1
|
Chen JJ. HRI protein kinase in cytoplasmic heme sensing and mitochondrial stress response: Relevance to hematological and mitochondrial diseases. J Biol Chem 2025; 301:108494. [PMID: 40209956 DOI: 10.1016/j.jbc.2025.108494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/12/2025] Open
Abstract
Most iron in humans is bound in heme used as a prosthetic group for hemoglobin. Heme-regulated inhibitor (HRI) is responsible for coordinating heme availability and protein synthesis. Originally characterized in rabbit reticulocyte lysates, HRI was shown in 1976 to phosphorylate the α-subunit of eukaryotic initiation factor 2, revealing a new molecular mechanism for regulating protein synthesis. Since then, HRI research has mostly been focused on the biochemistry of heme inhibition through direct binding and heme sensing in balancing heme and globin synthesis to prevent proteotoxicity in erythroid cells. Beyond inhibiting translation of highly translated mRNAs, eukaryotic initiation factor 2α phosphorylation also selectively increases translation of certain poorly translated mRNAs, notably activating transcription factor 4 mRNA, for reprogramming of gene expression to mitigate stress, known as the integrated stress response (ISR). In recent years, there have been novel mechanistic insights of HRI-ISR in oxidative stress, mitochondrial function, and erythroid differentiation during heme deficiency. Furthermore, HRI-ISR is activated upon mitochondrial stress in several cell types, establishing the bifunctional nature of HRI protein. The role of HRI and ISR in cancer development and vulnerability is also emerging. Excitingly, the UBR4 ubiquitin ligase complex has been demonstrated to silence the HRI-ISR by degradation of activated HRI proteins, suggesting additional regulatory processes. Together, these recent advancements indicate that the HRI-ISR mechanistic axis is a target for new therapies for hematological and mitochondrial diseases as well as oncology. This review covers the historical overview of HRI biology, the biochemical mechanisms of regulating HRI, and the biological impacts of the HRI-ISR pathway in human diseases.
Collapse
Affiliation(s)
- Jane-Jane Chen
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
2
|
Acosta-Alvear D, Harnoss JM, Walter P, Ashkenazi A. Homeostasis control in health and disease by the unfolded protein response. Nat Rev Mol Cell Biol 2025; 26:193-212. [PMID: 39501044 DOI: 10.1038/s41580-024-00794-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 02/27/2025]
Abstract
Cells rely on the endoplasmic reticulum (ER) to fold and assemble newly synthesized transmembrane and secretory proteins - essential for cellular structure-function and for both intracellular and intercellular communication. To ensure the operative fidelity of the ER, eukaryotic cells leverage the unfolded protein response (UPR) - a stress-sensing and signalling network that maintains homeostasis by rebalancing the biosynthetic capacity of the ER according to need. The metazoan UPR can also redirect signalling from cytoprotective adaptation to programmed cell death if homeostasis restoration fails. As such, the UPR benefits multicellular organisms by preserving optimally functioning cells while removing damaged ones. Nevertheless, dysregulation of the UPR can be harmful. In this Review, we discuss the UPR and its regulatory processes as a paradigm in health and disease. We highlight important recent advances in molecular and mechanistic understanding of the UPR that enable greater precision in designing and developing innovative strategies to harness its potential for therapeutic gain. We underscore the rheostatic character of the UPR, its contextual nature and critical open questions for its further elucidation.
Collapse
Affiliation(s)
| | - Jonathan M Harnoss
- Department of General, Visceral, Thoracic and Transplant Surgery, University Hospital Giessen, Giessen, Germany
| | - Peter Walter
- Altos Labs, Inc., Bay Area Institute of Science, Redwood City, CA, USA.
| | - Avi Ashkenazi
- Research Oncology, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
3
|
He W, Patil AS, Xu Y. Development and validation of a UHPLC-MS/MS method for the quantitative analysis of trans-ISRIB in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1252:124469. [PMID: 39837018 DOI: 10.1016/j.jchromb.2025.124469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/23/2024] [Accepted: 01/11/2025] [Indexed: 01/23/2025]
Abstract
The integrated stress response (ISR) is a cellular defense mechanism activated under stress conditions. When the ISR is activated, it slows the production of proteins, the building blocks that cells need to function. Trans-integrated stress response inhibitor (trans-ISRIB) is a compound that can reverse the effects of ISR activation, showing promise for treating neurodegenerative diseases. The preclinical and clinical evaluation of trans-ISRIB necessitates a reliable analytical method. This study presents the development and validation of an ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for the quantitative analysis of trans-ISRIB in human plasma, conforming to the U.S. FDA's guidelines for bioanalytical method validation. The method developed utilizes a liquid-liquid extraction procedure to prepare plasma samples with a spiked internal standard (IS). The extracts containing trans-ISRIB and the IS were dried under nitrogen, reconstituted in the mobile phase, and separated on a Waters XSelect HSS T3 column under isocratic conditions with a mobile phase containing 0.1 % acetic acid in 70 % methanol aqueous solution at a flow rate of 0.500 mL/min. Detection and quantification were accomplished using a positive electrospray ionization tandem mass spectrometer (ESI+-MS/MS) operated in multiple-reaction-monitoring (MRM) mode. The method demonstrated a linear calibration range for trans-ISRIB concentrations from 0.500 to 1.00 x 103 nM, with high specificity, precision, accuracy, and recovery. This method addresses a significant analytical gap, offering a robust tool for quantifying trans-ISRIB in human plasma. Chemical compounds studied in this article: 2-(4-chlorophenoxy)-N-[4-[[2-(4-chlorophenoxy)acetyl]amino]cyclohexyl]acetamide (trans-ISRIB) (CAS # 1597403-47-8); 2-(4-chlorophenoxy)-N-(2-{[(4-chlorophenoxy)acetyl]amino}ethyl)acetamide (CAS # 327071-30-7).
Collapse
Affiliation(s)
- Weizhuan He
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Akshay Suresh Patil
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Yan Xu
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA.
| |
Collapse
|
4
|
Renner DM, Parenti NA, Bracci N, Weiss SR. Betacoronaviruses Differentially Activate the Integrated Stress Response to Optimize Viral Replication in Lung-Derived Cell Lines. Viruses 2025; 17:120. [PMID: 39861909 PMCID: PMC11769277 DOI: 10.3390/v17010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The betacoronavirus genus contains five of the seven human coronaviruses, making it a particularly critical area of research to prepare for future viral emergence. We utilized three human betacoronaviruses, one from each subgenus-HCoV-OC43 (embecovirus), SARS-CoV-2 (sarbecovirus), and MERS-CoV (merbecovirus)-, to study betacoronavirus interactions with the PKR-like ER kinase (PERK) pathway of the integrated stress response (ISR)/unfolded protein response (UPR). The PERK pathway becomes activated by an abundance of unfolded proteins within the endoplasmic reticulum (ER), leading to phosphorylation of eIF2α and translational attenuation. We demonstrate that MERS-CoV, HCoV-OC43, and SARS-CoV-2 all activate PERK and induce responses downstream of p-eIF2α, while only SARS-CoV-2 induces detectable p-eIF2α during infection. Using a small molecule inhibitor of eIF2α dephosphorylation, we provide evidence that MERS-CoV and HCoV-OC43 maximize viral replication through p-eIF2α dephosphorylation. Interestingly, genetic ablation of growth arrest and DNA damage-inducible protein (GADD34) expression, an inducible protein phosphatase 1 (PP1)-interacting partner targeting eIF2α for dephosphorylation, did not significantly alter HCoV-OC43 or SARS-CoV-2 replication, while siRNA knockdown of the constitutive PP1 partner, constitutive repressor of eIF2α phosphorylation (CReP), dramatically reduced HCoV-OC43 replication. Combining GADD34 knockout with CReP knockdown had the maximum impact on HCoV-OC43 replication, while SARS-CoV-2 replication was unaffected. Overall, we conclude that eIF2α dephosphorylation is critical for efficient protein production and replication during MERS-CoV and HCoV-OC43 infection. SARS-CoV-2, however, appears to be insensitive to p-eIF2α and, during infection, may even downregulate dephosphorylation to limit host translation.
Collapse
Affiliation(s)
- David M. Renner
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (D.M.R.); (N.A.P.); (N.B.)
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas A. Parenti
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (D.M.R.); (N.A.P.); (N.B.)
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicole Bracci
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (D.M.R.); (N.A.P.); (N.B.)
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Susan R. Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (D.M.R.); (N.A.P.); (N.B.)
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Carter JL, Su Y, Al-Antary ET, Zhao J, Qiao X, Wang G, Edwards H, Polin L, Kushner J, Dzinic SH, White K, Buck SA, Hüttemann M, Allen JE, Prabhu VV, Yang J, Taub JW, Ge Y. ONC213: a novel strategy to resensitize resistant AML cells to venetoclax through induction of mitochondrial stress. J Exp Clin Cancer Res 2025; 44:10. [PMID: 39780285 PMCID: PMC11714820 DOI: 10.1186/s13046-024-03267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Venetoclax + azacitidine is a frontline treatment for older adult acute myeloid leukemia (AML) patients and a salvage therapy for relapsed/refractory patients who have been treated with intensive chemotherapy. While this is an important treatment option, many patients fail to achieve complete remission and of those that do, majority relapse. Leukemia stem cells (LSCs) are believed to be responsible for AML relapse and can be targeted through oxidative phosphorylation reduction. We previously reported that ONC213 disrupts oxidative phosphorylation and decreases Mcl-1 protein, which play a key role in venetoclax resistance. Here we investigated the antileukemic activity and underlying molecular mechanism of the combination of ONC213 + venetoclax against AML cells. METHODS Flow cytometry was used to determine drug-induced apoptosis. Protein level changes were determined by western blot. An AML cell line-derived xenograft mouse model was used to determine the effects of ONC213 + venetoclax on survival. A patient-derived xenograft (PDX) mouse model was used to determine drug effects on CD45+/CD34+/CD38-/CD123 + cells. Colony formation assays were used to assess drug effects on AML progenitor cells. Mcl-1 and Bax/Bak knockdown and Mcl-1 overexpression were used to confirm their role in the mechanism of action. The effect of ONC213 + venetoclax on mitochondrial respiration was determined using a Seahorse bioanalyzer. RESULTS ONC213 + venetoclax synergistically kills AML cells, including those resistant to venetoclax alone as well as venetoclax + azacitidine. The combination significantly reduced colony formation capacity of primary AML progenitors compared to the control and either treatment alone. Further, the combination prolonged survival in an AML cell line-derived xenograft model and significantly decreased LSCs in an AML PDX model. CONCLUSIONS ONC213 can resensitize VEN + AZA-resistant AML cells to venetoclax therapy and target LSCs ex vivo and in vivo.
Collapse
MESH Headings
- Humans
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Animals
- Mice
- Mitochondria/metabolism
- Mitochondria/drug effects
- Drug Resistance, Neoplasm/drug effects
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Apoptosis/drug effects
- Female
Collapse
Affiliation(s)
- Jenna L Carter
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yongwei Su
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Eman T Al-Antary
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, 48201, USA
- Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI, 48859, USA
| | - Jianlei Zhao
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Xinan Qiao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Juiwanna Kushner
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Sijana H Dzinic
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Kathryn White
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Steven A Buck
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, 48201, USA
| | - Maik Hüttemann
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | | | | | - Jay Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jeffrey W Taub
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, 48201, USA.
- Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI, 48859, USA.
