1
|
Shang L, Gad K, Lenhard M. Converging on long and short: The genetics, molecular biology and evolution of heterostyly. CURRENT OPINION IN PLANT BIOLOGY 2025; 85:102731. [PMID: 40319570 DOI: 10.1016/j.pbi.2025.102731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/18/2025] [Accepted: 04/07/2025] [Indexed: 05/07/2025]
Abstract
Heterostyly is a fascinating floral polymorphism that enhances outcrossing. In heterostylous species the flowers of the two or three morphs differ in multiple traits, including reciprocal reproductive-organ placement and self-incompatibility. These traits are controlled by individual genes within an S-locus supergene, whose suppressed recombination ensures the coordinated inheritance of the morph phenotypes. Recent breakthroughs about the genetic and molecular basis of heterostyly have resulted from studies on many independently evolved instances and include the following: The S-locus is a hemizygous region comprising several individual genes in multiple heterostylous taxa. In many systems, a single gene within the S-locus plays dual roles in regulating both female traits of style length and self-incompatibility type, often involving brassinosteroid signalling. The S-loci have evolved through stepwise or segmental duplication in different lineages. The frequent breakdown of heterostyly generally results from individual mutations at the S-locus and leads to a genomic selfing syndrome. These discoveries suggest convergent and genetically constrained evolution of heterostyly at the molecular level.
Collapse
Affiliation(s)
- Lele Shang
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany
| | - Karol Gad
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany
| | - Michael Lenhard
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany.
| |
Collapse
|
2
|
Robertson C, Xue H, Saltini M, Fairnie ALM, Lang D, Kerstens MHL, Willemsen V, Ingle RA, Barrett SCH, Deinum EE, Illing N, Lenhard M. Spiral phyllotaxis predicts left-right asymmetric growth and style deflection in mirror-image flowers of Cyanella alba. Nat Commun 2025; 16:3695. [PMID: 40251172 PMCID: PMC12008388 DOI: 10.1038/s41467-025-58803-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/28/2025] [Indexed: 04/20/2025] Open
Abstract
Many animals and plants show left-right (LR) asymmetry. The LR asymmetry of mirror-image flowers has clear functional significance, with the reciprocal placement of male and female organs in left- versus right-handed flowers promoting cross-pollination. Here, we study how handedness of mirror-image flowers is determined and elaborated during development in the South African geophyte Cyanella alba. Inflorescences of C. alba produce flowers with a largely consistent handedness. However, this handedness has no simple genetic basis and individual plants can switch their predominant handedness between years. Rather, it is the direction of the phyllotactic spiral that predicts floral handedness. Style deflection is driven by increased cell expansion in the adaxial carpel facing the next oldest flower compared to the other adaxial carpel. The more expanding carpel shows transcriptional signatures of increased auxin signaling and auxin application can reverse the orientation of style deflection. We propose that a recently described inherent LR auxin asymmetry in the initiating organs of spiral phyllotaxis determines handedness in C. alba, creating a stable yet non-genetic floral polymorphism. This mechanism links chirality across different levels of plant development and exploits a developmental constraint in a core patterning process to produce morphological variation of ecological relevance.
Collapse
Affiliation(s)
- Caroline Robertson
- University of Cape Town, Department of Molecular and Cell Biology, Rondebosch, 7701, South Africa
| | - Haoran Xue
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany
| | - Marco Saltini
- Mathematical and Statistical Methods (Biometris), Plant Science Group, 6708 PB, Wageningen, The Netherlands
| | - Alice L M Fairnie
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, M5S 3B2, Canada
| | - Dirk Lang
- University of Cape Town, Department of Human Biology, Observatory, 7925, South Africa
| | - Merijn H L Kerstens
- Laboratory of Cell and Developmental Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Viola Willemsen
- Laboratory of Cell and Developmental Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Robert A Ingle
- University of Cape Town, Department of Molecular and Cell Biology, Rondebosch, 7701, South Africa
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, M5S 3B2, Canada
| | - Eva E Deinum
- Mathematical and Statistical Methods (Biometris), Plant Science Group, 6708 PB, Wageningen, The Netherlands
| | - Nicola Illing
- University of Cape Town, Department of Molecular and Cell Biology, Rondebosch, 7701, South Africa
| | - Michael Lenhard
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany.
| |
Collapse
|
3
|
Ramanauskas K, Jiménez‐López FJ, Sánchez‐Cabrera M, Escudero M, Ortiz PL, Arista M, Igić B. Rapid detection of RNase-based self-incompatibility in Lysimachia monelli (Primulaceae). AMERICAN JOURNAL OF BOTANY 2025; 112:e16449. [PMID: 39806558 PMCID: PMC11744440 DOI: 10.1002/ajb2.16449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025]
Abstract
PREMISE Primroses famously employ a system that simultaneously expresses distyly and filters out self-pollen. Other species in the Primulaceae family, including Lysimachia monelli (blue pimpernel), also express self-incompatibility (SI), but involving a system with distinct features and an unknown molecular genetic basis. METHODS We utilize a candidate-based transcriptome sequencing (RNA-seq) approach, relying on candidate T2/S-RNase Class III and S-linked F-box-motif-containing genes and harnessing the unusual evolutionary and genetic features of SI, to examine whether an RNase-based mechanism underlies SI in L. monelli. We term this approach "SI detection with RNA-seq" (SIDR). RESULTS The results of sequencing, crossing, population genetics, and molecular evolutionary features each support a causal association linking the recovered genotypes with SI phenotypes. The finding of RNase-based SI in Primulaceae (Ericales) all but cements the long-held view that this mechanism was present in the ancestral pentapetal eudicot, whose descendants now comprise two-thirds of angiosperms. It also significantly narrows the plausible maximum age for the heterostyly evolution within the family. CONCLUSIONS SIDR is powerful, flexible, inexpensive, and most critically enables work in often-neglected species. It may be used with or without candidate genes to close enormous gaps in understanding the genetic basis of SI and the history of breeding system evolution.
Collapse
Affiliation(s)
- Karolis Ramanauskas
- Department of Biological SciencesUniversity of Illinois at ChicagoChicago60607ILUSA
| | | | | | - Marcial Escudero
- Departamento de Biología Vegetal y EcologíaUniversidad de SevillaApdo. 1095Sevilla41080Spain
| | - Pedro L. Ortiz
- Departamento de Biología Vegetal y EcologíaUniversidad de SevillaApdo. 1095Sevilla41080Spain
| | - Montserrat Arista
- Departamento de Biología Vegetal y EcologíaUniversidad de SevillaApdo. 1095Sevilla41080Spain
| | - Boris Igić
- Department of Biological SciencesUniversity of Illinois at ChicagoChicago60607ILUSA
| |
Collapse
|
4
|
Lin W, Qin S, Chen S, Xu L, Yang Z, Lin X, Zhai J, Ren H, Zhang Z, Wu S. Cell elongation and altered phytohormone levels play a role in establishing distyly in Averrhoa carambola. Gene 2024; 939:149167. [PMID: 39681145 DOI: 10.1016/j.gene.2024.149167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/02/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
The flowers of distylous plants exhibit two distinct morphologies that facilitate precise pollen transfer. Averrhoa carambola, a woody plant characterized by distyly, has an unclear molecular regulatory mechanism underlying this trait. Its prolonged flowering period and substantial flower production render it an excellent model for investigating the distylous syndrome. This study aims to elucidate the mechanism of distyly in A. carambola and to identify the regulatory genes. The long-style cultivar 'Daguo Tianyangtao 1' and the short-style cultivar 'Daguo Tianyangtao 3' were selected as models for this investigation. We examined phenotypic characteristics, anatomical structures, and endogenous hormone content associated with distyly. Transcriptomic data were utilized to pinpoint candidate genes involved in the regulation of distyly, followed by a bioinformatics analysis these genes. The results indicate that variations in cell elongation contribute to the differential heights of stigmas and anthers in A. carambola, thereby resulting in the distylous syndrome. Auxins, Gibberellin A3 (GA3), Gibberellin A4 (GA4), and brassinolide (BL) were found to influence elongation of styles, whereas Gibberellin A1 (GA1) and GA4 affected filament elongation. Transcriptome sequencing analysis identified 34 hormone-related differentially expressed genes (DEGs) and 16 cell development-related DEGs in different morphs of pistils, and 29 hormone-related DEGs and 22 cell development-related DEGs were identified in different morphs of stamens. Four candidate genes-AcaBRU1, AcaPRE1, AcaXTH2, and AcaEXPA11-were found to possess conserved motifs characteristic of their respective families. Consequently, various plant hormones modulate the expression of response genes, leading to differences in elongation of style and filament cells between different flower types of A. carambola, thereby promoting the distylous syndrome. This study provides a theoretical basis for understanding the mechanisms of distyly formation in woody plants.
Collapse
Affiliation(s)
- Wubaiyu Lin
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, The Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, National Long Term Scientific Research Base for Fujian Orchid Conservation, Straits Flower Industry Highland, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Si Qin
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, The Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, National Long Term Scientific Research Base for Fujian Orchid Conservation, Straits Flower Industry Highland, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siyu Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, The Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, National Long Term Scientific Research Base for Fujian Orchid Conservation, Straits Flower Industry Highland, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lianhuan Xu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, The Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, National Long Term Scientific Research Base for Fujian Orchid Conservation, Straits Flower Industry Highland, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zirui Yang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, The Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, National Long Term Scientific Research Base for Fujian Orchid Conservation, Straits Flower Industry Highland, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinyun Lin
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, The Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, National Long Term Scientific Research Base for Fujian Orchid Conservation, Straits Flower Industry Highland, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junwen Zhai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, The Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, National Long Term Scientific Research Base for Fujian Orchid Conservation, Straits Flower Industry Highland, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Ren
- Horticulture Research Institute of Guangxi Academy of Agricultural Science, Nanning 530007, China
| | - Zehuang Zhang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Shasha Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, The Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, National Long Term Scientific Research Base for Fujian Orchid Conservation, Straits Flower Industry Highland, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
5
|
Henning PM, Minkoff BB, Sussman MR. Phosphoproteomic analysis of distylous Turnera subulata identifies pathways related to endoreduplication that correlate with reciprocal herkogamy. AMERICAN JOURNAL OF BOTANY 2024; 111:e16438. [PMID: 39551943 DOI: 10.1002/ajb2.16438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 11/19/2024]
Abstract
PREMISE A multi-omic approach was used to explore proteins and networks hypothetically important for establishing filament dimorphisms in heterostylous Turnera subulata (Sm.) as an exploratory method to identify genes for future empirical research. METHODS Mass spectrometry (MS) was used to identify differentially expressed proteins and differentially phosphorylated peptides in the developing filaments between the L- and S-morphs. RNAseq was used to generate a co-expression network of the developing filaments, MS data were mapped to the co-expression network to identify hypothetical relationships between the S-gene responsible for filament dimorphisms and differentially expressed proteins. RESULTS Mapping all MS identified proteins to a co-expression network of the S-morph's developing filaments identified several clusters containing SPH1 and other differentially expressed or phosphorylated proteins. Co-expression analysis clustered CDKG2, a protein that induces endoreduplication, and SPH1-suggesting a shared biological function. MS analysis suggests that the protein is present and phosphorylated only in the S-morph, and thus active only in the S-morph. A series of CDKG2 regulators, including ATM1, and cell cycle regulators also correlated with the presence of reciprocal herkogamy, supporting our interest in the protein. CONCLUSIONS This work has built a foundation for future empirical work, specifically supporting the role of CDKG2 and ATM1 in promoting filament elongation in response to SPH1 perception.
