1
|
Varlı M, Ji M, Kim E, Kim SJ, Choi B, Ha HH, Kim KK, Paik MJ, Kim H. Emodin disrupts the KITENIN oncogenic complex by binding ErbB4 and suppresses colorectal cancer progression in dual blockade with KSRP-binding compound. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156247. [PMID: 39586126 DOI: 10.1016/j.phymed.2024.156247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/22/2024] [Accepted: 11/09/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND The KITENIN/ErbB4 complex has been reported to participate in metastasis, which is the principal reason of death in most colorectal cancer patients. PURPOSE New therapeutics need to be developed to suppress the malignant effects of the KITENIN/ErbB4 complex, which is related to drug resistance. The present study aimed to evaluate changes in cancer cell invasion capacity, transcriptional regulators, and cellular bioenergetics after targeting the KITENIN/ErbB4 complex with emodin. Moreover, we aimed to reveal the mechanistic effects of emodin and observe the dual blockade effects of ErbB4-targeted therapy with KH-type splicing regulatory protein (KSRP) and search for new alternative blockade pathways. METHODS Using in vitro, in vivo, molecular-docking, and metabolomics studies, we evaluated the anticancer effect of emodin alone or in combination with DKCC14S. RESULTS Emodin treatment decreased KITENIN and ErbB4 protein levels. The dysfunctional KITENIN/ErbB4 complex suppressed KITENIN-mediated cell invasion and downregulated AP-1 activity, aerobic glycolysis, and the levels of transcriptional regulators associated with cell metabolism. We conclude that emodin targets the KITENIN/ErbB4 complex and offering a novel mechanism by which it disrupts KITENIN-mediated signaling. Furthermore, we were demonstrated that the dual blocking effect of emodin and DKC-C14S on the KITENIN complex showed synergistic effects in suppressing colorectal cancer progression under in cell-based and animal assay. CONCLUSION The results suggest that co-treatment with ErbB4 and KSRP-binding compounds could constitute a potential strategy for controlling colorectal cancer progression by disrupting the KITENIN complex.
Collapse
Affiliation(s)
- Mücahit Varlı
- College of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea.
| | - Moongi Ji
- College of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea.
| | - Eunae Kim
- College of Pharmacy, Chosun University, 146 Chosundae-gil, Gwangju 61452, Republic of Korea.
| | - Sung Jin Kim
- Department of Pharmacology, Chonnam National University Medical School, 160 Baekseoro, Dong-gu, Gwangju, 61469, Republic of Korea.
| | - Byeongchan Choi
- College of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea.
| | - Hyung-Ho Ha
- College of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea.
| | - Kyung Keun Kim
- Department of Pharmacology, Chonnam National University Medical School, 160 Baekseoro, Dong-gu, Gwangju, 61469, Republic of Korea.
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea.
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea.
| |
Collapse
|
2
|
Chen R, Zhang H, Zhao X, Zhu L, Zhang X, Ma Y, Xia L. Progress on the mechanism of action of emodin against breast cancer cells. Heliyon 2024; 10:e38628. [PMID: 39524792 PMCID: PMC11550755 DOI: 10.1016/j.heliyon.2024.e38628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/22/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
At present, the role of active ingredients of traditional Chinese medicine in tumor therapy has gradually attracted people's attention, and anthraquinones, which are structurally similar to adriamycin and epirubicin, are one of the hotspots of research. Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a natural anthraquinone compound isolated from rhubarb, Polygonum cuspidatum, and aloe vera. In recent years, emodin has received widespread attention for its remarkable anti-tumor effects, and its anti-breast cancer effects are manifested as induction of apoptosis, inhibition of tumor cell proliferation, inhibition of invasion and metastasis of tumor cells, and anti-tumor drug resistance. Moreover, emodin can act against multiple types of breast cancer cells by acting on different targets. In this paper, we reviewed the latest research progress on the anti-breast cancer effects of emodin and its anti-tumor mechanism, to provide reference and information for the treatment of breast cancer and the development of anti-tumor drugs.
Collapse
Affiliation(s)
- Ruoqing Chen
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Hairong Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Third Hospital, Shandong University, Jinan, 250031, PR China
| | - Xue Zhao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Lin Zhu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - XiaoYu Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Yuning Ma
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| |
Collapse
|
3
|
Song X, Shen L, Contreras JM, Liu Z, Ma K, Ma B, Liu X, Wang DO. New potential selective estrogen receptor modulators in traditional Chinese medicine for treating menopausal syndrome. Phytother Res 2024; 38:4736-4756. [PMID: 39120263 DOI: 10.1002/ptr.8289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/19/2024] [Accepted: 06/23/2024] [Indexed: 08/10/2024]
Abstract
Women go through several predictable conditions and symptoms during menopause that are caused by age, changes in sex hormone levels, and other factors. Conventional menopause hormone therapy has raised serious concerns about the increased risks of cancers, blood clots, depression, etc. Selective estrogen receptor modulators (SERMs) that can be both agonists and antagonists of estrogen receptors in a tissue-specific manner are being developed to reduce the health concerns associated with menopause hormone therapy. Here, we have searched the Chinese national traditional Chinese medicine (TCM) patent database to identify potential SERM-like compounds with reduced health risks. TCM has been widely used for treating complex symptoms associated with menopause syndrome and thus can be a particularly rich source for pharmaceutical alternatives with SERM properties. After extensive literature review and molecular simulation, we conclude that protopanaxatriol, paeoniflorin, astragalin, catalpol, and hyperoside among others may be particularly promising as SERM-like compounds in treating the menopausal syndrome. Compounds in TCM hold promise in yielding comparable outcomes to hormone therapy but with reduced associated risks, thus presenting promising avenues for their clinical applications.
Collapse
Affiliation(s)
- Xintong Song
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Lan Shen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | | | - Zhiyuan Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Kai Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Biao Ma
- RIKEN Center for Computational Science, Kobe, Japan
| | - Xiaoling Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Dan Ohtan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Kiriyanthan RM, Radha A, Pandikumar P, Azhahianambi P, Madan N, Ignacimuthu S. Growth inhibitory effect of selected quinones from Indian medicinal plants against Theileria annulata. Exp Parasitol 2023; 254:108622. [PMID: 37758051 DOI: 10.1016/j.exppara.2023.108622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Tropical Bovine Theileriosis, caused by the protozoan parasite Theileria annulata, poses a significant threat to cattle populations. Currently, Buparvaquone is the sole effective naphthoquinone drug commercially available for its treatment. In our research, we delved into the potential of naturally occurring quinones as alternative treatments. We isolated two quinones, emodin and chrysophanol, from Rheum emodi Wall, and two more, embelin and lawsone, from Embelia ribes Burm.f. and Lawsonia inermis L. respectively. We assessed the anti-Theileria efficacy of these quinones in vitro using MTT and flow cytometric assays on T. annulata-infected bovine lymphocytes. Additionally, we evaluated their safety on uninfected bovine Peripheral Blood Mononuclear Cells (PBMC) and Vero cells. Emodin emerged as a promising candidate, exhibiting an IC50 value of 4 μM, surpassing that of buparvaquone. Emodin also displayed relatively low LD50 values of 1.74 mM against uninfected PBMC and 0.87 mM against Vero cells, suggesting potential safety. Remarkably, emodin demonstrated a high cell absorption rate of 71.32%. While emodin's efficacy and bioavailability are encouraging, further research is imperative to validate its safety and effectiveness for treating Tropical Bovine Theileriosis.
