1
|
Aryaloka S, Khairullah AR, Kusala MKJ, Fauziah I, Hidayatik N, Agil M, Yuliani MGA, Novianti AN, Moses IB, Purnama MTE, Wibowo S, Fauzia KA, Raissa R, Furqoni AH, Awwanah M, Riwu KHP. Navigating monkeypox: identifying risks and implementing solutions. Open Vet J 2024; 14:3144-3163. [PMID: 39927376 PMCID: PMC11799651 DOI: 10.5455/ovj.2024.v14.i12.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/02/2024] [Indexed: 02/11/2025] Open
Abstract
Monkeypox is a zoonotic disease caused by the orthopox virus, a double-stranded DNA virus that belongs the Poxviridae virus family. It is known to infect both animals (especially monkeys and rodents) and humans and causes a rash similar to smallpox. Humans can become infected with monkeypox virus (MPXV) when they get in close contact with infected animals (zoonotic transmission) or other infected people (human-human transmission) through their body fluids such as mucus, saliva, or even skin sores. Frequently observed symptoms of this disease include fever, headaches, muscle aches, and a rash that initially looks like a tiny bump before becoming a lump that is filled with fluid. Monkeypox symptoms also include an incubation period of 5-21 days, divided into prodromal and eruption phases. Several contributing factors, such as smallpox vaccine discontinuation, widespread intake of infected animal products as a source of protein, and high population density, amongst others, have been linked to an increase in the frequency of monkeypox outbreaks. The best course of action for diagnosing individuals who may be suffering from active monkeypox is to collect a sample of skin from the lesion and perform PCR molecular testing. Monkeypox does not presently have a specific therapy; however, supportive care can assist in managing symptoms, such as medication to lower body temperature and pain. Three major orthopoxvirus vaccines have been approved to serve as a preventive measure against monkeypox: LC16, JYNNEOS, and ACAM2000. The discovery that the monkeypox outbreak is communicable both among humans and within a population has sparked new public health worries on the possibility of the outbreak of another viral pandemic. Research and studies are still being conducted to gain a deeper understanding of this zoonotic viral disease. This review is therefore focused on deciphering monkeypox, its etiology, pathogenesis, transmission, risk factors, and control.
Collapse
Affiliation(s)
- Suhita Aryaloka
- Master Program of Veterinary Agribusiness, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | | | - Ima Fauziah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Nanik Hidayatik
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Muhammad Agil
- Division of Veterinary Clinic Reproduction and Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - M. Gandul Atik Yuliani
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Arindita Niatazya Novianti
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Syahputra Wibowo
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Ricadonna Raissa
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Abdul Hadi Furqoni
- Center for Biomedical Research, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Mo Awwanah
- Research Center for Applied Botany, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| |
Collapse
|
2
|
Barth ZK, Hicklin I, Thézé J, Takatsuka J, Nakai M, Herniou EA, Brown AM, Aylward FO. Genomic analysis of hyperparasitic viruses associated with entomopoxviruses. Virus Evol 2024; 10:veae051. [PMID: 39100687 PMCID: PMC11296320 DOI: 10.1093/ve/veae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 08/06/2024] Open
Abstract
Polinton-like viruses (PLVs) are a diverse group of small integrative dsDNA viruses that infect diverse eukaryotic hosts. Many PLVs are hypothesized to parasitize viruses in the phylum Nucleocytoviricota for their own propagation and spread. Here, we analyze the genomes of novel PLVs associated with the occlusion bodies of entomopoxvirus (EPV) infections of two separate lepidopteran hosts. The presence of these elements within EPV occlusion bodies suggests that they are the first known hyperparasites of poxviruses. We find that these PLVs belong to two distinct lineages that are highly diverged from known PLVs. These PLVs possess mosaic genomes, and some essential genes share homology with mobile genes within EPVs. Based on this homology and observed PLV mosaicism, we propose a mechanism to explain the turnover of PLV replication and integration genes.
Collapse
Affiliation(s)
- Zachary K Barth
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, USA
| | - Ian Hicklin
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Julien Thézé
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint-Genès-Champanelle, France
| | - Jun Takatsuka
- Forestry and Forest Products Research Institute, Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Madoka Nakai
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l’Insecte, UMR7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| | - Anne M Brown
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, 1981 Kraft Dr, Blacksburg, VA 24061, USA
- Research and Informatics, University Libraries, Virginia Tech, Blacksburg, VA 24061, USA
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, 1981 Kraft Dr, Blacksburg, VA 24061, USA
| |
Collapse
|
3
|
Zinnah MA, Uddin MB, Hasan T, Das S, Khatun F, Hasan MH, Udonsom R, Rahman MM, Ashour HM. The Re-Emergence of Mpox: Old Illness, Modern Challenges. Biomedicines 2024; 12:1457. [PMID: 39062032 PMCID: PMC11274818 DOI: 10.3390/biomedicines12071457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 07/28/2024] Open
Abstract
The Mpox virus (MPXV) is known to cause zoonotic disease in humans. The virus belongs to the genus Orthopoxvirus, of the family Poxviridae, and was first reported in monkeys in 1959 in Denmark and in humans in 1970 in the Congo. MPXV first appeared in the U.S. in 2003, re-emerged in 2017, and spread globally within a few years. Wild African rodents are thought to be the reservoir of MPXV. The exotic trade of animals and international travel can contribute to the spread of the Mpox virus. A phylogenetic analysis of MPXV revealed two distinct clades (Central African clade and West African clade). The smallpox vaccine shows cross-protection against MPXV infections in humans. Those who have not previously been exposed to Orthopoxvirus infections are more vulnerable to MPXV infections. Clinical manifestations in humans include fever, muscle pain, headache, and vesicle formation on the skin of infected individuals. Pathognomonic lesions include ballooning degenerations with Guarnieri-like inclusions in vesicular epithelial cells. Alterations in viral genome through genetic mutations might favor the re-emergence of a version of MPXV with enhanced virulence. As of November 2023, 92,783 cases and 171 deaths have been reported in 116 countries, representing a global public health concern. Here, we provide insights on the re-emergence of MPXV in humans. This review covers the origin, emergence, re-emergence, transmission, pathology, diagnosis, control measures, and immunomodulation of the virus, as well as clinical manifestations. Concerted efforts of health professionals and scientists are needed to prevent the disease and stop its transmission in vulnerable populations.