Collapse
Affiliation(s)
- Paige M Henning
- Center for Genomic Science Innovation, University of Wisconsin-Madison, 425 Henry Mall, Madison, 53706, Wisconsin, USA
| | - Benjamin B Minkoff
- Center for Genomic Science Innovation, University of Wisconsin-Madison, 425 Henry Mall, Madison, 53706, Wisconsin, USA
| | - Michael R Sussman
- Center for Genomic Science Innovation, University of Wisconsin-Madison, 425 Henry Mall, Madison, 53706, Wisconsin, USA
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, 53706, Wisconsin, USA
| |
Collapse
|
6
|
Lima RB, Figueiredo DD. Sex on Steroids: How Brassinosteroids Shape Reproductive Development in Flowering Plants. PLANT & CELL PHYSIOLOGY 2024; 65:1581-1600. [PMID: 38668644 PMCID: PMC11558549 DOI: 10.1093/pcp/pcae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/27/2024] [Accepted: 04/24/2024] [Indexed: 11/14/2024]
Abstract
Since the discovery of brassinolide in the pollen of rapeseed, brassinosteroids (BRs) have consistently been associated with reproductive traits. However, compared to what is known for how BRs shape vegetative development, the understanding of how these hormones regulate reproductive traits is comparatively still lacking. Nevertheless, there is now considerable evidence that BRs regulate almost all aspects of reproduction, from ovule and pollen formation to seed and fruit development. Here, we review the current body of knowledge on how BRs regulate reproductive processes in plants and what is known about how these pathways are transduced at the molecular level. We also discuss how the manipulation of BR biosynthesis and signaling can be a promising avenue for improving crop traits that rely on efficient reproduction. We thus propose that BRs hold an untapped potential for plant breeding, which could contribute to attaining food security in the coming years.
Collapse
Affiliation(s)
- Rita B Lima
- Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Duarte D Figueiredo
- Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, Potsdam 14476, Germany
| |
Collapse
|
7
|
Mora-Carrera E, Stubbs RL, Potente G, Yousefi N, Aeschbacher S, Keller B, Choudhury RR, Celep F, Kochjarová J, de Vos JM, Szövényi P, Conti E. Unveiling the Genome-Wide Consequences of Range Expansion and Mating System Transitions in Primula vulgaris. Genome Biol Evol 2024; 16:evae208. [PMID: 39340447 PMCID: PMC11469071 DOI: 10.1093/gbe/evae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024] Open
Abstract
Genetic diversity is heterogeneously distributed among populations of the same species, due to the joint effects of multiple demographic processes, including range contractions and expansions, and mating systems shifts. Here, we ask how both processes shape genomic diversity in space and time in the classical Primula vulgaris model. This perennial herb originated in the Caucasus region and was hypothesized to have expanded westward following glacial retreat in the Quaternary. Moreover, this species is a long-standing model for mating system transitions, exemplified by shifts from heterostyly to homostyly. Leveraging a high-quality reference genome of the closely related Primula veris and whole-genome resequencing data from both heterostylous and homostylous individuals from populations encompassing a wide distribution of P. vulgaris, we reconstructed the demographic history of P. vulgaris. Results are compatible with the previously proposed hypothesis of range expansion from the Caucasus region approximately 79,000 years ago and suggest later shifts to homostyly following rather than preceding postglacial colonization of England. Furthermore, in accordance with population genetic theoretical predictions, both processes are associated with reduced genetic diversity, increased linkage disequilibrium, and reduced efficacy of purifying selection. A novel result concerns the contrasting effects of range expansion versus shift to homostyly on transposable elements, for the former, process is associated with changes in transposable element genomic content, while the latter is not. Jointly, our results elucidate how the interactions among range expansion, transitions to selfing, and Quaternary climatic oscillations shape plant evolution.
Collapse
Affiliation(s)
- Emiliano Mora-Carrera
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Rebecca L Stubbs
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Giacomo Potente
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Narjes Yousefi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Simon Aeschbacher
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Barbara Keller
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Rimjhim Roy Choudhury
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Ferhat Celep
- Department of Biology, Faculty of Engineering and Natural Sciences, Kırıkkale University, Kırıkkale, Turkey
| | - Judita Kochjarová
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovak Republic
| | - Jurriaan M de Vos
- Department of Environmental Sciences—Botany, University of Basel, Basel, Switzerland
| | - Peter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Elena Conti
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Lin RC, Ferreira BT, Yuan YW. The molecular basis of phenotypic evolution: beyond the usual suspects. Trends Genet 2024; 40:668-680. [PMID: 38704304 PMCID: PMC11303103 DOI: 10.1016/j.tig.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024]
Abstract
It has been well documented that mutations in coding DNA or cis-regulatory elements underlie natural phenotypic variation in many organisms. However, the development of sophisticated functional tools in recent years in a wide range of traditionally non-model systems have revealed many 'unusual suspects' in the molecular bases of phenotypic evolution, including upstream open reading frames (uORFs), cryptic splice sites, and small RNAs. Furthermore, large-scale genome sequencing, especially long-read sequencing, has identified a cornucopia of structural variation underlying phenotypic divergence and elucidated the composition of supergenes that control complex multi-trait polymorphisms. In this review article we highlight recent studies that demonstrate this great diversity of molecular mechanisms producing adaptive genetic variation and the panoply of evolutionary paths leading to the 'grandeur of life'.
Collapse
Affiliation(s)
- Rong-Chien Lin
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Bianca T Ferreira
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
9
|
Potente G, Yousefi N, Keller B, Mora-Carrera E, Szövényi P, Conti E. The Primula edelbergii S-locus is an example of a jumping supergene. Mol Ecol Resour 2024; 24:e13988. [PMID: 38946153 DOI: 10.1111/1755-0998.13988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Research on supergenes, non-recombining genomic regions housing tightly linked genes that control complex phenotypes, has recently gained prominence in genomics. Heterostyly, a floral heteromorphism promoting outcrossing in several angiosperm families, is controlled by the S-locus supergene. The S-locus has been studied primarily in closely related Primula species and, more recently, in other groups that independently evolved heterostyly. However, it remains unknown whether genetic architecture and composition of the S-locus are maintained among species that share a common origin of heterostyly and subsequently diverged across larger time scales. To address this research gap, we present a chromosome-scale genome assembly of Primula edelbergii, a species that shares the same origin of heterostyly with Primula veris (whose S-locus has been characterized) but diverged from it 18 million years ago. Comparative genomic analyses between these two species allowed us to show, for the first time, that the S-locus can 'jump' (i.e. translocate) between chromosomes maintaining its function in controlling heterostyly. Additionally, we found that four S-locus genes were conserved but reshuffled within the supergene, seemingly without affecting their expression, thus we could not detect changes explaining the lack of self-incompatibility in P. edelbergii. Furthermore, we confirmed that the S-locus is not undergoing genetic degeneration. Finally, we investigated P. edelbergii evolutionary history within Ericales in terms of whole genome duplications and transposable element accumulation. In summary, our work provides a valuable resource for comparative analyses aimed at investigating the genetics of heterostyly and the pivotal role of supergenes in shaping the evolution of complex phenotypes.
Collapse
Affiliation(s)
- Giacomo Potente
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Narjes Yousefi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Barbara Keller
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Emiliano Mora-Carrera
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Elena Conti
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Huang X, Zhai LH, Kong XX, Zhang J, Liu X, Wang CL. Integrated physiological analyses, transcriptome, and DNA methylation reveal superiority of pear stigma-style complex development regulation. iScience 2024; 27:110372. [PMID: 39055924 PMCID: PMC11269929 DOI: 10.1016/j.isci.2024.110372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/16/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Styles and stigmas are crucial components of the fertilization process that allows a pear tree to bear fruit. The information regarding the development mechanism of pear style and stigma is still unclear. Our results demonstrated that IAA, ABA, and BR are significantly increased at 1 DBF, while JA is decreased at 5 DBF. The fructose and starch contents significantly increased at 1 DBF when the style with stigma was ready for pollination. Transcriptome and DNA methylation analysis showed 8087 DEGs and 3771 DMRs were enriched in plant hormones biosynthesis, carbohydrate biosynthesis and metabolism, and TFs in 1 DBF as compared with 7 DBF. The CHH methylation type of DMRs accounts for 84.75%. Most DMRs of CHH upregulated in 1 DBF vs. 7 DBF. This study found for the first time that transcription factor ERFs and DNA methylation are involved in regulating the growth and development of fruit plant style and stigma.
Collapse
Affiliation(s)
- Xu Huang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People’s Republic of China
| | - Li-Hua Zhai
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People’s Republic of China
| | - Xiao-Xiong Kong
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People’s Republic of China
| | - Jing Zhang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People’s Republic of China
| | - Xiao Liu
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People’s Republic of China
| | - Chun-Lei Wang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People’s Republic of China
| |
Collapse
|
11
|
Raimondeau P, Ksouda S, Marande W, Fuchs AL, Gryta H, Theron A, Puyoou A, Dupin J, Cheptou PO, Vautrin S, Valière S, Manzi S, Baali-Cherif D, Chave J, Christin PA, Besnard G. A hemizygous supergene controls homomorphic and heteromorphic self-incompatibility systems in Oleaceae. Curr Biol 2024; 34:1977-1986.e8. [PMID: 38626764 DOI: 10.1016/j.cub.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 04/18/2024]
Abstract
Self-incompatibility (SI) has evolved independently multiple times and prevents self-fertilization in hermaphrodite angiosperms. Several groups of Oleaceae such as jasmines exhibit distylous flowers, with two compatibility groups each associated with a specific floral morph.1 Other Oleaceae species in the olive tribe have two compatibility groups without associated morphological variation.2,3,4,5 The genetic basis of both homomorphic and dimorphic SI systems in Oleaceae is unknown. By comparing genomic sequences of three olive subspecies (Olea europaea) belonging to the two compatibility groups, we first locate the genetic determinants of SI within a 700-kb hemizygous region present only in one compatibility group. We then demonstrate that the homologous hemizygous region also controls distyly in jasmine. Phylogenetic analyses support a common origin of both systems, following a segmental genomic duplication in a common ancestor. Examination of the gene content of the hemizygous region in different jasmine and olive species suggests that the mechanisms determining compatibility groups and floral phenotypes (whether homomorphic or dimorphic) in Oleaceae rely on the presence/absence of two genes involved in gibberellin and brassinosteroid regulation.
Collapse
Affiliation(s)
- Pauline Raimondeau
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France; Yale Institute of Biospheric Studies, New Haven, CT 06520, USA
| | - Sayam Ksouda
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - William Marande
- INRAE, Centre National de Ressources Génomiques Végétales, 31326 Castanet-Tolosan, France
| | - Anne-Laure Fuchs
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Hervé Gryta
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Anthony Theron
- INRAE, Centre National de Ressources Génomiques Végétales, 31326 Castanet-Tolosan, France
| | - Aurore Puyoou
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Julia Dupin
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Pierre-Olivier Cheptou
- CEFE (Centre d'Ecologie Fonctionnelle et Evolutive), UMR 5175, CNRS, Université de Montpellier, Université Paul Valéry, EPHE, IRD, 34293 Montpellier, France
| | - Sonia Vautrin
- INRAE, Centre National de Ressources Génomiques Végétales, 31326 Castanet-Tolosan, France
| | - Sophie Valière
- INRAE, US 1426, GeT-PlaGe, Genotoul, 31326 Castanet-Tolosan, France
| | - Sophie Manzi
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Djamel Baali-Cherif
- Laboratoire de Recherche sur les Zones Arides, USTHB/ENSA, 16000 Alger, Algeria
| | - Jérôme Chave
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Pascal-Antoine Christin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Guillaume Besnard
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France.
| |
Collapse
|
12
|
Castric V, Batista RA, Carré A, Mousavi S, Mazoyer C, Godé C, Gallina S, Ponitzki C, Theron A, Bellec A, Marande W, Santoni S, Mariotti R, Rubini A, Legrand S, Billiard S, Vekemans X, Vernet P, Saumitou-Laprade P. The homomorphic self-incompatibility system in Oleaceae is controlled by a hemizygous genomic region expressing a gibberellin pathway gene. Curr Biol 2024; 34:1967-1976.e6. [PMID: 38626763 DOI: 10.1016/j.cub.2024.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/29/2024] [Accepted: 03/25/2024] [Indexed: 04/18/2024]
Abstract
In flowering plants, outcrossing is commonly ensured by self-incompatibility (SI) systems. These can be homomorphic (typically with many different allelic specificities) or can accompany flower heteromorphism (mostly with just two specificities and corresponding floral types). The SI system of the Oleaceae family is unusual, with the long-term maintenance of only two specificities but often without flower morphology differences. To elucidate the genomic architecture and molecular basis of this SI system, we obtained chromosome-scale genome assemblies of Phillyrea angustifolia individuals and related them to a genetic map. The S-locus region proved to have a segregating 543-kb indel unique to one specificity, suggesting a hemizygous region, as observed in all distylous systems so far studied at the genomic level. Only one of the predicted genes in this indel region is found in the olive tree, Olea europaea, genome, also within a segregating indel. We describe complete association between the presence/absence of this gene and the SI types determined for individuals of seven distantly related Oleaceae species. This gene is predicted to be involved in catabolism of the gibberellic acid (GA) hormone, and experimental manipulation of GA levels in developing buds modified the male and female SI responses of the two specificities in different ways. Our results provide a unique example of a homomorphic SI system, where a single conserved gibberellin-related gene in a hemizygous indel underlies the long-term maintenance of two groups of reproductive compatibility.
