1
|
Chen N, Wu Y, Wei H, Zhi S, Liu L. The advancement of structure, bioactivity, mechanism, and synthesis of bufotalin. Steroids 2025; 214:109555. [PMID: 39709107 DOI: 10.1016/j.steroids.2024.109555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Toad venom, a family of toxic yet pharmacologically valuable biotoxins, has long been utilized in traditional medicine and holds significant promise in modern drug development. Bufotalin, a prominent bufotoxin, has demonstrated potent cytotoxic properties through mechanisms such as apoptosis induction, cell cycle arrest, endoplasmic reticulum stress activation, and inhibition of metastasis by modulating key pathways including Akt, p53, and STAT3/EMT signaling-these multi-target mechanisms position bufotalin as a promising agent to combat multidrug resistance in cancer therapy. Additionally, advances in bufotalin synthesis, including chemical and biocatalytic methods, have streamlined production, with strategies such as C14α-hydroxylation and novel coupling techniques enhancing yield and reducing environmental impact. This review consolidates recent progress on bufotalin's structure, activity, cytotoxic mechanisms, and synthetic methodologies, offering a foundation for further development as an innovative chemotherapy agent.
Collapse
Affiliation(s)
- Nuo Chen
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Marine Pharmacy, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Yunqiang Wu
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Marine Pharmacy, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Huamao Wei
- Department of Marine Pharmacy, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Shuai Zhi
- School of Public Health, Ningbo University, Ningbo, Zhejiang 315000, China.
| | - Liwei Liu
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
2
|
Toshkova-Yotova T, Sulikovska I, Djeliova V, Petrova Z, Ognyanov M, Denev P, Toshkova R, Georgieva A. Exopolysaccharides from the Green Microalga Strain Coelastrella sp. BGV-Isolation, Characterization, and Assessment of Anticancer Potential. Curr Issues Mol Biol 2024; 46:10312-10334. [PMID: 39329966 PMCID: PMC11431334 DOI: 10.3390/cimb46090614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Algal metabolites have been extensively studied as potential anticancer therapeutics. Among them, polysaccharides have attracted much attention because of their beneficial biological effects and safety. In the present research, the chemical characteristics, antitumor, and proapoptotic activities of extracellular polysaccharides (EPS) isolated from a new Bulgarian strain of the green microalga Coelastrella sp. BGV were investigated. A fast and convenient method of precipitation with cold ethanol was used to isolate EPS from the culture medium. The chemical characteristics of the isolated EPS were examined by colorimetric and spectrophotometric analyses, HPSEC-RID and HPLC-UV chromatography, and FT-IR spectroscopy. The results showed that the isolated EPS sample consists of three carbohydrate fractions with different molecular weights (11.5 × 104 Da, 30.7 × 104 Da, and 72.4 × 104 Da, respectively) and contains 7.14 (w/w%) protein. HPLC-UV analysis revealed the presence of galactose and fucose. The total uronic acid content in the sample was 4.5 (w/w%). The IR-FT spectrum of EPS revealed the presence of various functional groups typical of a polysaccharide (or proteoglycan) composed primarily of neutral sugars. The anticancer potential of the obtained EPS was assessed using cell lines with cancerous and non-cancerous origins as in vitro experimental models. The results of the performed MTT assay showed that EPS reduced the viability of the cervical and mammary carcinoma cell lines HeLa and MCF-7, while the control non-cancer cell lines BALB/3T3 and HaCaT were less affected. The HeLa cell line showed the highest sensitivity to the effects of EPS and was therefore used for further studies of its anticancer potential. The ability of EPS to inhibit cancer cell migration was demonstrated by wound-healing (scratch) assay. The cell cycle FACS analysis indicated that the EPS treatment induced significant increases in the sub G1 cell population and decreases of the percentages of cells in the G1, S, and G2-M phases, compared to the control. The fluorescent microscopy studies performed using three different staining methods in combination with Annexin V-FITC flow cytometric analysis clearly demonstrate the ability of EPS to induce cancer cell death via the apoptosis pathway. Moreover, an altered pattern and intensity of the immunocytochemical staining for the apoptosis- and proliferation-related proteins p53, bcl2, and Ki67 was detected in EPS-treated HeLa cancer cells as compared to the untreated controls. The obtained results characterize the new local strain of green microalgae Coelastrella sp. BGV as a producer of EPS with selective antitumor activity and provide an opportunity for further studies of its pharmacological and biotechnological potential.
Collapse
Affiliation(s)
- Tanya Toshkova-Yotova
- Department of Plant Ecophysiology, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., 21, 1113 Sofia, Bulgaria
| | - Inna Sulikovska
- Department of Pathology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., 25, 1113 Sofia, Bulgaria
| | - Vera Djeliova
- Department of Molecular Biology of Cell Cycle, Institute of Molecular Biology "Acad. R. Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., 21, 1113 Sofia, Bulgaria
| | - Zdravka Petrova
- Department of Pathology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., 25, 1113 Sofia, Bulgaria
| | - Manol Ognyanov
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| | - Petko Denev
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| | - Reneta Toshkova
- Department of Pathology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., 25, 1113 Sofia, Bulgaria
| | - Ani Georgieva
- Department of Pathology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., 25, 1113 Sofia, Bulgaria
| |
Collapse
|
3
|
Kaur G, Devi S, Sharma A, Sood P. Pharmacological insights and role of bufalin (bufadienolides) in inflammation modulation: a narrative review. Inflammopharmacology 2024:10.1007/s10787-024-01517-9. [PMID: 39012431 DOI: 10.1007/s10787-024-01517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Bufadienolides, specifically bufalin, have garnered attention for their potential therapeutic application in modulating inflammatory pathways. Bufalin is derived from toad venom and exhibits promising anti-inflammatory properties. Its anti-inflammatory effects have been demonstrated by influencing crucial signaling pathways like NF-B, MAPK, and JAK-STAT, resulting in the inhibition of pro-inflammatory substances like cytokines, chemokines, and adhesion molecules. Bufalin blocks inflammasome activation and reduces oxidative stress, hence increasing its anti-inflammatory properties. Bufalin has shown effectiveness in reducing inflammation-related diseases such as cancer, cardiovascular problems, and autoimmune ailments in preclinical investigations. Furthermore, producing new approaches of medication delivery and combining therapies with bufalin shows potential for improving its effectiveness and reducing adverse effects. This review explores the pharmacological effects and mechanistic approaches of bufalin as an anti-inflammatory agent, which further highlights its potential for therapy and offers the basis for further study on its therapeutic application in inflammation-related disorders.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Chitkara University School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Akhil Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Parul Sood
- Chitkara University School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| |
Collapse
|
4
|
Yang Z, Wang Y, Huang S, Geng Y, Yang Z, Yang Z. Identification of potential anti-tumor targets and mechanisms of HuaChanSu injection using network pharmacology and cytological experiments in Breast cancer. PLoS One 2024; 19:e0303650. [PMID: 38753638 PMCID: PMC11098324 DOI: 10.1371/journal.pone.0303650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
HuaChanSu (HCS) or Cinobufacini injection is an aqueous extract of the dried skin of Bufo bufo gargarigans, and has anti-tumor effects. The aim of this study was to evaluate the possible therapeutic effect of HCS against breast cancer (BRCA) using cytology, network pharmacology, and molecular biology approaches. The half-inhibitory concentration (IC50) of HCS in the BRCA cells was determined by cytotoxicity assay, and were accordingly treated with high and low doses HCS in the TUNEL and scratch assays. The potential targets of HCS in the BRCA cells were identified through functional enrichment analysis and protein-protein interaction (PPI) networks, and verified by molecular docking. The expression levels of key signaling pathways-related proteins in HCS-treated BRCA cells by western blotting. HCS inhibited the proliferation and migration of MCF-7 and MDA-MB-231 cells, and induced apoptosis in a dose-dependent manner. Furthermore, we screened 289 core HCS targets against BRCA, which were primarily enriched in the PI3K-AKT, MAPK chemokines, and other. signaling pathways. In addition, PIK3CA, PIK3CD, and MTOR were confirmed as HCS targets by molecular docking. Consistent with this, we observed a reduction in the expression levels of phosphorylated PI3K, AKT, and MTOR in the HCS-treated BRCA cells. Taken together, our findings suggest that HCS inhibits the growth of BRCA cells by targeting the PI3K-AKT pathway, and warrants further investigation as a therapeutic agent for treating patients with BRCA.
Collapse
Affiliation(s)
- Zetian Yang
- The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou, 510130, China
| | - Yifan Wang
- The First School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shuicai Huang
- The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou, 510130, China
| | - Yi Geng
- The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou, 510130, China
| | - Zejuan Yang
- The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou, 510130, China
| | - Zhenhuai Yang
- The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou, 510130, China
| |
Collapse
|
5
|
Zhang H, Wei S, Hu Y, Zhang Y, Yao H, Qi G, Adu-Frimpong M, Sun C. Influence of Different Ratios of DSPE-PEG2k on Ester Prodrug Self-Assembly Nanoparticles for Cell Migration and Proliferation Suppression. Int J Nanomedicine 2024; 19:2807-2821. [PMID: 38525014 PMCID: PMC10959298 DOI: 10.2147/ijn.s446741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/12/2024] [Indexed: 03/26/2024] Open
Abstract
Background Bufalin (BFL, an active anti-tumor compound derived from toad venom) is limited in its application due to high toxicity and rapid metabolism of the cardiotonic steroid. Ester prodrug self-assembly nanoparticles have shown significant improved effects in addressing the above-mentioned issues. Methods An ester bond was formed between linoleic acid and bufalin to synthesize linoleic acid-bufalin prodrug (LeB). The self-assembly nanoparticles (LeB-PSNs) containing different mass ratios of DSPE-PEG2k and prodrug (6:4, 7:3, 8:2, 9:1 and 10:0) were prepared via co-precipitation method and defined as 6:4-PSNs, 7:3-PSNs, 8:2-PSNs, 9:1-PSNs and LeB-PSNs, respectively. Further, the characterization (particle size, zeta potential, surface morphology and stability) of the nanoparticles was carried out. Finally, we evaluated the impact of different ratios of DSPE-PEG2k on the hydrolysis rate, cytotoxicity, cellular uptake, cell migration and proliferation suppression potential of the prodrug nanoparticles. Results The linoleic acid-bufalin prodrug (LeB) was successfully synthesized. Upon the addition of DSPE-PEG2k at different weight ratios, both particle size and polydispersity index (PDI) significantly decreased, while the zeta potential increased remarkably. No significant differences in particle size, PDI and Zeta potential were observed among the 9:1, 8:2 and 7:3 PSNs. Notably, the 8:2 (w/w) DSPE-PEG2k nanoparticles exhibited superior stability, hydrolysis and cellular uptake rates, along with efficient cell cytotoxicity, cell migration and proliferation suppression. Conclusion These findings indicate that DSPE-PEG2k could improve the performance of BFL prodrug nanoparticles, namely enhancing stability and achieving adaptive drug release by modulating the hydrolysis rate of esterase. This study therefore provides more opportunities for the development of BFL application.
