1
|
Liang Y, Zhu Z, Lu Y, Ma C, Li J, Yu K, Wu J, Che X, Liu X, Huang X, Li P, Chen FJ. Cytoskeleton regulates lipid droplet fusion and lipid storage by controlling lipid droplet movement. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159610. [PMID: 40189192 DOI: 10.1016/j.bbalip.2025.159610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/17/2025] [Accepted: 04/02/2025] [Indexed: 04/13/2025]
Abstract
Lipid droplets (LDs) are highly dynamic organelles that maintain cellular lipid homeostasis through size and number control. In adipose tissue, CIDEC plays a crucial role in LD fusion and lipid homeostasis. However, the regulatory factors and mechanisms of LD fusion remain largely unknown. Here, we established a high-throughput LD phenotypic screen on a compound library consisting of 2010 small molecules, and identified 11 cytoskeleton inhibitors that negatively regulate LD size. Using specific inhibitors against each of the three types of cytoskeleton, our data showed that the disruption of microtubules and microfilaments but not intermediate filaments limits CIDEC-mediated LD fusion and growth by reducing LD movement and LD-LD contact. The collective effect of microtubule inhibitors results in a small LD phenotype which favors lipolysis upon activation of cAMP-PKA pathway in adipocytes. Our findings demonstrate that cytoskeleton is involved in the process of LD fusion and growth, indicating their role in lipid storage metabolism. One-Sentence Summary: Cytoskeleton regulates lipid droplet fusion and lipid storage.
Collapse
Affiliation(s)
- Yan Liang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetics and Development of Complex Phenotypes, Institute of Metabolism and Integrative Biology, School of Life Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Zanzan Zhu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetics and Development of Complex Phenotypes, Institute of Metabolism and Integrative Biology, School of Life Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Yiming Lu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetics and Development of Complex Phenotypes, Institute of Metabolism and Integrative Biology, School of Life Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Chengxin Ma
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetics and Development of Complex Phenotypes, Institute of Metabolism and Integrative Biology, School of Life Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Jiacheng Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetics and Development of Complex Phenotypes, Institute of Metabolism and Integrative Biology, School of Life Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Kuan Yu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetics and Development of Complex Phenotypes, Institute of Metabolism and Integrative Biology, School of Life Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Jin Wu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetics and Development of Complex Phenotypes, Institute of Metabolism and Integrative Biology, School of Life Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Xinmeng Che
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetics and Development of Complex Phenotypes, Institute of Metabolism and Integrative Biology, School of Life Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Xu Liu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetics and Development of Complex Phenotypes, Institute of Metabolism and Integrative Biology, School of Life Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Xiaoxiao Huang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetics and Development of Complex Phenotypes, Institute of Metabolism and Integrative Biology, School of Life Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Peng Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetics and Development of Complex Phenotypes, Institute of Metabolism and Integrative Biology, School of Life Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200438, China; State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - Feng-Jung Chen
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetics and Development of Complex Phenotypes, Institute of Metabolism and Integrative Biology, School of Life Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Shanghai Qi Zhi Institute, Shanghai 200030, China.
| |
Collapse
|
2
|
Liu J, Aye Y. Tools to Dissect Lipid Droplet Regulation, Players, and Mechanisms. ACS Chem Biol 2025; 20:539-552. [PMID: 40035358 PMCID: PMC11934092 DOI: 10.1021/acschembio.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 03/05/2025]
Abstract
Spurred by the authors' own recent discovery of reactive metabolite-regulated nexuses involving lipid droplets (LDs), this perspective discusses the latest knowledge and multifaceted approaches toward deconstructing the function of these dynamic organelles, LD-associated localized signaling networks, and protein players. Despite accumulating knowledge surrounding protein families and pathways of conserved importance for LD homeostasis surveillance and maintenance across taxa, much remains to be understood at the molecular level. In particular, metabolic stress-triggered contextual changes in LD-proteins' localized functions, crosstalk with other organelles, and feedback signaling loops and how these are specifically rewired in disease states remain to be illuminated with spatiotemporal precision. We hope this perspective promotes an increased interest in these essential organelles and innovations of new tools and strategies to better understand context-specific LD regulation critical for organismal health.
Collapse
Affiliation(s)
- Jinmin Liu
- University
of Oxford, Oxford OX1 3TA, United
Kingdom
| | - Yimon Aye
- University
of Oxford, Oxford OX1 3TA, United
Kingdom
| |
Collapse
|
3
|
Cai Y, Horn PJ. Packaging "vegetable oils": Insights into plant lipid droplet proteins. PLANT PHYSIOLOGY 2025; 197:kiae533. [PMID: 39566075 DOI: 10.1093/plphys/kiae533] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/06/2024] [Indexed: 11/22/2024]
Abstract
Plant neutral lipids, also known as "vegetable oils", are synthesized within the endoplasmic reticulum (ER) membrane and packaged into subcellular compartments called lipid droplets (LDs) for stable storage in the cytoplasm. The biogenesis, modulation, and degradation of cytoplasmic LDs in plant cells are orchestrated by a variety of proteins localized to the ER, LDs, and peroxisomes. Recent studies of these LD-related proteins have greatly advanced our understanding of LDs not only as steady oil depots in seeds but also as dynamic cell organelles involved in numerous physiological processes in different tissues and developmental stages of plants. In the past 2 decades, technology advances in proteomics, transcriptomics, genome sequencing, cellular imaging and protein structural modeling have markedly expanded the inventory of LD-related proteins, provided unprecedented structural and functional insights into the protein machinery modulating LDs in plant cells, and shed new light on the functions of LDs in nonseed plant tissues as well as in unicellular algae. Here, we review critical advances in revealing new LD proteins in various plant tissues, point out structural and mechanistic insights into key proteins in LD biogenesis and dynamic modulation, and discuss future perspectives on bridging our knowledge gaps in plant LD biology.
Collapse
Affiliation(s)
- Yingqi Cai
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | - Patrick J Horn
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| |
Collapse
|
4
|
Gonzalez GA, Osuji EU, Fiur NC, Clark MG, Ma S, Lukov LL, Zhang C. Alteration of Lipid Metabolism in Hypoxic Cancer Cells. CHEMICAL & BIOMEDICAL IMAGING 2025; 3:25-34. [PMID: 39886224 PMCID: PMC11775851 DOI: 10.1021/cbmi.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 02/01/2025]
Abstract
Due to uncontrolled cell proliferation and disrupted vascularization, many cancer cells in solid tumors have limited oxygen supply. The hypoxic microenvironments of tumors lead to metabolic reprogramming of cancer cells, contributing to therapy resistance and metastasis. To identify better targets for the effective removal of hypoxia-adaptive cancer cells, it is crucial to understand how cancer cells alter their metabolism in hypoxic conditions. Here, we studied lipid metabolic changes in cancer cells under hypoxia using coherent Raman scattering (CRS) microscopy. We discovered the accumulation of lipid droplets (LDs) in the endoplasmic reticulum (ER) in hypoxia. Time-lapse CRS microscopy revealed the release of old LDs and the reaccumulated LDs in the ER during hypoxia exposure. Additionally, we explored the impact of carbon sources on LD formation and found that MIA PaCa2 cells preferred fatty acid uptake for LD formation, while glucose was essential to alleviate lipotoxicity. Hyperspectral-stimulated Raman scattering (SRS) microscopy revealed a reduction in cholesteryl ester content and a decrease in lipid saturation levels of LDs in hypoxic MIA PaCa2 cancer cells. This alteration in LD content is linked to reduced efficacy of treatments targeting cholesteryl ester formation. This study unveils important lipid metabolic changes in hypoxic cancer cells, providing insights that could lead to better treatment strategies for hypoxia-resistant cancer cells.
Collapse
Affiliation(s)
- Gil A. Gonzalez
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Ezinne U. Osuji
- College
of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
- Purdue
Center for Cancer Research, 201 S. University Street, West Lafayette, Indiana 47907, United States
| | - Natalie C. Fiur
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
- Purdue
Center for Cancer Research, 201 S. University Street, West Lafayette, Indiana 47907, United States
| | - Matthew G. Clark
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Seohee Ma
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Laura L. Lukov
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Chi Zhang
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
- Purdue
Center for Cancer Research, 201 S. University Street, West Lafayette, Indiana 47907, United States
- Purdue
Institute of Inflammation, Immunology, and Infectious Disease, 207 S. Martin Jischke Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Zhang L, Zhou Y, Yang Z, Jiang L, Yan X, Zhu W, Shen Y, Wang B, Li J, Song J. Lipid droplets in central nervous system and functional profiles of brain cells containing lipid droplets in various diseases. J Neuroinflammation 2025; 22:7. [PMID: 39806503 PMCID: PMC11730833 DOI: 10.1186/s12974-025-03334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Lipid droplets (LDs), serving as the convergence point of energy metabolism and multiple signaling pathways, have garnered increasing attention in recent years. Different cell types within the central nervous system (CNS) can regulate energy metabolism to generate or degrade LDs in response to diverse pathological stimuli. This article provides a comprehensive review on the composition of LDs in CNS, their generation and degradation processes, their interaction mechanisms with mitochondria, the distribution among different cell types, and the roles played by these cells-particularly microglia and astrocytes-in various prevalent neurological disorders. Additionally, we also emphasize the paradoxical role of LDs in post-cerebral ischemia inflammation and explore potential underlying mechanisms, aiming to identify novel therapeutic targets for this disease.
Collapse
Affiliation(s)
- Longxiao Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yunfei Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Zhongbo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Liangchao Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xinyang Yan
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Wenkai Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yi Shen
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Bolong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jiaxi Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Jinning Song
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
6
|
Holzhütter H. Dynamical modelling of lipid droplet formation suggests a key function of membrane phospholipids. FEBS J 2025; 292:206-225. [PMID: 39132700 PMCID: PMC11705222 DOI: 10.1111/febs.17238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/10/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024]
Abstract
Cells store triacylglycerol (TAG) within lipid droplets (LDs). A dynamic model describing complete LD formation at the endoplasmic reticulum (ER) membrane does not yet exist. A biochemical-biophysical model of LD synthesis is proposed. It describes the time-dependent accumulation of TAG in the ER membrane as the formation of a potential LD (pLD) bounded by spherical caps of the inner and outer monolayers of the membrane. The expansion rate of the pLD depends on the TAG supply, the elastic properties of the ER membrane, and the recruitment of phospholipids (PLs) to the cap-covering monolayers. Model simulations provided the following insights: (a) Marginal differences in the surface tension of the cap monolayers are sufficient to fully drive the expansion of the pLD towards the cytosol or lumen. (b) Selective reduction of PL supply to the luminal monolayer ensures stable formation of cytosolic LDs, irrespective of variations in the elasto-mechanical properties of the ER membrane. (c) The rate of TAG supply to the cytosolic monolayer has a major effect on the size and maturation time of LDs but has no significant effect on the TAG export per individual LD. The recruitment of additional PLs to the cap monolayers of pLDs critically controls the budding direction, size, and maturation time of LDs. The ability of cells to acquire additional LD initiation sites appears to be key to coping with acutely high levels of potentially toxic free fatty acids.