Collapse
Affiliation(s)
- Rose Mary Kiriyanthan
- PG and Research Department of Botany, Bharathi Women's College, Chennai, Tamil Nadu, 600108, India
| | - A Radha
- PG and Research Department of Botany, Bharathi Women's College, Chennai, Tamil Nadu, 600108, India.
| | - Perumal Pandikumar
- Xavier Research Foundation, St Xavier's College, Palayamkottai, Tamil Nadu, 627 002, India
| | - Palavesam Azhahianambi
- Translational Research Platform for Veterinary Biologicals, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600 051, India
| | - N Madan
- Translational Research Platform for Veterinary Biologicals, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600 051, India
| | | |
Collapse
|
5
|
Okon E, Gaweł-Bęben K, Jarzab A, Koch W, Kukula-Koch W, Wawruszak A. Therapeutic Potential of 1,8-Dihydroanthraquinone Derivatives for Breast Cancer. Int J Mol Sci 2023; 24:15789. [PMID: 37958772 PMCID: PMC10648492 DOI: 10.3390/ijms242115789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer (BC) is the most common malignancy among women worldwide. In recent years, significant progress has been made in BC therapy. However, serious side effects resulting from the use of standard chemotherapeutic drugs, as well as the phenomenon of multidrug resistance (MDR), limit the effectiveness of approved therapies. Advanced research in the BC area is necessary to create more effective and safer forms of therapy to improve the outlook for individuals diagnosed with this aggressive neoplasm. For decades, plants and natural products with anticancer properties have been successfully utilized in treating various medical conditions. Anthraquinone derivatives are tricyclic secondary metabolites of natural origin that have been identified in plants, lichens, and fungi. They represent a few botanical families, e.g., Rhamnaceae, Rubiaceae, Fabaceae, Polygonaceae, and others. The review comprehensively covers and analyzes the most recent advances in the anticancer activity of 1,8-dihydroanthraquinone derivatives (emodin, aloe-emodin, hypericin, chrysophanol, rhein, and physcion) applied both individually, or in combination with other chemotherapeutic agents, in in vitro and in vivo BC models. The application of nanoparticles for in vitro and in vivo evidence in the context of 1,8-dihydroanthraquinone derivatives was also described.
Collapse
Affiliation(s)
- Estera Okon
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (E.O.); (A.J.)
| | - Katarzyna Gaweł-Bęben
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, 2 Sucharskiego, 35-225 Rzeszów, Poland;
| | - Agata Jarzab
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (E.O.); (A.J.)
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland;
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medical Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (E.O.); (A.J.)
| |
Collapse
|
6
|
Sakalli-Tecim E, Gur-Dedeoglu B, Guray NT. Systems biology based miRNA-mRNA expression pattern analysis of Emodin in breast cancer cell lines. Pathol Res Pract 2023; 249:154780. [PMID: 37633004 DOI: 10.1016/j.prp.2023.154780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/20/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Breast cancer has been among the most prominent cancers with high mortality. Currently most of the offered therapeutics are toxic; hence, less toxic therapeutic intervention is required. Here, we studied the molecular mechanisms of the effect of a phytoestrogen Emodin on estrogen receptor positive MCF-7 and negative MDA-MB-231 cells by carrying out a comprehensive network assessment. Differentially expressed microRNAs along with their previously identified differentially expressed mRNAs were analyzed through microarrays by using integrative systems biology approach. For each cell line miRNA-target gene networks were built, gene ontology and pathway enrichment analyses were performed, enrichment maps were constructed and the potential key genes, miRNAs and miRNA-gene interactions were studied.
Collapse
Affiliation(s)
- Elif Sakalli-Tecim
- Department of Biotechnology, Middle East Technical University, Ankara, Turkiye
| | | | - N Tulin Guray
- Department of Biotechnology, Middle East Technical University, Ankara, Turkiye; Department of Biological Sciences, Middle East Technical University, Ankara, Turkiye.
| |
Collapse
|
7
|
Qun T, Zhou T, Hao J, Wang C, Zhang K, Xu J, Wang X, Zhou W. Antibacterial activities of anthraquinones: structure-activity relationships and action mechanisms. RSC Med Chem 2023; 14:1446-1471. [PMID: 37593578 PMCID: PMC10429894 DOI: 10.1039/d3md00116d] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/24/2023] [Indexed: 08/19/2023] Open
Abstract
With the increasing prevalence of untreatable infections caused by antibiotic-resistant bacteria, the discovery of new drugs from natural products has become a hot research topic. The antibacterial activity of anthraquinones widely distributed in traditional Chinese medicine has attracted much attention. Herein, the structure and activity relationships (SARs) of anthraquinones as bacteriostatic agents are reviewed and elucidated. The substituents of anthraquinone and its derivatives are closely related to their antibacterial activities. The stronger the polarity of anthraquinone substituents is, the more potent the antibacterial effects appear. The presence of hydroxyl groups is not necessary for the antibacterial activity of hydroxyanthraquinone derivatives. Substitution of di-isopentenyl groups can improve the antibacterial activity of anthraquinone derivatives. The rigid plane structure of anthraquinone lowers its water solubility and results in the reduced activity. Meanwhile, the antibacterial mechanisms of anthraquinone and its analogs are explored, mainly including biofilm formation inhibition, destruction of the cell wall, endotoxin inhibition, inhibition of nucleic acid and protein synthesis, and blockage of energy metabolism and other substances.
Collapse
Affiliation(s)
- Tang Qun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
| | - Tiantian Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University 440113 Guangzhou China
| | - Jiongkai Hao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| | - Jing Xu
- Huanghua Agricultural and Rural Development Bureau Bohai New Area 061100 Hebei China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| |
Collapse
|
8
|
Lima Matos F, Duarte EL, S V Muniz G, Alexander Milán-Garcés E, Coutinho K, Teresa Lamy M, da Cunha AR. Spectroscopic characterization of different protonation/deprotonation states of Barbaloin in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122020. [PMID: 36323087 DOI: 10.1016/j.saa.2022.122020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/25/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Barbaloin (10-glucopyranosyl-1,8-dihydroxy-3-(hydroxymethyl)-9(10H)-anthraquinone: aloin A), present in Aloe species, is widely used in food, cosmetic and pharmaceutical industries. Here we characterize its optical absorption and emission spectra in aqueous solution at different pH values. Through pH titration, using both absorption and fluorescence spectroscopy, two pKa values for Barbaloin were determined: pKa1=9.6±0.6 and pKa2=12.6±0.8. These acidity constants were found to be higher than those found for Emodin, a similar molecule which lacks the sugar moiety present in Barbaloin. Performing quantum mechanical calculations for non-ionized, singly, doubly, and triply deprotonated forms of Barbaloin in vacuum and in water, we assigned the positions of the site for the first and third deprotonation in the anthraquinone group, and the second deprotonation in the glucose group. The instability of Barbaloin in high pH solutions is discussed here, and the optical absorption and fluorescence spectra due to products resulted from Barbaloin degradation at high pH is well separated from the Barbaloin original spectra. Biological fluids have specific pH values to maintain homeostasis, hence determining the pKa of Barbaloin is important to evaluate the mechanism of action of this drug in different parts of an organism as well as to predict pharmacological relevant parameters, such as absorption, distribution, metabolism, and excretion.