Collapse
Affiliation(s)
- Huiyun Zhang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224003, People’s Republic of China
| | - Shunru Wei
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224003, People’s Republic of China
| | - Yunfei Hu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224003, People’s Republic of China
| | - Yu Zhang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224003, People’s Republic of China
| | - Hao Yao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224003, People’s Republic of China
| | - Gang Qi
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224003, People’s Republic of China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, UK-0215-5321, Ghana
| | - Congyong Sun
- Department of Central Laboratory, The Affiliated Huaian No.1 People’s Hospital, Nanjing Medical University, Huai’an, Jiangsu, 223300, People’s Republic of China
| |
Collapse
|
6
|
Cavalcanti BC, Soares BM, Barreto FS, Magalhães HIF, Ferreira JRDO, Almeida ATAD, Araújo Beserra Filho JI, Silva J, Dos Santos HS, Marinho ES, Furtado CLM, Moraes Filho MOD, Pessoa C, Ferreira PMP. Hellebrigenin triggers death of promyelocytic leukemia cells by non-genotoxic ways. Toxicon 2024; 238:107591. [PMID: 38160738 DOI: 10.1016/j.toxicon.2023.107591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/12/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Bufadienolides are digitalis-like aglycones mainly found in skin secretions of toads. Among their biological properties, the mechanisms of antiproliferative action on tumor cells remain unclear for many compounds, including against leukemia cells. Herein, it was evaluated the mechanisms involved in the antiproliferative and genotoxic actions of hellebrigenin on tumor cell lines and in silico capacity to inhibit the human topoisomerase IIa enzyme. Firstly, its cytotoxic action was investigated by colorimetric assays in human tumor and peripheral blood mononuclear cells (PBMC). Next, biochemical and morphological studies were detailed by light microscopy (trypan blue dye exclusion), immunocytochemistry (BrdU uptake), flow cytometry and DNA/chromosomal damages (Cometa and aberrations). Finally, computational modelling was used to search for topoisomerase inhibition. Hellebrigenin reduced proliferation, BrdU incorporation, viability, and membrane integrity of HL-60 leukemia cells. Additionally, it increased G2/M arrest, internucleosomal DNA fragmentation, mitochondrial depolarization, and phosphatidylserine externalization in a concentration-dependent manner. In contrast to doxorubicin, hellebrigenin did not cause DNA strand breaks in HL-60 cell line and lymphocytes, and it interacts with ATPase domain residues of human topoisomerase IIa, generating a complex of hydrophobic and van der Waals interactions and hydrogen bonds. So, hellebrigenin presented potent anti-leukemic activity at concentrations as low as 0.06 μM, a value comparable to the clinical anticancer agent doxorubicin, and caused biochemical changes suggestive of apoptosis without genotoxic/clastogenic-related action, but it probably triggers catalytic inhibition of topoisomerase II. These findings also emphasize toad steroid toxins as promising lead antineoplasic compounds with relatively low cytotoxic action on human normal cells.
Collapse
Affiliation(s)
- Bruno Coêlho Cavalcanti
- Laboratory of Experimental Oncology (LOE), Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Bruno Marques Soares
- Laboratory of Experimental Oncology (LOE), Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Francisco Stefânio Barreto
- Laboratory of Experimental Oncology (LOE), Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | | | | | - Ana Tárcila Alves de Almeida
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| | - José Ivo Araújo Beserra Filho
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| | - Jacilene Silva
- Department of Biological Chemistry, Regional University of Cariri, Crato, Brazil
| | | | - Emmanuel Silva Marinho
- Group of Theoretical Chemistry and Electrochemistry, State University of Ceará, Limoeiro do Norte, Brazil
| | - Cristiana Libardi Miranda Furtado
- Laboratory of Experimental Oncology (LOE), Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil; Experimental Biology Center, University of Fortaleza, Fortaleza, Brazil
| | - Manoel Odorico de Moraes Filho
- Laboratory of Experimental Oncology (LOE), Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Cláudia Pessoa
- Laboratory of Experimental Oncology (LOE), Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil.
| | - Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil.
| |
Collapse
|
7
|
Wu J, Guo Q, Li J, Yuan H, Xiao C, Qiu J, Wu Q, Wang D. Loperamide induces protective autophagy and apoptosis through the ROS/JNK signaling pathway in bladder cancer. Biochem Pharmacol 2023; 218:115870. [PMID: 37863323 DOI: 10.1016/j.bcp.2023.115870] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Bladder cancer is one of the most common carcinomas in the human urinary system worldwide. Loperamide, known as an antidiarrheal drug, exerts anti-tumor activities against various cancers. However, the effect of loperamide on bladder cancer cells remains unclear. Our study aimed to investigate the effect of loperamide on bladder cancer and explore the underlying mechanisms. We found that loperamide suppressed the proliferation of 5637 and T24 cells in a dose-dependent manner. Loperamide treatment showed both pro-apoptotic and pro-autophagic effects on bladder cancer cells. Moreover, it was revealed that loperamide induced reactive oxygen species (ROS) accumulation, leading to the activation of c-Jun N-terminal kinase (JNK) signaling pathway. Notably, ROS scavenger N-acetyl-L-cysteine (NAC) and JNK inhibitor SP600125 effectively attenuated the induction of autophagy and apoptosis triggered by loperamide. Finally, blocking autophagy with CQ could significantly enhance the anti-cancer effect of loperamide both in vitro and in vivo. Overall, these findings demonstrated that loperamide induced autophagy and apoptosis through the ROS-mediated JNK pathway in bladder cancer cells. Our results suggest that the strategy of combining loperamide with autophagy inhibitor CQ may provide a therapeutic option for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Jianjian Wu
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Qiang Guo
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Juntao Li
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Hao Yuan
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Chutian Xiao
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Jianguang Qiu
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China.
| | - Qiong Wu
- Occupational Health Surveillance Center, Guangzhou Twelfth People's Hospital, Guangzhou 510620, China.
| | - Dejuan Wang
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China.
| |
Collapse
|
8
|
Dai CL, Zhang RJ, An P, Deng YQ, Rahman K, Zhang H. Cinobufagin: a promising therapeutic agent for cancer. J Pharm Pharmacol 2023; 75:1141-1153. [PMID: 37390473 DOI: 10.1093/jpp/rgad059] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
OBJECTIVES Cinobufagin is a natural active ingredient isolated from the traditional Chinese medicine Venenum Bufonis (Chinese: Chansu), which is the dried secretion of the postauricular gland or skin gland of the Bufo gargarizans Cantor or Bufo melanostictus Schneider. There is increasing evidence indicating that cinobufagin plays an important role in the treatment of cancer. This article is to review and discuss the antitumor pharmacological effects and mechanisms of cinobufagin, along with a description of its toxicity and pharmacokinetics. METHODS The public databases including PubMed, China National Knowledge Infrastructure and Elsevier were referenced, and 'cinobufagin', 'Chansu', 'Venenum Bufonis', 'anticancer', 'cancer', 'carcinoma', and 'apoptosis' were used as keywords to summarize the comprehensive research and applications of cinobufagin published up to date. KEY FINDINGS Cinobufagin can induce tumour cell apoptosis and cycle arrest, inhibit tumour cell proliferation, migration, invasion and autophagy, reduce angiogenesis and reverse tumour cell multidrug resistance, through triggering DNA damage and activating the mitochondrial pathway and the death receptor pathway. CONCLUSIONS Cinobufagin has the potential to be further developed as a new drug against cancer.
Collapse
Affiliation(s)
- Chun-Lan Dai
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Run-Jing Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pei An
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Qing Deng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | - Hong Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| |
Collapse
|
9
|
Xu Z, Bao J, Jin X, Li H, Fan K, Wu Z, Yao M, Zhang Y, Liu G, Wang D, Yu X, Guo J, Xu R, Gong Q, Wang F, Wang J. The Effects of Cinobufagin on Hepatocellular Carcinoma Cells Enhanced by MRT68921, an Autophagy Inhibitor. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1595-1611. [PMID: 37489112 DOI: 10.1142/s0192415x23500726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Cinobufagin, a cardiotonic steroid derived from toad venom extracts, exhibits significant anticancer properties by inhibiting Na[Formula: see text]/K[Formula: see text]-ATPase in cancer cells. It is frequently used in clinical settings to treat advanced-stage cancer patients, improving their quality of life and survival time. However, its long-term use can result in multidrug resistance to other chemotherapy drugs, and the exact mechanism underlying this effect remains unknown. Therefore, this study explores the molecular mechanism underlying the anticancer effects of cinobufagin in hepatocellular carcinomas (HCCs), specifically in HepG2 and Huh-7 cells. As determined using transcriptome analysis, cinobufagin-triggered protective autophagy suppressed cell apoptosis in liver cancer HepG2 and Huh-7 cells by inhibiting the phosphoinositide-3-Kinase (PI3K)-AKT serine/threonine kinase (AKT)-mammalian target of rapamycin (mTOR) pathway. Cinobufagin-inhibited cell proliferation, induced apoptosis, and generated cell autophagy by upregulating the expression of MAP1 light chain 3 protein II, Beclin1, and autophagy-related protein 12-5. In addition, the autophagy inhibitor MRT68921 improved the antiproliferative and proapoptotic effects of cinobufagin in the studied cell lines. Overall, this study suggests that combining cinobufagin with an autophagy inhibitor can effectively treat HCC, providing a potential strategy for cancer therapy.
Collapse
Affiliation(s)
- Zhongwei Xu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P. R. China
| | - Jun Bao
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P. R. China
| | - Xiaohan Jin
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P. R. China
| | - Heng Li
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P. R. China
| | - Kaiyuan Fan
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P. R. China
| | - Zhidong Wu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P. R. China
| | - Min Yao
- Department of Internal Medicine, Tianjin Armed Police Corps Hospital, Tianjin 300126, P. R. China
| | - Yan Zhang
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P. R. China
| | - Gang Liu
- Xinjiang General Corps Hospital, Chinese People's Armed Police Force, Urumqi, Xinjiang 839001, P. R. China
| | - Dan Wang
- Xinjiang General Corps Hospital, Chinese People's Armed Police Force, Urumqi, Xinjiang 839001, P. R. China
| | - Xiaoping Yu
- Xinjiang General Corps Hospital, Chinese People's Armed Police Force, Urumqi, Xinjiang 839001, P. R. China
| | - Jia Guo
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P. R. China
| | - Ruicheng Xu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P. R. China
| | - Qian Gong
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, P. R. China
| | - Fengmei Wang
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin 300170, P. R. China
| | - Jin Wang
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, P. R. China
| |
Collapse
|
10
|
Khandan S, Yavari I, Azizian J. A one-pot synthesis 3-alkoxycarbonyl-3,4-dihydro-2H-pyran-2-ones from vinylidene melderum's acids, dialkyl acetylenedicarboxylates, and simple alcohols. Mol Divers 2023; 27:125-133. [PMID: 35267130 DOI: 10.1007/s11030-022-10407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/13/2022] [Indexed: 02/08/2023]
Abstract
A one-pot synthesis of 3-alkoxycarbonyl-3,4-dihydro-2H-pyran-2-ones from intermolecular hetero-Diels-Alder reaction between vinylidene Melderum's acids and dialkyl acetylenedicarboxylates, in the presence of simple alcohols at room temperature, is described. The advantages of this procedure are good yields, short reaction time, and easy workup. Antioxidant properties of four derivatives of these 3,4-dihydro-2H-pyran-2-ones, together with their antimicrobial activities, are investigated.
Collapse
Affiliation(s)
- Samira Khandan
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Issa Yavari
- Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran.
| | - Javad Azizian
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Chemistry and the Potential Antiviral, Anticancer, and Anti-Inflammatory Activities of Cardiotonic Steroids Derived from Toads. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196586. [PMID: 36235123 PMCID: PMC9571018 DOI: 10.3390/molecules27196586] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Cardiotonic steroids (CTS) were first documented by ancient Egyptians more than 3000 years ago. Cardiotonic steroids are a group of steroid hormones that circulate in the blood of amphibians and toads and can also be extracted from natural products such as plants, herbs, and marines. It is well known that cardiotonic steroids reveal effects against congestive heart failure and atrial fibrillation; therefore, the term "cardiotonic" has been coined. Cardiotonic steroids are divided into two distinct groups: cardenolides (plant-derived) and bufadienolides (mainly of animal origin). Cardenolides have an unsaturated five-membered lactone ring attached to the steroid nucleus at position 17; bufadienolides have a doubly unsaturated six-membered lactone ring. Cancer is a leading cause of mortality in humans all over the world. In 2040, the global cancer load is expected to be 28.4 million cases, which would be a 47% increase from 2020. Moreover, viruses and inflammations also have a very nebative impact on human health and lead to mortality. In the current review, we focus on the chemistry, antiviral and anti-cancer activities of cardiotonic steroids from the naturally derived (toads) venom to combat these chronic devastating health problems. The databases of different research engines (Google Scholar, PubMed, Science Direct, and Sci-Finder) were screened using different combinations of the following terms: “cardiotonic steroids”, “anti-inflammatory”, “antiviral”, “anticancer”, “toad venom”, “bufadienolides”, and “poison chemical composition”. Various cardiotonic steroids were isolated from diverse toad species and exhibited superior anti-inflammatory, anticancer, and antiviral activities in in vivo and in vitro models such as marinobufagenin, gammabufotalin, resibufogenin, and bufalin. These steroids are especially difficult to identify. However, several compounds and their bioactivities were identified by using different molecular and biotechnological techniques. Biotechnology is a new tool to fully or partially generate upscaled quantities of natural products, which are otherwise only available at trace amounts in organisms.