Collapse
Affiliation(s)
- Mohammad Ali Zinnah
- Department of Microbiology and Public Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Md Bashir Uddin
- Department of Medicine, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Tanjila Hasan
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Shobhan Das
- Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, GA 30458, USA
| | - Fahima Khatun
- Department of Pathobiology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Md Hasibul Hasan
- Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Ruenruetai Udonsom
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok 73170, Thailand
| | - Md Masudur Rahman
- Department of Pathology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | - Hossam M. Ashour
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, St. Petersburg, FL 33701, USA
| |
Collapse
|
4
|
Adegboye O, Alele F, Pak A, Alakunle E, Emeto T, Leggat P, Okeke M. Monkeypox Outbreak 2022, from a Rare Disease to Global Health Emergence: Implications for Travellers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:355-368. [PMID: 38801590 DOI: 10.1007/978-3-031-57165-7_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Monkeypox (mpox), a zoonotic disease caused by the monkeypox virus (MPXV), poses a significant public health threat with the potential for global dissemination beyond its endemic regions in Central and West Africa. This study explores the multifaceted aspects of monkeypox, covering its epidemiology, genomics, travel-related spread, mass gathering implications, and economic consequences. Epidemiologically, mpox exhibits distinct patterns, with variations in age and gender susceptibility. Severe cases can arise in immunocompromised individuals, underscoring the importance of understanding the factors contributing to its transmission. Genomic analysis of MPXV highlights its evolutionary relationship with the variola virus and vaccinia virus. Different MPXV clades exhibit varying levels of virulence and transmission potential, with Clade I associated with higher mortality rates. Moreover, the role of recombination in MPXV evolution remains a subject of interest, with implications for understanding its genetic diversity. Travel and mass gatherings play a pivotal role in the spread of monkeypox. The ease of international travel and increasing globalization have led to outbreaks beyond African borders. The economic ramifications of mpox outbreaks extend beyond public health. Direct treatment costs, productivity losses, and resource-intensive control efforts can strain healthcare systems and economies. While vaccination and mitigation strategies have proven effective, the cost-effectiveness of routine vaccination in non-endemic countries remains a subject of debate. This study emphasizes the role of travel, mass gatherings, and genomics in its spread and underscores the economic impacts on affected regions. Enhancing surveillance, vaccination strategies, and public health measures are essential in controlling this emerging infectious disease.
Collapse
Affiliation(s)
- Oyelola Adegboye
- Menzies School of Health Research, Charles Darwin University, Casuarina, NT, 0811, Australia.
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia.
- World Health Organization Collaborating Center for Vector-Borne and Neglected Tropical Diseases, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia.
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia.
| | - Faith Alele
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
| | - Anton Pak
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
- Centre for the Business and Economics of Health, The University of Queensland, Brisbane, QLD, 4067, Australia
| | - Emmanuel Alakunle
- Department of Natural and Environmental Sciences, American University of Nigeria, Yola, 640001, Nigeria
| | - Theophilus Emeto
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia
- World Health Organization Collaborating Center for Vector-Borne and Neglected Tropical Diseases, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
| | - Peter Leggat
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia
- World Health Organization Collaborating Center for Vector-Borne and Neglected Tropical Diseases, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
| | - Malachy Okeke
- Department of Natural and Environmental Sciences, American University of Nigeria, Yola, 640001, Nigeria
| |
Collapse
|
5
|
Obermeier PE, Buder SC, Hillen U. Pockenvirusinfektionen in der Dermatologie: Poxvirus infections in dermatology - the neglected, the notable, and the notorious. J Dtsch Dermatol Ges 2024; 22:56-96. [PMID: 38212918 DOI: 10.1111/ddg.15257_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/20/2023] [Indexed: 01/13/2024]
Abstract
ZusammenfassungDie Familie Poxviridae umfasst derzeit 22 Gattungen, die Wirbeltiere infizieren können. Humanpathogene Pockenviren gehören den Gattungen Ortho‐, Para‐, Mollusci‐ und Yatapoxvirus an. Bis zur Eradikation der Variola vera im Jahr 1979 waren die Pocken, im Volksmund auch Blattern genannt, eine schwerwiegende Gesundheitsbedrohung für die Bevölkerung. Noch heute sind Dermatologen mit zahlreichen Pockenvirusinfektionen konfrontiert, wie den Bauernhofpocken, die als Zoonosen nach Tierkontakten in ländlichen Gebieten oder nach Massenversammlungen auftreten können. In den Tropen können Erkrankungen durch Tanapox‐ oder Vaccinia‐Viren zu den Differenzialdiagnosen gehören. Dellwarzen sind weltweit verbreitet und werden in bestimmten Fällen als sexuell übertragbare Pockenvirusinfektion angesehen. In jüngster Zeit hatten sich Mpox (Affenpocken) zu einer gesundheitlichen Notlage von internationaler Tragweite entwickelt, die eine rasche Identifizierung und angemessene Behandlung durch Dermatologen und Infektiologen erfordert. Fortschritte und neue Erkenntnisse über Epidemiologie, Diagnose, klinische Manifestationen und Komplikationen sowie Behandlung und Prävention von Pockenvirusinfektionen erfordern ein hohes Maß an Fachwissen und interdisziplinärer Zusammenarbeit in den Bereichen Virologie, Infektiologie und Dermatologie. Dieser CME‐Artikel bietet einen aktualisierten systematischen Überblick, um praktizierende Dermatologen bei der Identifizierung, Differenzialdiagnose und Behandlung klinisch relevanter Pockenvirusinfektionen zu unterstützen.
Collapse
Affiliation(s)
- Patrick E Obermeier
- Klinik für Dermatologie und Venerologie, Vivantes Klinikum Neukölln, Berlin, Deutschland
- Abteilung für Infektionskrankheiten, Vaccine Safety Initiative, Berlin, Deutschland
| | - Susanne C Buder
- Klinik für Dermatologie und Venerologie, Vivantes Klinikum Neukölln, Berlin, Deutschland
- Konsiliarlabor für Gonokokken, Fachgebiet Sexuell übertragbare bakterielle Krankheitserreger, Robert Koch-Institut, Berlin, Deutschland
| | - Uwe Hillen
- Klinik für Dermatologie und Venerologie, Vivantes Klinikum Neukölln, Berlin, Deutschland
| |
Collapse
|
6
|
Obermeier PE, Buder SC, Hillen U. Poxvirus infections in dermatology - the neglected, the notable, and the notorious. J Dtsch Dermatol Ges 2024; 22:56-93. [PMID: 38085140 DOI: 10.1111/ddg.15257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/20/2023] [Indexed: 12/22/2023]
Abstract
The family Poxviridae currently comprises 22 genera that infect vertebrates. Of these, members of the Ortho-, Para-, Mollusci- and Yatapoxvirus genera have been associated with human diseases of high clinical relevance in dermatology. Historically, smallpox had been a notorious health threat until it was declared eradicated by the World Health Organization in 1979. Today, dermatologists are confronted with a variety of poxviral infections, such as farmyard pox, which occurs as a zoonotic infection after contact with animals. In the tropics, tanapox or vaccinia may be in the differential diagnosis as neglected tropical dermatoses. Molluscum contagiosum virus infection accounts for significant disease burden worldwide and is classified as a sexually transmitted infection in certain scenarios. Recently, mpox (monkeypox) has emerged as a public health emergency of international concern, requiring rapid recognition and appropriate management by dermatologists and infectious disease specialists. Advances and new insights into the epidemiology, diagnosis, clinical manifestations and complications, treatment, and prevention of poxviral infections require a high level of expertise and interdisciplinary skills from healthcare professionals linking virology, infectious diseases, and dermatology. This CME article provides a systematic overview and update to assist the practicing dermatologist in the identification, differential diagnosis, and management of poxviral infections.