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Yubin Ge
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
6
|
Yang M, Mo Z, Walsh K, Liu W, Guo X. The Integrated Stress Response Suppresses PINK1-dependent Mitophagy by Preserving Mitochondrial Import Efficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.617214. [PMID: 39463933 PMCID: PMC11507992 DOI: 10.1101/2024.10.16.617214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Mitophagy is crucial for maintaining mitochondrial health, but how its levels adjust to different stress conditions remains unclear. In this study, we investigated the role of the DELE1-HRI axis of integrated stress response (ISR) in regulating mitophagy, a key mitochondrial stress pathway. Our findings show that the ISR suppresses mitophagy under non-depolarizing mitochondrial stress by positively regulating mitochondrial protein import, independent of ATF4 activation. Mitochondrial protein import is regulated by the rate of protein synthesis under both depolarizing and non-depolarizing stress. Without ISR, increased protein synthesis overwhelms the mitochondrial import machinery, reducing its efficiency. Under depolarizing stress, mitochondrial import is heavily impaired even with active ISR, leading to significant PINK1 accumulation. In contrast, non-depolarizing stress allows more efficient protein import in the presence of ISR, resulting in lower mitophagy. Without ISR, mitochondrial protein import becomes severely compromised, causing PINK1 accumulation to reach the threshold necessary to trigger mitophagy. These findings reveal a novel link between ISR-regulated protein synthesis, mitochondrial import, and mitophagy, offering potential therapeutic targets for diseases associated with mitochondrial dysfunction.
Collapse
|
7
|
Kim J, Huang K, Vo PTT, Miao T, Correia J, Kumar A, Simons MJP, Bai H. Peroxisomal import stress activates integrated stress response and inhibits ribosome biogenesis. PNAS NEXUS 2024; 3:pgae429. [PMID: 39398621 PMCID: PMC11470064 DOI: 10.1093/pnasnexus/pgae429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Impaired organelle-specific protein import triggers a variety of cellular stress responses, including adaptive pathways to balance protein homeostasis. Most of the previous studies focus on the cellular stress response triggered by misfolded proteins or defective protein import in the endoplasmic reticulum or mitochondria. However, little is known about the cellular stress response to impaired protein import in the peroxisome, an understudied organelle that has recently emerged as a key signaling hub for cellular and metabolic homeostasis. To uncover evolutionarily conserved cellular responses upon defective peroxisomal import, we carried out a comparative transcriptomic analysis on fruit flies with tissue-specific peroxin knockdown and human HEK293 cells expressing dominant-negative PEX5C11A. Our RNA-seq results reveal that defective peroxisomal import upregulates integrated stress response (ISR) and downregulates ribosome biogenesis in both flies and human cells. Functional analyses confirm that impaired peroxisomal import induces eIF2α phosphorylation and ATF4 expression. Loss of ATF4 exaggerates cellular damage upon peroxisomal import defects, suggesting that ATF4 activation serves as a cellular cytoprotective mechanism upon peroxisomal import stress. Intriguingly, we show that peroxisomal import stress decreases the expression of rRNA processing genes and inhibits early pre-rRNA processing, which leads to the accumulation of 47S precursor rRNA and reduction of downstream rRNA intermediates. Taken together, we identify ISR activation and ribosome biogenesis inhibition as conserved adaptive stress responses to defective peroxisomal import and uncover a novel link between peroxisomal dysfunction and rRNA processing.
Collapse
Affiliation(s)
- Jinoh Kim
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Kerui Huang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Pham Thuy Tien Vo
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Ting Miao
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Jacinta Correia
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Ankur Kumar
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Mirre J P Simons
- Department of Animal and Plant Sciences and Bateson Centre, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
8
|
Labbé K, LeBon L, King B, Vu N, Stoops EH, Ly N, Lefebvre AEYT, Seitzer P, Krishnan S, Heo JM, Bennett B, Sidrauski C. Specific activation of the integrated stress response uncovers regulation of central carbon metabolism and lipid droplet biogenesis. Nat Commun 2024; 15:8301. [PMID: 39333061 PMCID: PMC11436933 DOI: 10.1038/s41467-024-52538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
The integrated stress response (ISR) enables cells to cope with a variety of insults, but its specific contribution to downstream cellular outputs remains unclear. Using a synthetic tool, we selectively activate the ISR without co-activation of parallel pathways and define the resulting cellular state with multi-omics profiling. We identify time- and dose-dependent gene expression modules, with ATF4 driving only a small but sensitive subgroup that includes amino acid metabolic enzymes. This ATF4 response affects cellular bioenergetics, rerouting carbon utilization towards amino acid production and away from the tricarboxylic acid cycle and fatty acid synthesis. We also find an ATF4-independent reorganization of the lipidome that promotes DGAT-dependent triglyceride synthesis and accumulation of lipid droplets. While DGAT1 is the main driver of lipid droplet biogenesis, DGAT2 plays an essential role in buffering stress and maintaining cell survival. Together, we demonstrate the sufficiency of the ISR in promoting a previously unappreciated metabolic state.
Collapse
Affiliation(s)
| | - Lauren LeBon
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Bryan King
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Ngoc Vu
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | - Nina Ly
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | | | | - Jin-Mi Heo
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | |
Collapse
|
9
|
Renner DM, Parenti NA, Weiss SR. BETACORONAVIRUSES DIFFERENTIALLY ACTIVATE THE INTEGRATED STRESS RESPONSE TO OPTIMIZE VIRAL REPLICATION IN LUNG DERIVED CELL LINES. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614975. [PMID: 39386680 PMCID: PMC11463420 DOI: 10.1101/2024.09.25.614975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The betacoronavirus genus contains five of the seven human viruses, making it a particularly critical area of research to prepare for future viral emergence. We utilized three human betacoronaviruses, one from each subgenus- HCoV-OC43 (embecovirus), SARS-CoV-2 (sarbecovirus) and MERS-CoV (merbecovirus)- to study betacoronavirus interaction with the PKR-like ER kinase (PERK) pathway of the integrated stress response (ISR)/unfolded protein response (UPR). The PERK pathway becomes activated by an abundance of unfolded proteins within the endoplasmic reticulum (ER), leading to phosphorylation of eIF2α and translational attenuation in lung derived cell lines. We demonstrate that MERS-CoV, HCoV-OC43, and SARS-CoV-2 all activate PERK and induce responses downstream of p-eIF2α, while only SARS-CoV-2 induces detectable p-eIF2α during infection. Using a small molecule inhibitor of eIF2α dephosphorylation, we provide evidence that MERS-CoV and HCoV-OC43 maximize replication through p-eIF2α dephosphorylation. Interestingly, genetic ablation of GADD34 expression, an inducible phosphatase 1 (PP1)-interacting partner targeting eIF2α for dephosphorylation, did not significantly alter HCoV-OC43 or SARS-CoV-2 replication, while siRNA knockdown of the constitutive PP1 partner, CReP, dramatically reduced HCoV-OC43 replication. Combining growth arrest and DNA damage-inducible protein (GADD34) knockout with peripheral ER membrane-targeted protein (CReP) knockdown had the maximum impact on HCoV-OC43 replication, while SARS-CoV-2 replication was unaffected. Overall, we conclude that eIF2α dephosphorylation is critical for efficient protein production and replication during MERS-CoV and HCoV-OC43 infection. SARS-CoV-2, however, appears to be insensitive to p-eIF2α and, during infection, may even downregulate dephosphorylation to limit host translation. IMPORTANCE Lethal human betacoronaviruses have emerged three times in the last two decades, causing two epidemics and a pandemic. Here, we demonstrate differences in how these viruses interact with cellular translational control mechanisms. Utilizing inhibitory compounds and genetic ablation, we demonstrate that MERS-CoV and HCoV-OC43 benefit from keeping p-eIF2α levels low to maintain high rates of virus translation while SARS-CoV-2 tolerates high levels of p-eIF2α. We utilized a PP1:GADD34/CReP inhibitor, GADD34 KO cells, and CReP-targeting siRNA to investigate the therapeutic potential of these pathways. While ineffective for SARS-CoV-2, we found that HCoV-OC43 seems to primarily utilize CReP to limit p-eIF2a accumulation. This work highlights the need to consider differences amongst these viruses, which may inform the development of host-directed pan-coronavirus therapeutics.
Collapse
Affiliation(s)
- David M. Renner
- Departments of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 19104-6076
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 19104-6076
| | - Nicholas A. Parenti
- Departments of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 19104-6076
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 19104-6076
| | - Susan R. Weiss
- Departments of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 19104-6076
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 19104-6076
| |
Collapse
|
10
|
Piecyk M, Triki M, Laval P, Duret C, Fauvre J, Cussonneau L, Machon C, Guitton J, Rama N, Gibert B, Ichim G, Catez F, Bourdelais F, Durand S, Diaz J, Coste I, Renno T, Manié SN, Aznar N, Ansieau S, Ferraro‐Peyret C, Chaveroux C. The stress sensor GCN2 differentially controls ribosome biogenesis in colon cancer according to the nutritional context. Mol Oncol 2024; 18:2111-2135. [PMID: 37452637 PMCID: PMC11467793 DOI: 10.1002/1878-0261.13491] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/25/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023] Open
Abstract
Nutrient availability is a key determinant of tumor cell behavior. While nutrient-rich conditions favor proliferation and tumor growth, scarcity, and particularly glutamine starvation, promotes cell dedifferentiation and chemoresistance. Here, linking ribosome biogenesis plasticity with tumor cell fate, we uncover that the amino acid sensor general control non-derepressible 2 (GCN2; also known as eIF-2-alpha kinase 4) represses the expression of the precursor of ribosomal RNA (rRNA), 47S, under metabolic stress. We show that blockade of GCN2 triggers cell death by an irremediable nucleolar stress and subsequent TP53-mediated apoptosis in patient-derived models of colon adenocarcinoma (COAD). In nutrient-rich conditions, a cell-autonomous GCN2 activity supports cell proliferation by stimulating 47S rRNA transcription, independently of the canonical integrated stress response (ISR) axis. Impairment of GCN2 activity prevents nuclear translocation of methionyl-tRNA synthetase (MetRS), resulting in nucleolar stress, mTORC1 inhibition and, ultimately, autophagy induction. Inhibition of the GCN2-MetRS axis drastically improves the cytotoxicity of RNA polymerase I (RNA pol I) inhibitors, including the first-line chemotherapy oxaliplatin, on patient-derived COAD tumoroids. Our data thus reveal that GCN2 differentially controls ribosome biogenesis according to the nutritional context. Furthermore, pharmacological co-inhibition of the two GCN2 branches and RNA pol I activity may represent a valuable strategy for elimination of proliferative and metabolically stressed COAD cells.