Collapse
Affiliation(s)
- Hermann‐Georg Holzhütter
- Institute of BiochemistryCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinGermany
| |
Collapse
|
7
|
Ko K, Bandara SR, Zhou W, Svenningsson L, Porras-Gómez M, Kambar N, Dreher-Threlkeld J, Topgaard D, Hernández-Saavedra D, Anakk S, Leal C. Diet-Induced Obesity Modulates Close-Packing of Triacylglycerols in Lipid Droplets of Adipose Tissue. J Am Chem Soc 2024; 146:34796-34810. [PMID: 39644234 DOI: 10.1021/jacs.4c13420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Adipose-derived lipid droplets (LDs) are rich in triacylglycerols (TAGs), which regulate essential cellular processes, such as energy storage. Although TAG accumulation and LD expansion in adipocytes occur during obesity, how LDs dynamically package TAGs in response to excessive nutrients remains elusive. Here, we found that LD lipidomes display a remarkable increase in TAG acyl chain saturation under calorie-dense diets, turning them conducive to close-packing. Using high-resolution X-ray diffraction, solid-state NMR, and imaging, we show that beyond size expansion LDs from mice under varied obesogenic diets govern fat accumulation by packing TAGs in different crystalline polymorphs. Consistently, LDs and tissue stiffen for high-calorie-fed mice with more than a 2-fold increase in elastic moduli compared to normal diet. Our data suggest that in addition to expanding, adipocyte LDs undergo structural remodeling by close-packing rigid and highly saturated TAGs in response to caloric overload, as opposed to liquid TAGs in a low-calorie diet. This work provides insights into how lipid packing within LDs can allow for the rapid and optimal expansion of fat during the initial stages of obesity.
Collapse
Affiliation(s)
- Kyungwon Ko
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sarith R Bandara
- Department of Materials Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Weinan Zhou
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Leo Svenningsson
- Division of Physical Chemistry, Lund University, Lund 22100, Sweden
| | - Marilyn Porras-Gómez
- Department of Materials Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Nurila Kambar
- Department of Materials Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Julia Dreher-Threlkeld
- Department of Materials Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Daniel Topgaard
- Division of Physical Chemistry, Lund University, Lund 22100, Sweden
| | - Diego Hernández-Saavedra
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sayeepriyadarshini Anakk
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Cecília Leal
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Guzha A, Gautam B, Marchiafava D, Ver Sagun J, Garcia T, Jarvis BA, Barbaglia-Hurlock AM, Johnston C, Grotewold E, Sedbrook JC, Alonso AP, Chapman KD. Targeted modulation of pennycress lipid droplet proteins impacts droplet morphology and seed oil content. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2151-2171. [PMID: 39467186 PMCID: PMC11629743 DOI: 10.1111/tpj.17109] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/21/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Lipid droplets (LDs) are unusual organelles that have a phospholipid monolayer surface and a hydrophobic matrix. In oilseeds, this matrix is nearly always composed of triacylglycerols (TGs) for efficient storage of carbon and energy. Various proteins play a role in their assembly, stability and turnover, and even though the major structural oleosin proteins in seed LDs have been known for decades, the factors influencing LD formation and dynamics are still being uncovered mostly in the "model oilseed" Arabidopsis. Here we identified several key LD biogenesis proteins in the seeds of pennycress, a potential biofuel crop, that were correlated previously with seed oil content and characterized here for their participation in LD formation in transient expression assays and stable transgenics. One pennycress protein, the lipid droplet associated protein-interacting protein (LDIP), was able to functionally complement the Arabidopsis ldip mutant, emphasizing the close conservation of lipid storage among these two Brassicas. Moreover, loss-of-function ldip mutants in pennycress exhibited increased seed oil content without compromising plant growth, raising the possibility that LDIP or other LD biogenesis factors may be suitable targets for improving yields in oilseed crops more broadly.
Collapse
Affiliation(s)
- Athanas Guzha
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, 76203, Texas, USA
| | - Barsanti Gautam
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Damiano Marchiafava
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Julius Ver Sagun
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, 76203, Texas, USA
| | - Tatiana Garcia
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Brice A Jarvis
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | | | - Christopher Johnston
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, 76203, Texas, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - John C Sedbrook
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Ana Paula Alonso
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, 76203, Texas, USA
| | - Kent D Chapman
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, 76203, Texas, USA
| |
Collapse
|
9
|
Al Harake SN, Abedin Y, Hatoum F, Nassar NZ, Ali A, Nassar A, Kanaan A, Bazzi S, Azar S, Harb F, Ghadieh HE. Involvement of a battery of investigated genes in lipid droplet pathophysiology and associated comorbidities. Adipocyte 2024; 13:2403380. [PMID: 39329369 PMCID: PMC11445895 DOI: 10.1080/21623945.2024.2403380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Lipid droplets (LDs) are highly specialized energy storage organelles involved in the maintenance of lipid homoeostasis by regulating lipid flux within white adipose tissue (WAT). The physiological function of adipocytes and LDs can be compromised by mutations in several genes, leading to NEFA-induced lipotoxicity, which ultimately manifests as metabolic complications, predominantly in the form of dyslipidemia, ectopic fat accumulation, and insulin resistance. In this review, we delineate the effects of mutations and deficiencies in genes - CIDEC, PPARG, BSCL2, AGPAT2, PLIN1, LIPE, LMNA, CAV1, CEACAM1, and INSR - involved in lipid droplet metabolism and their associated pathophysiological impairments, highlighting their roles in the development of lipodystrophies and metabolic dysfunction.
Collapse
Affiliation(s)
- Sami N. Al Harake
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Yasamin Abedin
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Fatema Hatoum
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Nour Zahraa Nassar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Ali Ali
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Aline Nassar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Amjad Kanaan
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Samer Bazzi
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Sami Azar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Frederic Harb
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Hilda E. Ghadieh
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| |
Collapse
|
10
|
Zeng M, Chen L, Wang Y. Nuclear membrane: A key potential therapeutic target for lipid metabolism. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 194:10-15. [PMID: 39433092 DOI: 10.1016/j.pbiomolbio.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/22/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Lipid homeostasis plays a pivotal role in cellular growth, necessitating the engagement of numerous lipid metabolism genes and the cohesive functioning of organelles. While the nucleus is traditionally recognized for its genetic roles, emerging evidence highlights its significant contribution to lipid homeostasis maintenance. Certain nuclear membrane proteins or associated proteins have the capacity to directly catalyze lipid synthesis or modification processes. Mutations in the genes encoding these proteins can lead to disrupted lipid metabolism, contributing to a spectrum of metabolic disorders. This article provides a comprehensive reviews of the investigations exploring the interplay between nuclear membrane proteins and lipid metabolism. Additionally, it delves into the heterogeneity of the nuclear membrane, positioning it as a novel therapeutic target for managing metabolic disorders and mitigating adverse drug reactions.
Collapse
Affiliation(s)
- Min Zeng
- Department of Gastroenterology, Liuyang Hospital of Chinese Medicine, Liuyang, Hunan, China
| | - Longgui Chen
- Department of Gastroenterology, Liuyang Hospital of Chinese Medicine, Liuyang, Hunan, China.
| | - YaZhu Wang
- Department of Cardiovascular Medicine, Liuyang Hospital of Chinese Medicine, Liuyang, Hunan, China.
| |
Collapse
|
11
|
Zhang C, Zheng M, Bai R, Chen J, Yang H, Luo G. Molecular mechanisms of lipid droplets-mitochondria coupling in obesity and metabolic syndrome: insights and pharmacological implications. Front Physiol 2024; 15:1491815. [PMID: 39588271 PMCID: PMC11586377 DOI: 10.3389/fphys.2024.1491815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/29/2024] [Indexed: 11/27/2024] Open
Abstract
Abnormal lipid accumulation is a fundamental contributor to obesity and metabolic disorders. Lipid droplets (LDs) and mitochondria (MT) serve as organelle chaperones in lipid metabolism and energy balance. LDs play a crucial role in lipid storage and mobilization, working in conjunction with MT to regulate lipid metabolism within the liver, brown adipose tissue, and skeletal muscle, thereby maintaining metabolic homeostasis. The novelty of our review is the comprehensive description of LD and MT interaction mechanisms. We also focus on the current drugs that target this metabolism, which provide novel approaches for obesity and related metabolism disorder treatment.
Collapse
Affiliation(s)
- Chunmei Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Zheng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Runlin Bai
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiale Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Yang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gan Luo
- Department of Orthopedics, Chengdu Integrated Traditional Chinese Medicine & Western Medicine Hospital/Chengdu First People’s Hospital, Chengdu, China
| |
Collapse
|
12
|
Zhang C, Ye M, Melikov K, Yang D, Vale GDD, McDonald J, Eckert K, Lin MJ, Zeng X. CLSTN3B promotes lipid droplet maturation and lipid storage in mouse adipocytes. Nat Commun 2024; 15:9475. [PMID: 39488519 PMCID: PMC11531554 DOI: 10.1038/s41467-024-53750-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Interorganelle contacts facilitate material exchanges and sustain the structural and functional integrity of organelles. Lipid droplets (LDs) of adipocytes are responsible for energy storage and mobilization responding to body needs. LD biogenesis defects compromise the lipid-storing capacity of adipocytes, resulting in ectopic lipid deposition and metabolic disorders, yet how the uniquely large LDs in adipocytes attain structural and functional maturation is incompletely understood. Here we show that the mammalian adipocyte-specific protein CLSTN3B is crucial for adipocyte LD maturation. CLSTN3B employs an arginine-rich segment to promote extensive contact and hemifusion-like structure formation between the endoplasmic reticulum (ER) and LD, allowing ER-to-LD phospholipid diffusion during LD expansion. CLSTN3B ablation results in reduced LD surface phospholipid density, increased turnover of LD-surface proteins, and impaired LD functions. Our results establish the central role of CLSTN3B in the adipocyte-specific LD maturation pathway that enhances lipid storage and maintenance of metabolic health under caloric overload in mice of both sexes.
Collapse
Affiliation(s)
- Chuanhai Zhang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mengchen Ye
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Kamran Melikov
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Dengbao Yang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Jeffrey McDonald
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kaitlyn Eckert
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mei-Jung Lin
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xing Zeng
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
13
|
Kumar A, Yadav S, Choudhary V. The evolving landscape of ER-LD contact sites. Front Cell Dev Biol 2024; 12:1483902. [PMID: 39421023 PMCID: PMC11484260 DOI: 10.3389/fcell.2024.1483902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Lipid droplets (LDs) are evolutionarily conserved dynamic organelles that play an important role in cellular physiology. Growing evidence suggests that LD biogenesis occurs at discrete endoplasmic reticulum (ER) subdomains demarcated by the lipodystrophy protein, Seipin, lack of which impairs adipogenesis. However, the mechanisms of how these domains are selected is not completely known. These ER sites undergo ordered assembly of proteins and lipids to initiate LD biogenesis and facilitate establishment of ER-LD contact sites, a prerequisite for proper growth and maturation of droplets. LDs retain both physical and functional association with the ER throughout their lifecycle to facilitate bi-directional communication, such as exchange of proteins and lipids between the two organelles at these ER-LD contact sites. In recent years several molecular tethers have been identified that bridge ER and LDs together including few proteins that are found exclusively at these ER-LD contact interface. Here, we discuss recent advances in understanding the role of factors that ensure functionality of ER-LD contact site machinery for LD homeostasis.
