1
|
Alzugaray ME, Gavazzi MV, Griffo L, Ronderos JR. Piezo proteins, mechano reception and behaviour in Hydra. Sci Rep 2025; 15:6440. [PMID: 39987331 PMCID: PMC11846868 DOI: 10.1038/s41598-025-91048-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/18/2025] [Indexed: 02/24/2025] Open
Abstract
Cells are constantly exposed to mechanical forces. These stimuli must be detected and transduced to maintain homeostasis. Due that reason, mechano-sensory systems (MS) are present in all the organisms to generate appropriate responses. Piezo proteins are a recently discovered family of mechano-gated ion channels that responds to mechanical changes of the plasma membrane, allowing the influx of cations, mainly Ca2+. Piezo MS channels are widely represented in Metazoa, acting in several physiological systems. Hydra sp. is a freshwater member of the phylum Cnidaria which is assumed as the sister group of Bilateria. Despite the existence of Piezo channels in Hydra is known, their physiological roles remain unknown. In this work we delve into the physiological relevance of MS Piezo in responses associated to mechanical stimuli in Hydra sp. We analysed the effects of Jedi1 (a specific agonist of Piezo1) on the contractile behaviours, and cnidocyst discharge, and compared them with responses caused by natural stimuli. The results show that the activation of Piezo channels increases the contractile behaviour, stimulating the occurrence of contraction burst, a sudden kind of retraction observed in response to touch and osmotic stress. Cnidocyst discharge was also induced by Jedi1, resembling the response caused by the contact of the prey. The effects of both Jedi1 and natural stimuli were avoided in the presence of the inhibitor of MS channels GdCl3. The bioinformatic analysis shows that the protein predicted by Hydra genome has the characteristic motifs of Piezo proteins. These results are consistent with the existence of Piezo channels in Hydra, unveiling their physiological roles. Because of the relevance of Piezo channels in several pathological conditions and the high level of conservation in metazoans, Hydra could provide a significative experimental model to assay biological and pharmacological issues.
Collapse
Affiliation(s)
- María Eugenia Alzugaray
- Cátedra de Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina
- CONICET, Buenos Aires, Argentina
| | - María Victoria Gavazzi
- Cátedra de Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina
- CONICET, Buenos Aires, Argentina
| | - Lucía Griffo
- Cátedra de Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina
| | - Jorge Rafael Ronderos
- Cátedra de Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
2
|
Sellés Vidal L, Noma T, Yokobayashi Y. Accurate, comprehensive database of group I introns and their homing endonucleases. BIOINFORMATICS ADVANCES 2025; 5:vbaf020. [PMID: 39968379 PMCID: PMC11835236 DOI: 10.1093/bioadv/vbaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/15/2025] [Accepted: 02/03/2025] [Indexed: 02/20/2025]
Abstract
Motivation Group I introns are one of the most widely studied ribozymes. Since their initial discovery, a large number of them have been identified experimentally or computationally. However, no comprehensive and unified database that provides group I intron sequences with precise boundaries and structural information is available. Results We created a new database of group I intron sequences with reliable exon-intron boundaries. The database offers additional data for each sequence, such as containing GenBank entry, its position within the associated entry, the subtype of each intron and putative homing endonucleases. Secondary structure predictions and base-pairing probability matrixes are also provided for each sequence. The resource is expected to facilitate large-scale studies of group I introns, as well as engineering for novel applications. Availability and implementation The database, as well as the code to generate it and a GUI to facilitate its exploration, are available at https://github.com/LaraSellesVidal/Group1IntronDatabase. The source code for the GUI implementation is available at https://github.com/LaraSellesVidal/OnlineGroup1IntronDatabase. The database can also be accessed online at https://online-group-1-intron-database.onrender.com. Base-pairing probability matrixes are available separately at https://www.ebi.ac.uk/biostudies/studies/S-BSST1399.
