial instruments and low-field compact platforms. Specifically, μNMR platforms with three types of typical microcoils settled in the high-field NMR instruments will be discussed, followed by summarizing compact NMR systems and their applications in biomedical point-of-care testing. Finally, a conclusion and future prospects in the field of μNMR were given.
Collapse
Affiliation(s)
- Zheyu Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Qingjia Bao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Chaoyang Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Ying Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yunhuang Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| |
Collapse
|
11
|
Maciver SK, Abdelnasir S, Anwar A, Siddiqui R, Khan NA. Modular nanotheranostic agents for protistan parasitic diseases: Magic bullets with tracers. Mol Biochem Parasitol 2023; 253:111541. [PMID: 36603708 DOI: 10.1016/j.molbiopara.2022.111541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023]
Abstract
Protistan parasitic infections contribute significantly to morbidity and mortality, causing more than 2 billion human infections annually. However, current treatments are often limited; due to ineffective drugs and drug resistance, thus better options are urgently required. In the present context, theranostics agents are those that offer simultaneous detection, diagnosis and even treatment of protistan parasitic diseases. "Nanotheranostics" is the term used to describe such agents, that are around 100 nm or less in size. Anti-parasitic activity of nanoparticles (NPs) has been reported, and many have useful intrinsic imaging properties, but it is perhaps their multifunctional nature that offers the greatest potential. NPs may be used as adapters onto which various subunits with different functions may be attached. These subunits may facilitate targeting parasites, coupled with toxins to eradicate parasites, and probe subunits for detection of particles and/or parasites. The modular nature of nano-platforms promises a "mix and match" approach for the construction of tailored agents by using combinations of these subunits against different protistan parasites. Even though many of the subunits have shown promise alone, these have not yet been put together convincingly enough to form working theranostics against protistan parasites. Although the clinical application of nanotheranostics to protistan parasitic infections in humans requires more research, we conclude that they offer not just a realisation of Paul Ehrlich's long imagined "magic bullet" concept, but potentially are magic bullets combined with tracer bullets.
Collapse
Affiliation(s)
- Sutherland Kester Maciver
- Centre for Discovery Brain Science, Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Scotland, UK
| | - Sumayah Abdelnasir
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia.
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates; Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
12
|
Li B, Wang Q, Sohail M, Zhang X, He H, Lin L. Facilitating the determination of microcystin toxins with bio-inspired sensors. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Ahmed FK, Alghuthaymi MA, Abd-Elsalam KA, Ravichandran M, Kalia A. Nano-Based Robotic Technologies for Plant Disease Diagnosis. NANOROBOTICS AND NANODIAGNOSTICS IN INTEGRATIVE BIOLOGY AND BIOMEDICINE 2023:327-359. [DOI: 10.1007/978-3-031-16084-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
14
|
Rashidi M, Bijari S, Khazaei AH, Shojaei-Ghahrizjani F, Rezakhani L. The role of milk-derived exosomes in the treatment of diseases. Front Genet 2022; 13:1009338. [PMID: 36338966 PMCID: PMC9634108 DOI: 10.3389/fgene.2022.1009338] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Exosomes (EXOs) are natural nanoparticles of endosome origin that are secreted by a variety of cells in the body. Exosomes have been found in bio-fluids such as urine, saliva, amniotic fluid, and ascites, among others. Milk is the only commercially available biological liquid containing EXOs. Proof that exosomes are essential for cell-to-cell communication is increasingly being reported. Studies have shown that they migrate from the cell of origin to various bioactive substances, including membrane receptors, proteins, mRNAs, microRNAs, and organelles, or they can stimulate target cells directly through interactions with receptors. Because of the presence of specific proteins, lipids, and RNAs, exosomes act in physiological and pathological conditions in vivo. Other salient features of EXOs include their long half-life in the body, no tumorigenesis, low immune response, good biocompatibility, ability to target cells through their surface biomarkers, and capacity to carry macromolecules. EXOs have been introduced to the scientific community as important, efficient, and attractive nanoparticles. They can be extracted from different sources and have the same characteristics as their parents. EXOs present in milk can be separated by size exclusion chromatography, density gradient centrifugation, or (ultra) centrifugation; however, the complex composition of milk that includes casein micelles and milk fat globules makes it necessary to take additional issues into consideration when employing the mentioned techniques with milk. As a rich source of EXOs, milk has unique properties that, in addition to its role as a carrier, promotes its use in treating diseases such as digestive problems, skin ulcers, and cancer, Moreover, EXOs derived from camel milk are reported to reduce the risk of oxidative stress and cancer. Milk-derived exosomes (MDEs) from yak milk improves gastrointestinal tract (GIT) development under hypoxic conditions. Furthermore, yak-MDEs have been suggested to be the best treatment for intestinal epithelial cells (IEC-6 cell line). Because of their availability as well as the non-invasiveness and cost-effectiveness of their preparation, isolates from mammals milk can be excellent resources for studies related to EXOs. These features also make it possible to exploit MDEs in clinical trials. The current study aimed to investigate the therapeutic applications of EXOs isolated from various milk sources.
Collapse
Affiliation(s)
- Mehdi Rashidi
- Department of Medical Nanotechnology, Islamic Azad University of Pharmaceutical Sciences (IAUPS), Tehran, Iran
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Salar Bijari
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Hossein Khazaei
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- *Correspondence: Leila Rezakhani, ,
| |
Collapse
|
15
|
Naghdi M, Ghovvati M, Rabiee N, Ahmadi S, Abbariki N, Sojdeh S, Ojaghi A, Bagherzadeh M, Akhavan O, Sharifi E, Rabiee M, Saeb MR, Bolouri K, Webster TJ, Zare EN, Zarrabi A. Magnetic nanocomposites for biomedical applications. Adv Colloid Interface Sci 2022; 308:102771. [PMID: 36113311 DOI: 10.1016/j.cis.2022.102771] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/19/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
Tissue engineering and regenerative medicine have solved numerous problems related to the repair and regeneration of damaged organs and tissues arising from aging, illnesses, and injuries. Nanotechnology has further aided tissue regeneration science and has provided outstanding opportunities to help disease diagnosis as well as treat damaged tissues. Based on the most recent findings, magnetic nanostructures (MNSs), in particular, have emerged as promising materials for detecting, directing, and supporting tissue regeneration. There have been many reports concerning the role of these nano-building blocks in the regeneration of both soft and hard tissues, but the subject has not been extensively reviewed. Here, we review, classify, and discuss various synthesis strategies for novel MNSs used in medicine. Advanced applications of magnetic nanocomposites (MG-NCs), specifically magnetic nanostructures, are further systematically reviewed. In addition, the scientific and technical aspects of MG-NC used in medicine are discussed considering the requirements for the field. In summary, this review highlights the numerous opportunities and challenges associated with the use of MG-NCs as smart nanocomposites (NCs) in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Mina Naghdi
- Department of Chemistry, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| | - Mahsa Ghovvati
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia; Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran; Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea.