Collapse
Affiliation(s)
| | | | - Vineet Choudhary
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
14
|
Ibayashi M, Tatsumi T, Tsukamoto S. Perilipin2 depletion causes lipid droplet enlargement in the ovarian corpus luteum in mice. J Reprod Dev 2024; 70:296-302. [PMID: 39010158 PMCID: PMC11461514 DOI: 10.1262/jrd.2024-023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024] Open
Abstract
Lipid droplets (LDs) are endoplasmic reticulum-derived organelles that store neutral lipids (mostly triglycerides and cholesterol esters) within a phospholipid monolayer and appear in most eukaryotic cells. Perilipins (PLINs, comprising PLIN1-5) are abundant LD-associated proteins with highly variable expression levels among tissues. Although PLINs are expressed in the mammalian ovaries, little is known about their subcellular localization and physiological functions. In this study, we investigated the localization of PLIN1-3 and their relationship with LD synthesis using mCherry-HPos reporter mice, thereby enabling the visualization of LD biogenesis in vivo. PLIN2 and PLIN3 were localized as puncta in granulosa cells with low levels of LD synthesis in developing follicles. This localization pattern was quite different from that of PLIN1, which was mainly localized in the theca and interstitial cells with high levels of LD synthesis. In the corpus luteum, where LD synthesis is highly induced, PLIN2 and PLIN3 are abundant in the particulate structures, whereas PLIN1 is poorly distributed. We also generated global Plin2-deficient mice using the CRSPR/Cas9 system and demonstrated that the lack of PLIN2 did not alter the distribution of PLIN1 and PLIN3 but unexpectedly induced LD enlargement in the corpus luteum. Collectively, our results suggest that the localization of PLIN1-3 is spatiotemporally regulated and that PLIN2 deficiency influences LD mobilization in the corpus luteum within the ovaries.
Collapse
Affiliation(s)
- Megumi Ibayashi
- Laboratory Animal and Bioresource Sciences Section, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Takayuki Tatsumi
- Division of Reproductive Medicine, Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Satoshi Tsukamoto
- Laboratory Animal and Bioresource Sciences Section, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
15
|
Klemm RW, Carvalho P. Lipid Droplets Big and Small: Basic Mechanisms That Make Them All. Annu Rev Cell Dev Biol 2024; 40:143-168. [PMID: 39356808 DOI: 10.1146/annurev-cellbio-012624-031419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Lipid droplets (LDs) are dynamic storage organelles with central roles in lipid and energy metabolism. They consist of a core of neutral lipids, such as triacylglycerol, which is surrounded by a monolayer of phospholipids and specialized surface proteins. The surface composition determines many of the LD properties, such as size, subcellular distribution, and interaction with partner organelles. Considering the diverse energetic and metabolic demands of various cell types, it is not surprising that LDs are highly heterogeneous within and between cell types. Despite their diversity, all LDs share a common biogenesis mechanism. However, adipocytes have evolved specific adaptations of these basic mechanisms, enabling the regulation of lipid and energy metabolism at both the cellular and organismal levels. Here, we discuss recent advances in the understanding of both the general mechanisms of LD biogenesis and the adipocyte-specific adaptations controlling these fascinating organelles.
Collapse
Affiliation(s)
- Robin W Klemm
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom;
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
16
|
Tan Y, Huang Z, Jin Y, Wang J, Fan H, Liu Y, Zhang L, Wu Y, Liu P, Li T, Ran J, Tian H, Lam SM, Liu M, Zhou J, Yang Y. Lipid droplets sequester palmitic acid to disrupt endothelial ciliation and exacerbate atherosclerosis in male mice. Nat Commun 2024; 15:8273. [PMID: 39333556 PMCID: PMC11437155 DOI: 10.1038/s41467-024-52621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Disruption of ciliary homeostasis in vascular endothelial cells has been implicated in the development of atherosclerosis. However, the molecular basis for the regulation of endothelial cilia during atherosclerosis remains poorly understood. Herein, we provide evidence in male mice that the accumulation of lipid droplets in vascular endothelial cells induces ciliary loss and contributes to atherosclerosis. Triglyceride accumulation in vascular endothelial cells differentially affects the abundance of free fatty acid species in the cytosol, leading to stimulated lipid droplet formation and suppressed protein S-palmitoylation. Reduced S-palmitoylation of ciliary proteins, including ADP ribosylation factor like GTPase 13B, results in the loss of cilia. Restoring palmitic acid availability, either through pharmacological inhibition of stearoyl-CoA desaturase 1 or a palmitic acid-enriched diet, significantly restores endothelial cilia and mitigates the progression of atherosclerosis. These findings thus uncover a previously unrecognized role of lipid droplets in regulating ciliary homeostasis and provide a feasible intervention strategy for preventing and treating atherosclerosis.
Collapse
Affiliation(s)
- Yanjie Tan
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Zhenzhou Huang
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Yi Jin
- Metabolism and Disease Research Centre, Central Hospital Affiliated to Shandong First Medical University, 250013, Jinan, China
| | - Jiaying Wang
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Hongjun Fan
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Yangyang Liu
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Liang Zhang
- Metabolism and Disease Research Centre, Central Hospital Affiliated to Shandong First Medical University, 250013, Jinan, China
| | - Yue Wu
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Peiwei Liu
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Tianliang Li
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Jie Ran
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- LipidALL Technologies Company Limited, 213022, Changzhou, China
| | - Min Liu
- Laboratory of Tissue Homeostasis, Haihe Laboratory of Cell Ecosystem, 300462, Tianjin, China
| | - Jun Zhou
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China.
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 300071, Tianjin, China.
| | - Yunfan Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China.
| |
Collapse
|
17
|
Gamuyao R, Chang CL. Imaging and proteomics toolkits for studying organelle contact sites. Front Cell Dev Biol 2024; 12:1466915. [PMID: 39381373 PMCID: PMC11458464 DOI: 10.3389/fcell.2024.1466915] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
Organelle contact sites are regions where two heterologous membranes are juxtaposed by molecular tethering complexes. These contact sites are important in inter-organelle communication and cellular functional integration. However, visualizing these minute foci and identifying contact site proteomes have been challenging. In recent years, fluorescence-based methods have been developed to visualize the dynamic physical interaction of organelles while proximity labeling approaches facilitate the profiling of proteomes at contact sites. In this review, we explain the design principle for these contact site reporters: a dual-organelle interaction mechanism based on how endogenous tethers and/or tethering complexes localize to contact sites. We classify the contact site reporters into three categories: (i) single-protein systems, (ii) two-component systems with activated reporter signal upon organelle proximity, and (iii) reporters for contact site proteomes. We also highlight advanced imaging analysis with high temporal-spatial resolution and the use of machine-learning algorithms for detecting contact sites.
Collapse
Affiliation(s)
| | - Chi-Lun Chang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
18
|
Manceau R, Majeur D, Cherian CM, Miller CJ, Wat LW, Fisher JD, Labarre A, Hollman S, Prakash S, Audet S, Chao CF, Depaauw-Holt L, Rogers B, Bosson A, Xi JJY, Callow CAS, Yoosefi N, Shahraki N, Xia YH, Hui A, VanderZwaag J, Bouyakdan K, Rodaros D, Kotchetkov P, Daneault C, Fallahpour G, Tetreault M, Tremblay MÈ, Ruiz M, Lacoste B, Parker JA, Murphy-Royal C, Huan T, Fulton S, Rideout EJ, Alquier T. Neuronal lipid droplets play a conserved and sex-biased role in maintaining whole-body energy homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613929. [PMID: 39345476 PMCID: PMC11429983 DOI: 10.1101/2024.09.19.613929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Lipids are essential for neuron development and physiology. Yet, the central hubs that coordinate lipid supply and demand in neurons remain unclear. Here, we combine invertebrate and vertebrate models to establish the presence and functional significance of neuronal lipid droplets (LD) in vivo. We find that LD are normally present in neurons in a non-uniform distribution across the brain, and demonstrate triglyceride metabolism enzymes and lipid droplet-associated proteins control neuronal LD formation through both canonical and recently-discovered pathways. Appropriate LD regulation in neurons has conserved and male-biased effects on whole-body energy homeostasis across flies and mice, specifically neurons that couple environmental cues with energy homeostasis. Mechanistically, LD-derived lipids support neuron function by providing phospholipids to sustain mitochondrial and endoplasmic reticulum homeostasis. Together, our work identifies a conserved role for LD as the organelle that coordinates lipid management in neurons, with implications for our understanding of mechanisms that preserve neuronal lipid homeostasis and function in health and disease.
Collapse
Affiliation(s)
- Romane Manceau
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Danie Majeur
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Celena M Cherian
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Colin J Miller
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Lianna W Wat
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Jasper D Fisher
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Audrey Labarre
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Serena Hollman
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Sanjana Prakash
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Sébastien Audet
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Charlotte F Chao
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Lewis Depaauw-Holt
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Benjamin Rogers
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Anthony Bosson
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Joyce J Y Xi
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Catrina A S Callow
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Niyoosha Yoosefi
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Niki Shahraki
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Yi Han Xia
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Alisa Hui
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
| | - Jared VanderZwaag
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Khalil Bouyakdan
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Demetra Rodaros
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Pavel Kotchetkov
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Caroline Daneault
- Montreal Heart Institute Research Centre, Montreal, Canada. QC, Canada
| | - Ghazal Fallahpour
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Martine Tetreault
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Matthieu Ruiz
- Department of Nutrition Université de Montréal, Montréal, QC, Canada
- Montreal Heart Institute Research Centre, Montreal, Canada. QC, Canada
| | - Baptiste Lacoste
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - J A Parker
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Ciaran Murphy-Royal
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Tao Huan
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
| | - Stephanie Fulton
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Nutrition Université de Montréal, Montréal, QC, Canada
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Thierry Alquier
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
19
|
Prior R, Silva A, Vangansewinkel T, Idkowiak J, Tharkeshwar AK, Hellings TP, Michailidou I, Vreijling J, Loos M, Koopmans B, Vlek N, Agaser C, Kuipers TB, Michiels C, Rossaert E, Verschoren S, Vermeire W, de Laat V, Dehairs J, Eggermont K, van den Biggelaar D, Bademosi AT, Meunier FA, vandeVen M, Van Damme P, Mei H, Swinnen JV, Lambrichts I, Baas F, Fluiter K, Wolfs E, Van Den Bosch L. PMP22 duplication dysregulates lipid homeostasis and plasma membrane organization in developing human Schwann cells. Brain 2024; 147:3113-3130. [PMID: 38743588 PMCID: PMC11370802 DOI: 10.1093/brain/awae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024] Open
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common inherited peripheral neuropathy caused by a 1.5 Mb tandem duplication of chromosome 17 harbouring the PMP22 gene. This dose-dependent overexpression of PMP22 results in disrupted Schwann cell myelination of peripheral nerves. To obtain better insights into the underlying pathogenic mechanisms in CMT1A, we investigated the role of PMP22 duplication in cellular homeostasis in CMT1A mouse models and in patient-derived induced pluripotent stem cells differentiated into Schwann cell precursors (iPSC-SCPs). We performed lipidomic profiling and bulk RNA sequencing (RNA-seq) on sciatic nerves of two developing CMT1A mouse models and on CMT1A patient-derived iPSC-SCPs. For the sciatic nerves of the CMT1A mice, cholesterol and lipid metabolism was downregulated in a dose-dependent manner throughout development. For the CMT1A iPSC-SCPs, transcriptional analysis unveiled a strong suppression of genes related to autophagy and lipid metabolism. Gene ontology enrichment analysis identified disturbances in pathways related to plasma membrane components and cell receptor signalling. Lipidomic analysis confirmed the severe dysregulation in plasma membrane lipids, particularly sphingolipids, in CMT1A iPSC-SCPs. Furthermore, we identified reduced lipid raft dynamics, disturbed plasma membrane fluidity and impaired cholesterol incorporation and storage, all of which could result from altered lipid storage homeostasis in the patient-derived CMT1A iPSC-SCPs. Importantly, this phenotype could be rescued by stimulating autophagy and lipolysis. We conclude that PMP22 duplication disturbs intracellular lipid storage and leads to a more disordered plasma membrane owing to an alteration in the lipid composition, which might ultimately lead to impaired axo-glial interactions. Moreover, targeting lipid handling and metabolism could hold promise for the treatment of patients with CMT1A.