Collapse
Affiliation(s)
- Marie Piecyk
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Mouna Triki
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Pierre‐Alexandre Laval
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Cedric Duret
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Joelle Fauvre
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Laura Cussonneau
- INRAE, Unité de Nutrition Humaine, UMR1019Université Clermont AuvergneClermont‐FerrandFrance
| | - Christelle Machon
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
- Biochemistry and Pharmaco‐Toxicology Laboratory, Lyon Sud HospitalHospices Civils de Lyon Pierre‐Bénite, University Hospital of LyonFrance
| | - Jerôme Guitton
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
- Biochemistry and Pharmaco‐Toxicology Laboratory, Lyon Sud HospitalHospices Civils de Lyon Pierre‐Bénite, University Hospital of LyonFrance
| | - Nicolas Rama
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Benjamin Gibert
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Gabriel Ichim
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Frederic Catez
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Fleur Bourdelais
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Sebastien Durand
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Jean‐Jacques Diaz
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Isabelle Coste
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Toufic Renno
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Serge N. Manié
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Nicolas Aznar
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Stephane Ansieau
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Carole Ferraro‐Peyret
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
- Hospices Civils de Lyon, Plateforme AURAGENFrance
| | - Cedric Chaveroux
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| |
Collapse
|
11
|
Laval PA, Piecyk M, Guen PL, Ilie MD, Marion A, Fauvre J, Coste I, Renno T, Aznar N, Hadji C, Migdal C, Duret C, Bertolino P, Ferraro-Peyret C, Nicolas A, Chaveroux C. Soft extracellular matrix drives endoplasmic reticulum stress-dependent S quiescence underlying molecular traits of pulmonary basal cells. Acta Biomater 2024; 182:93-110. [PMID: 38788988 DOI: 10.1016/j.actbio.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/19/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
Cell culture on soft matrix, either in 2D and 3D, preserves the characteristics of progenitors. However, the mechanism by which the mechanical microenvironment determines progenitor phenotype, and its relevance to human biology, remains poorly described. Here we designed multi-well hydrogel plates with a high degree of physico-chemical uniformity to reliably address the molecular mechanism underlying cell state modification driven by physiological stiffness. Cell cycle, differentiation and metabolic activity could be studied in parallel assays, showing that the soft environment promotes an atypical S-phase quiescence and prevents cell drift, while preserving the differentiation capacities of human bronchoepithelial cells. These softness-sensitive responses are associated with calcium leakage from the endoplasmic reticulum (ER) and defects in proteostasis and enhanced basal ER stress. The analysis of available single cell data of the human lung also showed that this non-conventional state coming from the soft extracellular environment is indeed consistent with molecular feature of pulmonary basal cells. Overall, this study demonstrates that mechanical mimicry in 2D culture supports allows to maintain progenitor cells in a state of high physiological relevance for characterizing the molecular events that govern progenitor biology in human tissues. STATEMENT OF SIGNIFICANCE: This study focuses on the molecular mechanism behind the progenitor state induced by a soft environment. Using innovative hydrogel supports mimicking normal human lung stiffness, the data presented demonstrate that lung mechanics prevent drift while preserving the differentiation capabilities of lung epithelial cells. Furthermore, we show that the cells are positioned in a quiescent state in the atypical S phase. Mechanistically, we demonstrate that this quiescence: i) is driven by calcium leakage from the endoplasmic reticulum (ER) and basal activation of the PERK branch of ER stress signalling, and ii) protects cells from lethal ER stress caused by metabolic stress. Finally, we validate using human single-cell data that these molecular features identified on the soft matrix are found in basal lung cells. Our results reveal original and relevant molecular mechanisms orchestrating cell fate in a soft environment and resistance to exogenous stresses, thus providing new fundamental and clinical insights into basal cell biology.
Collapse
Affiliation(s)
- Pierre-Alexandre Laval
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Marie Piecyk
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Paul Le Guen
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Mirela-Diana Ilie
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France; Endocrinology Department, "C.I.Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - Aubepart Marion
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Joelle Fauvre
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Isabelle Coste
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Toufic Renno
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Nicolas Aznar
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | | | - Cedric Duret
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Philippe Bertolino
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Carole Ferraro-Peyret
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France; Hospices Civils de Lyon, Plateforme AURAGEN, Lyon, France
| | - Alice Nicolas
- University Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble Institute of Technology, Laboratory of Technology of Microelectronics, Grenoble, France
| | - Cedric Chaveroux
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
12
|
Konstantinidou M, Arkin MR. Molecular glues for protein-protein interactions: Progressing toward a new dream. Cell Chem Biol 2024; 31:1064-1088. [PMID: 38701786 PMCID: PMC11193649 DOI: 10.1016/j.chembiol.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/08/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024]
Abstract
The modulation of protein-protein interactions with small molecules is one of the most rapidly developing areas in drug discovery. In this review, we discuss advances over the past decade (2014-2023) focusing on molecular glues (MGs)-monovalent small molecules that induce proximity, either by stabilizing native interactions or by inducing neomorphic interactions. We include both serendipitous and rational discoveries and describe the different approaches that were used to identify them. We classify the compounds in three main categories: degradative MGs, non-degradative MGs or PPI stabilizers, and MGs that induce self-association. Diverse, illustrative examples with structural data are described in detail, emphasizing the elements of molecular recognition and cooperative binding at the interface that are fundamental for a MG mechanism of action.
Collapse
Affiliation(s)
- Markella Konstantinidou
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
13
|
Herstine JA, Chang PK, Chornyy S, Stevenson TJ, Sunshine AC, Nokhrina K, Rediger J, Wentz J, Vetter TA, Scholl E, Holaway C, Pyne NK, Bratasz A, Yeoh S, Flanigan KM, Bonkowsky JL, Bradbury AM. Evaluation of safety and early efficacy of AAV gene therapy in mouse models of vanishing white matter disease. Mol Ther 2024; 32:1701-1720. [PMID: 38549375 PMCID: PMC11184306 DOI: 10.1016/j.ymthe.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/13/2024] [Accepted: 03/26/2024] [Indexed: 04/15/2024] Open
Abstract
Leukoencephalopathy with vanishing white matter (VWM) is a progressive incurable white matter disease that most commonly occurs in childhood and presents with ataxia, spasticity, neurological degeneration, seizures, and premature death. A distinctive feature is episodes of rapid neurological deterioration provoked by stressors such as infection, seizures, or trauma. VWM is caused by autosomal recessive mutations in one of five genes that encode the eukaryotic initiation factor 2B complex, which is necessary for protein translation and regulation of the integrated stress response. The majority of mutations are in EIF2B5. Astrocytic dysfunction is central to pathophysiology, thereby constituting a potential therapeutic target. Herein we characterize two VWM murine models and investigate astrocyte-targeted adeno-associated virus serotype 9 (AAV9)-mediated EIF2B5 gene supplementation therapy as a therapeutic option for VWM. Our results demonstrate significant rescue in body weight, motor function, gait normalization, life extension, and finally, evidence that gene supplementation attenuates demyelination. Last, the greatest rescue results from a vector using a modified glial fibrillary acidic protein (GFAP) promoter-AAV9-gfaABC(1)D-EIF2B5-thereby supporting that astrocytic targeting is critical for disease correction. In conclusion, we demonstrate safety and early efficacy through treatment with a translatable astrocyte-targeted gene supplementation therapy for a disease that has no cure.
Collapse
Affiliation(s)
- Jessica A Herstine
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA; Center for Clinical and Translational Science, The Ohio State University, Columbus, OH 43210, USA
| | - Pi-Kai Chang
- Department of Pediatrics, The University of Utah School of Medicine, Salt Lake City, UT 84113, USA
| | - Sergiy Chornyy
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Tamara J Stevenson
- Department of Pediatrics, The University of Utah School of Medicine, Salt Lake City, UT 84113, USA
| | - Alex C Sunshine
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Neurology, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Ksenia Nokhrina
- Department of Pediatrics, The University of Utah School of Medicine, Salt Lake City, UT 84113, USA
| | - Jessica Rediger
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Julia Wentz
- Department of Pediatrics, The University of Utah School of Medicine, Salt Lake City, UT 84113, USA
| | - Tatyana A Vetter
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Erika Scholl
- Department of Pediatrics, The University of Utah School of Medicine, Salt Lake City, UT 84113, USA
| | - Caleb Holaway
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Nettie K Pyne
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Anna Bratasz
- Small Animal Imaging Core, The Ohio State University, Columbus, OH 43210, USA
| | - Stewart Yeoh
- Preclinical Imaging Core, The University of Utah, Salt Lake City, UT 84112, USA
| | - Kevin M Flanigan
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA; Department of Neurology, The Ohio State University, Columbus, OH 43210, USA
| | - Joshua L Bonkowsky
- Department of Pediatrics, The University of Utah School of Medicine, Salt Lake City, UT 84113, USA; Center for Personalized Medicine, Primary Children's Hospital, Salt Lake City, UT 84113, USA.
| | - Allison M Bradbury
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA; Center for Clinical and Translational Science, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
14
|
Pei Y, Liu S, Wang L, Chen C, Hu M, Xue Y, Guan D, Xie L, Liao H, Zhou J, Zhang H. Design, Synthesis, and Biological Evaluation of Eukaryotic Initiation Factor 2B (eIF2B) Activators. ChemMedChem 2024; 19:e202300716. [PMID: 38426720 DOI: 10.1002/cmdc.202300716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
The eukaryotic initiation factor 2B (eIF2B) is a key regulator in protein-regulated signaling pathways and is closely related to the function of the central nervous system. Modulating eIF2B could retard the process of neurodegenerative diseases, including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and vanishing white matter disease (VWM) et al. Here, we designed and synthesized a series of novel eIF2B activators containing oxadiazole fragments. The activating effects of compounds on eIF2B were investigated through testing the inhibition of ATF4 expression. Of all the targeted compounds, compounds 21 and 29 exhibited potent inhibition on ATF4 expression with IC50 values of 32.43 nM and 47.71 nM, respectively, which were stronger than that of ISRIB (IC50=67.90 nM). ATF4 mRNA assay showed that these two compounds could restore ATF4 mRNA to normal levels in thapsigargin-stimulated HeLa cells. Protein Translation assay showed that both compounds were effective in restoring protein synthesis. Compound potency assay showed that both compounds had similar potency to ISRIB with EC50 values of 5.844 and 37.70 nM. Cytotoxicity assay revealed that compounds 21 and 29 had low toxicity and were worth further investigation.
Collapse
Affiliation(s)
- Yifeng Pei
- Center for Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Sentao Liu
- Center for Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Lixun Wang
- Center for Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Chao Chen
- Center for Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Mengqiu Hu
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Yi Xue
- Center for Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Dezhong Guan
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Lingfeng Xie
- Center for Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Hong Liao
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Huibin Zhang
- Center for Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, 210009, PR China
| |
Collapse
|
15
|
Lu HJ, Koju N, Sheng R. Mammalian integrated stress responses in stressed organelles and their functions. Acta Pharmacol Sin 2024; 45:1095-1114. [PMID: 38267546 PMCID: PMC11130345 DOI: 10.1038/s41401-023-01225-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024]
Abstract
The integrated stress response (ISR) triggered in response to various cellular stress enables mammalian cells to effectively cope with diverse stressful conditions while maintaining their normal functions. Four kinases (PERK, PKR, GCN2, and HRI) of ISR regulate ISR signaling and intracellular protein translation via mediating the phosphorylation of eukaryotic translation initiation factor 2 α (eIF2α) at Ser51. Early ISR creates an opportunity for cells to repair themselves and restore homeostasis. This effect, however, is reversed in the late stages of ISR. Currently, some studies have shown the non-negligible impact of ISR on diseases such as ischemic diseases, cognitive impairment, metabolic syndrome, cancer, vanishing white matter, etc. Hence, artificial regulation of ISR and its signaling with ISR modulators becomes a promising therapeutic strategy for relieving disease symptoms and improving clinical outcomes. Here, we provide an overview of the essential mechanisms of ISR and describe the ISR-related pathways in organelles including mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosomes. Meanwhile, the regulatory effects of ISR modulators and their potential application in various diseases are also enumerated.
Collapse
Affiliation(s)
- Hao-Jun Lu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Nirmala Koju
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
16
|
Franks SN, Heon-Roberts R, Ryan BJ. CRISPRi: a way to integrate iPSC-derived neuronal models. Biochem Soc Trans 2024; 52:539-551. [PMID: 38526223 PMCID: PMC11088925 DOI: 10.1042/bst20230190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
The genetic landscape of neurodegenerative diseases encompasses genes affecting multiple cellular pathways which exert effects in an array of neuronal and glial cell-types. Deconvolution of the roles of genes implicated in disease and the effects of disease-associated variants remains a vital step in the understanding of neurodegeneration and the development of therapeutics. Disease modelling using patient induced pluripotent stem cells (iPSCs) has enabled the generation of key cell-types associated with disease whilst maintaining the genomic variants that predispose to neurodegeneration. The use of CRISPR interference (CRISPRi), alongside other CRISPR-perturbations, allows the modelling of the effects of these disease-associated variants or identifying genes which modify disease phenotypes. This review summarises the current applications of CRISPRi in iPSC-derived neuronal models, such as fluorescence-activated cell sorting (FACS)-based screens, and discusses the future opportunities for disease modelling, identification of disease risk modifiers and target/drug discovery in neurodegeneration.
