1
|
Kim HS, Sanchez ML, Silva J, Schubert HL, Dennis R, Hill CP, Christian JL. Mutations that prevent phosphorylation of the BMP4 prodomain impair proteolytic maturation of homodimers leading to lethality in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.08.617306. [PMID: 39416136 PMCID: PMC11482978 DOI: 10.1101/2024.10.08.617306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Bone morphogenetic protein4 (BMP4) plays numerous roles during embryogenesis and can signal either alone as a homodimer, or together with BMP7 as a more active heterodimer. BMPs are generated as inactive precursor proteins that dimerize and are cleaved to generate the bioactive ligand and inactive prodomain fragments. In humans, heterozygous mutations within the prodomain of BMP4 are associated with birth defects. We studied the effect of two of these mutations (p.S91C and p.E93G), which disrupt a conserved FAM20C phosphorylation motif, on ligand activity. We compared the activity of ligands generated from BMP4, BMP4S91C or BMP4E93G in Xenopus embryos and found that these mutations reduce the activity of BMP4 homodimers but not BMP4/7 heterodimers. We generated Bmp4 S91C and Bmp4 E93G knock-in mice and found that Bmp4 S91C/S91C mice die by E11.5 and display reduced BMP activity in multiple tissues including the heart. Most Bmp4 E93G/E93G mice die before weaning and Bmp4 -/E93G mutants die prenatally with reduced or absent eyes, heart and ventral body wall closure defects. Mouse embryonic fibroblasts (MEFs) isolated from Bmp4 S91C and Bmp4 E93G embryos show accumulation of BMP4 precursor protein, reduced levels of cleaved BMP ligand and reduced BMP activity relative to MEFs from wild type littermates. Because Bmp7 is not expressed in MEFs, the accumulation of unprocessed BMP4 precursor protein in mice carrying these mutations most likely reflects an inability to cleave BMP4 homodimers, leading to reduced levels of ligand and BMP activity in vivo. Our results suggest that phosphorylation of the BMP4 prodomain is required for proteolytic activation of BMP4 homodimers, but not heterodimers.
Collapse
Affiliation(s)
- Hyung-seok Kim
- Department of Neurobiology, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
| | - Mary L. Sanchez
- Department of Neurobiology, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
| | - Joshua Silva
- Department of Neurobiology, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
| | - Heidi L. Schubert
- Department of Biochemistry, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
| | - Rebecca Dennis
- Department of Neurobiology, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
| | - Christopher P. Hill
- Department of Biochemistry, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
| | - Jan L. Christian
- Department of Neurobiology, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
- Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
| |
Collapse
|
2
|
Zhang H, Jiang Y, Ding G, Chen J, Liu Y, Wang F, Yu X. Expression and purification of PNGase F protein in yeast and its anti-PRV activity. Virology 2025; 603:110393. [PMID: 39827598 DOI: 10.1016/j.virol.2025.110393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/20/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Pseudorabies virus (Pseudorabiesvirus, PRV) has caused huge economic losses to the global pig industry. In recent years, it has been reported that there are PRV mutants, but the traditional vaccine can not completely prevent or control the infection of PRV, so there is an urgent need to develop new broad-spectrum anti-disease drugs for prevention and treatment. PNGase F from bacteria can catalyze the hydrolysis of oligosaccharides linked to asparagine residues on peptides, so we speculate that PNGase F can inhibit virus infection by removing the glycosylation of virus membrane glycoproteins. In this study, PNGase F protein was highly expressed and purified in Pichia pastoris, and the deglycosylation activity of PNGase F expressed in Pichia pastoris was verified. In vitro, 15 μM could significantly inhibit the proliferation of virus in cells. The results of cytotoxicity test showed that PNGase F was not toxic to many cells. To further evaluate the effect of PNGase F in different stages of virus infection, it was found that PNGase F had significant inhibitory effect on virus adsorption and invasion. In vivo experiments in mice, PNGase F could significantly inhibit the replication of PRV Ea strain in mice and inhibit PRV, reduced brain lesions. Our experiments show that PNGase F expressed by yeast can inhibit PRV infection in vitro and in vitro, and its inhibitory mechanism is preliminarily discussed, which can provide a new reference for the development of broad-spectrum antiviral drugs based on PNGase F.
Collapse
Affiliation(s)
- Haonan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, China; Hubei Jiangxia Laboratory, 430200, Wuhan, China.
| | - Yu Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, China; Hubei Jiangxia Laboratory, 430200, Wuhan, China.
| | - Gang Ding
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, China; Hubei Jiangxia Laboratory, 430200, Wuhan, China.
| | - Jingyu Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, China; Hubei Jiangxia Laboratory, 430200, Wuhan, China.
| | - Yuda Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, China; Hubei Jiangxia Laboratory, 430200, Wuhan, China.
| | - Furong Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, China; Hubei Jiangxia Laboratory, 430200, Wuhan, China.
| | - Xiaolan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, China; Hubei Jiangxia Laboratory, 430200, Wuhan, China.
| |
Collapse
|
3
|
Du A, Yang K, Zhou X, Ren L, Liu N, Zhou C, Liang J, Yan N, Gao G, Wang D. Systemic gene therapy corrects the neurological phenotype in a mouse model of NGLY1 deficiency. JCI Insight 2024; 9:e183189. [PMID: 39137042 PMCID: PMC11466192 DOI: 10.1172/jci.insight.183189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
The cytoplasmic peptide:N-glycanase (NGLY1) is ubiquitously expressed and functions as a de-N-glycosylating enzyme that degrades misfolded N-glycosylated proteins. NGLY1 deficiency due to biallelic loss-of-function NGLY1 variants is an ultrarare autosomal recessive deglycosylation disorder with multisystemic involvement; the neurological manifestations represent the main disease burden. Currently, there is no treatment for this disease. To develop a gene therapy, we first characterized a tamoxifen-inducible Ngly1-knockout (iNgly1) C57BL/6J mouse model, which exhibited symptoms recapitulating human disease, including elevation of the biomarker GlcNAc-Asn, motor deficits, kyphosis, Purkinje cell loss, and gait abnormalities. We packaged a codon-optimized human NGLY1 transgene cassette into 2 adeno-associated virus (AAV) capsids, AAV9 and AAV.PHPeB. Systemic administration of the AAV.PHPeB vector to symptomatic iNgly1 mice corrected multiple disease features at 8 weeks after treatment. Furthermore, another cohort of AAV.PHPeB-treated iNgly1 mice were monitored over a year and showed near-complete normalization of the neurological aspects of the disease phenotype, demonstrating the durability of gene therapy. Our data suggested that brain-directed NGLY1 gene replacement via systemic delivery is a promising therapeutic strategy for NGLY1 deficiency. Although the superior CNS tropism of AAV.PHPeB vector does not translate to primates, emerging AAV capsids with enhanced primate CNS tropism will enable future translational studies.
Collapse
Affiliation(s)
- Ailing Du
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Kun Yang
- Department of Immunology and
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xuntao Zhou
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Lingzhi Ren
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Nan Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Chen Zhou
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Jialing Liang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Nan Yan
- Department of Immunology and
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems and
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
4
|
Hirayama H, Fujihira H, Suzuki T. Development of new NGLY1 assay systems - toward developing an early screening method for NGLY1 deficiency. Glycobiology 2024; 34:cwae067. [PMID: 39206713 PMCID: PMC11442003 DOI: 10.1093/glycob/cwae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Cytosolic peptide: N-glycanase (PNGase/NGLY1 in mammals) is an amidase (EC:3.5.1.52) widely conserved in eukaryotes. It catalyzes the removal of N-glycans on glycoproteins, converting N-glycosylated Asn into Asp residues. This enzyme also plays a role in the quality control system for nascent glycoproteins. Since the identification of a patient with an autosomal recessive genetic disorder caused by NGLY1 gene dysfunction, known as NGLY1 deficiency or NGLY1 congenital disorder of deglycosylation (OMIM: 615273), in 2012, more than 100 cases have been reported worldwide. NGLY1 deficiency is characterized by a wide array of symptoms, such as global mental delay, intellectual disability, abnormal electroencephalography findings, seizure, movement disorder, hypolacrima or alacrima, and liver dysfunction. Unfortunately, no effective therapeutic treatments for this disease have been established. However, administration of adeno-associated virus 9 (AAV9) vector harboring human NGLY1 gene to an NGLY1-deficient rat model (Ngly1-/- rat) by intracerebroventricular injection was found to drastically improve motor function defects. This observation indicated that early therapeutic intervention could alleviate various symptoms originating from central nervous system dysfunction in this disease. Therefore, there is a keen interest in the development of facile diagnostic methods for NGLY1 deficiency. This review summarizes the history of assay development for PNGase/NGLY1 activity, as well as the recent progress in the development of novel plate-based assay systems for NGLY1, and also discusses future perspectives.