Collapse
Affiliation(s)
- Robert Prior
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn 53127, Germany
| | - Alessio Silva
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Tim Vangansewinkel
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
- UHasselt—Hasselt University, Biomedical Research Institute, Diepenbeek 3590, Belgium
| | - Jakub Idkowiak
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven 3000, Belgium
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice 532 10, Czech Republic
| | - Arun Kumar Tharkeshwar
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Tom P Hellings
- Department of Clinical Genetics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Iliana Michailidou
- Department of Clinical Genetics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Jeroen Vreijling
- Department of Clinical Genetics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Maarten Loos
- InnoSer Nederland B.V., 2333 CK Leiden, The Netherlands
| | | | - Nina Vlek
- InnoSer Nederland B.V., 2333 CK Leiden, The Netherlands
| | - Cedrick Agaser
- Department of Biomedical Data Sciences, Sequencing Analysis Support Core, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Thomas B Kuipers
- Department of Biomedical Data Sciences, Sequencing Analysis Support Core, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Christine Michiels
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Elisabeth Rossaert
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Stijn Verschoren
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Wendy Vermeire
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Vincent de Laat
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Kristel Eggermont
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Diede van den Biggelaar
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Adekunle T Bademosi
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Frederic A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Martin vandeVen
- UHasselt—Hasselt University, Biomedical Research Institute, Diepenbeek 3590, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven 3000, Belgium
| | - Hailiang Mei
- Department of Biomedical Data Sciences, Sequencing Analysis Support Core, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Ivo Lambrichts
- UHasselt—Hasselt University, Biomedical Research Institute, Diepenbeek 3590, Belgium
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Kees Fluiter
- Department of Clinical Genetics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Esther Wolfs
- UHasselt—Hasselt University, Biomedical Research Institute, Diepenbeek 3590, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| |
Collapse
|
20
|
Li X, Gamuyao R, Wu ML, Cho WJ, King SV, Petersen R, Stabley DR, Lindow C, Climer LK, Shirinifard A, Ferrara F, Throm RE, Robinson CG, Zhou Y, Carisey AF, Tebo AG, Chang CL. A fluorogenic complementation tool kit for interrogating lipid droplet-organelle interaction. J Cell Biol 2024; 223:e202311126. [PMID: 38949658 PMCID: PMC11215687 DOI: 10.1083/jcb.202311126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/24/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024] Open
Abstract
Contact sites between lipid droplets and other organelles are essential for cellular lipid and energy homeostasis upon metabolic demands. Detection of these contact sites at the nanometer scale over time in living cells is challenging. We developed a tool kit for detecting contact sites based on fluorogen-activated bimolecular complementation at CONtact sites, FABCON, using a reversible, low-affinity split fluorescent protein, splitFAST. FABCON labels contact sites with minimal perturbation to organelle interaction. Via FABCON, we quantitatively demonstrated that endoplasmic reticulum (ER)- and mitochondria (mito)-lipid droplet contact sites are dynamic foci in distinct metabolic conditions, such as during lipid droplet biogenesis and consumption. An automated analysis pipeline further classified individual contact sites into distinct subgroups based on size, likely reflecting differential regulation and function. Moreover, FABCON is generalizable to visualize a repertoire of organelle contact sites including ER-mito. Altogether, FABCON reveals insights into the dynamic regulation of lipid droplet-organelle contact sites and generates new hypotheses for further mechanistical interrogation during metabolic regulation.
Collapse
Affiliation(s)
- Xiao Li
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Rico Gamuyao
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Ming-Lun Wu
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Woo Jung Cho
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Sharon V. King
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - R.A. Petersen
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Daniel R. Stabley
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Caleb Lindow
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Leslie K. Climer
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Francesca Ferrara
- Vector Production and Development Laboratory, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Robert E. Throm
- Vector Production and Development Laboratory, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Camenzind G. Robinson
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yiwang Zhou
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Alexandre F. Carisey
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Alison G. Tebo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Chi-Lun Chang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
21
|
Farías MA, Diethelm-Varela B, Kalergis AM, González PA. Interplay between lipid metabolism, lipid droplets and RNA virus replication. Crit Rev Microbiol 2024; 50:515-539. [PMID: 37348003 DOI: 10.1080/1040841x.2023.2224424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/20/2022] [Accepted: 01/29/2023] [Indexed: 06/24/2023]
Abstract
Lipids play essential roles in the cell as components of cellular membranes, signaling molecules, and energy storage sources. Lipid droplets are cellular organelles composed of neutral lipids, such as triglycerides and cholesterol esters, and are also considered as cellular energy reserves, yet new functions have been recently associated with these structures, such as regulators of oxidative stress and cellular lipotoxicity, as well as modulators of pathogen infection through immune regulation. Lipid metabolism and lipid droplets participate in the infection process of many RNA viruses and control their replication and assembly, among others. Here, we review and discuss the contribution of lipid metabolism and lipid droplets over the replication cycle of RNA viruses, altogether pointing out potentially new pharmacological antiviral targets associated with lipid metabolism.
Collapse
Affiliation(s)
- Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Benjamín Diethelm-Varela
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
22
|
Reichert I, Lee JY, Weber L, Fuh MM, Schlaeger L, Rößler S, Kinast V, Schlienkamp S, Conradi J, Vondran FWR, Pfaender S, Scaturro P, Steinmann E, Bartenschlager R, Pietschmann T, Heeren J, Lauber C, Vieyres G. The triglyceride-synthesizing enzyme diacylglycerol acyltransferase 2 modulates the formation of the hepatitis C virus replication organelle. PLoS Pathog 2024; 20:e1012509. [PMID: 39241103 PMCID: PMC11410266 DOI: 10.1371/journal.ppat.1012509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/18/2024] [Accepted: 08/15/2024] [Indexed: 09/08/2024] Open
Abstract
The replication organelle of hepatitis C virus (HCV), called membranous web, is derived from the endoplasmic reticulum (ER) and mainly comprises double membrane vesicles (DMVs) that concentrate the viral replication complexes. It also tightly associates with lipid droplets (LDs), which are essential for virion morphogenesis. In particular acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), a rate-limiting enzyme in triglyceride synthesis, promotes early steps of virus assembly. The close proximity between ER membranes, DMVs and LDs therefore permits the efficient coordination of the HCV replication cycle. Here, we demonstrate that exaggerated LD accumulation due to the excessive expression of the DGAT1 isozyme, DGAT2, dramatically impairs the formation of the HCV membranous web. This effect depended on the enzymatic activity and ER association of DGAT2, whereas the mere LD accumulation was not sufficient to hamper HCV RNA replication. Our lipidomics data indicate that both HCV infection and DGAT2 overexpression induced membrane lipid biogenesis and markedly increased phospholipids with long chain polyunsaturated fatty acids, suggesting a dual use of these lipids and their possible competition for LD and DMV biogenesis. On the other hand, overexpression of DGAT2 depleted specific phospholipids, particularly oleyl fatty acyl chain-containing phosphatidylcholines, which, in contrast, are increased in HCV-infected cells and likely essential for viral infection. In conclusion, our results indicate that lipid exchanges occurring during LD biogenesis regulate the composition of intracellular membranes and thereby affect the formation of the HCV replication organelle. The potent antiviral effect observed in our DGAT2 overexpression system unveils lipid flux that may be relevant in the context of steatohepatitis, a hallmark of HCV infection, but also in physiological conditions, locally in specific subdomains of the ER membrane. Thus, LD formation mediated by DGAT1 and DGAT2 might participate in the spatial compartmentalization of HCV replication and assembly factories within the membranous web.
Collapse
Affiliation(s)
| | - Ji-Young Lee
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Laura Weber
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Marceline M Fuh
- Department of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Volker Kinast
- Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Sarah Schlienkamp
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Janina Conradi
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Integrative Analysis of Pathogen-Induced Compartments, Leibniz ScienceCampus InterACt, Hamburg, Germany
| | - Florian W R Vondran
- ReMediES, Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Stephanie Pfaender
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| | | | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division Virus-Associated Carcinogenesis, Heidelberg, Germany
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chris Lauber
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Gabrielle Vieyres
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Integrative Analysis of Pathogen-Induced Compartments, Leibniz ScienceCampus InterACt, Hamburg, Germany
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| |
Collapse
|
23
|
Wang CW, Chen RH, Chen YK. The lipid droplet assembly complex consists of seipin and four accessory factors in budding yeast. J Biol Chem 2024; 300:107534. [PMID: 38981533 PMCID: PMC11342095 DOI: 10.1016/j.jbc.2024.107534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024] Open
Abstract
Seipin, a crucial protein for cellular lipid droplet (LD) assembly, oligomerizes at the interface between the endoplasmic reticulum and LDs to facilitate neutral lipid packaging. Using proximity labeling, we identified four proteins-Ldo45, Ldo16, Tgl4, and Pln1-that are recruited to the vicinity of yeast seipin, the Sei1-Ldb16 complex, exclusively when seipin function is intact, hence termed seipin accessory factors. Localization studies identified Tgl4 at the endoplasmic reticulum-LD contact site, in contrast to Ldo45, Ldo16, and Pln1 at the LD surface. Cells with compromised seipin function resulted in uneven distribution of these proteins with aberrant LDs, supporting a central role of seipin in orchestrating their association with the LD. Overexpression of any seipin accessory factor causes LD aggregation and affects a subset of LD protein distribution, highlighting the importance of their stoichiometry. Although single factor mutations show minor LD morphology changes, the combined mutations have additive effects. Lastly, we present evidence that seipin accessory factors assemble and interact with seipin in the absence of neutral lipids and undergo dynamical rearrangements during LD formation induction, with Ldo45 acting as a central hub recruiting other factors to interact with the seipin complex.
Collapse
Affiliation(s)
- Chao-Wen Wang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan.
| | - Rey-Huei Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Kai Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
24
|
Li C, Sun XN, Funcke JB, Vanharanta L, Joffin N, Li Y, Prasanna X, Paredes M, Joung C, Gordillo R, Vörös C, Kulig W, Straub L, Chen S, Velasco J, Cobb A, Padula DL, Wang MY, Onodera T, Varlamov O, Li Y, Liu C, Nawrocki AR, Zhao S, Oh DY, Wang ZV, Goodman JM, Wynn RM, Vattulainen I, Han Y, Ikonen E, Scherer PE. Adipogenin Dictates Adipose Tissue Expansion by Facilitating the Assembly of a Dodecameric Seipin Complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605195. [PMID: 39211078 PMCID: PMC11360994 DOI: 10.1101/2024.07.25.605195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Adipogenin (Adig) is an evolutionarily conserved microprotein and is highly expressed in adipose tissues and testis. Here, we identify Adig as a critical regulator for lipid droplet formation in adipocytes. We determine that Adig interacts directly with seipin, leading to the formation of a rigid complex. We solve the structure of the seipin/Adig complex by Cryo-EM at 2.98Å overall resolution. Surprisingly, seipin can form two unique oligomers, undecamers and dodecamers. Adig selectively binds to the dodecameric seipin complex. We further find that Adig promotes seipin assembly by stabilizing and bridging adjacent seipin subunits. Functionally, Adig plays a key role in generating lipid droplets in adipocytes. In mice, inducible overexpression of Adig in adipocytes substantially increases fat mass, with enlarged lipid droplets. It also elevates thermogenesis during cold exposure. In contrast, inducible adipocyte-specific Adig knockout mice manifest aberrant lipid droplet formation in brown adipose tissues and impaired cold tolerance.