Collapse
Affiliation(s)
- Vincent Castric
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Rita A Batista
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Amélie Carré
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Soraya Mousavi
- CNR, Institute of Biosciences and Bioresources (IBBR), 06128 Perugia, Italy
| | - Clément Mazoyer
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Cécile Godé
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Sophie Gallina
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Chloé Ponitzki
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Anthony Theron
- INRAE, CNRGV French Plant Genomic Resource Center, F-31326 Castanet Tolosan, France
| | - Arnaud Bellec
- INRAE, CNRGV French Plant Genomic Resource Center, F-31326 Castanet Tolosan, France
| | - William Marande
- INRAE, CNRGV French Plant Genomic Resource Center, F-31326 Castanet Tolosan, France
| | - Sylvain Santoni
- UMR DIAPC Diversité et adaptation des plantes cultivées, F-34398 Montpellier, France
| | - Roberto Mariotti
- CNR, Institute of Biosciences and Bioresources (IBBR), 06128 Perugia, Italy
| | - Andrea Rubini
- CNR, Institute of Biosciences and Bioresources (IBBR), 06128 Perugia, Italy
| | - Sylvain Legrand
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Sylvain Billiard
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Xavier Vekemans
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Philippe Vernet
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | | |
Collapse
|
13
|
Gutiérrez-Valencia J, Zervakis PI, Postel Z, Fracassetti M, Losvik A, Mehrabi S, Bunikis I, Soler L, Hughes PW, Désamoré A, Laenen B, Abdelaziz M, Pettersson OV, Arroyo J, Slotte T. Genetic Causes and Genomic Consequences of Breakdown of Distyly in Linum trigynum. Mol Biol Evol 2024; 41:msae087. [PMID: 38709782 PMCID: PMC11114476 DOI: 10.1093/molbev/msae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/22/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
Distyly is an iconic floral polymorphism governed by a supergene, which promotes efficient pollen transfer and outcrossing through reciprocal differences in the position of sexual organs in flowers, often coupled with heteromorphic self-incompatibility. Distyly has evolved convergently in multiple flowering plant lineages, but has also broken down repeatedly, often resulting in homostylous, self-compatible populations with elevated rates of self-fertilization. Here, we aimed to study the genetic causes and genomic consequences of the shift to homostyly in Linum trigynum, which is closely related to distylous Linum tenue. Building on a high-quality genome assembly, we show that L. trigynum harbors a genomic region homologous to the dominant haplotype of the distyly supergene conferring long stamens and short styles in L. tenue, suggesting that loss of distyly first occurred in a short-styled individual. In contrast to homostylous Primula and Fagopyrum, L. trigynum harbors no fixed loss-of-function mutations in coding sequences of S-linked distyly candidate genes. Instead, floral gene expression analyses and controlled crosses suggest that mutations downregulating the S-linked LtWDR-44 candidate gene for male self-incompatibility and/or anther height could underlie homostyly and self-compatibility in L. trigynum. Population genomic analyses of 224 whole-genome sequences further demonstrate that L. trigynum is highly self-fertilizing, exhibits significantly lower genetic diversity genome-wide, and is experiencing relaxed purifying selection and less frequent positive selection on nonsynonymous mutations relative to L. tenue. Our analyses shed light on the loss of distyly in L. trigynum, and advance our understanding of a common evolutionary transition in flowering plants.
Collapse
Affiliation(s)
- Juanita Gutiérrez-Valencia
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Panagiotis-Ioannis Zervakis
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Zoé Postel
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Marco Fracassetti
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Aleksandra Losvik
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Sara Mehrabi
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Ignas Bunikis
- Department of Immunology, Genetics and Pathology, Uppsala Genome Center, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lucile Soler
- Department of Medical Biochemistry and Microbiology, Uppsala University, National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - P William Hughes
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Aurélie Désamoré
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Benjamin Laenen
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | | | - Olga Vinnere Pettersson
- Department of Immunology, Genetics and Pathology, Uppsala Genome Center, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Juan Arroyo
- Department of Plant Biology and Ecology, University of Seville, Seville, Spain
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| |
Collapse
|
14
|
Liu Y, Si W, Fu S, Wang J, Cheng T, Zhang Q, Pan H. PfPIN5 promotes style elongation by regulating cell length in Primula forbesii Franch. ANNALS OF BOTANY 2024; 133:473-482. [PMID: 38190350 PMCID: PMC11006536 DOI: 10.1093/aob/mcae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/06/2024] [Indexed: 01/10/2024]
Abstract
BACKGROUND AND AIMS Style dimorphism is one of the polymorphic characteristics of flowers in heterostylous plants, which have two types of flowers: the pin morph, with long styles and shorter anthers, and the thrum morph, with short styles and longer anthers. The formation of dimorphic styles has received attention in the plant world. Previous studies showed that CYP734A50 in Primula determined style length and limited style elongation and that the brassinosteroid metabolic pathway was involved in regulation of style length. However, it is unknown whether there are other factors affecting the style length of Primula. METHODS Differentially expressed genes highly expressed in pin morph styles were screened based on Primula forbesii transcriptome data. Virus-induced gene silencing was used to silence these genes, and the style length and anatomical changes were observed 20 days after injection. KEY RESULTS PfPIN5 was highly expressed in pin morph styles. When PfPIN5 was silenced, the style length was shortened in pin and long-homostyle plants by shortening the length of style cells. Moreover, silencing CYP734A50 in thrum morph plants increased the expression level of PfPIN5 significantly, and the style length increased. The results indicated that PfPIN5, an auxin efflux transporter gene, contributed to regulation of style elongation in P. forbesii. CONCLUSIONS The results implied that the auxin pathway might also be involved in the formation of styles of P. forbesii, providing a new pathway for elucidating the molecular mechanism of style elongation in P. forbesii.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Efficient Production of Forest Resources; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture; College of Landscape Architecture, Beijing Forestry University, Beijing 100083, P. R. China
| | - Weijia Si
- State Key Laboratory of Efficient Production of Forest Resources; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture; College of Landscape Architecture, Beijing Forestry University, Beijing 100083, P. R. China
| | - Sitong Fu
- State Key Laboratory of Efficient Production of Forest Resources; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture; College of Landscape Architecture, Beijing Forestry University, Beijing 100083, P. R. China
| | - Jia Wang
- State Key Laboratory of Efficient Production of Forest Resources; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture; College of Landscape Architecture, Beijing Forestry University, Beijing 100083, P. R. China
| | - Tangren Cheng
- State Key Laboratory of Efficient Production of Forest Resources; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture; College of Landscape Architecture, Beijing Forestry University, Beijing 100083, P. R. China
| | - Qixiang Zhang
- State Key Laboratory of Efficient Production of Forest Resources; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture; College of Landscape Architecture, Beijing Forestry University, Beijing 100083, P. R. China
| | - Huitang Pan
- State Key Laboratory of Efficient Production of Forest Resources; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture; College of Landscape Architecture, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
15
|
Zeng ZH, Zhong L, Sun HY, Wu ZK, Wang X, Wang H, Li DZ, Barrett SCH, Zhou W. Parallel evolution of morphological and genomic selfing syndromes accompany the breakdown of heterostyly. THE NEW PHYTOLOGIST 2024; 242:302-316. [PMID: 38214455 DOI: 10.1111/nph.19522] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Evolutionary transitions from outcrossing to selfing in flowering plants have convergent morphological and genomic signatures and can involve parallel evolution within related lineages. Adaptive evolution of morphological traits is often assumed to evolve faster than nonadaptive features of the genomic selfing syndrome. We investigated phenotypic and genomic changes associated with transitions from distyly to homostyly in the Primula oreodoxa complex. We determined whether the transition to selfing occurred more than once and investigated stages in the evolution of morphological and genomic selfing syndromes using 22 floral traits and both nuclear and plastid genomic data from 25 populations. Two independent transitions were detected representing an earlier and a more recently derived selfing lineage. The older lineage exhibited classic features of the morphological and genomic selfing syndrome. Although features of both selfing syndromes were less developed in the younger selfing lineage, they exhibited parallel development with the older selfing lineage. This finding contrasts with the prediction that some genomic changes should lag behind adaptive changes to morphological traits. Our findings highlight the value of comparative studies on the timing and extent of transitions from outcrossing to selfing between related lineages for investigating the tempo of morphological and molecular evolution.
Collapse
Affiliation(s)
- Zhi-Hua Zeng
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhong
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua-Ying Sun
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Zhi-Kun Wu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550002, China
| | - Xin Wang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Hong Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Wei Zhou
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, Yunnan, 674100, China
| |
Collapse
|
16
|
Boucher JJ, Ireland HS, Wang R, David KM, Schaffer RJ. The genetic control of herkogamy. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23315. [PMID: 38687848 DOI: 10.1071/fp23315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/14/2024] [Indexed: 05/02/2024]
Abstract
Herkogamy is the spatial separation of anthers and stigmas within complete flowers, and is a key floral trait that promotes outcrossing in many angiosperms. The degree of separation between pollen-producing anthers and receptive stigmas has been shown to influence rates of self-pollination amongst plants, with a reduction in herkogamy increasing rates of successful selfing in self-compatible species. Self-pollination is becoming a critical issue in horticultural crops grown in environments where biotic pollinators are limited, absent, or difficult to utilise. In these cases, poor pollination results in reduced yield and misshapen fruit. Whilst there is a growing body of work elucidating the genetic basis of floral organ development, the genetic and environmental control points regulating herkogamy are poorly understood. A better understanding of the developmental and regulatory pathways involved in establishing varying degrees of herkogamy is needed to provide insights into the production of flowers more adept at selfing to produce consistent, high-quality fruit. This review presents our current understanding of herkogamy from a genetics and hormonal perspective.
Collapse
Affiliation(s)
- Jacques-Joseph Boucher
- The New Zealand Institute for Plant and Food Research Ltd, 55 Old Mill Road, Motueka 7198, New Zealand; and School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Hilary S Ireland
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92196, Auckland 1142, New Zealand
| | - Ruiling Wang
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92196, Auckland 1142, New Zealand
| | - Karine M David
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Robert J Schaffer
- The New Zealand Institute for Plant and Food Research Ltd, 55 Old Mill Road, Motueka 7198, New Zealand; and School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
17
|
Scharman M, Lenhard M. Heterostyly. Curr Biol 2024; 34:R181-R183. [PMID: 38471441 DOI: 10.1016/j.cub.2024.01.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Scharman and Lenhard introduce heterostyly, a phenomenon where individuals in a plant population produce flowers with more than one morphologically distinct form.