Collapse
Affiliation(s)
- Hiroto Hirayama
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, 2-1 Hirosawa, Wako Saitama 351-0198, Japan
| | - Haruhiko Fujihira
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, 2-1 Hirosawa, Wako Saitama 351-0198, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, 2-1 Hirosawa, Wako Saitama 351-0198, Japan
| |
Collapse
|
5
|
Yuan S, Chen Y, Zou L, Lu X, Liu R, Zhang S, Zhang Y, Chen C, Cheng D, Chen L, Sun G. Functional prediction of the potential NGLY1 mutations associated with rare disease CDG. Heliyon 2024; 10:e28787. [PMID: 38628705 PMCID: PMC11016977 DOI: 10.1016/j.heliyon.2024.e28787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
Genetic diseases are currently diagnosed by functional mutations. However, only some mutations are associated with disease. It is necessary to establish a quick prediction model for clinical screening. Pathogenic mutations in NGLY1 cause a rare autosomal recessive disease known as congenital disorder of deglycosylation (NGLY1-CDDG). Although NGLY1-CDDG can be diagnosed through gene sequencing, clinical relevance of a detected mutation in NGLY1 needs to be further confirmed. In this study, taken NGLY1-CDDG as an example, a comprehensive and practical predictive model for pathogenic mutations on NGLY1 through an NGLY1/Glycopeptide complex model was constructed, the binding sites of NGLY1 and glycopeptides were simulated, and an in vitro enzymatic assay system was established to facilitate quick clinical decisions for NGLY1-CDDG patients. The docking model covers 42 % of reported NGLY1-CDDG missense mutations (5/12). All reported mutations were subjected to in vitro enzymatic assay in which 18 mutations were dysfunctional (18/30). In addition, a full spectrum of functional R328 mutations was assayed and 11 mutations were dysfunctional (11/19). In this study, a model of NGLY1 and glycopeptides was built for potential functional mutations in NGLY1. In addition, the effect of potential regulatory compounds, including N-acetyl-l-cysteine and dithiothreitol, on NGLY1 was examined. The established in vitro assay may serve as a standard protocol to facilitate rapid diagnosis of all mutations in NGLY1-CDDG. This method could also be applied as a comprehensive and practical predictive model for the other rare genetic diseases.
Collapse
Affiliation(s)
- Shuying Yuan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Yanwen Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Lin Zou
- Department of Medical Microbiology and Parasitology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xinrong Lu
- Department of Medical Microbiology and Parasitology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ruijie Liu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Shaoxing Zhang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Yuxin Zhang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Cuiying Chen
- Department of Research and Development, SysDiagno Biotech, Nanjing, 211800, Jiangsu Province, China
| | - Dongqing Cheng
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Li Chen
- Department of Medical Microbiology and Parasitology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Guiqin Sun
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| |
Collapse
|
6
|
Hirayama H, Tachida Y, Fujinawa R, Matsuda Y, Murase T, Nishiuchi Y, Suzuki T. Development of a fluorescence and quencher-based FRET assay for detection of endogenous peptide:N-glycanase/NGLY1 activity. J Biol Chem 2024; 300:107121. [PMID: 38417795 PMCID: PMC11065741 DOI: 10.1016/j.jbc.2024.107121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024] Open
Abstract
Cytosolic peptide:N-glycanase (PNGase/NGLY1 in mammals) catalyzes deglycosylation of N-glycans on glycoproteins. A genetic disorder caused by mutations in the NGLY1 gene leads to NGLY1 deficiency with symptoms including motor deficits and neurological problems. Effective therapies have not been established, though, a recent study used the administration of an adeno-associated viral vector expressing human NGLY1 to dramatically rescue motor functions in young Ngly1-/- rats. Thus, early therapeutic intervention may improve symptoms arising from central nervous system dysfunction, and assay methods for measuring NGLY1 activity in biological samples are critical for early diagnostics. In this study, we established an assay system for plate-based detection of endogenous NGLY1 activity using a FRET-based probe. Using this method, we revealed significant changes in NGLY1 activity in rat brains during aging. This novel assay offers reliable disease diagnostics and provides valuable insights into the regulation of PNGase/NGLY1 activity in diverse organisms under different stress conditions.
Collapse
Affiliation(s)
- Hiroto Hirayama
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, Wako Saitama, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Yuriko Tachida
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, Wako Saitama, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Reiko Fujinawa
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, Wako Saitama, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, Japan
| | | | | | | | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, Wako Saitama, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, Japan.
| |
Collapse
|
7
|
Suzuki T. A commentary on 'Patient-derived gene and protein expression signatures of NGLY1 deficiency'. J Biochem 2024; 175:221-223. [PMID: 38156787 DOI: 10.1093/jb/mvad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024] Open
Abstract
The cytosolic peptide:N-glycanase (PNGase; NGLY1 in human and PNG1 in budding yeast) is a deglycosylating enzyme widely conserved in eukaryotes. Initially, functional importance of this enzyme remained unknown as the png1Δ mutant in yeast did not exhibit any significant phenotypes. However, the discovery of NGLY1 deficiency, a rare genetic disorder with biallelic mutations in NGLY1 gene, prompted an intensification of research that has resulted in uncovering the significance of NGLY1 as well as the proteins under its influence that are involved in numerous cellular processes. A recent report by Rauscher et al. (Patient-derived gene and protein expression signatures of NGLY1 deficiency. J. Biochem. 2022; 171: 187-199) presented a comprehensive summary of transcriptome/proteome analyses of various cell types derived from NGLY1-deficient patients. The authors also provide a web application called 'NGLY1 browser', which will allow researchers to have access to a wealth of information on gene and protein expression signature for patients with NGLY1 deficiency.
Collapse
Affiliation(s)
- Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
8
|
Suzuki T, Fujihira H. NGLY1: A fascinating, multifunctional molecule. Biochim Biophys Acta Gen Subj 2024; 1868:130379. [PMID: 37951368 DOI: 10.1016/j.bbagen.2023.130379] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/04/2023] [Indexed: 11/14/2023]
Abstract
NGLY1, a cytoplasmic de-N-glycosylating enzyme is well conserved among eukaryotes. This enzyme has attracted considerable attention after mutations on the NGLY1 gene were found to cause a rare genetic disorder called NGLY1 deficiency. Recent explosive progress in NGLY1 research has revealed multi-functional aspects of this protein.
Collapse
Affiliation(s)
- Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan; Takeda-CiRA Joint Program (T-CiRA), Kanagawa, Japan.
| | - Haruhiko Fujihira
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| |
Collapse
|
9
|
Manole A, Wong T, Rhee A, Novak S, Chin SM, Tsimring K, Paucar A, Williams A, Newmeyer TF, Schafer ST, Rosh I, Kaushik S, Hoffman R, Chen S, Wang G, Snyder M, Cuervo AM, Andrade L, Manor U, Lee K, Jones JR, Stern S, Marchetto MC, Gage FH. NGLY1 mutations cause protein aggregation in human neurons. Cell Rep 2023; 42:113466. [PMID: 38039131 PMCID: PMC10826878 DOI: 10.1016/j.celrep.2023.113466] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 08/04/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023] Open
Abstract
Biallelic mutations in the gene that encodes the enzyme N-glycanase 1 (NGLY1) cause a rare disease with multi-symptomatic features including developmental delay, intellectual disability, neuropathy, and seizures. NGLY1's activity in human neural cells is currently not well understood. To understand how NGLY1 gene loss leads to the specific phenotypes of NGLY1 deficiency, we employed direct conversion of NGLY1 patient-derived induced pluripotent stem cells (iPSCs) to functional cortical neurons. Transcriptomic, proteomic, and functional studies of iPSC-derived neurons lacking NGLY1 function revealed several major cellular processes that were altered, including protein aggregate-clearing functionality, mitochondrial homeostasis, and synaptic dysfunctions. These phenotypes were rescued by introduction of a functional NGLY1 gene and were observed in iPSC-derived mature neurons but not astrocytes. Finally, laser capture microscopy followed by mass spectrometry provided detailed characterization of the composition of protein aggregates specific to NGLY1-deficient neurons. Future studies will harness this knowledge for therapeutic development.
Collapse
Affiliation(s)
- Andreea Manole
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Thomas Wong
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Amanda Rhee
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sammy Novak
- Waitt Advanced Biophotonics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Shao-Ming Chin
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Katya Tsimring
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Andres Paucar
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - April Williams
- The Razavi Newman Integrative Genomics and Bioinformatics Core Facility, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Traci Fang Newmeyer
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Simon T Schafer
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Idan Rosh
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Susmita Kaushik
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rene Hoffman
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Songjie Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Guangwen Wang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Leo Andrade
- Waitt Advanced Biophotonics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Uri Manor
- Waitt Advanced Biophotonics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kevin Lee
- Grace Science Foundation, Menlo Park, CA 94025, USA
| | - Jeffrey R Jones
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Maria C Marchetto
- Department of Anthropology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
10
|
Zhang Y, Yu H, Wang D, Lei X, Meng Y, Zhang N, Chen F, Lv L, Pan Q, Qin H, Zhang Z, van Aalten DMF, Yuan K. Protein O-GlcNAcylation homeostasis regulates facultative heterochromatin to fine-tune sog-Dpp signaling during Drosophila early embryogenesis. J Genet Genomics 2023; 50:948-959. [PMID: 37286164 DOI: 10.1016/j.jgg.2023.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/30/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Protein O-GlcNAcylation is a monosaccharide post-translational modification maintained by two evolutionarily conserved enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Mutations in human OGT have recently been associated with neurodevelopmental disorders, although the mechanisms linking O-GlcNAc homeostasis to neurodevelopment are not understood. Here, we investigate the effects of perturbing protein O-GlcNAcylation using transgenic Drosophila lines that overexpress a highly active OGA. We reveal that temporal reduction of protein O-GlcNAcylation in early embryos leads to reduced brain size and olfactory learning in adult Drosophila. Downregulation of O-GlcNAcylation induced by the exogenous OGA activity promotes nuclear foci formation of Polycomb-group protein Polyhomeotic and the accumulation of excess K27 trimethylation of histone H3 (H3K27me3) at the mid-blastula transition. These changes interfere with the zygotic expression of several neurodevelopmental genes, particularly shortgastrulation (sog), a component of an evolutionarily conserved sog-Decapentaplegic (Dpp) signaling system required for neuroectoderm specification. Our findings highlight the importance of early embryonic O-GlcNAcylation homeostasis for the fidelity of facultative heterochromatin redeployment and initial cell fate commitment of neuronal lineages, suggesting a possible mechanism underpinning OGT-associated intellectual disability.