Collapse
Affiliation(s)
- Patrick E Obermeier
- Department of Dermatology and Venereology, Vivantes Hospital Neukölln, Berlin, Germany
- Department of Infectious Diseases, Vaccine Safety Initiative, Berlin, Germany
| | - Susanne C Buder
- Department of Dermatology and Venereology, Vivantes Hospital Neukölln, Berlin, Germany
- German Reference Laboratory for Gonococci, Unit Sexually Transmitted Bacterial Pathogens, Department for Infectious Diseases, Robert Koch-Institute, Berlin, Germany
| | - Uwe Hillen
- Department of Dermatology and Venereology, Vivantes Hospital Neukölln, Berlin, Germany
| |
Collapse
|
7
|
Yu J, Zhang X, Liu J, Xiang L, Huang S, Xie X, Fang L, Lin Y, Zhang M, Wang L, He J, Zhang B, Di B, Peng B, Liang J, Shen C, Zhao W, Li B. Phylogeny and molecular evolution of the first local monkeypox virus cluster in Guangdong Province, China. Nat Commun 2023; 14:8241. [PMID: 38086870 PMCID: PMC10716143 DOI: 10.1038/s41467-023-44092-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
The first local mpox outbreak in Guangdong Province, China occurred in June 2023. However, epidemiological data have failed to quickly identify the source and transmission of the outbreak. Here, phylogeny and molecular evolution of 10 monkeypox virus (MPXV) genome sequences from the Guangdong outbreak were characterized, revealing local silent transmissions that may have occurred in Guangdong whose mpox outbreaks suggested a molecular epidemiological correlation with Portugal and several regions of China during the same period. The lineage IIb C.1, which includes all 10 MPXV from Guangdong, shows consistent temporal continuity in both phylogenetic characteristics and unique molecular evolutionary mutation spectrum, reflected in the continuous increase of single nucleotide polymorphisms (SNPs) and shared mutations over time. Compared with the Japan MPXV, the Guangdong MPXV showed higher genomic nucleotide differences and separated 14 shared mutations from the B.1 lineage, comprising 6 non-synonymous mutations in genes linked to host regulation, virus infection, and virus life cycle. The unique mutation spectrum with temporal continuity in IIb C.1, related to apolipoprotein B mRNA-editing catalytic polypeptide-like 3, promotes rapid viral evolution and diversification. The findings contribute to understanding the ongoing mpox outbreak in China and offer insights for developing joint prevention and control strategies.
Collapse
Affiliation(s)
- Jianhai Yu
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong Province, 510515, China
| | - Xin Zhang
- Institute of Microbiology, Center for Disease Control and Prevention of Guangdong Province, No. 160 Qunxian Road, Dashi Street, Panyu District, Guangzhou, Guangdong Province, 511430, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, No. 160 Qunxian Road, Dashi Street, Panyu District, Guangzhou, Guangdong Province, 511430, China
| | - Jiajun Liu
- Institute of Microbiology, Center for Disease Control and Prevention of Guangdong Province, No. 160 Qunxian Road, Dashi Street, Panyu District, Guangzhou, Guangdong Province, 511430, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, No. 160 Qunxian Road, Dashi Street, Panyu District, Guangzhou, Guangdong Province, 511430, China
| | - Linlin Xiang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong Province, 510515, China
| | - Shen Huang
- Institute of Microbiology, Center for Disease Control and Prevention of Guangdong Province, No. 160 Qunxian Road, Dashi Street, Panyu District, Guangzhou, Guangdong Province, 511430, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, No. 160 Qunxian Road, Dashi Street, Panyu District, Guangzhou, Guangdong Province, 511430, China
| | - Xiaoting Xie
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong Province, 510515, China
| | - Ling Fang
- Institute of Microbiology, Center for Disease Control and Prevention of Guangdong Province, No. 160 Qunxian Road, Dashi Street, Panyu District, Guangzhou, Guangdong Province, 511430, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, No. 160 Qunxian Road, Dashi Street, Panyu District, Guangzhou, Guangdong Province, 511430, China
| | - Yifan Lin
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong Province, 510515, China
| | - Meng Zhang
- Institute of Microbiology, Center for Disease Control and Prevention of Guangdong Province, No. 160 Qunxian Road, Dashi Street, Panyu District, Guangzhou, Guangdong Province, 511430, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, No. 160 Qunxian Road, Dashi Street, Panyu District, Guangzhou, Guangdong Province, 511430, China
| | - Linqing Wang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong Province, 510515, China
| | - Jianfeng He
- Institute of Microbiology, Center for Disease Control and Prevention of Guangdong Province, No. 160 Qunxian Road, Dashi Street, Panyu District, Guangzhou, Guangdong Province, 511430, China
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, No. 160 Qunxian Road, Dashi Street, Panyu District, Guangzhou, Guangdong Province, 511430, China
| | - Bao Zhang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong Province, 510515, China
| | - Biao Di
- Department of Clinical Laboratory, Guangzhou Center for Disease Control and Prevention, No. 1 Qide Road, Baiyun District, Guangzhou, Guangdong, 510440, China
| | - Bo Peng
- Shenzhen Center for Disease Control and Prevention, No. 8 Longyuan Road, Nanshan District, Shenzhen, Guangdong Province, 518055, China
| | - Jingtao Liang
- Foshan Center for Disease Control and Prevention, No. 3 Yingyin Road, Chancheng District, Foshan, Guangdong Province, 528010, China
| | - Chenguang Shen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong Province, 510515, China.
| | - Wei Zhao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong Province, 510515, China.
| | - Baisheng Li
- Institute of Microbiology, Center for Disease Control and Prevention of Guangdong Province, No. 160 Qunxian Road, Dashi Street, Panyu District, Guangzhou, Guangdong Province, 511430, China.
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, No. 160 Qunxian Road, Dashi Street, Panyu District, Guangzhou, Guangdong Province, 511430, China.
| |
Collapse
|
8
|
Yu X, Shi H, Cheng G. Mpox Virus: Its Molecular Evolution and Potential Impact on Viral Epidemiology. Viruses 2023; 15:v15040995. [PMID: 37112975 PMCID: PMC10142743 DOI: 10.3390/v15040995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Mpox (previously known as monkeypox) is an infectious viral illness caused by the mpox virus (MPXV), an orthopoxvirus that belongs to the family Poxviridae. The symptoms of mpox in humans are similar to those of smallpox, although the mortality rate is lower. In recent years, the concern over a potential global pandemic has increased due to reports of mpox spreading across Africa and other parts of the world. Prior to this discovery, mpox was a rare zoonotic disease restricted to endemic regions of Western and Central Africa. The sudden emergence of MPXV cases in multiple regions has raised concerns about its natural evolution. This review aims to provide an overview of previously available information about MPXV, including its genome, morphology, hosts and reservoirs, and virus-host interaction and immunology, as well as to perform phylogenetic analysis on available MPXV genomes, with an emphasis on the evolution of the genome in humans as new cases emerge.