Collapse
Affiliation(s)
- Mathias Scharman
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany
| | - Michael Lenhard
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany.
| |
Collapse
|
18
|
Zhang D, Li YY, Zhao X, Zhang C, Liu DK, Lan S, Yin W, Liu ZJ. Molecular insights into self-incompatibility systems: From evolution to breeding. PLANT COMMUNICATIONS 2024; 5:100719. [PMID: 37718509 PMCID: PMC10873884 DOI: 10.1016/j.xplc.2023.100719] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Plants have evolved diverse self-incompatibility (SI) systems for outcrossing. Since Darwin's time, considerable progress has been made toward elucidating this unrivaled reproductive innovation. Recent advances in interdisciplinary studies and applications of biotechnology have given rise to major breakthroughs in understanding the molecular pathways that lead to SI, particularly the strikingly different SI mechanisms that operate in Solanaceae, Papaveraceae, Brassicaceae, and Primulaceae. These best-understood SI systems, together with discoveries in other "nonmodel" SI taxa such as Poaceae, suggest a complex evolutionary trajectory of SI, with multiple independent origins and frequent and irreversible losses. Extensive exploration of self-/nonself-discrimination signaling cascades has revealed a comprehensive catalog of male and female identity genes and modifier factors that control SI. These findings also enable the characterization, validation, and manipulation of SI-related factors for crop improvement, helping to address the challenges associated with development of inbred lines. Here, we review current knowledge about the evolution of SI systems, summarize key achievements in the molecular basis of pollen‒pistil interactions, discuss potential prospects for breeding of SI crops, and raise several unresolved questions that require further investigation.
Collapse
Affiliation(s)
- Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan-Yuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuewei Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuili Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ding-Kun Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Weilun Yin
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
19
|
Ren D, Jiao F, Zhang A, Zhao J, Zhang J. Floral morph variation mediated by clonal growth and pollinator functional groups of Limonium otolepis in a heterostylous fragmented population. AOB PLANTS 2024; 16:plae020. [PMID: 38660050 PMCID: PMC11041057 DOI: 10.1093/aobpla/plae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Abstract. Heterostyly, a genetic style polymorphism, is linked to symmetric pollen transfer, vital for its maintenance. Clonal growth typically impacts sexual reproduction by influencing pollen transfer. However, the floral morph variation remains poorly understood under the combined effects of pollinators and clonal growth in heterostyly characterized by negative frequency-dependent selection and disassortative mating. We estimated morph ratios, ramets per genet and heterostylous syndrome and quantified legitimate pollen transfer via clonal growth, pollinators and reciprocal herkogamy between floral morphs in Limonium otolepis, a fragmented population composed of five subpopulations in the desert environment of northwestern China, with small flower and large floral morph variation. All subpopulations but one exhibited pollen-stigma morphology dimorphism. The compatibility between mating types with different pollen-stigma morphologies remained consistent regardless of reciprocal herkogamy. Biased ratios and ramets per genet of the two mating types with distinct pollen-stigma morphologies caused asymmetric pollen flow and varying fruit sets in all subpopulations. Short-tongued insects were the primary pollinators due to small flower sizes. However, pollen-feeding Syrphidae sp. triggered asymmetry in pollen flow between high and low sex organs, with short-styled morphs having lower stigma pollen depositions and greater variation. Clonal growth amplified this variation by reducing intermorph pollen transfer. All in all, pollinators and clonal growth jointly drive floral morph variation. H-morphs with the same stigma-anther position and self-incompatibility, which mitigate the disadvantages of sunken low sex organs with differing from the classical homostyly, might arise from long- and short-styled morphs through a 'relaxed selection'. This study is the first to uncover the occurrence of the H-morph and its associated influencing factors in a distylous plant featuring clonal growth, small flowers and a fragmented population.
Collapse
Affiliation(s)
- Dengfu Ren
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, School of Life Science and Technology, Xinjiang University, Urumqi 830017, P.R China
| | - Fangfang Jiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, School of Life Science and Technology, Xinjiang University, Urumqi 830017, P.R China
| | - Aiqin Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, School of Life Science and Technology, Xinjiang University, Urumqi 830017, P.R China
| | - Jing Zhao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, School of Life Science and Technology, Xinjiang University, Urumqi 830017, P.R China
| | - Jing Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, School of Life Science and Technology, Xinjiang University, Urumqi 830017, P.R China
| |
Collapse
|
20
|
Stubbs RL, Theodoridis S, Mora-Carrera E, Keller B, Potente G, Yousefi N, Jay P, Léveillé-Bourret É, Choudhury RR, Celep F, Kochjarová J, Conti E. The genomes of Darwin's primroses reveal chromosome-scale adaptive introgression and differential permeability of species boundaries. THE NEW PHYTOLOGIST 2024; 241:911-925. [PMID: 37921572 DOI: 10.1111/nph.19361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
Introgression is an important source of genetic variation that can determine species adaptation to environmental conditions. Yet, definitive evidence of the genomic and adaptive implications of introgression in nature remains scarce. The widespread hybrid zones of Darwin's primroses (Primula elatior, Primula veris, and Primula vulgaris) provide a unique natural laboratory for studying introgression in flowering plants and the varying permeability of species boundaries. Through analysis of 650 genomes, we provide evidence of an introgressed genomic region likely to confer adaptive advantage in conditions of soil toxicity. We also document unequivocal evidence of chloroplast introgression, an important precursor to species-wide chloroplast capture. Finally, we provide the first evidence that the S-locus supergene, which controls heterostyly in primroses, does not introgress in this clade. Our results contribute novel insights into the adaptive role of introgression and demonstrate the importance of extensive genomic and geographical sampling for illuminating the complex nature of species boundaries.
Collapse
Affiliation(s)
- Rebecca L Stubbs
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, 8008, Switzerland
| | - Spyros Theodoridis
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, 60325, Germany
| | - Emiliano Mora-Carrera
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, 8008, Switzerland
| | - Barbara Keller
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, 8008, Switzerland
| | - Giacomo Potente
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, 8008, Switzerland
| | - Narjes Yousefi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, 8008, Switzerland
| | - Paul Jay
- Center for GeoGenetics, University of Copenhagen, Copenhagen, 1350, Denmark
| | - Étienne Léveillé-Bourret
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, Montreal, QC, H1X 2B2, Canada
| | | | - Ferhat Celep
- Department of Biology, Faculty of Arts and Sciences, Kırıkkale University, Kırıkkale, 71450, Turkey
| | - Judita Kochjarová
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, 96001, Slovak Republic
| | - Elena Conti
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, 8008, Switzerland
| |
Collapse
|
21
|
Yang J, Xue H, Li Z, Zhang Y, Shi T, He X, Barrett SCH, Wang Q, Chen J. Haplotype-resolved genome assembly provides insights into the evolution of S-locus supergene in distylous Nymphoides indica. THE NEW PHYTOLOGIST 2023; 240:2058-2071. [PMID: 37717220 DOI: 10.1111/nph.19264] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023]
Abstract
Distyly has evolved independently in numerous animal-pollinated angiosperm lineages. Understanding of its molecular basis has been restricted to a few species, primarily Primula. Here, we investigate the genetic architecture of the single diallelic locus (S-locus) supergene, a linkage group of functionally associated genes, and explore how it may have evolved in distylous Nymphoides indica, a lineage of flowering plants not previously investigated. We assembled haplotype-resolved genomes, used read-coverage-based genome-wide association study (rb-GWAS) to locate the S-locus supergene, co-expression network analysis to explore gene networks underpinning the development of distyly, and comparative genomic analyses to investigate the origins of the S-locus supergene. We identified three linked candidate S-locus genes - NinBAS1, NinKHZ2, and NinS1 - that were only evident in the short-styled morph and were hemizygous. Co-expression network analysis suggested that brassinosteroids contribute to dimorphic sex organs in the short-styled morph. Comparative genomic analyses indicated that the S-locus supergene likely evolved via stepwise duplications and has been affected by transposable element activities. Our study provides novel insight into the structure, regulation, and evolution of the supergene governing distyly in N. indica. It also provides high-quality genomic resources for future research on the molecular mechanisms underlying the striking evolutionary convergence in form and function across heterostylous taxa.
Collapse
Affiliation(s)
- Jingshan Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haoran Xue
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam-Golm, Germany
| | - Zhizhong Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yue Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Tao Shi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xiangyan He
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| | - Qingfeng Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Jinming Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
22
|
Zhang Y, Yuan Y, Qu M, Kang C. Brassinosteroid catabolic enzyme CYP734A129 regulates the morphologies of leaves and floral organs in woodland strawberry. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111788. [PMID: 37421982 DOI: 10.1016/j.plantsci.2023.111788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Brassinosteroids (BRs) play critical roles in plant growth and development and regulate many important agronomic traits. However, the functions of BRs in strawberry are unclear. This study identified two mutants, named P6 and R87, in woodland strawberry (Fragaria vesca) from EMS mutagenesis populations that exhibit narrow leaves, petals and sepals. Mapping by sequencing and genetic studies revealed that the F. vesca CYP734A129, encoding a putative BR catabolic enzyme, is the causative gene for both P6 and R87. Overexpression of CYP734A129 in both F. vesca and Arabidopsis causes a severe dwarf phenotype, and the BRI1-EMS-SUPPRESSOR 1 (BES1) protein is less abundant in the CYP734A129-overexpressing Arabidopsis seedlings. This suggests that CYP734A129 is functionally conserved with CYP734A1, as a BR-inactivating enzyme. Transcriptome analysis of young leaves revealed that four BR biosynthetic genes were significantly downregulated in P6 (cyp734a129), and photosynthesis-related genes were highly enriched among the up-regulated genes in P6 compared to the wild type. This further supports that CYP734A129 inactivates BRs in F. vesca. Furthermore, we showed that mutations in CYP734A129 do not affect fruit shape and color during ripening in strawberry. Overall, our results suggest that F. vesca CYP734A129 is a BR catabolic enzyme, and provide insights into the roles of CYP734A129 in strawberry.
Collapse
Affiliation(s)
- Yunming Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yingxin Yuan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Minghao Qu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunying Kang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
23
|
Zhang L, Li P, Zhang X, Li J. Two floral forms in the same species-distyly. PLANTA 2023; 258:72. [PMID: 37656285 DOI: 10.1007/s00425-023-04229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
MAIN CONCLUSION This paper reviews the progress of research on the morphology, physiology and molecular biology of distyly in plants. It will help to elucidate the mysteries of distyly in plants. Distyly is a unique representative type of heterostyly in plants, primarily characterized by the presence of long style and short style within the flowers of the same species. This interesting trait has always fascinated researchers. With the rapid development of molecular biology, the molecular mechanism for the production of dimorphic styles in plants is also gaining ground. Researchers have been studying plant dimorphic styles from various perspectives. The researchers are gradually unravelling the mechanisms by which plants produce distyly traits. This paper reviews advances in the study of plant dimorphic style characteristics, mainly in terms of the morphology, physiology and molecular biology of plants with dimorphic styles. The aim is to provide a theoretical basis for the study of the mechanism of distyly formation in plants.
Collapse
Affiliation(s)
- Lu Zhang
- College of Landscape and Tourism, Hebei Agricultural University, No. 289 Lingyusi Street, P. O. Box 28, Baoding, 071000, Hebei, China
| | - Ping Li
- College of Landscape and Tourism, Hebei Agricultural University, No. 289 Lingyusi Street, P. O. Box 28, Baoding, 071000, Hebei, China.
| | - Xiaoman Zhang
- College of Landscape and Tourism, Hebei Agricultural University, No. 289 Lingyusi Street, P. O. Box 28, Baoding, 071000, Hebei, China.
| | - Jinfeng Li
- College of Landscape and Tourism, Hebei Agricultural University, No. 289 Lingyusi Street, P. O. Box 28, Baoding, 071000, Hebei, China
| |
Collapse
|
24
|
Fawcett JA, Takeshima R, Kikuchi S, Yazaki E, Katsube-Tanaka T, Dong Y, Li M, Hunt HV, Jones MK, Lister DL, Ohsako T, Ogiso-Tanaka E, Fujii K, Hara T, Matsui K, Mizuno N, Nishimura K, Nakazaki T, Saito H, Takeuchi N, Ueno M, Matsumoto D, Norizuki M, Shirasawa K, Li C, Hirakawa H, Ota T, Yasui Y. Genome sequencing reveals the genetic architecture of heterostyly and domestication history of common buckwheat. NATURE PLANTS 2023; 9:1236-1251. [PMID: 37563460 DOI: 10.1038/s41477-023-01474-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023]
Abstract
Common buckwheat, Fagopyrum esculentum, is an orphan crop domesticated in southwest China that exhibits heterostylous self-incompatibility. Here we present chromosome-scale assemblies of a self-compatible F. esculentum accession and a self-compatible wild relative, Fagopyrum homotropicum, together with the resequencing of 104 wild and cultivated F. esculentum accessions. Using these genomic data, we report the roles of transposable elements and whole-genome duplications in the evolution of Fagopyrum. In addition, we show that (1) the breakdown of heterostyly occurs through the disruption of a hemizygous gene jointly regulating the style length and female compatibility and (2) southeast Tibet was involved in common buckwheat domestication. Moreover, we obtained mutants conferring the waxy phenotype for the first time in buckwheat. These findings demonstrate the utility of our F. esculentum assembly as a reference genome and promise to accelerate buckwheat research and breeding.
