1
|
Liu Z, Guo Y, Zhang Y, Gao Y, Ning B. Metabolic reprogramming of astrocytes: Emerging roles of lactate. Neural Regen Res 2026; 21:421-432. [PMID: 39688570 DOI: 10.4103/nrr.nrr-d-24-00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/25/2024] [Indexed: 12/18/2024] Open
Abstract
Lactate serves as a key energy metabolite in the central nervous system, facilitating essential brain functions, including energy supply, signaling, and epigenetic modulation. Moreover, it links epigenetic modifications with metabolic reprogramming. Nonetheless, the specific mechanisms and roles of this connection in astrocytes remain unclear. Therefore, this review aims to explore the role and specific mechanisms of lactate in the metabolic reprogramming of astrocytes in the central nervous system. The close relationship between epigenetic modifications and metabolic reprogramming was discussed. Therapeutic strategies for targeting metabolic reprogramming in astrocytes in the central nervous system were also outlined to guide future research in central nervous system diseases. In the nervous system, lactate plays an essential role. However, its mechanism of action as a bridge between metabolic reprogramming and epigenetic modifications in the nervous system requires future investigation. The involvement of lactate in epigenetic modifications is currently a hot research topic, especially in lactylation modification, a key determinant in this process. Lactate also indirectly regulates various epigenetic modifications, such as N6-methyladenosine, acetylation, ubiquitination, and phosphorylation modifications, which are closely linked to several neurological disorders. In addition, exploring the clinical applications and potential therapeutic strategies of lactic acid provides new insights for future neurological disease treatments.
Collapse
Affiliation(s)
- Zeyu Liu
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Yijian Guo
- Department of Spinal Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Ying Zhang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Yulei Gao
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Bin Ning
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
- Department of Spinal Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
2
|
Schoknecht K, Baeza-Lehnert F, Hirrlinger J, Dreier JP, Eilers J. Spreading depolarizations exhaust neuronal ATP in a model of cerebral ischemia. Proc Natl Acad Sci U S A 2025; 122:e2415358122. [PMID: 40339120 DOI: 10.1073/pnas.2415358122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/08/2025] [Indexed: 05/10/2025] Open
Abstract
Spreading depolarizations (SDs) have been identified in various brain pathologies. SDs increase the cerebral energy demand and, concomitantly, oxygen consumption, which indicates enhanced synthesis of adenosine triphosphate (ATP) by oxidative phosphorylation. Therefore, SDs are considered particularly detrimental during reduced supply of oxygen and glucose. However, measurements of intracellular neuronal ATP ([ATP]i), ultimately reporting the balance of ATP synthesis and consumption during SDs, have not yet been conducted. Here, we investigated neuronal ATP homeostasis during SDs using two-photon imaging in acute brain slices from adult mice expressing the ATP sensor ATeam1.03YEMK in neurons. SDs were induced by application of potassium chloride or by oxygen and glucose deprivation (OGD) and detected by recording the local field potential, extracellular potassium, as well as the intrinsic optical signal. We found that, in the presence of oxygen and glucose, SDs were accompanied by a substantial but transient drop in neuronal ATP sensor signals, corresponding to a drop in ATP. OGD, which prior to SDs was accompanied by only a slight reduction in ATP signals, led to a large, terminal drop in ATP signals during SDs. Subsequently, we investigated whether neurons could still regenerate ATP if oxygen and glucose were promptly resupplied following SD detection, and show that ATP depletion was essentially reversible in most cells. Our findings indicate that SDs are accompanied by a substantial increase in ATP consumption beyond production. This, under conditions that mimic reduced blood supply, leads to a breakdown of [ATP]i. Therefore, our findings support therapeutic strategies targeting SDs after cerebral ischemia.
Collapse
Affiliation(s)
- Karl Schoknecht
- Carl-Ludwig-Institute for Physiology, Medical Faculty, Leipzig University, Leipzig 04103, Germany
| | - Felipe Baeza-Lehnert
- Carl-Ludwig-Institute for Physiology, Medical Faculty, Leipzig University, Leipzig 04103, Germany
| | - Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, Medical Faculty, Leipzig University, Leipzig 04103, Germany
- Department of Neurogenetics, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Jens P Dreier
- Centre for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- Bernstein Centre for Computational Neuroscience Berlin, Berlin 10115, Germany
- Einstein Centre for Neurosciences Berlin, Berlin 10117, Germany
| | - Jens Eilers
- Carl-Ludwig-Institute for Physiology, Medical Faculty, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
3
|
Peng CS, Zhang Y, Liu Q, Marti GE, Huang YWA, Südhof TC, Cui B, Chu S. Nanometer-resolution tracking of single cargo reveals dynein motor mechanisms. Nat Chem Biol 2025; 21:648-656. [PMID: 39090313 PMCID: PMC11785820 DOI: 10.1038/s41589-024-01694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Cytoplasmic dynein is essential for intracellular transport. Despite extensive in vitro characterizations, how the dynein motors transport vesicles by processive steps in live cells remains unclear. To dissect the molecular mechanisms of dynein, we develop optical probes that enable long-term single-particle tracking in live cells with high spatiotemporal resolution. We find that the number of active dynein motors transporting cargo switches stochastically between one and five dynein motors during long-range transport in neuronal axons. Our very bright optical probes allow the observation of individual molecular steps. Strikingly, these measurements reveal that the dwell times between steps are controlled by two temperature-dependent rate constants in which two ATP molecules are hydrolyzed sequentially during each dynein step. Thus, our observations uncover a previously unknown chemomechanical cycle of dynein-mediated cargo transport in living cells.
Collapse
Affiliation(s)
- Chunte Sam Peng
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yunxiang Zhang
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Qian Liu
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - G Edward Marti
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Yu-Wen Alvin Huang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Steven Chu
- Department of Physics, Stanford University, Stanford, CA, USA.
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Moros FV, Amiet D, Meister RM, von Faber-Castell A, Wyss M, Saab AS, Zbinden P, Weber B, Ravotto L. A low-cost FPGA-based approach for pile-up corrected high-speed in vivo FLIM imaging. NEUROPHOTONICS 2025; 12:025009. [PMID: 40331236 PMCID: PMC12052397 DOI: 10.1117/1.nph.12.2.025009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025]
Abstract
Significance Intensity-based two-photon microscopy is a cornerstone of neuroscience research but lacks the ability to measure concentrations, a pivotal task for longitudinal studies and quantitative comparisons. Fluorescence lifetime imaging (FLIM) based on time-correlated single photon counting (TCSPC) can overcome those limits but suffers from "pile-up" distortions at high photon count rates, severely limiting acquisition speed. Aim We introduce the "laser period blind time" (LPBT) method to correct pile-up distortions in photon counting electronics, enabling reliable low-cost TCSPC-FLIM at high count rates. Approach Using a realistic simulation of the TCSPC data collection, we evaluated the LPBT method's performance in silico. The correction was then implemented on low-cost hardware based on a field programable gate array and validated using in vitro, ex vivo, and in vivo measurements. Results The LBPT approach achieves < 3 % error in lifetime measurements at count rates more than 10 times higher than traditional limits, allowing robust FLIM imaging of subsecond metabolite dynamics with subcellular resolution. Conclusions We enable high-precision, cost-effective FLIM imaging at acquisition speeds comparable with state-of-the-art commercial systems, facilitating the adoption of FLIM in neuroscience and other fields of research needing robust quantitative live imaging solutions.
Collapse
Affiliation(s)
- Felipe Velasquez Moros
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
- University and ETH Zurich, Neuroscience Center Zurich, Zurich, Switzerland
| | - Dorian Amiet
- OST – Eastern Switzerland University of Applied Sciences, IMES Institute for Microelectronics, Embedded Systems and Sensorics, Rapperswil, Switzerland
| | - Rachel M. Meister
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
- University and ETH Zurich, Neuroscience Center Zurich, Zurich, Switzerland
| | - Alexandra von Faber-Castell
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
- University and ETH Zurich, Neuroscience Center Zurich, Zurich, Switzerland
| | - Matthias Wyss
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
- University and ETH Zurich, Neuroscience Center Zurich, Zurich, Switzerland
| | - Aiman S. Saab
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
- University and ETH Zurich, Neuroscience Center Zurich, Zurich, Switzerland
| | - Paul Zbinden
- OST – Eastern Switzerland University of Applied Sciences, IMES Institute for Microelectronics, Embedded Systems and Sensorics, Rapperswil, Switzerland
| | - Bruno Weber
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
- University and ETH Zurich, Neuroscience Center Zurich, Zurich, Switzerland
| | - Luca Ravotto
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
- University and ETH Zurich, Neuroscience Center Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Sasmita AO, Ong EC, Nazarenko T, Mao S, Komarek L, Thalmann M, Hantakova V, Spieth L, Berghoff SA, Barr HJ, Hingerl M, Börensen F, Hirrlinger J, Simons M, Stevens B, Depp C, Nave KA. Parental origin of transgene modulates amyloid-β plaque burden in the 5xFAD mouse model of Alzheimer's disease. Neuron 2025; 113:838-846.e4. [PMID: 39837326 DOI: 10.1016/j.neuron.2024.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/18/2024] [Accepted: 12/23/2024] [Indexed: 01/23/2025]
Abstract
In Alzheimer's disease (AD) research, the 5xFAD mouse model is commonly used as a heterozygote crossed with other genetic models to study AD pathology. We investigated whether the parental origin of the 5xFAD transgene affects plaque deposition. Using quantitative light-sheet microscopy, we found that paternal inheritance of the transgene led to a 2-fold higher plaque burden compared with maternal inheritance, a finding consistent across multiple 5xFAD colonies. This effect was not due to gestation in or rearing by 5xFAD females. Immunoblotting suggested that transgenic inheritance modulates transgenic protein expression, potentially due to genomic imprinting of the Thy1.2 promoter. Surprisingly, fewer than 20% of 5xFAD studies report breeding schemes, suggesting that this factor might confound previous findings. Our data highlight a significant determinant of plaque burden in 5xFAD mice and underscore the importance of reporting the parental origin of the transgene to improve scientific rigor and reproducibility in AD research.
Collapse
Affiliation(s)
- Andrew Octavian Sasmita
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; International Max Planck Research School for Neurosciences, Göttingen, Germany.
| | - Erinne Cherisse Ong
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; International Max Planck Research School for Neurosciences, Göttingen, Germany
| | - Taisiia Nazarenko
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; International Max Planck Research School for Neurosciences, Göttingen, Germany; Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Shuying Mao
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lina Komarek
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Maik Thalmann
- Department of English Philology, Georg-August University, Göttingen, Germany
| | - Veronika Hantakova
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lena Spieth
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Stefan A Berghoff
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Helena J Barr
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maximilian Hingerl
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Friederike Börensen
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Johannes Hirrlinger
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany; Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Constanze Depp
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
6
|
Filogonio R, Saunders SE, Gray M, Viteri JA, Santin JM. Plasticity in voltage-gated ion channels following overwintering in respiratory motoneurons of American bullfrogs. J Exp Biol 2025; 228:jeb249687. [PMID: 39964211 PMCID: PMC12050086 DOI: 10.1242/jeb.249687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/04/2025] [Indexed: 03/25/2025]
Abstract
Many animals undergo prolonged dormancy periods to survive cold or dry environments. While humans and most laboratory-based mammals experience a loss of neuromuscular function during inactivity, hibernators possess physiological mechanisms to mitigate this loss. The American bullfrog provides an extreme model of this phenomenon, as brainstem circuits that generate breathing are completely inactive during underwater hibernation, during which motoneurons employ various types of synaptic plasticity to ensure adequate respiratory motor output in the spring. In addition to synapses, voltage-gated ion channels may undergo plasticity to boost neuronal output. Therefore, we hypothesized that motoneuron excitability would also be enhanced after hibernation via alterations in voltage-gated ion channels. We used whole-cell patch-clamp electrophysiology to measure membrane excitability and activities of several voltage-gated channels (K+, Ca2+, Na+) from motoneurons that innervate muscles of the buccal pump (hypoglossal) and glottal dilator (vagal). Surprisingly, compared with controls, overwintered hypoglossal motoneurons displayed multiple indices of reduced excitability (hyperpolarized resting membrane potential, lower firing rates, greater lag to first spike). Mechanistically, this occurred via enhanced voltage-gated K+ and reduced Ca2+ channel activity. In contrast, vagal motoneuron excitability was unaltered, but exhibited altered ion channel profiles which seemed to stabilize neuronal output, involving either reduced Ca2+ or K+ currents. Therefore, different motoneurons of the same neuromuscular behavior respond differently to overwintering by altering the function of voltage-gated channels. We suggest divergent responses may reflect different energetic demands of these neurons and/or their specific contribution to breathing and other orofacial behaviors.