Collapse
Affiliation(s)
- Yaowen Zhang
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Haibin Yu
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Dandan Wang
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaoyun Lei
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yang Meng
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Na Zhang
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Fang Chen
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lu Lv
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qian Pan
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hongtao Qin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Zhuohua Zhang
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Daan M F van Aalten
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; Department of Molecular Biology and Genetics, University of Aarhus, Aarhus 8000, Denmark.
| | - Kai Yuan
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; The Biobank of Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
11
|
Pandey A, Galeone A, Han SY, Story BA, Consonni G, Mueller WF, Steinmetz LM, Vaccari T, Jafar-Nejad H. Gut barrier defects, intestinal immune hyperactivation and enhanced lipid catabolism drive lethality in NGLY1-deficient Drosophila. Nat Commun 2023; 14:5667. [PMID: 37704604 PMCID: PMC10499810 DOI: 10.1038/s41467-023-40910-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/16/2023] [Indexed: 09/15/2023] Open
Abstract
Intestinal barrier dysfunction leads to inflammation and associated metabolic changes. However, the relative impact of gut bacteria versus non-bacterial insults on animal health in the context of barrier dysfunction is not well understood. Here, we establish that loss of Drosophila N-glycanase 1 (Pngl) in a specific intestinal cell type leads to gut barrier defects, causing starvation and JNK overactivation. These abnormalities, along with loss of Pngl in enterocytes and fat body, result in Foxo overactivation, leading to hyperactive innate immune response and lipid catabolism and thereby contributing to lethality. Germ-free rearing of Pngl mutants rescued their developmental delay but not lethality. However, raising Pngl mutants on isocaloric, fat-rich diets partially rescued lethality. Our data indicate that Pngl functions in Drosophila larvae to establish the gut barrier, and that the lethality caused by loss of Pngl is primarily mediated through non-bacterial induction of immune and metabolic abnormalities.
Collapse
Affiliation(s)
- Ashutosh Pandey
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, USA.
| | - Antonio Galeone
- Department of Biosciences, University of Milan, Milan, Italy
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), Lecce, Italy
| | - Seung Yeop Han
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, USA
| | - Benjamin A Story
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Gaia Consonni
- Department of Biosciences, University of Milan, Milan, Italy
| | - William F Mueller
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Lars M Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Genetics, School of Medicine, Stanford University, Stanford, USA
| | - Thomas Vaccari
- Department of Biosciences, University of Milan, Milan, Italy
| | - Hamed Jafar-Nejad
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, USA.
- Genetics & Genomic Graduate Program, Baylor College of Medicine, Houston, USA.
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
12
|
Pandey A, Galeone A, Han SY, Story BA, Consonni G, Mueller WF, Steinmetz LM, Vaccari T, Jafar-Nejad H. Gut barrier defects, increased intestinal innate immune response, and enhanced lipid catabolism drive lethality in N -glycanase 1 deficient Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536022. [PMID: 37066398 PMCID: PMC10104161 DOI: 10.1101/2023.04.07.536022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Intestinal barrier dysfunction leads to inflammation and associated metabolic changes. However, the relative impact of infectious versus non-infectious mechanisms on animal health in the context of barrier dysfunction is not well understood. Here, we establish that loss of Drosophila N -glycanase 1 (Pngl) leads to gut barrier defects, which cause starvation and increased JNK activity. These defects result in Foxo overactivation, which induces a hyperactive innate immune response and lipid catabolism, thereby contributing to lethality associated with loss of Pngl . Notably, germ-free rearing of Pngl mutants did not rescue lethality. In contrast, raising Pngl mutants on isocaloric, fat-rich diets improved animal survival in a dosage-dependent manner. Our data indicate that Pngl functions in Drosophila larvae to establish the gut barrier, and that the immune and metabolic consequences of loss of Pngl are primarily mediated through non-infectious mechanisms.
Collapse
|
13
|
Wee JLQ, Murugesan SN, Wheat CW, Monteiro A. The genetic basis of wing spots in Pieris canidia butterflies. BMC Genomics 2023; 24:169. [PMID: 37016295 PMCID: PMC10074818 DOI: 10.1186/s12864-023-09261-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
Spots in pierid butterflies and eyespots in nymphalid butterflies are likely non-homologous wing colour pattern elements, yet they share a few features in common. Both develop black scales that depend on the function of the gene spalt, and both might have central signalling cells. This suggests that both pattern elements may be sharing common genetic circuitry. Hundreds of genes have already been associated with the development of nymphalid butterfly eyespot patterns, but the genetic basis of the simpler spot patterns on the wings of pierid butterflies has not been investigated. To facilitate studies of pierid wing patterns, we report a high-quality draft genome assembly for Pieris canidia, the Indian cabbage white. We then conducted transcriptomic analyses of pupal wing tissues sampled from the spot and non-spot regions of P. canidia at 3-6 h post-pupation. A total of 1352 genes were differentially regulated between wing tissues with and without the black spot, including spalt, Krüppel-like factor 10, genes from the Toll, Notch, TGF-β, and FGFR signalling pathways, and several genes involved in the melanin biosynthetic pathway. We identified 14 genes that are up-regulated in both pierid spots and nymphalid eyespots and propose that spots and eyespots share regulatory modules despite their likely independent origins.
Collapse
Affiliation(s)
- Jocelyn Liang Qi Wee
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| | - Suriya Narayanan Murugesan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| | | | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
14
|
Walber S, Partalidou G, Gerling‐Driessen UIM. NGLY1 Deficiency: A Rare Genetic Disorder Unlocks Therapeutic Potential for Common Diseases. Isr J Chem 2022. [DOI: 10.1002/ijch.202200068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Simon Walber
- Institute of Organic and Macromolecular Chemistry Heinrich Heine University Duesseldorf Universitaetsstrasse 1 40225 Duesseldorf Germany
| | - Georgia Partalidou
- Institute of Organic and Macromolecular Chemistry Heinrich Heine University Duesseldorf Universitaetsstrasse 1 40225 Duesseldorf Germany
| | - Ulla I. M. Gerling‐Driessen
- Institute of Organic and Macromolecular Chemistry Heinrich Heine University Duesseldorf Universitaetsstrasse 1 40225 Duesseldorf Germany
| |
Collapse
|
15
|
Mesika A, Nadav G, Shochat C, Kalfon L, Jackson K, Khalaileh A, Karasik D, Falik-Zaccai TC. NGLY1 Deficiency Zebrafish Model Manifests Abnormalities of the Nervous and Musculoskeletal Systems. Front Cell Dev Biol 2022; 10:902969. [PMID: 35769264 PMCID: PMC9234281 DOI: 10.3389/fcell.2022.902969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background: NGLY1 is an enigmatic enzyme with multiple functions across a wide range of species. In humans, pathogenic genetic variants in NGLY1 are linked to a variable phenotype of global neurological dysfunction, abnormal tear production, and liver disease presenting the rare autosomal recessive disorder N-glycanase deficiency. We have ascertained four NGLY1 deficiency patients who were found to carry a homozygous nonsense variant (c.1294G > T, p.Glu432*) in NGLY1. Methods: We created an ngly1 deficiency zebrafish model and studied the nervous and musculoskeletal (MSK) systems to further characterize the phenotypes and pathophysiology of the disease. Results: Nervous system morphology analysis has shown significant loss of axon fibers in the peripheral nervous system. In addition, we found muscle structure abnormality of the mutant fish. Locomotion behavior analysis has shown hypersensitivity of the larval ngly1(−/−) fish during stress conditions. Conclusion: This first reported NGLY1 deficiency zebrafish model might add to our understanding of NGLY1 role in the development of the nervous and MSK systems. Moreover, it might elucidate the natural history of the disease and be used as a platform for the development of novel therapies.
Collapse
Affiliation(s)
- Aviv Mesika
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Golan Nadav
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Chen Shochat
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Limor Kalfon
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Karen Jackson
- MIGAL, Galilee Research Institute, Kiryat Shmona, Israel
| | - Ayat Khalaileh
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - David Karasik
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Tzipora C. Falik-Zaccai
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
- *Correspondence: Tzipora C. Falik-Zaccai,
| |
Collapse
|
16
|
Macabenta F, Sun HT, Stathopoulos A. BMP-gated cell-cycle progression drives anoikis during mesenchymal collective migration. Dev Cell 2022; 57:1683-1693.e3. [PMID: 35709766 PMCID: PMC9339487 DOI: 10.1016/j.devcel.2022.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/02/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022]
Abstract
Tissue homeostasis involves the elimination of abnormal cells to avoid compromised patterning and function. Although quality control through cell competition is well studied in epithelial tissues, it is unknown if and how homeostasis is regulated in mesenchymal collectives. Here, we demonstrate that collectively migrating Drosophila muscle precursors utilize both fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) signaling to promote homeostasis via anoikis, a form of cell death in response to substrate de-adhesion. Cell-cycle-regulated expression of the cell death gene head involution defective is responsible for caudal visceral mesoderm (CVM) anoikis. The secreted BMP ligand drives cell-cycle progression via a visceral mesoderm-specific cdc25/string enhancer to synchronize collective proliferation, as well as apoptosis of cells that have lost access to substrate-derived FGF. Perturbation of BMP-dependent cell-cycle progression is sufficient to confer anoikis resistance to mismigrating cells and thus facilitate invasion of other tissues. This BMP-gated cell-cycle checkpoint defines a quality control mechanism during mesenchymal collective migration.