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Nikzad Abbariki
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Soheil Sojdeh
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | | | | | - Omid Akhavan
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
| | - Esmaeel Sharifi
- Institute for Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples 80125, Italy
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Keivan Bolouri
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| |
Collapse
|
16
|
Prasad R, Conde J. Bioinspired soft nanovesicles for site-selective cancer imaging and targeted therapies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1792. [PMID: 35318815 DOI: 10.1002/wnan.1792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/17/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Cell-to-cell communication within the heterogeneous solid tumor environment plays a significant role in the uncontrolled metastasis of cancer. To inhibit the metastasis and growth of cancer cells, various chemically designed and biologically derived nanosized biomaterials have been applied for targeted cancer therapeutics applications. Over the years, bioinspired soft nanovesicles have gained tremendous attention for targeted cancer therapeutics due to their easy binding with tumor microenvironment, natural targeting ability, bio-responsive nature, better biocompatibility, high cargo capacity for multiple therapeutics agents, and long circulation time. These cell-derived nanovesicles guard their loaded cargo molecules from immune clearance and make them site-selective to cancer cells due to their natural binding and delivery abilities. Furthermore, bioinspired soft nanovesicles prevent cell-to-cell communication and secretion of cancer cell markers by delivering the therapeutics agents predominantly. Cell-derived vesicles, namely, exosomes, extracellular vesicles, and so forth have been recognized as versatile carriers for therapeutic biomolecules. However, low product yield, poor reproducibility, and uncontrolled particle size distribution have remained as major challenges of these soft nanovesicles. Furthermore, the surface biomarkers and molecular contents of these vesicles change with respect to the stage of disease and types. Here in this review, we have discussed numerous examples of bioinspired soft vesicles for targeted imaging and cancer therapeutic applications with their advantages and limitations. Importance of bioengineered soft nanovesicles for localized therapies with their clinical relevance has also been addressed in this article. Overall, cell-derived nanovesicles could be considered as clinically relevant platforms for cancer therapeutics. This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Rajendra Prasad
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - João Conde
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
17
|
Koo S, Park OK, Kim J, Han SI, Yoo TY, Lee N, Kim YG, Kim H, Lim C, Bae JS, Yoo J, Kim D, Choi SH, Hyeon T. Enhanced Chemodynamic Therapy by Cu-Fe Peroxide Nanoparticles: Tumor Microenvironment-Mediated Synergistic Fenton Reaction. ACS NANO 2022; 16:2535-2545. [PMID: 35080370 DOI: 10.1021/acsnano.1c09171] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An urgent need in chemodynamic therapy (CDT) is to achieve high Fenton catalytic efficiency at small doses of CDT agents. However, simple general promotion of the Fenton reaction increases the risk of damaging normal cells along with the cancer cells. Therefore, a tailored strategy to selectively enhance the Fenton reactivity in tumors, for example, by taking advantage of the characteristics of the tumor microenvironment (TME), is in high demand. Herein, a heterogeneous CDT system based on copper-iron peroxide nanoparticles (CFp NPs) is designed for TME-mediated synergistic therapy. CFp NPs degrade under the mildly acidic conditions of TME, self-supply H2O2, and the released Cu and Fe ions, with their larger portions at lower oxidation states, cooperatively facilitate hydroxyl radical production through a highly efficient catalytic loop to achieve an excellent tumor therapeutic efficacy. This is distinct from previous heterogeneous CDT systems in that the synergism is closely coupled with the Cu+-assisted conversion of Fe3+ to Fe2+ rather than their independent actions. As a result, almost complete ablation of tumors at a minimal treatment dose is demonstrated without the aid of any other therapeutic modality. Furthermore, CFp NPs generate O2 during the catalysis and exhibit a TME-responsive T1 magnetic resonance imaging contrast enhancement, which are useful for alleviating hypoxia and in vivo monitoring of tumors, respectively.
Collapse
Affiliation(s)
- Sagang Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ok Kyu Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jonghoon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Ihn Han
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Yong Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Nohyun Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Republic of Korea
| | - Young Geon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunjoong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Chaehong Lim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong-Seong Bae
- Center for Biomaterials, Busan Center, Korea Basic Science Institute, Busan 46742, Republic of Korea
| | - Jin Yoo
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Dokyoon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan 15588, Republic of Korea
| | - Seung Hong Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
18
|
Sharifianjazi F, Jafari Rad A, Bakhtiari A, Niazvand F, Esmaeilkhanian A, Bazli L, Abniki M, Irani M, Moghanian A. Biosensors and nanotechnology for cancer diagnosis (lung and bronchus, breast, prostate, and colon): a systematic review. Biomed Mater 2021; 17. [PMID: 34891145 DOI: 10.1088/1748-605x/ac41fd] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/10/2021] [Indexed: 12/22/2022]
Abstract
The second cause of death in the world has been reported to be cancer, and it has been on the rise in recent years. As a result of the difficulties of cancer detection and its treatment, the survival rate of patients is unclear. The early detection of cancer is an important issue for its therapy. Cancer detection based on biomarkers may effectively enhance the early detection and subsequent treatment. Nanomaterial-based nanobiosensors for cancer biomarkers are excellent tools for the molecular detection and diagnosis of disease. This review reports the latest advancement and attainment in applying nanoparticles to the detection of cancer biomarkers. In this paper, the recent advances in the application of common nanomaterials like graphene, carbon nanotubes, Au, Ag, Pt, and Fe3O4together with newly emerged nanoparticles such as quantum dots, upconversion nanoparticles, inorganics (ZnO, MoS2), and metal-organic frameworks for the diagnosis of biomarkers related to lung, prostate, breast, and colon cancer are highlighted. Finally, the challenges, outlook, and closing remarks are given.
Collapse
Affiliation(s)
| | - Azadeh Jafari Rad
- Department of Chemistry, Islamic Azad University, Omidiyeh Branch, Omidiyeh, Iran
| | | | - Firoozeh Niazvand
- School of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | | | - Leila Bazli
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Milad Abniki
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Mohammad Irani
- Dentistry Clinical Research Development Unit, Alborz University of Medical Sciences, Karaj, Iran
| | - Amirhossein Moghanian
- Department of Materials Engineering, Imam Khomeini International University, Qazvin 34149-16818, Iran
| |
Collapse
|
19
|
Sun F, Xu W, Qian H. The emerging role of extracellular vesicles in retinal diseases. Am J Transl Res 2021; 13:13227-13245. [PMID: 35035672 PMCID: PMC8748154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/14/2021] [Indexed: 06/14/2023]
Abstract
As a type of nanosized membranous vesicles secreted by living cells, extracellular vesicles (EVs) mediate intercellular communications with excellent physicochemical stability and biocompatibility. By delivering biologically active molecules including proteins, nucleic acids and lipids, EVs participate in many physiological and pathological processes. Increasing studies have suggested that EVs may be biomarkers for liquid biopsy of retinal diseases due to the ability to transfer through the blood-retinal barrier. EVs also represent a novel cell-free strategy to repair tissue damage in regenerative medicine. Evidence has indicated that EVs can be engineered and modified to enhance their efficacy. In this review, an overview of the characteristics, isolation, and identification of EVs is provided. Moreover, recent advances with EVs in the diagnosis and treatment of retinal diseases and the engineering approaches to elevate their effects are introduced, and opportunities and challenges for clinical application are discussed.
Collapse
Affiliation(s)
- Fengtian Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
20
|
Kupče Ē, Mote KR, Webb A, Madhu PK, Claridge TDW. Multiplexing experiments in NMR and multi-nuclear MRI. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 124-125:1-56. [PMID: 34479710 DOI: 10.1016/j.pnmrs.2021.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 05/22/2023]
Abstract
Multiplexing NMR experiments by direct detection of multiple free induction decays (FIDs) in a single experiment offers a dramatic increase in the spectral information content and often yields significant improvement in sensitivity per unit time. Experiments with multi-FID detection have been designed with both homonuclear and multinuclear acquisition, and the advent of multiple receivers on commercial spectrometers opens up new possibilities for recording spectra from different nuclear species in parallel. Here we provide an extensive overview of such techniques, designed for applications in liquid- and solid-state NMR as well as in hyperpolarized samples. A brief overview of multinuclear MRI is also provided, to stimulate cross fertilization of ideas between the two areas of research (NMR and MRI). It is shown how such techniques enable the design of experiments that allow structure elucidation of small molecules from a single measurement. Likewise, in biomolecular NMR experiments multi-FID detection allows complete resonance assignment in proteins. Probes with multiple RF microcoils routed to multiple NMR receivers provide an alternative way of increasing the throughput of modern NMR systems, effectively reducing the cost of NMR analysis and increasing the information content at the same time. Solid-state NMR experiments have also benefited immensely from both parallel and sequential multi-FID detection in a variety of multi-dimensional pulse schemes. We are confident that multi-FID detection will become an essential component of future NMR methodologies, effectively increasing the sensitivity and information content of NMR measurements.
Collapse
Affiliation(s)
- Ēriks Kupče
- Bruker UK Ltd., Banner Lane, Coventry CV4 9GH, United Kingdom.
| | - Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research-Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| | - Andrew Webb
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Perunthiruthy K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research-Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| | - Tim D W Claridge
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
21
|
Oropesa-Nuñez R, Zardán Gómez de la Torre T, Stopfel H, Svedlindh P, Strömberg M, Gunnarsson K. Insights into the Formation of DNA-Magnetic Nanoparticle Hybrid Structures: Correlations between Morphological Characterization and Output from Magnetic Biosensor Measurements. ACS Sens 2020; 5:3510-3519. [PMID: 33141554 PMCID: PMC7706118 DOI: 10.1021/acssensors.0c01623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Understanding
the binding mechanism between probe-functionalized
magnetic nanoparticles (MNPs) and DNA targets or amplification products
thereof is essential in the optimization of magnetic biosensors for
the detection of DNA. Herein, the molecular interaction forming hybrid
structures upon hybridization between DNA-functionalized magnetic
nanoparticles, exhibiting Brownian relaxation, and rolling circle
amplification products (DNA-coils) is investigated by the use of atomic
force microscopy in a liquid environment and magnetic biosensors measuring
the frequency-dependent magnetic response and the frequency-dependent
modulation of light transmission. This approach reveals the qualitative
and quantitative correlations between the morphological features of
the hybrid structures with their magnetic response. The suppression
of the high-frequency peak in the magnetic response and the appearance
of a new peak at lower frequencies match the formation of larger sized
assemblies upon increasing the concentration of DNA-coils. Furthermore,
an increase of the DNA-coil concentration induces an increase in the
number of MNPs per hybrid structure. This study provides new insights
into the DNA–MNP binding mechanism, and its versatility is
of considerable importance for the mechanistic characterization of
other DNA-nanoparticle biosensor systems.