Collapse
Affiliation(s)
- Renato Filogonio
- Division of Biological Sciences, University of Missouri, Columbia, MO 65201, USA
| | - Sandy E. Saunders
- Division of Biological Sciences, University of Missouri, Columbia, MO 65201, USA
| | - Michael Gray
- Division of Biological Sciences, University of Missouri, Columbia, MO 65201, USA
| | - Jose A. Viteri
- Department of Physical Medicine and Rehabilitation, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Joseph M. Santin
- Division of Biological Sciences, University of Missouri, Columbia, MO 65201, USA
| |
Collapse
|
7
|
Wang Z, Zhao C, Xu S, McCracken S, Apte RS, Williams PR. Energetic diversity in retinal ganglion cells is modulated by neuronal activity and correlates with resilience to degeneration. RESEARCH SQUARE 2025:rs.3.rs-5989609. [PMID: 40162221 PMCID: PMC11952644 DOI: 10.21203/rs.3.rs-5989609/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Neuronal function requires high energy expenditure that is likely customized to meet specific signaling demands. However, little is known about diversity of metabolic homeostasis among divergently-functioning types of neurons. To this end, we examined retinal ganglion cells (RGCs), a population of closely related, yet electrophysiologically distinct excitatory projection neurons. Using in vivo 2-photon imaging to measure ATP with single cell resolution, we identified differential homeostatic energy maintenance in the RGC population that correspond to distinct RGC types. In the presence of circuit activity, the most active RGC type (Alpha RGCs), had lower homeostatic ATP levels than other types and exhibited the greatest magnitude of ATP decline when ATP synthesis was inhibited. By simultaneously manipulating circuit activity and mitochondrial function, we found that while oxidative phosphorylation was required to meet ATP demands during circuit activity, it was expendable to maintain resting ATP levels. We also examined ATP signatures associated with survival and injury response after axotomy and report a correlation between low homeostatic ATP and increased survival. In addition, we observed transient ATP increases in RGCs following axon injury. Together, these findings identify diversity of energy handling capabilities of dynamically active neurons with implications for neuronal resilience.
Collapse
Affiliation(s)
- Zelun Wang
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Graduate Program in Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christopher Zhao
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shelly Xu
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sean McCracken
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Graduate Program in Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rajendra S. Apte
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Philip R. Williams
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, US
| |
Collapse
|
8
|
Furukawa K, Ikoma Y, Niino Y, Hiraoka Y, Tanaka K, Miyawaki A, Hirrlinger J, Matsui K. Dynamics of Neuronal and Astrocytic Energy Molecules in Epilepsy. J Neurochem 2025; 169:e70044. [PMID: 40108970 PMCID: PMC11923518 DOI: 10.1111/jnc.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025]
Abstract
The dynamics of energy molecules in the mouse brain during metabolic challenges induced by epileptic seizures were examined. A transgenic mouse line expressing a fluorescence resonance energy transfer (FRET)-based adenosine triphosphate (ATP) sensor, selectively expressed in the cytosol of neurons, was used. An optical fiber was inserted into the hippocampus, and changes in cytosolic ATP concentration were estimated using the fiber photometry method. To induce epileptic neuronal hyperactivity, a train of electrical stimuli was delivered to a bipolar electrode placed alongside the optical fiber. Although maintaining a steady cytosolic ATP concentration is crucial for cell survival, a single episode of epileptic neuronal hyperactivity drastically reduced neuronal ATP levels. Interestingly, the magnitude of ATP reduction did not increase with the exacerbation of epilepsy, but rather decreased. This suggests that the primary consumption of ATP during epileptic neuronal hyperactivity may not be solely directed toward restoring the Na+ and K+ ionic imbalance caused by action potential bursts. Cytosolic ATP concentration reflects the balance between supply and consumption. To investigate the metabolic flux leading to neuronal ATP production, a new FRET-based pyruvate sensor was developed and selectively expressed in the cytosol of astrocytes in transgenic mice. Upon epileptic neuronal hyperactivity, an increase in astrocytic pyruvate concentration was observed. Changes in the supply of energy molecules, such as glucose and oxygen, due to blood vessel constriction or dilation, as well as metabolic alterations in astrocyte function, may contribute to cytosolic ATP dynamics in neurons.
Collapse
Affiliation(s)
- Kota Furukawa
- Super‐network Brain PhysiologyGraduate School of Life Sciences, Tohoku UniversitySendaiJapan
| | - Yoko Ikoma
- Super‐network Brain PhysiologyGraduate School of Life Sciences, Tohoku UniversitySendaiJapan
| | - Yusuke Niino
- Laboratory for Cell Function DynamicsRIKEN Center for Brain ScienceWako‐CityJapan
| | - Yuichi Hiraoka
- Laboratory of Molecular NeuroscienceMedical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo Institute of TechnologyTokyoJapan
- Laboratory of Genome Editing for Biomedical ResearchMedical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo Institute of TechnologyTokyoJapan
| | - Kohichi Tanaka
- Laboratory of Genome Editing for Biomedical ResearchMedical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo Institute of TechnologyTokyoJapan
| | - Atsushi Miyawaki
- Laboratory for Cell Function DynamicsRIKEN Center for Brain ScienceWako‐CityJapan
- Biotechnological Optics Research TeamRIKEN Center for Advanced PhotonicsWako‐CityJapan
| | - Johannes Hirrlinger
- Carl‐Ludwig‐Institute for Physiology, Faculty of MedicineLeipzig UniversityLeipzigGermany
- Department of NeurogeneticsMax‐Planck‐Institute for Multidisciplinary SciencesGöttingenGermany
| | - Ko Matsui
- Super‐network Brain PhysiologyGraduate School of Life Sciences, Tohoku UniversitySendaiJapan
- Super‐network Brain Physiology, Graduate School of MedicineTohoku UniversitySendaiJapan
| |
Collapse
|
9
|
Zhang T, Li XY, Kuang DD, Pan LH, Li QM, Luo JP, Zha XQ. Bone-brain communication mediates the amelioration of Polgonatum cyrtonema Hua polysaccharide on fatigue in chronic sleep-deprived mice. Int J Biol Macromol 2025; 296:139706. [PMID: 39793823 DOI: 10.1016/j.ijbiomac.2025.139706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
This study aimed to investigate the anti-fatigue efficacy and underlying mechanisms of Polygonatum cyrtonema Hua polysaccharide (PCP) in chronic sleep-deprived mice. Following three weeks of oral administration, PCP demonstrated significant efficacy in alleviating fatigue symptoms. This was evidenced by the prolonged swimming and rotarod time in the high-dose group of PCP, which increased by 73 % and 64 %, respectively. Additionally, serum activities of CAT, GSH-Px, and SOD enzymes rose by 53.56 %, 37.69 % and 53.67 %, respectively, while MDA, lactic acid and BUN levels decreased by 22.90 %, 17.48 % and 24.61 %. The crosstalk between bone and brain is crucial for maintaining energy homeostasis. Molecular docking studies indicated a spontaneous and strong mutual binding between PCP and the bone-promoting target protein BMPR1A. Furthermore, it was observed that PCP enhanced osteogenic differentiation via the BMP-2/Smad1 pathway, leading to an upregulation of osteocalcin expression, which in turn regulated neurotransmitter balance and improved central arousal capacity. Moreover, PCP treatment stimulated neurogenesis by activating the CREB/BDNF/Akt signaling cascade, exhibiting neurotrophic effects. Additionally, PCP increased AMPK phosphorylation and destabilized TXNIP, facilitating astrocyte glucose uptake, glycolysis, and lactate conversion to support neuronal activity. These findings suggested that PCP could effectively respond to energy demands through bone-brain crosstalk, ultimately exerting anti-fatigue properties.
Collapse
Affiliation(s)
- Ting Zhang
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Ying Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Dan-Dan Kuang
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| |
Collapse
|
10
|
Wolff C, John D, Winkler U, Hochmuth L, Hirrlinger J, Köhler S. Insulin and leptin acutely modulate the energy metabolism of primary hypothalamic and cortical astrocytes. J Neurochem 2025; 169:e16211. [PMID: 39175305 PMCID: PMC11657920 DOI: 10.1111/jnc.16211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Astrocytes constitute a heterogeneous cell population within the brain, contributing crucially to brain homeostasis and playing an important role in overall brain function. Their function and metabolism are not only regulated by local signals, for example, from nearby neurons, but also by long-range signals such as hormones. Thus, two prominent hormones primarily known for regulating the energy balance of the whole organism, insulin, and leptin, have been reported to also impact astrocytes within the brain. In this study, we investigated the acute regulation of astrocytic metabolism by these hormones in cultured astrocytes prepared from the mouse cortex and hypothalamus, a pivotal region in the context of nutritional regulation. Utilizing genetically encoded, fluorescent nanosensors, the cytosolic concentrations of glucose, lactate, and ATP, along with glycolytic rate and the NADH/NAD+ redox state were measured. Under basal conditions, differences between the two populations of astrocytes were observed for glucose and lactate concentrations as well as the glycolytic rate. Additionally, astrocytic metabolism responded to insulin and leptin in both brain regions, with some unique characteristics for each cell population. Finally, both hormones influenced how cells responded to elevated extracellular levels of potassium ions, a common indicator of neuronal activity. In summary, our study provides evidence that insulin and leptin acutely regulate astrocytic metabolism within minutes. Additionally, while astrocytes from the hypothalamus and cortex share similarities in their metabolism, they also exhibit distinct properties, further underscoring the growing recognition of astrocyte heterogeneity.
Collapse
Affiliation(s)
- Christopher Wolff
- Faculty of MedicineCarl‐Ludwig‐Institute for Physiology, University of LeipzigLeipzigGermany
| | - Dorit John
- Faculty of MedicineCarl‐Ludwig‐Institute for Physiology, University of LeipzigLeipzigGermany
- Medical Department II—Division of Oncology, Gastroenterology, Hepatology and PneumologyUniversity of Leipzig Medical CenterLeipzigGermany
| | - Ulrike Winkler
- Faculty of MedicineCarl‐Ludwig‐Institute for Physiology, University of LeipzigLeipzigGermany
| | - Luise Hochmuth
- Faculty of MedicineCarl‐Ludwig‐Institute for Physiology, University of LeipzigLeipzigGermany
| | - Johannes Hirrlinger
- Faculty of MedicineCarl‐Ludwig‐Institute for Physiology, University of LeipzigLeipzigGermany
- Department of NeurogeneticsMax‐Planck‐Institute for Multidisciplinary SciencesGöttingenGermany
| | - Susanne Köhler
- Faculty of MedicineCarl‐Ludwig‐Institute for Physiology, University of LeipzigLeipzigGermany
- Sächsisches Krankenhaus AltscherbitzClinic for NeurologySchkeuditzGermany
| |
Collapse
|
11
|
Hu X, Zhu Q, Lou T, Hu Q, Li H, Xu Y, Niu X, He L, Huang H, Qiu M, Shen Y, Jia JM, Tao Y. Pan-ErbB inhibition impairs cognition via disrupting myelination and aerobic glycolysis in oligodendrocytes. Proc Natl Acad Sci U S A 2024; 121:e2405152121. [PMID: 39475641 PMCID: PMC11551437 DOI: 10.1073/pnas.2405152121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/25/2024] [Indexed: 11/07/2024] Open
Abstract
White matter (WM) abnormalities are an emerging feature of schizophrenia, yet the underlying pathophysiological mechanisms are largely unknown. Disruption of ErbB signaling, which is essential for peripheral myelination, has been genetically associated with schizophrenia and WM lesions in schizophrenic patients. However, the roles of ErbB signaling in oligodendrocytes remain elusive. Here, we used an in vivo pan-ErbB inhibition strategy and demonstrated the functions of endogenous ErbB receptors in oligodendrocytes. Through analyses of the cellular, histological, biochemical, behavioral, and electrophysiological differences in mice with manipulated ErbB activities in oligodendrocytes at different differentiation stages, we found that ErbB signaling regulates myelination and aerobic glycolysis in oligodendrocytes, and both functions are required for working memory. ErbB inhibition in oligodendrocytes at early differentiation stages induces hypomyelination by suppressing the myelinating capacity of newly formed oligodendrocytes. In contrast, ErbB inhibition in mature oligodendrocytes alters neither myelination nor oligodendrocyte numbers, but accelerates axonal conduction decline under energy stress. Mechanistically, ErbB inhibition attenuates K-Ras activities, leading to the reduced expression of lactate dehydrogenase A that promotes aerobic glycolysis in mature oligodendrocytes. Supplementation of L-lactate restores axonal conduction and working memory capacity that are suppressed by ErbB inhibition in mature oligodendrocytes. These findings emphasize the indispensable roles of ErbB signaling in WM integrity and function and provide insights into the multifaceted contributions of WM abnormalities to cognitive impairment.