Collapse
Affiliation(s)
- Frank Macabenta
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Hsuan-Te Sun
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Angelike Stathopoulos
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
17
|
Miao X, Wu J, Chen H, Lu G. Comprehensive Analysis of the Structure and Function of Peptide:N-Glycanase 1 and Relationship with Congenital Disorder of Deglycosylation. Nutrients 2022; 14:nu14091690. [PMID: 35565658 PMCID: PMC9102325 DOI: 10.3390/nu14091690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
The cytosolic PNGase (peptide:N-glycanase), also known as peptide-N4-(N-acetyl-β-glucosaminyl)-asparagine amidase, is a well-conserved deglycosylation enzyme (EC 3.5.1.52) which catalyzes the non-lysosomal hydrolysis of an N(4)-(acetyl-β-d-glucosaminyl) asparagine residue (Asn, N) into a N-acetyl-β-d-glucosaminyl-amine and a peptide containing an aspartate residue (Asp, D). This enzyme (NGLY1) plays an essential role in the clearance of misfolded or unassembled glycoproteins through a process named ER-associated degradation (ERAD). Accumulating evidence also points out that NGLY1 deficiency can cause an autosomal recessive (AR) human genetic disorder associated with abnormal development and congenital disorder of deglycosylation. In addition, the loss of NGLY1 can affect multiple cellular pathways, including but not limited to NFE2L1 pathway, Creb1/Atf1-AQP pathway, BMP pathway, AMPK pathway, and SLC12A2 ion transporter, which might be the underlying reasons for a constellation of clinical phenotypes of NGLY1 deficiency. The current comprehensive review uncovers the NGLY1’ssdetailed structure and its important roles for participation in ERAD, involvement in CDDG and potential treatment for NGLY1 deficiency.
Collapse
Affiliation(s)
- Xiangguang Miao
- Queen Mary School, Nanchang University, No. 1299 Xuefu Avenue, Honggutan New District, Nanchang 330036, China;
| | - Jin Wu
- Laboratory of Translational Medicine Research, Department of Pathology, Deyang People’s Hospital, No. 173 First Section of Taishanbei Road, Jingyang District, Deyang 618000, China;
- Deyang Key Laboratory of Tumor Molecular Research, No. 173 First Section of Taishanbei Road, Jingyang District, Deyang 618000, China
- Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Hongping Chen
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang 330006, China
- Correspondence: (H.C.); (G.L.); Tel.: +86-188-0147-4087 (G.L.)
| | - Guanting Lu
- Laboratory of Translational Medicine Research, Department of Pathology, Deyang People’s Hospital, No. 173 First Section of Taishanbei Road, Jingyang District, Deyang 618000, China;
- Deyang Key Laboratory of Tumor Molecular Research, No. 173 First Section of Taishanbei Road, Jingyang District, Deyang 618000, China
- Correspondence: (H.C.); (G.L.); Tel.: +86-188-0147-4087 (G.L.)
| |
Collapse
|
18
|
NGLY1 Deficiency, a Congenital Disorder of Deglycosylation: From Disease Gene Function to Pathophysiology. Cells 2022; 11:cells11071155. [PMID: 35406718 PMCID: PMC8997433 DOI: 10.3390/cells11071155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
N-Glycanase 1 (NGLY1) is a cytosolic enzyme involved in removing N-linked glycans of misfolded N-glycoproteins and is considered to be a component of endoplasmic reticulum-associated degradation (ERAD). The 2012 identification of recessive NGLY1 mutations in a rare multisystem disorder has led to intense research efforts on the roles of NGLY1 in animal development and physiology, as well as the pathophysiology of NGLY1 deficiency. Here, we present a review of the NGLY1-deficient patient phenotypes, along with insights into the function of this gene from studies in rodent and invertebrate animal models, as well as cell culture and biochemical experiments. We will discuss critical processes affected by the loss of NGLY1, including proteasome bounce-back response, mitochondrial function and homeostasis, and bone morphogenetic protein (BMP) signaling. We will also cover the biologically relevant targets of NGLY1 and the genetic modifiers of NGLY1 deficiency phenotypes in animal models. Together, these discoveries and disease models have provided a number of avenues for preclinical testing of potential therapeutic approaches for this disease.
Collapse
|
19
|
Deficiency of N-glycanase 1 perturbs neurogenesis and cerebral development modeled by human organoids. Cell Death Dis 2022; 13:262. [PMID: 35322011 PMCID: PMC8942998 DOI: 10.1038/s41419-022-04693-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/23/2022]
Abstract
AbstractMutations in N-glycanase 1 (NGLY1), which deglycosylates misfolded glycoproteins for degradation, can cause NGLY1 deficiency in patients and their abnormal fetal development in multiple organs, including microcephaly and other neurological disorders. Using cerebral organoids (COs) developed from human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs), we investigate how NGLY1 dysfunction disturbs early brain development. While NGLY1 loss had limited impact on the undifferentiated cells, COs developed from NGLY1-deficient hESCs showed defective formation of SATB2-positive upper-layer neurons, and attenuation of STAT3 and HES1 signaling critical for sustaining radial glia. Bulk and single-cell transcriptomic analysis revealed premature neuronal differentiation accompanied by downregulation of secreted and transcription factors, including TTR, IGFBP2, and ID4 in NGLY1-deficient COs. NGLY1 malfunction also dysregulated ID4 and enhanced neuronal differentiation in CO transplants developed in vivo. NGLY1-deficient CO cells were more vulnerable to multiple stressors; treating the deficient cells with recombinant TTR reduced their susceptibility to stress from proteasome inactivation, likely through LRP2-mediated activation of MAPK signaling. Expressing NGLY1 led to IGFBP2 and ID4 upregulation in CO cells developed from NGLY1-deficiency patient’s hiPSCs. In addition, treatment with recombinant IGFBP2 enhanced ID4 expression, STAT3 signaling, and proliferation of NGLY1-deficient CO cells. Overall, our discoveries suggest that dysregulation of stress responses and neural precursor differentiation underlies the brain abnormalities observed in NGLY1-deficient individuals.
Collapse
|
20
|
Suzuki T, Yoshida Y. Ever-Expanding NGLY1 biology. J Biochem 2021; 171:141-143. [PMID: 34969094 DOI: 10.1093/jb/mvab134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/12/2022] Open
Abstract
The cytosolic peptide:N-glycanase (PNGase; NGLY1 in humans) is a deglycosylating enzyme that is widely conserved in eukaryotes. This enzyme is involved in the degradation of misfolded N-glycoproteins that are destined for proteasomal degradation in the cytosol, a process that is called endoplasmic reticulum (ER)-associated degradation (ERAD). Although the physiological significance of NGLY1 remained unknown until recently, the discovery of NGLY1 deficiency, a human genetic disorder bearing mutations in the NGLY1 gene, has led to explosive research progress regarding the functional characterization of this enzyme. For example, it is now known that NGLY1 can also act as an "editing enzyme" to convert N-glycosylated asparagine residues to aspartate residues, thus introducing negative charges into a core peptide and modulating the function of the target molecule. Diverse biological processes have also been found to be affected by compromised NGLY1 activity. In this special issue, recent research progress on the functional characterization of NGLY1 and its orthologues in worm/fly/rodents, assay methods/biomarkers useful for the development of therapeutics, and the comprehensive transcriptome/proteome of NGLY1-KO cells as well as patient-derived cells are discussed.
Collapse
Affiliation(s)
- Tadashi Suzuki
- Glycometabolome Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan.,Takeda-CiRA Joint Program (T-CiRA), Kanagawa 251-8555, Japan
| | - Yukiko Yoshida
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
21
|
Rauscher B, Mueller WF, Clauder-Münster S, Jakob P, Islam MS, Sun H, Ghidelli-Disse S, Boesche M, Bantscheff M, Pflaumer H, Collier P, Haase B, Chen S, Hoffman R, Wang G, Benes V, Drewes G, Snyder M, Steinmetz LM. Patient-derived gene and protein expression signatures of NGLY1 deficiency. J Biochem 2021; 171:187-199. [PMID: 34878535 DOI: 10.1093/jb/mvab131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/13/2021] [Indexed: 11/14/2022] Open
Abstract
N-Glycanase 1 (NGLY1) deficiency is a rare and complex genetic disorder. Although recent studies have shed light on the molecular underpinnings of NGLY1 deficiency, a systematic characterization of gene and protein expression changes in patient-derived cells has been lacking. Here, we performed RNA-sequencing and mass spectrometry to determine the transcriptomes and proteomes of 66 cell lines representing 4 different cell types derived from 14 NGLY1 deficient patients and 17 controls. Although NGLY1 protein levels were up to 9.5-fold downregulated in patients compared to parents, residual and likely non-functional NGLY1 protein was detectable in all patient-derived lymphoblastoid cell lines. Consistent with the role of NGLY1 as a regulator of the transcription factor Nrf1, we observed a cell type-independent downregulation of proteasomal genes in NGLY1 deficient cells. In contrast, genes involved in ribosome biogenesis and mRNA processing were upregulated in multiple cell types. In addition, we observed cell type-specific effects. For example, genes and proteins involved in glutathione synthesis, such as the glutamate-cysteine ligase subunits GCLC and GCLM, were downregulated specifically in lymphoblastoid cells. We provide a web application that enables access to all results generated in this study at https://apps.embl.de/ngly1browser. This resource will guide future studies of NGLY1 deficiency in directions that are most relevant to patients.