Collapse
Affiliation(s)
- Fernanda Lima Matos
- Instituto de Física, Universidade de São Paulo, CEP 05508-090, Cidade Universitária, São Paulo, Brazil.
| | - Evandro L Duarte
- Instituto de Física, Universidade de São Paulo, CEP 05508-090, Cidade Universitária, São Paulo, Brazil.
| | - Gabriel S V Muniz
- Instituto de Física, Universidade de São Paulo, CEP 05508-090, Cidade Universitária, São Paulo, Brazil; Instituto de Química, Universidade de Brasília, CEP 70910-900, Campus Universitário Darcy Ribeiro, Brasília, Brazil.
| | | | - Kaline Coutinho
- Instituto de Física, Universidade de São Paulo, CEP 05508-090, Cidade Universitária, São Paulo, Brazil.
| | - M Teresa Lamy
- Instituto de Física, Universidade de São Paulo, CEP 05508-090, Cidade Universitária, São Paulo, Brazil.
| | - Antonio R da Cunha
- Instituto de Física, Universidade de São Paulo, CEP 05508-090, Cidade Universitária, São Paulo, Brazil; Universidade Federal do Maranhão, UFMA, Campus Balsas, CEP 65800-000, Maranhão, Brazil.
| |
Collapse
|
9
|
Hsu CM, Yen CH, Wang SC, Liu YC, Huang CT, Wang MH, Chuang TM, Ke YL, Yeh TJ, Gau YC, Du JS, Wang HC, Cho SF, Tsai Y, Hsiao CE, Hsiao SY, Hsiao HH. Emodin Ameliorates the Efficacy of Carfilzomib in Multiple Myeloma Cells via Apoptosis and Autophagy. Biomedicines 2022; 10:biomedicines10071638. [PMID: 35884943 PMCID: PMC9312579 DOI: 10.3390/biomedicines10071638] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 11/19/2022] Open
Abstract
Background: Carfilzomib, the proteasome inhibitor, can increase the overall survival rate of multiple myeloma (MM) patients undergoing targeted therapy. However, relapse and toxicity present great challenges for such treatment, so an urgent need for effective combination therapy is necessary. Emodin is a natural chemical compound that inhibits the proliferation of various cancers and can effectively combine with other treatments. In this study, we evaluated the sensitizing effect of emodin combined with carfilzomib on MM cells. Methods: The cells were treated with emodin, carfilzomib, and a combination of drugs to determine their effects on cell proliferation and viability. The cell cycle distribution and reactive oxygen species (ROS) expression were measured by flow cytometry. The level of RNA and protein were analyzed through real-time qPCR and immunoblotting. Results: Emodin acted synergistically with carfilzomib to reduce the proliferation and viability of MM cell lines in vitro. Furthermore, the combination of emodin and carfilzomib increased ROS production, inducing apoptosis and autophagy pathways via caspase-3, PARP, p62, and LC3B. Conclusions: These results provide a molecular target for combination therapy in MM patients.
Collapse
Affiliation(s)
- Chin-Mu Hsu
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (Y.-C.L.); (C.-T.H.); (M.-H.W.); (T.-M.C.); (Y.-L.K.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.); (C.-E.H.)
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shu-Chen Wang
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Yi-Chang Liu
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (Y.-C.L.); (C.-T.H.); (M.-H.W.); (T.-M.C.); (Y.-L.K.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.); (C.-E.H.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chien-Tzu Huang
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (Y.-C.L.); (C.-T.H.); (M.-H.W.); (T.-M.C.); (Y.-L.K.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.); (C.-E.H.)
| | - Min-Hong Wang
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (Y.-C.L.); (C.-T.H.); (M.-H.W.); (T.-M.C.); (Y.-L.K.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.); (C.-E.H.)
| | - Tzer-Ming Chuang
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (Y.-C.L.); (C.-T.H.); (M.-H.W.); (T.-M.C.); (Y.-L.K.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.); (C.-E.H.)
| | - Ya-Lun Ke
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (Y.-C.L.); (C.-T.H.); (M.-H.W.); (T.-M.C.); (Y.-L.K.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.); (C.-E.H.)
| | - Tsung-Jang Yeh
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (Y.-C.L.); (C.-T.H.); (M.-H.W.); (T.-M.C.); (Y.-L.K.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.); (C.-E.H.)
| | - Yuh-Ching Gau
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (Y.-C.L.); (C.-T.H.); (M.-H.W.); (T.-M.C.); (Y.-L.K.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.); (C.-E.H.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jeng-Shiun Du
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (Y.-C.L.); (C.-T.H.); (M.-H.W.); (T.-M.C.); (Y.-L.K.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.); (C.-E.H.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hui-Ching Wang
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (Y.-C.L.); (C.-T.H.); (M.-H.W.); (T.-M.C.); (Y.-L.K.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.); (C.-E.H.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shih-Feng Cho
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (Y.-C.L.); (C.-T.H.); (M.-H.W.); (T.-M.C.); (Y.-L.K.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.); (C.-E.H.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yuhsin Tsai
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
| | - Chi-En Hsiao
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (Y.-C.L.); (C.-T.H.); (M.-H.W.); (T.-M.C.); (Y.-L.K.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.); (C.-E.H.)
| | - Samuel Yien Hsiao
- Department of Biology, University of Rutgers-Camden, Camden, NJ 08102, USA;
| | - Hui-Hua Hsiao
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (Y.-C.L.); (C.-T.H.); (M.-H.W.); (T.-M.C.); (Y.-L.K.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.); (C.-E.H.)
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7312-1101 (ext. 6110)
| |
Collapse
|
10
|
G MS, Swetha M, Keerthana CK, Rayginia TP, Anto RJ. Cancer Chemoprevention: A Strategic Approach Using Phytochemicals. Front Pharmacol 2022; 12:809308. [PMID: 35095521 PMCID: PMC8793885 DOI: 10.3389/fphar.2021.809308] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
Cancer chemoprevention approaches are aimed at preventing, delaying, or suppressing tumor incidence using synthetic or natural bioactive agents. Mechanistically, chemopreventive agents also aid in mitigating cancer development, either by impeding DNA damage or by blocking the division of premalignant cells with DNA damage. Several pre-clinical studies have substantiated the benefits of using various dietary components as chemopreventives in cancer therapy. The incessant rise in the number of cancer cases globally is an issue of major concern. The excessive toxicity and chemoresistance associated with conventional chemotherapies decrease the success rates of the existent chemotherapeutic regimen, which warrants the need for an efficient and safer alternative therapeutic approach. In this scenario, chemopreventive agents have been proven to be successful in protecting the high-risk populations from cancer, which further validates chemoprevention strategy as rational and promising. Clinical studies have shown the effectiveness of this approach in managing cancers of different origins. Phytochemicals, which constitute an appreciable proportion of currently used chemotherapeutic drugs, have been tested for their chemopreventive efficacy. This review primarily aims to highlight the efficacy of phytochemicals, currently being investigated globally as chemopreventives. The clinical relevance of chemoprevention, with special emphasis on the phytochemicals, curcumin, resveratrol, tryptanthrin, kaempferol, gingerol, emodin, quercetin genistein and epigallocatechingallate, which are potential candidates due to their ability to regulate multiple survival pathways without inducing toxicity, forms the crux of this review. The majority of these phytochemicals are polyphenols and flavanoids. We have analyzed how the key molecular targets of these chemopreventives potentially counteract the key drivers of chemoresistance, causing minimum toxicity to the body. An overview of the underlying mechanism of action of these phytochemicals in regulating the key players of cancer progression and tumor suppression is discussed in this review. A summary of the clinical trials on the important phytochemicals that emerge as chemopreventives is also incorporated. We elaborate on the pre-clinical and clinical observations, pharmacokinetics, mechanism of action, and molecular targets of some of these natural products. To summarize, the scope of this review comprises of the current status, limitations, and future directions of cancer chemoprevention, emphasizing the potency of phytochemicals as effective chemopreventives.