Collapse
Affiliation(s)
- Xu Hu
- College of Life Sciences, Zhejiang University, Hangzhou310058, China
- Department of Physiology, School of Medicine, Southeast University, Nanjing210009, China
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing210009, China
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou310024, China
| | - Qingyu Zhu
- Department of Physiology, School of Medicine, Southeast University, Nanjing210009, China
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing210009, China
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Tianjie Lou
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Qianqian Hu
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Huashun Li
- Department of Physiology, School of Medicine, Southeast University, Nanjing210009, China
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing210009, China
| | - Yijia Xu
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Xiaojie Niu
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Li He
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Hao Huang
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Mengsheng Qiu
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Ying Shen
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou310058, China
| | - Jie-Min Jia
- College of Life Sciences, Zhejiang University, Hangzhou310058, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou310024, China
| | - Yanmei Tao
- Department of Physiology, School of Medicine, Southeast University, Nanjing210009, China
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing210009, China
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| |
Collapse
|
12
|
Simons M, Gibson EM, Nave KA. Oligodendrocytes: Myelination, Plasticity, and Axonal Support. Cold Spring Harb Perspect Biol 2024; 16:a041359. [PMID: 38621824 PMCID: PMC11444305 DOI: 10.1101/cshperspect.a041359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The myelination of axons has evolved to enable fast and efficient transduction of electrical signals in the vertebrate nervous system. Acting as an electric insulator, the myelin sheath is a multilamellar membrane structure around axonal segments generated by the spiral wrapping and subsequent compaction of oligodendroglial plasma membranes. These oligodendrocytes are metabolically active and remain functionally connected to the subjacent axon via cytoplasmic-rich myelinic channels for movement of metabolites and macromolecules to and from the internodal periaxonal space under the myelin sheath. Increasing evidence indicates that oligodendrocyte numbers, specifically in the forebrain, and myelin as a dynamic cellular compartment can both respond to physiological demands, collectively referred to as adaptive myelination. This review summarizes our current understanding of how myelin is generated, how its function is dynamically regulated, and how oligodendrocytes support the long-term integrity of myelinated axons.
Collapse
Affiliation(s)
- Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich 80802, Germany
- German Center for Neurodegenerative Diseases, Munich Cluster of Systems Neurology (SyNergy), Institute for Stroke and Dementia Research, Munich 81377, Germany
| | - Erin M Gibson
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford 94305, California, USA
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37075, Germany
| |
Collapse
|
13
|
Asadollahi E, Trevisiol A, Saab AS, Looser ZJ, Dibaj P, Ebrahimi R, Kusch K, Ruhwedel T, Möbius W, Jahn O, Lee JY, Don AS, Khalil MA, Hiller K, Baes M, Weber B, Abel ED, Ballabio A, Popko B, Kassmann CM, Ehrenreich H, Hirrlinger J, Nave KA. Oligodendroglial fatty acid metabolism as a central nervous system energy reserve. Nat Neurosci 2024; 27:1934-1944. [PMID: 39251890 PMCID: PMC11452346 DOI: 10.1038/s41593-024-01749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/05/2024] [Indexed: 09/11/2024]
Abstract
Brain function requires a constant supply of glucose. However, the brain has no known energy stores, except for glycogen granules in astrocytes. In the present study, we report that continuous oligodendroglial lipid metabolism provides an energy reserve in white matter tracts. In the isolated optic nerve from young adult mice of both sexes, oligodendrocytes survive glucose deprivation better than astrocytes. Under low glucose, both axonal ATP levels and action potentials become dependent on fatty acid β-oxidation. Importantly, ongoing oligodendroglial lipid degradation feeds rapidly into white matter energy metabolism. Although not supporting high-frequency spiking, fatty acid β-oxidation in mitochondria and oligodendroglial peroxisomes protects axons from conduction blocks when glucose is limiting. Disruption of the glucose transporter GLUT1 expression in oligodendrocytes of adult mice perturbs myelin homeostasis in vivo and causes gradual demyelination without behavioral signs. This further suggests that the imbalance of myelin synthesis and degradation can underlie myelin thinning in aging and disease.
Collapse
Affiliation(s)
- Ebrahim Asadollahi
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany.
| | - Andrea Trevisiol
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany
- University of Toronto, Sunnybrook Health Sciences Centre, Department of Physical Sciences, North York, Ontario, Canada
| | - Aiman S Saab
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
| | - Zoe J Looser
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
| | - Payam Dibaj
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany
- Center for Rare Diseases Göttingen, Department of Pediatrics and Pediatric Neurology, Georg August University Göttingen, Göttingen, Germany
| | - Reyhane Ebrahimi
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany
| | - Kathrin Kusch
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany
- University of Göttingen Medical School, Institute for Auditory Neuroscience and Inner Ear Lab, Göttingen, Germany
| | - Torben Ruhwedel
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany
| | - Wiebke Möbius
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany
| | - Olaf Jahn
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Neurobiology, Neuroproteomics Group, Göttingen, Germany
- University Medical Center Göttingen, Department of Psychiatry and Psychotherapy, Translational Neuroproteomics Group, Göttingen, Germany
| | - Jun Yup Lee
- School of Medical Sciences and Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Anthony S Don
- School of Medical Sciences and Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Michelle-Amirah Khalil
- Department for Bioinformatics and Biochemistry, Braunschweig Integrated Center of System Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Karsten Hiller
- Department for Bioinformatics and Biochemistry, Braunschweig Integrated Center of System Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Myriam Baes
- Lab of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Bruno Weber
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Naples, Italy
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Brian Popko
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Celia M Kassmann
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany
| | - Hannelore Ehrenreich
- Max Planck Institute for Multidisciplinary Sciences, Clinical Neuroscience, Göttingen, Germany
- Central Institute of Mental Health, Mannheim, Germany
| | - Johannes Hirrlinger
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Klaus-Armin Nave
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany.
| |
Collapse
|
14
|
Späte E, Zhou B, Sun T, Kusch K, Asadollahi E, Siems SB, Depp C, Werner HB, Saher G, Hirrlinger J, Möbius W, Nave KA, Goebbels S. Downregulated expression of lactate dehydrogenase in adult oligodendrocytes and its implication for the transfer of glycolysis products to axons. Glia 2024; 72:1374-1391. [PMID: 38587131 DOI: 10.1002/glia.24533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Oligodendrocytes and astrocytes are metabolically coupled to neuronal compartments. Pyruvate and lactate can shuttle between glial cells and axons via monocarboxylate transporters. However, lactate can only be synthesized or used in metabolic reactions with the help of lactate dehydrogenase (LDH), a tetramer of LDHA and LDHB subunits in varying compositions. Here we show that mice with a cell type-specific disruption of both Ldha and Ldhb genes in oligodendrocytes lack a pathological phenotype that would be indicative of oligodendroglial dysfunctions or lack of axonal metabolic support. Indeed, when combining immunohistochemical, electron microscopical, and in situ hybridization analyses in adult mice, we found that the vast majority of mature oligodendrocytes lack detectable expression of LDH. Even in neurodegenerative disease models and in mice under metabolic stress LDH was not increased. In contrast, at early development and in the remyelinating brain, LDHA was readily detectable in immature oligodendrocytes. Interestingly, by immunoelectron microscopy LDHA was particularly enriched at gap junctions formed between adjacent astrocytes and at junctions between astrocytes and oligodendrocytes. Our data suggest that oligodendrocytes metabolize lactate during development and remyelination. In contrast, for metabolic support of axons mature oligodendrocytes may export their own glycolysis products as pyruvate rather than lactate. Lacking LDH, these oligodendrocytes can also "funnel" lactate through their "myelinic" channels between gap junction-coupled astrocytes and axons without metabolizing it. We suggest a working model, in which the unequal cellular distribution of LDH in white matter tracts facilitates a rapid and efficient transport of glycolysis products among glial and axonal compartments.
Collapse
Affiliation(s)
- Erik Späte
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Baoyu Zhou
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ting Sun
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Ebrahim Asadollahi
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sophie B Siems
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Constanze Depp
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Johannes Hirrlinger
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
15
|
Padamsey Z, Katsanevaki D, Maeso P, Rizzi M, Osterweil EE, Rochefort NL. Sex-specific resilience of neocortex to food restriction. eLife 2024; 12:RP93052. [PMID: 38976495 PMCID: PMC11230624 DOI: 10.7554/elife.93052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Mammals have evolved sex-specific adaptations to reduce energy usage in times of food scarcity. These adaptations are well described for peripheral tissue, though much less is known about how the energy-expensive brain adapts to food restriction, and how such adaptations differ across the sexes. Here, we examined how food restriction impacts energy usage and function in the primary visual cortex (V1) of adult male and female mice. Molecular analysis and RNA sequencing in V1 revealed that in males, but not in females, food restriction significantly modulated canonical, energy-regulating pathways, including pathways associated waith AMP-activated protein kinase, peroxisome proliferator-activated receptor alpha, mammalian target of rapamycin, and oxidative phosphorylation. Moreover, we found that in contrast to males, food restriction in females did not significantly affect V1 ATP usage or visual coding precision (assessed by orientation selectivity). Decreased serum leptin is known to be necessary for triggering energy-saving changes in V1 during food restriction. Consistent with this, we found significantly decreased serum leptin in food-restricted males but no significant change in food-restricted females. Collectively, our findings demonstrate that cortical function and energy usage in female mice are more resilient to food restriction than in males. The neocortex, therefore, contributes to sex-specific, energy-saving adaptations in response to food restriction.
Collapse
Affiliation(s)
- Zahid Padamsey
- Wellcome-MRC Institute of Metabolic Science, University of CambridgeCambridgeUnited Kingdom
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Danai Katsanevaki
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, University of EdinburghEdinburghUnited Kingdom
| | - Patricia Maeso
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Manuela Rizzi
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Emily E Osterweil
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, University of EdinburghEdinburghUnited Kingdom
- Rosamund Stone Zander Translational Neuroscience Center, F.M. Kirby Center, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Nathalie L Rochefort
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
16
|
Tancreda G, Ravera S, Panfoli I. Exploring the Therapeutic Potential: Bioactive Molecules and Dietary Interventions in Multiple Sclerosis Management. Curr Issues Mol Biol 2024; 46:5595-5613. [PMID: 38921006 PMCID: PMC11202103 DOI: 10.3390/cimb46060335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous system, the etiology of which is still unclear. Its hallmarks are inflammation and axonal damage. As a disease primarily impacting younger individuals, the social cost of MS is high. It has been proposed that environmental factors, smoking, and dietary habits acting on a genetic susceptibility play a role in MS. Recent studies indicate that diet can significantly influence the onset and progression of MS. This review delves into the impact of natural bioactive molecules on MS development and explores the dietary interventions that hold promise in managing the disease. Dietary patterns, including ketogenic and Mediterranean diets, are discussed. Theories about the potential mechanistic associations beneath the noted effects are also proposed. Several dietary components and patterns demonstrated the potential for a significant impact on MS. However, extensive prospective clinical trials are necessary to fully understand the role of natural bioactive molecules as disease modifiers in MS.
Collapse
Affiliation(s)
- Gabriele Tancreda
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
| | - Isabella Panfoli
- Department of Pharmacy (DIFAR), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
17
|
Koveal D. Functional principles of genetically encoded fluorescent biosensors for metabolism and their quantitative use. J Neurochem 2024; 168:496-505. [PMID: 37314388 DOI: 10.1111/jnc.15878] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Genetically encoded fluorescent biosensors provide an attractive means of measuring chemical changes in single cells on fast timescales (milliseconds to seconds). While their most prominent application has been in tracking neural activity and neurotransmitter release, there has been growing interest in developing and deploying new versions of these tools to study brain metabolism. However, the careful use of these tools and the interpretation of the data they provide remain challenging. Many biosensors are subject to interferences that can alter sensor responses within a single cell or between cells, producing ambiguous results. This presents a challenge for quantitation and for our ability to accurately interpret sensor responses. This review describes current methods of sensor quantitation, with a focus on cellular interferences that commonly affect sensor performance, ways to avoid false inferences, and recent advances in sensor optimization to make them more robust.