Collapse
|
25
|
Bai X, Smith HE, Golden A. Identification of genetic suppressors for a BSCL2 lipodystrophy pathogenic variant in Caenorhabditis elegans. Dis Model Mech 2024; 17:dmm050524. [PMID: 38454882 PMCID: PMC11051982 DOI: 10.1242/dmm.050524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
Seipin (BSCL2), a conserved endoplasmic reticulum protein, plays a critical role in lipid droplet (LD) biogenesis and in regulating LD morphology, pathogenic variants of which are associated with Berardinelli-Seip congenital generalized lipodystrophy type 2 (BSCL2). To model BSCL2 disease, we generated an orthologous BSCL2 variant, seip-1(A185P), in Caenorhabditis elegans. In this study, we conducted an unbiased chemical mutagenesis screen to identify genetic suppressors that restore embryonic viability in the seip-1(A185P) mutant background. A total of five suppressor lines were isolated and recovered from the screen. The defective phenotypes of seip-1(A185P), including embryonic lethality and impaired eggshell formation, were significantly suppressed in each suppressor line. Two of the five suppressor lines also alleviated the enlarged LDs in the oocytes. We then mapped a suppressor candidate gene, lmbr-1, which is an ortholog of human limb development membrane protein 1 (LMBR1). The CRISPR/Cas9 edited lmbr-1 suppressor alleles, lmbr-1(S647F) and lmbr-1(P314L), both significantly suppressed embryonic lethality and defective eggshell formation in the seip-1(A185P) background. The newly identified suppressor lines offer valuable insights into potential genetic interactors and pathways that may regulate seipin in the lipodystrophy model.
Collapse
Affiliation(s)
- Xiaofei Bai
- Department of Biology, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Harold E. Smith
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andy Golden
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Liu J, Li L, Xu D, Li Y, Chen T, Liu Y, Bao Y, Wang Y, Yang L, Li P, Xu L. Rab18 maintains homeostasis of subcutaneous adipose tissue to prevent obesity-induced metabolic disorders. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1170-1182. [PMID: 38523235 DOI: 10.1007/s11427-023-2367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/15/2023] [Indexed: 03/26/2024]
Abstract
Metabolically healthy obesity refers to obese individuals who do not develop metabolic disorders. These people store fat in subcutaneous adipose tissue (SAT) rather than in visceral adipose tissue (VAT). However, the molecules participating in this specific scenario remain elusive. Rab18, a lipid droplet (LD)-associated protein, mediates the contact between the endoplasmic reticulum (ER) and LDs to facilitate LD growth and maturation. In the present study, we show that the protein level of Rab18 is specifically upregulated in the SAT of obese people and mice. Rab18 adipocyte-specific knockout (Rab18 AKO) mice had a decreased volume ratio of SAT to VAT compared with wildtype mice. When subjected to high-fat diet (HFD), Rab18 AKO mice had increased ER stress and inflammation, reduced adiponectin, and decreased triacylglycerol (TAG) accumulation in SAT. In contrast, TAG accumulation in VAT, brown adipose tissue (BAT) or liver of Rab18 AKO mice had a moderate increase without ER stress stimulation. Rab18 AKO mice developed insulin resistance and systematic inflammation. Rab18 AKO mice maintained body temperature in response to acute and chronic cold induction with a thermogenic SAT, similar to the counterpart mice. Furthermore, Rab18-deficient 3T3-L1 adipocytes were more prone to palmitate-induced ER stress, indicating the involvement of Rab18 in alleviating lipid toxicity. Rab18 AKO mice provide a good animal model to investigate metabolic disorders such as impaired SAT. In conclusion, our studies reveal that Rab18 is a key and specific regulator that maintains the proper functions of SAT by alleviating lipid-induced ER stress.
Collapse
Affiliation(s)
- Jiaming Liu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Shanghai Qi Zhi Institute, Shanghai, 200232, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
| | - Liangkui Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Dijin Xu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuqi Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tao Chen
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, 341000, China
| | - Yeyang Liu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200025, China
| | - Yan Wang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, 101149, China
| | - Longyan Yang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, 101149, China
| | - Peng Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Shanghai Qi Zhi Institute, Shanghai, 200232, China.
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Li Xu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Shanghai Qi Zhi Institute, Shanghai, 200232, China.
| |
Collapse
|
27
|
Demirel-Yalciner T, Cetinkaya B, Sozen E, Ozer NK. Impact of Seipin in cholesterol mediated lipid droplet maturation; status of endoplasmic reticulum stress and lipophagy. Mech Ageing Dev 2024; 219:111933. [PMID: 38588730 DOI: 10.1016/j.mad.2024.111933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
The global prevalence of nonalcoholic fatty liver disease (NAFLD) defined by the increased number of lipid droplets (LDs) in hepatocytes, have risen continuously in parallel with the obesity. LDs and related proteins are known to affect cellular metabolism and signaling. Seipin, one of the most important LD-related proteins, plays a critical role in LD biogenesis. Although the role of adipose tissue-specific Seipin silencing is known, hepatocyte-specific silencing upon cholesterol-mediated lipid accumulation has not been investigated. In our study, we investigated the effect of Seipin on endoplasmic reticulum (ER) stress and lipophagy in cholesterol accumulated mouse hepatocyte cells. In this direction, cholesterol accumulation was induced by cholesterol-containing liposome, while Seipin mRNA and protein levels were reduced by siRNA. Our findings show that cholesterol containing liposome administration in hepatocytes increases both Seipin protein and number of large LDs. However Seipin silencing reduced the increase of cholesterol mediated large LDs and Glucose-regulated protein 78 (GRP78) mRNA. Additionally, lysosome-LD colocalization increased only in cells treated with cholesterol containing liposome, while the siRNA against Seipin did not lead any significant difference. According to our findings, we hypothesize that Seipin silencing in hepatocytes reduced cholesterol mediated LD maturation as well as GRP78 levels, but not lipophagy.
Collapse
Affiliation(s)
- Tugce Demirel-Yalciner
- Department of Biochemistry, Faculty of Medicine, Uskudar University, Istanbul 34662, Turkey; Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Istanbul 34854, Turkey; Metabolic and Inflammatory Diseases Research Center (METIFLAM), Uskudar University, Istanbul 34662, Turkey
| | - Bengu Cetinkaya
- Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Istanbul 34854, Turkey
| | - Erdi Sozen
- Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Istanbul 34854, Turkey; Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Maltepe, Istanbul 34854, Turkey
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Uskudar University, Istanbul 34662, Turkey; Metabolic and Inflammatory Diseases Research Center (METIFLAM), Uskudar University, Istanbul 34662, Turkey.
| |
Collapse
|
28
|
Malis Y, Armoza-Eilat S, Nevo-Yassaf I, Dukhovny A, Sklan EH, Hirschberg K. Rab1b facilitates lipid droplet growth by ER-to-lipid droplet targeting of DGAT2. SCIENCE ADVANCES 2024; 10:eade7753. [PMID: 38809969 PMCID: PMC11135398 DOI: 10.1126/sciadv.ade7753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/16/2024] [Indexed: 05/31/2024]
Abstract
Lipid droplets (LDs) comprise a triglyceride core surrounded by a lipid monolayer enriched with proteins, many of which function in LD homeostasis. How proteins are targeted to the growing LD is still unclear. Rab1b, a GTPase regulating secretory transport, was recently associated with targeting proteins to LDs in a Drosophila RNAi screen. LD formation was prevented in human hepatoma cells overexpressing dominant-negative Rab1b. We thus hypothesized that Rab1b recruits lipid-synthesizing enzymes, facilitating LD growth. Here, FRET between diacylglycerol acyltransferase 2 (DGAT2) and Rab1b and activity mutants of the latter demonstrated that Rab1b promotes DGAT2 ER to the LD surface redistribution. Last, alterations in LD metabolism and DGAT2 redistribution, consistent with Rab1b activity, were caused by mutations in the Rab1b-GTPase activating protein TBC1D20 in Warburg Micro syndrome (WARBM) model mice fibroblasts. These data contribute to our understanding of the mechanism of Rab1b in LD homeostasis and WARBM, a devastating autosomal-recessive disorder caused by mutations in TBC1D20.
Collapse
Affiliation(s)
- Yehonathan Malis
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shir Armoza-Eilat
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Inbar Nevo-Yassaf
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anna Dukhovny
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ella H. Sklan
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Koret Hirschberg
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
29
|
Cui W, Yang J, Tu C, Zhang Z, Zhao H, Qiao Y, Li Y, Yang W, Lim KL, Ma Q, Zhang C, Lu L. Seipin deficiency-induced lipid dysregulation leads to hypomyelination-associated cognitive deficits via compromising oligodendrocyte precursor cell differentiation. Cell Death Dis 2024; 15:350. [PMID: 38773070 PMCID: PMC11109229 DOI: 10.1038/s41419-024-06737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
Seipin is one key mediator of lipid metabolism that is highly expressed in adipose tissues as well as in the brain. Lack of Seipin gene, Bscl2, leads to not only severe lipid metabolic disorders but also cognitive impairments and motor disabilities. Myelin, composed mainly of lipids, facilitates nerve transmission and is important for motor coordination and learning. Whether Seipin deficiency-leaded defects in learning and motor coordination is underlined by lipid dysregulation and its consequent myelin abnormalities remains to be elucidated. In the present study, we verified the expression of Seipin in oligodendrocytes (OLs) and their precursors, oligodendrocyte precursor cells (OPCs), and demonstrated that Seipin deficiency compromised OPC differentiation, which led to decreased OL numbers, myelin protein, myelinated fiber proportion and thickness of myelin. Deficiency of Seipin resulted in impaired spatial cognition and motor coordination in mice. Mechanistically, Seipin deficiency suppressed sphingolipid metabolism-related genes in OPCs and caused morphological abnormalities in lipid droplets (LDs), which markedly impeded OPC differentiation. Importantly, rosiglitazone, one agonist of PPAR-gamma, substantially restored phenotypes resulting from Seipin deficiency, such as aberrant LDs, reduced sphingolipids, obstructed OPC differentiation, and neurobehavioral defects. Collectively, the present study elucidated how Seipin deficiency-induced lipid dysregulation leads to neurobehavioral deficits via impairing myelination, which may pave the way for developing novel intervention strategy for treating metabolism-involved neurological disorders.
Collapse
Affiliation(s)
- Wenli Cui
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jing Yang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Chuanyun Tu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ziting Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Huifang Zhao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yan Qiao
- Analytical Instrumentation Center & State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, Shanxi, China
| | - Yanqiu Li
- Analytical Instrumentation Center & State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, Shanxi, China
| | - Wulin Yang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Kah-Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Quanhong Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China.