Collapse
Affiliation(s)
- Mohan Shankar G
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Mundanattu Swetha
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - C K Keerthana
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Tennyson P Rayginia
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
11
|
Galiardi-Campoy AEB, Machado FC, Carvalho T, Tedesco AC, Rahal P, Calmon MF. Effects of photodynamic therapy mediated by emodin in cervical carcinoma cells. Photodiagnosis Photodyn Ther 2021; 35:102394. [PMID: 34119706 DOI: 10.1016/j.pdpdt.2021.102394] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/10/2021] [Accepted: 06/07/2021] [Indexed: 01/10/2023]
Abstract
Cervical cancer is a worldwide public health problem, and improved selective therapies and anticancer drugs are urgently needed. In recent years, emodin has attracted considerable attention due to its anti-inflammatory, antineoplastic, and proapoptotic effects. Furthermore, emodin may be used as a photosensitizing agent in photodynamic therapy. Interest in photodynamic therapy for cancer treatment has increased due to its efficiency in causing tumor cell death. This study aimed to analyze the effect of emodin combined with photodynamic therapy in cervical carcinoma cell lines. At first, emodin presented cytotoxicity in concentration and time-dependent manners in all the specific cell lines analyzed. SiHa, CaSki, and HaCaT cancer cells presented more than 80% cell viability in concentrations below 30 µmol/L. Fluorescence microscopy images showed efficient cellular uptake of emodin in all analyzed cell lines. A significant decrease in cell viability was observed in SiHa, CaSki, and HaCaT cell lines after treatment of emodin combined with photodynamic therapy. These decreases were accompanied by increased ROS production, caspase-3 activity, and fluorescence intensity of autophagic vacuoles. This suggests increased ROS production led to cell death by apoptosis and autophagy. Additionally, after the combination of emodin and photodynamic therapy in SiHa cells, we observed the overexpression of 22 target genes and downregulation of two target genes of anti-cancer drugs. These results show the promising potential for applications that combine emodin with photodynamic therapy for cervical cancer treatment.
Collapse
Affiliation(s)
- Ana Emília Brumatti Galiardi-Campoy
- Institute of Biosciences, Humanities and Exact Sciences (IBILCE), Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo Street, 2265, Zip/Postal Code: 15054-010, São José do Rio Preto, SP, Brazil
| | - Francielly Cristina Machado
- Institute of Biosciences, Humanities and Exact Sciences (IBILCE), Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo Street, 2265, Zip/Postal Code: 15054-010, São José do Rio Preto, SP, Brazil
| | - Tamara Carvalho
- Institute of Biosciences, Humanities and Exact Sciences (IBILCE), Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo Street, 2265, Zip/Postal Code: 15054-010, São José do Rio Preto, SP, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Paula Rahal
- Institute of Biosciences, Humanities and Exact Sciences (IBILCE), Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo Street, 2265, Zip/Postal Code: 15054-010, São José do Rio Preto, SP, Brazil
| | - Marilia Freitas Calmon
- Institute of Biosciences, Humanities and Exact Sciences (IBILCE), Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo Street, 2265, Zip/Postal Code: 15054-010, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
12
|
Is Emodin with Anticancer Effects Completely Innocent? Two Sides of the Coin. Cancers (Basel) 2021; 13:cancers13112733. [PMID: 34073059 PMCID: PMC8198870 DOI: 10.3390/cancers13112733] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Many anticancer active compounds are known to have the capacity to destroy pathologically proliferating cancer cells in the body, as well as to destroy rapidly proliferating normal cells. Despite remarkable advances in cancer research over the past few decades, the inclusion of natural compounds in researches as potential drug candidates is becoming increasingly important. However, the perception that the natural is reliable is an issue that needs to be clarified. Among the various chemical classes of natural products, anthraquinones have many biological activities and have also been proven to exhibit a unique anticancer activity. Emodin, an anthraquinone derivative, is a natural compound found in the roots and rhizomes of many plants. The anticancer property of emodin, a broad-spectrum inhibitory agent of cancer cells, has been detailed in many biological pathways. In cancer cells, these molecular mechanisms consist of suppressing cell growth and proliferation through the attenuation of oncogenic growth signaling, such as protein kinase B (AKT), mitogen-activated protein kinase (MAPK), HER-2 tyrosine kinase, Wnt/-catenin, and phosphatidylinositol 3-kinase (PI3K). However, it is known that emodin, which shows toxicity to cancer cells, may cause kidney toxicity, hepatotoxicity, and reproductive toxicity especially at high doses and long-term use. At the same time, studies of emodin, which has poor oral bioavailability, to transform this disadvantage into an advantage with nano-carrier systems reveal that natural compounds are not always directly usable compounds. Consequently, this review aimed to shed light on the anti-proliferative and anti-carcinogenic properties of emodin, as well as its potential toxicities and the advantages of drug delivery systems on bioavailability.
Collapse
|
13
|
Sakalli-Tecim E, Uyar-Arpaci P, Guray NT. Identification of Potential Therapeutic Genes and Pathways in Phytoestrogen Emodin Treated Breast Cancer Cell Lines via Network Biology Approaches. Nutr Cancer 2021; 74:592-604. [PMID: 33645356 DOI: 10.1080/01635581.2021.1889622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Phytoestrogens have been investigated for their potential anti-tumorigenic effects in various cancers including breast cancer. Emodin being a phytoestrogen shows anti-carcinogenic properties especially in estrogen receptor positive (ER+) breast cancers. The aim of this study is to identify the molecular mechanism and related biological pathways in both (ER+) MCF-7 and (ER-) MDA-MB-231 breast cancer cell lines upon Emodin treatment via microarray analysis in order to find out therapeutic biomarkers. In both cell lines, first differentially expressed genes were identified, then gene ontology and functional pathway enrichment analyses were performed. Genes regulated through multiple pathways were studied together with literature and a gene cluster was determined for each cell line. Further GeneMANIA and STRING databases were used to study the interactions within the related gene clusters. The results showed that, the genes which are related to cell cycle were significantly regulated in both cell lines. Also, Forkhead Box O1-related genes were found to be prominent in MCF-7 cells. In MDA-MB-231 cells, spindle attachment checkpoint mechanism-related genes were regulated, remarkably. As a result, novel gene regulations reported in this study in response to Emodin will give more information about its metabolism and antiproliferative effect, especially in ER + cells.
Collapse
Affiliation(s)
- Elif Sakalli-Tecim
- Department of Biotechnology, Middle East Technical University, Ankara, Turkey
| | | | - N Tulin Guray
- Department of Biotechnology, Middle East Technical University, Ankara, Turkey.,Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
14
|
Zhang N, Wang J, Sheng A, Huang S, Tang Y, Ma S, Hong G. Emodin Inhibits the Proliferation of MCF-7 Human Breast Cancer Cells Through Activation of Aryl Hydrocarbon Receptor (AhR). Front Pharmacol 2021; 11:622046. [PMID: 33542691 PMCID: PMC7850984 DOI: 10.3389/fphar.2020.622046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
Natural products have proved to be a promising source for the development of potential anticancer drugs. Emodin, a natural compound from Rheum palmatum, is used to treat several types of cancers, including lung, liver, and pancreatic. However, there are few reports regarding its use in the treatment of breast cancer. Thus, the therapeutic effect and mechanism of emodin on MCF-7 human breast cancer cells were investigated in this study. Morphological observations and cell viability were evaluated to determine the anti-proliferation activity of emodin. Network pharmacology and molecular docking were performed to screen the potential targets. Western blot analysis was used to explore a potential antitumor mechanism. The results showed that emodin (50–100 μmol/L) could significantly inhibit the proliferation of MCF-7 cells in a time and dose-dependent manner. Furthermore, virtual screening studies indicated that emodin was a potent aryl hydrocarbon receptor (AhR) agonist in chemotherapy for breast cancer. Finally, when MCF-7 cells were treated with emodin (100 μmol/L) for 24 h, the AhR and cytochrome P450 1A1 (CYP1A1) protein expression levels were significantly upregulated compared with the control group. Our study indicated that emodin exhibited promising antitumor activity in MCF-7 cells, likely through activation of the AhR-CYP1A1 signaling pathway. These findings lay a foundation for the application of emodin in breast cancer treatment.