Collapse
Affiliation(s)
- Xi Yu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Huicheng Shi
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| |
Collapse
|
9
|
Sotcheff S, Zhou Y, Yeung J, Sun Y, Johnson JE, Torbett BE, Routh AL. ViReMa: a virus recombination mapper of next-generation sequencing data characterizes diverse recombinant viral nucleic acids. Gigascience 2023; 12:giad009. [PMID: 36939008 PMCID: PMC10025937 DOI: 10.1093/gigascience/giad009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/30/2022] [Accepted: 02/03/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Genetic recombination is a tremendous source of intrahost diversity in viruses and is critical for their ability to rapidly adapt to new environments or fitness challenges. While viruses are routinely characterized using high-throughput sequencing techniques, characterizing the genetic products of recombination in next-generation sequencing data remains a challenge. Viral recombination events can be highly diverse and variable in nature, including simple duplications and deletions, or more complex events such as copy/snap-back recombination, intervirus or intersegment recombination, and insertions of host nucleic acids. Due to the variable mechanisms driving virus recombination and the different selection pressures acting on the progeny, recombination junctions rarely adhere to simple canonical sites or sequences. Furthermore, numerous different events may be present simultaneously in a viral population, yielding a complex mutational landscape. FINDINGS We have previously developed an algorithm called ViReMa (Virus Recombination Mapper) that bootstraps the bowtie short-read aligner to capture and annotate a wide range of recombinant species found within virus populations. Here, we have updated ViReMa to provide an "error density" function designed to accurately detect recombination events in the longer reads now routinely generated by the Illumina platforms and provide output reports for multiple types of recombinant species using standardized formats. We demonstrate the utility and flexibility of ViReMa in different settings to report deletion events in simulated data from Flock House virus, copy-back RNA species in Sendai viruses, short duplication events in HIV, and virus-to-host recombination in an archaeal DNA virus.
Collapse
Affiliation(s)
- Stephanea Sotcheff
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yiyang Zhou
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jason Yeung
- John Sealy School of Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yan Sun
- Department of Microbiology and Immunology, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - John E Johnson
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Bruce E Torbett
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA 98105, USA
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98105, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Andrew L Routh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
10
|
Brennan G, Stoian AMM, Yu H, Rahman MJ, Banerjee S, Stroup JN, Park C, Tazi L, Rothenburg S. Molecular Mechanisms of Poxvirus Evolution. mBio 2023; 14:e0152622. [PMID: 36515529 PMCID: PMC9973261 DOI: 10.1128/mbio.01526-22] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Poxviruses are often thought to evolve relatively slowly because they are double-stranded DNA pathogens with proofreading polymerases. However, poxviruses have highly adaptable genomes and can undergo relatively rapid genotypic and phenotypic change, as illustrated by the recent increase in human-to-human transmission of monkeypox virus. Advances in deep sequencing technologies have demonstrated standing nucleotide variation in poxvirus populations, which has been underappreciated. There is also an emerging understanding of the role genomic architectural changes play in shaping poxvirus evolution. These mechanisms include homologous and nonhomologous recombination, gene duplications, gene loss, and the acquisition of new genes through horizontal gene transfer. In this review, we discuss these evolutionary mechanisms and their potential roles for adaption to novel host species and modulating virulence.
Collapse
Affiliation(s)
- Greg Brennan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Ana M. M. Stoian
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Huibin Yu
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - M. Julhasur Rahman
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Shefali Banerjee
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Jeannine N. Stroup
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Chorong Park
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Loubna Tazi
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Stefan Rothenburg
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
11
|
Zhan XY, Zha GF, He Y. Evolutionary dissection of monkeypox virus: Positive Darwinian selection drives the adaptation of virus-host interaction proteins. Front Cell Infect Microbiol 2023; 12:1083234. [PMID: 36710983 PMCID: PMC9880225 DOI: 10.3389/fcimb.2022.1083234] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
The emerging and ongoing outbreak of human monkeypox (hMPX) in 2022 is a serious global threat. An understanding of the evolution of the monkeypox virus (MPXV) at the single-gene level may provide clues for exploring the unique aspects of the current outbreak: rapidly expanding and sustained human-to-human transmission. For the current investigation, alleles of 156 MPXV coding genes (which account for >95% of the genomic sequence) have been gathered from roughly 1,500 isolates, including those responsible for the previous outbreaks. Using a range of molecular evolution approaches, we demonstrated that intra-species homologous recombination has a negligible effect on MPXV evolution. Despite the fact that the majority of the MPXV genes (64.10%) were subjected to negative selection at the whole gene level, 10 MPXV coding genes (MPXVgp004, 010, 012, 014, 044, 098, 138, 178, 188, and 191) were found to have a total of 15 codons or amino acid sites that are known to evolve under positive Darwinian selection. Except for MPXVgp138, almost all of these genes encode proteins that interact with the host. Of these, five ankyrin proteins (MPXVgp004, 010, 012, 178, and 188) and one Bcl-2-like protein (MPXVgp014) are involved in poxviruses' host range determination. We discovered that the majority (80%) of positive amino acid substitutions emerged several decades ago, indicating that these sites have been under constant selection pressure and that more adaptable alleles have been circulating in the natural reservoir. This finding was also supported by the minimum spanning networks of the gene alleles. The three positive amino acid substitutions (T/A426V in MPXVgp010, A423D in MPXVgp012, and S105L in MPXVgp191) appeared in 2019 or 2022, indicating that they would be crucial for the virus' eventual adaptation to humans. Protein modeling suggests that positive amino acid substitutions may affect protein functions in a variety of ways. Further study should focus on revealing the biological effects of positive amino acid substitutions in the genes for viral adaptation to humans, virulence, transmission, and so on. Our study advances knowledge of MPXV's adaptive mechanism and provides insights for exploring factors that are responsible for the unique aspects of the current outbreak.
Collapse
Affiliation(s)
- Xiao-Yong Zhan
- *Correspondence: Xiao-Yong Zhan, ; Gao-Feng Zha, ; Yulong He,
| | - Gao-Feng Zha
- *Correspondence: Xiao-Yong Zhan, ; Gao-Feng Zha, ; Yulong He,
| | - Yulong He
- *Correspondence: Xiao-Yong Zhan, ; Gao-Feng Zha, ; Yulong He,
| |
Collapse
|
12
|
Recombination shapes the 2022 monkeypox (mpox) outbreak. MED (NEW YORK, N.Y.) 2022; 3:824-826. [PMID: 36495863 PMCID: PMC9733179 DOI: 10.1016/j.medj.2022.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022]
Abstract
Monkeypox (Mpox) is a global health emergency. Yeh et al. analyze tandem repeats and linkage disequilibrium in monkeypox virus (MPXV) sequences from the 2022 pandemic to determine the virus evolution, showing that these are useful tools to monitor and track phylogenetic dynamics and recombination of MPXV.