Collapse
Affiliation(s)
- Reinier Oropesa-Nuñez
- Department of Materials Science and Engineering, Uppsala University, Ångströmlaboratoriet, Box 35, SE-751 03 Uppsala, Sweden
| | - Teresa Zardán Gómez de la Torre
- Department of Materials Science and Engineering, Uppsala University, Ångströmlaboratoriet, Box 35, SE-751 03 Uppsala, Sweden
| | - Henry Stopfel
- Department of Materials Science and Engineering, Uppsala University, Ångströmlaboratoriet, Box 35, SE-751 03 Uppsala, Sweden
| | - Peter Svedlindh
- Department of Materials Science and Engineering, Uppsala University, Ångströmlaboratoriet, Box 35, SE-751 03 Uppsala, Sweden
| | - Mattias Strömberg
- Department of Materials Science and Engineering, Uppsala University, Ångströmlaboratoriet, Box 35, SE-751 03 Uppsala, Sweden
| | - Klas Gunnarsson
- Department of Materials Science and Engineering, Uppsala University, Ångströmlaboratoriet, Box 35, SE-751 03 Uppsala, Sweden
| |
Collapse
|
22
|
Dai Y, Han B, Dong L, Zhao J, Cao Y. Recent advances in nanomaterial-enhanced biosensing methods for hepatocellular carcinoma diagnosis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115965] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Ansari S, Ghosh KC, Devan RS, Sen D, Sastry PU, Kolekar YD, Ramana CV. Eco-Friendly Synthesis, Crystal Chemistry, and Magnetic Properties of Manganese-Substituted CoFe 2O 4 Nanoparticles. ACS OMEGA 2020; 5:19315-19330. [PMID: 32803025 PMCID: PMC7424582 DOI: 10.1021/acsomega.9b02492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/17/2020] [Indexed: 06/11/2023]
Abstract
The authors report on the effect of manganese (Mn) substitution on the crystal chemistry, morphology, particle size distribution characteristics, chemical bonding, structure, and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles (NPs) synthesized by a simple, cost-effective, and eco-friendly one-pot aqueous hydrothermal method. Crystal structure analyses indicate that the Mn(II)-substituted cobalt ferrites, Co1-x Mn x Fe2O4 (CMFO, x = 0.0-0.5), were crystalline with a cubic inverse spinel structure (space group Fd 3 m ). The average crystallite size increases from 8 to 14 nm with increasing Mn(II) content; the crystal growth follows an exponential growth function while the lattice parameters follow Vegard's law. Chemical bonding analyses made using Raman spectroscopic studies further confirm the cubic inverse spinel phase. The relative changes in specific vibrational modes related to octahedral sites as a function of Mn content suggest a gradual change of measure of inversion of the ferrite lattice at nanoscale dimensions. Small-angle X-ray scattering and electron microscopy revealed a narrow particle size distribution with the spherical shape morphology of the CMFO NPs. The zero-field-cooled and field-cooled magnetic measurements revealed the superparamagnetic behavior of CMFO NPs at room temperature. The sample with x = 0.3 indicates a lower value of blocking temperature (9.16 K) with the improved (maximum) value of saturation magnetization. The results and the structure-composition-property correlation suggest that the economic, eco-friendly hydrothermal approach can be adopted to process superparamagnetic nanostructured magnetic materials at a relatively lower temperature for practical electronic and electromagnetic device applications.
Collapse
Affiliation(s)
- Sumayya
M. Ansari
- Department
of Physics, Savitribai Phule Pune University, Pune 411007, India
| | - Kartik C. Ghosh
- Department
of Physics, Astronomy and Materials Science, Missouri State University, Springfield, Missouri 65897, United States
| | - Rupesh S. Devan
- Discipline
of Metallurgy Engineering and Materials Science, Indian Institute of Technology, Indore 453552, India
| | - Debasis Sen
- Solid
State Physics Division, Bhabha Atomic Research
Centre, Mumbai 400 085, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Pulya U. Sastry
- Solid
State Physics Division, Bhabha Atomic Research
Centre, Mumbai 400 085, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Yesh D. Kolekar
- Department
of Physics, Savitribai Phule Pune University, Pune 411007, India
| | - C. V. Ramana
- Center for
Advanced Materials Research (CMR), University
of Texas at El Paso, 500 W. Univ. Avenue, El Paso, Texas 79968, United
States
| |
Collapse
|
24
|
Ding X, Li D, Jiang J. Gold-based Inorganic Nanohybrids for Nanomedicine Applications. Theranostics 2020; 10:8061-8079. [PMID: 32724458 PMCID: PMC7381751 DOI: 10.7150/thno.42284] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Noble metal Au nanoparticles have attracted extensive interests in the past decades, due to their size and morphology dependent localized surface plasmon resonances. Their unique optical property, high chemical stability, good biocompatibility, and easy functionalization make them promising candidates for a variety of biomedical applications, including bioimaging, biosensing, and cancer therapy. With the intention of enhancing their optical response in the near infrared window and endowing them with additional magnetic properties, Au nanoparticles have been integrated with other functional nanomaterials that possess complementary attributes, such as copper chalcogenides and magnetic metal oxides. The as constructed hybrid nanostructures are expected to exhibit unconventional properties compared to their separate building units, due to nanoscale interactions between materials with different physicochemical properties, thus broadening the application scope and enhancing the overall performance of the hybrid nanostructures. In this review, we summarize some recent progresses in the design and synthesis of noble metal Au-based hybrid inorganic nanostructures for nanomedicine applications, and the potential and challenges for their clinical translations.
Collapse
|
25
|
Farzin A, Etesami SA, Quint J, Memic A, Tamayol A. Magnetic Nanoparticles in Cancer Therapy and Diagnosis. Adv Healthc Mater 2020; 9:e1901058. [PMID: 32196144 PMCID: PMC7482193 DOI: 10.1002/adhm.201901058] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/15/2020] [Indexed: 12/16/2022]
Abstract
There is urgency for the development of nanomaterials that can meet emerging biomedical needs. Magnetic nanoparticles (MNPs) offer high magnetic moments and surface-area-to-volume ratios that make them attractive for hyperthermia therapy of cancer and targeted drug delivery. Additionally, they can function as contrast agents for magnetic resonance imaging (MRI) and can improve the sensitivity of biosensors and diagnostic tools. Recent advancements in nanotechnology have resulted in the realization of the next generation of MNPs suitable for these and other biomedical applications. This review discusses methods utilized for the fabrication and engineering of MNPs. Recent progress in the use of MNPs for hyperthermia therapy, controlling drug release, MRI, and biosensing is also critically reviewed. Finally, challenges in the field and potential opportunities for the use of MNPs toward improving their properties are discussed.
Collapse
Affiliation(s)
- A. Farzin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - S. Alireza Etesami
- Department of Mechanical Engineering, The University of Memphis. Memphis, TN 38152, USA
| | - Jacob Quint
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE, 68588, USA
| | - Adnan Memic
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
| | - Ali Tamayol
- Division of Engineering in Medicine Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE, 68588, USA
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
| |
Collapse
|
26
|
Gd 3+-nanoparticle-enhanced multivalent biosensing that combines magnetic relaxation switching and magnetic separation. Biosens Bioelectron 2020; 155:112106. [PMID: 32090877 DOI: 10.1016/j.bios.2020.112106] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/07/2020] [Accepted: 02/17/2020] [Indexed: 11/23/2022]
Abstract
In this work, we developed a multivalent magnetic biosensing strategy by integrating magnetic separation and magnetic relaxation switching (MRS) where Gd3+-loaded magnetic nanoparticles acted as the probe. As a transition metal ion, Gd3+ has multiple unpaired electrons in the d-orbitals that can induce a strong fluctuating magnetic field and thus can reduce the transverse relaxation time (T2), contributing to a strong magnetic signal. By loading Gd3+ onto magnetic nanoparticles, we prepared a multivalent magnetic probe that combined magnetic separation and MRS for the signal readout. This multivalent sensing technique simplified the procedures and greatly enhanced the detection sensitivity of conventional MRS assays. A sensitive detection of ractopamine in real samples has been demonstrated with this multivalent sensing technique. The magnetic probe enabled the detection of ractopamine in a linear range from 0.1 to 100 ng/mL and the limit of detection was 20 pg/mL, a 25-fold enhancement in the sensitivity compared with conventional MRS assays. This Gd3+-nanoparticle-mediated MRS biosensor is a potential magnetic platform to detect trace levels of targets in complex samples.