Collapse
|
12
|
Multicomponent Electrocatalytic Selective Approach to Unsymmetrical Spiro[furo[3,2-c]pyran-2,5′-pyrimidine] Scaffold under a Column Chromatography-Free Protocol at Room Temperature. CHEMISTRY 2022. [DOI: 10.3390/chemistry4020044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Electrochemical synthesis suggested a mild, green and atom-efficient route to interesting and useful molecules, thus avoiding harsh chemical oxidizing and reducing agents used in traditional synthetic methods. Organic electrochemistry offers an excellent alternative to conventional methods of organic synthesis and creates a modern tool for carrying out organic synthesis, including cascade and multicomponent ones. In this research, a novel electrocatalytic multicomponent transformation was found: the electrochemical multicomponent assembly of arylaldehydes, N,N′-dimethylbarbituric acid and 4-hydroxy-6-methyl-2H-pyran-2-one in one pot reaction was carried out in alcohols in an undivided cell in the presence of alkali metal halides with the selective formation of substituted unsymmetrical 1′,3′,6-trimethyl-3-aryl-2′H,3H,4H-spiro[furo[3,2-c]pyran-2,5′-pyrimidine]-2′,4,4′,6′(1′H,3′H)-tetraones in 73–82% yields. This new electrocatalytic process is a selective, facile and efficient way to obtain spiro[furo[3,2-c]pyran-2,5′-pyrimidines]. According to screening molecular docking data using a self-made Python script in Flare, all synthesized compounds may be prominent for different medical applications, such as breast cancer, neurodegenerative diseases and treatments connected with urinary tract, bones and the cardiovascular system.
Collapse
|
13
|
Elinson MN, Vereshchagin AN, Ryzhkova YE, Karpenko KA, Ushakov IE, Maslov OI, Egorov MP. Four-component transformation of benzaldehydes, dimethylbarbituric acid, 4-hydroxy-6-methyl-2H-pyran-2-one, and morpholine into the unsymmetrical ionic scaffold with three different heterocyclic rings. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Hu W, Qi Q, Hu H, Wang C, Zhang Q, Zhang Z, Zhao Y, Yu X, Guo M, Du S, Lu Y. Fe3O4 liposome for photothermal/chemo-synergistic inhibition of metastatic breast tumor. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Chen R, Guan Z, Zhong X, Zhang W, Zhang Y. Network Pharmacology Prediction: The Possible Mechanisms of Cinobufotalin against Osteosarcoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3197402. [PMID: 35069780 PMCID: PMC8776428 DOI: 10.1155/2022/3197402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To explore the active compounds and targets of cinobufotalin (huachansu) compared with the osteosarcoma genes to obtain the potential therapeutic targets and pharmacological mechanisms of action of cinobufotalin on osteosarcoma through network pharmacology. METHODS The composition of cinobufotalin was searched by literature retrieval, and the target was selected from the CTD and TCMSP databases. The osteosarcoma genes, found from the GeneCards, OMIM, and other databases, were compared with the cinobufotalin targets to obtain potential therapeutic targets. The protein-protein interaction (PPI) network of potential therapeutic targets, constructed through the STRING database, was inputted into Cytoscape software to calculate the hub genes, using the NetworkAnalyzer. The hub genes were inputted into the Kaplan-Meier Plotter online database for exploring the survival curve. Functional enrichment analysis was identified using the DAVID database. RESULTS 28 main active compounds of cinobufotalin were explored, including bufalin, adenosine, oleic acid, and cinobufagin. 128 potential therapeutic targets on osteosarcoma are confirmed among 184 therapeutic targets form cinobufotalin. The hub genes included TP53, ACTB, AKT1, MYC, CASP3, JUN, TNF, VEGFA, HSP90AA1, and STAT3. Among the hub genes, TP53, ACTB, MYC, TNF, VEGFA, and STAT3 affect the patient survival prognosis of sarcoma. Through function enrichment analysis, it is found that the main mechanisms of cinobufotalin on osteosarcoma include promoting sarcoma apoptosis, regulating the cell cycle, and inhibiting proliferation and differentiation. CONCLUSION The possible mechanisms of cinobufotalin against osteosarcoma are preliminarily predicted through network pharmacology, and further experiments are needed to prove these predictions.
Collapse
Affiliation(s)
- Riyu Chen
- Guangzhou University of Chinese Medicine, 510000 Guangzhou, China
| | - Zeyi Guan
- Southern Medical University, 510000 Guangzhou, China
| | - Xianxing Zhong
- Guangzhou University of Chinese Medicine, 510000 Guangzhou, China
| | - Wenzheng Zhang
- Department of Joint Sports Medicine, Taian City Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 271000 Taian, China
| | - Ya Zhang
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, 271000 Taian, China
| |
Collapse
|
16
|
Shao H, Li B, Li H, Gao L, Zhang C, Sheng H, Zhu L. Novel Strategies for Solubility and Bioavailability Enhancement of Bufadienolides. Molecules 2021; 27:51. [PMID: 35011278 PMCID: PMC8746454 DOI: 10.3390/molecules27010051] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Toad venom contains a large number of bufadienolides, which have a variety of pharmacological activities, including antitumor, cardiovascular, anti-inflammatory, analgesic and immunomodulatory effects. The strong antitumor effect of bufadienolides has attracted considerable attention in recent years, but the clinical application of bufadienolides is limited due to their low solubility and poor bioavailability. In order to overcome these shortcomings, many strategies have been explored, such as structural modification, solid dispersion, cyclodextrin inclusion, microemulsion and nanodrug delivery systems, etc. In this review, we have tried to summarize the pharmacological activities and structure-activity relationship of bufadienolides. Furthermore, the strategies for solubility and bioavailability enhancement of bufadienolides also are discussed. This review can provide a basis for further study on bufadienolides.
Collapse
Affiliation(s)
| | | | | | | | | | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China; (H.S.); (B.L.); (H.L.); (L.G.); (C.Z.)
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China; (H.S.); (B.L.); (H.L.); (L.G.); (C.Z.)
| |
Collapse
|
17
|
Four component tandem Knoevenagel–Michael strategy for the assembly of arylaldehydes, N,N'-dimethylbarbituric acid, 4-hydroxy-6-methyl-2H-pyran-2-one and morpholine into unsymmetrical scaffold with three different heterocyclic rings. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.09.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Gu R, Zhang Q. Effects of low-dose bufalin combined with hydroxycamptothecin on human castration-resistant prostate cancer xenografts in nude mice. Exp Ther Med 2021; 22:1015. [PMID: 34373701 PMCID: PMC8343571 DOI: 10.3892/etm.2021.10447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 12/11/2019] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer is the most prevalent tumor found in men worldwide. Despite the efficiency of primary endocrine prostate cancer therapies, more efficient drugs are needed to tackle the most advanced and resistant forms of this condition. The present study investigated the antitumor effects of low-dose bufalin combined with hydroxycamptothecin on castration-resistant prostate cancer (CRPC) in mice, as well as the possible mechanisms of apoptosis induction. CRPC xenograft tumors were generated in mice and, subsequently, mice received appropriate doses of bufalin, hydroxycamptothecin or a combination of the two drugs. Tumors from each treatment group were removed, and the tumor volume, weight and inhibition rate of each group was determined. Hematoxylin and eosin staining was performed for pathological analysis and TUNEL staining was used to assess the level of apoptosis in the xenografts. Immunohistochemistry was used for the analysis of proliferating cell nuclear antigen expression and the expression of Bax, Bcl-XL, p53, programmed cell death 4 (PDCD4), phosphorylated (p)-AKT and glycogen synthase kinase (GSK)-3β was determined by western blotting. Treatment with bufalin significantly (P<0.05) reduced tumor volumes compared with the negative control group, reducing tumor volumes to lower levels when combined with hydroxycampothecin. The combination of bufalin (0.6 or 0.8 mg/kg) and hydroxycampothecin significantly (P<0.05) induced higher levels of cell apoptosis compared with the administration of bufalin or hydroxycampothecin alone. The combination of bufalin and hydroxycampothecin also increased the expression of apoptosis-related proteins Bax, p53, PDCD4 and GSK-3β, and decreased the expression of Bcl-XL and p-AKT compared with a single drug treatment. The present study suggested that the combination of bufalin and hydroxycampothecin improved the inhibitory effects of both drugs on CRPC tumors in vivo, potentially via the regulation of the PI3K/AKT/GSK-3β and p53-dependent apoptosis signaling pathways.
Collapse
Affiliation(s)
- Renze Gu
- Department of Urology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Qingchuan Zhang
- Department of Urology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| |
Collapse
|
19
|
Biotinylated chitosan macromolecule based nanosystems: A review from chemical design to biological targets. Int J Biol Macromol 2021; 188:82-93. [PMID: 34363823 DOI: 10.1016/j.ijbiomac.2021.07.197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/16/2021] [Accepted: 07/31/2021] [Indexed: 12/28/2022]
Abstract
World Health Organization estimates that 30-50% of cancers are preventable by healthy lifestyle choices, early detection and adequate therapy. When the conventional therapeutic strategies are still regulated by the lack of selectivity, multidrug resistance and severe toxic side effects, nanotechnology grants a new frontier for cancer management since it targets cancer cells and spares healthy tissues. This review highlights recent studies using biotin molecule combined with functional nanomaterials used in biomedical applications, with a particular attention on biotinylated chitosan-based nanosystems. Succinctly, this review focuses on five areas of recent advances in biotin engineering: (a) biotin features, (b) biotinylation approaches, (c) biotin functionalized chitosan based nanosystems for drug and gene delivery functions, (d) diagnostic and theranostic perspectives, and (e) author's inputs to the biotin-chitosan based tumour-targeting drug delivery structures. Precisely engineered biotinylated-chitosan macromolecules shaped into nanosystems are anticipated to emerge as next-generation platforms for treatment and molecular imaging modalities applications.
Collapse
|
20
|
Jin T, Liu T, Lam E, Moores A. Chitin and chitosan on the nanoscale. NANOSCALE HORIZONS 2021; 6:505-542. [PMID: 34017971 DOI: 10.1039/d0nh00696c] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In a matter of decades, nanomaterials from biomass, exemplified by nanocellulose, have rapidly transitioned from once being a subject of curiosity to an area of fervent research and development, now reaching the stages of commercialization and industrial relevance. Nanoscale chitin and chitosan, on the other hand, have only recently begun to raise interest. Attractive features such as excellent biocompatibility, antibacterial activity, immunogenicity, as well as the tuneable handles of their acetylamide (chitin) or primary amino (chitosan) functionalities indeed display promise in areas such as biomedical devices, catalysis, therapeutics, and more. Herein, we review recent progress in the fabrication and development of these bio-nanomaterials, describe in detail their properties, and discuss the initial successes in their applications. Comparisons are made to the dominant nanocelluose to highlight some of the inherent advantages that nanochitin and nanochitosan may possess in similar application.