Collapse
Affiliation(s)
- Dorothy Koveal
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
18
|
Peper CJ, Kilgore MD, Jiang Y, Xiu Y, Xia W, Wang Y, Shi M, Zhou D, Dumont AS, Wang X, Liu N. Tracing the path of disruption: 13C isotope applications in traumatic brain injury-induced metabolic dysfunction. CNS Neurosci Ther 2024; 30:e14693. [PMID: 38544365 PMCID: PMC10973562 DOI: 10.1111/cns.14693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/25/2024] [Accepted: 03/12/2024] [Indexed: 05/14/2024] Open
Abstract
Cerebral metabolic dysfunction is a critical pathological hallmark observed in the aftermath of traumatic brain injury (TBI), as extensively documented in clinical investigations and experimental models. An in-depth understanding of the bioenergetic disturbances that occur following TBI promises to reveal novel therapeutic targets, paving the way for the timely development of interventions to improve patient outcomes. The 13C isotope tracing technique represents a robust methodological advance, harnessing biochemical quantification to delineate the metabolic trajectories of isotopically labeled substrates. This nuanced approach enables real-time mapping of metabolic fluxes, providing a window into the cellular energetic state and elucidating the perturbations in key metabolic circuits. By applying this sophisticated tool, researchers can dissect the complexities of bioenergetic networks within the central nervous system, offering insights into the metabolic derangements specific to TBI pathology. Embraced by both animal studies and clinical research, 13C isotope tracing has bolstered our understanding of TBI-induced metabolic dysregulation. This review synthesizes current applications of isotope tracing and its transformative potential in evaluating and addressing the metabolic sequelae of TBI.
Collapse
Affiliation(s)
- Charles J. Peper
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Mitchell D. Kilgore
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Yinghua Jiang
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Yuwen Xiu
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Winna Xia
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Yingjie Wang
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Mengxuan Shi
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Di Zhou
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Aaron S. Dumont
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Xiaoying Wang
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
- Neuroscience Program, Tulane Brain InstituteTulane UniversityNew OrleansLouisianaUSA
| | - Ning Liu
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
- Neuroscience Program, Tulane Brain InstituteTulane UniversityNew OrleansLouisianaUSA
- Tulane University Translational Sciences InstituteNew OrleansLouisianaUSA
| |
Collapse
|
19
|
Fenelon KD, Krause J, Koromila T. Opticool: Cutting-edge transgenic optical tools. PLoS Genet 2024; 20:e1011208. [PMID: 38517915 PMCID: PMC10959397 DOI: 10.1371/journal.pgen.1011208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Only a few short decades have passed since the sequencing of GFP, yet the modern repertoire of transgenically encoded optical tools implies an exponential proliferation of ever improving constructions to interrogate the subcellular environment. A myriad of tags for labeling proteins, RNA, or DNA have arisen in the last few decades, facilitating unprecedented visualization of subcellular components and processes. Development of a broad array of modern genetically encoded sensors allows real-time, in vivo detection of molecule levels, pH, forces, enzyme activity, and other subcellular and extracellular phenomena in ever expanding contexts. Optogenetic, genetically encoded optically controlled manipulation systems have gained traction in the biological research community and facilitate single-cell, real-time modulation of protein function in vivo in ever broadening, novel applications. While this field continues to explosively expand, references are needed to assist scientists seeking to use and improve these transgenic devices in new and exciting ways to interrogate development and disease. In this review, we endeavor to highlight the state and trajectory of the field of in vivo transgenic optical tools.
Collapse
Affiliation(s)
- Kelli D. Fenelon
- Department of Biology, University of Texas at Arlington, Arlington, Texas, United States of America
| | - Julia Krause
- Department of Biology, University of Texas at Arlington, Arlington, Texas, United States of America
| | - Theodora Koromila
- Department of Biology, University of Texas at Arlington, Arlington, Texas, United States of America
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
20
|
Looser ZJ, Faik Z, Ravotto L, Zanker HS, Jung RB, Werner HB, Ruhwedel T, Möbius W, Bergles DE, Barros LF, Nave KA, Weber B, Saab AS. Oligodendrocyte-axon metabolic coupling is mediated by extracellular K + and maintains axonal health. Nat Neurosci 2024; 27:433-448. [PMID: 38267524 PMCID: PMC10917689 DOI: 10.1038/s41593-023-01558-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
The integrity of myelinated axons relies on homeostatic support from oligodendrocytes (OLs). To determine how OLs detect axonal spiking and how rapid axon-OL metabolic coupling is regulated in the white matter, we studied activity-dependent calcium (Ca2+) and metabolite fluxes in the mouse optic nerve. We show that fast axonal spiking triggers Ca2+ signaling and glycolysis in OLs. OLs detect axonal activity through increases in extracellular potassium (K+) concentrations and activation of Kir4.1 channels, thereby regulating metabolite supply to axons. Both pharmacological inhibition and OL-specific inactivation of Kir4.1 reduce the activity-induced axonal lactate surge. Mice lacking oligodendroglial Kir4.1 exhibit lower resting lactate levels and altered glucose metabolism in axons. These early deficits in axonal energy metabolism are associated with late-onset axonopathy. Our findings reveal that OLs detect fast axonal spiking through K+ signaling, making acute metabolic coupling possible and adjusting the axon-OL metabolic unit to promote axonal health.
Collapse
Affiliation(s)
- Zoe J Looser
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Zainab Faik
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Luca Ravotto
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Henri S Zanker
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - L Felipe Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Aiman S Saab
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
21
|
Brüll M, Geese N, Celardo I, Laumann M, Leist M. Preparation of Viable Human Neurites for Neurobiological and Neurodegeneration Studies. Cells 2024; 13:242. [PMID: 38334634 PMCID: PMC10854604 DOI: 10.3390/cells13030242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Few models allow the study of neurite damage in the human central nervous system. We used here dopaminergic LUHMES neurons to establish a culture system that allows for (i) the observation of highly enriched neurites, (ii) the preparation of the neurite fraction for biochemical studies, and (iii) the measurement of neurite markers and metabolites after axotomy. LUHMES-based spheroids, plated in culture dishes, extended neurites of several thousand µm length, while all somata remained aggregated. These cultures allowed an easy microscopic observation of live or fixed neurites. Neurite-only cultures (NOC) were produced by cutting out the still-aggregated somata. The potential application of such cultures was exemplified by determinations of their protein and RNA contents. For instance, the mitochondrial TOM20 protein was highly abundant, while nuclear histone H3 was absent. Similarly, mitochondrial-encoded RNAs were found at relatively high levels, while the mRNA for a histone or the neuronal nuclear marker NeuN (RBFOX3) were relatively depleted in NOC. Another potential use of NOC is the study of neurite degeneration. For this purpose, an algorithm to quantify neurite integrity was developed. Using this tool, we found that the addition of nicotinamide drastically reduced neurite degeneration. Also, the chelation of Ca2+ in NOC delayed the degeneration, while inhibitors of calpains had no effect. Thus, NOC proved to be suitable for biochemical analysis and for studying degeneration processes after a defined cut injury.
Collapse
Affiliation(s)
- Markus Brüll
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (M.B.); (N.G.); (I.C.)
| | - Nils Geese
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (M.B.); (N.G.); (I.C.)
| | - Ivana Celardo
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (M.B.); (N.G.); (I.C.)
| | - Michael Laumann
- Electron Microscopy Centre, University of Konstanz, 78457 Konstanz, Germany;
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (M.B.); (N.G.); (I.C.)
- Center for Alternatives to Animal Testing in Europe (CAAT-Europe), University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
22
|
Nave KA, Asadollahi E, Sasmita A. Expanding the function of oligodendrocytes to brain energy metabolism. Curr Opin Neurobiol 2023; 83:102782. [PMID: 37703600 DOI: 10.1016/j.conb.2023.102782] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023]
Abstract
Oligodendrocytes are best known for wrapping myelin, a unique specialization that enables energy-efficient and fast axonal impulse propagation in white matter tracts and fibers of the cortical circuitry. However, myelinating oligodendrocytes have additional metabolic functions that are only gradually understood, including the regulated release of pyruvate/lactate and extracellular vesicles, both of which are in support of the axonal energy balance. The axon-supportive functions of glial cells are older than myelin in nervous system evolution and implicate oligodendrocyte dysfunction and loss of myelin integrity as a risk factor for progressive neurodegeneration in brain diseases.
Collapse
Affiliation(s)
- Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Multidisciplinary Sciences, Göttingen.
| | - Ebrahim Asadollahi
- Department of Neurogenetics, Max Planck Institute of Multidisciplinary Sciences, Göttingen. https://twitter.com/EbrahimAsadoll3
| | - Andrew Sasmita
- Department of Neurogenetics, Max Planck Institute of Multidisciplinary Sciences, Göttingen. https://twitter.com/AOSasmita
| |
Collapse
|
23
|
Ehrenreich H, Gassmann M, Poustka L, Burtscher M, Hammermann P, Sirén AL, Nave KA, Miskowiak K. Exploiting moderate hypoxia to benefit patients with brain disease: Molecular mechanisms and translational research in progress. NEUROPROTECTION 2023; 1:9-19. [PMID: 37671067 PMCID: PMC7615021 DOI: 10.1002/nep3.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 09/07/2023]
Abstract
Hypoxia is increasingly recognized as an important physiological driving force. A specific transcriptional program, induced by a decrease in oxygen (O2) availability, for example, inspiratory hypoxia at high altitude, allows cells to adapt to lower O2 and limited energy metabolism. This transcriptional program is partly controlled by and partly independent of hypoxia-inducible factors. Remarkably, this same transcriptional program is stimulated in the brain by extensive motor-cognitive exercise, leading to a relative decrease in O2 supply, compared to the acutely augmented O2 requirement. We have coined the term "functional hypoxia" for this important demand-responsive, relative reduction in O2 availability. Functional hypoxia seems to be critical for enduring adaptation to higher physiological challenge that includes substantial "brain hardware upgrade," underlying advanced performance. Hypoxia-induced erythropoietin expression in the brain likely plays a decisive role in these processes, which can be imitated by recombinant human erythropoietin treatment. This article review presents hints of how inspiratory O2 manipulations can potentially contribute to enhanced brain function. It thereby provides the ground for exploiting moderate inspiratory plus functional hypoxia to treat individuals with brain disease. Finally, it sketches a planned multistep pilot study in healthy volunteers and first patients, about to start, aiming at improved performance upon motor-cognitive training under inspiratory hypoxia.
Collapse
Affiliation(s)
- Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Max Gassmann
- Institute of Veterinary Physiology and Zürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Martin Burtscher
- Faculty of Sports Science, University of Innsbruck, Innsbruck, Austria
| | | | - Anna-Leena Sirén
- Departments of Neurophysiology and Neurosurgery, University of Würzburg, Würzburg, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Kamilla Miskowiak
- Psychiatric Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Tai YH, Engels D, Locatelli G, Emmanouilidis I, Fecher C, Theodorou D, Müller SA, Licht-Mayer S, Kreutzfeldt M, Wagner I, de Mello NP, Gkotzamani SN, Trovò L, Kendirli A, Aljović A, Breckwoldt MO, Naumann R, Bareyre FM, Perocchi F, Mahad D, Merkler D, Lichtenthaler SF, Kerschensteiner M, Misgeld T. Targeting the TCA cycle can ameliorate widespread axonal energy deficiency in neuroinflammatory lesions. Nat Metab 2023; 5:1364-1381. [PMID: 37430025 PMCID: PMC10447243 DOI: 10.1038/s42255-023-00838-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/05/2023] [Indexed: 07/12/2023]
Abstract
Inflammation in the central nervous system can impair the function of neuronal mitochondria and contributes to axon degeneration in the common neuroinflammatory disease multiple sclerosis (MS). Here we combine cell-type-specific mitochondrial proteomics with in vivo biosensor imaging to dissect how inflammation alters the molecular composition and functional capacity of neuronal mitochondria. We show that neuroinflammatory lesions in the mouse spinal cord cause widespread and persisting axonal ATP deficiency, which precedes mitochondrial oxidation and calcium overload. This axonal energy deficiency is associated with impaired electron transport chain function, but also an upstream imbalance of tricarboxylic acid (TCA) cycle enzymes, with several, including key rate-limiting, enzymes being depleted in neuronal mitochondria in experimental models and in MS lesions. Notably, viral overexpression of individual TCA enzymes can ameliorate the axonal energy deficits in neuroinflammatory lesions, suggesting that TCA cycle dysfunction in MS may be amendable to therapy.