Collapse
|
27
|
Lim CZJ, Zhang L, Zhang Y, Sundah NR, Shao H. New Sensors for Extracellular Vesicles: Insights on Constituent and Associated Biomarkers. ACS Sens 2020; 5:4-12. [PMID: 31888329 DOI: 10.1021/acssensors.9b02165] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Extracellular vesicles (EVs) are diverse, nanoscale membrane vesicles released by cells into the circulation. As an emerging class of circulating biomarkers, EVs contain a trove of molecular information and play important roles in mediating intercellular communication. These EV molecular cargoes are differentially organized in the vesicles; they could be inherited from the parent cells or bound to the EV membrane through surface interactions. While the inherited constituents could serve as cell surrogate biomarkers, extravesicular association could reflect structural states of the bound molecules, revealing distinct subpopulations with different biophysical and/or biochemical properties. Despite the clinical potential of EVs and their diverse contents, conventional sensing technologies have limited compatibility to reveal nanoscale EV features. Complementary analytical platforms are being developed to address these technical challenges and expand the biomedical applications of EVs, to establish novel correlations and empower new diagnostics. This article provides a perspective on recent developments in sensor technologies to profile the diverse contents-different molecular types, quantities, and organizational states-in extracellular vesicles.
Collapse
Affiliation(s)
- Carine Z. J. Lim
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 117599
| | - Li Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 117599
| | - Yan Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 117599
| | - Noah R. Sundah
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 117599
| | - Huilin Shao
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 117599
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| |
Collapse
|
28
|
Khramtsov P, Kropaneva M, Bochkova M, Timganova V, Zamorina S, Rayev M. Solid-phase nuclear magnetic resonance immunoassay for the prostate-specific antigen by using protein-coated magnetic nanoparticles. Mikrochim Acta 2019; 186:768. [PMID: 31713740 DOI: 10.1007/s00604-019-3925-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/12/2019] [Indexed: 10/25/2022]
Abstract
A solid phase NMR-based sandwich immunoassay for the prostate-specific antigen (PSA) is presented. Carbon-encapsulated iron nanoparticles were functionalized with bovine serum albumin, coupled to monoclonal antibodies, and then used as magnetic labels. A nitrocellulose membrane with 8-μm pores was coated with capture antibodies and subsequently incubated with a serum sample and a suspension of the nanoconjugate. Test strips were placed in a portable homemade NMR relaxometer. Magnetic nanoparticles attached to nitrocellulose decrease the T2 relaxation time of the water protons located inside the pores of the membrane. Thus, T2 is inversely proportional to the concentration of the antigen (PSA) in the sample. The assay can be performed within 4 h. The detection limit is 0.44 ng mL-1. Kallikrein 2, human chorionic gonadotropin, and α-fetoprotein do not interfere. Graphical abstractSchematic representation of NMR relaxometry-based sandwich dot blot immunoassay of a prostate-specific antigen (PSA). Magnetic nanoparticles bound to immunosorbent decrease the transverse relaxation times (T2) of the water protons located within the pores of the membrane. RF coil: radiofrequency coil.
Collapse
Affiliation(s)
- Pavel Khramtsov
- Laboratory of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences, branch of PSRC UB RAS, 13 Golev Str., Perm 614081, Russia. .,Department of Microbiology and Immunology, Biology Faculty, Perm State National Research University, 15 Bukirev Str., Perm 614000, Russia.
| | - Maria Kropaneva
- Laboratory of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences, branch of PSRC UB RAS, 13 Golev Str., Perm 614081, Russia
| | - Maria Bochkova
- Laboratory of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences, branch of PSRC UB RAS, 13 Golev Str., Perm 614081, Russia
| | - Valeria Timganova
- Laboratory of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences, branch of PSRC UB RAS, 13 Golev Str., Perm 614081, Russia
| | - Svetlana Zamorina
- Laboratory of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences, branch of PSRC UB RAS, 13 Golev Str., Perm 614081, Russia.,Department of Microbiology and Immunology, Biology Faculty, Perm State National Research University, 15 Bukirev Str., Perm 614000, Russia
| | - Mikhail Rayev
- Laboratory of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences, branch of PSRC UB RAS, 13 Golev Str., Perm 614081, Russia.,Department of Microbiology and Immunology, Biology Faculty, Perm State National Research University, 15 Bukirev Str., Perm 614000, Russia
| |
Collapse
|
29
|
Ognjanović M, Radović M, Mirković M, Prijović Ž, Puerto Morales MD, Čeh M, Vranješ-Đurić S, Antić B. 99mTc-, 90Y-, and 177Lu-Labeled Iron Oxide Nanoflowers Designed for Potential Use in Dual Magnetic Hyperthermia/Radionuclide Cancer Therapy and Diagnosis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41109-41117. [PMID: 31610125 DOI: 10.1021/acsami.9b16428] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Development of a complex based on iron oxide nanoparticles (IONPs) for diagnosis and dual magnetic hyperthermia/radionuclide cancer therapy accomplishing high yields of radiolabeling and great magnetic heat induction is still a challenge. We report here the synthesis of citric acid, poly(acrylic acid) (PAA) and poly(ethylene glycol) coated IONPs and their labeling with three radionuclides, namely, technetium (99mTc), yttrium (90Y), and lutetium (177Lu), aiming at potential use in cancer diagnosis and therapy. Polyol-synthesized IONPs are a flowerlike structure with 13.5 nm spherically shaped cores and 24.8 nm diameter. PAA-coated nanoparticles (PAA@IONP) showed the best characteristics such as easy radiolabeling with very high yields (>97.5%) with all three radionuclides, and excellent in vitro stabilities with less than 10% of radionuclides detaching after 24 h. Heating ability of PAA@IONP in an alternating external magnetic field showed intrinsic loss power value of 7.3 nH m2/kg, which is one of higher reported values. Additionally, PAA@IONP itself presented no significant cytotoxicity to the CT-26 cancer cells, reaching IC50 at 60 μg/mL. However, under the external magnetic field, they show hyperthermia-mediated cells killing, which correlated with the magnetic field strength and time of exposure. Since PAA@IONP are easy to prepare, biocompatible, and with excellent magnetic heat induction, these nanoparticles radiolabeled with high-energy beta emitters 90Y and 177Lu have valuable potential as agent for dual magnetic hyperthermia/radionuclide therapy, while radiolabeled with 99mTc could be used in diagnostic imaging.