Collapse
Affiliation(s)
- Tony Jin
- Center in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada.
| | | | | | | |
Collapse
|
21
|
Huang Y, Mao J, Zhang L, Guo H, Yan C, Chen M. Incaspitolide A isolated from Carpesium cernuum L. inhibits the growth of prostate cancer cells and induces apoptosis via regulation of the PI3K/Akt/xIAP pathway. Oncol Lett 2021; 21:477. [PMID: 33968193 PMCID: PMC8100957 DOI: 10.3892/ol.2021.12738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 03/17/2021] [Indexed: 01/21/2023] Open
Abstract
Carpesium cernuum L. is a traditional medicine primarily used in Southwestern China, and it has been shown to exhibit a range of biological properties, including anti-inflammatory and antitumor activities. Incaspitolide A (IA) is a sesquiterpene isolated from C. cernuum L. The aim of the present study was to investigate the antiproliferative effects of IA on PC-3 prostate cancer cells and determine the underlying mechanism. Results from a Cell Counting Kit-8 assay demonstrated that IA significantly reduced the numbers of viable PC-3 cells in a time and dose-dependent manner. Phase-contrast microscopy revealed that the number and morphology of cells were markedly altered. Hoechst and EdU staining assays showed that IA reduced the proliferation of PC-3 cells. Flow cytometry analysis revealed that IA arrested cell cycle progression at the S phase and promoted cell apoptosis in a dose-dependent manner. Western blot analysis demonstrated that treatment with IA resulted in downregulation of phosphorylated (p-) PI3K, p-Akt, X-linked inhibitor of apoptosis (xIAP), CKD2, cyclin A2 and pro-Caspase-3 protein expression, and upregulation of cleaved poly(ADP-ribose) polymerase and P53 expression. The present results suggested that IA inhibited the growth of PC-3 cells and induced apoptosis. The underlying mechanism appeared to involve the inhibition of the PI3K/Akt/xIAP pathway. The present study indicated that IA may serve as a therapeutic for the management of prostate cancer and provided a theoretical basis for the pathogenesis of prostate cancer.
Collapse
Affiliation(s)
- Yuanshe Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, Sichuan 400715, P.R. China
- Agricultural College, An Shun University, Anshun, Guizhou 561000, P.R. China
| | - Jingxin Mao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, Sichuan 400715, P.R. China
| | - Lai Zhang
- Agricultural College, An Shun University, Anshun, Guizhou 561000, P.R. China
| | - Hongwei Guo
- Department of Pharmacy, An Shun City People's Hospital, Anshun, Guizhou 561000, P.R. China
| | - Chen Yan
- Department of Pharmacy, An Shun City People's Hospital, Anshun, Guizhou 561000, P.R. China
| | - Min Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing, Sichuan 400715, P.R. China
| |
Collapse
|
22
|
Feng Y, Qin G, Chang S, Jing Z, Zhang Y, Wang Y. Antitumor Effect of Hyperoside Loaded in Charge Reversed and Mitochondria-Targeted Liposomes. Int J Nanomedicine 2021; 16:3073-3089. [PMID: 33953556 PMCID: PMC8091078 DOI: 10.2147/ijn.s297716] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
Introduction Hyperoside (HYP), a flavonol glycoside compound, has been shown to significantly inhibit the proliferation of malignant tumors. Mitochondria serve as both “energy factories” and “suicide weapon stores” of cells. Targeted delivery of cytotoxic drugs to the mitochondria of tumor cells and tumor vascular cells is a promising strategy to improve the efficacy of chemotherapy. Objective We report a novel dual-functional liposome system possessing both extracellular charge reversal and mitochondrial targeting properties to enhance drug accumulation in mitochondria and trigger apoptosis of cancer cells. Methods L-lysine was used as a linker to connect 2,3-dimethylmaleic anhydride (DMA) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) to yield a new compound, DSPE-Lys-DMA (DLD). Then, DLD was mixed with other commercially available lipids to form charge reversed and mitochondria-targeted liposomes (DLD-Lip). The size, morphology, zeta potential, serum stability, and protein adsorption of the HYP loaded DLD-Lip (HYP/DLD-Lip) were measured. The release profile, cellular uptake, in vitro and in vivo toxicity, and anticancer activity of HYP/DLD-Lip were investigated. Results The results showed that the mean diameter of the liposomes was less than 200 nm. The zeta potential of the liposomes was negative at pH 7.4. However, the zeta potential was positive at weak acidic pH values with the cleavage of the DMA amide. The charge reversion of HYP/DLD-Lip facilitated the cellular internalization and mitochondrial accumulation for enhanced antitumor effect. The strongest tumor growth inhibition (TGI 88.79%) without systemic toxicity was observed in DLD/HYP-Lips-treated CBRH-7919 tumor xenograft BALB/C mice. Conclusion The charge reversed and mitochondria-targeted liposomes represented a promising anticancer drug delivery system for enhanced anticancer therapeutic efficacy.
Collapse
Affiliation(s)
- Yufei Feng
- Key Laboratory of Chinese Materia Medica in Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People's Republic of China
| | - Guozhao Qin
- Key Laboratory of Chinese Materia Medica in Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People's Republic of China
| | - Shuyuan Chang
- Key Laboratory of Chinese Materia Medica in Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People's Republic of China
| | - Zhongxu Jing
- Heilongjiang Provincial Administration of Traditional Chinese Medicine, Harbin, Heilongjiang, People's Republic of China
| | - Yanyan Zhang
- Key Laboratory of Chinese Materia Medica in Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People's Republic of China
| | - Yanhong Wang
- Key Laboratory of Chinese Materia Medica in Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People's Republic of China
| |
Collapse
|
23
|
Xu Y, Tang L, Chen P, Chen M, Zheng M, Shi F, Wang Y. Tumor-Targeted Delivery of Bufalin-Loaded Modified Albumin-Polymer Hybrid for Enhanced Antitumor Therapy and Attenuated Hemolysis Toxicity and Cardiotoxicity. AAPS PharmSciTech 2021; 22:137. [PMID: 33880681 DOI: 10.1208/s12249-021-02000-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
A novel albumin polymer hybrid with a core-shell structure was designed to target delivery of bufalin, which is an antineoplastic monomer with serious cardiotoxicity. The sheath layer was composed of ursodeoxycholic acid (UA)-modified bovine serum albumin (UA-BSA), while the stable core consisted of poly n-butyl cyanoacrylate (PBCA) nanoparticles. The UA-BSA was synthetized, and the substitution degree was characterized. The physical properties of bufalin-loaded UA-modified protein-PBCA nanocomplexes (BF-uPPNCs), such as morphology, particle size, and encapsulation efficiency, were evaluated. FTIR and DSC revealed the bufalin to be in an amorphous state. Furthermore, the in vitro release study indicated a sustained release profile of BF-uPPNCs. The MTT and cellular uptake study demonstrated that BF-uPPNCs significantly improved the inhibitory effect of the bufalin accompanied with an enhanced cell uptake capacity on HepG2 cells. In addition, in vivo research demonstrated that BF-uPPNCs had a better antitumor effect coupled with improved therapeutic effect, and reduced hemolysis, vascular irritation, and cardiotoxicity. This work therefore presented a novel albumin polymer hybrid with favorable stability, efficient tumor-targeted delivery potential, and side effect reduction ability, which can be a potential vehicle for an anticancer drug.
Collapse
|
24
|
Transdermal Delivery Systems of Natural Products Applied to Skin Therapy and Care. Molecules 2020; 25:molecules25215051. [PMID: 33143260 PMCID: PMC7662758 DOI: 10.3390/molecules25215051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/15/2022] Open
Abstract
Natural products are favored because of their non-toxicity, low irritants, and market reacceptance. We collected examples, according to ancient wisdom, of natural products to be applied in transdermal delivery. A transdermal delivery system, including different types of agents, such as ointments, patches, and gels, has long been used for skin concerns. In recent years, many novel transdermal applications, such as nanoemulsions, liposomes, lipid nanoparticles, and microneedles, have been reported. Nanosized drug delivery systems are widely applied in natural product deliveries. Nanosized materials notably enhance bioavailability and solubility, and are reported to improve the transdermal permeation of many substances compared with conventional topical formulations. Natural products have been made into nanosized biomaterials in order to enhance the penetration effect. Before introducing the novel transdermal applications of natural products, we present traditional methods within this article. The descriptions of novel transdermal applications are classified into three parts: liposomes, emulsions, and lipid nanoparticles. Each section describes cases that are related to promising natural product transdermal use. Finally, we summarize the outcomes of various studies on novel transdermal agents applied to skin treatments.
Collapse
|
25
|
Soopramanien M, Khan NA, Abdalla SAO, Sagathevan K, Siddiqui R. Scorpion and Frog Organ Lysates are Potential Source of Antitumour Activity. Asian Pac J Cancer Prev 2020; 21:3011-3018. [PMID: 33112561 PMCID: PMC7798147 DOI: 10.31557/apjcp.2020.21.10.3011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/04/2020] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVES It is noteworthy that several animal species are known to withstand high levels of radiation, and are exposed to heavy metals but rarely been reported to develop cancer. For example, the scorpion has been used as folk medicine in ancient civilizations of Iran and China, while amphibian skin is known to possess medicinal properties. Here, we elucidated the anti-tumour activity of the scorpion (Uropygi) and frog (Lithobates catesbeianus). MATERIALS AND METHODS Animals were procured and their organ lysates and sera were prepared and tested against Michigan Cancer Foundation-7 breast cancer (MCF-7), prostate cancer (PC3), Henrietta Lacks cervical cancer (HeLa), and normal human keratinocyte cells. Exoskeleton, appendages and hepatopancreas were dissected from the scorpion, whereas liver, lungs, heart, oviduct, gastrointestinal tract, gall bladder, kidneys, eggs and sera were collected from frog and organ lysates/sera were prepared. Growth inhibition assays and cytotoxicity assays were performed. RESULTS Appendages, exoskeleton lysates, and hepatopancreas from scorpion exhibited potent growth inhibition, and cytotoxic effects. Furthermore, lungs, liver, gastrointestinal tract, heart, oviduct, kidneys, eggs, and sera from frog displayed growth inhibition and cytotoxic effects. CONCLUSION Organ lysates, sera of scorpion, and amphibians possess anti-tumour activities. This is a worthy area of research as the molecular identity of the active molecule(s) together with their mechanism of action will lead to the rational development of novel anticancer agent(s).
Collapse
Affiliation(s)
| | - Naveed Ahmed Khan
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates.
| | | | - K Sagathevan
- Department of Biological Sciences, Sunway University, Bandar Sunway, Malaysia.
| | - Ruqaiyyah Siddiqui
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates.
| |
Collapse
|
26
|
Alkaloid-rich plant Tylophora indica; current trends in isolation strategies, chemical profiling and medicinal applications. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.05.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
27
|
Liu X, Zhou Y, Peng J, Xie B, Shou Q, Wang J. Silencing c-Myc Enhances the Antitumor Activity of Bufalin by Suppressing the HIF-1α/SDF-1/CXCR4 Pathway in Pancreatic Cancer Cells. Front Pharmacol 2020; 11:495. [PMID: 32362830 PMCID: PMC7181899 DOI: 10.3389/fphar.2020.00495] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/30/2020] [Indexed: 12/18/2022] Open
Abstract
Background Pancreatic cancer is one of the most aggressive malignancies. Bufalin, a traditional Chinese medicine, has been used to treat pancreatic cancer as an antitumor agent although the mechanism by which it exerts its effects is still unclear. c-Myc has been found to be overexpressed in more than half of human cancers including pancreatic cancer. However, the role of c-Myc in pancreatic cancer cells and its influence in bufalin-treated pancreatic cancer are yet to be clarified. The present study aimed to investigate the role of c-Myc in the antitumor activity of bufalin in pancreatic cancer. Methods c-Myc siRNA and overexpression plasmid were transfected into pancreatic cancer cells to construct the cell models. c-Myc expression was detected via quantitative real-time polymerase chain reaction and western blot. The effect of c-Myc on bufalin-induced inhibition of cell proliferation was detected via CCK-8 assay. Cell apoptosis and the cell cycle were analyzed via flow cytometry. Cell invasion and migration was detected via Transwell and wound healing assays, respectively. In addition, the effect of bufalin on the suppression of tumor growth in vivo was studied in nude mice model subcutaneously injected with PANC-1 and SW1990 cells. Hematoxylin-eosin and terminal deoxynucleotidyl transferase dUTP nick-end labeling assay were used to evaluate pathological changes in vivo. The expression of HIF-1α/SDF-1/CXCR4 were detected via western blot. Results CCK-8 assay showed that bufalin could inhibit the proliferation of pancreatic cancer cell, and c-Myc downregulation enhanced this effect. Similarly, c-Myc downregulation enhanced the effect of bufalin on cell cycle arrest, apoptosis, and the invasion and migration of pancreatic cancer cell in vitro. Further mechanism assay showed that c-Myc enhances the effect by regulating the HIF-1α/SDF-1/CXCR4 signaling pathway. The in vivo studies verified the results that c-Myc enhances the effect of bufalin through regulation of the HIF-1α/SDF-1/CXCR4 pathway. Conclusions Downregulation of c-Myc enhanced the antitumor activity of bufalin in pancreatic cancer cells by suppressing the HIF-1α/SDF-1/CXCR4 pathway. These findings indicate that c-Myc inhibitors could enhance the clinical therapeutic effect of bufalin and may expand the clinical application of bufalin accordingly.