Collapse
Affiliation(s)
| | - Ryoma Takeshima
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Shinji Kikuchi
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
- Plant Molecular Science Center, Chiba University, Chiba, Japan
| | | | | | - Yumei Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Meifang Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Harriet V Hunt
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Royal Botanic Gardens Kew, Richmond, UK
| | - Martin K Jones
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - Diane L Lister
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Conservation Research Institute, University of Cambridge, Cambridge, UK
| | - Takanori Ohsako
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Eri Ogiso-Tanaka
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Center for Molecular Biodiversity Research, National Museum of Nature and Science, Tsukuba, Japan
| | - Kenichiro Fujii
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Takashi Hara
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Kasai, Japan
| | - Katsuhiro Matsui
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Nobuyuki Mizuno
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | - Hiroki Saito
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences, Ishigaki, Japan
| | - Naoko Takeuchi
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mariko Ueno
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Daiki Matsumoto
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University, Awara, Japan
| | - Miyu Norizuki
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | | | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
| | | | - Tatsuya Ota
- Department of Evolutionary Studies of Biosystems, SOKENDAI, Hayama, Japan.
- Research Center for Integrative Evolutionary Science, SOKENDAI, Hayama, Japan.
| | - Yasuo Yasui
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|
25
|
Wang Y, Liu P, Cai Y, Li Y, Tang C, Zhu N, Wang P, Zhang S, Wu J. PbrBZR1 interacts with PbrARI2.3 to mediate brassinosteroid-regulated pollen tube growth during self-incompatibility signaling in pear. PLANT PHYSIOLOGY 2023; 192:2356-2373. [PMID: 37010117 PMCID: PMC10315279 DOI: 10.1093/plphys/kiad208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
S-RNase-mediated self-incompatibility (SI) prevents self-fertilization and promotes outbreeding to ensure genetic diversity in many flowering plants, including pear (Pyrus sp.). Brassinosteroids (BRs) have well-documented functions in cell elongation, but their molecular mechanisms in pollen tube growth, especially in the SI response, remain elusive. Here, exogenously applied brassinolide (BL), an active BR, countered incompatible pollen tube growth inhibition during the SI response in pear. Antisense repression of BRASSINAZOLE-RESISTANT1 (PbrBZR1), a critical component of BR signaling, blocked the positive effect of BL on pollen tube elongation. Further analyses revealed that PbrBZR1 binds to the promoter of EXPANSIN-LIKE A3 (PbrEXLA3) to activate its expression. PbrEXLA3 encodes an expansin that promotes pollen tube elongation in pear. The stability of dephosphorylated PbrBZR1 was substantially reduced in incompatible pollen tubes, where it is targeted by ARIADNE2.3 (PbrARI2.3), an E3 ubiquitin ligase that is strongly expressed in pollen. Our results show that during the SI response, PbrARI2.3 accumulates and negatively regulates pollen tube growth by accelerating the degradation of PbrBZR1 via the 26S proteasome pathway. Together, our results show that an ubiquitin-mediated modification participates in BR signaling in pollen and reveal the molecular mechanism by which BRs regulate S-RNase-based SI.
Collapse
Affiliation(s)
- Yicheng Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Panpan Liu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiling Cai
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Li
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Tang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Zhu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Juyou Wu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
26
|
Zhang W, Hu Y, Zhang S, Shao J. Integrative taxonomy in a rapid speciation group associated with mating system transition: A case study in the Primula cicutariifolia complex. Mol Phylogenet Evol 2023:107840. [PMID: 37279815 DOI: 10.1016/j.ympev.2023.107840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
Accurate species delimitation is the key to biodiversity conservation and is fundamental to most branches of biology. However, species delimitation remains challenging in those evolutionary radiations associated with mating system transition from outcrossing to self-fertilization, which have frequently occurred in angiosperms and are usually accompanied by rapid speciation. Here, using the Primula cicutariifolia complex as a case, we integrated molecular, morphological and reproductive isolation evidence to test and verify whether its outcrossing (distylous) and selfing (homostylous) populations have developed into independent evolutionary lineages. Phylogenetic trees based on whole plastomes and SNPs of the nuclear genome both indicated that the distylous and homostylous populations grouped into two different clades. Multispecies coalescent, gene flow and genetic structure analyses all supported such two clades as two different genetic entities. In morphology, as expected changes in selfing syndrome, homostylous populations have significantly fewer umbel layers and smaller flower and leaf sizes compared to distylous populations, and the variation range of some floral traits, such as corolla diameter and umbel layers, show obvious discontinuity. Furthermore, hand-pollinated hybridization between the two clades produced almost no seeds, indicating that well post-pollination reproductive isolation has been established between them. Therefore, the distylous and homostylous populations in this studied complex are two independent evolutionary lineages, and thus these distylous populations should be treated as a distinct species, here named Primula qiandaoensis W. Zhang & J.W. Shao sp. nov.. Our empirical study of the P. cicutariifolia complex highlights the importance of applying multiple lines of evidence, in particular genomic data, to delimit species in pervasive evolutionary plant radiations associated with mating system transition.
Collapse
Affiliation(s)
- Wei Zhang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China; College of Life Sciences, Anqing Normal University, Anqing 246011, Anhui, China
| | - Yingfeng Hu
- College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Siyu Zhang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Jianwen Shao
- College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China; Provincial Key Laboratory of Conservation and Utilization of Biological Resources, Wuhu 241000, Anhui, China.
| |
Collapse
|
27
|
Jia Y, Liu C, Li Y, Xiang Y, Pan Y, Liu Q, Gao S, Yin X, Wang Z. Inheritance of distyly and homostyly in self-incompatible Primula forbesii. Heredity (Edinb) 2023; 130:259-268. [PMID: 36788365 PMCID: PMC10076296 DOI: 10.1038/s41437-023-00598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
The evolutionary transition from self-incompatible distyly to self-compatible homostyly frequently occurs in heterostylous taxa. Although the inheritance of distyly and homostyly has been deeply studied, our understanding on modifications of the classical simple Mendelian model is still lacking. Primula forbesii, a biennial herb native to southwest China, is a typical distylous species, but after about 20 years of cultivation with open pollination, self-compatible homostyly appeared, providing ideal material for the study of the inheritance of distyly and homostyly. In this study, exogenous homobrassinolide was used to break the heteromorphic incompatibility of P. forbesii. Furthermore, we performed artificial pollination and open-pollination experiments to observe the distribution of floral morphs in progeny produced by different crosses. The viability of seeds from self-pollination was always the lowest among all crosses, and the homozygous S-morph plants (S/S) occurred in artificial pollination experiments but may experience viability selection. The distyly of P. forbesii is governed by a single S-locus, with S-morph dominant hemizygotes (S/-) and L-morph recessive homozygotes (-/-). Homostylous plants have a genotype similar to L-morph plants, and homostyly may be caused by one or more unlinked modifier genes outside the S-locus. Open pollinations confirm that autonomous self-pollination occurs frequently in L-morphs and homostylous plants. This study deepens the understanding of the inheritance of distyly and details a case of homostyly that likely originated from one or more modifier genes.
Collapse
Affiliation(s)
- Yin Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China.
| | - Cailei Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yifeng Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yuanfen Xiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yuanzhi Pan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Qinglin Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Suping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xiancai Yin
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Zexun Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
28
|
Wang J, Wang G, Liu W, Yang H, Wang C, Chen W, Zhang X, Tian J, Yu Y, Li J, Xue Y, Kong Z. Brassinosteroid signals cooperate with katanin-mediated microtubule severing to control stamen filament elongation. EMBO J 2023; 42:e111883. [PMID: 36546550 PMCID: PMC9929639 DOI: 10.15252/embj.2022111883] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Proper stamen filament elongation is essential for pollination and plant reproduction. Plant hormones are extensively involved in every stage of stamen development; however, the cellular mechanisms by which phytohormone signals couple with microtubule dynamics to control filament elongation remain unclear. Here, we screened a series of Arabidopsis thaliana mutants showing different microtubule defects and revealed that only those unable to sever microtubules, lue1 and ktn80.1234, displayed differential floral organ elongation with less elongated stamen filaments. Prompted by short stamen filaments and severe decrease in KTN1 and KTN80s expression in qui-2 lacking five BZR1-family transcription factors (BFTFs), we investigated the crosstalk between microtubule severing and brassinosteroid (BR) signaling. The BFTFs transcriptionally activate katanin-encoding genes, and the microtubule-severing frequency was severely reduced in qui-2. Taken together, our findings reveal how BRs can regulate cytoskeletal dynamics to coordinate the proper development of reproductive organs.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Houji Laboratory of Shanxi Province, Academy of AgronomyShanxi Agricultural UniversityTaiyuanChina
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Weiwei Liu
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- Institute of Feed ResearchChinese Academy of Agricultural SciencesBeijingChina
| | - Huanhuan Yang
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chaofeng Wang
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Weiyue Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Xiaxia Zhang
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Juan Tian
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Jia Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Houji Laboratory of Shanxi Province, Academy of AgronomyShanxi Agricultural UniversityTaiyuanChina
| |
Collapse
|
29
|
Wu ZK, Guo YJ, Zhang T, Burgess KS, Zhou W. Primula luquanensis sp. nov. (Primulaceae), a New Species from Southwestern China, Reveals a Novel Floral Form in the Heterostyly-Prevailing Genus. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030534. [PMID: 36771618 PMCID: PMC9918951 DOI: 10.3390/plants12030534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 06/01/2023]
Abstract
A new species, Primula luquanensis Z.K.Wu and Wei Zhou sp. nov. (Primulaceae) is described and illustrated from Yunnan Province, China. It is morphologically assigned to P. sect Aleuritia based on its dwarf and hairless habit and coverage by farina on both sides of the leaf blade and scape. This new species is similar to P. nutantiflora and P. yunnanensis, but it is easily distinguished by its stolons, solitary bract, bell-shaped corolla and monomorphic floral form. The new species also has a substantially reduced corolla tube, presenting a unique floral form in a genus where heterostyly typically prevails.
Collapse
Affiliation(s)
- Zhi-Kun Wu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yong-Jie Guo
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ting Zhang
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Kevin S. Burgess
- Department of Biology, College of Letters and Sciences, Columbus State University, University System of Georgia, Columbus, GA 31907–5645, USA
| | - Wei Zhou
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang 674100, China
| |
Collapse
|
30
|
Henning PM, Roalson EH, Mir W, McCubbin AG, Shore JS. Annotation of the Turnera subulata (Passifloraceae) Draft Genome Reveals the S-Locus Evolved after the Divergence of Turneroideae from Passifloroideae in a Stepwise Manner. PLANTS (BASEL, SWITZERLAND) 2023; 12:286. [PMID: 36679000 PMCID: PMC9862265 DOI: 10.3390/plants12020286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
A majority of Turnera species (Passifloraceae) exhibit distyly, a reproductive system involving both self-incompatibility and reciprocal herkogamy. This system differs from self-incompatibility in Passiflora species. The genetic basis of distyly in Turnera is a supergene, restricted to the S-morph, and containing three S-genes. How supergenes and distyly evolved in Turnera, and the other Angiosperm families exhibiting distyly remain largely unknown. Unraveling the evolutionary origins in Turnera requires the generation of genomic resources and extensive phylogenetic analyses. Here, we present the annotated draft genome of the S-morph of distylous Turnera subulata. Our annotation allowed for phylogenetic analyses of the three S-genes' families across 56 plant species ranging from non-seed plants to eudicots. In addition to the phylogenetic analysis, we identified the three S-genes' closest paralogs in two species of Passiflora. Our analyses suggest that the S-locus evolved after the divergence of Passiflora and Turnera. Finally, to provide insights into the neofunctionalization of the S-genes, we compared expression patterns of the S-genes with close paralogs in Arabidopsis and Populus trichocarpa. The annotation of the T. subulata genome will provide a useful resource for future comparative work. Additionally, this work has provided insights into the convergent nature of distyly and the origin of supergenes.