Collapse
|
13
|
Banerjee S, Smith C, Geballe AP, Rothenburg S, Kitzman JO, Brennan G. Gene amplification acts as a molecular foothold to facilitate cross-species adaptation and evasion of multiple antiviral pathways. Virus Evol 2022; 8:veac105. [PMID: 36483110 PMCID: PMC9724558 DOI: 10.1093/ve/veac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/06/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Cross-species spillover events are responsible for many of the pandemics in human history including COVID-19; however, the evolutionary mechanisms that enable these events are poorly understood. We have previously modeled this process using a chimeric vaccinia virus expressing the rhesus cytomegalovirus-derived protein kinase R (PKR) antagonist RhTRS1 in place of its native PKR antagonists: E3L and K3L (VACVΔEΔK + RhTRS1). Using this virus, we demonstrated that gene amplification of rhtrs1 occurred early during experimental evolution and was sufficient to fully rescue virus replication in partially resistant African green monkey (AGM) fibroblasts. Notably, this rapid gene amplification also allowed limited virus replication in otherwise completely non-permissive human fibroblasts, suggesting that gene amplification may act as a 'molecular foothold' to facilitate viral adaptation to multiple species. In this study, we demonstrate that there are multiple barriers to VACVΔEΔK + RhTRS1 replication in human cells, mediated by both PKR and ribonuclease L (RNase L). We experimentally evolved three AGM-adapted virus populations in human fibroblasts. Each population adapted to human cells bimodally, via an initial 10-fold increase in replication after only two passages followed by a second 10-fold increase in replication by passage 9. Using our Illumina-based pipeline, we found that some single nucleotide polymorphisms (SNPs) which had evolved during the prior AGM adaptation were rapidly lost, while thirteen single-base substitutions and short indels increased over time, including two SNPs unique to human foreskin fibroblast (HFF)-adapted populations. Many of these changes were associated with components of the viral RNA polymerase, although no variant was shared between all three populations. Taken together, our results demonstrate that rhtrs1 amplification was sufficient to increase viral tropism after passage in an 'intermediate species' and subsequently enabled the virus to adopt different, species-specific adaptive mechanisms to overcome distinct barriers to viral replication in AGM and human cells.
Collapse
Affiliation(s)
- Shefali Banerjee
- †Current address for SB: Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Adam P Geballe
- Departments of Human Genetics and Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA,Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Jacob O Kitzman
- Departments of Microbiology and Medicine, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
14
|
Abstract
Genetic recombination is used as a tool for modifying the composition of poxvirus genomes in both discovery and applied research. This review documents the history behind the development of these tools as well as what has been learned about the processes that catalyze virus recombination and the links between it and DNA replication and repair. The study of poxvirus recombination extends back to the 1930s with the discovery that one virus can reactivate another by a process later shown to generate recombinants. In the years that followed it was shown that recombinants can be produced in virus-by-virus crosses within a genus (e.g., variola-by-rabbitpox) and efforts were made to produce recombination-based genetic maps with modest success. The marker rescue mapping method proved more useful and led to methods for making genetically engineered viruses. Many further insights into the mechanism of recombination have been provided by transfection studies which have shown that this is a high-frequency process associated with hybrid DNA formation and inextricably linked to replication. The links reflect the fact that poxvirus DNA polymerases, specifically the vaccinia virus E9 enzyme, can catalyze strand transfer in in vivo and in vitro reactions dependent on the 3'-to-5' proofreading exonuclease and enhanced by the I3 replicative single-strand DNA binding protein. These reactions have shaped the composition of virus genomes and are modulated by constraints imposed on virus-virus interactions by viral replication in cytoplasmic factories. As recombination reactions are used for replication fork assembly and repair in many biological systems, further study of these reactions may provide new insights into still poorly understood features of poxvirus DNA replication.
Collapse
Affiliation(s)
- David Hugh Evans
- Department of Medical Microbiology & Immunology and Li Ka Shing Institute of Virology, The University of Alberta, Edmonton, AB T6G 2J7, Canada
| |
Collapse
|
15
|
Gallet R, Di Mattia J, Ravel S, Zeddam JL, Vitalis R, Michalakis Y, Blanc S. Gene copy number variations at the within-host population level modulate gene expression in a multipartite virus. Virus Evol 2022; 8:veac058. [PMID: 35799884 PMCID: PMC9255600 DOI: 10.1093/ve/veac058] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 11/12/2022] Open
Abstract
Multipartite viruses have a segmented genome, with each segment encapsidated separately. In all multipartite virus species for which the question has been addressed, the distinct segments reproducibly accumulate at a specific and host-dependent relative frequency, defined as the 'genome formula'. Here, we test the hypothesis that the multipartite genome organization facilitates the regulation of gene expression via changes of the genome formula and thus via gene copy number variations. In a first experiment, the faba bean necrotic stunt virus (FBNSV), whose genome is composed of eight DNA segments each encoding a single gene, was inoculated into faba bean or alfalfa host plants, and the relative concentrations of the DNA segments and their corresponding messenger RNAs (mRNAs) were monitored. In each of the two host species, our analysis consistently showed that the genome formula variations modulate gene expression, the concentration of each genome segment linearly and positively correlating to that of its cognate mRNA but not of the others. In a second experiment, twenty parallel FBNSV lines were transferred from faba bean to alfalfa plants. Upon host switching, the transcription rate of some genome segments changes, but the genome formula is modified in a way that compensates for these changes and maintains a similar ratio between the various viral mRNAs. Interestingly, a deep-sequencing analysis of these twenty FBNSV lineages demonstrated that the host-related genome formula shift operates independently of DNA-segment sequence mutation. Together, our results indicate that nanoviruses are plastic genetic systems, able to transiently adjust gene expression at the population level in changing environments, by modulating the copy number but not the sequence of each of their genes.
Collapse
Affiliation(s)
- Romain Gallet
- PHIM, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
- CBGP, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | - Jérémy Di Mattia
- PHIM, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | - Sébastien Ravel
- PHIM, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | - Jean-Louis Zeddam
- PHIM, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | - Renaud Vitalis
- CBGP, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | | | - Stéphane Blanc
- PHIM, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
- MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
16
|
Boezen D, Ali G, Wang M, Wang X, van der Werf W, Vlak JM, Zwart MP. Empirical estimates of the mutation rate for an alphabaculovirus. PLoS Genet 2022; 18:e1009806. [PMID: 35666722 PMCID: PMC9203023 DOI: 10.1371/journal.pgen.1009806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 06/16/2022] [Accepted: 04/27/2022] [Indexed: 01/02/2023] Open
Abstract
Mutation rates are of key importance for understanding evolutionary processes and predicting their outcomes. Empirical mutation rate estimates are available for a number of RNA viruses, but few are available for DNA viruses, which tend to have larger genomes. Whilst some viruses have very high mutation rates, lower mutation rates are expected for viruses with large genomes to ensure genome integrity. Alphabaculoviruses are insect viruses with large genomes and often have high levels of polymorphism, suggesting high mutation rates despite evidence of proofreading activity by the replication machinery. Here, we report an empirical estimate of the mutation rate per base per strand copying (s/n/r) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV). To avoid biases due to selection, we analyzed mutations that occurred in a stable, non-functional genomic insert after five serial passages in Spodoptera exigua larvae. Our results highlight that viral demography and the stringency of mutation calling affect mutation rate estimates, and that using a population genetic simulation model to make inferences can mitigate the impact of these processes on estimates of mutation rate. We estimated a mutation rate of μ = 1×10−7 s/n/r when applying the most stringent criteria for mutation calling, and estimates of up to μ = 5×10−7 s/n/r when relaxing these criteria. The rates at which different classes of mutations accumulate provide good evidence for neutrality of mutations occurring within the inserted region. We therefore present a robust approach for mutation rate estimation for viruses with stable genomes, and strong evidence of a much lower alphabaculovirus mutation rate than supposed based on the high levels of polymorphism observed. Virus populations can evolve rapidly, driven by the large number of mutations that occur during virus replication. It is challenging to measure mutation rates because selection will affect which mutations are observed: beneficial mutations are overrepresented in virus populations, while deleterious mutations are selected against and therefore underrepresented. Few mutation rates have been estimated for viruses with large DNA genomes, and there are no estimates for any insect virus. Here, we estimate the mutation rate for an alphabaculovirus, a virus that infects caterpillars and has a large, 134 kilobase pair DNA genome. To ensure that selection did not bias our estimate of mutation rate, we studied which mutations occurred in a large artificial region inserted into the virus genome, where mutations did not affect viral fitness. We deep sequenced evolved virus populations, and compared the distribution of observed mutants to predictions from a simulation model to estimate mutation rate. We found evidence for a relatively low mutation rate, of one mutation in every 10 million bases replicated. This estimate is in line with expectations for a DNA virus with self-correcting replication machinery and a large genome.