Collapse
Affiliation(s)
- Sarah N.J. Franks
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Rachel Heon-Roberts
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Brent J. Ryan
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
17
|
Jeyaraju DV, Alapa M, Polonskaia A, Risueño A, Subramanyam P, Anand A, Ghosh K, Kyriakopoulos C, Hemerich D, Hurren R, Wang X, Gronda M, Ahsan A, Chiu H, Thomas G, Lind EF, Menezes DL, Schimmer AD, Hagner PR, Gandhi A, Thakurta AG. Extended exposure to low doses of azacitidine induces differentiation of leukemic stem cells through activation of myeloperoxidase. Haematologica 2024; 109:1082-1094. [PMID: 37941406 PMCID: PMC10985425 DOI: 10.3324/haematol.2023.283437] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Oral azacitidine (oral-Aza) treatment results in longer median overall survival (OS) (24.7 vs. 14.8 months in placebo) in patients with acute myeloid leukemia (AML) in remission after intensive chemotherapy. The dosing schedule of oral-Aza (14 days/28-day cycle) allows for low exposure of Aza for an extended duration thereby facilitating a sustained therapeutic effect. However, the underlying mechanisms supporting the clinical impact of oral-Aza in maintenance therapy remain to be fully understood. In this preclinical work, we explore the mechanistic basis of oral-Aza/extended exposure to Aza through in vitro and in vivo modeling. In cell lines, extended exposure to Aza results in sustained DNMT1 loss, leading to durable hypomethylation, and gene expression changes. In mouse models, extended exposure to Aza, preferentially targets immature leukemic cells. In leukemic stem cell (LSC) models, the extended dose of Aza induces differentiation and depletes CD34+CD38- LSC. Mechanistically, LSC differentiation is driven in part by increased myeloperoxidase (MPO) expression. Inhibition of MPO activity either by using an MPO-specific inhibitor or blocking oxidative stress, a known mechanism of MPO, partly reverses the differentiation of LSC. Overall, our preclinical work reveals novel mechanistic insights into oral-Aza and its ability to target LSC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Rose Hurren
- Princess Margaret Cancer Centre, Toronto, ON
| | | | | | | | | | | | - Evan F Lind
- Department of Molecular Microbiology and the Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | | | | | | | | | | |
Collapse
|
18
|
Nakamata J, Morimoto H, Baba R, Kokubu K, Miyamoto T. Glucose Induces ER Stress Response-Mediated Peritoneal Mesothelial Cell Death. Acta Histochem Cytochem 2024; 57:7-14. [PMID: 38463207 PMCID: PMC10918429 DOI: 10.1267/ahc.23-00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/27/2023] [Indexed: 03/12/2024] Open
Abstract
Peritoneal dialysis (PD) fluid, which contains a high concentration of glucose, is involved in peritoneal damage after long-term use. The mechanisms through which glucose induces damage to the mesothelium have not been clearly elucidated. Although, endoplasmic reticulum (ER) stress response is associated with several diseases, the involvement of ER stress in peritoneal damage has not yet been demonstrated. Primary-cultured rat peritoneal mesothelial cells (RPMCs) and rat PD model were used to investigate the influence of glucose on the peritoneum. Cells treated with glucose were examined for cytotoxicity, induction of apoptosis, and activation of the ER stress pathway. Glucose treatment of RPMCs induced cell death at concentrations higher than 3%. Annexin V positive, that is a feature of apoptosis, occurred in dead cells. Treatment with glucose led to the activation of protein kinase R-like ER kinase (PERK) and eukaryotic translation initiation factor-2α (eIF-2α). Glucose also induced the expression and nuclear translocation of homologous protein C/EBP. Cell death was rescued by the integrated stress response inhibitor, ISRIB, which suppresses the integrated stress response pathway, including ER stress. Glucose in PD fluid induces PERK/eIF-2α-mediated ER stress in RPMCs, resulting in apoptosis. This cellular stress may cause peritoneal damage in patients receiving PD.
Collapse
Affiliation(s)
- Junichi Nakamata
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi, Kitakyushu, Fukuoka 807-8555, Japan
- Present affiliation: Ashiya Central Hospital, 283-7, Yamaga, Ashiya, Onga, Fukuoka 807-0141, Japan
| | - Hiroyuki Morimoto
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi, Kitakyushu, Fukuoka 807-8555, Japan
| | - Ryoko Baba
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi, Kitakyushu, Fukuoka 807-8555, Japan
| | - Keiji Kokubu
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi, Kitakyushu, Fukuoka 807-8555, Japan
| | - Tetsu Miyamoto
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi, Kitakyushu, Fukuoka 807-8555, Japan
| |
Collapse
|
19
|
Dolliver SM, Galbraith C, Khaperskyy DA. Human Betacoronavirus OC43 Interferes with the Integrated Stress Response Pathway in Infected Cells. Viruses 2024; 16:212. [PMID: 38399988 PMCID: PMC10893100 DOI: 10.3390/v16020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/20/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Viruses evolve many strategies to ensure the efficient synthesis of their proteins. One such strategy is the inhibition of the integrated stress response-the mechanism through which infected cells arrest translation through the phosphorylation of the alpha subunit of the eukaryotic translation initiation factor 2 (eIF2α). We have recently shown that the human common cold betacoronavirus OC43 actively inhibits eIF2α phosphorylation in response to sodium arsenite, a potent inducer of oxidative stress. In this work, we examined the modulation of integrated stress responses by OC43 and demonstrated that the negative feedback regulator of eIF2α phosphorylation GADD34 is strongly induced in infected cells. However, the upregulation of GADD34 expression induced by OC43 was independent from the activation of the integrated stress response and was not required for the inhibition of eIF2α phosphorylation in virus-infected cells. Our work reveals a complex interplay between the common cold coronavirus and the integrated stress response, in which efficient viral protein synthesis is ensured by the inhibition of eIF2α phosphorylation but the GADD34 negative feedback loop is disrupted.
Collapse
Affiliation(s)
| | | | - Denys A. Khaperskyy
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
20
|
Münch C, Kirstein J. Protein quality control: from molecular mechanisms to therapeutic intervention-EMBO workshop, May 21-26 2023, Srebreno, Croatia. Cell Stress Chaperones 2023; 28:631-640. [PMID: 37731161 PMCID: PMC10746685 DOI: 10.1007/s12192-023-01383-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
Protein quality control pathways ensure a functional proteome and rely on a complex proteostasis network (PN) that is composed of molecular chaperones and proteases. Failures in the PN can lead to a broad spectrum of diseases, including neurodegenerative disorders like Alzheimer's, Parkinson's, and a range of motor neuron diseases. The EMBO workshop "Protein quality control: from molecular mechanisms to therapeutic intervention" covered all aspects of protein quality control from underlying molecular mechanisms of chaperones and proteases to stress signaling pathways and medical implications. This report summarizes the workshop and highlights selected presentations.
Collapse
Affiliation(s)
- Christian Münch
- Institute of Biochemistry II, Medical Faculty, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Janine Kirstein
- Friedrich-Schiller-Universität Jena, Jena, Germany.
- Leibniz-Institute on Aging/Fritz-Lipmann Institute, Jena, Germany.
| |
Collapse
|
21
|
Gonzalo-Gobernado R, Moreno-Martínez L, González P, Dopazo XM, Calvo AC, Pidal-Ladrón de Guevara I, Seisdedos E, Díaz-Muñoz R, Mellström B, Osta R, Naranjo JR. Repaglinide Induces ATF6 Processing and Neuroprotection in Transgenic SOD1G93A Mice. Int J Mol Sci 2023; 24:15783. [PMID: 37958767 PMCID: PMC10648964 DOI: 10.3390/ijms242115783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
The interaction of the activating transcription factor 6 (ATF6), a key effector of the unfolded protein response (UPR) in the endoplasmic reticulum, with the neuronal calcium sensor Downstream Regulatory Element Antagonist Modulator (DREAM) is a potential therapeutic target in neurodegeneration. Modulation of the ATF6-DREAM interaction with repaglinide (RP) induced neuroprotection in a model of Huntington's disease. Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder with no cure, characterized by the progressive loss of motoneurons resulting in muscle denervation, atrophy, paralysis, and death. The aim of this work was to investigate the potential therapeutic significance of DREAM as a target for intervention in ALS. We found that the expression of the DREAM protein was reduced in the spinal cord of SOD1G93A mice compared to wild-type littermates. RP treatment improved motor strength and reduced the expression of the ALS progression marker collagen type XIXα1 (Col19α1 mRNA) in the quadriceps muscle in SOD1G93A mice. Moreover, treated SOD1G93A mice showed reduced motoneuron loss and glial activation and increased ATF6 processing in the spinal cord. These results indicate that the modulation of the DREAM-ATF6 interaction ameliorates ALS symptoms in SOD1G93A mice.
Collapse
Affiliation(s)
- Rafael Gonzalo-Gobernado
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
| | - Laura Moreno-Martínez
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
- LAGENBIO, Faculty of Veterinary, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009 Zaragoza, Spain
- AgriFood Institute of Aragon-IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Paz González
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
| | - Xose Manuel Dopazo
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
| | - Ana Cristina Calvo
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
- LAGENBIO, Faculty of Veterinary, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009 Zaragoza, Spain
- AgriFood Institute of Aragon-IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Isabel Pidal-Ladrón de Guevara
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
| | - Elisa Seisdedos
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
| | - Rodrigo Díaz-Muñoz
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
| | - Britt Mellström
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
| | - Rosario Osta
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
- LAGENBIO, Faculty of Veterinary, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009 Zaragoza, Spain
- AgriFood Institute of Aragon-IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - José Ramón Naranjo
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
| |
Collapse
|
22
|
Fu Y, Sacco O, DeBitetto E, Kanshin E, Ueberheide B, Sfeir A. Mitochondrial DNA breaks activate an integrated stress response to reestablish homeostasis. Mol Cell 2023; 83:3740-3753.e9. [PMID: 37832546 PMCID: PMC11229056 DOI: 10.1016/j.molcel.2023.09.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/10/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
Mitochondrial DNA double-strand breaks (mtDSBs) lead to the degradation of circular genomes and a reduction in copy number; yet, the cellular response in human cells remains elusive. Here, using mitochondrial-targeted restriction enzymes, we show that a subset of cells with mtDSBs exhibited defective mitochondrial protein import, reduced respiratory complexes, and loss of membrane potential. Electron microscopy confirmed the altered mitochondrial membrane and cristae ultrastructure. Intriguingly, mtDSBs triggered the integrated stress response (ISR) via the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) by DELE1 and heme-regulated eIF2α kinase (HRI). When ISR was inhibited, the cells experienced intensified mitochondrial defects and slower mtDNA recovery post-breakage. Lastly, through proteomics, we identified ATAD3A-a membrane-bound protein interacting with nucleoids-as potentially pivotal in relaying signals from impaired genomes to the inner mitochondrial membrane. In summary, our study delineates the cascade connecting damaged mitochondrial genomes to the cytoplasm and highlights the significance of the ISR in maintaining mitochondrial homeostasis amid genome instability.
Collapse
Affiliation(s)
- Yi Fu
- Skirball Institute of Biomolecular Medicine, Cell Biology Department, NYU School of Medicine, New York, NY 10016, USA; Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Olivia Sacco
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Emily DeBitetto
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Evgeny Kanshin
- Proteomics Laboratory, NYU School of Medicine, New York, NY 10016, USA; Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Beatrix Ueberheide
- Proteomics Laboratory, NYU School of Medicine, New York, NY 10016, USA; Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA; Department of Neurology, NYU School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
23
|
Abstract
Advancing age is the most important risk factor for the development of and mortality from acute and chronic lung diseases, including pneumonia, chronic obstructive pulmonary disease, and pulmonary fibrosis. This risk was manifest during the COVID-19 pandemic, when elderly people were disproportionately affected and died from SARS-CoV-2 pneumonia. However, the recent pandemic also provided lessons on lung resilience. An overwhelming majority of patients with SARS-CoV-2 pneumonia, even those with severe disease, recovered with near-complete restoration of lung architecture and function. These observations are inconsistent with historic views of the lung as a terminally differentiated organ incapable of regeneration. Here, we review emerging hypotheses that explain how the lung repairs itself after injury and why these mechanisms of lung repair fail in some individuals, particularly the elderly.