Collapse
Affiliation(s)
- Xia Liu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yayun Zhou
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Jiamin Peng
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Bei Xie
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiyang Shou
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianchao Wang
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
28
|
Zhan Y, Qiu Y, Wang H, Wang Z, Xu J, Fan G, Xu J, Li W, Cao Y, Le VM, Ly HT, Yuan Z, Xu K, Yin P. Bufalin reverses multidrug resistance by regulating stemness through the CD133/nuclear factor-κB/MDR1 pathway in colorectal cancer. Cancer Sci 2020; 111:1619-1630. [PMID: 32058643 PMCID: PMC7226280 DOI: 10.1111/cas.14345] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
Recent studies have shown that MDR could be induced by the high stemness of cancer cells. In a previous study, we found bufalin could reverse MDR and inhibit cancer cell stemness in colorectal cancer, but the relationship between them was unclear. Here we identified overexpressing CD133 increases levels of Akt/nuclear factor‐κB signaling mediators and MDR1, while increasing cell chemoresistance. Furthermore, bufalin reverses colorectal cancer MDR by regulating cancer cell stemness through the CD133/nuclear factor‐κB/MDR1 pathway in vitro and in vivo. Taken together, our results suggest that bufalin could be developed as a novel 2‐pronged drug that targets CD133 and MDR1 to eradicate MDR cells and could ultimately be combined with conventional chemotherapeutic agents to improve treatment outcomes for patients with colorectal cancer.
Collapse
Affiliation(s)
- Yueping Zhan
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanyan Qiu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haijing Wang
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziyuan Wang
- Department of Pathology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Xu
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guohua Fan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianhua Xu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Li
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yijun Cao
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Van-Minh Le
- Research Center of Ginseng and Medicinal Materials (CGMM), National Institute of Medicinal Materials, Ho Chi Minh City, Vietnam
| | - Hai-Trieu Ly
- Research Center of Ginseng and Medicinal Materials (CGMM), National Institute of Medicinal Materials, Ho Chi Minh City, Vietnam
| | - Zeting Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Ke Xu
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
29
|
Garcia IJP, de Oliveira GC, de Moura Valadares JM, Banfi FF, Andrade SN, Freitas TR, Dos Santos Monção Filho E, Lima Santos HD, Júnior GMV, Chaves MH, de Jesus Rodrigues D, Sanchez BAM, Varotti FP, Barbosa LA. New bufadienolides extracted from Rhinella marina inhibit Na,K-ATPase and induce apoptosis by activating caspases 3 and 9 in human breast and ovarian cancer cells. Steroids 2019; 152:108490. [PMID: 31499071 DOI: 10.1016/j.steroids.2019.108490] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/24/2022]
Abstract
Bufadienolide compounds have been used for growth inhibition and apoptosis induction in tumor cells. Those families of cardiotonic steroids can bind the Na,K-ATPase, causing its inhibition. The use of bufadienolides is widely described in the literature as an anticancer function. The aim of this study was to evaluate the effects of bufadienolides and alkaloid isolated from venom samples from R. marina on tumor cells. We performed cytotoxicity assay in MDA-MB-231 and TOV-21G cells and evaluated the activity of Caspases (3 and 9), Na, K-ATPase, PMCA and SERCA. Four compounds were extrated from the venom of R. marina. The compound 1 showed higher cytotoxicity in MDA-MB-231cells. Compound 1 also showed activation of Caspase 3 and 9. This compound caused an inhibition of the activity and expression of Na, K-ATPase, and also showed activation of both caspase-9 and caspase-3 in MDA-MB-231 cells. We also observed that Compound 1 had a direct effect on some ATPases, such as Na, K-ATPase, PMCA and SERCA. Compound 1 was able to inhibit the activity of the purified Na, K-ATPase enzyme from the concentration of 5 µM. It also caused inhibition of PMCA at all concentrations tested (1 nM-30 µM). However, the compound 1 led to an increase of the activity of purified SERCA between the concentrations of 7.5-30 µM. Thus, we present a Na, K-ATPase and PMCA inhibitor, which may lead to the activation of caspases 3 and 9, causing the cells to enter into apoptosis. Our study suggests that compound 1 may be an interesting molecule as an anticancer agent.
Collapse
Affiliation(s)
- Israel José Pereira Garcia
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste, Divinópolis, MG, Brazil; Laboratório de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste, Divinópolis, MG, Brazil.
| | - Gisele Capanema de Oliveira
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste, Divinópolis, MG, Brazil
| | | | - Felipe Finger Banfi
- Universidade Federal de Mato Grosso, Instituto de Ciências da Saúde, Sinop, MT, Brazil
| | - Silmara Nunes Andrade
- Núcleo de Pesquisa em Química Biológica, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Divinópolis, MG, Brazil
| | - Túlio Resende Freitas
- Núcleo de Pesquisa em Química Biológica, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Divinópolis, MG, Brazil
| | | | - Hérica de Lima Santos
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste, Divinópolis, MG, Brazil; Laboratório de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste, Divinópolis, MG, Brazil
| | | | | | | | | | - Fernando P Varotti
- Núcleo de Pesquisa em Química Biológica, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Divinópolis, MG, Brazil
| | - Leandro Augusto Barbosa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste, Divinópolis, MG, Brazil; Laboratório de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste, Divinópolis, MG, Brazil.
| |
Collapse
|
30
|
Cheng CS, Wang J, Chen J, Kuo KT, Tang J, Gao H, Chen L, Chen Z, Meng Z. New therapeutic aspects of steroidal cardiac glycosides: the anticancer properties of Huachansu and its main active constituent Bufalin. Cancer Cell Int 2019; 19:92. [PMID: 31011289 PMCID: PMC6458819 DOI: 10.1186/s12935-019-0806-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/27/2019] [Indexed: 12/20/2022] Open
Abstract
Aim of the review In the past decade, increasing research attention investigated the novel therapeutic potential of steroidal cardiac glycosides in cancer treatment. Huachansu and its main active constituent Bufalin have been studied in vitro, in vivo and clinical studies. This review aims to summarize the multi-target and multi-pathway pharmacological effects of Bufalin and Huachansu in the last decade, with the aim of providing a more comprehensive view and highlighting the recently discovered molecular mechanisms. Results Huachansu and its major derivative, Bufalin, had been found to possess anti-cancer effects in a variety of cancer cell lines both in vitro and in vivo. The underlying anti-cancer molecular mechanisms mainly involved anti-proliferation, apoptosis induction, anti-metastasis, anti-angiogenesis, epithelial-mesenchymal transition inhibition, anti-inflammation, Na+/K+-ATPase activity targeting, the steroid receptor coactivator family inhibitions, etc. Moreover, the potential side-effects and toxicities of the toad extract, Huachansu, and Bufalin, including hematological, gastrointestinal, mucocutaneous and cardiovascular adverse reactions, were reported in animal studies and clinic trails. Conclusions Further research is needed to elucidate the potential drug-drug interactions and multi-target interaction of Bufalin and Huachansu. Large-scale clinical trials are warranted to translate the knowledge of the anticancer actions of Bufalin and Huachansu into clinical applications as effective and safe treatment options for cancer patients in the future.
Collapse
Affiliation(s)
- Chien-Shan Cheng
- 1Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China.,3School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Jiaqiang Wang
- 2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China.,Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433 China.,5Department of Anaesthesiology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
| | - Jie Chen
- 3School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China.,6Department of Orthopaedics, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - Kuei Ting Kuo
- 3School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Jian Tang
- 1Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Huifeng Gao
- 1Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Lianyu Chen
- 1Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Zhen Chen
- 1Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Zhiqiang Meng
- 1Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| |
Collapse
|
31
|
Li J, Rong MH, Dang YW, He RQ, Lin P, Yang H, Li XJ, Xiong DD, Zhang LJ, Qin H, Feng CX, Chen XY, Zhong JC, Ma J, Chen G. Differentially expressed gene profile and relevant pathways of the traditional Chinese medicine cinobufotalin on MCF‑7 breast cancer cells. Mol Med Rep 2019; 19:4256-4270. [PMID: 30896874 PMCID: PMC6471831 DOI: 10.3892/mmr.2019.10062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 01/01/2019] [Indexed: 02/07/2023] Open
Abstract
Cinobufotalin is a chemical compound extracted from the skin of dried bufo toads that may have curative potential for certain malignancies through different mechanisms; however, these mechanisms remain unexplored in breast cancer. The aim of the present study was to investigate the antitumor mechanism of cinobufotalin in breast cancer by using microarray data and in silico analysis. The microarray data set GSE85871, in which cinobufotalin exerted influences on the MCF‑7 breast cancer cells, was acquired from the Gene Expression Omnibus database, and the differentially expressed genes (DEGs) were analyzed. Subsequently, protein interaction analysis was conducted, which clarified the clinical significance of core genes, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were used to analyze cinobufotalin‑related pathways. The Connectivity Map (CMAP) database was used to select existing compounds that exhibited curative properties similar to those of cinobufotalin. A total of 1,237 DEGs were identified from breast cancer cells that were treated with cinobufotalin. Two core genes, SRC proto‑oncogene non‑receptor tyrosine kinase and cyclin‑dependent kinase inhibitor 2A, were identified as serving a vital role in the onset and development of breast cancer, and their expression levels were markedly reduced following cinobufotalin treatment as detected by the microarray of GSE85871. It also was revealed that the 'neuroactive ligand‑receptor interaction' and 'calcium signaling' pathways may be crucial for cinobufotalin to perform its functions in breast cancer. Conducting a matching search in CMAP, miconazole and cinobufotalin were indicated to possessed similar molecular mechanisms. In conclusion, cinobufotalin may serve as an effective compound for the treatment of a subtype of breast cancer that is triple positive for the presence of estrogen, progesterone and human epidermal growth factor receptor‑2 receptors, and its mechanism may be related to different pathways. In addition, cinobufotalin is likely to exert its antitumor influences in a similar way as miconazole in MCF‑7 cells.
Collapse
Affiliation(s)
- Jie Li
- Department of Spleen and Stomach Diseases, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region 530023, P.R. China
| | - Min-Hua Rong
- Research Department, The Affiliated Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Peng Lin
- Ultrasonics Division of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hong Yang
- Ultrasonics Division of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Jiao Li
- PET‑CT, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dan-Dan Xiong
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Li-Jie Zhang
- Ultrasonics Division of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hui Qin
- Ultrasonics Division of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Cai-Xia Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Yi Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jin-Cai Zhong
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jie Ma
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
32
|
Lan YL, Lou JC, Jiang XW, Wang X, Xing JS, Li S, Zhang B. A research update on the anticancer effects of bufalin and its derivatives. Oncol Lett 2019; 17:3635-3640. [PMID: 30915168 DOI: 10.3892/ol.2019.10062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 02/01/2019] [Indexed: 12/18/2022] Open
Abstract
Bufalin (BF) is a cardiotonic steroid that has recently been found to have substantial anticancer activity; however, more efforts should be directed toward clarifying the detailed molecular mechanisms underlying this activity. BF could exert its anticancer effect by inducing apoptosis in various human cancer cells and thus triggering autophagic cancer cell death. The anti-inflammatory activities of BF are potentially important for its anticancer functions. Notably, some promising synthetic BF derivatives, including poly (ethylene glycol)-based polymeric prodrug of BF and BF211, have shown potent anticancer activity. Additionally, clinical trials regarding the use of BF-related agents in patients have supported the positive effect of BF as an anticancer treatment. Currently, large-scale randomized, double-blind, placebo or positive drug parallel controlled studies are required to confirm the anticancer potential of BF in various cancer types in the clinical setting. The present review will evaluate the potential mechanisms mediated by BF in intracellular signaling events in cancer cells and various promising BF derivatives that may have greater anticancer activity, thereby clarifying BF-mediated anticancer effects. The experimental and clinical results reviewed strongly emphasize the importance of this topic in future investigations.