Collapse
Affiliation(s)
- Benedikt Rauscher
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | | | - Sandra Clauder-Münster
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Petra Jakob
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - M Saiful Islam
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Han Sun
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Sonja Ghidelli-Disse
- Cellzome GmbH, a GlaxoSmithKline Company, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Markus Boesche
- Cellzome GmbH, a GlaxoSmithKline Company, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Marcus Bantscheff
- Cellzome GmbH, a GlaxoSmithKline Company, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Hannah Pflaumer
- Cellzome GmbH, a GlaxoSmithKline Company, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Paul Collier
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Bettina Haase
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Songjie Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Rene Hoffman
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Guangwen Wang
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Vladimir Benes
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Gerard Drewes
- Cellzome GmbH, a GlaxoSmithKline Company, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Lars M Steinmetz
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany, Meyerhofstrasse 1, Heidelberg, Germany, 69117.,Department of Genetics, Stanford University School of Medicine, Stanford, California, USA.,Stanford Genome Technology Center, Stanford University, Palo Alto, California, USA
| |
Collapse
|
22
|
Hirayama H, Suzuki T. Assay for the peptide:N-glycanase/NGLY1 and disease-specific biomarkers for diagnosing NGLY1 deficiency. J Biochem 2021; 171:169-176. [PMID: 34791337 DOI: 10.1093/jb/mvab127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Cytosolic peptide:N-glycanase (NGLY1 in mammals), a highly conserved enzyme in eukaryotes, catalyzes the deglycosylation of N-glycans that are attached to glycopeptide/glycoproteins. In 2012, an autosomal recessive disorder related to the NGLY1 gene, which was referred to as NGLY1 deficiency, was reported. Since then, more than 100 patients have been identified. Patients with this disease exhibit various symptoms, including various motor deficits and other neurological problems. Effective therapeutic treatments for this disease, however, have not been established. Most recently, it was demonstrated that the intracerebroventricular administration of an adeno-associated virus 9 vector expressing human NGLY1 during the weaning period allowed some motor functions to be recovered in Ngly1-/- rats. This observation led us to hypothesize that a therapeutic intervention for improving these motor deficits or other neurological symptoms found in the patients might be possible. To achieve this, it is critical to establish robust and facile methods for assaying NGLY1 activity in biological samples, for the early diagnosis and evaluation of the therapeutic efficacy for the treatment of NGLY1 deficiency. In this mini-review, we summarize progress made in the development of various assay methods for NGLY1 activity, as well as a recent progress in the identification of NGLY1 deficiency-specific biomarkers.
Collapse
Affiliation(s)
- Hiroto Hirayama
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Japan.,Takeda-CiRA Joint Program (T-CiRA), Kanagawa, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Japan.,Takeda-CiRA Joint Program (T-CiRA), Kanagawa, Japan
| |
Collapse
|
23
|
Hirayama H, Tachida Y, Seino J, Suzuki T. A method for assaying peptide: N-glycanase/N-Glycanase 1 activities in crude extracts using an N-glycosylated cyclopeptide. Glycobiology 2021; 32:110-122. [PMID: 34939090 PMCID: PMC8934141 DOI: 10.1093/glycob/cwab115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/09/2021] [Accepted: 10/31/2021] [Indexed: 11/13/2022] Open
Abstract
Cytosolic peptide: N-glycanase (PNGase; NGLY1), an enzyme responsible for de-glycosylation of N-glycans on glycoproteins, is known to play pivotal roles in a variety of biological processes. In 2012, NGLY1 deficiency, a rare genetic disorder, was reported and since then, more than 100 patients have now been identified worldwide. Patients with this disease exhibit several common symptoms that are caused by the dysfunction of NGLY1. However, correlation between the severity of patient symptoms and the extent of the reduction in NGLY1 activity in these patients remains to be clarified, mainly due to the absence of a facile quantitative assay system for this enzyme, especially in a crude extract as an enzyme source. In this study, a quantitative, non-radioisotope (RI)-based assay method for measuring recombinant NGLY1 activity was established using a BODIPY-labeled asialoglycopeptide (BODIPY-ASGP) derived from hen eggs. With this assay, the activities of 27 recombinant NGLY1 mutants that are associated with the deficiency were examined. It was found that the activities of 3 (R469X, R458fs, and H494fs) out of the 27 recombinant mutant proteins were 30-70 percent of the activities of wild-type NGLY1. We further developed a method for measuring endogenous NGLY1 activity in crude extracts derived from cultured cells, patients' fibroblasts, iPS cells or peripheral blood mononuclear cells (PBMCs), using a glycosylated cyclopeptide (GCP) that exhibited resistance to the endogenous proteases in the extract. Our methods will not only provide new insights into the molecular mechanism responsible for this disease but also promises to be applicable for its diagnosis.
Collapse
Affiliation(s)
- Hiroto Hirayama
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, Japan.,Takeda-CiRA Joint Program (T-CiRA), Kanagawa, Japan
| | - Yuriko Tachida
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, Japan.,Takeda-CiRA Joint Program (T-CiRA), Kanagawa, Japan
| | - Junichi Seino
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, Japan.,Takeda-CiRA Joint Program (T-CiRA), Kanagawa, Japan
| |
Collapse
|
24
|
Fujihira H, Asahina M, Suzuki T. Physiological importance of NGLY1, as revealed by rodent model analyses. J Biochem 2021; 171:161-167. [PMID: 34580715 DOI: 10.1093/jb/mvab101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/01/2021] [Indexed: 12/29/2022] Open
Abstract
Cytosolic peptide:N-glycanase (NGLY1) is an enzyme that cleaves N-glycans from glycoproteins that has been retrotranslocated from the endoplasmic reticulum (ER) lumen into the cytosol. It is known that NGLY1 is involved in the degradation of cytosolic glycans (non-lysosomal glycan degradation) as well as ER-associated degradation (ERAD), a quality control system for newly synthesized glycoproteins. The discovery of NGLY1 deficiency, which is caused by mutations in the human NGLY1 gene and results in multisystemic symptoms, has attracted interest in the physiological functions of NGLY1 in mammals. Studies using various animal models led to the identification of possible factors that contribute to the pathogenesis of NGLY1 deficiency. In this review, we summarize phenotypic consequences that have been reported for various Ngly1-deficient rodent models, and discuss future perspectives to provide more insights into the physiological functions of NGLY1.
Collapse
Affiliation(s)
- Haruhiko Fujihira
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, 3510198 Saitama, Japan.,Division of Glycobiologics, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, 1138421 Tokyo, Japan
| | - Makoto Asahina
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, 2518555 Kanagawa, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, 3510198 Saitama, Japan.,T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, 2518555 Kanagawa, Japan
| |
Collapse
|
25
|
Asahina M, Fujinawa R, Nakamura S, Yokoyama K, Tozawa R, Suzuki T. Ngly1 -/- rats develop neurodegenerative phenotypes and pathological abnormalities in their peripheral and central nervous systems. Hum Mol Genet 2021; 29:1635-1647. [PMID: 32259258 PMCID: PMC7322575 DOI: 10.1093/hmg/ddaa059] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
N-glycanase 1 (NGLY1) deficiency, an autosomal recessive disease caused by mutations in the NGLY1 gene, is characterized by developmental delay, hypolacrima or alacrima, seizure, intellectual disability, movement disorders and other neurological phenotypes. Because of few animal models that recapitulate these clinical signatures, the mechanisms of the onset of the disease and its progression are poorly understood, and the development of therapies is hindered. In this study, we generated the systemic Ngly1-deficient rodent model, Ngly1−/− rats, which showed developmental delay, movement disorder, somatosensory impairment and scoliosis. These phenotypes in Ngly1−/− rats are consistent with symptoms in human patients. In accordance with the pivotal role played by NGLY1 in endoplasmic reticulum-associated degradation processes, cleaving N-glycans from misfolded glycoproteins in the cytosol before they can be degraded by the proteasome, loss of Ngly1 led to accumulation of cytoplasmic ubiquitinated proteins, a marker of misfolded proteins in the neurons of the central nervous system of Ngly1−/− rats. Histological analysis identified prominent pathological abnormalities, including necrotic lesions, mineralization, intra- and extracellular eosinophilic bodies, astrogliosis, microgliosis and significant loss of mature neurons in the thalamic lateral and the medial parts of the ventral posterior nucleus and ventral lateral nucleus of Ngly1−/− rats. Axonal degradation in the sciatic nerves was also observed, as in human subjects. Ngly1−/− rats, which mimic the symptoms of human patients, will be a useful animal model for preclinical testing of therapeutic options and understanding the detailed mechanisms of NGLY1 deficiency.
Collapse
Affiliation(s)
- Makoto Asahina
- Takeda-CiRA Joint Program (T-CiRA), Kanagawa 2518555, Japan.,T-CiRA Discovery, Takeda Pharmaceutical Company Ltd., Kanagawa 2518555, Japan
| | - Reiko Fujinawa
- Takeda-CiRA Joint Program (T-CiRA), Kanagawa 2518555, Japan.,Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 3510198, Japan
| | - Sayuri Nakamura
- Nonclinical Safety Research, Axcelead Drug Discovery Partners Inc., Kanagawa 2510012, Japan
| | - Kotaro Yokoyama
- Nonclinical Safety Research, Axcelead Drug Discovery Partners Inc., Kanagawa 2510012, Japan
| | - Ryuichi Tozawa
- Takeda-CiRA Joint Program (T-CiRA), Kanagawa 2518555, Japan.,T-CiRA Discovery, Takeda Pharmaceutical Company Ltd., Kanagawa 2518555, Japan
| | - Tadashi Suzuki
- Takeda-CiRA Joint Program (T-CiRA), Kanagawa 2518555, Japan.,Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 3510198, Japan
| |
Collapse
|
26
|
Pandey A, Jafar-Nejad H. Tracing the NGLY1 footprints: Insights from Drosophila. J Biochem 2021; 171:153-160. [PMID: 34270726 DOI: 10.1093/jb/mvab084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/11/2021] [Indexed: 02/03/2023] Open
Abstract
Recessive mutations in human N-glycanase 1 (NGLY1) cause a multisystem disorder with various phenotypes including global developmental delay. One of the models utilized to understand the biology of NGLY1 and the pathophysiology of NGLY1 deficiency is Drosophila melanogaster, a well-established, genetically tractable organism broadly used to study various biological processes and human diseases. Loss of the Drosophila NGLY1 homolog (Pngl) causes a host of phenotypes including developmental delay and lethality. Phenotypic, transcriptomic and genome-wide association analyses on Drosophila have revealed links between NGLY1 and several critical developmental and cellular pathways/processes. Further, repurposing screens of FDA-approved drugs have identified potential candidates to ameliorate some of the Pngl mutant phenotypes. Here, we will summarize the insights gained into the functions of NGLY1 from Drosophila studies. We hope that the current review article will encourage additional studies in Drosophila and other model systems towards establishing a therapeutic strategy for NGLY1 deficiency patients.