Collapse
Affiliation(s)
- Dieke Boezen
- Department of Microbial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Ghulam Ali
- Laboratory of Virology, Wageningen University and Research, Wageningen, The Netherlands
| | - Manli Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Xi Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Wopke van der Werf
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen, The Netherlands
| | - Just M. Vlak
- Laboratory of Virology, Wageningen University and Research, Wageningen, The Netherlands
| | - Mark P. Zwart
- Department of Microbial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
17
|
Brancaccio RN, Robitaille A, Dutta S, Rollison DE, Tommasino M, Gheit T. MinION nanopore sequencing and assembly of a complete human papillomavirus genome. J Virol Methods 2021; 294:114180. [PMID: 33965458 PMCID: PMC8223502 DOI: 10.1016/j.jviromet.2021.114180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/26/2021] [Accepted: 05/03/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND The MinION sequencer belongs to the third generation of sequencing technology that allows for the generation of ultra-long reads, representing a potentially more effective approach to characterize entire viral genome sequences than other time-consuming and low-throughput methodologies. METHODS We report the use of the MinION nanopore sequencer to sequence the full-length genome of human papillomavirus (HPV)-ICB2 (7441 bp), which was previously characterized in our laboratory. Three independent MinION libraries were prepared and sequenced using either three consecutive 12 -h runs (Protocol A) or a single run of 48 h starting from a pool of three barcoded DNA libraries (Protocol B). A fully automated bioinformatics pipeline was developed for the reconstruction of the viral genome. RESULTS Protocols A and B generated 9,354,933 and 3,255,879 reads, respectively. Read length N50 values ranged between 6976 and 7360 nucleotides over the four sequencing runs. Bioinformatics analysis showed that both protocols allowed for the reconstruction of the whole viral genome, with pairwise percentages of identity to HPV-ICB2 of 100 % for protocol A and 99.98 % for protocol B. CONCLUSION Our results show that the use of the MinION nanopore sequencer represents an effective strategy for whole-genome sequencing of HPVs with a minimal error rate.
Collapse
Affiliation(s)
- Rosario N Brancaccio
- Early Detection, Prevention and Infections Branch, International Agency for Research on Cancer, Lyon, France
| | - Alexis Robitaille
- Early Detection, Prevention and Infections Branch, International Agency for Research on Cancer, Lyon, France
| | - Sankhadeep Dutta
- Chittaranjan National Cancer Institute, Department of Viral Associated Human Cancer, Kolkata, India
| | - Dana E Rollison
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Massimo Tommasino
- Early Detection, Prevention and Infections Branch, International Agency for Research on Cancer, Lyon, France
| | - Tarik Gheit
- Early Detection, Prevention and Infections Branch, International Agency for Research on Cancer, Lyon, France.
| |
Collapse
|
18
|
Vallée G, Norris P, Paszkowski P, Noyce RS, Evans DH. Vaccinia Virus Gene Acquisition through Nonhomologous Recombination. J Virol 2021; 95:e0031821. [PMID: 33910949 PMCID: PMC8223923 DOI: 10.1128/jvi.00318-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/19/2021] [Indexed: 01/04/2023] Open
Abstract
Many of the genes encoded by poxviruses are orthologs of cellular genes. These virus genes serve different purposes, but perhaps of most interest is the way some have been repurposed to inhibit the antiviral pathways that their cellular homologs still regulate. What is unclear is how these virus genes were acquired, although it is presumed to have been catalyzed by some form(s) of nonhomologous recombination (NHR). We used transfection assays and substrates encoding a fluorescent and drug-selectable marker to examine the NHR frequency in vaccinia virus (VAC)-infected cells. These studies showed that when cells were transfected with linear duplex DNAs bearing VAC N2L gene homology, it yielded a recombinant frequency (RF) of 6.7 × 10-4. In contrast, DNA lacking any VAC homology reduced the yield of recombinants ∼400-fold (RF = 1.6 × 10-6). DNA-RNA hybrids were also substrates, although homologous molecules yielded fewer recombinants (RF = 2.1 × 10-5), and nonhomologous substrates yielded only rare recombinants (RF ≤ 3 × 10-8). NHR was associated with genome rearrangements ranging from simple insertions with flanking sequence duplications to large-scale indels that produced helper-dependent viruses. The insert was often also partially duplicated and would rapidly rearrange through homologous recombination. Most of the virus-insert junctions exhibited little or no preexiting microhomology, although a few encoded VAC topoisomerase recognition sites (C/T·CCTT). These studies show that VAC can catalyze NHR through a process that may reflect a form of aberrant replication fork repair. Although it is less efficient than classical homologous recombination, the rates of NHR may still be high enough to drive virus evolution. IMPORTANCE Large DNA viruses sometimes interfere in antiviral defenses using repurposed and mutant forms of the cellular proteins that mediate these same reactions. Such virus orthologs of cellular genes were presumably captured through nonhomologous recombination, perhaps in the distant past, but nothing is known about the processes that might promote "gene capture" or even how often these events occur over the course of an infectious cycle. This study shows that nonhomologous recombination in vaccinia virus-infected cells is frequent enough to seed a small but still significant portion of novel recombinants into large populations of newly replicated virus particles. This offers a route by which a pool of virus might survey the host genome for sequences that offer a selective growth advantage and potentially drive discontinuous virus evolution (saltation) through the acquisition of adventitious traits.