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Li Lu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
30
|
Wang Y, Yang J. ER-organelle contacts: A signaling hub for neurological diseases. Pharmacol Res 2024; 203:107149. [PMID: 38518830 DOI: 10.1016/j.phrs.2024.107149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Neuronal health is closely linked to the homeostasis of intracellular organelles, and organelle dysfunction affects the pathological progression of neurological diseases. In contrast to isolated cellular compartments, a growing number of studies have found that organelles are largely interdependent structures capable of communicating through membrane contact sites (MCSs). MCSs have been identified as key pathways mediating inter-organelle communication crosstalk in neurons, and their alterations have been linked to neurological disease pathology. The endoplasmic reticulum (ER) is a membrane-bound organelle capable of forming an extensive network of pools and tubules with important physiological functions within neurons. There are multiple MCSs between the ER and other organelles and the plasma membrane (PM), which regulate a variety of cellular processes. In this review, we focus on ER-organelle MCSs and their role in a variety of neurological diseases. We compared the biological effects between different tethering proteins and the effects of their respective disease counterparts. We also discuss how altered ER-organelle contacts may affect disease pathogenesis. Therefore, understanding the molecular mechanisms of ER-organelle MCSs in neuronal homeostasis will lay the foundation for the development of new therapies targeting ER-organelle contacts.
Collapse
Affiliation(s)
- Yunli Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jinghua Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
31
|
Sapia J, Vanni S. Molecular dynamics simulations of intracellular lipid droplets: a new tool in the toolbox. FEBS Lett 2024; 598:1143-1153. [PMID: 38627196 DOI: 10.1002/1873-3468.14879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 05/25/2024]
Abstract
Lipid droplets (LDs) are ubiquitous intracellular organelles with a central role in multiple lipid metabolic pathways. However, identifying correlations between their structural properties and their biological activity has proved challenging, owing to their unique physicochemical properties as compared with other cellular membranes. In recent years, molecular dynamics (MD) simulations, a computational methodology allowing the accurate description of molecular assemblies down to their individual components, have been demonstrated to be a useful and powerful approach for studying LD structural and dynamical properties. In this short review, we attempt to highlight, as comprehensively as possible, how MD simulations have contributed to our current understanding of multiple molecular mechanisms involved in LD biology.
Collapse
Affiliation(s)
- Jennifer Sapia
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- Swiss National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
32
|
Xu L, Li L, Wu L, Li P, Chen FJ. CIDE proteins and their regulatory mechanisms in lipid droplet fusion and growth. FEBS Lett 2024; 598:1154-1169. [PMID: 38355218 DOI: 10.1002/1873-3468.14823] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024]
Abstract
The cell death-inducing DFF45-like effector (CIDE) proteins, including Cidea, Cideb, and Cidec/Fsp27, regulate various aspects of lipid homeostasis, including lipid storage, lipolysis, and lipid secretion. This review focuses on the physiological roles of CIDE proteins based on studies on knockout mouse models and human patients bearing CIDE mutations. The primary cellular function of CIDE proteins is to localize to lipid droplets (LDs) and to control LD fusion and growth across different cell types. We propose a four-step process of LD fusion, characterized by (a) the recruitment of CIDE proteins to the LD surface and CIDE movement, (b) the enrichment and condensate formation of CIDE proteins to form LD fusion plates at LD-LD contact sites, (c) lipid transfer through lipid-permeable passageways within the fusion plates, and (d) the completion of LD fusion. Lastly, we outline CIDE-interacting proteins as regulatory factors, as well as their contribution in LD fusion.
Collapse
Affiliation(s)
- Li Xu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lizhen Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lingzhi Wu
- College of Future Technology, Peking University, Beijing, China
| | - Peng Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, China
| | - Feng-Jung Chen
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Klug YA, Ferreira JV, Carvalho P. A unifying mechanism for seipin-mediated lipid droplet formation. FEBS Lett 2024; 598:1116-1126. [PMID: 38785192 PMCID: PMC11421547 DOI: 10.1002/1873-3468.14825] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 05/25/2024]
Abstract
Lipid droplets (LDs) are dynamic organelles essential for cellular lipid homeostasis. Assembly of LDs occurs in the endoplasmic reticulum (ER), and the conserved ER membrane protein seipin emerged as a key player in this process. Here, we review recent advances provided by structural, biochemical, and in silico analysis that revealed mechanistic insights into the molecular role of the seipin complexes and led to an updated model for LD biogenesis. We further discuss how other ER components cooperate with seipin during LD biogenesis. Understanding the molecular mechanisms underlying seipin-mediated LD assembly is important to uncover the fundamental aspects of lipid homeostasis and organelle biogenesis and to provide hints on the pathogenesis of lipid storage disorders.
Collapse
Affiliation(s)
- Yoel A Klug
- Sir William Dunn School of Pathology, University of Oxford, UK
| | | | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, UK
| |
Collapse
|
34
|
Monteiro-Cardoso VF, Giordano F. Emerging functions of the mitochondria-ER-lipid droplet three-way junction in coordinating lipid transfer, metabolism, and storage in cells. FEBS Lett 2024; 598:1252-1273. [PMID: 38774950 DOI: 10.1002/1873-3468.14893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 05/25/2024]
Abstract
Over the past two decades, we have witnessed a growing appreciation for the importance of membrane contact sites (CS) in facilitating direct communication between organelles. CS are tiny regions where the membranes of two organelles meet but do not fuse and allow the transfer of metabolites between organelles, playing crucial roles in the coordination of cellular metabolic activities. The significant advancements in imaging techniques and molecular and cell biology research have revealed that CS are more complex than what originally thought, and as they are extremely dynamic, they can remodel their shape, composition, and functions in accordance with metabolic and environmental changes and can occur between more than two organelles. Here, we describe how recent studies led to the identification of a three-way mitochondria-ER-lipid droplet CS and discuss the emerging functions of these contacts in maintaining lipid storage, homeostasis, and balance. We also summarize the properties and functions of key protein components localized at the mitochondria-ER-lipid droplet interface, with a special focus on lipid transfer proteins. Understanding tripartite CS is essential for unraveling the complexities of inter-organelle communication and cooperation within cells.
Collapse
Affiliation(s)
- Vera Filipa Monteiro-Cardoso
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette cedex, France
- Inserm U1280, Gif-sur-Yvette cedex, France
| | - Francesca Giordano
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette cedex, France
- Inserm U1280, Gif-sur-Yvette cedex, France
| |
Collapse
|
35
|
Dudka W, Salo VT, Mahamid J. Zooming into lipid droplet biology through the lens of electron microscopy. FEBS Lett 2024; 598:1127-1142. [PMID: 38726814 DOI: 10.1002/1873-3468.14899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Electron microscopy (EM), in its various flavors, has significantly contributed to our understanding of lipid droplets (LD) as central organelles in cellular metabolism. For example, EM has illuminated that LDs, in contrast to all other cellular organelles, are uniquely enclosed by a single phospholipid monolayer, revealed the architecture of LD contact sites with different organelles, and provided near-atomic resolution maps of key enzymes that regulate neutral lipid biosynthesis and LD biogenesis. In this review, we first provide a brief history of pivotal findings in LD biology unveiled through the lens of an electron microscope. We describe the main EM techniques used in the context of LD research and discuss their current capabilities and limitations, thereby providing a foundation for utilizing suitable EM methodology to address LD-related questions with sufficient level of structural preservation, detail, and resolution. Finally, we highlight examples where EM has recently been and is expected to be instrumental in expanding the frontiers of LD biology.
Collapse
Affiliation(s)
- Wioleta Dudka
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Veijo T Salo
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Cell Biology and Biophysics Unit, EMBL, Heidelberg, Germany
| |
Collapse
|
36
|
Garcia-Pardo ME, Simpson JC, O’Sullivan NC. An Automated Imaging-Based Screen for Genetic Modulators of ER Organisation in Cultured Human Cells. Cells 2024; 13:577. [PMID: 38607016 PMCID: PMC11011067 DOI: 10.3390/cells13070577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/08/2024] [Accepted: 03/23/2024] [Indexed: 04/13/2024] Open
Abstract
Hereditary spastic paraplegias (HSPs) are a heterogeneous group of mono-genetic inherited neurological disorders, whose primary manifestation is the disruption of the pyramidal system, observed as a progressive impaired gait and leg spasticity in patients. Despite the large list of genes linked to this group, which exceeds 80 loci, the number of cellular functions which the gene products engage is relatively limited, among which endoplasmic reticulum (ER) morphogenesis appears central. Mutations in genes encoding ER-shaping proteins are the most common cause of HSP, highlighting the importance of correct ER organisation for long motor neuron survival. However, a major bottleneck in the study of ER morphology is the current lack of quantitative methods, with most studies to date reporting, instead, on qualitative changes. Here, we describe and apply a quantitative image-based screen to identify genetic modifiers of ER organisation using a mammalian cell culture system. An analysis reveals significant quantitative changes in tubular ER and dense sheet ER organisation caused by the siRNA-mediated knockdown of HSP-causing genes ATL1 and RTN2. This screen constitutes the first attempt to examine ER distribution in cells in an automated and high-content manner and to detect genes which impact ER organisation.
Collapse
Affiliation(s)
- M. Elena Garcia-Pardo
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, 4 Dublin, Ireland
| | - Jeremy C. Simpson
- Cell Screening Laboratory, UCD School of Biology and Environmental Science, University College Dublin, 4 Dublin, Ireland
| | - Niamh C. O’Sullivan
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, 4 Dublin, Ireland
| |
Collapse
|
37
|
Diep DTV, Collado J, Hugenroth M, Fausten RM, Percifull L, Wälte M, Schuberth C, Schmidt O, Fernández-Busnadiego R, Bohnert M. A metabolically controlled contact site between vacuoles and lipid droplets in yeast. Dev Cell 2024; 59:740-758.e10. [PMID: 38367622 DOI: 10.1016/j.devcel.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/17/2023] [Accepted: 01/18/2024] [Indexed: 02/19/2024]
Abstract
The lipid droplet (LD) organization proteins Ldo16 and Ldo45 affect multiple aspects of LD biology in yeast. They are linked to the LD biogenesis machinery seipin, and their loss causes defects in LD positioning, protein targeting, and breakdown. However, their molecular roles remained enigmatic. Here, we report that Ldo16/45 form a tether complex with Vac8 to create vacuole lipid droplet (vCLIP) contact sites, which can form in the absence of seipin. The phosphatidylinositol transfer protein (PITP) Pdr16 is a further vCLIP-resident recruited specifically by Ldo45. While only an LD subpopulation is engaged in vCLIPs at glucose-replete conditions, nutrient deprivation results in vCLIP expansion, and vCLIP defects impair lipophagy upon prolonged starvation. In summary, Ldo16/45 are multifunctional proteins that control the formation of a metabolically regulated contact site. Our studies suggest a link between LD biogenesis and breakdown and contribute to a deeper understanding of how lipid homeostasis is maintained during metabolic challenges.