Collapse
Affiliation(s)
- SeungHye Han
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - G.R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA
| | - Cara J. Gottardi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
24
|
Fang F, Liu P, Huang H, Feng X, Li L, Sun Y, Kaufman RJ, Hu Y. RGC-specific ATF4 and/or CHOP deletion rescues glaucomatous neurodegeneration and visual function. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:286-295. [PMID: 37547290 PMCID: PMC10400881 DOI: 10.1016/j.omtn.2023.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
Endoplasmic reticulum (ER) stress has been linked with various acute and chronic neurodegenerative diseases. We previously found that optic nerve (ON) injury and diseases induce neuronal ER stress in retinal ganglion cells (RGCs). We further demonstrated that germline deletion of CHOP preserves the structure and function of both RGC somata and axons in mouse glaucoma models. Here we report that RGC-specific deletion of CHOP and/or its upstream regulator ATF4 synergistically promotes RGC and ON survival and preserves visual function in mouse ON crush and silicone oil-induced ocular hypertension (SOHU) glaucoma models. Consistently, topical application of the ATF4/CHOP chemical inhibitor ISRIB or RGC-specific CRISPR-mediated knockdown of the ATF4 downstream effector Gadd45a also delivers significant neuroprotection in the SOHU glaucoma model. These studies suggest that blocking the neuronal intrinsic ATF4/CHOP axis of ER stress is a promising neuroprotection strategy for neurodegeneration.
Collapse
Affiliation(s)
- Fang Fang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Pingting Liu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Haoliang Huang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Xue Feng
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Liang Li
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Randal J. Kaufman
- Degenerative Diseases Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| |
Collapse
|
25
|
Chen Y, Quan S, Patil V, Kunjamma RB, Tokars HM, Leisten ED, Joy G, Wills S, Chan JR, Wong YC, Popko B. Insights into the mechanism of oligodendrocyte protection and remyelination enhancement by the integrated stress response. Glia 2023; 71:2180-2195. [PMID: 37203250 PMCID: PMC10681276 DOI: 10.1002/glia.24386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
central nervous system (CNS) inflammation triggers activation of the integrated stress response (ISR). We previously reported that prolonging the ISR protects remyelinating oligodendrocytes and promotes remyelination in the presence of inflammation. However, the exact mechanisms through which this occurs remain unknown. Here, we investigated whether the ISR modulator Sephin1 in combination with the oligodendrocyte differentiation enhancing reagent bazedoxifene (BZA) is able to accelerate remyelination under inflammation, and the underlying mechanisms mediating this pathway. We find that the combined treatment of Sephin1 and BZA is sufficient to accelerate early-stage remyelination in mice with ectopic IFN-γ expression in the CNS. IFN-γ, which is a critical inflammatory cytokine in multiple sclerosis (MS), inhibits oligodendrocyte precursor cell (OPC) differentiation in culture and triggers a mild ISR. Mechanistically, we further show that BZA promotes OPC differentiation in the presence of IFN-γ, while Sephin1 enhances the IFN-γ-induced ISR by reducing protein synthesis and increasing RNA stress granule formation in differentiating oligodendrocytes. Finally, pharmacological suppression of the ISR blocks stress granule formation in vitro and partially lessens the beneficial effect of Sephin1 on disease progression in a mouse model of MS, experimental autoimmune encephalitis (EAE). Overall, our findings uncover distinct mechanisms of action of BZA and Sephin1 on oligodendrocyte lineage cells under inflammatory stress, suggesting that a combination therapy may effectively promote restoring neuronal function in MS patients.
Collapse
Affiliation(s)
- Yanan Chen
- Deptment of Biology, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Songhua Quan
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Vaibhav Patil
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rejani B. Kunjamma
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Haley M. Tokars
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Eric D. Leisten
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Godwin Joy
- Deptment of Biology, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Samantha Wills
- Deptment of Biology, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jonah R. Chan
- Weill Institute for Neuroscience, Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Yvette C. Wong
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Brian Popko
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
26
|
Tong F, Hu H, Xu Y, Zhou Y, Xie R, Lei T, Du Y, Yang W, He S, Huang Y, Gong T, Gao H. Hollow copper sulfide nanoparticles carrying ISRIB for the sensitized photothermal therapy of breast cancer and brain metastases through inhibiting stress granule formation and reprogramming tumor-associated macrophages. Acta Pharm Sin B 2023; 13:3471-3488. [PMID: 37655313 PMCID: PMC10465875 DOI: 10.1016/j.apsb.2022.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/03/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022] Open
Abstract
As known, the benefits of photothermal therapy (PTT) are greatly limited by the heat tolerance of cancer cells resulting from overexpressed heat shock proteins (HSPs). Then HSPs further trigger the formation of stress granules (SGs) that regulate protein expression and cell viability under various stress conditions. Inhibition of SG formation can sensitize tumor cells to PTT. Herein, we developed PEGylated pH (low) insertion peptide (PEG-pHLIP)-modified hollow copper sulfide nanoparticles (HCuS NPs) encapsulating the SG inhibitor ISRIB, with the phase-change material lauric acid (LA) as a gate-keeper, to construct a pH-driven and NIR photo-responsive controlled smart drug delivery system (IL@H-PP). The nanomedicine could specifically target slightly acidic tumor sites. Upon irradiation, IL@H-PP realized PTT, and the light-controlled release of ISRIB could effectively inhibit the formation of PTT-induced SG to sensitize tumor cells to PTT, thereby increasing the antitumor effect and inducing potent immunogenic cell death (ICD). Moreover, IL@H-PP could promote the production of reactive oxygen species (ROS) by tumor-associated macrophages (TAMs), repolarizing them towards the M1 phenotype and remodeling the immunosuppressive microenvironment. In vitro/vivo results revealed the potential of PTT combined with SG inhibitors, which provides a new paradigm for antitumor and anti-metastases.
Collapse
Affiliation(s)
- Fan Tong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Haili Hu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yanyan Xu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yang Zhou
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rou Xie
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ting Lei
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yufan Du
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wenqin Yang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Siqin He
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
27
|
Krug S, Prasad P, Xiao S, Lun S, Ruiz-Bedoya CA, Klunk M, Ordonez AA, Jain SK, Srikrishna G, Kramnik I, Bishai WR. Adjunctive Integrated Stress Response Inhibition Accelerates Tuberculosis Clearance in Mice. mBio 2023; 14:e0349622. [PMID: 36853048 PMCID: PMC10128048 DOI: 10.1128/mbio.03496-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 03/01/2023] Open
Abstract
Despite numerous advances in tuberculosis (TB) drug development, long treatment durations have led to the emergence of multidrug resistance, which poses a major hurdle to global TB control. Shortening treatment time therefore remains a top priority. Host-directed therapies that promote bacterial clearance and/or lung health may improve the efficacy and treatment duration of tuberculosis antibiotics. We recently discovered that inhibition of the integrated stress response, which is abnormally activated in tuberculosis and associated with necrotic granuloma formation, reduced bacterial numbers and lung inflammation in mice. Here, we evaluated the impact of the integrated stress response (ISR) inhibitor ISRIB, administered as an adjunct to standard tuberculosis antibiotics, on bacterial clearance, relapse, and lung pathology in a mouse model of tuberculosis. Throughout the course of treatment, ISRIB robustly lowered bacterial burdens compared to the burdens with standard TB therapy alone and accelerated the time to sterility in mice, as demonstrated by significantly reduced relapse rates after 4 months of treatment. In addition, mice receiving adjunctive ISRIB tended to have reduced lung necrosis and inflammation. Together, our findings identify the ISR pathway as a promising therapeutic target with the potential to shorten TB treatment durations and improve lung health. IMPORTANCE Necrosis of lung lesions is a hallmark of tuberculosis (TB) that promotes bacterial growth, dissemination, and transmission. This process is driven by the persistent hyperactivation of the integrated stress response (ISR) pathway. Here, we show that adjunctive ISR inhibition during standard antibiotic therapy accelerates bacterial clearance and reduces immunopathology in a clinically relevant mouse model of TB, suggesting that host-directed therapies that de-escalate these pathological stress responses may shorten TB treatment durations. Our findings present an important conceptual advance toward overcoming the challenge of improving TB therapy and lowering the global burden of disease.
Collapse
Affiliation(s)
- Stefanie Krug
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pankaj Prasad
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shiqi Xiao
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shichun Lun
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Camilo A. Ruiz-Bedoya
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mariah Klunk
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alvaro A. Ordonez
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sanjay K. Jain
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Geetha Srikrishna
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Igor Kramnik
- The National Emerging Infectious Diseases Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Medicine, Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - William R. Bishai
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Gupta M, Walters B, Katsara O, Granados Blanco K, Geter P, Schneider R. eIF2Bδ blocks the integrated stress response and maintains eIF2B activity and cancer metastasis by overexpression in breast cancer stem cells. Proc Natl Acad Sci U S A 2023; 120:e2207898120. [PMID: 37014850 PMCID: PMC10104532 DOI: 10.1073/pnas.2207898120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 03/08/2023] [Indexed: 04/05/2023] Open
Abstract
Breast cancer (BC) metastasis involves cancer stem cells (CSCs) and their regulation by micro-RNAs (miRs), but miR targeting of the translation machinery in CSCs is poorly explored. We therefore screened miR expression levels in a range of BC cell lines, comparing non-CSCs to CSCs, and focused on miRs that target translation and protein synthesis factors. We describe a unique translation regulatory axis enacted by reduced expression of miR-183 in breast CSCs, which we show targets the eIF2Bδ subunit of guanine nucleotide exchange factor eIF2B, a regulator of protein synthesis and the integrated stress response (ISR) pathway. We report that reduced expression of miR-183 greatly increases eIF2Bδ protein levels, preventing strong induction of the ISR and eIF2α phosphorylation, by preferential interaction with P-eIF2α. eIF2Bδ overexpression is essential for BC cell invasion, metastasis, maintenance of metastases, and breast CSC expansion in animal models. Increased expression of eIF2Bδ, a site of action of the drug ISRIB that also prevents ISR signaling, is essential for breast CSC maintenance and metastatic capacity.