Collapse
Affiliation(s)
- Ashutosh Pandey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, United States of America
| | - Hamed Jafar-Nejad
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, United States of America.,Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA.,Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
27
|
Yoshida Y, Asahina M, Murakami A, Kawawaki J, Yoshida M, Fujinawa R, Iwai K, Tozawa R, Matsuda N, Tanaka K, Suzuki T. Loss of peptide: N-glycanase causes proteasome dysfunction mediated by a sugar-recognizing ubiquitin ligase. Proc Natl Acad Sci U S A 2021; 118:e2102902118. [PMID: 34215698 PMCID: PMC8271764 DOI: 10.1073/pnas.2102902118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mutations in the human peptide:N-glycanase gene (NGLY1), which encodes a cytosolic de-N-glycosylating enzyme, cause a congenital autosomal recessive disorder. In rodents, the loss of Ngly1 results in severe developmental delay or lethality, but the underlying mechanism remains unknown. In this study, we found that deletion of Fbxo6 (also known as Fbs2), which encodes a ubiquitin ligase subunit that recognizes glycoproteins, rescued the lethality-related defects in Ngly1-KO mice. In NGLY1-KO cells, FBS2 overexpression resulted in the substantial inhibition of proteasome activity, causing cytotoxicity. Nuclear factor, erythroid 2-like 1 (NFE2L1, also known as NRF1), an endoplasmic reticulum-associated transcriptional factor involved in expression of proteasome subunits, was also abnormally ubiquitinated by SCFFBS2 in NGLY1-KO cells, resulting in its retention in the cytosol. However, the cytotoxicity caused by FBS2 was restored by the overexpression of "glycan-less" NRF1 mutants, regardless of their transcriptional activity, or by the deletion of NRF1 in NGLY1-KO cells. We conclude that the proteasome dysfunction caused by the accumulation of N-glycoproteins, primarily NRF1, ubiquitinated by SCFFBS2 accounts for the pathogenesis resulting from NGLY1 deficiency.
Collapse
Affiliation(s)
- Yukiko Yoshida
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan;
| | - Makoto Asahina
- Takeda-CiRA Joint Program (T-CiRA), Kanagawa 251-8555, Japan
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Kanagawa 251-8555, Japan
| | - Arisa Murakami
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Junko Kawawaki
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Meari Yoshida
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Reiko Fujinawa
- Takeda-CiRA Joint Program (T-CiRA), Kanagawa 251-8555, Japan
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Ryuichi Tozawa
- Takeda-CiRA Joint Program (T-CiRA), Kanagawa 251-8555, Japan
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Kanagawa 251-8555, Japan
| | - Noriyuki Matsuda
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Keiji Tanaka
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Tadashi Suzuki
- Takeda-CiRA Joint Program (T-CiRA), Kanagawa 251-8555, Japan;
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
| |
Collapse
|
28
|
Asahina M, Fujinawa R, Hirayama H, Tozawa R, Kajii Y, Suzuki T. Reversibility of motor dysfunction in the rat model of NGLY1 deficiency. Mol Brain 2021; 14:91. [PMID: 34120625 PMCID: PMC8201687 DOI: 10.1186/s13041-021-00806-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/07/2021] [Indexed: 12/26/2022] Open
Abstract
N-glycanase 1 (NGLY1) deficiency is a rare inherited disorder characterized by developmental delay, hypolacrima or alacrima, seizure, intellectual disability, motor deficits, and other neurological symptoms. The underlying mechanisms of the NGLY1 phenotype are poorly understood, and no effective therapy is currently available. Similar to human patients, the rat model of NGLY1 deficiency, Ngly1-/-, shows developmental delay, movement disorder, somatosensory impairment, scoliosis, and learning disability. Here we show that single intracerebroventricular administration of AAV9 expressing human NGLY1 cDNA (AAV9-hNGLY1) to Ngly1-/- rats during the weaning period restored NGLY1 expression in the brain and spinal cord, concomitant with increased enzymatic activity of NGLY1 in the brain. hNGLY1 protein expressed by AAV9 was found predominantly in mature neurons, but not in glial cells, of Ngly1-/- rats. Strikingly, intracerebroventricular administration of AAV9-hNGLY1 normalized the motor phenotypes of Ngly1-/- rats assessed by the rota-rod test and gait analysis. The reversibility of motor deficits in Ngly1-/- rats by central nervous system (CNS)-restricted gene delivery suggests that the CNS is the primary therapeutic target organs for NGLY1 deficiency, and that the Ngly1-/- rat model may be useful for evaluating therapeutic treatments in pre-clinical studies.
Collapse
Affiliation(s)
- Makoto Asahina
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, 2518555, Japan
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, 2518555, Japan
| | - Reiko Fujinawa
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, 2518555, Japan
| | - Hiroto Hirayama
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, 2518555, Japan
| | - Ryuichi Tozawa
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, 2518555, Japan
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, 2518555, Japan
| | - Yasushi Kajii
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, 2518555, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, 2518555, Japan.
| |
Collapse
|
29
|
Glycosylation of Stem Cells. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
ASAHINA M, FUJINAWA R, FUJIHIRA H, MASAHARA-NEGISHI Y, ANDOU T, TOZAWA R, SUZUKI T. JF1/B6F1 Ngly1 -/- mouse as an isogenic animal model of NGLY1 deficiency. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:89-102. [PMID: 33563880 PMCID: PMC7897899 DOI: 10.2183/pjab.97.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
N-Glycanase 1 (NGLY1) deficiency is a congenital disorder caused by mutations in the NGLY1 gene. Because systemic Ngly1-/- mice with a C57BL/6 (B6) background are embryonically lethal, studies on the mechanism of NGLY1 deficiency using mice have been problematic. In this study, B6-Ngly1-/+ mice were crossed with Japanese wild mice-originated Japanese fancy mouse 1 (JF1) mice to produce viable F2 Ngly1-/- mice from (JF1×B6)F1 Ngly1-/+ mice. Systemic Ngly1-/- mice with a JF1 mouse background were also embryonically lethal. Hybrid F1 Ngly1-/- (JF1/B6F1) mice, however, showed developmental delay and motor dysfunction, similar to that in human patients. JF1/B6F1 Ngly1-/- mice showed increased levels of plasma and urinary aspartylglycosamine, a potential biomarker for NGLY1 deficiency. JF1/B6F1 Ngly1-/- mice are a useful isogenic animal model for the preclinical testing of therapeutic options and understanding the precise pathogenic mechanisms responsible for NGLY1 deficiency.
Collapse
Affiliation(s)
- Makoto ASAHINA
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, Japan
- T-CiRA Discovery, Research, Takeda Pharmaceutical Co., Ltd., Fujisawa, Kanagawa, Japan
| | - Reiko FUJINAWA
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, Japan
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan
| | - Haruhiko FUJIHIRA
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan
- Division of Glycobiologics, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuki MASAHARA-NEGISHI
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan
| | - Tomohiro ANDOU
- Axcelead Drug Discovery Partners, Inc., Fujisawa, Kanagawa, Japan
| | - Ryuichi TOZAWA
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, Japan
- T-CiRA Discovery, Research, Takeda Pharmaceutical Co., Ltd., Fujisawa, Kanagawa, Japan
| | - Tadashi SUZUKI
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, Japan
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan
| |
Collapse
|
31
|
Abstract
Folding of proteins is essential so that they can exert their functions. For proteins that transit the secretory pathway, folding occurs in the endoplasmic reticulum (ER) and various chaperone systems assist in acquiring their correct folding/subunit formation. N-glycosylation is one of the most conserved posttranslational modification for proteins, and in eukaryotes it occurs in the ER. Consequently, eukaryotic cells have developed various systems that utilize N-glycans to dictate and assist protein folding, or if they consistently fail to fold properly, to destroy proteins for quality control and the maintenance of homeostasis of proteins in the ER.
Collapse
|
32
|
Han SY, Pandey A, Moore T, Galeone A, Duraine L, Cowan TM, Jafar-Nejad H. A conserved role for AMP-activated protein kinase in NGLY1 deficiency. PLoS Genet 2020; 16:e1009258. [PMID: 33315951 PMCID: PMC7769621 DOI: 10.1371/journal.pgen.1009258] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 12/28/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Mutations in human N-glycanase 1 (NGLY1) cause the first known congenital disorder of deglycosylation (CDDG). Patients with this rare disease, which is also known as NGLY1 deficiency, exhibit global developmental delay and other phenotypes including neuropathy, movement disorder, and constipation. NGLY1 is known to regulate proteasomal and mitophagy gene expression through activation of a transcription factor called "nuclear factor erythroid 2-like 1" (NFE2L1). Loss of NGLY1 has also been shown to impair energy metabolism, but the molecular basis for this phenotype and its in vivo consequences are not well understood. Using a combination of genetic studies, imaging, and biochemical assays, here we report that loss of NGLY1 in the visceral muscle of the Drosophila larval intestine results in a severe reduction in the level of AMP-activated protein kinase α (AMPKα), leading to energy metabolism defects, impaired gut peristalsis, failure to empty the gut, and animal lethality. Ngly1-/- mouse embryonic fibroblasts and NGLY1 deficiency patient fibroblasts also show reduced AMPKα levels. Moreover, pharmacological activation of AMPK signaling significantly suppressed the energy metabolism defects in these cells. Importantly, the reduced AMPKα level and impaired energy metabolism observed in NGLY1 deficiency models are not caused by the loss of NFE2L1 activity. Taken together, these observations identify reduced AMPK signaling as a conserved mediator of energy metabolism defects in NGLY1 deficiency and suggest AMPK signaling as a therapeutic target in this disease.