Collapse
Affiliation(s)
- Duy Trong Vien Diep
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Strasse 56, 48149 Münster, Germany; Cells in Motion Interfaculty Centre (CiM), University of Münster, Münster, Germany
| | - Javier Collado
- Institute of Neuropathology, University Medical Center Göttingen, 37099 Göttingen, Germany
| | - Marie Hugenroth
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Strasse 56, 48149 Münster, Germany; Cells in Motion Interfaculty Centre (CiM), University of Münster, Münster, Germany
| | - Rebecca Martina Fausten
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Strasse 56, 48149 Münster, Germany; Cells in Motion Interfaculty Centre (CiM), University of Münster, Münster, Germany
| | - Louis Percifull
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Strasse 56, 48149 Münster, Germany; Cells in Motion Interfaculty Centre (CiM), University of Münster, Münster, Germany
| | - Mike Wälte
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Strasse 56, 48149 Münster, Germany
| | - Christian Schuberth
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Strasse 56, 48149 Münster, Germany; Cells in Motion Interfaculty Centre (CiM), University of Münster, Münster, Germany
| | - Oliver Schmidt
- Institute of Cell Biology, Biocenter Innsbruck, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Rubén Fernández-Busnadiego
- Institute of Neuropathology, University Medical Center Göttingen, 37099 Göttingen, Germany; Cluster of Excellence "Multiscale Imaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany; Faculty of Physics, University of Göttingen, Göttingen 37077, Germany
| | - Maria Bohnert
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Strasse 56, 48149 Münster, Germany; Cells in Motion Interfaculty Centre (CiM), University of Münster, Münster, Germany.
| |
Collapse
|
38
|
Hsia JZ, Liu D, Haynes L, Cruz-Cosme R, Tang Q. Lipid Droplets: Formation, Degradation, and Their Role in Cellular Responses to Flavivirus Infections. Microorganisms 2024; 12:647. [PMID: 38674592 PMCID: PMC11051834 DOI: 10.3390/microorganisms12040647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Lipid droplets (LDs) are cellular organelles derived from the endoplasmic reticulum (ER), serving as lipid storage sites crucial for maintaining cellular lipid homeostasis. Recent attention has been drawn to their roles in viral replication and their interactions with viruses. However, the precise biological functions of LDs in viral replication and pathogenesis remain incompletely understood. To elucidate the interaction between LDs and viruses, it is imperative to comprehend the biogenesis of LDs and their dynamic interactions with other organelles. In this review, we explore the intricate pathways involved in LD biogenies within the cytoplasm, encompassing the uptake of fatty acid from nutrients facilitated by CD36-mediated membranous protein (FABP/FATP)-FA complexes, and FA synthesis via glycolysis in the cytoplasm and the TCL cycle in mitochondria. While LD biogenesis primarily occurs in the ER, matured LDs are intricately linked to multiple organelles. Viral infections can lead to diverse consequences in terms of LD status within cells post-infection, potentially involving the breakdown of LDs through the activation of lipophagy. However, the exact mechanisms underlying LD destruction or accumulation by viruses remain elusive. The significance of LDs in viral replication renders them effective targets for developing broad-spectrum antivirals. Moreover, considering that reducing neutral lipids in LDs is a strategy for anti-obesity treatment, LD depletion may not pose harm to cells. This presents LDs as promising antiviral targets for developing therapeutics that are minimally or non-toxic to the host.
Collapse
Affiliation(s)
| | | | | | | | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (J.Z.H.); (D.L.); (L.H.); (R.C.-C.)
| |
Collapse
|
39
|
Qi Z, Guo C, Li H, Qiu H, Li H, Jong C, Yu G, Zhang Y, Hu L, Wu X, Xin D, Yang M, Liu C, Lv J, Wang X, Kong F, Chen Q. Natural variation in Fatty Acid 9 is a determinant of fatty acid and protein content. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:759-773. [PMID: 37937736 PMCID: PMC10893952 DOI: 10.1111/pbi.14222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
Soybean is one of the most economically important crops worldwide and an important source of unsaturated fatty acids and protein for the human diet. Consumer demand for healthy fats and oils is increasing, and the global demand for vegetable oil is expected to double by 2050. Identification of key genes that regulate seed fatty acid content can facilitate molecular breeding of high-quality soybean varieties with enhanced fatty acid profiles. Here, we analysed the genetic architecture underlying variations in soybean seed fatty acid content using 547 accessions, including mainly landraces and cultivars from northeastern China. Through fatty acid profiling, genome re-sequencing, population genomics analyses, and GWAS, we identified a SEIPIN homologue at the FA9 locus as an important contributor to seed fatty acid content. Transgenic and multiomics analyses confirmed that FA9 was a key regulator of seed fatty acid content with pleiotropic effects on seed protein and seed size. We identified two major FA9 haplotypes in 1295 resequenced soybean accessions and assessed their phenotypic effects in a field planting of 424 accessions. Soybean accessions carrying FA9H2 had significantly higher total fatty acid contents and lower protein contents than those carrying FA9H1 . FA9H2 was absent in wild soybeans but present in 13% of landraces and 26% of cultivars, suggesting that it may have been selected during soybean post-domestication improvement. FA9 therefore represents a useful genetic resource for molecular breeding of high-quality soybean varieties with specific seed storage profiles.
Collapse
Affiliation(s)
- Zhaoming Qi
- College of AgricultureNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Chaocheng Guo
- Shanghai Collaborative Innovation Center of Agri‐Seeds, Joint Center for Single Cell Biology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Haiyang Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Hongmei Qiu
- Soybean Research InstituteJilin Academy of Agricultural Sciences/National Soybean Engineering CenterChangchunChina
| | - Hui Li
- College of AgricultureNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - CholNam Jong
- College of AgricultureNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Guolong Yu
- Shanghai Collaborative Innovation Center of Agri‐Seeds, Joint Center for Single Cell Biology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yu Zhang
- College of AgricultureNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Limin Hu
- College of AgricultureNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Xiaoxia Wu
- College of AgricultureNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Dawei Xin
- College of AgricultureNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Mingliang Yang
- College of AgricultureNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Chunyan Liu
- College of AgricultureNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Jian Lv
- Department of InnovationSyngenta Biotechnology ChinaBeijingChina
| | - Xu Wang
- Shanghai Collaborative Innovation Center of Agri‐Seeds, Joint Center for Single Cell Biology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Qingshan Chen
- College of AgricultureNortheast Agricultural UniversityHarbinHeilongjiangChina
| |
Collapse
|
40
|
Mathiowetz AJ, Olzmann JA. Lipid droplets and cellular lipid flux. Nat Cell Biol 2024; 26:331-345. [PMID: 38454048 PMCID: PMC11228001 DOI: 10.1038/s41556-024-01364-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024]
Abstract
Lipid droplets are dynamic organelles that store neutral lipids, serve the metabolic needs of cells, and sequester lipids to prevent lipotoxicity and membrane damage. Here we review the current understanding of the mechanisms of lipid droplet biogenesis and turnover, the transfer of lipids and metabolites at membrane contact sites, and the role of lipid droplets in regulating fatty acid flux in lipotoxicity and cell death.
Collapse
Affiliation(s)
- Alyssa J Mathiowetz
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
41
|
Sun S, Zhao G, Jia M, Jiang Q, Li S, Wang H, Li W, Wang Y, Bian X, Zhao YG, Huang X, Yang G, Cai H, Pastor-Pareja JC, Ge L, Zhang C, Hu J. Stay in touch with the endoplasmic reticulum. SCIENCE CHINA. LIFE SCIENCES 2024; 67:230-257. [PMID: 38212460 DOI: 10.1007/s11427-023-2443-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/28/2023] [Indexed: 01/13/2024]
Abstract
The endoplasmic reticulum (ER), which is composed of a continuous network of tubules and sheets, forms the most widely distributed membrane system in eukaryotic cells. As a result, it engages a variety of organelles by establishing membrane contact sites (MCSs). These contacts regulate organelle positioning and remodeling, including fusion and fission, facilitate precise lipid exchange, and couple vital signaling events. Here, we systematically review recent advances and converging themes on ER-involved organellar contact. The molecular basis, cellular influence, and potential physiological functions for ER/nuclear envelope contacts with mitochondria, Golgi, endosomes, lysosomes, lipid droplets, autophagosomes, and plasma membrane are summarized.
Collapse
Affiliation(s)
- Sha Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gan Zhao
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Mingkang Jia
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qing Jiang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Shulin Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haibin Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjing Li
- Laboratory of Computational Biology & Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunyun Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin Bian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Yan G Zhao
- Brain Research Center, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ge Yang
- Laboratory of Computational Biology & Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jose C Pastor-Pareja
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Institute of Neurosciences, Consejo Superior de Investigaciones Cientfflcas-Universidad Miguel Hernandez, San Juan de Alicante, 03550, Spain.
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Chuanmao Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Junjie Hu
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
42
|
Zhang C, Ye M, Melikov K, Yang D, Dias do Vale G, McDonald J, Eckert K, Lin MJ, Zeng X. CLSTN3B enhances adipocyte lipid droplet structure and function via endoplasmic reticulum contact. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576491. [PMID: 38293096 PMCID: PMC10827225 DOI: 10.1101/2024.01.20.576491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Interorganelle contacts facilitate material exchanges and sustain the structural and functional integrity of organelles. Lipid droplets (LDs) of adipocytes are responsible for energy storage and mobilization responding to body needs. LD biogenesis defects compromise the lipid-storing capacity of adipocytes, resulting in ectopic lipid deposition and metabolic disorders, yet how the uniquely large LDs in adipocytes attain structural and functional maturation is incompletely understood. Here we show that the mammalian adipocyte-specific protein CLSTN3B is crucial for adipocyte LD maturation. CLSTN3B employs an arginine-rich segment to promote extensive contact and hemifusion-like structure formation between the endoplasmic reticulum (ER) and LD, allowing ER-to-LD phospholipid diffusion during LD expansion. CLSTN3B ablation results in reduced LD surface phospholipid density, increased turnover of LD-surface proteins, and impaired LD functions. Our results establish the central role of CLSTN3B in the adipocyte-specific LD maturation pathway that enhances lipid storage and maintenance of metabolic health under caloric overload.
Collapse
Affiliation(s)
- Chuanhai Zhang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX
| | - Mengchen Ye
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA
| | - Kamran Melikov
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Dengbao Yang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX
| | | | - Jeffrey McDonald
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX
| | - Kaitlyn Eckert
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX
| | - Mei-Jung Lin
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX
| | - Xing Zeng
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
43
|
Angara RK, Sladek MF, Gilk SD. ER-LD Membrane Contact Sites: A Budding Area in the Pathogen Survival Strategy. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241304196. [PMID: 39697586 PMCID: PMC11653285 DOI: 10.1177/25152564241304196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024]
Abstract
The endoplasmic reticulum (ER) and lipid droplets (LDs) are essential organelles involved in lipid synthesis, storage, and transport. Physical membrane contacts between the ER and LDs facilitate lipid and protein exchange and thus play a critical role in regulating cellular lipid homeostasis. Recent research has revealed that ER-LD membrane contact sites are targeted by pathogens seeking to exploit host lipid metabolic processes. Both viruses and bacteria manipulate ER-LD membrane contact sites to enhance their replication and survival within the host. This review discusses the research advancements elucidating the mechanisms by which pathogens manipulate the ER-LD contacts through protein molecular mimicry and host cell protein manipulation, thereby hijacking host lipid metabolic processes to facilitate pathogenesis. Understanding the crosstalk between ER and LDs during infection provides deeper insight into host lipid regulation and uncovers potential therapeutic targets for treating infectious diseases.