Collapse
Affiliation(s)
- Greg Vallée
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Peter Norris
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Patrick Paszkowski
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ryan S. Noyce
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - David H. Evans
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
19
|
Alakunle E, Moens U, Nchinda G, Okeke MI. Monkeypox Virus in Nigeria: Infection Biology, Epidemiology, and Evolution. Viruses 2020; 12:E1257. [PMID: 33167496 PMCID: PMC7694534 DOI: 10.3390/v12111257] [Citation(s) in RCA: 416] [Impact Index Per Article: 83.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Monkeypox is a zoonotic disease caused by monkeypox virus (MPXV), which is a member of orthopoxvirus genus. The reemergence of MPXV in 2017 (at Bayelsa state) after 39 years of no reported case in Nigeria, and the export of travelers' monkeypox (MPX) from Nigeria to other parts of the world, in 2018 and 2019, respectively, have raised concern that MPXV may have emerged to occupy the ecological and immunological niche vacated by smallpox virus. This review X-rays the current state of knowledge pertaining the infection biology, epidemiology, and evolution of MPXV in Nigeria and worldwide, especially with regard to the human, cellular, and viral factors that modulate the virus transmission dynamics, infection, and its maintenance in nature. This paper also elucidates the role of recombination, gene loss and gene gain in MPXV evolution, chronicles the role of signaling in MPXV infection, and reviews the current therapeutic options available for the treatment and prevention of MPX. Additionally, genome-wide phylogenetic analysis was undertaken, and we show that MPXV isolates from recent 2017 outbreak in Nigeria were monophyletic with the isolate exported to Israel from Nigeria but do not share the most recent common ancestor with isolates obtained from earlier outbreaks, in 1971 and 1978, respectively. Finally, the review highlighted gaps in knowledge particularly the non-identification of a definitive reservoir host animal for MPXV and proposed future research endeavors to address the unresolved questions.
Collapse
Affiliation(s)
- Emmanuel Alakunle
- Department of Natural and Environmental Sciences, Biomedical Science Concentration, School of Arts and Sciences, American University of Nigeria, 98 Lamido Zubairu Way, PMB 2250 Yola, Nigeria;
| | - Ugo Moens
- Molecular Inflammation Research Group, Institute of Medical Biology, University i Tromsø (UIT)—The Arctic University of Norway, N-9037 Tromsø, Norway;
| | - Godwin Nchinda
- Laboratory of Vaccinology and Immunology, The Chantal Biya International Reference Center for Research on the Prevention and Management HIV/AIDS (CIRCB), P.O Box 3077 Yaoundé-Messa, Cameroon;
- Department of Pharmaceutical Microbiology & Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, P.O Box 420110 Awka, Nigeria
| | - Malachy Ifeanyi Okeke
- Department of Natural and Environmental Sciences, Biomedical Science Concentration, School of Arts and Sciences, American University of Nigeria, 98 Lamido Zubairu Way, PMB 2250 Yola, Nigeria;
| |
Collapse
|
20
|
Inactivation of Genes by Frameshift Mutations Provides Rapid Adaptation of an Attenuated Vaccinia Virus. J Virol 2020; 94:JVI.01053-20. [PMID: 32669330 DOI: 10.1128/jvi.01053-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
Unlike RNA viruses, most DNA viruses replicate their genomes with high-fidelity polymerases that rarely make base substitution errors. Nevertheless, experimental evolution studies have revealed rapid acquisition of adaptive mutations during serial passage of attenuated vaccinia virus (VACV). One way in which adaptation can occur is by an accordion mechanism in which the gene copy number increases followed by base substitutions and, finally, contraction of the gene copy number. Here, we show rapid acquisition of multiple adaptive mutations mediated by a gene-inactivating frameshift mechanism during passage of an attenuated VACV. Attenuation had been achieved by exchanging the VACV A8R intermediate transcription factor gene with the myxoma virus ortholog. A total of seven mutations in six different genes occurred in three parallel passages of the attenuated virus. The most frequent mutations were single-nucleotide insertions or deletions within runs of five to seven As or Ts, although a deletion of 11 nucleotides also occurred, leading to frameshifts and premature stop codons. During 10 passage rounds, the attenuated VACV was replaced by the mutant viruses. At the end of the experiment, virtually all remaining viruses had one fixed mutation and one or more additional mutations. Although nucleotide substitutions in the transcription apparatus accounted for two low-frequency mutations, frameshifts in genes encoding protein components of the mature virion, namely, A26L, G6R, and A14.5L, achieved 74% to 98% fixation. The adaptive role of the mutations was confirmed by making recombinant VACV with A26L or G6R or both deleted, which increased virus replication levels and decreased particle/PFU ratios.IMPORTANCE Gene inactivation is considered to be an important driver of orthopoxvirus evolution. Whereas cowpox virus contains intact orthologs of genes present in each orthopoxvirus species, numerous genes are inactivated in all other members of the genus. Inactivation of additional genes can occur upon extensive passaging of orthopoxviruses in cell culture leading to attenuation in vivo, a strategy for making vaccines. Whether inactivation of multiple viral genes enhances replication in the host cells or has a neutral effect is unknown in most cases. Using an experimental evolution protocol involving serial passages of an attenuated vaccinia virus, rapid acquisition of inactivating frameshift mutations occurred. After only 10 passage rounds, the starting attenuated vaccinia virus was displaced by viruses with one fixed mutation and one or more additional mutations. The high frequency of multiple inactivating mutations during experimental evolution simulates their acquisition during normal evolution and extensive virus passaging to make vaccine strains.
Collapse
|
21
|
Loiseau V, Herniou EA, Moreau Y, Lévêque N, Meignin C, Daeffler L, Federici B, Cordaux R, Gilbert C. Wide spectrum and high frequency of genomic structural variation, including transposable elements, in large double-stranded DNA viruses. Virus Evol 2020; 6:vez060. [PMID: 32002191 PMCID: PMC6983493 DOI: 10.1093/ve/vez060] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Our knowledge of the diversity and frequency of genomic structural variation segregating in populations of large double-stranded (ds) DNA viruses is limited. Here, we sequenced the genome of a baculovirus (Autographa californica multiple nucleopolyhedrovirus [AcMNPV]) purified from beet armyworm (Spodoptera exigua) larvae at depths >195,000× using both short- (Illumina) and long-read (PacBio) technologies. Using a pipeline relying on hierarchical clustering of structural variants (SVs) detected in individual short- and long-reads by six variant callers, we identified a total of 1,141 SVs in AcMNPV, including 464 deletions, 443 inversions, 160 duplications, and 74 insertions. These variants are considered robust and unlikely to result from technical artifacts because they were independently detected in at least three long reads as well as at least three short reads. SVs are distributed along the entire AcMNPV genome and may involve large genomic regions (30,496 bp on average). We show that no less than 39.9 per cent of genomes carry at least one SV in AcMNPV populations, that the vast majority of SVs (75%) segregate at very low frequency (<0.01%) and that very few SVs persist after ten replication cycles, consistent with a negative impact of most SVs on AcMNPV fitness. Using short-read sequencing datasets, we then show that populations of two iridoviruses and one herpesvirus are also full of SVs, as they contain between 426 and 1,102 SVs carried by 52.4–80.1 per cent of genomes. Finally, AcMNPV long reads allowed us to identify 1,757 transposable elements (TEs) insertions, 895 of which are truncated and occur at one extremity of the reads. This further supports the role of baculoviruses as possible vectors of horizontal transfer of TEs. Altogether, we found that SVs, which evolve mostly under rapid dynamics of gain and loss in viral populations, represent an important feature in the biology of large dsDNA viruses.