Collapse
Affiliation(s)
- Paige M. Henning
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
- Center for Genomic Science Innovation, University of Wisconsin Madison, 425 Henry Mall, Madison, WI 53706-1577, USA
| | - Eric H. Roalson
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Wali Mir
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Andrew G. McCubbin
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Joel S. Shore
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
31
|
Mora‐Carrera E, Stubbs RL, Keller B, Léveillé‐Bourret É, de Vos JM, Szövényi P, Conti E. Different molecular changes underlie the same phenotypic transition: Origins and consequences of independent shifts to homostyly within species. Mol Ecol 2023; 32:61-78. [PMID: 34761469 PMCID: PMC10078681 DOI: 10.1111/mec.16270] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/29/2022]
Abstract
The repeated transition from outcrossing to selfing is a key topic in evolutionary biology. However, the molecular basis of such shifts has been rarely examined due to lack of knowledge of the genes controlling these transitions. A classic example of mating system transition is the repeated shift from heterostyly to homostyly. Occurring in 28 angiosperm families, heterostyly is characterized by the reciprocal position of male and female sexual organs in two (or three) distinct, usually self-incompatible floral morphs. Conversely, homostyly is characterized by a single, self-compatible floral morph with reduced separation of male and female organs, facilitating selfing. Here, we investigate the origins of homostyly in Primula vulgaris and its microevolutionary consequences by integrating surveys of the frequency of homostyles in natural populations, DNA sequence analyses of the gene controlling the position of female sexual organs (CYPᵀ), and microsatellite genotyping of both progeny arrays and natural populations characterized by varying frequencies of homostyles. As expected, we found that homostyles displace short-styled individuals, but long-style morphs are maintained at low frequencies within populations. We also demonstrated that homostyles repeatedly evolved from short-styled individuals in association with different types of loss-of-function mutations in CYPᵀ. Additionally, homostyly triggers a shift to selfing, promoting increased inbreeding within and genetic differentiation among populations. Our results elucidate the causes and consequences of repeated transitions to homostyly within species, and the putative mechanisms precluding its fixation in P. vulgaris. This study represents a benchmark for future analyses of losses of heterostyly in other angiosperms.
Collapse
Affiliation(s)
- Emiliano Mora‐Carrera
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - Rebecca L. Stubbs
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - Barbara Keller
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - Étienne Léveillé‐Bourret
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
- Département de Sciences BiologiquesInstitut de Recherche en Biologie VégétaleUniversité de MontréalMontréalQuébecCanada
| | - Jurriaan M. de Vos
- Department of Environmental Sciences – BotanyUniversity of BaselBaselSwitzerland
| | - Peter Szövényi
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - Elena Conti
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
32
|
Zhao Z, Zhang Y, Shi M, Liu Z, Xu Y, Luo Z, Yuan S, Tu T, Sun Z, Zhang D, Barrett SCH. Genomic evidence supports the genetic convergence of a supergene controlling the distylous floral syndrome. THE NEW PHYTOLOGIST 2023; 237:601-614. [PMID: 36239093 DOI: 10.1111/nph.18540] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Heterostyly, a plant sexual polymorphism controlled by the S-locus supergene, has evolved numerous times among angiosperm lineages and represents a classic example of convergent evolution in form and function. Determining whether underlying molecular convergence occurs could provide insights on constraints to floral evolution. Here, we investigated S-locus genes in distylous Gelsemium (Gelsemiaceae) to determine whether there is evidence of molecular convergence with unrelated distylous species. We used several approaches, including anatomical measurements of sex-organ development and transcriptome and whole-genome sequencing, to identify components of the S-locus supergene. We also performed evolutionary analysis with candidate S-locus genes and compared them with those reported in Primula and Turnera. The candidate S-locus supergene of Gelsemium contained four genes, of which three appear to have originated from gene duplication events within Gelsemiaceae. The style-length genes GeCYP in Gelsemium and CYP734A50 in Primula likely arose from duplication of the same gene, CYP734A1. Three out of four S-locus genes in Gelsemium elegans were hemizygous, as previously reported in Primula and Turnera. We provide genomic evidence on the genetic convergence of the supergene underlying distyly among distantly related angiosperm lineages and help to illuminate the genetic architecture involved in the evolution of heterostyly.
Collapse
Affiliation(s)
- Zhongtao Zhao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- College of Life Sciences, Gannan Normal University, Ganzhou, 34100, China
| | - Yu Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Miaomiao Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zhaoying Liu
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Yuanqing Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zhonglai Luo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Shuai Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Tieyao Tu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zhiliang Sun
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Dianxiang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- College of Life Sciences, Gannan Normal University, Ganzhou, 34100, China
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
33
|
Stubbs RL, Theodoridis S, Mora‐Carrera E, Keller B, Yousefi N, Potente G, Léveillé‐Bourret É, Celep F, Kochjarová J, Tedoradze G, Eaton DAR, Conti E. Whole-genome analyses disentangle reticulate evolution of primroses in a biodiversity hotspot. THE NEW PHYTOLOGIST 2023; 237:656-671. [PMID: 36210520 PMCID: PMC10099377 DOI: 10.1111/nph.18525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Biodiversity hotspots, such as the Caucasus mountains, provide unprecedented opportunities for understanding the evolutionary processes that shape species diversity and richness. Therefore, we investigated the evolution of Primula sect. Primula, a clade with a high degree of endemism in the Caucasus. We performed phylogenetic and network analyses of whole-genome resequencing data from the entire nuclear genome, the entire chloroplast genome, and the entire heterostyly supergene. The different characteristics of the genomic partitions and the resulting phylogenetic incongruences enabled us to disentangle evolutionary histories resulting from tokogenetic vs cladogenetic processes. We provide the first phylogeny inferred from the heterostyly supergene that includes all species of Primula sect. Primula. Our results identified recurrent admixture at deep nodes between lineages in the Caucasus as the cause of non-monophyly in Primula. Biogeographic analyses support the 'out-of-the-Caucasus' hypothesis, emphasizing the importance of this hotspot as a cradle for biodiversity. Our findings provide novel insights into causal processes of phylogenetic discordance, demonstrating that genome-wide analyses from partitions with contrasting genetic characteristics and broad geographic sampling are crucial for disentangling the diversification of species-rich clades in biodiversity hotspots.
Collapse
Affiliation(s)
- Rebecca L. Stubbs
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZollikerstrasse 107Zurich8008Switzerland
| | - Spyros Theodoridis
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F)Frankfurt am Main60325Germany
| | - Emiliano Mora‐Carrera
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZollikerstrasse 107Zurich8008Switzerland
| | - Barbara Keller
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZollikerstrasse 107Zurich8008Switzerland
| | - Narjes Yousefi
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZollikerstrasse 107Zurich8008Switzerland
| | - Giacomo Potente
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZollikerstrasse 107Zurich8008Switzerland
| | - Étienne Léveillé‐Bourret
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale (IRBV)Université de MontréalQuébecH1X 2B2Canada
| | - Ferhat Celep
- Department of Biology, Faculty of Arts and SciencesKırıkkale UniversityKırıkkale71450Turkey
| | - Judita Kochjarová
- Department of Phytology, Faculty of ForestryTechnical University in ZvolenZvolen96001Slovak Republic
| | - Giorgi Tedoradze
- Department of Plant Systematics and Geography, Institute of BotanyIlia State UniversityTbilisi0105Georgia
| | - Deren A. R. Eaton
- Department of Ecology, Evolution and Environmental BiologyColumbia UniversityNew YorkNY10027USA
| | - Elena Conti
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZollikerstrasse 107Zurich8008Switzerland
| |
Collapse
|
34
|
Comparative transcriptomics reveals commonalities and differences in the genetic underpinnings of a floral dimorphism. Sci Rep 2022; 12:20771. [PMID: 36456708 PMCID: PMC9715534 DOI: 10.1038/s41598-022-25132-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Distyly, a floral dimorphism associated with heteromorphic self-incompatibility and controlled by the S-locus supergene, evolved independently multiple times. Comparative analyses of the first transcriptome atlas for the main distyly model, Primula veris, with other distylous species produced the following findings. A set of 53 constitutively expressed genes in P. veris did not include any of the housekeeping genes commonly used to normalize gene expression in qPCR experiments. The S-locus gene CYPT acquired its role in controlling style elongation via a change in expression profile. Comparison of genes differentially expressed between floral morphs revealed that brassinosteroids and auxin are the main hormones controlling style elongation in P. veris and Fagopyrum esculentum, respectively. Furthermore, shared biochemical pathways might underlie the expression of distyly in the distantly related P. veris, F. esculentum and Turnera subulata, suggesting a degree of correspondence between evolutionary convergence at phenotypic and molecular levels. Finally, we provide the first evidence supporting the previously proposed hypothesis that distyly supergenes of distantly related species evolved via the recruitment of genes related to the phytochrome-interacting factor (PIF) signaling network. To conclude, this is the first study that discovered homologous genes involved in the control of distyly in distantly related taxa.
Collapse
|
35
|
Henning PM, Shore JS, McCubbin AG. The S-Gene YUC6 Pleiotropically Determines Male Mating Type and Pollen Size in Heterostylous Turnera (Passifloraceae): A Novel Neofunctionalization of the YUCCA Gene Family. PLANTS (BASEL, SWITZERLAND) 2022; 11:2640. [PMID: 36235506 PMCID: PMC9572539 DOI: 10.3390/plants11192640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
In heterostylous, self-incompatible Turnera species, a member of the YUCCA gene family, YUC6, resides at the S-locus and has been hypothesized to determine the male mating type. YUCCA gene family members synthesize the auxin, indole-3-acetic acid, via a two-step process involving the TAA gene family. Consequently, it has been speculated that differences in auxin concentration in developing anthers are the biochemical basis underlying the male mating type. Here, we provide empirical evidence that supports this hypothesis. Using a transgenic knockdown approach, we show that YUC6 acts pleiotropically to control both the male physiological mating type and pollen size, but not the filament length dimorphism associated with heterostyly in Turnera. Using qPCR to assess YUC6 expression in different transgenic lines, we demonstrate that the level of YUC6 knockdown correlates with the degree of change observed in the male mating type. Further assessment of YUC6 expression through anther development, in the knockdown lines, suggests that the male mating type is irreversibly determined during a specific developmental window prior to microsporogenesis, which is consistent with the genetically sporophytic nature of this self-incompatibility system. These results represent the first gene controlling male mating type to be characterized in any species with heterostyly.
Collapse
Affiliation(s)
- Paige M. Henning
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Joel S. Shore
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Andrew G. McCubbin
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
36
|
Genomic analyses of the Linum distyly supergene reveal convergent evolution at the molecular level. Curr Biol 2022; 32:4360-4371.e6. [PMID: 36087578 DOI: 10.1016/j.cub.2022.08.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022]
Abstract
Supergenes govern multi-trait-balanced polymorphisms in a wide range of systems; however, our understanding of their origins and evolution remains incomplete. The reciprocal placement of stigmas and anthers in pin and thrum floral morphs of distylous species constitutes an iconic example of a balanced polymorphism governed by a supergene, the distyly S-locus. Recent studies have shown that the Primula and Turnera distyly supergenes are both hemizygous in thrums, but it remains unknown whether hemizygosity is pervasive among distyly S-loci. As hemizygosity has major consequences for supergene evolution and loss, clarifying whether this genetic architecture is shared among distylous species is critical. Here, we have characterized the genetic architecture and evolution of the distyly supergene in Linum by generating a chromosome-level genome assembly of Linum tenue, followed by the identification of the S-locus using population genomic data. We show that hemizygosity and thrum-specific expression of S-linked genes, including a pistil-expressed candidate gene for style length, are major features of the Linum S-locus. Structural variation is likely instrumental for recombination suppression, and although the non-recombining dominant haplotype has accumulated transposable elements, S-linked genes are not under relaxed purifying selection. Our findings reveal remarkable convergence in the genetic architecture and evolution of independently derived distyly supergenes, provide a counterexample to classic inversion-based supergenes, and shed new light on the origin and maintenance of an iconic floral polymorphism.