Collapse
Affiliation(s)
- Seung Yeop Han
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ashutosh Pandey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tereza Moore
- Department of Pathology, Stanford University, Stanford, California, United States of America
| | - Antonio Galeone
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lita Duraine
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
- Jan & Dan Duncan Neurological Research Institute Center, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Tina M. Cowan
- Department of Pathology, Stanford University, Stanford, California, United States of America
| | - Hamed Jafar-Nejad
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, Texas, United States of America
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
33
|
N-Glycanase 1 Transcriptionally Regulates Aquaporins Independent of Its Enzymatic Activity. Cell Rep 2020; 29:4620-4631.e4. [PMID: 31875565 DOI: 10.1016/j.celrep.2019.11.097] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/22/2019] [Accepted: 11/22/2019] [Indexed: 11/21/2022] Open
Abstract
Patients with pathogenic mutations in NGLY1 cannot make tears and have global developmental delay and liver dysfunction. Traditionally, NGLY1 cleaves intact N-glycans from misfolded, retrotranslocated glycoproteins before proteasomal degradation. We demonstrate that Ngly1-null mouse embryonic fibroblasts, NGLY1 knockout human cells, and patient fibroblasts are resistant to hypotonic lysis. Ngly1-deficient mouse embryonic fibroblasts swell slower and have reduced aquaporin1 mRNA and protein expression. Ngly1 knockdown and overexpression confirms that Ngly1 regulates aquaporin1 and hypotonic cell lysis. Patient fibroblasts and NGLY1 knockout cells show reduced aquaporin11 mRNA, supporting NGLY1 as regulating expression of multiple aquaporins across species. Complementing Ngly1-deficient cells with catalytically inactive NGLY1 (p.Cys309Ala) restores normal hypotonic lysis and aquaporin1 protein. We show that transcription factors Atf1/Creb1 regulate aquaporin1 and that the Atf1/Creb1 signaling pathway is disrupted in Ngly1-deficient mouse embryonic fibroblasts. These results identify a non-enzymatic, regulatory function of NGLY1 in aquaporin transcription, possibly related to alacrima and neurological symptoms.
Collapse
|
34
|
Galeone A, Adams JM, Matsuda S, Presa MF, Pandey A, Han SY, Tachida Y, Hirayama H, Vaccari T, Suzuki T, Lutz CM, Affolter M, Zuberi A, Jafar-Nejad H. Regulation of BMP4/Dpp retrotranslocation and signaling by deglycosylation. eLife 2020; 9:e55596. [PMID: 32720893 PMCID: PMC7394544 DOI: 10.7554/elife.55596] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/23/2020] [Indexed: 12/22/2022] Open
Abstract
During endoplasmic reticulum-associated degradation (ERAD), the cytoplasmic enzyme N-glycanase 1 (NGLY1) is proposed to remove N-glycans from misfolded N-glycoproteins after their retrotranslocation from the ER to the cytosol. We previously reported that NGLY1 regulates Drosophila BMP signaling in a tissue-specific manner (Galeone et al., 2017). Here, we establish the Drosophila Dpp and its mouse ortholog BMP4 as biologically relevant targets of NGLY1 and find, unexpectedly, that NGLY1-mediated deglycosylation of misfolded BMP4 is required for its retrotranslocation. Accumulation of misfolded BMP4 in the ER results in ER stress and prompts the ER recruitment of NGLY1. The ER-associated NGLY1 then deglycosylates misfolded BMP4 molecules to promote their retrotranslocation and proteasomal degradation, thereby allowing properly-folded BMP4 molecules to proceed through the secretory pathway and activate signaling in other cells. Our study redefines the role of NGLY1 during ERAD and suggests that impaired BMP4 signaling might underlie some of the NGLY1 deficiency patient phenotypes.
Collapse
Affiliation(s)
- Antonio Galeone
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Department of Biosciences, University of MilanMilanItaly
| | - Joshua M Adams
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Medical Scientist Training Program, Baylor College of MedicineHoustonUnited States
| | | | | | - Ashutosh Pandey
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Seung Yeop Han
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Yuriko Tachida
- Glycometabolome Biochemistry Laboratory, RIKEN Cluster for Pioneering ResearchSaitamaJapan
- T-CiRA joint programKanagawaJapan
| | - Hiroto Hirayama
- Glycometabolome Biochemistry Laboratory, RIKEN Cluster for Pioneering ResearchSaitamaJapan
- T-CiRA joint programKanagawaJapan
| | - Thomas Vaccari
- Department of Biosciences, University of MilanMilanItaly
| | - Tadashi Suzuki
- Glycometabolome Biochemistry Laboratory, RIKEN Cluster for Pioneering ResearchSaitamaJapan
- T-CiRA joint programKanagawaJapan
| | | | | | | | - Hamed Jafar-Nejad
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
35
|
Fujihira H, Masahara-Negishi Y, Akimoto Y, Hirayama H, Lee HC, Story BA, Mueller WF, Jakob P, Clauder-Münster S, Steinmetz LM, Radhakrishnan SK, Kawakami H, Kamada Y, Miyoshi E, Yokomizo T, Suzuki T. Liver-specific deletion of Ngly1 causes abnormal nuclear morphology and lipid metabolism under food stress. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165588. [PMID: 31733337 DOI: 10.1016/j.bbadis.2019.165588] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/09/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022]
Abstract
The cytoplasmic peptide:N-glycanase (Ngly1) is a de-N-glycosylating enzyme that cleaves N-glycans from misfolded glycoproteins and is involved in endoplasmic reticulum-associated degradation. The recent discovery of NGLY1-deficiency, which causes severe systemic symptoms, drew attention to the physiological function of Ngly1 in mammals. While several studies have been carried out to reveal the physiological necessity of Ngly1, the semi-lethal nature of Ngly1-deficient animals made it difficult to analyze its function in adults. In this study, we focus on the physiological function of Ngly1 in liver (hepatocyte)-specific Ngly1-deficient mice generated using the cre-loxP system. We found that hepatocyte-specific Ngly1-deficient mice showed abnormal hepatocyte nuclear size/morphology with aging but did not show other notable defects in unstressed conditions. This nuclear phenotype did not appear to be related to the function of the only gene currently reported to rescue Ngly1-deficient murine lethality so far, endo-β-N-acetylglucosaminidase. We also found that under a high fructose diet induced stress, the hepatocyte-specific Ngly1-deletion resulted in liver transaminases elevation and increased lipid droplet accumulation. We showed that the processing and localization of the transcription factor, nuclear factor erythroid 2-like 1 (Nfe2l1), was impaired in the Ngly1-deficient hepatocytes. Therefore, Nfe2l1, at least partially, contributes to the phenotypes observed in hepatocyte-specific Ngly1-deficient mice. Our results indicate that Ngly1 plays important roles in the adult liver impacting nuclear morphology and lipid metabolism. Hepatocyte-specific Ngly1-deficient mice could thus serve as a valuable animal model for assessing in vivo efficacy of drugs and/or treatment for NGLY1-deficiency.
Collapse
Affiliation(s)
- Haruhiko Fujihira
- Glycometabolic Biochemistry Laboratory, Cluster for Pioneering Research, RIKEN, Saitama 351-0198, Japan; Division of Glycobiologics, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yuki Masahara-Negishi
- Glycometabolic Biochemistry Laboratory, Cluster for Pioneering Research, RIKEN, Saitama 351-0198, Japan
| | - Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Hiroto Hirayama
- Glycometabolic Biochemistry Laboratory, Cluster for Pioneering Research, RIKEN, Saitama 351-0198, Japan; Suzuki Project, T-CiRA Joint Program, Fujisawa, Kanagawa 251-8555, Japan
| | - Hyeon-Cheol Lee
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Benjamin A Story
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany
| | - William F Mueller
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany
| | - Petra Jakob
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany
| | - Sandra Clauder-Münster
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany
| | - Lars M Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany; Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Senthil K Radhakrishnan
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Hayato Kawakami
- Department of Anatomy, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Yoshihiro Kamada
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, Cluster for Pioneering Research, RIKEN, Saitama 351-0198, Japan; Suzuki Project, T-CiRA Joint Program, Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
36
|
Huang C, Suzuki T. The occurrence of nonglycosylated forms of
N
‐glycoprotein upon proteasome inhibition does not confirm cytosolic deglycosylation. FEBS Lett 2020; 594:1433-1442. [DOI: 10.1002/1873-3468.13734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/20/2019] [Accepted: 01/06/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Chengcheng Huang
- Glycometabolic Biochemistry Laboratory RIKEN Cluster for Pioneering Research Wako Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory RIKEN Cluster for Pioneering Research Wako Japan
| |
Collapse
|
37
|
Novel NGLY1 gene variants in Chinese children with global developmental delay, microcephaly, hypotonia, hypertransaminasemia, alacrimia, and feeding difficulty. J Hum Genet 2020; 65:387-396. [PMID: 31965062 DOI: 10.1038/s10038-019-0719-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 11/09/2022]
Abstract
NGLY1 deficiency is the first and only autosomal recessive congenital disorder of N-linked deglycosylation (NGLY1-CDDG). To date, no patients with NGLY1 deficiency has been reported from mainland China or East Asia in English literature. Here, we present six patients with a diagnosis of NGLY1-CDDG on the basis of clinical phenotype, genetic testing, and functional studies. We retrospectively analyzed clinical phenotypes and NGLY1 genotypes of six cases from four families. Informed consent was obtained for diagnosis and treatment. In-silico tools and in vitro enzyme activity assays were used to determine pathogenicity of NGLY1 varaints. All patients had typical features of NGLY1-CDDG, including global developmental delay, microcephaly, hypotonia, hypertransaminasemia, alacrimia, and feeding difficulty. Dysmorphic features found in our patients include flat nasal bridge, loose and hollow cheeks, short stature, malnutrition, and ptosis. Pachylosis could be a novel cutaneous feature that may be explained by lack of sweat. We found three novel variants, including one missense (c.982C > G/p.Arg328Gly), one splice site (c.1003+3A > G), and one frame-shift (c.1637-1652delCATCTTTTGCTTATAT/p.Ser546PhefsTer) variant. All mutations were predicted to be disease causing with in-silico prediction tools, and affected at least one feature of gene splicing. Protein modeling showed missense variants may affect covalent bonding within the protein structure, or interrupt active/binding amino-acid residues. In vitro studies indicated that proteins carrying missense variants (p.Arg328Gly and p.Tyr342Cys) lost the enzyme activity. We expanded clinical phenotype and genetic mutation spectrum of NGLY1-CDDG by reporting six cases, three novel variants, and novel clinical features from mainland China.