Collapse
Affiliation(s)
- Vincent Loiseau
- Laboratoire Evolution, Génomes, Comportement, Écologie, Unité Mixte de Recherche 9191 Centre National de la Recherche Scientifique et Unité Mixte de Recherche 247 Institut de Recherche pour le Développement, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université de Tours, 37200 Tours, France
| | - Yannis Moreau
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université de Tours, 37200 Tours, France
| | - Nicolas Lévêque
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, 86000 Poitiers, France.,Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, EA 4331, Université de Poitiers, 86000 Poitiers, France
| | - Carine Meignin
- Modèles Insectes d'Immunité Innée (M3i), Université de Strasbourg, IBMC CNRS-UPR9022, Strasbourg F-67000, France
| | - Laurent Daeffler
- Modèles Insectes d'Immunité Innée (M3i), Université de Strasbourg, IBMC CNRS-UPR9022, Strasbourg F-67000, France
| | - Brian Federici
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, 86000 Poitiers, France
| | - Clément Gilbert
- Laboratoire Evolution, Génomes, Comportement, Écologie, Unité Mixte de Recherche 9191 Centre National de la Recherche Scientifique et Unité Mixte de Recherche 247 Institut de Recherche pour le Développement, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| |
Collapse
|
22
|
Shabardina V, Kischka T, Manske F, Grundmann N, Frith MC, Suzuki Y, Makałowski W. NanoPipe-a web server for nanopore MinION sequencing data analysis. Gigascience 2019; 8:giy169. [PMID: 30689855 PMCID: PMC6377397 DOI: 10.1093/gigascience/giy169] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/10/2018] [Accepted: 12/23/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The fast-moving progress of the third-generation long-read sequencing technologies will soon bring the biological and medical sciences to a new era of research. Altogether, the technique and experimental procedures are becoming more straightforward and available to biologists from diverse fields, even without any profound experience in DNA sequencing. Thus, the introduction of the MinION device by Oxford Nanopore Technologies promises to "bring sequencing technology to the masses" and also allows quick and operative analysis in field studies. However, the convenience of this sequencing technology dramatically contrasts with the available analysis tools, which may significantly reduce enthusiasm of a "regular" user. To really bring the sequencing technology to every biologist, we need a set of user-friendly tools that can perform a powerful analysis in an automatic manner. FINDINGS NanoPipe was developed in consideration of the specifics of the MinION sequencing technologies, providing accordingly adjusted alignment parameters. The range of the target species/sequences for the alignment is not limited, and the descriptive usage page of NanoPipe helps a user to succeed with NanoPipe analysis. The results contain alignment statistics, consensus sequence, polymorphisms data, and visualization of the alignment. Several test cases are used to demonstrate the efficiency of the tool. CONCLUSIONS Freely available NanoPipe software allows effortless and reliable analysis of MinION sequencing data for experienced bioinformaticians, as well for wet-lab biologists with minimum bioinformatics knowledge. Moreover, for the latter group, we describe the basic algorithm necessary for MinION sequencing analysis from the first to last step.
Collapse
Affiliation(s)
- Victoria Shabardina
- Institue of Bioinformatics, University of Muenster, Niels-Stensen-Strasse 14, Muenster, 48149, Germany
| | - Tabea Kischka
- Institue of Bioinformatics, University of Muenster, Niels-Stensen-Strasse 14, Muenster, 48149, Germany
| | - Felix Manske
- Institue of Bioinformatics, University of Muenster, Niels-Stensen-Strasse 14, Muenster, 48149, Germany
| | - Norbert Grundmann
- Institue of Bioinformatics, University of Muenster, Niels-Stensen-Strasse 14, Muenster, 48149, Germany
| | - Martin C Frith
- Artificial Intelligence Research Center, AIST, 2-3-26, Aomi, Koto-ku, Tokyo, 135-0064, Japan
- Department of Computational Biology and Medical Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
- AIST-Waseda University Computational Bio Big Data Open Innovation Laboratory, 3-4-1 Ookubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Wojciech Makałowski
- Institue of Bioinformatics, University of Muenster, Niels-Stensen-Strasse 14, Muenster, 48149, Germany
| |
Collapse
|
23
|
Meade N, DiGiuseppe S, Walsh D. Translational control during poxvirus infection. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1515. [PMID: 30381906 DOI: 10.1002/wrna.1515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/31/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023]
Abstract
Poxviruses are an unusual family of large double-stranded (ds) DNA viruses that exhibit an incredible degree of self-sufficiency and complexity in their replication and immune evasion strategies. Indeed, amongst their approximately 200 open reading frames (ORFs), poxviruses encode approximately 100 immunomodulatory proteins to counter host responses along with complete DNA synthesis, transcription, mRNA processing and cytoplasmic redox systems that enable them to replicate exclusively in the cytoplasm of infected cells. However, like all other viruses poxviruses do not encode ribosomes and therefore remain completely dependent on gaining access to the host translational machinery in order to synthesize viral proteins. Early studies of these intriguing viruses helped discover the mRNA cap and polyadenylated (polyA) tail that we now know to be present on most eukaryotic messages and which play fundamental roles in mRNA translation, while more recent studies have begun to reveal the remarkable lengths poxviruses go to in order to control both host and viral protein synthesis. Here, we discuss some of the central strategies used by poxviruses and the broader battle that ensues with the host cell to control the translation system, the outcome of which ultimately dictates the fate of infection. This article is categorized under: Translation > Translation Regulation.
Collapse
Affiliation(s)
- Nathan Meade
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Stephen DiGiuseppe
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
24
|
Varsani A, Lefeuvre P, Roumagnac P, Martin D. Notes on recombination and reassortment in multipartite/segmented viruses. Curr Opin Virol 2018; 33:156-166. [PMID: 30237098 DOI: 10.1016/j.coviro.2018.08.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/07/2018] [Accepted: 08/28/2018] [Indexed: 11/29/2022]
Abstract
Besides evolving through nucleotide substitution, viruses frequently also evolve by genetic recombination which can occur when related viral variants co-infect the same cells. Viruses with segmented or multipartite genomes can additionally evolve via the reassortment of genomic components. Various computational techniques are now available for identifying and characterizing recombination and reassortment. While these techniques have revealed both that all well studied segmented and multipartite virus species show some capacity for reassortment, and that recombination is common in many multipartite species, they have indicated that recombination is either rare or does not occur in species with segmented genomes. Reassortment and recombination can make it very difficult to study segmented/multipartite viruses using metagenomics-based approaches. Notable challenges include, both the accurate identification and assignment of genomic components to individual genomes, and the differentiation between natural 'real' recombination events and artifactual 'fake' recombination events arising from the inaccurate de novo assembly of genome component sequences determined using short read sequencing.
Collapse
Affiliation(s)
- Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA; Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| | | | - Philippe Roumagnac
- CIRAD, BGPI, Montpellier, France; BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Darren Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine. University of Cape Town, Observatory, 7925, South Africa
| |
Collapse
|