Collapse
Affiliation(s)
- Malavika Gupta
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
| | - Beth A. Walters
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
| | - Olga Katsara
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
| | - Karol Granados Blanco
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
| | - Phillip A. Geter
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
| | - Robert J. Schneider
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- New York University Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY10016
| |
Collapse
|
29
|
Cervia LD, Shibue T, Borah AA, Gaeta B, He L, Leung L, Li N, Moyer SM, Shim BH, Dumont N, Gonzalez A, Bick NR, Kazachkova M, Dempster JM, Krill-Burger JM, Piccioni F, Udeshi ND, Olive ME, Carr SA, Root DE, McFarland JM, Vazquez F, Hahn WC. A Ubiquitination Cascade Regulating the Integrated Stress Response and Survival in Carcinomas. Cancer Discov 2023; 13:766-795. [PMID: 36576405 PMCID: PMC9975667 DOI: 10.1158/2159-8290.cd-22-1230] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Systematic identification of signaling pathways required for the fitness of cancer cells will facilitate the development of new cancer therapies. We used gene essentiality measurements in 1,086 cancer cell lines to identify selective coessentiality modules and found that a ubiquitin ligase complex composed of UBA6, BIRC6, KCMF1, and UBR4 is required for the survival of a subset of epithelial tumors that exhibit a high degree of aneuploidy. Suppressing BIRC6 in cell lines that are dependent on this complex led to a substantial reduction in cell fitness in vitro and potent tumor regression in vivo. Mechanistically, BIRC6 suppression resulted in selective activation of the integrated stress response (ISR) by stabilization of the heme-regulated inhibitor, a direct ubiquitination target of the UBA6/BIRC6/KCMF1/UBR4 complex. These observations uncover a novel ubiquitination cascade that regulates ISR and highlight the potential of ISR activation as a new therapeutic strategy. SIGNIFICANCE We describe the identification of a heretofore unrecognized ubiquitin ligase complex that prevents the aberrant activation of the ISR in a subset of cancer cells. This provides a novel insight on the regulation of ISR and exposes a therapeutic opportunity to selectively eliminate these cancer cells. See related commentary Leli and Koumenis, p. 535. This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Lisa D. Cervia
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Tsukasa Shibue
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Ashir A. Borah
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Benjamin Gaeta
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Linh He
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Lisa Leung
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Naomi Li
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Sydney M. Moyer
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Brian H. Shim
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Nancy Dumont
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | - Nolan R. Bick
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | | | | | | | | | - Meagan E. Olive
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Steven A. Carr
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - David E. Root
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | | | - William C. Hahn
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
30
|
Waad Sadiq Z, Brioli A, Al-Abdulla R, Çetin G, Schütt J, Murua Escobar H, Krüger E, Ebstein F. Immunogenic cell death triggered by impaired deubiquitination in multiple myeloma relies on dysregulated type I interferon signaling. Front Immunol 2023; 14:982720. [PMID: 36936919 PMCID: PMC10018035 DOI: 10.3389/fimmu.2023.982720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Proteasome inhibition is first line therapy in multiple myeloma (MM). The immunological potential of cell death triggered by defects of the ubiquitin-proteasome system (UPS) and subsequent perturbations of protein homeostasis is, however, less well defined. Methods In this paper, we applied the protein homeostasis disruptors bortezomib (BTZ), ONX0914, RA190 and PR619 to various MM cell lines and primary patient samples to investigate their ability to induce immunogenic cell death (ICD). Results Our data show that while BTZ treatment triggers sterile type I interferon (IFN) responses, exposure of the cells to ONX0914 or RA190 was mostly immunologically silent. Interestingly, inhibition of protein de-ubiquitination by PR619 was associated with the acquisition of a strong type I IFN gene signature which relied on key components of the unfolded protein and integrated stress responses including inositol-requiring enzyme 1 (IRE1), protein kinase R (PKR) and general control nonderepressible 2 (GCN2). The immunological relevance of blocking de-ubiquitination in MM was further reflected by the ability of PR619-induced apoptotic cells to facilitate dendritic cell (DC) maturation via type I IFN-dependent mechanisms. Conclusion Altogether, our findings identify de-ubiquitination inhibition as a promising strategy for inducing ICD of MM to expand current available treatments.
Collapse
Affiliation(s)
- Zeinab Waad Sadiq
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Annamaria Brioli
- Klinik und Poliklinik für Innere Medizin C, Universitätsmedizin Greifswald, Greifswald, Germany
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Ruba Al-Abdulla
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Gonca Çetin
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Jacqueline Schütt
- Klinik und Poliklinik für Innere Medizin C, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Hugo Murua Escobar
- Department of Medicine, Clinic III, Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock, Germany
| | - Elke Krüger
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Frédéric Ebstein
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
31
|
Targeting PERK mediated endoplasmic reticulum stress attenuates neuroinflammation and alleviates lipopolysaccharide-induced depressive-like behavior in male mice. Int Immunopharmacol 2022; 111:109092. [PMID: 35940075 DOI: 10.1016/j.intimp.2022.109092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 11/22/2022]
Abstract
Neuroinflammation plays a key role in the development of depression-like behaviors.Endoplasmic reticulum (ER) stress,defined as accumulation of unfolded proteins in the ER,is suggested tocollaboratewithinflammation process to drive sustained neuroinflammation. Protein kinase R-like endoplasmic reticulum kinase (PERK) is ofparticularly attractive target because it plays key rolein the regulation of ER stress-induced neuroinflammation, however, little isknown whether PERKmediatedER stress is implicated in LPS-induced depression-like behaviors.Thus, we aimed to evaluate the induction of PERK pathwayin mice with depression-like behaviors induced by LPS, as well as the alterations in depression-like behaviorsfollowing the blocking of PERK pathway.We found that LPS challenges resulted in enhanced PERK in the hippocampus, with no alteration in the prefrontal cortex. Importantly, we found that PERKinhibitorISRIB reducedthe proinflammatory responsesof microglia in the context of acute LPS-induced brain inflammation, and subsequent the preserved hippocampal neurogenesis, and improvement in depression-like behavioroutcomes following LPS challenges.It was also worth mentioning thatISRIB treatmentreduced the peripheral pro-inflammatory cytokines includingIL-1β, IL-6 and IL-18. Thus, targetingPERK mediated Endoplasmic reticulum stress may be a promising antidepressant and anti-inflammatory candidate drug for the alleviation of neuroinflammationmediated depression, and PERKinhibitorISRIBmay havebenefits for combating major depressive disorder.
Collapse
|
32
|
Hsu JCC, Laurent-Rolle M, Pawlak JB, Xia H, Kunte A, Hee JS, Lim J, Harris LD, Wood JM, Evans GB, Shi PY, Grove TL, Almo SC, Cresswell P. Viperin triggers ribosome collision-dependent translation inhibition to restrict viral replication. Mol Cell 2022; 82:1631-1642.e6. [PMID: 35316659 PMCID: PMC9081181 DOI: 10.1016/j.molcel.2022.02.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/06/2022] [Accepted: 02/23/2022] [Indexed: 12/31/2022]
Abstract
Innate immune responses induce hundreds of interferon-stimulated genes (ISGs). Viperin, a member of the radical S-adenosyl methionine (SAM) superfamily of enzymes, is the product of one such ISG that restricts the replication of a broad spectrum of viruses. Here, we report a previously unknown antiviral mechanism in which viperin activates a ribosome collision-dependent pathway that inhibits both cellular and viral RNA translation. We found that the radical SAM activity of viperin is required for translation inhibition and that this is mediated by viperin's enzymatic product, 3'-deoxy-3',4'-didehydro-CTP (ddhCTP). Viperin triggers ribosome collisions and activates the MAPKKK ZAK pathway that in turn activates the GCN2 arm of the integrated stress response pathway to inhibit translation. The study illustrates the importance of translational repression in the antiviral response and identifies viperin as a translation regulator in innate immunity.
Collapse
Affiliation(s)
- Jack Chun-Chieh Hsu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Maudry Laurent-Rolle
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06520, USA
| | - Joanna B Pawlak
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hongjie Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Amit Kunte
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jia Shee Hee
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jaechul Lim
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lawrence D Harris
- The Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand; The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - James M Wood
- The Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand; The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Gary B Evans
- The Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand; The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Institute for Drug Discovery, Galveston, TX 77555, USA
| | - Tyler L Grove
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
33
|
Weng A, Maciel Herrerias M, Watanabe S, Welch LC, Flozak AS, Grant RA, Aillon RP, Dada LA, Han SH, Hinchcliff M, Misharin AV, Budinger GRS, Gottardi CJ. Lung Injury Induces Alveolar Type 2 Cell Hypertrophy and Polyploidy with Implications for Repair and Regeneration. Am J Respir Cell Mol Biol 2022; 66:564-576. [PMID: 35202558 PMCID: PMC9116356 DOI: 10.1165/rcmb.2021-0356oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Epithelial polyploidization after injury is a conserved phenomenon recently shown to improve barrier restoration during wound healing. Whether lung injury can induce alveolar epithelial polyploidy is not known. We show that bleomycin injury induces alveolar type 2 cell (AT2) hypertrophy and polyploidy. AT2 polyploidization is also seen in short term ex vivo cultures, where AT2-to-AT1 transdifferentiation is associated with substantial binucleation due to failed cytokinesis. Both hypertrophic and polyploid features of AT2 cells can be attenuated by inhibiting the integrated stress response using the small molecule ISRIB. These data suggest that AT2 hypertrophic growth and polyploidization may be a feature of alveolar epithelial injury. Because AT2 cells serve as facultative progenitors for the distal lung epithelium, a propensity for injury-induced binucleation has implications for AT2 self-renewal and regenerative potential upon reinjury, which may benefit from targeting the integrated stress response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Monique Hinchcliff
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Yale University School of Medicine New Haven, Connecticut
| | | | | | - Cara J. Gottardi
- Department of Pulmonary Medicine and,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and
| |
Collapse
|
34
|
Oliveira MM, Klann E. eIF2-dependent translation initiation: Memory consolidation and disruption in Alzheimer's disease. Semin Cell Dev Biol 2022; 125:101-109. [PMID: 34304995 PMCID: PMC8782933 DOI: 10.1016/j.semcdb.2021.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/20/2021] [Accepted: 07/12/2021] [Indexed: 01/05/2023]
Abstract
Memory storage is a conserved survivability feature, present in virtually any complex species. During the last few decades, much effort has been devoted to understanding how memories are formed and which molecular switches define whether a memory should be stored for a short or a long period of time. Among these, de novo protein synthesis is known to be required for the conversion of short- to long-term memory. There are a number translational control pathways involved in synaptic plasticity and memory consolidation, including the phosphorylation of the eukaryotic initiation factor 2 alpha (eIF2α), which has emerged as a critical molecular switch for long-term memory consolidation. In this review, we discuss findings pertaining to the requirement of de novo protein synthesis to memory formation, how local dendritic and axonal translation is regulated in neurons, and how these can influence memory consolidation. We also highlight the importance of eIF2α-dependent translation initiation to synaptic plasticity and memory formation. Finally, we contextualize how aberrant phosphorylation of eIF2α contributes to Alzheimer's disease (AD) pathology and how preventing disruption of eIF2-dependent translation may be a therapeutic avenue for preventing and/or restoring memory loss in AD.
Collapse
Affiliation(s)
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
35
|
Boone M, Wang L, Lawrence RE, Frost A, Walter P, Schoof M. A point mutation in the nucleotide exchange factor eIF2B constitutively activates the integrated stress response by allosteric modulation. eLife 2022; 11:e76171. [PMID: 35416150 PMCID: PMC9132573 DOI: 10.7554/elife.76171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
In eukaryotic cells, stressors reprogram the cellular proteome by activating the integrated stress response (ISR). In its canonical form, stress-sensing kinases phosphorylate the eukaryotic translation initiation factor eIF2 (eIF2-P), which ultimately leads to reduced levels of ternary complex required for initiation of mRNA translation. Previously we showed that translational control is primarily exerted through a conformational switch in eIF2's nucleotide exchange factor, eIF2B, which shifts from its active A-State conformation to its inhibited I-State conformation upon eIF2-P binding, resulting in reduced nucleotide exchange on eIF2 (Schoof et al. 2021). Here, we show functionally and structurally how a single histidine to aspartate point mutation in eIF2B's β subunit (H160D) mimics the effects of eIF2-P binding by promoting an I-State like conformation, resulting in eIF2-P independent activation of the ISR. These findings corroborate our previously proposed A/I-State model of allosteric ISR regulation.
Collapse
Affiliation(s)
- Morgane Boone
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| | - Lan Wang
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| | - Rosalie E Lawrence
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Peter Walter
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| | - Michael Schoof
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| |
Collapse
|
36
|
Inhibition of the ISR abrogates mGluR5-dependent long-term depression and spatial memory deficits in a rat model of Alzheimer's disease. Transl Psychiatry 2022; 12:96. [PMID: 35260557 PMCID: PMC8904583 DOI: 10.1038/s41398-022-01862-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022] Open
Abstract
Soluble amyloid-β-protein (Aβ) oligomers, a major hallmark of AD, trigger the integrated stress response (ISR) via multiple pathologies including neuronal hyperactivation, microvascular hypoxia, and neuroinflammation. Increasing eIF2α phosphorylation, the core event of ISR, facilitates metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD), and suppressing its phosphorylation has the opposite effect. Having found the facilitation of mGluR5-LTD by Aβ in live rats, we wondered if suppressing eIF2α phosphorylation cascade would protect against the synaptic plasticity and cognitive disrupting effects of Aβ. We demonstrate here that the facilitation of mGluR5-LTD in a delayed rat model by single i.c.v. injection of synthetic Aβ1-42. Systemic administration of the small-molecule inhibitor of the ISR called ISRIB (trans-isomer) prevents Aβ-facilitated LTD and abrogates spatial learning and memory deficits in the hippocampus in exogenous synthetic Aβ-injected rats. Moreover, ex vivo evidence indicates that ISRIB normalizes protein synthesis in the hippocampus. Targeting the ISR by suppressing the eIF2α phosphorylation cascade with the eIF2B activator ISRIB may provide protective effects against the synaptic and cognitive disruptive effects of Aβ which likely mediate the early stage of sporadic AD.