Collapse
Affiliation(s)
- Miloš Ognjanović
- The Vinca Institute of Nuclear Sciences , University of Belgrade , Mike Petrovića Alasa 12-14 , 11001 Belgrade , Serbia
| | - Magdalena Radović
- The Vinca Institute of Nuclear Sciences , University of Belgrade , Mike Petrovića Alasa 12-14 , 11001 Belgrade , Serbia
| | - Marija Mirković
- The Vinca Institute of Nuclear Sciences , University of Belgrade , Mike Petrovića Alasa 12-14 , 11001 Belgrade , Serbia
| | - Željko Prijović
- The Vinca Institute of Nuclear Sciences , University of Belgrade , Mike Petrovića Alasa 12-14 , 11001 Belgrade , Serbia
| | - Maria Del Puerto Morales
- Instituto de Ciencia de Materiales de Madrid , CSIC , Campus de Cantoblanco , 28049 Madrid , Spain
| | - Miran Čeh
- Department for Nanostructured Materials , Jožef Štefan Institute , Jamova 39 , 1000 Ljubljana , Slovenia
| | - Sanja Vranješ-Đurić
- The Vinca Institute of Nuclear Sciences , University of Belgrade , Mike Petrovića Alasa 12-14 , 11001 Belgrade , Serbia
| | - Bratislav Antić
- The Vinca Institute of Nuclear Sciences , University of Belgrade , Mike Petrovića Alasa 12-14 , 11001 Belgrade , Serbia
| |
Collapse
|
30
|
Liu J, Mosavati B, Oleinikov AV, Du E. Biosensors for Detection of Human Placental Pathologies: A Review of Emerging Technologies and Current Trends. Transl Res 2019; 213:23-49. [PMID: 31170377 PMCID: PMC6783355 DOI: 10.1016/j.trsl.2019.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
Substantial growth in the biosensor research has enabled novel, sensitive and point-of-care diagnosis of human diseases in the last decade. This paper presents an overview of the research in the field of biosensors that can potentially predict and diagnosis of common placental pathologies. A survey of biomarkers in maternal circulation and their characterization methods is presented, including markers of oxidative stress, angiogenic factors, placental debris, and inflammatory biomarkers that are associated with various pathophysiological processes in the context of pregnancy complications. Novel biosensors enabled by microfluidics technology and nanomaterials is then reviewed. Representative designs of plasmonic and electrochemical biosensors for highly sensitive and multiplexed detection of biomarkers, as well as on-chip sample preparation and sensing for automatic biomarker detection are illustrated. New trends in organ-on-a-chip based placental disease models are highlighted to illustrate the capability of these in vitro disease models in better understanding the complex pathophysiological processes, including mass transfer across the placental barrier, oxidative stress, inflammation, and malaria infection. Biosensor technologies that can be potentially embedded in the placental models for real time, label-free monitoring of these processes and events are suggested. Merger of cell culture in microfluidics and biosensing can provide significant potential for new developments in advanced placental models, and tools for diagnosis, drug screening and efficacy testing.
Collapse
Affiliation(s)
- Jia Liu
- College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida
| | - Babak Mosavati
- College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida
| | - Andrew V Oleinikov
- Charles E. Schmidt College of Medicine, Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida
| | - E Du
- College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida; Charles E. Schmidt College of Science, Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida.
| |
Collapse
|
31
|
Ma C, Jiang F, Ma Y, Wang J, Li H, Zhang J. Isolation and Detection Technologies of Extracellular Vesicles and Application on Cancer Diagnostic. Dose Response 2019; 17:1559325819891004. [PMID: 31839757 PMCID: PMC6902397 DOI: 10.1177/1559325819891004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/04/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022] Open
Abstract
The vast majority of cancers are treatable when diagnosed early. However, due to the elusive trace and the limitation of traditional biopsies, most cancers have already spread widely and are at advanced stages when they are first diagnosed, causing ever-increasing mortality in the past decades. Hence, developing reliable methods for early detection and diagnosis of cancer is indispensable. Recently, extracellular vesicles (EVs), as circulating phospholipid vesicles secreted by cells, are found to play significant roles in the intercellular communication as well as the setup of tumor microenvironments and have been identified as one of the key factors in the next-generation technique for cancer diagnosis. However, EVs present in complex biofluids that contain various contaminations such as nonvesicle proteins and nonspecific EVs, resulting in the interference of screening for desired biomarkers. Therefore, applicable isolation and enrichment methods that guarantee scale-up of sample volume, purity, speed, yield, and tumor specificity are necessary. In this review, we introduce current technologies for EV separation and summarize biomarkers toward EV-based cancer liquid biopsy. In conclusion, a novel systematic isolation method that guarantees high purity, recovery rate, and tumor specificity is still missing. Besides that, a dual-model EV-based clinical trial system includes isolation and detection is a hot trend in the future due to efficient point-of-care needs. In addition, cancer-related biomarkers discovery and biomarker database establishment are essential objectives in the research field for diagnostic settings.
Collapse
Affiliation(s)
- Chunyan Ma
- Department of Neurology, The First People’s Hospital of Wenling, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Fan Jiang
- Department of Rehabilitation Medicine, The First People’s Hospital of Wenling, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Yifan Ma
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Jinqiao Wang
- Department of Rehabilitation Medicine, The First People’s Hospital of Wenling, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Hongjuan Li
- Department of Rehabilitation Medicine, The First People’s Hospital of Wenling, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Jingjing Zhang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
32
|
Banerjee T, Tummala T, Elliott R, Jain V, Brantley W, Hadorn L, Santra S. Multimodal Magneto-Fluorescent Nanosensor for Rapid and Specific Detection of Blood-Borne Pathogens. ACS APPLIED NANO MATERIALS 2019; 2:5587-5593. [PMID: 34222829 PMCID: PMC8247792 DOI: 10.1021/acsanm.9b01158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Detection of bacterial contaminants in blood and platelet concentrates (PCs) continues to be challenging in clinical settings despite available current testing methods. At the same time, it is important to detect the low bacterial contaminants present at the time of transfusion. Herein, we report the design and synthesis of a dual-modal magneto-fluorescent nanosensor (MFnS) by integrating magnetic relaxation and fluorescence modalities for the wide-range detection of blood-borne pathogens. In this study, functional MFnS are designed to specifically detect Staphylococcus epidermidis and Escherichia coli, two of the predominant bacterial contaminants of PCs. Specific interaction between the target pathogen and functional MFnS resulted in the change of water proton's magnetic relaxation time (T2 MR), indicative of sensitive detection of the target bacteria from low to high colony forming unit (CFU). In addition, the acquired MR signal of MFnS further facilitated the quantitative assessment of the slow and fast growth kinetics of target pathogens. Moreover, the presence of fluorescence modality in MFnS allowed for the detection of multi-contaminants. The bacterial detection was also performed in complex media including whole blood and platelet concentrates, which further demonstrated for it's robust detection sensitivity. Overall, our study indicated that the designer MFnS will have potential for the wide-range detection of blood-borne pathogens, and features desirable qualities including timeliness, sensitivity and, specificity.
Collapse
Affiliation(s)
- Tuhina Banerjee
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Tanuja Tummala
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Rebekah Elliott
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Vedant Jain
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Wesley Brantley
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Laci Hadorn
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Santimukul Santra
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| |
Collapse
|
33
|
Magnetic Nanoclusters Coated with Albumin, Casein, and Gelatin: Size Tuning, Relaxivity, Stability, Protein Corona, and Application in Nuclear Magnetic Resonance Immunoassay. NANOMATERIALS 2019; 9:nano9091345. [PMID: 31546937 PMCID: PMC6781099 DOI: 10.3390/nano9091345] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 02/08/2023]
Abstract
The surface functionalization of magnetic nanoparticles improves their physicochemical properties and applicability in biomedicine. Natural polymers, including proteins, are prospective coatings capable of increasing the stability, biocompatibility, and transverse relaxivity (r2) of magnetic nanoparticles. In this work, we functionalized the nanoclusters of carbon-coated iron nanoparticles with four proteins: bovine serum albumin, casein, and gelatins A and B, and we conducted a comprehensive comparative study of their properties essential to applications in biosensing. First, we examined the influence of environmental parameters on the size of prepared nanoclusters and synthesized protein-coated nanoclusters with a tunable size. Second, we showed that protein coating does not significantly influence the r2 relaxivity of clustered nanoparticles; however, the uniform distribution of individual nanoparticles inside the protein coating facilitates increased relaxivity. Third, we demonstrated the applicability of the obtained nanoclusters in biosensing by the development of a nuclear-magnetic-resonance-based immunoassay for the quantification of antibodies against tetanus toxoid. Fourth, the protein coronas of nanoclusters were studied using SDS-PAGE and Bradford protein assay. Finally, we compared the colloidal stability at various pH values and ionic strengths and in relevant complex media (i.e., blood serum, plasma, milk, juice, beer, and red wine), as well as the heat stability, resistance to proteolytic digestion, and shelf-life of protein-coated nanoclusters.