Collapse
Affiliation(s)
- Ning Zhang
- Life and Health College, Anhui Science and Technology University, Fengyang, China.,School of Chemical Engineering, Anhui University of Science and Technology, Huainan, China.,Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Jiawen Wang
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Aimin Sheng
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, China
| | - Shuo Huang
- Clinical College of Orthopedics, Tianjin Medical University, Tianjin Hospital, Tianjin, China
| | - Yanyan Tang
- Clinical College of Orthopedics, Tianjin Medical University, Tianjin Hospital, Tianjin, China
| | - Shitang Ma
- Life and Health College, Anhui Science and Technology University, Fengyang, China
| | - Ge Hong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| |
Collapse
|
15
|
Ponnusamy L, Kothandan G, Manoharan R. Berberine and Emodin abrogates breast cancer growth and facilitates apoptosis through inactivation of SIK3-induced mTOR and Akt signaling pathway. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165897. [PMID: 32682817 DOI: 10.1016/j.bbadis.2020.165897] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/30/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022]
Abstract
Salt-inducible kinases 3 (SIK3) belong to the AMPK-related family of kinases, which have been implicated in the regulation of cell metabolism, cell polarity remodelling, and epithelial-mesenchymal transition. Elevated SIK3 expressions in breast cancer cells are shown to contribute to tumorigenesis; however, the underlying mechanism remains to be elucidated. In this study, we demonstrate that SIK3 expression is upregulated and concurrently high expression of SIK3 is associated with poor survival in breast cancer. Specifically, SIK3 knockdown revealed that SIK3 is required for the mTOR/Akt signaling pathway and proliferation of breast cancer cells. Furthermore, our findings showed that Emodin (EMO) combined with Berberine (BBR) significantly inhibited SIK3 activity, leading to reduced cell growth, increased cell cycle arrest and apoptosis in breast cancer cells, but not in non-malignant breast epithelial cell line. Mechanistic studies further reveal that EMO and BBR in combined treatment inhibited SIK3-potentiated mTOR-mediated aerobic glycolysis and cell growth in breast cancer cells. Moreover, combination treatments attenuate Akt signaling, thereby inducing G0/G1 phase cell cycle arrest and apoptosis of breast cancer cells in a SIK3-dependent manner. CRISPR/Cas9 or siRNA-mediated SIK3 knockout/knockdown showed an opposite trend in both the luminal and basal-like breast cancer. Collectively, our findings reveal that combination of EMO and BBR attenuates SIK3-driven tumor growth in breast cancer, and thus, EMO and BBR might be a novel SIK3 inhibitor explored into the prevention of breast cancer.
Collapse
Affiliation(s)
- Lavanya Ponnusamy
- Cell Signaling and Cancer Biology Laboratory, Department of Biochemistry, Guindy Campus, University of Madras, Chennai 600025, India
| | - Gugan Kothandan
- Biopolymer Modelling Laboratory, Centre of Advanced Study in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai 600025, India
| | - Ravi Manoharan
- Cell Signaling and Cancer Biology Laboratory, Department of Biochemistry, Guindy Campus, University of Madras, Chennai 600025, India.
| |
Collapse
|
16
|
Kyrodimos E, Papanikolaou V, Tsiambas E, Kikidis D, Peschos D, Ragos V, Mastronikolis N, Riziotis C, Chrysovergis A. Cyclin D1 Gene Numerical Imbalances in Laryngeal Squamous Cell Carcinoma: A Tissue Microarray Grid Based Analysis. Asian Pac J Cancer Prev 2020; 21:379-384. [PMID: 32102514 PMCID: PMC7332136 DOI: 10.31557/apjcp.2020.21.2.379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Deregulation of critical proteins involved in cell cycle stability, such as cyclins, is a frequent genetic event in the development and progression of solid malignancies. Concerning laryngeal squamous cell carcinoma (LSCC), cyclin D1 oncogenic transformation leads to an aberrant protein expression and seems to affect the biological behaviour of the neoplasm. The aim of this study was to determine the correlation of cyclin D1 numerical imbalances with the corresponding protein expression levels in LSCCs. MATERIAL AND METHOD Using tissue microarray (TMA) technology, fifty (n=50) histologically confirmed primary LSSCs were cored at a diameter of 1.5 mm. Immunohistochemistry (IHC) and chromogenic in situ hybridization (CISH) analyses were applied. Concerning the screening process in CISH slides, a novel real-time reference and calibration grid platform was implemented. RESULTS Protein overexpression was observed in 22/50 (44%) cases; whereas, gene amplification was seen in 13/50 (26%) cases (p=0.02). Combined protein/ gene deregulation was associated with the stage of malignancy (p= 0.0014, p=0.001), whereas overall protein expression was strongly correlated with the grade of tumour (p= 0.001). CONCLUSION Cyclin D1 gene amplification led to aberrant protein expression in LSCCs and it was also correlated with an aggressive biological behaviour. To best of our knowledge, this study was the first described grid based CISH analysis under conventional bright field microscopy for detecting gene numerical imbalances while providing a novel and accurate description for screening-mapping process in the entire slide area.<br />.
Collapse
Affiliation(s)
- Efthymios Kyrodimos
- 1st ENT Dept, Hippocration Hospital, Medical School, University of Athens, Athens, Greece
| | - Vasileios Papanikolaou
- 1st ENT Dept, Hippocration Hospital, Medical School, University of Athens, Athens, Greece
| | - Evangelos Tsiambas
- Department of Pathology-Cytology, 401 GAH, Athens, Greece.,Department of Pathology, 417 VA Hospital (NIMTS), Athens, Greece
| | - Dimitrios Kikidis
- 1st ENT Dept, Hippocration Hospital, Medical School, University of Athens, Athens, Greece
| | - Dimitrios Peschos
- Department of Physiology, Medical School, University of Ioannina, Greece
| | - Vasileios Ragos
- Department of Maxillofacial, Medical School, University of Ioannina, Greece
| | - Nicholas Mastronikolis
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical School, University of Patras, Greece
| | - Christos Riziotis
- Theoretical and Physical Chemistry Institute, Photonics for Nanoapplications Laboratory, National Hellenic Research Foundation, Athens, Greece
| | | |
Collapse
|
17
|
Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, Zhao M, Liu Q, Cheng Z, Zou J, Yao P, Gao C, Wei J, Ung COL, Wang S, Zhong Z, Wang Y. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med 2019; 14:48. [PMID: 31719837 PMCID: PMC6836491 DOI: 10.1186/s13020-019-0270-9] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin, ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone I, oridonin, shikonin, gambogic acid, artesunate, wogonin, β-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in combined therapy and immunomodulation. In addition, the present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodulatory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as modulators of immune checkpoints.
Collapse
Affiliation(s)
- Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Chi Teng Vong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Hanbin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peng Lyu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Ling Qiu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Mingming Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Qiao Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zehua Cheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jian Zou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peifen Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Caifang Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jinchao Wei
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Carolina Oi Lam Ung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zhangfeng Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
18
|
Jiang Q, Tian J, Liu G, Yin Y, Yao K. Endoplasmic Reticulum Stress and Unfolded Protein Response Pathways Involved in the Health-Promoting Effects of Allicin on the Jejunum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6019-6031. [PMID: 31067048 DOI: 10.1021/acs.jafc.9b02180] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Intestinal endoplasmic reticulum stress (ERS) triggered by adverse factors disturbs the normal function of the intestine. Allicin has been reported to promote intestinal health and development. In the present study, we established in vivo (35-day-old weaned piglets, 4-week-old mice) and in vitro (IPEC-J2 cell line) ERS models to explore the possible mechanisms by which allicin may benefit intestinal health. This study revealed the following: (1) allicin supplementation improved intestinal morphological indices and ameliorated mild ERS in the jejunum of the weaned piglets; (2) allicin supplementation decreased cellular reactive oxygen species and upregulated the XBP-1s signaling pathways in IPEC-J2 cells; (3) allicin supplementation reduced the prolonged ERS-mediated apoptosis of IPEC-J2 cells and in the jejunal tissues of the KM mice; (4) allicin supplementation enhanced the intercellular junction protein levels of jejunal cells by alleviating the prolonged ERS. These novel findings suggest that eating garlic could alleviate some intestinal malfunctions associated with ERS.