Collapse
Affiliation(s)
- Yi-Heng Tai
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität (LMU) München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Martinsried, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Daniel Engels
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität (LMU) München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Martinsried, Germany
| | - Giuseppe Locatelli
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität (LMU) München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Martinsried, Germany
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Ioanna Emmanouilidis
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität (LMU) München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Martinsried, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Caroline Fecher
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Cell Biology and Physiology, Washington University in St Louis, St. Louis, MO, USA
| | - Delphine Theodorou
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität (LMU) München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Martinsried, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Simon Licht-Mayer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, Division of Clinical Pathology, University & University Hospitals of Geneva, Geneva, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, Division of Clinical Pathology, University & University Hospitals of Geneva, Geneva, Switzerland
| | | | - Sofia-Natsouko Gkotzamani
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität (LMU) München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Martinsried, Germany
| | - Laura Trovò
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Arek Kendirli
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität (LMU) München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Martinsried, Germany
| | - Almir Aljović
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität (LMU) München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Martinsried, Germany
| | - Michael O Breckwoldt
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität (LMU) München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Martinsried, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ronald Naumann
- Transgenic Core Facility, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Florence M Bareyre
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität (LMU) München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Fabiana Perocchi
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Don Mahad
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, University & University Hospitals of Geneva, Geneva, Switzerland
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität (LMU) München, Munich, Germany.
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Martinsried, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
25
|
Pape N, Rose CR. Activation of TRPV4 channels promotes the loss of cellular ATP in organotypic slices of the mouse neocortex exposed to chemical ischemia. J Physiol 2023; 601:2975-2990. [PMID: 37195195 DOI: 10.1113/jp284430] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/15/2023] [Indexed: 05/18/2023] Open
Abstract
The vertebrate brain has an exceptionally high energy need. During ischemia, intracellular ATP concentrations decline rapidly, resulting in the breakdown of ion gradients and cellular damage. Here, we employed the nanosensor ATeam1.03YEMK to analyse the pathways driving the loss of ATP upon transient metabolic inhibition in neurons and astrocytes of the mouse neocortex. We demonstrate that brief chemical ischemia, induced by combined inhibition of glycolysis and oxidative phosphorylation, results in a transient decrease in intracellular ATP. Neurons experienced a larger relative decline and showed less ability to recover from prolonged (>5 min) metabolic inhibition than astrocytes. Blocking voltage-gated Na+ channels or NMDA receptors ameliorated the ATP decline in neurons and astrocytes, while blocking glutamate uptake aggravated the overall reduction in neuronal ATP, confirming the central role of excitatory neuronal activity in the cellular energy loss. Unexpectedly, pharmacological inhibition of transient receptor potential vanilloid 4 (TRPV4) channels significantly reduced the ischemia-induced decline in ATP in both cell types. Imaging with Na+ -sensitive indicator dye ING-2 furthermore showed that TRPV4 inhibition also reduced ischemia-induced increases in intracellular Na+ . Altogether, our results demonstrate that neurons exhibit a higher vulnerability to brief metabolic inhibition than astrocytes. Moreover, they reveal an unexpected strong contribution of TRPV4 channels to the loss of cellular ATP and suggest that the demonstrated TRPV4-related ATP consumption is most likely a direct consequence of Na+ influx. Activation of TRPV4 channels thus provides a hitherto unacknowledged contribution to the cellular energy loss during energy failure, generating a significant metabolic cost in ischemic conditions. KEY POINTS: In the ischemic brain, cellular ATP concentrations decline rapidly, which results in the collapse of ion gradients and promotes cellular damage and death. We analysed the pathways driving the loss of ATP upon transient metabolic inhibition in neurons and astrocytes of the mouse neocortex. Our results confirm the central role of excitatory neuronal activity in the cellular energy loss and demonstrate that neurons experience a larger decline in ATP and are more vulnerable to brief metabolic stress than astrocytes. Our study also reveals a new, previously unknown involvement of osmotically activated transient receptor potential vanilloid 4 (TRPV4) channels to the reduction in cellular ATP in both cell types and indicates that this is a consequence of TRPV4-mediated Na+ influx. We conclude that activation of TRPV4 channels provides a considerable contribution to the cellular energy loss, thereby generating a significant metabolic cost in ischemic conditions.
Collapse
Affiliation(s)
- Nils Pape
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf, Germany
| | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf, Germany
| |
Collapse
|
26
|
Barros LF, Ruminot I, Sandoval PY, San Martín A. Enlightening brain energy metabolism. Neurobiol Dis 2023:106211. [PMID: 37352985 DOI: 10.1016/j.nbd.2023.106211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023] Open
Abstract
Brain tissue metabolism is distributed across several cell types and subcellular compartments, which activate at different times and with different temporal patterns. The introduction of genetically-encoded fluorescent indicators that are imaged using time-lapse microscopy has opened the possibility of studying brain metabolism at cellular and sub-cellular levels. There are indicators for sugars, monocarboxylates, Krebs cycle intermediates, amino acids, cofactors, and energy nucleotides, which inform about relative levels, concentrations and fluxes. This review offers a brief survey of the metabolic indicators that have been validated in brain cells, with some illustrative examples from the literature. Whereas only a small fraction of the metabolome is currently accessible to fluorescent probes, there are grounds to be optimistic about coming developments and the application of these tools to the study of brain disease.
Collapse
Affiliation(s)
- L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile.
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| | - P Y Sandoval
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| | - A San Martín
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| |
Collapse
|
27
|
Li S, Sheng ZH. Oligodendrocyte-derived transcellular signaling regulates axonal energy metabolism. Curr Opin Neurobiol 2023; 80:102722. [PMID: 37028201 PMCID: PMC10225329 DOI: 10.1016/j.conb.2023.102722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 04/08/2023]
Abstract
The unique morphology and functionality of central nervous system (CNS) neurons necessitate specialized mechanisms to maintain energy metabolism throughout long axons and extensive terminals. Oligodendrocytes (OLs) enwrap CNS axons with myelin sheaths in a multilamellar fashion. Apart from their well-established function in action potential propagation, OLs also provide intercellular metabolic support to axons by transferring energy metabolites and delivering exosomes consisting of proteins, lipids, and RNAs. OL-derived metabolic support is crucial for the maintenance of axonal integrity; its dysfunction has emerged as an important player in neurological disorders that are associated with axonal energy deficits and degeneration. In this review, we discuss recent advances in how these transcellular signaling pathways maintain axonal energy metabolism in health and neurological disorders.
Collapse
Affiliation(s)
- Sunan Li
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA. https://twitter.com/@sunan_li
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA.
| |
Collapse
|
28
|
Arinrad S, Depp C, Siems SB, Sasmita AO, Eichel MA, Ronnenberg A, Hammerschmidt K, Lüders KA, Werner HB, Ehrenreich H, Nave KA. Isolated catatonia-like executive dysfunction in mice with forebrain-specific loss of myelin integrity. eLife 2023; 12:70792. [PMID: 36892455 PMCID: PMC9998085 DOI: 10.7554/elife.70792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 01/24/2023] [Indexed: 03/10/2023] Open
Abstract
A key feature of advanced brain aging includes structural defects of intracortical myelin that are associated with secondary neuroinflammation. A similar pathology is seen in specific myelin mutant mice that model 'advanced brain aging' and exhibit a range of behavioral abnormalities. However, the cognitive assessment of these mutants is problematic because myelin-dependent motor-sensory functions are required for quantitative behavioral readouts. To better understand the role of cortical myelin integrity for higher brain functions, we generated mice lacking Plp1, encoding the major integral myelin membrane protein, selectively in ventricular zone stem cells of the mouse forebrain. In contrast to conventional Plp1 null mutants, subtle myelin defects were restricted to the cortex, hippocampus, and underlying callosal tracts. Moreover, forebrain-specific Plp1 mutants exhibited no defects of basic motor-sensory performance at any age tested. Surprisingly, several behavioral alterations reported for conventional Plp1 null mice (Gould et al., 2018) were absent and even social interactions appeared normal. However, with novel behavioral paradigms, we determined catatonia-like symptoms and isolated executive dysfunction in both genders. This suggests that loss of myelin integrity has an impact on cortical connectivity and underlies specific defects of executive function. These observations are likewise relevant for human neuropsychiatric conditions and other myelin-related diseases.
Collapse
Affiliation(s)
- Sahab Arinrad
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Constanze Depp
- Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sophie B Siems
- Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Maria A Eichel
- Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Anja Ronnenberg
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Katja A Lüders
- Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hauke B Werner
- Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Klaus-Armin Nave
- Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
29
|
Yang Z, Yu Z, Xiao B. Coordinated Regulation of Myelination by Growth Factor and Amino-acid Signaling Pathways. Neurosci Bull 2023; 39:453-465. [PMID: 36352321 PMCID: PMC10043148 DOI: 10.1007/s12264-022-00967-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/27/2022] [Indexed: 11/11/2022] Open
Abstract
Myelin-forming oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS) are essential for structural and functional homeostasis of nervous tissue. Albeit with certain similarities, the regulation of CNS and PNS myelination is executed differently. Recent advances highlight the coordinated regulation of oligodendrocyte myelination by amino-acid sensing and growth factor signaling pathways. In this review, we discuss novel insights into the understanding of differential regulation of oligodendrocyte and Schwann cell biology in CNS and PNS myelination, with particular focus on the roles of growth factor-stimulated RHEB-mTORC1 and GATOR2-mediated amino-acid sensing/signaling pathways. We also discuss recent progress on the metabolic regulation of oligodendrocytes and Schwann cells and the impact of their dysfunction on neuronal function and disease.
Collapse
Affiliation(s)
- Zhiwen Yang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Zongyan Yu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518000, China.
| | - Bo Xiao
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518000, China.
| |
Collapse
|
30
|
Köhler S, Winkler U, Junge T, Lippmann K, Eilers J, Hirrlinger J. Gray and white matter astrocytes differ in basal metabolism but respond similarly to neuronal activity. Glia 2023; 71:229-244. [PMID: 36063073 DOI: 10.1002/glia.24268] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/12/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022]
Abstract
Astrocytes are a heterogeneous population of glial cells in the brain, which adapt their properties to the requirements of the local environment. Two major groups of astrocytes are protoplasmic astrocytes residing in gray matter as well as fibrous astrocytes of white matter. Here, we compared the energy metabolism of astrocytes in the cortex and corpus callosum as representative gray matter and white matter regions, in acute brain slices taking advantage of genetically encoded fluorescent nanosensors for the NADH/NAD+ redox ratio and for ATP. Astrocytes of the corpus callosum presented a more reduced basal NADH/NAD+ redox ratio, and a lower cytosolic concentration of ATP compared to cortical astrocytes. In cortical astrocytes, the neurotransmitter glutamate and increased extracellular concentrations of K+ , typical correlates of neuronal activity, induced a more reduced NADH/NAD+ redox ratio. While application of glutamate decreased [ATP], K+ as well as the combination of glutamate and K+ resulted in an increase of ATP levels. Strikingly, a very similar regulation of metabolism by K+ and glutamate was observed in astrocytes in the corpus callosum. Finally, strong intrinsic neuronal activity provoked by application of bicuculline and withdrawal of Mg2+ caused a shift of the NADH/NAD+ redox ratio to a more reduced state as well as a slight reduction of [ATP] in gray and white matter astrocytes. In summary, the metabolism of astrocytes in cortex and corpus callosum shows distinct basal properties, but qualitatively similar responses to neuronal activity, probably reflecting the different environment and requirements of these brain regions.
Collapse
Affiliation(s)
- Susanne Köhler
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Ulrike Winkler
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Tabea Junge
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Kristina Lippmann
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Jens Eilers
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Johannes Hirrlinger
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany.,Department of Neurogenetics, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
31
|
Natsubori A, Hirai S, Kwon S, Ono D, Deng F, Wan J, Miyazawa M, Kojima T, Okado H, Karashima A, Li Y, Tanaka KF, Honda M. Serotonergic neurons control cortical neuronal intracellular energy dynamics by modulating astrocyte-neuron lactate shuttle. iScience 2023; 26:105830. [PMID: 36713262 PMCID: PMC9881222 DOI: 10.1016/j.isci.2022.105830] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/15/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
The central serotonergic system has multiple roles in animal physiology and behavior, including sleep-wake control. However, its function in controlling brain energy metabolism according to the state of animals remains undetermined. Through in vivo monitoring of energy metabolites and signaling, we demonstrated that optogenetic activation of raphe serotonergic neurons increased cortical neuronal intracellular concentration of ATP, an indispensable cellular energy molecule, which was suppressed by inhibiting neuronal uptake of lactate derived from astrocytes. Raphe serotonergic neuronal activation induced cortical astrocytic Ca2+ and cAMP surges and increased extracellular lactate concentrations, suggesting the facilitation of lactate release from astrocytes. Furthermore, chemogenetic inhibition of raphe serotonergic neurons partly attenuated the increase in cortical neuronal intracellular ATP levels as arousal increased in mice. Serotonergic neuronal activation promoted an increase in cortical neuronal intracellular ATP levels, partly mediated by the facilitation of the astrocyte-neuron lactate shuttle, contributing to state-dependent optimization of neuronal intracellular energy levels.