Collapse
Affiliation(s)
- Yu-Long Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China.,Department of Neurosurgery, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China.,Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Jia-Cheng Lou
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China.,Department of Neurosurgery, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Xue-Wen Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China.,Department of Neurosurgery, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Xun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China.,Department of Neurosurgery, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Jin-Shan Xing
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China.,Department of Neurosurgery, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Shao Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Bo Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China.,Department of Neurosurgery, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
33
|
Li Y, Tian X, Liu X, Gong P. Bufalin inhibits human breast cancer tumorigenesis by inducing cell death through the ROS-mediated RIP1/RIP3/PARP-1 pathways. Carcinogenesis 2019; 39:700-707. [PMID: 29546393 DOI: 10.1093/carcin/bgy039] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 03/10/2018] [Indexed: 12/31/2022] Open
Abstract
Bufalin, a key active ingredient of the Chinese medicine Chan Su, inhibits breast cancer tumorigenesis in vitro and in vivo. Here, we found that the pan-caspase inhibitor zVAD-fmk failed to inhibit bufalin-induced cell death in MCF-7 and MDA-MB-231 human breast cancer cells, confirming that the cell death induced by bufalin is caspase-independent. Instead, bufalin increased the expression of the necroptosis mediators RIP1 and RIP3. Bufalin-induced cell death was prevented by small molecule inhibitors of RIP1 and poly (ADP-ribose) polymerase-1 (PARP-1) or genetic knockdown of RIP3 by shRNA transfection. In addition, ectopic RIP3 expression enhanced cell death by bufalin. We also found that bufalin increased intracellular reactive oxygen species levels; and cell death by bufalin was inhibited by the antioxidant NAC. In a mouse xenograft model of human breast cancer, bufalin induced PARP-1-dependent tumor cell death and inhibited tumor growth. These results demonstrated that bufalin inhibits human breast cancer tumorigenesis by inducing cell death through the reactive oxygen species-mediated RIP1/RIP3/PARP-1 pathways.
Collapse
Affiliation(s)
- Yanlan Li
- Molecular Oncology Laboratory of Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xin Tian
- Molecular Oncology Laboratory of Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaodan Liu
- Molecular Oncology Laboratory of Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Pengchao Gong
- Molecular Oncology Laboratory of Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
34
|
Qi HY, Qu XJ, Liu J, Hou KZ, Fan YB, Che XF, Liu YP. Bufalin induces protective autophagy by Cbl-b regulating mTOR and ERK signaling pathways in gastric cancer cells. Cell Biol Int 2018; 43:33-43. [PMID: 30468278 DOI: 10.1002/cbin.11076] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/11/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Hai-Yan Qi
- Department of Medical Oncology; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province; The First Hospital of China Medical University; No. 155, North Nanjing Street Heping District Shenyang 110001 China
- Department of the First Medical Oncology; The Fourth Hospital of China Medical University; Shenyang 110032 China
| | - Xiu-Juan Qu
- Department of Medical Oncology; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province; The First Hospital of China Medical University; No. 155, North Nanjing Street Heping District Shenyang 110001 China
| | - Jing Liu
- Department of Medical Oncology; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province; The First Hospital of China Medical University; No. 155, North Nanjing Street Heping District Shenyang 110001 China
| | - Ke-Zuo Hou
- Department of Medical Oncology; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province; The First Hospital of China Medical University; No. 155, North Nanjing Street Heping District Shenyang 110001 China
| | - Yi-Bo Fan
- Department of Medical Oncology; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province; The First Hospital of China Medical University; No. 155, North Nanjing Street Heping District Shenyang 110001 China
| | - Xiao-Fang Che
- Department of Medical Oncology; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province; The First Hospital of China Medical University; No. 155, North Nanjing Street Heping District Shenyang 110001 China
| | - Yun-Peng Liu
- Department of Medical Oncology; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province; The First Hospital of China Medical University; No. 155, North Nanjing Street Heping District Shenyang 110001 China
| |
Collapse
|
35
|
Advances in the antitumor activities and mechanisms of action of steroidal saponins. Chin J Nat Med 2018; 16:732-748. [PMID: 30322607 DOI: 10.1016/s1875-5364(18)30113-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Indexed: 01/14/2023]
Abstract
The steroidal saponins are one of the saponin types that exist in an unbound state and have various pharmacological activities, such as anticancer, anti-inflammatory, antiviral, antibacterial and nerves-calming properties. Cancer is a growing health problem worldwide. Significant progress has been made to understand the antitumor effects of steroidal saponins in recent years. According to reported findings, steroidal saponins exert various antitumor activities, such as inhibiting proliferation, inducing apoptosis and autophagy, and regulating the tumor microenvironment, through multiple related signaling pathways. This article focuses on the advances in domestic and foreign studies on the antitumor activity and mechanism of actions of steroidal saponins in the last five years to provide a scientific basis and research ideas for further development and clinical application of steroidal saponins.
Collapse
|
36
|
Yuan Z, Yuan Y, Han L, Qiu Y, Huang X, Gao F, Fan G, Zhang Y, Tang X, He X, Xu K, Yin P. Bufalin-loaded vitamin E succinate-grafted-chitosan oligosaccharide/RGD conjugated TPGS mixed micelles demonstrated improved antitumor activity against drug-resistant colon cancer. Int J Nanomedicine 2018; 13:7533-7548. [PMID: 30532537 PMCID: PMC6241863 DOI: 10.2147/ijn.s170692] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Multidrug resistance (MDR) is the major reason for the failure of chemotherapy in colon cancer. Bufalin (BU) is one of the most effective antitumor active constituents in Chansu. Our previous study found that BU can effectively reverse P-glycoprotein (P-gp)-mediated MDR in colon cancer. However, the clinical application of BU is limited due to its low solubility in water and high toxicity. In the present study, a multifunctional delivery system based on vitamin-E- succinate grafted chitosan oligosaccharide (VES-CSO) and cyclic (arginine-glycine-aspartic acid peptide) (RGD)-modified d-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) was prepared by emulsion solvent evaporation method for targeted delivery of BU to improve the efficacy of drug-resistant colon cancer therapy. Methods The cytotoxicity of BU-loaded micelles against drug-resistant colon cancer LoVo/ADR and HCT116/LOHP cells was measured by CCK-8 assay. The cellular uptake, Rho123 accumulation, and cell apoptosis were determined by flow cytometry. The expression of apoptosis-related protein and P-gp was measured by Western blot assay. The antitumor activity of BU-loaded micelles was evaluated in LoVo/ADR-bearing nude mice. Results BU-loaded VES-CSO/TPGS-RGD mixed micelles (BU@VeC/T-RGD MM) were 140.3 nm in diameter with zeta potential of 8.66 mV. The BU@VeC/T-RGD MM exhibited good stability, sustained-release pattern, higher intracellular uptake, and greater cytotoxicity in LoVo/ADR cells. Furthermore, the mechanisms of the BU@VeC/T-RGD MM to overcome MDR might be due to enhanced apoptosis rate and P-gp efflux inhibition. Subsequently, in vivo studies confirmed an enhanced therapeutic efficiency and reduced side effects associated with BU@VeC/T-RGD MM compared with free BU, owing to the enhanced permeation and retention effect, improved pharmacokinetic behavior, and tumor targeting, which lead to MDR-inhibiting effect in LoVo/ADR-bearing nude mice. Conclusion Our results demonstrated that VeC/T-RGD MM could be developed as a potential delivery system for BU to improve its antitumor activity against drug-resistant colon cancer.
Collapse
Affiliation(s)
- Zeting Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China,
| | - Yuxia Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China,
| | - Lin Han
- Experimental Research Center, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China
| | - Yanyan Qiu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China,
| | - Xiaqin Huang
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Feng Gao
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Guohua Fan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China,
| | - Yixi Zhang
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China,
| | - Xueyao Tang
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China,
| | - Xue He
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China,
| | - Ke Xu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China,
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China, .,Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China, .,Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Anhui 230022, People's Republic of China,
| |
Collapse
|
37
|
Li Z, Zuo Y, Hou L, Dong L, Sun X. Oldhamianoside inhibits the growth of ovarian cancer both in vitro and in vivo via adjusting inflammation and angiogenesis signals. Onco Targets Ther 2018; 11:6031-6037. [PMID: 30275707 PMCID: PMC6157987 DOI: 10.2147/ott.s174528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Objective The aim of this study was to determine the effects and possible mechanisms of oldhamianoside on the growth of human ovarian cancer both in vitro and in vivo. Materials and methods CCK-8 assay was applied to estimate the effect of oldhamianoside on cell proliferation inhibition in vitro. Nude mice bearing human ovarian SKOV3 xenograft tumors were treated with oldhamianoside to investigate the effects of compound administration on tumor growth in vivo. To further investigate the mechanisms of inhibition effects of oldhamianoside on ovarian cancer growth in vivo, the levels of TNF-α, IL-6, and MCP-1 in plasma from the mice were measured by ELISA. Western blot was used to detect the expression of angiogenesis- and/or apoptosis-related proteins. Results We found that oldhamianoside treatment inhibited SKOV3 proliferation and growth both in vitro and in vivo. Meanwhile, the levels of TNF-α, IL-6, and MCP-1 in plasma were markedly suppressed in oldhamianoside-treated mice. Additionally, oldhamianoside treatment inhibited the expression of VEGF and VEGFR2 and decreased the expression of caspase-3 and Bax/Bcl-2 ratio. Conclusion Our data indicate that oldhamianoside has an obvious inhibition effect on SKOV3 proliferation, and the mechanisms might be related to inhibition of cell growth, apoptosis induction, and adjusting the inflammatory response and angiogenesis signal.
Collapse
Affiliation(s)
- Zenghui Li
- Department of Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Ying Zuo
- Department of Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Li Hou
- Department of Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Liangliang Dong
- Department of Medical Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Xiaomei Sun
- Department of Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China,
| |
Collapse
|
38
|
Telocinobufagin and Marinobufagin Produce Different Effects in LLC-PK1 Cells: A Case of Functional Selectivity of Bufadienolides. Int J Mol Sci 2018; 19:ijms19092769. [PMID: 30223494 PMCID: PMC6163863 DOI: 10.3390/ijms19092769] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/09/2018] [Accepted: 09/13/2018] [Indexed: 12/24/2022] Open
Abstract
Bufadienolides are cardiotonic steroids (CTS) identified in mammals. Besides Na+/K+-ATPase inhibition, they activate signal transduction via protein–protein interactions. Diversity of endogenous bufadienolides and mechanisms of action may indicate the presence of functional selectivity and unique cellular outcomes. We evaluated whether the bufadienolides telocinobufagin and marinobufagin induce changes in proliferation or viability of pig kidney (LLC-PK1) cells and the mechanisms involved in these changes. In some experiments, ouabain was used as a positive control. CTS exhibited an inhibitory IC50 of 0.20 (telocinobufagin), 0.14 (ouabain), and 3.40 μM (marinobufagin) for pig kidney Na+/K+-ATPase activity and concentrations that barely inhibited it were tested in LLC-PK1 cells. CTS induced rapid ERK1/2 phosphorylation, but corresponding proliferative response was observed for marinobufagin and ouabain instead of telocinobufagin. Telocinobufagin increased Bax:Bcl-2 expression ratio, sub-G0 cell cycle phase and pyknotic nuclei, indicating apoptosis. Src and MEK1/2 inhibitors blunted marinobufagin but not telocinobufagin effect, which was also not mediated by p38, JNK1/2, and PI3K. However, BIO, a GSK-3β inhibitor, reduced proliferation and, as telocinobufagin, phosphorylated GSK-3β at inhibitory Ser9. Combination of both drugs resulted in synergistic antiproliferative effect. Wnt reporter activity assay showed that telocinobufagin impaired Wnt/β-catenin pathway by acting upstream to β-catenin stabilization. Our findings support that mammalian endogenous bufadienolides may exhibit functional selectivity.