Collapse
Affiliation(s)
- Qian Jiang
- Laboratory of Animal Nutritional Physiology and Metabolic Process , Institute of Subtropical Agriculture Chinese Academy of Sciences , Changsha , Hunan 410125 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100043 , P.R. China
- Department of Animal Science , University of Manitoba , Winnipeg , MB R3T 2N2 , Canada
| | - Junquan Tian
- Laboratory of Animal Nutritional Physiology and Metabolic Process , Institute of Subtropical Agriculture Chinese Academy of Sciences , Changsha , Hunan 410125 , P.R. China
| | - Gang Liu
- Laboratory of Animal Nutritional Physiology and Metabolic Process , Institute of Subtropical Agriculture Chinese Academy of Sciences , Changsha , Hunan 410125 , P.R. China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process , Institute of Subtropical Agriculture Chinese Academy of Sciences , Changsha , Hunan 410125 , P.R. China
| | - Kang Yao
- Laboratory of Animal Nutritional Physiology and Metabolic Process , Institute of Subtropical Agriculture Chinese Academy of Sciences , Changsha , Hunan 410125 , P.R. China
| |
Collapse
|
19
|
Gu J, Cui CF, Yang L, Wang L, Jiang XH. Emodin Inhibits Colon Cancer Cell Invasion and Migration by Suppressing Epithelial-Mesenchymal Transition via the Wnt/β-Catenin Pathway. Oncol Res 2019; 27:193-202. [PMID: 29301594 PMCID: PMC7848449 DOI: 10.3727/096504018x15150662230295] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Colon cancer (CC) is the third most common cancer worldwide. Emodin is an anthraquinone-active substance that has the ability to affect tumor progression. Our study aims to explore the effects and the relevant mechanism of emodin on the invasion and migration of CC in vitro and in vivo. In our study, we found that emodin inhibited the invasion and migration abilities of RKO cells and decreased the expression of matrix metalloproteinase-7 (MMP-7), MMP-9, and vascular endothelial growth factor (VEGF) in a dose-dependent manner. Further research suggested that emodin inhibited EMT by increasing the mRNA level of E-cadherin and decreasing the expression of N-cadherin, Snail, and β-catenin. Emodin also significantly inhibited the activation of the Wnt/β-catenin signaling pathway by downregulating the expression of related downstream target genes, including TCF4, cyclin D1, and c-Myc. A Wnt/β-catenin signaling pathway agonist abolished the effect of emodin on EMT and cell mobility, suggesting that emodin exerted its regulating role through the Wnt/β-catenin pathway. The CC xenograft model was established to study the antitumor efficiency of emodin in vivo. The in vivo study further demonstrated that emodin (40 mg/kg) suppressed tumor growth by inhibiting EMT via the Wnt/β-catenin signaling pathway in vivo. Taken together, we suggest that emodin inhibits the invasion and migration of CC cells in vitro and in vivo by blocking EMT, which is related with the inhibition of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Juan Gu
- *Department of Clinical Pharmacy, West China School of Pharmacy, Sichuan University, Sichuan, P.R. China
| | - Chang-fu Cui
- †Department of Neurology, Research Institute of China Weapons Industry, 521 Hospital, Shanxi, P.R. China
| | - Li Yang
- ‡Microbiological Laboratory, Xinyang Vocational and Technical College, Henan, P.R. China
| | - Ling Wang
- *Department of Clinical Pharmacy, West China School of Pharmacy, Sichuan University, Sichuan, P.R. China
| | - Xue-hua Jiang
- *Department of Clinical Pharmacy, West China School of Pharmacy, Sichuan University, Sichuan, P.R. China
| |
Collapse
|
20
|
Park S, Lim W, Song G. Chrysophanol selectively represses breast cancer cell growth by inducing reactive oxygen species production and endoplasmic reticulum stress via AKT and mitogen-activated protein kinase signal pathways. Toxicol Appl Pharmacol 2018; 360:201-211. [DOI: 10.1016/j.taap.2018.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023]
|
21
|
Hou X, Wei W, Fan Y, Zhang J, Zhu N, Hong H, Wang C. Study on synthesis and bioactivity of biotinylated emodin. Appl Microbiol Biotechnol 2017; 101:5259-5266. [PMID: 28386632 DOI: 10.1007/s00253-017-8243-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/09/2017] [Accepted: 03/12/2017] [Indexed: 11/28/2022]
Abstract
A novel compound biotinylated emodin was synthesized by a two-step acyl chloride method which connects the biotin to emodin with esterification reaction. The product was characterized with ultraviolet-visible spectrophotometry, fourier transform infrared and high-performance liquid chromatography tandem mass spectrometry techniques. Its antibacterial activity against Staphylococcus aureus CMCC 26003 was investigated, and the emodin- and biotinylated emodin-caused antibacterial mechanism was proposed. It was shown that the product was isolated and activity of emodin was remained. These results indicated that our study provides a kind of chemosynthesis method under mild conditions and a strong molecular tool for investigating the emodin-binding protein.
Collapse
Affiliation(s)
- Xueli Hou
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Wenqiang Wei
- Tongwei Food and Drug Administration, Gansu, 743300, China
| | - Yunyun Fan
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Jianbin Zhang
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Ning Zhu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Hailong Hong
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Cuiyan Wang
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China.
| |
Collapse
|
22
|
Tseng HS, Wang YF, Tzeng YM, Chen DR, Liao YF, Chiu HY, Hsieh WT. Aloe-Emodin Enhances Tamoxifen Cytotoxicity by Suppressing Ras/ERK and PI3K/mTOR in Breast Cancer Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:337-350. [PMID: 28231748 DOI: 10.1142/s0192415x17500215] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aloe-emodin (AE) is derived from Aloe vera and rhubarb (Rheum palmatum) and exhibits anticancer activities via multiple regulatory mechanisms in various cancers. AE can also enhance the anticancer efficacy of cisplatin, doxorubicin, docetaxel, and 5-fluorouracil; however, its effects remain poorly characterized. MCF-7, MDA-MB-231, MDA-MB-468, BT-474, and HCC-1954 breast cancer cell lines were treated with the indicated conditions of AE, and cell viability assays were performed. The expression levels of signaling proteins were determined by western blot analysis, intracellular reactive oxygen species (ROS), cell cycle distributions, and rates of apoptosis as estimated by flow cytometry. In comparison with other cells, MCF-7 cells were more sensitive to AE treatment; AE enhanced the cytotoxicity of 9[Formula: see text][Formula: see text]g/ml tamoxifen by reducing EGFR, ER[Formula: see text], Ras, ERK, c-Myc, and mTOR protein expression and blocking PI3K and mTOR activation. Finally, although co-treatment of AE with tamoxifen increased intracellular ROS, there were no effects on cell cycle progression. Besides facilitating tamoxifen-induced cell death, AE also enhanced the antiproliferative activity of tamoxifen by blocking Ras/ERK and PI3K/mTOR pathways in breast cancer cells, thus demonstrating the chemosensitizing potential of AE.