Collapse
Affiliation(s)
- Akiyo Natsubori
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan,Corresponding author
| | - Shinobu Hirai
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Soojin Kwon
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Daisuke Ono
- Department of Neuroscience Ⅱ, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Fei Deng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China,PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Jinxia Wan
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China,PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Momoka Miyazawa
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan,Faculty of Science Division Ⅱ, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takashi Kojima
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Haruo Okado
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Akihiro Karashima
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, Sendai 982-8577, Japan
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China,PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Kenji F. Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Makoto Honda
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
32
|
Paclitaxel Inhibits KCNQ Channels in Primary Sensory Neurons to Initiate the Development of Painful Peripheral Neuropathy. Cells 2022; 11:cells11244067. [PMID: 36552832 PMCID: PMC9776748 DOI: 10.3390/cells11244067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer patients undergoing paclitaxel infusion usually experience peripheral nerve degeneration and serious neuropathic pain termed paclitaxel-induced peripheral neuropathy (PIPN). However, alterations in the dose or treatment schedule for paclitaxel do not eliminate PIPN, and no therapies are available for PIPN, despite numerous studies to uncover the mechanisms underlying the development/maintenance of this condition. Therefore, we aimed to uncover a novel mechanism underlying the pathogenesis of PIPN. Clinical studies suggest that acute over excitation of primary sensory neurons is linked to the pathogenesis of PIPN. We found that paclitaxel-induced acute hyperexcitability of primary sensory neurons results from the paclitaxel-induced inhibition of KCNQ potassium channels (mainly KCNQ2), found abundantly in sensory neurons and axons. We found that repeated application of XE-991, a specific KCNQ channel blocker, induced PIPN-like alterations in rats, including mechanical hypersensitivity and degeneration of peripheral nerves, as detected by both morphological and behavioral assays. In contrast, genetic deletion of KCNQ2 from peripheral sensory neurons in mice significantly attenuated the development of paclitaxel-induced peripheral sensory fiber degeneration and chronic pain. These findings may lead to a better understanding of the causes of PIPN and provide an impetus for developing new classes of KCNQ activators for its therapeutic treatment.
Collapse
|
33
|
Dembitskaya Y, Piette C, Perez S, Berry H, Magistretti PJ, Venance L. Lactate supply overtakes glucose when neural computational and cognitive loads scale up. Proc Natl Acad Sci U S A 2022; 119:e2212004119. [PMID: 36375086 PMCID: PMC9704697 DOI: 10.1073/pnas.2212004119] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/10/2022] [Indexed: 07/23/2023] Open
Abstract
Neural computational power is determined by neuroenergetics, but how and which energy substrates are allocated to various forms of memory engram is unclear. To solve this question, we asked whether neuronal fueling by glucose or lactate scales differently upon increasing neural computation and cognitive loads. Here, using electrophysiology, two-photon imaging, cognitive tasks, and mathematical modeling, we show that both glucose and lactate are involved in engram formation, with lactate supporting long-term synaptic plasticity evoked by high-stimulation load activity patterns and high attentional load in cognitive tasks and glucose being sufficient for less demanding neural computation and learning tasks. Indeed, we show that lactate is mandatory for demanding neural computation, such as theta-burst stimulation, while glucose is sufficient for lighter forms of activity-dependent long-term potentiation (LTP), such as spike timing-dependent plasticity (STDP). We find that subtle variations of spike number or frequency in STDP are sufficient to shift the on-demand fueling from glucose to lactate. Finally, we demonstrate that lactate is necessary for a cognitive task requiring high attentional load, such as the object-in-place task, and for the corresponding in vivo hippocampal LTP expression but is not needed for a less demanding task, such as a simple novel object recognition. Overall, these results demonstrate that glucose and lactate metabolism are differentially engaged in neuronal fueling depending on the complexity of the activity-dependent plasticity and behavior.
Collapse
Affiliation(s)
- Yulia Dembitskaya
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Charlotte Piette
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Sylvie Perez
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Hugues Berry
- AIStroSight Lab, INRIA, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, 69603 Villeurbanne, France
- University of Lyon, LIRIS UMR5205, 69622 Villeurbanne, France
| | - Pierre J. Magistretti
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Brain Mind Institute, EPFL, 1015 Lausanne, Switzerland
| | - Laurent Venance
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75005 Paris, France
| |
Collapse
|
34
|
Shackleford G, Marziali LN, Sasaki Y, Claessens A, Ferri C, Weinstock NI, Rossor AM, Silvestri NJ, Wilson ER, Hurley E, Kidd GJ, Manohar S, Ding D, Salvi RJ, Feltri ML, D’Antonio M, Wrabetz L. A new mouse model of Charcot-Marie-Tooth 2J neuropathy replicates human axonopathy and suggest alteration in axo-glia communication. PLoS Genet 2022; 18:e1010477. [PMID: 36350884 PMCID: PMC9707796 DOI: 10.1371/journal.pgen.1010477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/29/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
Myelin is essential for rapid nerve impulse propagation and axon protection. Accordingly, defects in myelination or myelin maintenance lead to secondary axonal damage and subsequent degeneration. Studies utilizing genetic (CNPase-, MAG-, and PLP-null mice) and naturally occurring neuropathy models suggest that myelinating glia also support axons independently from myelin. Myelin protein zero (MPZ or P0), which is expressed only by Schwann cells, is critical for myelin formation and maintenance in the peripheral nervous system. Many mutations in MPZ are associated with demyelinating neuropathies (Charcot-Marie-Tooth disease type 1B [CMT1B]). Surprisingly, the substitution of threonine by methionine at position 124 of P0 (P0T124M) causes axonal neuropathy (CMT2J) with little to no myelin damage. This disease provides an excellent paradigm to understand how myelinating glia support axons independently from myelin. To study this, we generated targeted knock-in MpzT124M mutant mice, a genetically authentic model of T124M-CMT2J neuropathy. Similar to patients, these mice develop axonopathy between 2 and 12 months of age, characterized by impaired motor performance, normal nerve conduction velocities but reduced compound motor action potential amplitudes, and axonal damage with only minor compact myelin modifications. Mechanistically, we detected metabolic changes that could lead to axonal degeneration, and prominent alterations in non-compact myelin domains such as paranodes, Schmidt-Lanterman incisures, and gap junctions, implicated in Schwann cell-axon communication and axonal metabolic support. Finally, we document perturbed mitochondrial size and distribution along MpzT124M axons suggesting altered axonal transport. Our data suggest that Schwann cells in P0T124M mutant mice cannot provide axons with sufficient trophic support, leading to reduced ATP biosynthesis and axonopathy. In conclusion, the MpzT124M mouse model faithfully reproduces the human neuropathy and represents a unique tool for identifying the molecular basis for glial support of axons.
Collapse
Affiliation(s)
- Ghjuvan’Ghjacumu Shackleford
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Department Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, New York, United States of America
- Biology of Myelin Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Leandro N. Marziali
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Department Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, New York, United States of America
| | - Yo Sasaki
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, Missouri, United States of America
| | - Anke Claessens
- Biology of Myelin Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Cinzia Ferri
- Biology of Myelin Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Nadav I. Weinstock
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Department Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, New York, United States of America
| | - Alexander M. Rossor
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Nicholas J. Silvestri
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Department Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, New York, United States of America
| | - Emma R. Wilson
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Department Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, New York, United States of America
| | - Edward Hurley
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Department Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, New York, United States of America
| | - Grahame J. Kidd
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Senthilvelan Manohar
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Richard J. Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - M. Laura Feltri
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Department Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, New York, United States of America
| | - Maurizio D’Antonio
- Biology of Myelin Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Lawrence Wrabetz
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Department Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, New York, United States of America
| |
Collapse
|
35
|
Déli É, Peters JF, Kisvárday Z. How the Brain Becomes the Mind: Can Thermodynamics Explain the Emergence and Nature of Emotions? ENTROPY (BASEL, SWITZERLAND) 2022; 24:1498. [PMID: 37420518 PMCID: PMC9601684 DOI: 10.3390/e24101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 07/09/2023]
Abstract
The neural systems' electric activities are fundamental for the phenomenology of consciousness. Sensory perception triggers an information/energy exchange with the environment, but the brain's recurrent activations maintain a resting state with constant parameters. Therefore, perception forms a closed thermodynamic cycle. In physics, the Carnot engine is an ideal thermodynamic cycle that converts heat from a hot reservoir into work, or inversely, requires work to transfer heat from a low- to a high-temperature reservoir (the reversed Carnot cycle). We analyze the high entropy brain by the endothermic reversed Carnot cycle. Its irreversible activations provide temporal directionality for future orientation. A flexible transfer between neural states inspires openness and creativity. In contrast, the low entropy resting state parallels reversible activations, which impose past focus via repetitive thinking, remorse, and regret. The exothermic Carnot cycle degrades mental energy. Therefore, the brain's energy/information balance formulates motivation, sensed as position or negative emotions. Our work provides an analytical perspective of positive and negative emotions and spontaneous behavior from the free energy principle. Furthermore, electrical activities, thoughts, and beliefs lend themselves to a temporal organization, an orthogonal condition to physical systems. Here, we suggest that an experimental validation of the thermodynamic origin of emotions might inspire better treatment options for mental diseases.
Collapse
Affiliation(s)
- Éva Déli
- Department of Anatomy, Histology, and Embryology, University of Debrecen, 4032 Debrecen, Hungary
| | - James F. Peters
- Department of Electrical & Computer Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Mathematics, Adiyaman University, Adiyaman 02040, Turkey
| | - Zoltán Kisvárday
- Department of Anatomy, Histology, and Embryology, University of Debrecen, 4032 Debrecen, Hungary
- ELKH Neuroscience Research Group, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
36
|
Düking T, Spieth L, Berghoff SA, Piepkorn L, Schmidke AM, Mitkovski M, Kannaiyan N, Hosang L, Scholz P, Shaib AH, Schneider LV, Hesse D, Ruhwedel T, Sun T, Linhoff L, Trevisiol A, Köhler S, Pastor AM, Misgeld T, Sereda M, Hassouna I, Rossner MJ, Odoardi F, Ischebeck T, de Hoz L, Hirrlinger J, Jahn O, Saher G. Ketogenic diet uncovers differential metabolic plasticity of brain cells. SCIENCE ADVANCES 2022; 8:eabo7639. [PMID: 36112685 PMCID: PMC9481126 DOI: 10.1126/sciadv.abo7639] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
To maintain homeostasis, the body, including the brain, reprograms its metabolism in response to altered nutrition or disease. However, the consequences of these challenges for the energy metabolism of the different brain cell types remain unknown. Here, we generated a proteome atlas of the major central nervous system (CNS) cell types from young and adult mice, after feeding the therapeutically relevant low-carbohydrate, high-fat ketogenic diet (KD) and during neuroinflammation. Under steady-state conditions, CNS cell types prefer distinct modes of energy metabolism. Unexpectedly, the comparison with KD revealed distinct cell type-specific strategies to manage the altered availability of energy metabolites. Astrocytes and neurons but not oligodendrocytes demonstrated metabolic plasticity. Moreover, inflammatory demyelinating disease changed the neuronal metabolic signature in a similar direction as KD. Together, these findings highlight the importance of the metabolic cross-talk between CNS cells and between the periphery and the brain to manage altered nutrition and neurological disease.