Collapse
|
39
|
Yang Z, Tao Y, Xu X, Cai F, Yu Y, Ma L. Bufalin inhibits cell proliferation and migration of hepatocellular carcinoma cells via APOBEC3F induced intestinal immune network for IgA production signaling pathway. Biochem Biophys Res Commun 2018; 503:2124-2131. [PMID: 30100060 DOI: 10.1016/j.bbrc.2018.07.169] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 07/31/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVE This study aimed to evaluate functions of APOBEC3F gene in biological process of hepatocellular carcinoma (HCC) and anti-tumor mechanisms of bufalin. METHODS Effect of APOBEC3F and bufalin on cell proliferation and migration abilities were evaluated by CCK-8, wounding healing tests and transwell assays in SK-Hep1 and Bel-7404 cells. Bioinformatic analysis were also used to compare APOBEC3F expression levels, detect coexpressed genes and enrichment of pathways. RESULTS APOBEC3F was overexpressed in tumor tissues compared to adjacent tissues in HCC patients. And, APOBEC3F promotes cell proliferation and migration in SK-Hep1 and Bel-7404 cells. Bufalin inhibits cell proliferation and migration and reduces APOBEC3F expression. GO and KEGG enrichment of APOBEC3F-coexpressed genes revealed that APOBEC3F might active intestinal immune network for IgA production signaling pathway, leading to malignant biological behaviors of HCC cells. Additionally, siAPOBEC3F could decrease pIgR, CCR9, CCR10 and CXCR4 protein levels. And, bufalin inhibits the pIgR, CCR9, CCR10 and CXCR4 protein expressions. CONCLUSIONS Bufalin inhibits cell proliferation and migration of HCC cells via APOBEC3F induced intestinal immune network for IgA production signaling pathway.
Collapse
Affiliation(s)
- Zongguo Yang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, PR China; Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, PR China
| | - Yuquan Tao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, PR China
| | - Xin Xu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, PR China
| | - Feng Cai
- Department of Clinical Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, PR China
| | - Yongchun Yu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, PR China; Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, PR China.
| | - Lifang Ma
- Department of Clinical Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, PR China.
| |
Collapse
|
40
|
The Development of Toad Toxins as Potential Therapeutic Agents. Toxins (Basel) 2018; 10:toxins10080336. [PMID: 30127299 PMCID: PMC6115759 DOI: 10.3390/toxins10080336] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 11/16/2022] Open
Abstract
Toxins from toads have long been known to contain rich chemicals with great pharmaceutical potential. Recent studies have shown more than 100 such chemical components, including peptides, steroids, indole alkaloids, bufogargarizanines, organic acids, and others, in the parotoid and skins gland secretions from different species of toads. In traditional Chinese medicine (TCM), processed toad toxins have been used for treating various diseases for hundreds of years. Modern studies, including both experimental and clinical trials, have also revealed the molecular mechanisms that support the development of these components into medicines for the treatment of inflammatory diseases and cancers. More recently, there have been studies that demonstrated the therapeutic potential of toxins from other species of toads, such as Australian cane toads. Previous reviews mostly focused on the pharmaceutical effects of the whole extracts from parotoid glands or skins of toads. However, to fully understand the molecular basis of toad toxins in their use for therapy, a comprehensive understanding of the individual compound contained in toad toxins is necessary; thus, this paper seeks to review the recent studies of some typical compounds frequently identified in toad secretions.
Collapse
|
41
|
Huang H, Zhang W. Bufalin induced apoptosis of bladder carcinoma cells through the inactivation of Na+K+-ATPase. Oncol Lett 2018; 16:3826-3832. [PMID: 30127995 PMCID: PMC6096233 DOI: 10.3892/ol.2018.9142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/20/2018] [Indexed: 12/30/2022] Open
Abstract
Bufalin has been demonstrated to possess a wide range of pharmacological effects. Among these is its antitumour effect, which has been confirmed in multiple organs or tissues and provoked many concerns. However, its cytostatic effect and underlying mechanism in bladder cancer has not thoroughly been elucidated. This study aimed to investigate the hypothesis that Bufalin induces cell apoptosis and inhibits cell growth in bladder cancer through the inactivation of Na+/K+-ATPase (NKA). In the current study, it was demonstrated that Bufalin remarkably inhibited cell viability and induced cell apoptosis in bladder cancer cell line T24. Subsequently, we found that the expression of NKA was significantly supressed in Bufalin-treated cells and the NKA-α3 isoform was most sensitive to Bufalin among all α subunits of NKA. By transfection with NKA-α3 overexpressing plasmids, the expression of the NKA-α3 subunit was upregulated and NKA-α3 overexpression was found to markedly attenuated Bufalin-induced cell apoptosis in T24 cells, suggesting NKA-α3 played a critical role in Bufalin-induced cell apoptosis. Taken together, the present study confirmed that Bufalin promotes tumour apoptosis and inhibits tumour growth in bladder cancer in vitro, and this antitumour effect may be ascribed to the inactivation of NKA.
Collapse
Affiliation(s)
- Houbao Huang
- Department of Urology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Department of Urology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Wei Zhang
- Department of Urology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
42
|
Decoction of Chinese Herbal Medicine Fuzheng Kang-Ai Induces Lung Cancer Cell Apoptosis via STAT3/Bcl-2/Caspase-3 Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8567905. [PMID: 30046347 PMCID: PMC6036821 DOI: 10.1155/2018/8567905] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/11/2018] [Accepted: 03/27/2018] [Indexed: 11/17/2022]
Abstract
Decoction of Chinese herbal medicine (CHM) Fuzheng Kang-Ai (FZKA for short) has been applied as adjuvant treatment strategy in advanced lung cancer patients for decades. We previously showed that FZKA decoction inhibited proliferation of non-small cell lung cancer (NSCLC) cells through activation of AMP-activated protein kinase alpha (AMPKα) signaling pathway, followed by inducing insulin-like growth factor (IGF) binding protein 1 (IGFBP1) and forkhead homeobox type O3a (FOXO3a) proteins, and enhanced the inhibition effect of gefitinib in lung cancer cell growth via inactivating PI3-K/Akt-mediated suppressing of cell surface-associated mucin-1 (MUC1) expression. In this study, we investigated the molecular mechanism by which FZKA decoction affected cell apoptosis in lung cancer cells. Our results show that FZKA induced apoptosis in lung cancer cells. Mechanistically, FZKA activated the caspase-3, PARP, and caspase-9 activities. Both antiapoptotic and proapoptotic proteins from Bcl-2 family were deregulated by FZKA exposure in lung cancer cells. In addition, FZKA reduced protein expressions of signal transducer and activator of transcription 3 (STAT3) and Jun activation domain-binding protein 1 (Jab1), while it concomitantly increased p21 protein. Moreover, the inhibitor of caspase-3 resisted the effect of FZKA on induction of apoptosis. Finally, exogenous overexpression of STAT3 overcame FZKA-inhibited protein expressions of Bcl-2 and myeloid cell leukemia-1 (Mcl-1) as well as Bax and blocked FZKA-induced activities of caspase-3 and caspase-9. Our results show that FZKA decoction promotes lung cancer cell apoptosis through STAT3/Bcl-2/caspase-3 signaling pathways. This study unveils potential novel molecular mechanism by which FZKA controls growth of human lung cancer cells.
Collapse
|
43
|
Lan YL, Wang X, Lou JC, Xing JS, Yu ZL, Wang H, Zou S, Ma X, Zhang B. Bufalin inhibits glioblastoma growth by promoting proteasomal degradation of the Na +/K +-ATPase α1 subunit. Biomed Pharmacother 2018; 103:204-215. [PMID: 29653366 DOI: 10.1016/j.biopha.2018.04.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 01/02/2023] Open
Abstract
Chansu is a traditional Chinese medicine that is generally recognized as a specific inhibitor of Na+/K+-ATPase. Bufalin, an active component of Chansu, is an endogenous steroid hormone with great potential as a cancer treatment. However, the mechanism by which it exerts its antitumor activity requires further research. Currently, the α1 subunit of Na+/K+-ATPase (ATP1A1) is known to exert important roles in tumorigenesis, and the precise mechanisms underlying the effect of Bufalin on the Na+/K+-ATPase α1 subunit was therefore investigated in this study to determine its role in glioblastoma treatments. The effect of ATP1A1 on the sensitivity of glioblastoma cells to Bufalin was investigated using MTT assays, RT-PCR and siRNA. Western blot was also used to explore the important roles of the ubiquitin-proteasome pathway in the Bufalin-mediated inhibition of ATP1A1. Xenografted mice were used to examine the anti-tumor activity of Bufalin in vivo. LC-MS/MS analysis was performed to determine the ability of Bufalin to traverse the blood-brain barrier (BBB). The results indicated that Bufalin inhibited the expression of ATP1A1 in glioblastoma by promoting the activation of proteasomes and the subsequent protein degradation of ATP1A1, while Bufalin had no effect on ATP1A1 protein synthesis. Bufalin also inhibited the expression of ATP1A1 in xenografted mice and significantly suppressed tumor growth. These data should contribute to future basic and clinical investigations of Bufalin. In conclusion, Bufalin significantly inhibited the expression of ATP1A1 in glioblastoma cells by activating the ubiquitin-proteasome signaling pathway. Bufalin may therefore have the potential to be an effective anti-glioma drug for human glioblastoma in the future.
Collapse
Affiliation(s)
- Yu-Long Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhong Shan Road, Dalian, 116023, China; Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China; Department of Pharmacy, Dalian Medical University, Dalian, 116044, China; Department of Physiology, Dalian Medical University, Dalian, 116044, China
| | - Xun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhong Shan Road, Dalian, 116023, China
| | - Jia-Cheng Lou
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhong Shan Road, Dalian, 116023, China
| | - Jin-Shan Xing
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhong Shan Road, Dalian, 116023, China
| | - Zhen-Long Yu
- Department of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Hongjin Wang
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Shuang Zou
- Department of Physiology, Dalian Medical University, Dalian, 116044, China
| | - Xiaochi Ma
- Department of Pharmacy, Dalian Medical University, Dalian, 116044, China.
| | - Bo Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhong Shan Road, Dalian, 116023, China.
| |
Collapse
|
44
|
Yuan ZT, Shi XJ, Yuan YX, Qiu YY, Zou Y, Liu C, Yu H, He X, Xu K, Yin PH. Bufalin reverses ABCB1-mediated drug resistance in colorectal cancer. Oncotarget 2018. [PMID: 28624793 PMCID: PMC5564622 DOI: 10.18632/oncotarget.18225] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Multidrug resistance (MDR), mainly mediated by ABCB1 transporter, is a major cause for chemotherapy failure. Bufalin (BU), an active component of the traditional Chinese medicine chan’su, has been reported to have antitumor effects on various types of cancer cells. The purpose of this present study was to investigate the reversal effect of BU on ABCB1-mediated multidrug resistance in colorectal cancer. BU at safe concentration (5, 10, 20 nM) could reverse chemosensitivity of ABCB1-overexpression HCT8/ADR, LoVo/ADR and HCT8/ABCB1 nearly back to their parental cells level. In addition, results from the drug accumulation studies revealed that BU was able to enhance intracellular accumulation of doxorubicin (DOX) and Rhodamine 123 (Rho-123) in a dose-dependent manner. Furthermore, Western blot assays showed that BU significantly inhibited the expression level of ABCB1 protein. Meanwhile, BU stimulated the ATPase activity of ABCB1, which suggested that BU might be a substrate of ABCB1. More interestingly, docking analysis predicted that BU could be docked into the large hydrophobic drug-binding cavity of human ABCB1. Importantly, BU remarkable increased the effect of DOX against the ABCB1 resistant HCT8/ADR colorectal cell xenografts in nude mice, without inducing any obvious toxicity. Overall, we concluded that BU efficiently reversed ABCB1-mediated MDR through not only inhibited the efflux function of ABCB1, but also down-regulate its protein expression, which might represent a potential and superior ABCB1 modulator in colorectal cancer.