Collapse
|
34
|
Johnston ST, Faria M, Crampin EJ. An analytical approach for quantifying the influence of nanoparticle polydispersity on cellular delivered dose. J R Soc Interface 2019; 15:rsif.2018.0364. [PMID: 30045893 PMCID: PMC6073649 DOI: 10.1098/rsif.2018.0364] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/04/2018] [Indexed: 12/17/2022] Open
Abstract
Nanoparticles provide a promising approach for the targeted delivery of therapeutic, diagnostic and imaging agents in the body. However, it is not yet fully understood how the physico-chemical properties of the nanoparticles influence cellular association and uptake. Cellular association experiments are routinely performed in an effort to determine how nanoparticle properties impact the rate of nanoparticle–cell association. To compare experiments in a meaningful manner, the association data must be normalized by the amount of nanoparticles that arrive at the cells, a measure referred to as the delivered dose. The delivered dose is calculated from a model of nanoparticle transport through fluid. A standard assumption is that all nanoparticles within the population are monodisperse, namely the nanoparticles have the same physico-chemical properties. We present a semi-analytic solution to a modified model of nanoparticle transport that allows for the nanoparticle population to be polydisperse. This solution allows us to efficiently analyse the influence of polydispersity on the delivered dose. Combining characterization data obtained from a range of commonly used nanoparticles and our model, we find that the delivered dose changes by more than a factor of 2 if realistic amounts of polydispersity are considered.
Collapse
Affiliation(s)
- Stuart T Johnston
- Systems Biology Laboratory, School of Mathematics and Statistics, and Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia .,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Melbourne School of Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Matthew Faria
- Systems Biology Laboratory, School of Mathematics and Statistics, and Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Melbourne School of Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Edmund J Crampin
- Systems Biology Laboratory, School of Mathematics and Statistics, and Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Melbourne School of Engineering, University of Melbourne, Parkville, Victoria 3010, Australia.,School of Medicine, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
35
|
Jajan LHG, Hosseini SN, Ghorbani M, Mousavi SF, Ghareyazie B, Abolhassani M. Effects of Environmental Conditions on High-Yield Magnetosome Production by Magnetospirillum gryphiswaldense MSR-1. IRANIAN BIOMEDICAL JOURNAL 2019. [PMID: 30797225 PMCID: PMC6462302 DOI: 10.29252/.23.3.209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Background Magnetotactic bacteria are a heterogeneous group of Gram-negative prokaryote cells that produce linear chains of magnetic particles called magnetosomes, intracellular organelles composed of magnetic iron particles. Many important applications have been defined for magnetic nanoparticles in biotechnology, such as cell separation applications, as well as acting as carriers of enzymes, antibodies, or anti-cancer drugs. Since the bacterial growth is difficult and the yield of magnetosome production is low, the application of magnetosome has not been developed on a commercial scale. Methods Magnetospirillum gryphiswaldense strain MSR-1 was used in a modified current culture medium supplemented by different concentrations of oxygen, iron, carbon, and nitrogen, to increase the yield of magnetosomes. Results Our improved MSR-1 culture medium increased magnetosome yield, magnetosome number per bacterial cell, magnetic response, and bacterial cell growth yield significantly. The yield of magnetosome increased approximately four times. The optimized culture medium containing 25 mM of Na-pyruvate, 40 mM of NaNO3, 200 µM of ferrous sulfate, and 5-10 ppm of dissolved oxygen (DO) resulted in 186.67 mg of magnetosome per liter of culture medium. The iron uptake increased significantly, and the magnetic response of the bacteria to the magnetic field was higher than threefold as compared to the previously reported procedures. Conclusion This technique not only decreases the cultivation time but also reduces the production cost. In this modified method, the iron and DO are the major factors affecting the production of magnetosome by M. gryphiswaldense strain MSR-1. However, refining this technique will enable a further yield of magnetosome and cell density.
Collapse
Affiliation(s)
- Leila Hatami-Giklou Jajan
- Department of Research and Development, Research and Production Complex, Pasteur Institute of Iran, Karaj, Iran
| | - Seyed Nezamedin Hosseini
- Department of Research and Development, Research and Production Complex, Pasteur Institute of Iran, Karaj, Iran
| | - Masoud Ghorbani
- Department of Research and Development, Research and Production Complex, Pasteur Institute of Iran, Karaj, Iran
| | | | - Behzad Ghareyazie
- Agriculture Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohsen Abolhassani
- Hybridoma Lab., Department of immunology, Pasteur Institute of Iran, Tehran, Iran,Corresponding Author: Mohsen Abolhassani Hybridoma Lab. Dept. of Immunology, Pasteur Institute of Iran, Tehran, Iran; E-mail:
| |
Collapse
|
36
|
Density functional theory study towards investigating the adsorption properties of the γ-Fe2O3 nanoparticles as a nanocarrier for delivery of Flutamide anticancer drug. ADSORPTION 2019. [DOI: 10.1007/s10450-019-00056-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Silva RN, Vijayan AN, Westbrook E, Yu Z, Zhang P. Nanoparticle assisted nuclear relaxation-based oligonucleotide detection. Anal Chim Acta 2019; 1062:118-123. [PMID: 30947987 DOI: 10.1016/j.aca.2019.02.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/15/2018] [Accepted: 02/19/2019] [Indexed: 12/01/2022]
Abstract
We present a proof-of-concept "on-off" detection scheme, which uses gadolinium phthalocyanine (GdTcPc)-grafted silica nanoparticles as paramagnetic centers, capable of modifying the transverse relaxation time (T2) of water protons in solution. A DNA strand (as probe) was conjugated to the GdTcPc to act as a recognition element. In the presence of the target DNA, which was complementary to the probe, an increase in the T2 value was detected, with magnitude proportional to the target DNA concentration. The linear range was observed from 30 to 140 nM, with limit of detection of 15 nM. The developed nuclear relaxation-based detection scheme is shown to be a simple, fast and selective method to detect DNA and could be useful in point-of-care diagnostic applications.
Collapse
Affiliation(s)
- Rebecca N Silva
- Department of Chemistry, University of Cincinnati, OH, 45221, USA
| | - Anjaly N Vijayan
- Department of Chemistry, University of Cincinnati, OH, 45221, USA
| | - Emily Westbrook
- Department of Chemistry, University of Cincinnati, OH, 45221, USA
| | - Zhao Yu
- Department of Chemistry, University of Cincinnati, OH, 45221, USA
| | - Peng Zhang
- Department of Chemistry, University of Cincinnati, OH, 45221, USA.
| |
Collapse
|
38
|
Huber S, Min C, Staat C, Oh J, Castro CM, Haase A, Weissleder R, Gleich B, Lee H. Multichannel digital heteronuclear magnetic resonance biosensor. Biosens Bioelectron 2019; 126:240-248. [PMID: 30445298 PMCID: PMC6483068 DOI: 10.1016/j.bios.2018.10.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 01/05/2023]
Abstract
Low-field, mobile NMR systems are increasingly used across diverse fields, including medical diagnostics, food quality control, and forensics. The throughput and functionality of these systems, however, are limited due to their conventional single-channel detection: one NMR probe exclusively uses an NMR console at any given time. Under this design, multi-channel detection could only be accomplished by either serially accessing individual probes or stacking up multiple copies of NMR electronics; this approach still retains limitations such as long assay times and increased system complexity. Here we present a new scalable architecture, HERMES (hetero-nuclear resonance multichannel electronic system), for versatile, high-throughput NMR analyses. HERMES exploits the concept of software-defined radio by virtualizing NMR electronics in the digital domain. This strategy i) creates multiple NMR consoles without adding extra hardware; ii) acquires signals from multiple NMR channels in parallel; and iii) operates in wide frequency ranges. All of these functions could be realized on-demand in a single compact device. We interfaced HERMES with an array of NMR probes; the combined system simultaneously measured NMR relaxation from multiple samples and resolved spectra of hetero-nuclear spins (1H, 19F, 13C). For potential diagnostic uses, we applied the system to detect dengue fever and molecularly profile cancer cells through multi-channel protein assays. HERMES holds promise as a powerful analytical tool that enables rapid, reconfigurable, and parallel detection.
Collapse
Affiliation(s)
- Stephan Huber
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Munich School of BioEngineering (MSB), Technical University Munich, 85748 Garching, Germany
| | - Changwook Min
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA 02139, USA
| | - Christoph Staat
- Munich School of BioEngineering (MSB), Technical University Munich, 85748 Garching, Germany
| | - Juhyun Oh
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Cesar M Castro
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Axel Haase
- Munich School of BioEngineering (MSB), Technical University Munich, 85748 Garching, Germany
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02114, USA
| | - Bernhard Gleich
- Munich School of BioEngineering (MSB), Technical University Munich, 85748 Garching, Germany
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea.
| |
Collapse
|
39
|
Zhou Z, Yang L, Gao J, Chen X. Structure-Relaxivity Relationships of Magnetic Nanoparticles for Magnetic Resonance Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804567. [PMID: 30600553 PMCID: PMC6392011 DOI: 10.1002/adma.201804567] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/17/2018] [Indexed: 05/17/2023]
Abstract
Magnetic nanoparticles (MNPs) have been extensively explored as magnetic resonance imaging (MRI) contrast agents. With the increasing complexity in the structure of modern MNPs, the classical Solomon-Bloembergen-Morgan and the outer-sphere quantum mechanical theories established on simplistic models have encountered limitations for defining the emergent phenomena of relaxation enhancement in MRI. Recent progress in probing MRI relaxivity of MNPs based on structural features at the molecular and atomic scales is reviewed, namely, the structure-relaxivity relationships, including size, shape, crystal structure, surface modification, and assembled structure. A special emphasis is placed on bridging the gaps between classical simplistic models and modern MNPs with elegant structural complexity. In the pursuit of novel MRI contrast agents, it is hoped that this review will spur the critical thinking for design and engineering of novel MNPs for MRI applications across a broad spectrum of research fields.