Collapse
|
37
|
Kay T, Helleu Q, Keller L. Iterative evolution of supergene-based social polymorphism in ants. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210196. [PMID: 35694755 PMCID: PMC9189498 DOI: 10.1098/rstb.2021.0196] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/08/2022] [Indexed: 12/16/2022] Open
Abstract
Species commonly exhibit alternative morphs, with individual fate being determined during development by either genetic factors, environmental cues or a combination thereof. Ants offer an interesting case study because many species are polymorphic in their social structure. Some colonies contain one queen while others contain many queens. This variation in queen number is generally associated with a suite of phenotypic and life-history traits, including mode of colony founding, queen lifespan, queen-worker dimorphism and colony size. The basis of this social polymorphism has been studied in five ant lineages, and remarkably social morph seems to be determined by a supergene in all cases. These 'social supergenes' tend to be large, having formed through serial inversions, and to comprise hundreds of linked genes. They have persisted over long evolutionary timescales, in multiple lineages following speciation events, and have spread between closely related species via introgression. Their evolutionary dynamics are unusually complex, combining recessive lethality, spatially variable selection, selfish genetic elements and non-random mating. Here, we synthesize the five cases of supergene-based social polymorphism in ants, highlighting interesting commonalities, idiosyncrasies and implications for the evolution of polymorphisms in general. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Tomas Kay
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Quentin Helleu
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
38
|
Lv S, Qiao X, Zhang W, Li Q, Wang P, Zhang S, Wu J. The origin and evolution of RNase T2 family and gametophytic self-incompatibility system in plants. Genome Biol Evol 2022; 14:6609977. [PMID: 35714207 PMCID: PMC9250077 DOI: 10.1093/gbe/evac093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Ribonuclease (RNase) T2 genes are found widely in both eukaryotes and prokaryotes, and genes from this family have been revealed to have various functions in plants. In particular, S-RNase is known to be the female determinant in the S-RNase-based gametophytic self-incompatibility (GSI) system. However, the origin and evolution of the RNase T2 gene family and GSI system are not well understood. In this study, 785 RNase T2 genes were identified in 81 sequenced plant genomes representing broad-scale diversity and divided into three subgroups (Class I, II, and III) based on phylogenetic and synteny network analysis. Class I was found to be of ancient origin and to emerge in green algae, Class II was shown to originate with the appearance of angiosperms, while Class III was discovered to be eudicot-specific. Each of the three major classes could be further classified into several subclasses of which some subclasses were found to be lineage-specific. Furthermore, duplication, deletion, or inactivation of the S/S-like-locus was revealed to be linked to repeated loss and gain of self-incompatibility in different species from distantly related plant families with GSI. Finally, the origin and evolutionary history of S-locus in Rosaceae species was unraveled with independent loss and gain of S-RNase occurred in different subfamilies of Rosaceae. Our findings provide insights into the origin and evolution of the RNase T2 family and the GSI system in plants.
Collapse
Affiliation(s)
- Shouzheng Lv
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Qiao
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qionghou Li
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Juyou Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| |
Collapse
|
39
|
Potente G, Léveillé-Bourret É, Yousefi N, Choudhury RR, Keller B, Diop SI, Duijsings D, Pirovano W, Lenhard M, Szövényi P, Conti E. Comparative Genomics Elucidates the Origin of a Supergene Controlling Floral Heteromorphism. Mol Biol Evol 2022; 39:msac035. [PMID: 35143659 PMCID: PMC8859637 DOI: 10.1093/molbev/msac035] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Supergenes are nonrecombining genomic regions ensuring the coinheritance of multiple, coadapted genes. Despite the importance of supergenes in adaptation, little is known on how they originate. A classic example of supergene is the S locus controlling heterostyly, a floral heteromorphism occurring in 28 angiosperm families. In Primula, heterostyly is characterized by the cooccurrence of two complementary, self-incompatible floral morphs and is controlled by five genes clustered in the hemizygous, ca. 300-kb S locus. Here, we present the first chromosome-scale genome assembly of any heterostylous species, that of Primula veris (cowslip). By leveraging the high contiguity of the P. veris assembly and comparative genomic analyses, we demonstrated that the S-locus evolved via multiple, asynchronous gene duplications and independent gene translocations. Furthermore, we discovered a new whole-genome duplication in Ericales that is specific to the Primula lineage. We also propose a mechanism for the origin of S-locus hemizygosity via nonhomologous recombination involving the newly discovered two pairs of CFB genes flanking the S locus. Finally, we detected only weak signatures of degeneration in the S locus, as predicted for hemizygous supergenes. The present study provides a useful resource for future research addressing key questions on the evolution of supergenes in general and the S locus in particular: How do supergenes arise? What is the role of genome architecture in the evolution of complex adaptations? Is the molecular architecture of heterostyly supergenes across angiosperms similar to that of Primula?
Collapse
Affiliation(s)
- Giacomo Potente
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- BaseClear BV, Leiden, The Netherlands
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Étienne Léveillé-Bourret
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Canada
| | - Narjes Yousefi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Rimjhim Roy Choudhury
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Barbara Keller
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Seydina Issa Diop
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- BaseClear BV, Leiden, The Netherlands
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | | | | | - Michael Lenhard
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Elena Conti
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| |
Collapse
|
40
|
Hickerson NM, Samuel MA. Stylar steroids: Brassinosteroids regulate pistil development and self-incompatibility in Primula. Curr Biol 2022; 32:R135-R137. [DOI: 10.1016/j.cub.2021.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Zhao H, Zhang Y, Zhang H, Song Y, Zhao F, Zhang Y, Zhu S, Zhang H, Zhou Z, Guo H, Li M, Li J, Gao Q, Han Q, Huang H, Copsey L, Li Q, Chen H, Coen E, Zhang Y, Xue Y. Origin, loss, and regain of self-incompatibility in angiosperms. THE PLANT CELL 2022; 34:579-596. [PMID: 34735009 PMCID: PMC8774079 DOI: 10.1093/plcell/koab266] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/26/2021] [Indexed: 06/02/2023]
Abstract
The self-incompatibility (SI) system with the broadest taxonomic distribution in angiosperms is based on multiple S-locus F-box genes (SLFs) tightly linked to an S-RNase termed type-1. Multiple SLFs collaborate to detoxify nonself S-RNases while being unable to detoxify self S-RNases. However, it is unclear how such a system evolved, because in an ancestral system with a single SLF, many nonself S-RNases would not be detoxified, giving low cross-fertilization rates. In addition, how the system has been maintained in the face of whole-genome duplications (WGDs) or lost in other lineages remains unclear. Here we show that SLFs from a broad range of species can detoxify S-RNases from Petunia with a high detoxification probability, suggestive of an ancestral feature enabling cross-fertilization and subsequently modified as additional SLFs evolved. We further show, based on its genomic signatures, that type-1 was likely maintained in many lineages, despite WGD, through deletion of duplicate S-loci. In other lineages, SI was lost either through S-locus deletions or by retaining duplications. Two deletion lineages regained SI through type-2 (Brassicaceae) or type-4 (Primulaceae), and one duplication lineage through type-3 (Papaveraceae) mechanisms. Thus, our results reveal a highly dynamic process behind the origin, maintenance, loss, and regain of SI.
Collapse
Affiliation(s)
- Hong Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Yanzhai Song
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Zhao
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu’e Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Sihui Zhu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Centre for Bioinformation, Beijing 100101, China
| | - Hongkui Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Centre for Bioinformation, Beijing 100101, China
| | - Zhendiao Zhou
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Centre for Bioinformation, Beijing 100101, China
| | - Han Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaomiao Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhui Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Qianqian Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaqiu Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Qun Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Hua Chen
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Centre for Bioinformation, Beijing 100101, China
| | | | - Yijing Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and the Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Centre for Bioinformation, Beijing 100101, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
42
|
Zhang W, Hu YF, He X, Zhou W, Shao JW. Evolution of Autonomous Selfing in Marginal Habitats: Spatiotemporal Variation in the Floral Traits of the Distylous Primula wannanensis. FRONTIERS IN PLANT SCIENCE 2021; 12:781281. [PMID: 34975966 PMCID: PMC8716950 DOI: 10.3389/fpls.2021.781281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/09/2021] [Indexed: 06/08/2023]
Abstract
Outcrossing plant species are more likely to exhibit autonomous selfing in marginal habitats to ensure reproduction under conditions of limited pollinator and/or mate availability. Distyly is a classical paradigm that promotes outcrossing; however, little is known about the variation in floral traits associated with distylous syndrome in marginal populations. In this study, we compared the variation in floral traits including stigma and anther height, corolla tube length, herkogamy, and corolla diameter between the central and peripheral populations of the distylous Primula wannanensis, and assessed the variation of floral traits at early and late florescence stages for each population. To evaluate the potential consequences of the variation in floral traits on the mating system, we investigated seed set in each population under both open-pollinated and pollinator-excluded conditions. The flower size of both short- and long-styled morphs was significantly reduced in late-opening flowers compared with early opening flowers in both central and peripheral populations. Sex-organ reciprocity was perfect in early opening flowers; however, it was largely weakened in the late-opening flowers of peripheral populations compared with central populations. Of these flowers, disproportionate change in stigma height (elongated in S-morph and shortened in L-morph) was the main cause of reduced herkogamy, and seed set was fairly high under pollinator-excluded condition. Our results provide empirical support for the hypothesis on the evolution of delayed autonomous selfing in marginal populations of distylous species. Unsatisfactory pollinator service is likely to have promoted reproductive assurance of distylous plants with largely reduced herkogamy mimicking "homostyles."
Collapse
Affiliation(s)
- Wei Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, China
- Provincial Key Laboratory of Conservation and Utilization of Biological Resources, Wuhu, China
| | - Ying Feng Hu
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Xiao He
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Wei Zhou
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, China
| | - Jian Wen Shao
- College of Life Sciences, Anhui Normal University, Wuhu, China
- Provincial Key Laboratory of Conservation and Utilization of Biological Resources, Wuhu, China
| |
Collapse
|
43
|
Huu CN, Plaschil S, Himmelbach A, Kappel C, Lenhard M. Female self-incompatibility type in heterostylous Primula is determined by the brassinosteroid-inactivating cytochrome P450 CYP734A50. Curr Biol 2021; 32:671-676.e5. [PMID: 34906354 DOI: 10.1016/j.cub.2021.11.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/15/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
Most flowering plants are hermaphrodites, with flowers having both male and female reproductive organs. One widespread adaptation to limit self-fertilization is self-incompatibility (SI), where self-pollen fails to fertilize ovules.1,2 In homomorphic SI, many morphologically indistinguishable mating types are found, although in heteromorphic SI, the two or three mating types are associated with different floral morphologies.3-6 In heterostylous Primula, a hemizygous supergene determines a short-styled S-morph and a long-styled L-morph, corresponding to two different mating types, and full seed set only results from intermorph crosses.7-9 Style length is controlled by the brassinosteroid (BR)-inactivating cytochrome P450 CYP734A50,10 yet it remains unclear what defines the male and female incompatibility types. Here, we show that CYP734A50 also determines the female incompatibility type. Inactivating CYP734A50 converts short S-morph styles into long styles with the same incompatibility behavior as L-morph styles, and this effect can be mimicked by exogenous BR treatment. In vitro responses of S- and L-morph pollen grains and pollen tubes to increasing BR levels could only partly explain their different in vivo behavior, suggesting both direct and indirect effects of the different BR levels in S- versus L-morph stigmas and styles in controlling pollen performance. This BR-mediated SI provides a novel mechanism for preventing self-fertilization. The joint control of morphology and SI by CYP734A50 has important implications for the evolutionary buildup of the heterostylous syndrome and provides a straightforward explanation for why essentially all of the derived self-compatible homostylous Primula species are long homostyles.11.