Collapse
Affiliation(s)
- Rajendra Kumar Angara
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Margaret F. Sladek
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Stacey D. Gilk
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
44
|
Speer NO, Braun RJ, Reynolds EG, Brudnicka A, Swanson JM, Henne WM. Tld1 is a regulator of triglyceride lipolysis that demarcates a lipid droplet subpopulation. J Cell Biol 2024; 223:e202303026. [PMID: 37889293 PMCID: PMC10609110 DOI: 10.1083/jcb.202303026] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/09/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Cells store lipids in the form of triglyceride (TG) and sterol ester (SE) in lipid droplets (LDs). Distinct pools of LDs exist, but a pervasive question is how proteins localize to and convey functions to LD subsets. Here, we show that the yeast protein YDR275W/Tld1 (for TG-associated LD protein 1) localizes to a subset of TG-containing LDs and reveal it negatively regulates lipolysis. Mechanistically, Tld1 LD targeting requires TG, and it is mediated by two distinct hydrophobic regions (HRs). Molecular dynamics simulations reveal that Tld1's HRs interact with TG on LDs and adopt specific conformations on TG-rich LDs versus SE-rich LDs in yeast and human cells. Tld1-deficient yeast display no defect in LD biogenesis but exhibit elevated TG lipolysis dependent on lipase Tgl3. Remarkably, overexpression of Tld1, but not LD protein Pln1/Pet10, promotes TG accumulation without altering SE pools. Finally, we find that Tld1-deficient cells display altered LD mobilization during extended yeast starvation. We propose that Tld1 senses TG-rich LDs and regulates lipolysis on LD subpopulations.
Collapse
Affiliation(s)
- Natalie Ortiz Speer
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - R. Jay Braun
- Department of Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Emma Grace Reynolds
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alicja Brudnicka
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - W. Mike Henne
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
45
|
Ibayashi M, Tsukamoto S. Lipid droplet biogenesis in the ovary. Reprod Med Biol 2024; 23:e12618. [PMID: 39677329 PMCID: PMC11646352 DOI: 10.1002/rmb2.12618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Background Lipid droplets (LDs) are organelles consisting of a central core of neutral lipids covered by a single layer of phospholipids and are found in most eukaryotic cells. Accumulating evidence suggests that LDs not only store neutral lipids but also coordinate with other organelles for lipid metabolism within cells. Methods This review focuses on the synthesis of LDs during follicular development and highlights the factors involved in the regulation of LD biogenesis within the ovary. Main Findings In the mammalian ovary, the presence of LDs has long been recognized mainly by morphological analysis. However, their distribution in the ovary varies according to the region and cell type; for example, LDs are abundant in the medulla, which has a rich blood vessel network, in interstitial cells, which are the site of steroid production, and surrounding growing follicles, while they are poor in granulosa cells within follicles. LDs are also enriched in the corpus luteum after ovulation and massively accumulate in atretic follicles during follicular growth. Furthermore, LD synthesis is synchronized with angiogenesis during follicular development. Conclusion Addressing the functional link between LD biogenesis and angiogenesis is essential for understanding the molecular basis underlying LD biology, as well as the ovarian dysfunction with metabolic disorders.
Collapse
Affiliation(s)
- Megumi Ibayashi
- Laboratory Animal and Bioresource Sciences SectionNational Institutes for Quantum Science and TechnologyChibaJapan
- Kato Ladies ClinicShinjuku‐kuTokyoJapan
| | - Satoshi Tsukamoto
- Laboratory Animal and Bioresource Sciences SectionNational Institutes for Quantum Science and TechnologyChibaJapan
| |
Collapse
|
46
|
Mondal S, Ghosh S. Liposome-Mediated Anti-Viral Drug Delivery Across Blood-Brain Barrier: Can Lipid Droplet Target Be Game Changers? Cell Mol Neurobiol 2023; 44:9. [PMID: 38123863 PMCID: PMC11407177 DOI: 10.1007/s10571-023-01443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Lipid droplets (LDs) are subcellular organelles secreted from the endoplasmic reticulum (ER) that play a major role in lipid homeostasis. Recent research elucidates additional roles of LDs in cellular bioenergetics and innate immunity. LDs activate signaling cascades for interferon response and secretion of pro-inflammatory cytokines. Since balanced lipid homeostasis is critical for neuronal health, LDs play a crucial role in neurodegenerative diseases. RNA viruses enhance the secretion of LDs to support various phases of their life cycle in neurons which further leads to neurodegeneration. Targeting the excess LD formation in the brain could give us a new arsenal of antiviral therapeutics against neuroviruses. Liposomes are a suitable drug delivery system that could be used for drug delivery in the brain by crossing the Blood-Brain Barrier. Utilizing this, various pharmacological inhibitors and non-coding RNAs can be delivered that could inhibit the biogenesis of LDs or reduce their sizes, reversing the excess lipid-related imbalance in neurons. Liposome-Mediated Antiviral Drug Delivery Across Blood-Brain Barrier. Developing effective antiviral drug is challenging and it doubles against neuroviruses that needs delivery across the Blood-Brain Barrier (BBB). Lipid Droplets (LDs) are interesting targets for developing antivirals, hence targeting LD formation by drugs delivered using Liposomes can be game changers.
Collapse
Affiliation(s)
- Sourav Mondal
- CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Sourish Ghosh
- CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India.
| |
Collapse
|
47
|
Mari M, Voutyraki C, Zacharioudaki E, Delidakis C, Filippidis G. Lipid content evaluation of Drosophila tumour associated haemocytes through Third Harmonic Generation measurements. JOURNAL OF BIOPHOTONICS 2023; 16:e202300171. [PMID: 37643223 DOI: 10.1002/jbio.202300171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/01/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Non-linear microscopy is a powerful imaging tool to examine structural properties and subcellular processes of various biological samples. The competence of Third Harmonic Generation (THG) includes the label free imaging with diffraction-limited resolution and three-dimensional visualization with negligible phototoxicity effects. In this study, THG records and quantifies the lipid content of Drosophila haemocytes, upon encountering normal or tumorigenic neural cells, in correlation with their shape or their state. We show that the lipid accumulations of adult haemocytes are similar before and after encountering normal cells. In contrast, adult haemocytes prior to their interaction with cancer cells have a low lipid index, which increases while they are actively engaged in phagocytosis only to decrease again when haemocytes become exhausted. This dynamic change in the lipid accrual of haemocytes upon encountering tumour cells could potentially be a useful tool to assess the phagocytic capacity or activation state of tumour-associated haemocytes.
Collapse
Affiliation(s)
- Meropi Mari
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Chrysanthi Voutyraki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Eva Zacharioudaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Christos Delidakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - George Filippidis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| |
Collapse
|
48
|
Fung HKH, Hayashi Y, Salo VT, Babenko A, Zagoriy I, Brunner A, Ellenberg J, Müller CW, Cuylen-Haering S, Mahamid J. Genetically encoded multimeric tags for subcellular protein localization in cryo-EM. Nat Methods 2023; 20:1900-1908. [PMID: 37932397 PMCID: PMC10703698 DOI: 10.1038/s41592-023-02053-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 09/19/2023] [Indexed: 11/08/2023]
Abstract
Cryo-electron tomography (cryo-ET) allows for label-free high-resolution imaging of macromolecular assemblies in their native cellular context. However, the localization of macromolecules of interest in tomographic volumes can be challenging. Here we present a ligand-inducible labeling strategy for intracellular proteins based on fluorescent, 25-nm-sized, genetically encoded multimeric particles (GEMs). The particles exhibit recognizable structural signatures, enabling their automated detection in cryo-ET data by convolutional neural networks. The coupling of GEMs to green fluorescent protein-tagged macromolecules of interest is triggered by addition of a small-molecule ligand, allowing for time-controlled labeling to minimize disturbance to native protein function. We demonstrate the applicability of GEMs for subcellular-level localization of endogenous and overexpressed proteins across different organelles in human cells using cryo-correlative fluorescence and cryo-ET imaging. We describe means for quantifying labeling specificity and efficiency, and for systematic optimization for rare and abundant protein targets, with emphasis on assessing the potential effects of labeling on protein function.
Collapse
Affiliation(s)
- Herman K H Fung
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Yuki Hayashi
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Veijo T Salo
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Anastasiia Babenko
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- University of Heidelberg, Heidelberg, Germany
| | - Ievgeniia Zagoriy
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Andreas Brunner
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Sara Cuylen-Haering
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
49
|
Kumari RM, Khatri A, Chaudhary R, Choudhary V. Concept of lipid droplet biogenesis. Eur J Cell Biol 2023; 102:151362. [PMID: 37742390 PMCID: PMC7615795 DOI: 10.1016/j.ejcb.2023.151362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
Lipid droplets (LD) are functionally conserved fat storage organelles found in all cell types. LDs have a unique structure comprising of a hydrophobic core of neutral lipids (fat), triacylglycerol (TAG) and cholesterol esters (CE) surrounded by a phospholipid monolayer. LD surface is decorated by a multitude of proteins and enzymes rendering this compartment functional. Accumulating evidence suggests that LDs originate from discrete ER-subdomains, demarcated by the lipodystrophy protein seipin, however, the mechanisms of which are not well understood. LD biogenesis factors together with biophysical properties of the ER membrane orchestrate spatiotemporal regulation of LD nucleation and growth at specific ER subdomains in response to metabolic cues. Defects in LD formation manifests in several human pathologies, including obesity, lipodystrophy, ectopic fat accumulation, and insulin resistance. Here, we review recent advances in understanding the molecular events during initial stages of eukaryotic LD assembly and discuss the critical role of factors that ensure fidelity of this process.
Collapse
Affiliation(s)
- R Mankamna Kumari
- Lipid Metabolism Laboratory, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Amit Khatri
- Lipid Metabolism Laboratory, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Ritika Chaudhary
- Lipid Metabolism Laboratory, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Vineet Choudhary
- Lipid Metabolism Laboratory, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
50
|
Li X, Gamuyao R, Wu ML, Cho WJ, Kurtz NB, King SV, Petersen R, Stabley DR, Lindow C, Climer L, Shirinifard A, Ferrara F, Throm RE, Robinson CG, Carisey A, Tebo AG, Chang CL. A fluorogenic complementation tool kit for interrogating lipid droplet-organelle interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569289. [PMID: 38076863 PMCID: PMC10705429 DOI: 10.1101/2023.11.29.569289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Contact sites between lipid droplets and other organelles are essential for cellular lipid and energy homeostasis. Detection of these contact sites at nanometer scale over time in living cells is challenging. Here, we developed a tool kit for detecting contact sites based on Fluorogen-Activated Bimolecular complementation at CONtact sites, FABCON, using a reversible, low affinity split fluorescent protein, splitFAST. FABCON labels contact sites with minimal perturbation to organelle interaction. Via FABCON, we quantitatively demonstrated that endoplasmic reticulum (ER)- and mitochondria (mito)-lipid droplet contact sites are dynamic foci in distinct metabolic conditions, such as during lipid droplet biogenesis and consumption. An automated analysis pipeline further classified individual contact sites into distinct subgroups based on size, likely reflecting differential regulation and function. Moreover, FABCON is generalizable to visualize a repertoire of organelle contact sites including ER-mito. Altogether, FABCON reveals insights into the dynamic regulation of lipid droplet-organelle contact sites and generates new hypotheses for further mechanistical interrogation during metabolic switch.
Collapse
Affiliation(s)
- Xiao Li
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Rico Gamuyao
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Ming-Lun Wu
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Woo Jung Cho
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Nathan B. Kurtz
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Sharon V. King
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - R.A. Petersen
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Daniel R. Stabley
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Caleb Lindow
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Leslie Climer
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Francesca Ferrara
- Vector Production and Development Laboratory, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Robert E. Throm
- Vector Production and Development Laboratory, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Camenzind G. Robinson
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Alex Carisey
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Alison G. Tebo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Chi-Lun Chang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|