Collapse
Affiliation(s)
- Zijian Zhou
- † State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- ‡ Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lijiao Yang
- † State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jinhao Gao
- † State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoyuan Chen
- ‡ Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
40
|
Nasseri B, Soleimani N, Rabiee N, Kalbasi A, Karimi M, Hamblin MR. Point-of-care microfluidic devices for pathogen detection. Biosens Bioelectron 2018; 117:112-128. [PMID: 29890393 PMCID: PMC6082696 DOI: 10.1016/j.bios.2018.05.050] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 12/22/2022]
Abstract
The rapid diagnosis of pathogens is crucial in the early stages of treatment of diseases where the choice of the correct drug can be critical. Although conventional cell culture-based techniques have been widely utilized in clinical applications, newly introduced optical-based, microfluidic chips are becoming attractive. The advantages of the novel methods compared to the conventional techniques comprise more rapid diagnosis, lower consumption of patient sample and valuable reagents, easy application, and high reproducibility in the detection of pathogens. The miniaturized channels used in microfluidic systems simulate interactions between cells and reagents in microchannel structures, and evaluate the interactions between biological moieties to enable diagnosis of microorganisms. The overarching goal of this review is to provide a summary of the development of microfluidic biochips and to comprehensively discuss different applications of microfluidic biochips in the detection of pathogens. New types of microfluidic systems and novel techniques for viral pathogen detection (e.g. HIV, HVB, ZIKV) are covered. Next generation techniques relying on high sensitivity, specificity, lower consumption of precious reagents, suggest that rapid generation of results can be achieved via optical based detection of bacterial cells. The introduction of smartphones to replace microscope based observation has substantially improved cell detection, and allows facile data processing and transfer for presentation purposes.
Collapse
Affiliation(s)
- Behzad Nasseri
- Departments of Microbiology and Microbial Biotechnology and Nanobiotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran; Chemical Engineering Deptartment and Bioengineeing Division, Hacettepe University, 06800 Beytepe, Ankara, Turkey.
| | - Neda Soleimani
- Departments of Microbiology and Microbial Biotechnology and Nanobiotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran.
| | - Alireza Kalbasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
41
|
Chen Y, Ding X, Zhang Y, Natalia A, Sun X, Wang Z, Shao H. Design and synthesis of magnetic nanoparticles for biomedical diagnostics. Quant Imaging Med Surg 2018; 8:957-970. [PMID: 30505724 DOI: 10.21037/qims.2018.10.07] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Sensitive and quantitative characterization of clinically relevant biomarkers can facilitate disease diagnosis and treatment evaluation. Magnetic nanomaterials and their biosensing strategies have recently received considerable attention. Magnetic signals experience little interference from native biological background as most biological molecules have negligible magnetic susceptibilities and thus appear transparent to external magnetic fields. Because of this unique property, magnetic sensing can be applied to both in vivo deep tissue imaging as well as ex vivo point-of-care diagnostics. To exploit this mode of magnetic detection, new advancements in both magnetic material syntheses and sensing technologies have been made. This review focuses on recent developments of magnetic nanomaterials as image contrast agents and diagnostic sensors. These developments have not only enabled precise control of magnetic nanomaterial properties but also expanded the reach of magnetic detection for biomedical diagnostics.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117599, Singapore.,Biomedical Institute for Global Health Research and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Xianguang Ding
- Biomedical Institute for Global Health Research and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Yan Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117599, Singapore.,Biomedical Institute for Global Health Research and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Auginia Natalia
- Biomedical Institute for Global Health Research and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Xuecheng Sun
- Biomedical Institute for Global Health Research and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Zhigang Wang
- Biomedical Institute for Global Health Research and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Huilin Shao
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117599, Singapore.,Biomedical Institute for Global Health Research and Technology, National University of Singapore, Singapore 117599, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore.,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
42
|
Xianyu Y, Wang Q, Chen Y. Magnetic particles-enabled biosensors for point-of-care testing. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Li D, Deng M, Yu Z, Liu W, Zhou G, Li W, Wang X, Yang DP, Zhang W. Biocompatible and Stable GO-Coated Fe3O4 Nanocomposite: A Robust Drug Delivery Carrier for Simultaneous Tumor MR Imaging and Targeted Therapy. ACS Biomater Sci Eng 2018; 4:2143-2154. [PMID: 33435038 DOI: 10.1021/acsbiomaterials.8b00029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dong Li
- Department of
Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory
of Tissue Engineering, National Tissue Engineering Center of China, Shanghai 200011, China
| | - Mingwu Deng
- Department of
Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory
of Tissue Engineering, National Tissue Engineering Center of China, Shanghai 200011, China
| | - Ziyou Yu
- Department of
Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory
of Tissue Engineering, National Tissue Engineering Center of China, Shanghai 200011, China
| | - Wei Liu
- Department of
Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory
of Tissue Engineering, National Tissue Engineering Center of China, Shanghai 200011, China
| | - Guangdong Zhou
- Department of
Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory
of Tissue Engineering, National Tissue Engineering Center of China, Shanghai 200011, China
| | - Wei Li
- Department of
Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory
of Tissue Engineering, National Tissue Engineering Center of China, Shanghai 200011, China
| | - Xiansong Wang
- Department of
Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory
of Tissue Engineering, National Tissue Engineering Center of China, Shanghai 200011, China
| | - Da-Peng Yang
- Fujian Province Key Laboratory for Preparation and Function, Development of Active Substances from Marine Algae, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, P. R. China
| | - Wenjie Zhang
- Department of
Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory
of Tissue Engineering, National Tissue Engineering Center of China, Shanghai 200011, China
| |
Collapse
|
44
|
Zhang W, Liu L, Chen H, Hu K, Delahunty I, Gao S, Xie J. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents. Theranostics 2018; 8:2521-2548. [PMID: 29721097 PMCID: PMC5928907 DOI: 10.7150/thno.23789] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/09/2018] [Indexed: 12/23/2022] Open
Abstract
Magnetic resonance imaging (MRI) is one of the most widely used diagnostic tools in the clinic. To improve imaging quality, MRI contrast agents, which can modulate local T1 and T2 relaxation times, are often injected prior to or during MRI scans. However, clinically used contrast agents, including Gd3+-based chelates and iron oxide nanoparticles (IONPs), afford mediocre contrast abilities. To address this issue, there has been extensive research on developing alternative MRI contrast agents with superior r1 and r2 relaxivities. These efforts are facilitated by the fast progress in nanotechnology, which allows for preparation of magnetic nanoparticles (NPs) with varied size, shape, crystallinity, and composition. Studies suggest that surface coatings can also largely affect T1 and T2 relaxations and can be tailored in favor of a high r1 or r2. However, the surface impact of NPs has been less emphasized. Herein, we review recent progress on developing NP-based T1 and T2 contrast agents, with a focus on the surface impact.
Collapse
Affiliation(s)
- Weizhong Zhang
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Lin Liu
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, ErDao District, Changchun 13033, China
| | - Hongmin Chen
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Kai Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ian Delahunty
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Shi Gao
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, ErDao District, Changchun 13033, China
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Bio-Imaging Research Center, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
45
|
Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H. New Technologies for Analysis of Extracellular Vesicles. Chem Rev 2018; 118:1917-1950. [PMID: 29384376 PMCID: PMC6029891 DOI: 10.1021/acs.chemrev.7b00534] [Citation(s) in RCA: 1091] [Impact Index Per Article: 155.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) are diverse, nanoscale membrane vesicles actively released by cells. Similar-sized vesicles can be further classified (e.g., exosomes, microvesicles) based on their biogenesis, size, and biophysical properties. Although initially thought to be cellular debris, and thus under-appreciated, EVs are now increasingly recognized as important vehicles of intercellular communication and circulating biomarkers for disease diagnoses and prognosis. Despite their clinical potential, the lack of sensitive preparatory and analytical technologies for EVs poses a barrier to clinical translation. New analytical platforms including molecular ones are thus actively being developed to address these challenges. Recent advances in the field are expected to have far-reaching impact in both basic and translational studies. This article aims to present a comprehensive and critical overview of emerging analytical technologies for EV detection and their clinical applications.