Collapse
|
37
|
Shrestha P, Klann E. Spatiotemporally resolved protein synthesis as a molecular framework for memory consolidation. Trends Neurosci 2022; 45:297-311. [PMID: 35184897 PMCID: PMC8930706 DOI: 10.1016/j.tins.2022.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 01/25/2023]
Abstract
De novo protein synthesis is required for long-term memory consolidation. Dynamic regulation of protein synthesis occurs via a complex interplay of translation factors and modulators. Many components of the protein synthesis machinery have been targeted either pharmacologically or genetically to establish its requirement for memory. The combination of ligand/light-gating and genetic strategies, that is, chemogenetics and optogenetics, has begun to reveal the spatiotemporal resolution of protein synthesis in specific cell types during memory consolidation. This review summarizes current knowledge of the macroscopic and microscopic neural substrates for protein synthesis in memory consolidation. In addition, we highlight future directions for determining the localization and timing of de novo protein synthesis for memory consolidation with tools that permit unprecedented spatiotemporal precision.
Collapse
Affiliation(s)
- Prerana Shrestha
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10012, USA; NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
38
|
Jennings MD, Pavitt GD. Quantifying the Binding of Fluorescently Labeled Guanine Nucleotides and Initiator tRNA to Eukaryotic Translation Initiation Factor 2. Methods Mol Biol 2022; 2428:89-99. [PMID: 35171475 DOI: 10.1007/978-1-0716-1975-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The translation initiation factor eIF2 is critical for protein synthesis initiation, and its regulation is central to the integrated stress response (ISR). eIF2 is a G protein, and the activity is regulated by its GDP or GTP-binding status, such that only GTP-bound eIF2 has high affinity for initiator methionyl tRNA. In the ISR, regulatory signaling reduces the availability of eIF2-GTP and so downregulates protein synthesis initiation in cells. Fluorescence spectroscopy can be used as an analytical tool to study protein-ligand interactions in vitro. Here we describe methods to purify eIF2 and assays of its activity, employing analogs of GDP, GTP, and methionyl initiator tRNA ligands to accurately measure their binding affinities.
Collapse
Affiliation(s)
- Martin D Jennings
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
| |
Collapse
|
39
|
Korneeva NL. Integrated Stress Response in Neuronal Pathology and in Health. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S111-S127. [PMID: 35501991 DOI: 10.1134/s0006297922140103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Neurodegeneration involves progressive pathological loss of a specific population of neurons, glial activation, and dysfunction of myelinating oligodendrocytes leading to cognitive impairment and altered movement, breathing, and senses. Neuronal degeneration is a hallmark of aging, stroke, drug abuse, toxic chemical exposure, viral infection, chronic inflammation, and a variety of neurological diseases. Accumulation of intra- and extracellular protein aggregates is a common characteristic of cell pathologies. Excessive production of reactive oxygen species and nitric oxide, induction of endoplasmic reticulum stress, and accumulation of misfolded protein aggregates have been shown to trigger a defensive mechanism called integrated stress response (ISR). Activation of ISR is important for synaptic plasticity in learning and memory formation. However, sustaining of ISR may lead to the development of neuronal pathologies and altered patterns in behavior and perception.
Collapse
Affiliation(s)
- Nadejda L Korneeva
- Louisiana State University Health Science Center, Shreveport, LA 71103, USA.
| |
Collapse
|
40
|
Sekine Y, Ron D, Zyryanova AF. Fluorescence Intensity-Based eIF2B's Guanine Nucleotide-Exchange Factor Activity Assay. Methods Mol Biol 2022; 2428:187-196. [PMID: 35171481 DOI: 10.1007/978-1-0716-1975-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Guanine nucleotide-exchange factors (GEFs) activate the function of guanine nucleotide-binding proteins (G-proteins) by promoting the exchange of GDP for GTP on the latter. Here, we describe a protocol for in vitro measurements of the GEF activity of eukaryotic translation initiation factor 2B, eIF2B, toward its substrate eIF2. This protocol provides a relatively simple method for determining the eIF2B's GEF activity in crude cell extracts. The eIF2 heterotrimeric substrate, with phosphorylated or unphosphorylated eIF2α, is prepared by immunoprecipitation, following subsequent loading of a fluorescent BODIPY-FL dye-attached GDP. The exchange of the bound fluorescent GDP molecule for an unlabeled one on eIF2 promoted by eIF2B is monitored kinetically using a fluorescence microplate reader.
Collapse
Affiliation(s)
- Yusuke Sekine
- Division of Endocrinology and Metabolism, Department of Medicine, Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| | - David Ron
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Alisa F Zyryanova
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| |
Collapse
|
41
|
Charif SE, Vassallu MF, Salvañal L, Igaz LM. Protein synthesis modulation as a therapeutic approach for amyotrophic lateral sclerosis and frontotemporal dementia. Neural Regen Res 2021; 17:1423-1430. [PMID: 34916412 PMCID: PMC8771112 DOI: 10.4103/1673-5374.330593] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Protein synthesis is essential for cells to perform life metabolic processes. Pathological alterations of protein content can lead to particular diseases. Cells have an intrinsic array of mechanisms and pathways that are activated when protein misfolding, accumulation, aggregation or mislocalization occur. Some of them (like the unfolded protein response) represent complex interactions between endoplasmic reticulum sensors and elongation factors that tend to increase expression of chaperone proteins and/or repress translation in order to restore protein homeostasis (also known as proteostasis). This is even more important in neurons, as they are very susceptible to harmful effects associated with protein overload and proteostatic mechanisms are less effective with age. Several neurodegenerative pathologies such as Alzheimer's, Parkinson's, and Huntington's diseases, amyotrophic lateral sclerosis and frontotemporal dementia exhibit a particular molecular signature of distinct, unbalanced protein overload. In amyotrophic lateral sclerosis and frontotemporal dementia, the majority of cases present intracellular inclusions of ubiquitinated transactive response DNA-binding protein of 43 kDa (TDP-43). TDP-43 is an RNA binding protein that participates in RNA metabolism, among other functions. Dysregulation of TDP-43 (e.g. aggregation and mislocalization) can dramatically affect neurons, and this has been linked to disease development. Expression of amyotrophic lateral sclerosis/frontotemporal dementia TDP-43-related mutations in cellular and animal models has been shown to recapitulate key features of the amyotrophic lateral sclerosis/frontotemporal dementia disease spectrum. These variants can be causative of degeneration onset and progression. Most neurodegenerative diseases (including amyotrophic lateral sclerosis and frontotemporal dementia) have no cure at the moment; however, modulating translation has recently emerged as an attractive approach that can be performed at several steps (i.e. regulating activation of initiation and elongation factors, inhibiting unfolded protein response activation or inducing chaperone expression and activity). This review focuses on the features of protein imbalance in neurodegenerative disorders and the relevance of developing therapeutical compounds aiming at restoring proteostasis. We strive to highlight the importance of research on drugs that, not only restore protein imbalance without compromising translational activity of cells, but are also as safe as possible for the patients.
Collapse
Affiliation(s)
- Santiago E Charif
- IFIBIO Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires -CONICET, Buenos Aires, Argentina
| | - M Florencia Vassallu
- IFIBIO Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires -CONICET, Buenos Aires, Argentina
| | - Lara Salvañal
- IFIBIO Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires -CONICET, Buenos Aires, Argentina
| | - Lionel M Igaz
- IFIBIO Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires -CONICET, Buenos Aires, Argentina
| |
Collapse
|
42
|
Pharmacological targeting of endoplasmic reticulum stress in disease. Nat Rev Drug Discov 2021; 21:115-140. [PMID: 34702991 DOI: 10.1038/s41573-021-00320-3] [Citation(s) in RCA: 282] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 02/08/2023]
Abstract
The accumulation of misfolded proteins in the endoplasmic reticulum (ER) leads to ER stress, resulting in activation of the unfolded protein response (UPR) that aims to restore protein homeostasis. However, the UPR also plays an important pathological role in many diseases, including metabolic disorders, cancer and neurological disorders. Over the last decade, significant effort has been invested in targeting signalling proteins involved in the UPR and an array of drug-like molecules is now available. However, these molecules have limitations, the understanding of which is crucial for their development into therapies. Here, we critically review the existing ER stress and UPR-directed drug-like molecules, highlighting both their value and their limitations.
Collapse
|
43
|
Gao X, Xu Y. Therapeutic Effects of Natural Compounds and Small Molecule Inhibitors Targeting Endoplasmic Reticulum Stress in Alzheimer's Disease. Front Cell Dev Biol 2021; 9:745011. [PMID: 34540853 PMCID: PMC8440892 DOI: 10.3389/fcell.2021.745011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/13/2021] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease, characterized by progressive cognitive impairment and memory loss. So far, the pathogenesis of AD has not been fully understood. Research have shown that endoplasmic reticulum (ER) stress and unfolded protein response (UPR) participate in the occurrence and development of AD. Furthermore, various studies, both in vivo and in vitro, have shown that targeting ER stress and ER stress-mediated apoptosis contribute to the recovery of AD. Thus, targeting ER stress and ER stress-mediated apoptosis may be effective for treating AD. In this review, the molecular mechanism of ER stress and ER stress-mediated apoptosis, as well as the therapeutic effects of some natural compounds and small molecule inhibitors targeting ER stress and ER stress-mediated apoptosis in AD will be introduced.
Collapse
Affiliation(s)
- Xun Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, China
| | - Yuanyuan Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
44
|
English AM, Green KM, Moon SL. A (dis)integrated stress response: Genetic diseases of eIF2α regulators. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1689. [PMID: 34463036 DOI: 10.1002/wrna.1689] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 01/28/2023]
Abstract
The integrated stress response (ISR) is a conserved mechanism by which eukaryotic cells remodel gene expression to adapt to intrinsic and extrinsic stressors rapidly and reversibly. The ISR is initiated when stress-activated protein kinases phosphorylate the major translation initiation factor eukaryotic translation initiation factor 2ɑ (eIF2ɑ), which globally suppresses translation initiation activity and permits the selective translation of stress-induced genes including important transcription factors such as activating transcription factor 4 (ATF4). Translationally repressed messenger RNAs (mRNAs) and noncoding RNAs assemble into cytoplasmic RNA-protein granules and polyadenylated RNAs are concomitantly stabilized. Thus, regulated changes in mRNA translation, stability, and localization to RNA-protein granules contribute to the reprogramming of gene expression that defines the ISR. We discuss fundamental mechanisms of RNA regulation during the ISR and provide an overview of a growing class of genetic disorders associated with mutant alleles of key translation factors in the ISR pathway. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease Translation > Translation Regulation RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Alyssa M English
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Katelyn M Green
- Department of Chemistry, Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephanie L Moon
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
45
|
Mallucci GR, Klenerman D, Rubinsztein DC. Developing Therapies for Neurodegenerative Disorders: Insights from Protein Aggregation and Cellular Stress Responses. Annu Rev Cell Dev Biol 2021; 36:165-189. [PMID: 33021824 DOI: 10.1146/annurev-cellbio-040320-120625] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As the world's population ages, neurodegenerative disorders are poised to become the commonest cause of death. Despite this, they remain essentially untreatable. Characterized pathologically both by the aggregation of disease-specific misfolded proteins and by changes in cellular stress responses, to date, therapeutic approaches have focused almost exclusively on reducing misfolded protein load-notably amyloid beta (Aβ) in Alzheimer's disease. The repeated failure of clinical trials has led to despondency over the possibility that these disorders will ever be treated. We argue that this is in fact a time for optimism: Targeting various generic stress responses is emerging as an increasingly promising means of modifying disease progression across these disorders. New treatments are approaching clinical trials, while novel means of targeting aggregates could eventually act preventively in early disease.