Collapse
Affiliation(s)
- Hsin-Shun Tseng
- * Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua, Taiwan.,‡ Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan
| | - Yu-Fen Wang
- † Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Yew-Min Tzeng
- ‡ Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan.,¶ Department of Life Science, National Taitung University, Taitung, Taiwan.,∥ Center for General Education, National Taitung University, Taitung, Taiwan
| | - Dar-Ren Chen
- * Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua, Taiwan.,† Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Ya-Fan Liao
- ‡ Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan.,§ Asia Mycotoxin Analysis Center, Chaoyang University of Technology, Taichung, Taiwan
| | - Hui-Yu Chiu
- * Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua, Taiwan.,** School of Nursing, Chung Shan Medical University, Taichung, Taiwan
| | - Wen-Tsong Hsieh
- †† Department of Pharmacology, China Medical University, Taichung, Taiwan
| |
Collapse
|
23
|
Manimaran A, Buddhan R, Manoharan S. EMODIN DOWNREGULATES CELL PROLIFERATION MARKERS DURING DMBA INDUCED ORAL CARCINOGENESIS IN GOLDEN SYRIAN HAMSTERS. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2017; 14:83-91. [PMID: 28573225 PMCID: PMC5446469 DOI: 10.21010/ajtcam.v14i2.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background: Cell-cycle disruption is the major characteristic features of neoplastic transformation and the status of cell-cycle regulators can thus be utilized to assess the prognostic significance in patients with cancer. The PCNA, cyclin D1, CDK4, CDK6 and survivin expression in the buccal mucosa was utilized to evaluate the Emodin efficacy on abnormal cell proliferation during 7,12-dimethylbenz(a)anthracene (DMBA) induced oral carcinogenesis in golden Syrian hamsters. Materials and methods: Topical application of DMBA, three times a week for 14 weeks, on the hamsters’ buccal pouches developed well differentiated squamous cell carcinoma. Results: Cyclin D1 and PCNA over-expression and up-regulation of CDK4, CDK6 and survivin were noticed in the buccal mucosa of hamsters treated with DMBA alone. Emodin administration (50mg/kg b.w) orally to hamsters treated with DMBA down-regulated the expression of cell proliferation markers in the buccal mucosa. Conclusions: The anti-cell proliferative role of Emodin is owing to its modulating efficacy on cell-cycle markers towards the tumor suppression during DMBA induced oral carcinogenesis.
Collapse
Affiliation(s)
- Asokan Manimaran
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Rajamanickam Buddhan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Shanmugam Manoharan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| |
Collapse
|
24
|
Manimaran A, Manoharan S, Neelakandan M. EMODIN EFFICACY ON THE AKT, MAPK, ERK AND DNMT EXPRESSION PATTERN DURING DMBA-INDUCED ORAL CARCINOMA IN GOLDEN SYRIAN HAMSTERS. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2016; 13:186-193. [PMID: 28480378 PMCID: PMC5412193 DOI: 10.21010/ajtcam.v13i6.27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background: The present study has evaluated the Emodin efficacy on the Akt, MAPK, ERK and DNMT expression pattern during 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral carcinoma in golden Syrian hamsters, in order to explore its antitumor potential. Materials and methods: Oral tumors were developed in the buccal pouches of golden Syrian hamsters using the carcinogen, DMBA. Results: While the incidence of tumor formation was 100% in hamsters treated with DMBA alone, the tumor formation was not noticed in DMBA+ Emodin treated hamsters. Also, Emodin reduced the severity of precancerous pathological lesions such as dysplasia, in the hamsters treated with DMBA. Emodin administration corrected the abnormalities in the expression pattern of Akt, MAPK, ERK and DNMT in the buccal mucosa of hamsters treated with DMBA. Conclusions: The present study thus suggests that the tumor preventive potential of Emodin is partly related to its modulating effect on the Akt, MAPK, ERK and DNMT expression pattern, as these molecular markers have a pivotal role in the process of cell proliferation, inflammation, invasion, and apoptosis.
Collapse
Affiliation(s)
- Asokan Manimaran
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar - 608002, Tamilnadu, India
| | - Shanmugam Manoharan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar - 608002, Tamilnadu, India
| | - Mani Neelakandan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar - 608002, Tamilnadu, India
| |
Collapse
|
25
|
Monisha BA, Kumar N, Tiku AB. Emodin and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:47-73. [DOI: 10.1007/978-3-319-41334-1_3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
26
|
Ahmad F, Badwe A, Verma G, Bhatia S, Das BR. Molecular evaluation of PIK3CA gene mutation in breast cancer: determination of frequency, distribution pattern and its association with clinicopathological findings in Indian patients. Med Oncol 2016; 33:74. [PMID: 27282497 DOI: 10.1007/s12032-016-0788-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/01/2016] [Indexed: 02/06/2023]
Abstract
Somatic mutations in the PIK3CA gene are common in breast cancer and represent a clinically useful marker for prognosis and therapeutic target. Activating mutations in the PI3K p110 catalytic subunit (PIK3CA) have been identified in 18-40 % of breast carcinomas. In this study, we evaluated PIK3CA mutation in 185 Indian breast cancer patients by direct DNA sequencing. PIK3CA mutations were observed in 23.2 % (43/185) of breast tumor samples. PIK3CA mutations were more frequent exon 30 (76.8 %) than in exon 9 (23.2 %). Mutations were mostly clustered within two hotspot region between nucleotides 1624 and 1636 or between 3129 and 3140. Sequencing analysis revealed four different missense mutations at codon 542 and 545 (E542K, E545K, E545A and E545G) in the helical domain and two different amino acid substitutions at codon 1047 (H1047R and H1047L) in the kinase domain. None of the cases harbored concomitant mutations at multiple codons. PIK3CA mutations were more frequent in older patients, smaller size tumors, ductal carcinomas, grade II tumors, lymph node-positive tumors and non-DCIS tumors; however, none of the differences were significant. In addition, PIK3CA mutations were common in ER+, PR+ and HER2+ cases (30 %), and a comparatively low frequency were noted in triple-negative tumors (13.6 %). In conclusion, to our knowledge, this is the largest study to evaluate the PIK3CA mutation in Indian breast cancer patients. The frequency and distribution pattern of PIK3CA mutations is similar to global reports. Furthermore, identification of molecular markers has unique strengths and can provide insights into the pathogenic process of breast carcinomas.
Collapse
Affiliation(s)
- Firoz Ahmad
- Research and Development, SRL Limited, Plot No. 1, Prime Square Building, S.V. Road, Goregaon (W), Mumbai, 400062, India
| | - Anuya Badwe
- Research and Development, SRL Limited, Plot No. 1, Prime Square Building, S.V. Road, Goregaon (W), Mumbai, 400062, India
| | - Geeta Verma
- Histopathology Division, SRL Limited, Plot No. 1, Prime Square Building, S.V. Road, Goregaon (W), Mumbai, India
| | - Simi Bhatia
- Histopathology Division, SRL Limited, Plot No. 1, Prime Square Building, S.V. Road, Goregaon (W), Mumbai, India
| | - Bibhu Ranjan Das
- Research and Development, SRL Limited, Plot No. 1, Prime Square Building, S.V. Road, Goregaon (W), Mumbai, 400062, India.
| |
Collapse
|
27
|
XU JINMEI, ZHOU YAN, GAO LONG, ZHOU SHUXIAN, LIU WEIHUA, LI XIAOAN. Stromal interaction molecule 1 plays an important role in gastric cancer progression. Oncol Rep 2016; 35:3496-504. [DOI: 10.3892/or.2016.4704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/27/2015] [Indexed: 11/05/2022] Open
|
28
|
Mohammadinejad S, Akbarzadeh A, Rahmati-Yamchi M, Hatam S, Kachalaki S, Zohreh S, Zarghami N. Preparation and Evaluation of Chrysin Encapsulated in PLGA- PEG Nanoparticles in the T47-D Breast Cancer Cell Line. Asian Pac J Cancer Prev 2016; 16:3753-8. [PMID: 25987033 DOI: 10.7314/apjcp.2015.16.9.3753] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polymeric nanoparticles are attractive materials that have been widely used in medicine for drug delivery, with therapeutic applications. In our study, polymeric nanoparticles and the anticancer drug, chrysin, were encapsulated into poly (D, L-lactic-co-glycolic acid) poly (ethylene glycol) (PLGA-PEG) nanoparticles for local treatment. MATERIALS AND METHODS PLGA: PEG triblock copolymers were synthesized by ring-opening polymerization of D, L-lactide and glycolide as an initiator. The bulk properties of these copolymers were characterized using 1H nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy. In addition, the resulting particles were characterized by scanning electron microscopy. RESULTS The chrysin encapsulation efficiency achieved for polymeric nanoparticles was 70% control of release kinetics. The cytotoxicity of different concentration of pure chrysin and chrysin loaded in PLGA-PEG (5-640μM) on T47-D breast cancer cell line was analyzed by MTT-assay. CONCLUSIONS There is potential for use of these nanoparticles for biomedical applications. Future work should include in vivo investigation of the targeting capability and effectiveness of these nanoparticles in the treatment of breast cancer.