Collapse
Affiliation(s)
- Tim Düking
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lena Spieth
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stefan A. Berghoff
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lars Piepkorn
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Annika M. Schmidke
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Miso Mitkovski
- City Campus Light Microscopy Facility, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Nirmal Kannaiyan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Leon Hosang
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Ali H. Shaib
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute for Neuro- and Sensory Physiology, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Lennart V. Schneider
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Dörte Hesse
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Electron Microscopy Core Unit, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ting Sun
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lisa Linhoff
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Translational Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Andrea Trevisiol
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Susanne Köhler
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Adrian Marti Pastor
- Institute of Neuronal Cell Biology, Technische Universität München, Cluster for Systems Neurology (SyNergy), German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technische Universität München, Cluster for Systems Neurology (SyNergy), German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Michael Sereda
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Translational Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Imam Hassouna
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Moritz J. Rossner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Francesca Odoardi
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
- Institute of Plant Biology and Biotechnology (IBBP), Green Biotechnology, University of Münster, Münster, Germany
| | - Livia de Hoz
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Neurowissenschafliches Forschungszentrum, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Hirrlinger
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Olaf Jahn
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
37
|
Henn RE, Noureldein MH, Elzinga SE, Kim B, Savelieff MG, Feldman EL. Glial-neuron crosstalk in health and disease: A focus on metabolism, obesity, and cognitive impairment. Neurobiol Dis 2022; 170:105766. [PMID: 35584728 PMCID: PMC10071699 DOI: 10.1016/j.nbd.2022.105766] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Dementia is a complex set of disorders affecting normal cognitive function. Recently, several clinical studies have shown that diabetes, obesity, and components of the metabolic syndrome (MetS) are associated with cognitive impairment, including dementias such as Alzheimer's disease. Maintaining normal cognitive function is an intricate process involving coordination of neuron function with multiple brain glia. Well-orchestrated bioenergetics is a central requirement of neurons, which need large amounts of energy but lack significant energy storage capacity. Thus, one of the most important glial functions is to provide metabolic support and ensure an adequate energy supply for neurons. Obesity and metabolic disease dysregulate glial function, leading to a failure to respond to neuron energy demands, which results in neuronal damage. In this review, we outline evidence for links between diabetes, obesity, and MetS components to cognitive impairment. Next, we focus on the metabolic crosstalk between the three major glial cell types, oligodendrocytes, astrocytes, and microglia, with neurons under physiological conditions. Finally, we outline how diabetes, obesity, and MetS components can disrupt glial function, and how this disruption might impair glia-neuron metabolic crosstalk and ultimately promote cognitive impairment.
Collapse
Affiliation(s)
- Rosemary E Henn
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| | - Mohamed H Noureldein
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| | - Sarah E Elzinga
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| | - Bhumsoo Kim
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| | - Masha G Savelieff
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America.
| | - Eva L Feldman
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
38
|
Hu M, Santin JM. Transformation to ischaemia tolerance of frog brain function corresponds to dynamic changes in mRNA co-expression across metabolic pathways. Proc Biol Sci 2022; 289:20221131. [PMID: 35892220 PMCID: PMC9326273 DOI: 10.1098/rspb.2022.1131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Neural activity is costly and requires continuous ATP from aerobic metabolism. Brainstem motor function of American bullfrogs normally collapses after minutes of ischaemia, but following hibernation, it becomes ischaemia-tolerant, generating output for up to 2 h without oxygen or glucose delivery. Transforming the brainstem to function during ischaemia involves a switch to anaerobic glycolysis and brain glycogen. We hypothesized that improving neural performance during ischaemia involves a transcriptional program for glycogen and glucose metabolism. Here we measured mRNA copy number of genes along the path from glycogen metabolism to lactate production using real-time quantitative PCR. The expression of individual genes did not reflect enhanced glucose metabolism. However, the number of co-expressed gene pairs increased early into hibernation, and by the end, most genes involved in glycogen metabolism, glucose transport and glycolysis exhibited striking linear co-expression. By contrast, co-expression of genes in the Krebs cycle and electron transport chain decreased throughout hibernation. Our results uncover reorganization of the metabolic transcriptional network associated with a shift to ischaemia tolerance in brain function. We conclude that modifying gene co-expression may be a critical step in synchronizing storage and use of glucose to achieve ischaemia tolerance in active neural circuits.
Collapse
Affiliation(s)
- Min Hu
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Joseph M. Santin
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| |
Collapse
|
39
|
Chaker-Margot M, Werten S, Dunzendorfer-Matt T, Lechner S, Ruepp A, Scheffzek K, Maier T. Structural basis of activation of the tumor suppressor protein neurofibromin. Mol Cell 2022; 82:1288-1296.e5. [PMID: 35353986 DOI: 10.1016/j.molcel.2022.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/14/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022]
Abstract
Mutations in the NF1 gene cause the familial genetic disease neurofibromatosis type I, as well as predisposition to cancer. The NF1 gene product, neurofibromin, is a GTPase-activating protein and acts as a tumor suppressor by negatively regulating the small GTPase, Ras. However, structural insights into neurofibromin activation remain incompletely defined. Here, we provide cryoelectron microscopy (cryo-EM) structures that reveal an extended neurofibromin homodimer in two functional states: an auto-inhibited state with occluded Ras-binding site and an asymmetric open state with an exposed Ras-binding site. Mechanistically, the transition to the active conformation is stimulated by nucleotide binding, which releases a lock that tethers the catalytic domain to an extended helical repeat scaffold in the occluded state. Structure-guided mutational analysis supports functional relevance of allosteric control. Disease-causing mutations are mapped and primarily impact neurofibromin stability. Our findings suggest a role for nucleotides in neurofibromin regulation and may lead to therapeutic modulation of Ras signaling.
Collapse
Affiliation(s)
| | - Sebastiaan Werten
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | | | - Stefan Lechner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Angela Ruepp
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Klaus Scheffzek
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria.
| | - Timm Maier
- Biozentrum, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
40
|
Morató L, Astori S, Zalachoras I, Rodrigues J, Ghosal S, Huang W, Guillot de Suduiraut I, Grosse J, Zanoletti O, Cao L, Auwerx J, Sandi C. eNAMPT actions through nucleus accumbens NAD +/SIRT1 link increased adiposity with sociability deficits programmed by peripuberty stress. SCIENCE ADVANCES 2022; 8:eabj9109. [PMID: 35235362 PMCID: PMC8890725 DOI: 10.1126/sciadv.abj9109] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/05/2022] [Indexed: 05/15/2023]
Abstract
Obesity is frequently associated with impairments in the social domain, and stress at puberty can lead to long-lasting changes in visceral fat deposition and in social behaviors. However, whether stress-induced changes in adipose tissue can affect fat-to-brain signaling, thereby orchestrating behavioral changes, remains unknown. We found that peripubertally stressed male-but not female-mice exhibit concomitant increased adiposity and sociability deficits. We show that reduced levels of the adipokine nicotinamide phosphoribosyltransferase (NAMPT) in fat and its extracellular form eNAMPT in blood contribute to lifelong reductions in sociability induced by peripubertal stress. By using a series of adipose tissue and brain region-specific loss- and gain-of-function approaches, we implicate impaired nicotinamide adenine dinucleotide (NAD+)/SIRT1 pathway in the nucleus accumbens. Impairments in sociability and accumbal neuronal excitability are prevented by normalization of eNAMPT levels or treatment with nicotinamide mononucleotide (NMN), a NAD+-boosting compound. We propose NAD+ boosters to treat social deficits of early life stress origin.
Collapse
Affiliation(s)
- Laia Morató
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Simone Astori
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ioannis Zalachoras
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Joao Rodrigues
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sriparna Ghosal
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Wei Huang
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Isabelle Guillot de Suduiraut
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jocelyn Grosse
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Olivia Zanoletti
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lei Cao
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
41
|
San Martín A, Arce-Molina R, Aburto C, Baeza-Lehnert F, Barros LF, Contreras-Baeza Y, Pinilla A, Ruminot I, Rauseo D, Sandoval PY. Visualizing physiological parameters in cells and tissues using genetically encoded indicators for metabolites. Free Radic Biol Med 2022; 182:34-58. [PMID: 35183660 DOI: 10.1016/j.freeradbiomed.2022.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
The study of metabolism is undergoing a renaissance. Since the year 2002, over 50 genetically-encoded fluorescent indicators (GEFIs) have been introduced, capable of monitoring metabolites with high spatial/temporal resolution using fluorescence microscopy. Indicators are fusion proteins that change their fluorescence upon binding a specific metabolite. There are indicators for sugars, monocarboxylates, Krebs cycle intermediates, amino acids, cofactors, and energy nucleotides. They permit monitoring relative levels, concentrations, and fluxes in living systems. At a minimum they report relative levels and, in some cases, absolute concentrations may be obtained by performing ad hoc calibration protocols. Proper data collection, processing, and interpretation are critical to take full advantage of these new tools. This review offers a survey of the metabolic indicators that have been validated in mammalian systems. Minimally invasive, these indicators have been instrumental for the purposes of confirmation, rebuttal and discovery. We envision that this powerful technology will foster metabolic physiology.
Collapse
Affiliation(s)
- A San Martín
- Centro de Estudios Científicos (CECs), Valdivia, Chile.
| | - R Arce-Molina
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - C Aburto
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | | | - L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - Y Contreras-Baeza
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - A Pinilla
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - D Rauseo
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - P Y Sandoval
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| |
Collapse
|
42
|
Mayorga-Weber G, Rivera FJ, Castro MA. Neuron-glia (mis)interactions in brain energy metabolism during aging. J Neurosci Res 2022; 100:835-854. [PMID: 35085408 DOI: 10.1002/jnr.25015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/08/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
Life expectancy in humans is increasing, resulting in a growing aging population, that is accompanied by an increased disposition to develop cognitive deterioration. Hypometabolism is one of the multiple factors related to inefficient brain function during aging. This review emphasizes the metabolic interactions between glial cells (astrocytes, oligodendrocytes, and microglia) and neurons, particularly, during aging. Glial cells provide support and protection to neurons allowing adequate synaptic activity. We address metabolic coupling from the expression of transporters, availability of substrates, metabolic pathways, and mitochondrial activity. In aging, the main metabolic exchange machinery is altered with inefficient levels of nutrients and detrimental mitochondrial activity that results in high reactive oxygen species levels and reduced ATP production, generating a highly inflammatory environment that favors deregulated cell death. Here, we provide an overview of the glial-to-neuron mechanisms, from the molecular components to the cell types, emphasizing aging as the crucial risk factor for developing neurodegenerative/neuroinflammatory diseases.
Collapse
Affiliation(s)
- Gonzalo Mayorga-Weber
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco J Rivera
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Stem Cells and Neuroregeneration, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Maite A Castro
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Janelia Research Campus, HHMI, Ashburn, VA, USA
| |
Collapse
|
43
|
Padamsey Z, Katsanevaki D, Dupuy N, Rochefort NL. Neocortex saves energy by reducing coding precision during food scarcity. Neuron 2022; 110:280-296.e10. [PMID: 34741806 PMCID: PMC8788933 DOI: 10.1016/j.neuron.2021.10.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/07/2021] [Accepted: 10/15/2021] [Indexed: 11/21/2022]
Abstract
Information processing is energetically expensive. In the mammalian brain, it is unclear how information coding and energy use are regulated during food scarcity. Using whole-cell recordings and two-photon imaging in layer 2/3 mouse visual cortex, we found that food restriction reduced AMPA receptor conductance, reducing synaptic ATP use by 29%. Neuronal excitability was nonetheless preserved by a compensatory increase in input resistance and a depolarized resting potential. Consequently, neurons spiked at similar rates as controls but spent less ATP on underlying excitatory currents. This energy-saving strategy had a cost because it amplified the variability of visually-evoked subthreshold responses, leading to a 32% broadening of orientation tuning and impaired fine visual discrimination. This reduction in coding precision was associated with reduced levels of the fat mass-regulated hormone leptin and was restored by exogenous leptin supplementation. Our findings reveal that metabolic state dynamically regulates the energy spent on coding precision in neocortex.
Collapse
Affiliation(s)
- Zahid Padamsey
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
| | - Danai Katsanevaki
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Nathalie Dupuy
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Nathalie L Rochefort
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.
| |
Collapse
|
44
|
Abstract
Bipolar disorder (BD) is a complex group of neuropsychiatric disorders, typically comprising both manic and depressive episodes. The underlying neuropathology of BD is not established, but a consistent feature is progressive thinning of cortical grey matter (GM) and white matter (WM) in specific pathways, due to loss of subpopulations of neurons and astrocytes, with accompanying disturbance of connectivity. Dysregulation of astrocyte homeostatic functions are implicated in BD, notably regulation of glutamate, calcium signalling, circadian rhythms and metabolism. Furthermore, the beneficial therapeutic effects of the frontline treatments for BD are due at least in part to their positive actions on astrocytes, notably lithium, valproic acid (VPA) and carbamazepine (CBZ), as well as antidepressants and antipsychotics that are used in the management of this disorder. Treatments for BD are ineffective in a large proportion of cases, and astrocytes represent new therapeutic targets that can also serve as biomarkers of illness progression and treatment responsiveness in BD.