Collapse
Affiliation(s)
- Huilin Shao
- Departments of Biomedical Engineering and Surgery, National University of Singapore
- Biomedical Institute for Global Health Research and Technology, National University of Singapore
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital
- Department of Radiology, Massachusetts General Hospital
| | - Cesar M. Castro
- Center for Systems Biology, Massachusetts General Hospital
- Department of Medicine, Massachusetts General Hospital
| | - Xandra Breakefield
- Department of Radiology, Massachusetts General Hospital
- Department of Neurology, Massachusetts General Hospital
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital
- Department of Radiology, Massachusetts General Hospital
- Department of Systems Biology, Harvard Medical School
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital
- Department of Radiology, Massachusetts General Hospital
| |
Collapse
|
46
|
He WL, Zhang WK, Xu H, Li LH, Yang Z, Cao H, Wang D, Zheng ZG, Yang H. Preparation and optical properties of Fe 3O 4 nanoparticles-doped blue phase liquid crystal. Phys Chem Chem Phys 2018; 18:29028-29032. [PMID: 27752664 DOI: 10.1039/c6cp05421h] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The magnetic Fe3O4 nanoparticle-doped blue phase liquid crystal (BPLC) was found to have a relatively strong contrast ratio in magnetic-addressed display performance compared to the composites in other phases; this is a new application of the BPLC and a way to prepare a new type of power-free magnetically-driven LC flexible display.
Collapse
Affiliation(s)
- Wan-Li He
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Wei-Kai Zhang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Huan Xu
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Li-Hao Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Zhou Yang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Hui Cao
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Dong Wang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Zhi-Gang Zheng
- Department of Physics, East China University of Science and Technology, Shanghai 200237, China
| | - Huai Yang
- Department of Materials Science and Technology, College of Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
47
|
Shlapa Y, Solopan S, Belous A, Tovstolytkin A. Effect of Synthesis Method of La 1 - xSr x MnO 3 Manganite Nanoparticles on Their Properties. NANOSCALE RESEARCH LETTERS 2018; 13:13. [PMID: 29327154 PMCID: PMC5764900 DOI: 10.1186/s11671-017-2431-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/29/2017] [Indexed: 05/23/2023]
Abstract
Nanoparticles of lanthanum-strontium manganite were synthesized via different methods, namely, sol-gel method, precipitation from non-aqueous solution, and precipitation from reversal microemulsions. It was shown that the use of organic compounds and non-aqueous media allowed significantly decreasing of the crystallization temperature of nanoparticles, and the single-phased crystalline product was formed in one stage. Morphology and properties of nanoparticles depended on the method and conditions of the synthesis. The heating efficiency directly depended on the change in the magnetic parameters of nanoparticles, especially on the magnetization. Performed studies showed that each of these methods of synthesis can be used to obtain weakly agglomerated manganite nanoparticles; however, particles synthesized via sol-gel method are more promising for use as hyperthermia inducers.PACS: 61.46.Df 75.75.Cd 81.20. Fw.
Collapse
Affiliation(s)
- Yulia Shlapa
- V. I. Vernadskii Institute of General and Inorganic Chemistry of the NAS of Ukraine, 142, Palladina ave., 32/34, Kiev, 03680 Ukraine
| | - Sergii Solopan
- V. I. Vernadskii Institute of General and Inorganic Chemistry of the NAS of Ukraine, 142, Palladina ave., 32/34, Kiev, 03680 Ukraine
| | - Anatolii Belous
- V. I. Vernadskii Institute of General and Inorganic Chemistry of the NAS of Ukraine, 142, Palladina ave., 32/34, Kiev, 03680 Ukraine
| | - Alexandr Tovstolytkin
- Institute of Magnetism of the NAS of Ukraine and MES of Ukraine, 36-b Vernadsky Ave., Kiev, 03142 Ukraine
| |
Collapse
|
48
|
Blümich B, Singh K. Desktop NMR and Its Applications From Materials Science To Organic Chemistry. Angew Chem Int Ed Engl 2017; 57:6996-7010. [PMID: 29230908 DOI: 10.1002/anie.201707084] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Indexed: 12/19/2022]
Abstract
NMR spectroscopy is an indispensable method of analysis in chemistry, which until recently suffered from high demands for space, high costs for acquisition and maintenance, and operational complexity. This has changed with the introduction of compact NMR spectrometers suitable for small-molecule analysis on the chemical workbench. These spectrometers contain permanent magnets giving rise to proton NMR frequencies between 40 and 80 MHz. The enabling technology is to make small permanent magnets with homogeneous fields. Tabletop instruments with inhomogeneous fields have been in use for over 40 years for characterizing food and hydrogen-containing materials by relaxation and diffusion measurements. Related NMR instruments measure these parameters in the stray field outside the magnet. They are used to inspect the borehole walls of oil wells and to test objects nondestructively. The state-of-the-art of NMR spectroscopy, imaging and relaxometry with compact instruments is reviewed.
Collapse
Affiliation(s)
- Bernhard Blümich
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Aachen, Germany
| | - Kawarpal Singh
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
49
|
Blümich B, Singh K. NMR mit Tischgeräten und deren Anwendungen von der Materialwissenschaft bis zur organischen Chemie. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Bernhard Blümich
- Institut für Technische und Makromolekulare Chemie; RWTH Aachen University; Aachen Deutschland
| | - Kawarpal Singh
- Institut für Technische und Makromolekulare Chemie; RWTH Aachen University; Aachen Deutschland
| |
Collapse
|
50
|
Park KS, Kim H, Kim S, Lee K, Park S, Song J, Min C, Khanam F, Rashu R, Bhuiyan TR, Ryan ET, Qadri F, Weissleder R, Cheon J, Charles RC, Lee H. Nanomagnetic System for Rapid Diagnosis of Acute Infection. ACS NANO 2017; 11:11425-11432. [PMID: 29121461 PMCID: PMC6296367 DOI: 10.1021/acsnano.7b06074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Pathogen-activated antibody-secreting cells (ASCs) produce and secrete antigen-specific antibodies. ASCs are detectable in the peripheral blood as early as 3 days after antigen exposure, which makes ASCs a potential biomarker for early disease detection. Here, we present a magnetic capture and detection (MCD) assay for sensitive, on-site detection of ASCs. In this approach, ASCs are enriched through magnetic capture, and secreted antibodies are magnetically detected by a miniaturized nuclear magnetic resonance (μNMR) system. This approach is based entirely on magnetics, which supports high contrast against biological background and simplifies assay procedures. We advanced the MCD system by (i) synthesizing magnetic nanoparticles with high magnetic moments for both cell capture and antibody detection, (ii) developing a miniaturized magnetic device for high-yield cell capture, and (iii) optimizing the μNMR assay for antibody detection. Antibody responses targeting hemolysin E (HlyE) can accurately identify individuals with acute enteric fever. As a proof-of-concept, we applied MCD to detect antibodies produced by HlyE-specific hybridoma cells. The MCD achieved high sensitivity in detecting antibodies secreted from as few as 5 hybridoma cells (50 cells/mL). Importantly, the assay could be performed with whole blood with minimal sample processing.
Collapse
Affiliation(s)
- Ki Soo Park
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Yonsei-IBS Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Hoyoung Kim
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Yonsei-IBS Institute, Yonsei University, Seoul 03722, Republic of Korea
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Soojin Kim
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Yonsei-IBS Institute, Yonsei University, Seoul 03722, Republic of Korea
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyungheon Lee
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Sohyeon Park
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Yonsei-IBS Institute, Yonsei University, Seoul 03722, Republic of Korea
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jun Song
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Changwook Min
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Farhana Khanam
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Rasheduzzaman Rashu
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Taufiqur Rahman Bhuiyan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Edward T. Ryan
- Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jinwoo Cheon
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Yonsei-IBS Institute, Yonsei University, Seoul 03722, Republic of Korea
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Richelle C. Charles
- Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Yonsei-IBS Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|