Collapse
Affiliation(s)
- Giovanna R Mallucci
- UK Dementia Research Institute at the University of Cambridge, Cambridge CB2 0AH, United Kingdom; .,Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, United Kingdom
| | - David Klenerman
- UK Dementia Research Institute at the University of Cambridge, Cambridge CB2 0AH, United Kingdom; .,Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - David C Rubinsztein
- UK Dementia Research Institute at the University of Cambridge, Cambridge CB2 0AH, United Kingdom; .,Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
46
|
Xu H, Bensalel J, Capobianco E, Lu ML, Wei J. Impaired Restoration of Global Protein Synthesis Contributes to Increased Vulnerability to Acute ER Stress Recovery in Huntington's Disease. Cell Mol Neurobiol 2021; 42:2757-2771. [PMID: 34347195 DOI: 10.1007/s10571-021-01137-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/28/2021] [Indexed: 12/21/2022]
Abstract
Neurons are susceptible to different cellular stresses and this vulnerability has been implicated in the pathogenesis of Huntington's disease (HD). Accumulating evidence suggest that acute or chronic stress, depending on its duration and severity, can cause irreversible cellular damages to HD neurons, which contributes to neurodegeneration. In contrast, how normal and HD neurons respond during the resolution of a cellular stress remain less explored. In this study, we challenged normal and HD cells with a low-level acute ER stress and examined the molecular and cellular responses after stress removal. Using both striatal cell lines and primary neurons, we first showed the temporal activation of p-eIF2α-ATF4-GADD34 pathway in response to the acute ER stress and during recovery between normal and HD cells. HD cells were more vulnerable to cell death during stress recovery and were associated with increased number of apoptotic/necrotic cells and decreased cell proliferation. This is also supported by the Gene Ontology analysis from the RNA-seq data which indicated that "apoptosis-related Biological Processes" were more enriched in HD cells during stress recovery. We further showed that HD cells were defective in restoring global protein synthesis during stress recovery and promoting protein synthesis by an integrated stress response inhibitor, ISRIB, could attenuate cell death in HD cells. Together, these data suggest that normal and HD cells undergo distinct mechanisms of transcriptional reprogramming, leading to different cell fate decisions during the stress recovery.
Collapse
Affiliation(s)
- Hongyuan Xu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Johanna Bensalel
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Enrico Capobianco
- Institute of Data Science and Computing, University of Miami, Miami, FL, 33146, USA
| | - Michael L Lu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Jianning Wei
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA.
| |
Collapse
|
47
|
Shangguan F, Zhou H, Ma N, Wu S, Huang H, Jin G, Wu S, Hong W, Zhuang W, Xia H, Lan L. A Novel Mechanism of Cannabidiol in Suppressing Hepatocellular Carcinoma by Inducing GSDME Dependent Pyroptosis. Front Cell Dev Biol 2021; 9:697832. [PMID: 34350183 PMCID: PMC8327166 DOI: 10.3389/fcell.2021.697832] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
Cannabidiol (CBD), a phytochemical derived from Cannabis sativa L., has been demonstrated to exhibit promising anti-tumor properties in multiple cancer types. However, the effects of CBD on hepatocellular carcinoma (HCC) cells remain unknown. We have shown that CBD effectively suppresses HCC cell growth in vivo and in vitro, and induced HCC cell pyroptosis in a caspase-3/GSDME-dependent manner. We further demonstrated that accumulation of integrative stress response (ISR) and mitochondrial stress may contribute to the initiation of pyroptotic signaling by CBD. Simultaneously, CBD can repress aerobic glycolysis through modulation of the ATF4-IGFBP1-Akt axis, due to the depletion of ATP and crucial intermediate metabolites. Collectively, these observations indicate that CBD could be considered as a potential compound for HCC therapy.
Collapse
Affiliation(s)
- Fugen Shangguan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongfei Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Nengfang Ma
- School of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Shanshan Wu
- Medical Research Center, The First Affliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huimin Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guihua Jin
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shijia Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weilong Hong
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weiwei Zhuang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongping Xia
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Pathology in the School of Basic Medical Sciences, The Affiliated Sir Run Run Hospital, State Key Laboratory of Reproductive Medicine, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China
| | - Linhua Lan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
48
|
Hao Q, Heo JM, Nocek BP, Hicks KG, Stoll VS, Remarcik C, Hackett S, LeBon L, Jain R, Eaton D, Rutter J, Wong YL, Sidrauski C. Sugar phosphate activation of the stress sensor eIF2B. Nat Commun 2021; 12:3440. [PMID: 34103529 PMCID: PMC8187479 DOI: 10.1038/s41467-021-23836-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
The multi-subunit translation initiation factor eIF2B is a control node for protein synthesis. eIF2B activity is canonically modulated through stress-responsive phosphorylation of its substrate eIF2. The eIF2B regulatory subcomplex is evolutionarily related to sugar-metabolizing enzymes, but the biological relevance of this relationship was unknown. To identify natural ligands that might regulate eIF2B, we conduct unbiased binding- and activity-based screens followed by structural studies. We find that sugar phosphates occupy the ancestral catalytic site in the eIF2Bα subunit, promote eIF2B holoenzyme formation and enhance enzymatic activity towards eIF2. A mutant in the eIF2Bα ligand pocket that causes Vanishing White Matter disease fails to engage and is not stimulated by sugar phosphates. These data underscore the importance of allosteric metabolite modulation for proper eIF2B function. We propose that eIF2B evolved to couple nutrient status via sugar phosphate sensing with the rate of protein synthesis, one of the most energetically costly cellular processes. The activity of translation initiation factor eIF2B is known to be modulated through stress-responsive phosphorylation of its substrate eIF2. Here, the authors uncover the regulation of eIF2B by the binding of sugar phosphates, suggesting a link between nutrient status and the rate of protein synthesis.
Collapse
Affiliation(s)
- Qi Hao
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Jin-Mi Heo
- Calico Life Sciences LLC, South San Francisco, CA, USA.,Loxo Oncology at Lilly, South San Francisco, CA, USA
| | | | - Kevin G Hicks
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | | | - Sean Hackett
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Lauren LeBon
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Rinku Jain
- Research & Development, AbbVie, North Chicago, IL, USA
| | - Dan Eaton
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.,Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | | |
Collapse
|
49
|
Örd T, Örd D, Kaikkonen MU, Örd T. Pharmacological or TRIB3-Mediated Suppression of ATF4 Transcriptional Activity Promotes Hepatoma Cell Resistance to Proteasome Inhibitor Bortezomib. Cancers (Basel) 2021; 13:cancers13102341. [PMID: 34066165 PMCID: PMC8150958 DOI: 10.3390/cancers13102341] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/17/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Proteasome inhibitors are currently used in the treatment of certain blood cancers, and clinical trials to treat solid tumors, including liver cancer, have also been conducted. However, different malignancies are not equally susceptible to proteasome inhibitors, and resistance to the drug may develop during the therapy. Here, we characterize the molecular mechanisms underlying the resilience of liver cancer cells to the proteasome inhibitor bortezomib. The results demonstrate that the activity of the eIF2α–ATF4 stress response pathway affects the viability of cells treated with bortezomib. We found that the pseudokinase TRIB3, an endogenous regulator of ATF4 and a gene highly expressed in liver cancer, resides predominantly at the same chromatin sites as ATF4 and constrains ATF4 activity. The survival of bortezomib-exposed hepatoma cells proved sensitive to TRIB3 overexpression and inactivation. Thus, TRIB3 is a novel factor contributing to bortezomib resistance of liver cancer cells. Abstract The proteasome is an appealing target for anticancer therapy and the proteasome inhibitor bortezomib has been approved for the treatment of several types of malignancies. However, the molecular mechanisms underlying cancer cell resistance to bortezomib remain poorly understood. In the current article, we investigate how modulation of the eIF2α–ATF4 stress pathway affects hepatoma cell response to bortezomib. Transcriptome profiling revealed that many ATF4 transcriptional target genes are among the most upregulated genes in bortezomib-treated HepG2 human hepatoma cells. While pharmacological enhancement of the eIF2α–ATF4 pathway activity results in the elevation of the activities of all branches of the unfolded protein response (UPR) and sensitizes cells to bortezomib toxicity, the suppression of ATF4 induction delays bortezomib-induced cell death. The pseudokinase TRIB3, an inhibitor of ATF4, is expressed at a high basal level in hepatoma cells and is strongly upregulated in response to bortezomib. To map genome-wide chromatin binding loci of TRIB3 protein, we fused a Flag tag to endogenous TRIB3 in HepG2 cells and performed ChIP-Seq. The results demonstrate that TRIB3 predominantly colocalizes with ATF4 on chromatin and binds to genomic regions containing the C/EBP–ATF motif. Bortezomib treatment leads to a robust enrichment of TRIB3 binding near genes induced by bortezomib and involved in the ER stress response and cell death. Disruption of TRIB3 increases C/EBP–ATF-driven transcription, augments ER stress and cell death upon exposure to bortezomib, while TRIB3 overexpression enhances cell survival. Thus, TRIB3, colocalizing with ATF4 and limiting its transcriptional activity, functions as a factor increasing resistance to bortezomib, while pharmacological over-activation of eIF2α–ATF4 can overcome the endogenous restraint mechanisms and sensitize cells to bortezomib.
Collapse
Affiliation(s)
- Tiit Örd
- Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia; (T.Ö.); (D.Ö.)
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland;
| | - Daima Örd
- Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia; (T.Ö.); (D.Ö.)
| | - Minna U. Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland;
| | - Tõnis Örd
- Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia; (T.Ö.); (D.Ö.)
- Correspondence:
| |
Collapse
|
50
|
Sundaramoorthy E, Ryan AP, Fulzele A, Leonard M, Daugherty MD, Bennett EJ. Ribosome quality control activity potentiates vaccinia virus protein synthesis during infection. J Cell Sci 2021; 134:259243. [PMID: 33912921 PMCID: PMC8106952 DOI: 10.1242/jcs.257188] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
Viral infection both activates stress signaling pathways and redistributes ribosomes away from host mRNAs to translate viral mRNAs. The intricacies of this ribosome shuffle from host to viral mRNAs are poorly understood. Here, we uncover a role for the ribosome-associated quality control (RQC) factor ZNF598 during vaccinia virus mRNA translation. ZNF598 acts on collided ribosomes to ubiquitylate 40S subunit proteins uS10 (RPS20) and eS10 (RPS10), initiating RQC-dependent nascent chain degradation and ribosome recycling. We show that vaccinia infection enhances uS10 ubiquitylation, indicating an increased burden on RQC pathways during viral propagation. Consistent with an increased RQC demand, we demonstrate that vaccinia virus replication is impaired in cells that either lack ZNF598 or express a ubiquitylation-deficient version of uS10. Using SILAC-based proteomics and concurrent RNA-seq analysis, we determine that translation, but not transcription of vaccinia virus mRNAs is compromised in cells with deficient RQC activity. Additionally, vaccinia virus infection reduces cellular RQC activity, suggesting that co-option of ZNF598 by vaccinia virus plays a critical role in translational reprogramming that is needed for optimal viral propagation. Summary: The ribosome-associated quality control factor ZNF598, which senses ribosome collisions, is a host factor necessary for vaccinia viral protein synthesis.
Collapse
Affiliation(s)
- Elayanambi Sundaramoorthy
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrew P Ryan
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Amit Fulzele
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marilyn Leonard
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew D Daugherty
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric J Bennett
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|