Collapse
|
45
|
Strachan EL, Mac White-Begg D, Crean J, Reynolds AL, Kennedy BN, O’Sullivan NC. The Role of Mitochondria in Optic Atrophy With Autosomal Inheritance. Front Neurosci 2021; 15:784987. [PMID: 34867178 PMCID: PMC8634724 DOI: 10.3389/fnins.2021.784987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Optic atrophy (OA) with autosomal inheritance is a form of optic neuropathy characterized by the progressive and irreversible loss of vision. In some cases, this is accompanied by additional, typically neurological, extra-ocular symptoms. Underlying the loss of vision is the specific degeneration of the retinal ganglion cells (RGCs) which form the optic nerve. Whilst autosomal OA is genetically heterogenous, all currently identified causative genes appear to be associated with mitochondrial organization and function. However, it is unclear why RGCs are particularly vulnerable to mitochondrial aberration. Despite the relatively high prevalence of this disorder, there are currently no approved treatments. Combined with the lack of knowledge concerning the mechanisms through which aberrant mitochondrial function leads to RGC death, there remains a clear need for further research to identify the underlying mechanisms and develop treatments for this condition. This review summarizes the genes known to be causative of autosomal OA and the mitochondrial dysfunction caused by pathogenic mutations. Furthermore, we discuss the suitability of available in vivo models for autosomal OA with regards to both treatment development and furthering the understanding of autosomal OA pathology.
Collapse
Affiliation(s)
- Elin L. Strachan
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Delphi Mac White-Begg
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - John Crean
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Alison L. Reynolds
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Breandán N. Kennedy
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Niamh C. O’Sullivan
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
46
|
Chamberlain KA, Huang N, Xie Y, LiCausi F, Li S, Li Y, Sheng ZH. Oligodendrocytes enhance axonal energy metabolism by deacetylation of mitochondrial proteins through transcellular delivery of SIRT2. Neuron 2021; 109:3456-3472.e8. [PMID: 34506725 PMCID: PMC8571020 DOI: 10.1016/j.neuron.2021.08.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
Neurons require mechanisms to maintain ATP homeostasis in axons, which are highly vulnerable to bioenergetic failure. Here, we elucidate a transcellular signaling mechanism by which oligodendrocytes support axonal energy metabolism via transcellular delivery of NAD-dependent deacetylase SIRT2. SIRT2 is undetectable in neurons but enriched in oligodendrocytes and released within exosomes. By deleting sirt2, knocking down SIRT2, or blocking exosome release, we demonstrate that transcellular delivery of SIRT2 is critical for axonal energy enhancement. Mass spectrometry and acetylation analyses indicate that neurons treated with oligodendrocyte-conditioned media from WT, but not sirt2-knockout, mice exhibit strong deacetylation of mitochondrial adenine nucleotide translocases 1 and 2 (ANT1/2). In vivo delivery of SIRT2-filled exosomes into myelinated axons rescues mitochondrial integrity in sirt2-knockout mouse spinal cords. Thus, our study reveals an oligodendrocyte-to-axon delivery of SIRT2, which enhances ATP production by deacetylating mitochondrial proteins, providing a target for boosting axonal bioenergetic metabolism in neurological disorders.
Collapse
Affiliation(s)
- Kelly A Chamberlain
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Ning Huang
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Yuxiang Xie
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Francesca LiCausi
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Sunan Li
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Yan Li
- Proteomics Core Facility, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 1B-1014, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA.
| |
Collapse
|
47
|
Abe Y, Kwon S, Oishi M, Unekawa M, Takata N, Seki F, Koyama R, Abe M, Sakimura K, Masamoto K, Tomita Y, Okano H, Mushiake H, Tanaka KF. Optical manipulation of local cerebral blood flow in the deep brain of freely moving mice. Cell Rep 2021; 36:109427. [PMID: 34320360 DOI: 10.1016/j.celrep.2021.109427] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/07/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022] Open
Abstract
An artificial tool for manipulating local cerebral blood flow (CBF) is necessary for understanding how CBF controls brain function. Here, we generate vascular optogenetic tools whereby smooth muscle cells and endothelial cells express optical actuators in the brain. The illumination of channelrhodopsin-2 (ChR2)-expressing mice induces a local reduction in CBF. Photoactivated adenylyl cyclase (PAC) is an optical protein that increases intracellular cyclic adenosine monophosphate (cAMP), and the illumination of PAC-expressing mice induces a local increase in CBF. We target the ventral striatum, determine the temporal kinetics of CBF change, and optimize the illumination intensity to confine the effects to the ventral striatum. We demonstrate the utility of this vascular optogenetic manipulation in freely and adaptively behaving mice and validate the task- and actuator-dependent behavioral readouts. The development of vascular optogenetic animal models will help accelerate research linking vasculature, circuits, and behavior to health and disease.
Collapse
Affiliation(s)
- Yoshifumi Abe
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan; Live Imaging Center, Central Institute for Experimental Animals, Kawasaki 210-0821, Japan
| | - Soojin Kwon
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Physiology, Tohoku University School of Medicine, Sendai 980-8575, Japan
| | - Mitsuhiro Oishi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Miyuki Unekawa
- Department of Neurology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Norio Takata
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan; Live Imaging Center, Central Institute for Experimental Animals, Kawasaki 210-0821, Japan
| | - Fumiko Seki
- Live Imaging Center, Central Institute for Experimental Animals, Kawasaki 210-0821, Japan; Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Kazuto Masamoto
- Brain Science Inspired Life Support Research Center, University of Electro-Communications, Tokyo 182-8585, Japan
| | - Yutaka Tomita
- Department of Neurology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Live Imaging Center, Central Institute for Experimental Animals, Kawasaki 210-0821, Japan; Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Hajime Mushiake
- Department of Physiology, Tohoku University School of Medicine, Sendai 980-8575, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
48
|
Aghanoori MR, Margulets V, Smith DR, Kirshenbaum LA, Gitler D, Fernyhough P. Sensory neurons derived from diabetic rats exhibit deficits in functional glycolysis and ATP that are ameliorated by IGF-1. Mol Metab 2021; 49:101191. [PMID: 33592336 PMCID: PMC7940986 DOI: 10.1016/j.molmet.2021.101191] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE The distal dying-back of the longest nerve fibres is a hallmark of diabetic neuropathy, and impaired provision of energy in the form of adenosine triphosphate (ATP) may contribute to this neurodegenerative process. We hypothesised that energy supplementation via glycolysis and/or mitochondrial oxidative phosphorylation is compromised in cultured dorsal root ganglion (DRG) sensory neurons from diabetic rodents, thus contributing to axonal degeneration. Functional analysis of glycolysis and mitochondrial respiration and real-time measurement of ATP levels in live cells were our specific means to test this hypothesis. METHODS DRG neuron cultures from age-matched control or streptozotocin (STZ)-induced type 1 diabetic rats were used for in vitro studies. Three plasmids containing ATP biosensors of varying affinities were transfected into neurons to study endogenous ATP levels in real time. The Seahorse XF analyser was used for glycolysis and mitochondrial respiration measurements. RESULTS Fluorescence resonance energy transfer (FRET) efficiency (YFP/CFP ratio) of the ATP biosensors AT1.03 (low affinity) and AT1.03YEMK (medium affinity) were significantly higher than that measured using the ATP-insensitive construct AT1.03R122/6K in both cell bodies and neurites of DRG neurons (p < 0.0001). The ATP level was homogenous along the axons but higher in cell bodies in cultured DRG neurons from both control and diabetic rats. Treatment with oligomycin (an ATP synthase inhibitor in mitochondria) decreased the ATP levels in cultured DRG neurons. Likewise, blockade of glycolysis using 2-deoxy-d-glucose (2-DG: a glucose analogue) reduced ATP levels (p < 0.001). Cultured DRG neurons derived from diabetic rats showed a diminishment of ATP levels (p < 0.01), glycolytic capacity, glycolytic reserve and non-glycolytic acidification. Application of insulin-like growth factor-1 (IGF-1) significantly elevated all the above parameters in DRG neurons from diabetic rats. Oligomycin pre-treatment of DRG neurons, to block oxidative phosphorylation, depleted the glycolytic reserve and lowered basal respiration in sensory neurons derived from control and diabetic rats. Depletion was much higher in sensory neurons from diabetic rats compared to control rats. In addition, an acute increase in glucose concentration, in the presence or absence of oligomycin, elevated parameters of glycolysis by 1.5- to 2-fold while having no impact on mitochondrial respiration. CONCLUSION We provide the first functional evidence for decreased glycolytic capacity in DRG neurons derived from type 1 diabetic rats. IGF-1 protected against the loss of ATP supplies in DRG cell bodies and axons in neurons derived from diabetic rats by augmenting various parameters of glycolysis and mitochondrial respiration.
Collapse
Affiliation(s)
- Mohamad-Reza Aghanoori
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Vicky Margulets
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Darrell R Smith
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Lorrie A Kirshenbaum
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada; Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB, Canada; Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Daniel Gitler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
49
|
Grainger N, Guarina L, Cudmore RH, Santana LF. The Organization of the Sinoatrial Node Microvasculature Varies Regionally to Match Local Myocyte Excitability. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab031. [PMID: 34250490 PMCID: PMC8259512 DOI: 10.1093/function/zqab031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/28/2021] [Accepted: 06/10/2021] [Indexed: 01/06/2023]
Abstract
The cardiac cycle starts when an action potential is produced by pacemaking cells in the sinoatrial node. This cycle is repeated approximately 100 000 times in humans and 1 million times in mice per day, imposing a monumental metabolic demand on the heart, requiring efficient blood supply via the coronary vasculature to maintain cardiac function. Although the ventricular coronary circulation has been extensively studied, the relationship between vascularization and cellular pacemaking modalities in the sinoatrial node is poorly understood. Here, we tested the hypothesis that the organization of the sinoatrial node microvasculature varies regionally, reflecting local myocyte firing properties. We show that vessel densities are higher in the superior versus inferior sinoatrial node. Accordingly, sinoatrial node myocytes are closer to vessels in the superior versus inferior regions. Superior and inferior sinoatrial node myocytes produce stochastic subthreshold voltage fluctuations and action potentials. However, the intrinsic action potential firing rate of sinoatrial node myocytes is higher in the superior versus inferior node. Our data support a model in which the microvascular densities vary regionally within the sinoatrial node to match the electrical and Ca2+ dynamics of nearby myocytes, effectively determining the dominant pacemaking site within the node. In this model, the high vascular density in the superior sinoatrial node places myocytes with metabolically demanding, high-frequency action potentials near vessels. The lower vascularization and electrical activity of inferior sinoatrial node myocytes could limit these cells to function to support sinoatrial node periodicity with sporadic voltage fluctuations via a stochastic resonance mechanism.
Collapse
|
50
|
Ravera S, Bartolucci M, Calzia D, Morelli AM, Panfoli I. Efficient extra-mitochondrial aerobic ATP synthesis in neuronal membrane systems. J Neurosci Res 2021; 99:2250-2260. [PMID: 34085315 DOI: 10.1002/jnr.24865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 11/09/2022]
Abstract
The nervous system displays high energy consumption, apparently not fulfilled by mitochondria, which are underrepresented therein. The oxidative phosphorylation (OxPhos) activity, a mitochondrial process that aerobically provides ATP, has also been reported also in the myelin sheath and the rod outer segment (OS) disks. Thus, commonalities and differences between the extra-mitochondrial and mitochondrial aerobic metabolism were evaluated in bovine isolated myelin (IM), rod OS, and mitochondria-enriched fractions (MIT). The subcellular fraction quality and the absence of contamination fractions have been estimated by western blot analysis. Oxygen consumption and ATP synthesis were stimulated by conventional (pyruvate + malate or succinate) and unconventional (NADH) substrates, observing that oxygen consumption and ATP synthesis by IM and rod OS are more efficient than by MIT, in the presence of both kinds of respiratory substrates. Mitochondria did not utilize NADH as a respiring substrate. When ATP synthesis by either sample was assayed in the presence of 10-100 µM ATP in the assay medium, only in IM and OS it was not inhibited, suggesting that the ATP exportation by the mitochondria is limited by extravesicular ATP concentration. Interestingly, IM and OS but not mitochondria appear able to synthesize ATP at a later time with respect to exposure to respiratory substrates, supporting the hypothesis that the proton gradient produced by the electron transport chain is buffered by membrane phospholipids. The putative transfer mode of the OxPhos molecular machinery from mitochondria to the extra-mitochondrial structures is also discussed, opening new perspectives in the field of neurophysiology.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Martina Bartolucci
- Laboratory of Mass Spectrometry - Core Facilities, Istituto Giannina Gaslini, Genoa, Italy.,Department of Pharmacy, Biochemistry Lab., University of Genoa, Genoa, Italy
| | - Daniela Calzia
- Department of Pharmacy, Biochemistry Lab., University of Genoa, Genoa, Italy
| | | | - Isabella Panfoli
- Department of Pharmacy, Biochemistry Lab., University of Genoa, Genoa, Italy
| |
Collapse
|