Collapse
Affiliation(s)
- Sina Mohammadinejad
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran E-mail :
| | | | | | | | | | | | | |
Collapse
|
29
|
Meng XG, Yue SW. Dexamethasone disrupts cytoskeleton organization and migration of T47D Human breast cancer cells by modulating the AKT/mTOR/RhoA pathway. Asian Pac J Cancer Prev 2015; 15:10245-50. [PMID: 25556455 DOI: 10.7314/apjcp.2014.15.23.10245] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glucocorticoids are commonly co-administered with chemotherapy to prevent drug-induced allergic reactions, nausea, and vomiting, and have anti-tumor functions clinically; however, the distinct effects of GC on subtypes of tumor cells, especially in breast cancer cells, are still not well understood. In this study, we aimed to clarify the effect of GC on subtypes of T47D breast cancer cells by focusing on apoptosis, cell organization and migration, and underluing molecular mechanisms. MATERIALS AND METHODS The cell scratch test was performed to observe the cell migration rate in T47D cells treated with dexamethasone (Dex). Hoechst and MTT assays were conducted to detect cell survival and rhodamine-labeled phalloidin staining to observe cytoskeleton dynamics. Related factors in the AKT/mTOR pathway were determined by Western blotting. RESULTS Dex treatment could effectively inhibit T47D breast cancer cell migration with disruption of the cytoskeletal dynamic organization. Moreover, the effect of Dex on cell migration and cytoskeleton may be mediated by AKT/ mTOR/RhoA pathway. Although Dex inhibited T47D cell migration, it alone may not induce cell apoptosis in T47D cells. CONCLUSIONS Dex in T47D human breast cancer cells could effectively inhibit cell migration by disrupting the cytoskeletal dynamic organization, which may be mediated by the AKT/mTOR/RhoA pathway. Our work suggests that glucocorticoid/Dex clinical use may prove helpful for the treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Xian-Guo Meng
- Department of Physical Medicine and Rehabilitation, Qilu Hospital, Shandong University, Jinan, China E-mail :
| | | |
Collapse
|
30
|
Zu C, Zhang M, Xue H, Cai X, Zhao L, He A, Qin G, Yang C, Zheng X. Emodin induces apoptosis of human breast cancer cells by modulating the expression of apoptosis-related genes. Oncol Lett 2015; 10:2919-2924. [PMID: 26722264 DOI: 10.3892/ol.2015.3646] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 07/28/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to investigate the effects of emodin on the proliferation of human breast cancer cells Bcap-37 and ZR-75-30. Cell viability following emodin treatment was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of emodin on apoptosis were determined by flow cytometry using Annexin V-fluorescein isothiocyanate and propidium iodide staining. Quantitative polymerase chain reaction and western blot analysis were used to determine changes in the expression of apoptotic genes and protein, respectively. The effect of emodin on the invasiveness of breast cancer cells was evaluated by Matrigel invasion assay. Treatment of breast cancer cells Bcap-37 and ZR-75-30 with emodin was observed to inhibit the growth and induced apoptosis in a time- and dose-dependent manner. Emodin reduced the level of Bcl-2 and increased levels of cleaved caspase-3, PARP, p53 and Bax. These findings indicate that emodin induces growth inhibition and apoptosis in human breast cancer cells. Emodin may be a potential therapeutic agent for the treatment of breast cancer.
Collapse
Affiliation(s)
- Cong Zu
- Lab 1, Cancer Institute, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Mingdi Zhang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200092, P.R. China
| | - Hui Xue
- Department of Gynecology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaopeng Cai
- Department of Surgical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Lei Zhao
- Center of Experiment Technology and Medical Research, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Anning He
- Lab 1, Cancer Institute, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guangyuan Qin
- Lab 1, Cancer Institute, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chunshu Yang
- Lab 1, Cancer Institute, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xinyu Zheng
- Lab 1, Cancer Institute, China Medical University, Shenyang, Liaoning 110001, P.R. China ; Department of Breast Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
31
|
Dirican E, Kaya Z, Gullu G, Peker I, Ozmen T, Gulluoglu BM, Kaya H, Ozer A, Akkiprik M. Detection of PIK3CA gene mutations with HRM analysis and association with IGFBP-5 expression levels in breast cancer. Asian Pac J Cancer Prev 2015; 15:9327-33. [PMID: 25422220 DOI: 10.7314/apjcp.2014.15.21.9327] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Breast cancer is the second most common cancer and second leading cause of cancer deaths in women. Phosphatidylinositol-3-kinase (PI3K)/AKT pathway mutations are associated with cancer and phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) gene mutations have been observed in 25-45% of breast cancer samples. Insulin growth factor binding protein-5 (IGFBP-5) can show different effects on apoptosis, cell motility and survival in breast cancer. We here aimed to determine the association between PIK3CA gene mutations and IGFBP-5 expressions for the first time in breast cancer patients. Frozen tumor samples from 101 Turkish breast cancer patients were analyzed with high resolution melting (HRM) for PIK3CA mutations (exon 9 and exon 20) and 37 HRM positive tumor samples were analyzed by DNA sequencing, mutations being found in 31. PIK3CA exon 9 mutations (Q546R, E542Q, E545K, E542K and E545D) were found in 10 tumor samples, exon 20 mutations (H1047L, H1047R, T1025T and G1049R) in 21, where only 1 tumor sample had two exon 20 mutations (T1025T and H1047R). Moreover, we detected one sample with both exon 9 (E542Q) and exon 20 (H1047R) mutations. 35% of the tumor samples with high IGFBP-5 mRNA expression and 29.4% of the tumor samples with low IGFBP-5 mRNA expression had PIK3CA mutations (p=0.9924). This is the first study of PIK3CA mutation screening results in Turkish breast cancer population using HRM analysis. This approach appears to be a very effective and reliable screening method for the PIK3CA exon 9 and 20 mutation detection. Further analysis with a greater number of samples is needed to clarify association between PIK3CA gene mutations and IGFBP-5 mRNA expression, and also clinical outcome in breast cancer patients.
Collapse
Affiliation(s)
- Ebubekir Dirican
- Department of Medical Biology, School of Medicine, Marmara University, Istanbul, Turkey E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Liu M, Peng W, Qin R, Yan Z, Cen Y, Zheng X, Pan X, Jiang W, Li B, Li X, Zhou H. The direct anti-MRSA effect of emodin via damaging cell membrane. Appl Microbiol Biotechnol 2015; 99:7699-709. [DOI: 10.1007/s00253-015-6657-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 11/24/2022]
|
33
|
Lei YY, Wang WJ, Mei JH, Wang CL. Mitogen-Activated Protein Kinase Signal Transduction in Solid Tumors. Asian Pac J Cancer Prev 2014; 15:8539-48. [DOI: 10.7314/apjcp.2014.15.20.8539] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|