Collapse
|
38
|
Iyer S, Mast JD, Tsang H, Rodriguez TP, DiPrimio N, Prangley M, Sam FS, Parton Z, Perlstein EO. Drug screens of NGLY1 deficiency in worm and fly models reveal catecholamine, NRF2 and anti-inflammatory-pathway activation as potential clinical approaches. Dis Model Mech 2019; 12:dmm.040576. [PMID: 31615832 PMCID: PMC6899034 DOI: 10.1242/dmm.040576] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/09/2019] [Indexed: 12/27/2022] Open
Abstract
N-glycanase 1 (NGLY1) deficiency is an ultra-rare and complex monogenic glycosylation disorder that affects fewer than 40 patients globally. NGLY1 deficiency has been studied in model organisms such as yeast, worms, flies and mice. Proteasomal and mitochondrial homeostasis gene networks are controlled by the evolutionarily conserved transcriptional regulator NRF1, whose activity requires deglycosylation by NGLY1. Hypersensitivity to the proteasome inhibitor bortezomib is a common phenotype observed in whole-animal and cellular models of NGLY1 deficiency. Here, we describe unbiased phenotypic drug screens to identify FDA-approved drugs that are generally recognized as safe natural products, and novel chemical entities, that rescue growth and development of NGLY1-deficient worm and fly larvae treated with a toxic dose of bortezomib. We used image-based larval size and number assays for use in screens of a 2560-member drug-repurposing library and a 20,240-member lead-discovery library. A total of 91 validated hit compounds from primary invertebrate screens were tested in a human cell line in an NRF2 activity assay. NRF2 is a transcriptional regulator that regulates cellular redox homeostasis, and it can compensate for loss of NRF1. Plant-based polyphenols make up the largest class of hit compounds and NRF2 inducers. Catecholamines and catecholamine receptor activators make up the second largest class of hits. Steroidal and non-steroidal anti-inflammatory drugs make up the third largest class. Only one compound was active in all assays and species: the atypical antipsychotic and dopamine receptor agonist aripiprazole. Worm and fly models of NGLY1 deficiency validate therapeutic rationales for activation of NRF2 and anti-inflammatory pathways based on results in mice and human cell models, and suggest a novel therapeutic rationale for boosting catecholamine levels and/or signaling in the brain. Summary: Using worm and fly models of an ultra-rare congenital disorder of glycosylation, we performed repurposing screens and identified the FDA-approved drug aripiprazole as a clinical candidate.
Collapse
Affiliation(s)
- Sangeetha Iyer
- Perlara PBC, 2625 Alcatraz Ave, #435, Berkeley, CA 94705, USA
| | - Joshua D Mast
- Perlara PBC, 2625 Alcatraz Ave, #435, Berkeley, CA 94705, USA
| | - Hillary Tsang
- Perlara PBC, 2625 Alcatraz Ave, #435, Berkeley, CA 94705, USA
| | | | - Nina DiPrimio
- Perlara PBC, 2625 Alcatraz Ave, #435, Berkeley, CA 94705, USA
| | | | - Feba S Sam
- Perlara PBC, 2625 Alcatraz Ave, #435, Berkeley, CA 94705, USA
| | - Zachary Parton
- Perlara PBC, 2625 Alcatraz Ave, #435, Berkeley, CA 94705, USA
| | | |
Collapse
|
39
|
Suzuki T. NGLY1-Deficiency and the Non-Lysosomal Degradation of Free <i>N</i>-Glycans. TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1926.2sj] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research
| |
Collapse
|
40
|
Suzuki T. NGLY1-Deficiency and the Non-Lysosomal Degradation of Free <i>N</i>-Glycans. TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1926.2se] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research
| |
Collapse
|
41
|
Abstract
The glycome describes the complete repertoire of glycoconjugates composed of carbohydrate chains, or glycans, that are covalently linked to lipid or protein molecules. Glycoconjugates are formed through a process called glycosylation and can differ in their glycan sequences, the connections between them and their length. Glycoconjugate synthesis is a dynamic process that depends on the local milieu of enzymes, sugar precursors and organelle structures as well as the cell types involved and cellular signals. Studies of rare genetic disorders that affect glycosylation first highlighted the biological importance of the glycome, and technological advances have improved our understanding of its heterogeneity and complexity. Researchers can now routinely assess how the secreted and cell-surface glycomes reflect overall cellular status in health and disease. In fact, changes in glycosylation can modulate inflammatory responses, enable viral immune escape, promote cancer cell metastasis or regulate apoptosis; the composition of the glycome also affects kidney function in health and disease. New insights into the structure and function of the glycome can now be applied to therapy development and could improve our ability to fine-tune immunological responses and inflammation, optimize the performance of therapeutic antibodies and boost immune responses to cancer. These examples illustrate the potential of the emerging field of 'glycomedicine'.
Collapse
Affiliation(s)
- Colin Reily
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tyler J Stewart
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
42
|
Fujihira H. Physiological Function of the Cytosolic Peptide:<i>N</i>-glycanase (Ngly1). TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1756.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Haruhiko Fujihira
- Division of Glycobiologics, Intractable Disease Research Center, Juntendo University Graduate School of Medicine
- Glycometabolic Biochemistry Laboratory, RIKEN
| |
Collapse
|
43
|
Fujihira H. Physiological Function of the Cytosolic Peptide:<i>N</i>-glycanase (Ngly1). TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1756.1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Haruhiko Fujihira
- Division of Glycobiologics, Intractable Disease Research Center, Juntendo University Graduate School of Medicine
- Glycometabolic Biochemistry Laboratory, RIKEN
| |
Collapse
|
44
|
Rodriguez TP, Mast JD, Hartl T, Lee T, Sand P, Perlstein EO. Defects in the Neuroendocrine Axis Contribute to Global Development Delay in a Drosophila Model of NGLY1 Deficiency. G3 (BETHESDA, MD.) 2018; 8:2193-2204. [PMID: 29735526 PMCID: PMC6027897 DOI: 10.1534/g3.118.300578] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/17/2018] [Indexed: 01/12/2023]
Abstract
N-glycanase 1 (NGLY1) Deficiency is a rare monogenic multi-system disorder first described in 2014. NGLY1 is evolutionarily conserved in model organisms. Here we conducted a natural history study and chemical-modifier screen on the Drosophila melanogaster NGLY1 homolog, Pngl We generated a new fly model of NGLY1 Deficiency, engineered with a nonsense mutation in Pngl at codon 420 that results in a truncation of the C-terminal carbohydrate-binding PAW domain. Homozygous mutant animals exhibit global development delay, pupal lethality and small body size as adults. We developed a 96-well-plate, image-based, quantitative assay of Drosophila larval size for use in a screen of the 2,650-member Microsource Spectrum compound library of FDA approved drugs, bioactive tool compounds, and natural products. We found that the cholesterol-derived ecdysteroid molting hormone 20-hydroxyecdysone (20E) partially rescued the global developmental delay in mutant homozygotes. Targeted expression of a human NGLY1 transgene to tissues involved in ecdysteroidogenesis, e.g., prothoracic gland, also partially rescues global developmental delay in mutant homozygotes. Finally, the proteasome inhibitor bortezomib is a potent enhancer of global developmental delay in our fly model, evidence of a defective proteasome "bounce-back" response that is also observed in nematode and cellular models of NGLY1 Deficiency. Together, these results demonstrate the therapeutic relevance of a new fly model of NGLY1 Deficiency for drug discovery and gene modifier screens.
Collapse
Affiliation(s)
| | - Joshua D Mast
- Perlara PBC, 6000 Shoreline Court, Suite 204, South San Francisco, California 94080
| | - Tom Hartl
- Perlara PBC, 6000 Shoreline Court, Suite 204, South San Francisco, California 94080
| | - Tom Lee
- Perlara PBC, 6000 Shoreline Court, Suite 204, South San Francisco, California 94080
| | - Peter Sand
- Perlara PBC, 6000 Shoreline Court, Suite 204, South San Francisco, California 94080
| | - Ethan O Perlstein
- Perlara PBC, 6000 Shoreline Court, Suite 204, South San Francisco, California 94080
| |
Collapse
|
45
|
Zhang L, Ten Hagen KG. Enzymatic insights into an inherited genetic disorder. eLife 2017; 6. [PMID: 28910263 PMCID: PMC5599233 DOI: 10.7554/elife.31127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 12/24/2022] Open
Abstract
Mutations in an enzyme involved in protein degradation affect a signaling pathway that stimulates the development of the digestive tract.
Collapse
Affiliation(s)
- Liping Zhang
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, United States
| | - Kelly G Ten Hagen
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, United States
| |
Collapse
|