Collapse
Affiliation(s)
- Cuong Nguyen Huu
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Sylvia Plaschil
- Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Horticultural Crops, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Corrensstrasse 3, 06466 Stadt Seeland, Germany
| | - Christian Kappel
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Michael Lenhard
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
44
|
Ding B, Li J, Gurung V, Lin Q, Sun X, Yuan YW. The leaf polarity factors SGS3 and YABBYs regulate style elongation through auxin signaling in Mimulus lewisii. THE NEW PHYTOLOGIST 2021; 232:2191-2206. [PMID: 34449905 DOI: 10.1111/nph.17702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Style length is a major determinant of breeding strategies in flowering plants and can vary dramatically between and within species. However, little is known about the genetic and developmental control of style elongation. We characterized the role of two classes of leaf adaxial-abaxial polarity factors, SUPPRESSOR OF GENE SILENCING3 (SGS3) and the YABBY family transcription factors, in the regulation of style elongation in Mimulus lewisii. We also examined the spatiotemporal patterns of auxin response during style development. Loss of SGS3 function led to reduced style length via limiting cell division, and downregulation of YABBY genes by RNA interference resulted in shorter styles by decreasing both cell division and cell elongation. We discovered an auxin response minimum between the stigma and ovary during the early stages of pistil development that marks style differentiation. Subsequent redistribution of auxin response to this region was correlated with style elongation. Auxin response was substantially altered when both SGS3 and YABBY functions were disrupted. We suggest that auxin signaling plays a central role in style elongation and that the way in which auxin signaling controls the different cell division and elongation patterns underpinning natural style length variation is a major question for future research.
Collapse
Affiliation(s)
- Baoqing Ding
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Jingjian Li
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Vandana Gurung
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Qiaoshan Lin
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Xuemei Sun
- Qinghai Key Laboratory of Genetics and Physiology of Vegetables, Qinghai University, Xining, 810008, China
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
45
|
Pistil Mating Type and Morphology Are Mediated by the Brassinosteroid Inactivating Activity of the S-Locus Gene BAHD in Heterostylous Turnera Species. Int J Mol Sci 2021; 22:ijms221910603. [PMID: 34638969 PMCID: PMC8509066 DOI: 10.3390/ijms221910603] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 01/05/2023] Open
Abstract
Heterostyly is a breeding system that promotes outbreeding through a combination of morphological and physiological floral traits. In Turnera these traits are governed by a single, hemizygous S-locus containing just three genes. We report that the S-locus gene, BAHD, is mutated and encodes a severely truncated protein in a self-compatible long homostyle species. Further, a self-compatible long homostyle mutant possesses a T. krapovickasii BAHD allele with a point mutation in a highly conserved domain of BAHD acyl transferases. Wild type and mutant TkBAHD alleles were expressed in Arabidopsis to assay for brassinosteroid (BR) inactivating activity. The wild type but not mutant allele caused dwarfism, consistent with the wild type possessing, but the mutant allele having lost, BR inactivating activity. To investigate whether BRs act directly in self-incompatibility, BRs were added to in vitro pollen cultures of the two mating types. A small morph specific stimulatory effect on pollen tube growth was found with 5 µM brassinolide, but no genotype specific inhibition was observed. These results suggest that BAHD acts pleiotropically to mediate pistil length and physiological mating type through BR inactivation, and that in regard to self-incompatibility, BR acts by differentially regulating gene expression in pistils, rather than directly on pollen.
Collapse
|
46
|
Ranavat S, Becher H, Newman MF, Gowda V, Twyford AD. A Draft Genome of the Ginger Species Alpinia nigra and New Insights into the Genetic Basis of Flexistyly. Genes (Basel) 2021; 12:1297. [PMID: 34573279 PMCID: PMC8468202 DOI: 10.3390/genes12091297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022] Open
Abstract
Angiosperms possess various strategies to ensure reproductive success, such as stylar polymorphisms that encourage outcrossing. Here, we investigate the genetic basis of one such dimorphism that combines both temporal and spatial separation of sexual function, termed flexistyly. It is a floral strategy characterised by the presence of two morphs that differ in the timing of stylar movement. We performed a de novo assembly of the genome of Alpinia nigra using high-depth genomic sequencing. We then used Pool-seq to identify candidate regions for flexistyly based on allele frequency or coverage differences between pools of anaflexistylous and cataflexistylous morphs. The final genome assembly size was 2 Gb, and showed no evidence of recent polyploidy. The Pool-seq did not reveal large regions with high FST values, suggesting large structural chromosomal polymorphisms are unlikely to underlie differences between morphs. Similarly, no region had a 1:2 mapping depth ratio which would be indicative of hemizygosity. We propose that flexistyly is governed by a small genomic region that might be difficult to detect with Pool-seq, or a complex genomic region that proved difficult to assemble. Our genome will be a valuable resource for future studies of gingers, and provides the first steps towards characterising this complex floral phenotype.
Collapse
Affiliation(s)
- Surabhi Ranavat
- Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; (H.B.); (A.D.T.)
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK;
| | - Hannes Becher
- Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; (H.B.); (A.D.T.)
| | - Mark F. Newman
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK;
| | - Vinita Gowda
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India;
| | - Alex D. Twyford
- Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; (H.B.); (A.D.T.)
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK;
| |
Collapse
|
47
|
Wang XJ, Barrett SCH, Zhong L, Wu ZK, Li DZ, Wang H, Zhou W. The Genomic Selfing Syndrome Accompanies the Evolutionary Breakdown of Heterostyly. Mol Biol Evol 2021; 38:168-180. [PMID: 32761213 PMCID: PMC7782863 DOI: 10.1093/molbev/msaa199] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The evolutionary transition from outcrossing to selfing can have important genomic consequences. Decreased effective population size and the reduced efficacy of selection are predicted to play an important role in the molecular evolution of the genomes of selfing species. We investigated evidence for molecular signatures of the genomic selfing syndrome using 66 species of Primula including distylous (outcrossing) and derived homostylous (selfing) taxa. We complemented our comparative analysis with a microevolutionary study of P. chungensis, which is polymorphic for mating system and consists of both distylous and homostylous populations. We generated chloroplast and nuclear genomic data sets for distylous, homostylous, and distylous–homostylous species and identified patterns of nonsynonymous to synonymous divergence (dN/dS) and polymorphism (πN/πS) in species or lineages with contrasting mating systems. Our analysis of coding sequence divergence and polymorphism detected strongly reduced genetic diversity and heterozygosity, decreased efficacy of purifying selection, purging of large-effect deleterious mutations, and lower rates of adaptive evolution in samples from homostylous compared with distylous populations, consistent with theoretical expectations of the genomic selfing syndrome. Our results demonstrate that self-fertilization is a major driver of molecular evolutionary processes with genomic signatures of selfing evident in both old and relatively young homostylous populations.
Collapse
Affiliation(s)
- Xin-Jia Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Li Zhong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Kun Wu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - De-Zhu Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hong Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wei Zhou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
48
|
Gutiérrez-Valencia J, Hughes PW, Berdan EL, Slotte T. The Genomic Architecture and Evolutionary Fates of Supergenes. Genome Biol Evol 2021; 13:6178796. [PMID: 33739390 PMCID: PMC8160319 DOI: 10.1093/gbe/evab057] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 12/25/2022] Open
Abstract
Supergenes are genomic regions containing sets of tightly linked loci that control multi-trait phenotypic polymorphisms under balancing selection. Recent advances in genomics have uncovered significant variation in both the genomic architecture as well as the mode of origin of supergenes across diverse organismal systems. Although the role of genomic architecture for the origin of supergenes has been much discussed, differences in the genomic architecture also subsequently affect the evolutionary trajectory of supergenes and the rate of degeneration of supergene haplotypes. In this review, we synthesize recent genomic work and historical models of supergene evolution, highlighting how the genomic architecture of supergenes affects their evolutionary fate. We discuss how recent findings on classic supergenes involved in governing ant colony social form, mimicry in butterflies, and heterostyly in flowering plants relate to theoretical expectations. Furthermore, we use forward simulations to demonstrate that differences in genomic architecture affect the degeneration of supergenes. Finally, we discuss implications of the evolution of supergene haplotypes for the long-term fate of balanced polymorphisms governed by supergenes.
Collapse
Affiliation(s)
- Juanita Gutiérrez-Valencia
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - P William Hughes
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - Emma L Berdan
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| |
Collapse
|
49
|
Keller B, Ganz R, Mora-Carrera E, Nowak MD, Theodoridis S, Koutroumpa K, Conti E. Asymmetries of reproductive isolation are reflected in directionalities of hybridization: integrative evidence on the complexity of species boundaries. THE NEW PHYTOLOGIST 2021; 229:1795-1809. [PMID: 32761901 DOI: 10.1111/nph.16849] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/23/2020] [Indexed: 05/26/2023]
Abstract
The complex nature of species boundaries has been a central topic in evolutionary biology ever since Darwin. Despite numerous separate studies on reproductive isolation and hybridization, their relationship remains underinvestigated. Are the strengths and asymmetries of reproductive barriers reflected in the extent and directionalities of interspecific genetic exchange? We combined field, experimental, and molecular data to quantify strengths and asymmetries of sympatric reproductive barriers and hybridization between florally heteromorphic primroses. We also assessed whether generalist pollinators discriminate between different floral cues and contribute to reproductive isolation, a long-debated topic. Sympatric reproductive isolation is high but incomplete, and most phenotypic intermediates are genetic F1 hybrids, whereas backcrosses are rare, revealing low interspecific gene flow. Species integrity rests on multiple barriers, but ethological isolation is among the strongest, demonstrating that even generalist pollinators crucially contribute to the maintenance of species boundaries. Furthermore, reproductive barriers are weaker for Primula veris and short-styled plants, results corroborated by molecular data. Thus, in florally heteromorphic systems, both species- and morph-dependent asymmetries affect permeability of species boundaries. Our study illustrates how the interactions between complex floral syndromes and pollinators shape species boundaries in unique, previously undescribed ways.
Collapse
Affiliation(s)
- Barbara Keller
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland
| | - Rita Ganz
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland
| | - Emiliano Mora-Carrera
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland
| | - Michael D Nowak
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland
| | - Spyros Theodoridis
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland
| | - Konstantina Koutroumpa
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland
| | - Elena Conti
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland
| |
Collapse
|
50
|
Cao HP, He YT, Zhong L, Wang XJ, Barrett SCH, Wang H, Li DZ, Zhou W. Characterization of 30 microsatellite markers for distylous Primula denticulata (Primulaceae) using HiSeq sequencing. Genes Genet Syst 2020; 95:275-279. [PMID: 33328391 DOI: 10.1266/ggs.20-00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Primula denticulata exhibits considerable variation in floral morphology and flowering phenology along elevational gradients in SW China. We isolated 30 microsatellite markers from P. denticulata to facilitate further investigation of population genetics and floral evolution in this species. We used the HiSeq X-Ten sequencing system to develop a set of markers, and measured polymorphism and genetic diversity in a sample of 72 individuals from three natural populations of P. denticulata subsp. denticulata. The markers displayed relatively high polymorphism, with the number of alleles ranging from two to seven (mean = 3.567). The observed and expected heterozygosity ranged from 0 to 1.000 and 0.041 to 0.702, respectively. Twenty-eight of the loci were also successfully amplified in P. denticulata subsp. sinodenticulata. The microsatellite markers we have identified will provide valuable tools for investigations of the population genetic structure, mating systems and phylogeography of the P. denticulata complex, and will help to address questions concerning the ecological and genetic mechanisms responsible for the evolution of reproductive traits in the species.
Collapse
Affiliation(s)
- Hao-Pu Cao
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences.,School of Life Science, Yunnan University
| | - Yu-Ting He
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| | - Li Zhong
- University of Chinese Academy of Sciences.,Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences
| | - Xin-Jia Wang
- University of Chinese Academy of Sciences.,Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences
| | | | - Hong Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences
| | - De-Zhu Li
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences
| | - Wei Zhou
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences
| |
Collapse
|