Collapse
Affiliation(s)
- Ze-Ting Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Xiao-Jing Shi
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yu-Xia Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yan-Yan Qiu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yu Zou
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Cheng Liu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Hui Yu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Xue He
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Ke Xu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Pei-Hao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.,Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| |
Collapse
|
45
|
Bufalin Enhances the Cytotoxity of Human Multiple Myeloma Cells H929 to AKT Inhibitor MK2206: The Role of Protein AKT Phosphorylation. Indian J Hematol Blood Transfus 2018; 34:268-272. [PMID: 29622868 DOI: 10.1007/s12288-017-0883-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022] Open
Abstract
This study was purposed to investigate bufalin combined with AKT inhibitor MK2206 on growth inhibition and apoptosis of multiple myeloma cell line H929. CCK-8 assay and Annexin/PI staining were used to access the effects of bufalin and MK2206 in single or in combination, on inhibition of proliferation and induction of apoptosis in H929 cells. The apoptotic cells markedly increased after treated with nM bufalin and μM MK2206, including caspase3 and PARP1 proteins activated. The difference was statistically significant (P < 0.05) when compared with these drugs in single use. The apoptosis associated proteins and AKT/p-AKT proteins were determined by Western blots. We confirmed that AKT performed contradictory results in H929 with the two agents, and concluded p-AKT was vital in the synergy. The underlying mechanisms warrant further investigation.
Collapse
|
46
|
Shi XJ, Qiu YY, Yu H, Liu C, Yuan YX, Yin PH, Liu T. Increasing the anticancer performance of bufalin (BUF) by introducing an endosome-escaping polymer and tumor-targeting peptide in the design of a polymeric prodrug. Colloids Surf B Biointerfaces 2018; 166:224-234. [PMID: 29602078 DOI: 10.1016/j.colsurfb.2018.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/15/2018] [Accepted: 03/17/2018] [Indexed: 12/26/2022]
Abstract
A well-defined multifunctional brush-type polymeric prodrug covalently linked with an anticancer drug (bufalin, BUF), a tumor-targeting peptide (RGD), and an endosome-escaping polymer, poly(N,N-diethylaminoethyl methacrylate-co-butyl methacrylate (P(DEA-co-BMA)), was developed. Its anticancer performance against colon cancer was investigated in vitro and in vivo. Reversible addition-fragmentation transfer (RAFT) polymerization of oligo(ethylene glycol) monomethyl ether methacrylate (OEGMA), 2-((3-(tert-butoxy)-3-oxopropyl)thio)ethyl methacrylate (BSTMA), and 2-(2-bromoisobutyryloxy)ethylmethacrylate (BIEM) afforded the multifunctional random copolymer, P(OEGMA-co-BSTMA-co-BIEM), in which hydrophilic POEGMA can stabilize nanoparticles in water, PBSTMA can be converted into carboxyl groups, and PBIEM can be employed as a macromolecular atom radical transfer polymerization (ATRP) initiator. The ATRP of DEA and BMA using P(OEGMA-co-BSTMA-co-BIEM) as a macromolecular ATRP initiator led to the formation of the pH-responsive brush-type copolymer, P(OEGMA-co-BSTMA)-g-P(DEA-co- BMA). After hydrolysis by trifluoroacetic acid and post-functionalization the final polymeric prodrug, P(OEGMA-co-BUF-co-RGD)-g-P(DEA-co-BMA), was obtained with a drug content of ∼7.8 wt%. P(OEGMA-co-BUF-co-RGD)-g-P(DEA-co-BMA) can be assembled into nanoparticles (BUF- NP-RGD) in aqueous solution with a diameter of 148.4 ± 0.7 nm and a zeta potential of -7.6 ± 0.4 mV. BUF-NP-RGD exhibited controlled drug release in the presence of esterase. Additionally, P(OEGMA-co- BSMA)-g-P(DEA-co-BMA) showed a significant hemolysis effect at a pH comparable to that of endosomes/lysosomes. Cell viability and a tumor-bearing nude mouse model were employed to evaluate the anticancer efficacy of BUF-NP-RGD. It was revealed that BUF-NP-RGD showed improved anticancer performance compared with that of free BUF both in vitro and in vivo. Histological and immunochemical analysis further demonstrated that BUF-NP-RGD exhibited improved cell apoptosis, angiogenesis inhibition, and an anti-proliferation effect.
Collapse
Affiliation(s)
- Xiao-Jing Shi
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yan-Yan Qiu
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Hui Yu
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Cheng Liu
- Centralab, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yu-Xia Yuan
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Pei-Hao Yin
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| | - Tao Liu
- Centralab, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| |
Collapse
|
47
|
Chai XP, Sun GL, Fang YF, Hu LH, Liu X, Zhang XW. Tumor-targeting efficacy of a BF211 prodrug through hydrolysis by fibroblast activation protein-α. Acta Pharmacol Sin 2018; 39:415-424. [PMID: 29119969 DOI: 10.1038/aps.2017.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/01/2017] [Indexed: 12/12/2022]
Abstract
BF211, a bufalin (BF) derivative, exhibits stronger anti-cancer activity than BF but with potential cardiotoxicity. Fibroblast activation protein-α (FAPα) is a membrane-bound protease specifically expressed by carcinoma-associated fibroblasts, thus has been used for the selective delivery of anticancer agents. In this study, we used a FAPα-based prodrug strategy to synthesize a dipeptide (Z-Gly-Pro)-conjugated BF211 prodrug named BF211-03. BF211-03 was hydrolyzed by recombinant human FAPα (rhFAPα) and cleaved by homogenates of human colon cancer HCT-116 or human gastric cancer MGC-803 xenografts. In contrast, BF211-03 showed good stability in plasma and in the homogenates of FAPα-negative normal tissues, such as heart and kidney. In HCT-116 and MGC-803 cells with low levels of FAPα expression, BF211-03 displayed a lower in vitro cytotoxicity than BF211 with approximately 30 to 40-fold larger IC50 values, whereas in human breast cancer MDA-MB-435 cells with high levels of FAPα expression, the IC50 value difference between BF211-03 and BF211 was small (approximately 4-fold). Although the cytotoxicity of BF211-03 against tumor cells was dramatically decreased by the chemical decoration, it was restored after cleavage of BF211-03 by rhFAPα or tumor homogenate. In HCT-116 tumor-bearing nude mice, doubling the dose of BF211-03, compared with BF211, caused less weight loss, but showing similar inhibitive effects on tumor growth. Our results suggest that BF211-03 is converted to active BF211 in tumor tissues and exhibits anti-tumor activities in tumor-bearing nude mice. FAPα-targeted BF211-03 displays tumor selectivity and may be useful as a targeting agent to improve the safety profile of cytotoxic natural products for use in cancer therapy.
Collapse
|
48
|
Rizwanullah M, Amin S, Mir SR, Fakhri KU, Rizvi MMA. Phytochemical based nanomedicines against cancer: current status and future prospects. J Drug Target 2017; 26:731-752. [DOI: 10.1080/1061186x.2017.1408115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Md. Rizwanullah
- Formulation Research Laboratory, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Saima Amin
- Formulation Research Laboratory, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Showkat Rasool Mir
- Phytopharmaceutical Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Khalid Umar Fakhri
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | |
Collapse
|
49
|
Yu Z, Li T, Wang C, Deng S, Zhang B, Huo X, Zhang B, Wang X, Zhong Y, Ma X. Gamabufotalin triggers c-Myc degradation via induction of WWP2 in multiple myeloma cells. Oncotarget 2017; 7:15725-37. [PMID: 26894970 PMCID: PMC4941272 DOI: 10.18632/oncotarget.7398] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/05/2016] [Indexed: 12/14/2022] Open
Abstract
Deciding appropriate therapy for multiple myeloma (MM) is challenging because of the occurrence of multiple chromosomal changes and the fatal nature of the disease. In the current study, gamabufotalin (GBT) was isolated from toad venom, and its tumor-specific cytotoxicity was investigated in human MM cells. We found GBT inhibited cell growth and induced apoptosis with the IC50 values <50 nM. Mechanistic studies using functional approaches identified GBT as an inhibitor of c-Myc. Further analysis showed that GBT especially evoked the ubiquitination and degradation of c-Myc protein, thereby globally repressing the expression of c-Myc target genes. GBT treatment inhibited ERK and AKT signals, while stimulating the activation of JNK cascade. An E3 ubiquitin-protein ligase, WWP2, was upregulated following JNK activation and played an important role in c-Myc ubiquitination and degradation through direct protein-protein interaction. The antitumor effect of GBT was validated in a xenograft mouse model and the suppression of MM-induced osteolysis was verified in a SCID-hu model in vivo. Taken together, our study identified the potential of GBT as a promising therapeutic agent in the treatment of MM.
Collapse
Affiliation(s)
- Zhenlong Yu
- College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Tao Li
- Department of Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, China
| | - Chao Wang
- College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Sa Deng
- College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Baojing Zhang
- College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xiaokui Huo
- College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Bo Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaobo Wang
- College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yuping Zhong
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiaochi Ma
- College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
50
|
Yuan J, Zhou X, Cao W, Bi L, Zhang Y, Yang Q, Wang S. Improved Antitumor Efficacy and Pharmacokinetics of Bufalin via PEGylated Liposomes. NANOSCALE RESEARCH LETTERS 2017; 12:585. [PMID: 29124481 PMCID: PMC5680394 DOI: 10.1186/s11671-017-2346-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/20/2017] [Indexed: 05/24/2023]
Abstract
Bufalin was reported to show strong pharmacological effects including cardiotonic, antiviral, immune-regulation, and especially antitumor effects. The objective of this study was to determine the characterization, antitumor efficacy, and pharmacokinetics of bufalin-loaded PEGylated liposomes compared with bufalin entity, which were prepared by FDA-approved pharmaceutical excipients. Bufalin-loaded PEGylated liposomes and bufalin-loaded liposomes were prepared reproducibly with homogeneous particle size by the combination of thin film evaporation method and high-pressure homogenization method. Their mean particle sizes were 127.6 and 155.0 nm, mean zeta potentials were 2.24 and - 18.5 mV, and entrapment efficiencies were 76.31 and 78.40%, respectively. In vitro release profile revealed that the release of bufalin in bufalin-loaded PEGylated liposomes was slower than that in bufalin-loaded liposomes. The cytotoxicity of blank liposomes has been found within acceptable range, whereas bufalin-loaded PEGylated liposomes showed enhanced cytotoxicity to U251 cells compared with bufalin entity. In vivo pharmacokinetics indicated that bufalin-loaded PEGylated liposomes could extend or eliminate the half-life time of bufalin in plasma in rats. The results suggested that bufalin-loaded PEGylated liposomes improved the solubility and increased the drug concentration in plasma.
Collapse
Affiliation(s)
- Jiani Yuan
- Department of Natural Medicine & Institute of Materia Medica, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Xuanxuan Zhou
- Department of Natural Medicine & Institute of Materia Medica, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Wei Cao
- Department of Natural Medicine & Institute of Materia Medica, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Linlin Bi
- Department of Natural Medicine & Institute of Materia Medica, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Yifang Zhang
- Shaanxi Pharmaceutical Development Center, Xi'an, China
| | - Qian Yang
- Department of Natural Medicine & Institute of Materia Medica, School of Pharmacy, The Fourth Military Medical University, Xi'an, China.
| | - Siwang Wang
- Department of Natural Medicine & Institute of Materia Medica, School of Pharmacy, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|