Collapse
Affiliation(s)
- Lara Sellés Vidal
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 9040495, Japan
| | - Tomoya Noma
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 9040495, Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 9040495, Japan
| |
Collapse
|
3
|
Ge X, Peng L, Morse JC, Wang J, Zang H, Yang L, Sun C, Wang B. Phylogenomics resolves a 100-year-old debate regarding the evolutionary history of caddisflies (Insecta: Trichoptera). Mol Phylogenet Evol 2024; 201:108196. [PMID: 39278385 DOI: 10.1016/j.ympev.2024.108196] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/11/2024] [Accepted: 09/07/2024] [Indexed: 09/18/2024]
Abstract
Trichoptera (caddisfly) phylogeny provides an interesting example of aquatic insect evolution, with rich ecological diversification, especially for underwater architecture. Trichoptera provide numerous critical ecosystem services and are also one of the most important groups of aquatic insects for assessing water quality. The phylogenetic relationships of Trichoptera have been debated for nearly a century. In particular, the phylogenetic position of the "cocoon-makers" within Trichoptera has long been contested. Here, we designed a universal single-copy orthologue and sets of ultraconserved element markers specific for Trichoptera for the first time. Simultaneously, we reconstructed the phylogenetic relationship of Trichoptera based on genome data from 111 species, representing 29 families and 71 genera. Our phylogenetic inference clarifies the probable phylogenetic relationships of "cocoon-makers" within Integripalpia. Hydroptilidae is considered as the basal lineage within Integripalpia, and the families Glossosomatidae, Hydrobiosidae, and Rhyacophilidae formed a monophyletic clade, sister to the integripalpian subterorder Phryganides. The resulting divergence time and ancestral state reconstruction suggest that the most recent common ancestor of Trichoptera appeared in the early Permian and that diversification was strongly correlated with habitat change.
Collapse
Affiliation(s)
- Xinyu Ge
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Lang Peng
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - John C Morse
- Department of Plant & Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Jingyuan Wang
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Haoming Zang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Lianfang Yang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Changhai Sun
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Beixin Wang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Salinas NR, Eshel G, Coruzzi GM, DeSalle R, Tessler M, Little DP. BAD2matrix: Phylogenomic matrix concatenation, indel coding, and more. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11604. [PMID: 39628543 PMCID: PMC11610412 DOI: 10.1002/aps3.11604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/24/2024] [Accepted: 03/16/2024] [Indexed: 12/06/2024]
Abstract
Premise Common steps in phylogenomic matrix production include biological sequence concatenation, morphological data concatenation, insertion/deletion (indel) coding, gene content (presence/absence) coding, removing uninformative characters for parsimony analysis, recording with reduced amino acid alphabets, and occupancy filtering. Existing software does not accomplish these tasks on a phylogenomic scale using a single program. Methods and Results BAD2matrix is a Python script that performs the above-mentioned steps in phylogenomic matrix construction for DNA or amino acid sequences as well as morphological data. The script works in UNIX-like environments (e.g., LINUX, MacOS, Windows Subsystem for LINUX). Conclusions BAD2matrix helps simplify phylogenomic pipelines and can be downloaded from https://github.com/dpl10/BAD2matrix/tree/master under a GNU General Public License v2.
Collapse
Affiliation(s)
- Nelson R. Salinas
- Lewis B. and Dorothy Cullman Program for Molecular SystematicsThe New York Botanical Garden, BronxNew YorkUSA
| | - Gil Eshel
- Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Gloria M. Coruzzi
- Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Rob DeSalle
- Institute for Comparative GenomicsAmerican Museum of Natural HistoryNew YorkNew YorkUSA
| | - Michael Tessler
- Lewis B. and Dorothy Cullman Program for Molecular SystematicsThe New York Botanical Garden, BronxNew YorkUSA
- Institute for Comparative GenomicsAmerican Museum of Natural HistoryNew YorkNew YorkUSA
- Department of Biology, Medgar Evers CollegeCity University of New YorkBrooklynNew YorkUSA
| | - Damon P. Little
- Lewis B. and Dorothy Cullman Program for Molecular SystematicsThe New York Botanical Garden, BronxNew YorkUSA
| |
Collapse
|
5
|
Liu H, Steenwyk JL, Zhou X, Schultz DT, Kocot KM, Shen XX, Rokas A, Li Y. A taxon-rich and genome-scale phylogeny of Opisthokonta. PLoS Biol 2024; 22:e3002794. [PMID: 39283949 PMCID: PMC11426530 DOI: 10.1371/journal.pbio.3002794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/26/2024] [Accepted: 08/07/2024] [Indexed: 09/27/2024] Open
Abstract
Ancient divergences within Opisthokonta-a major lineage that includes organisms in the kingdoms Animalia, Fungi, and their unicellular relatives-remain contentious. To assess progress toward a genome-scale Opisthokonta phylogeny, we conducted the most taxon rich phylogenomic analysis using sets of genes inferred with different orthology inference methods and established the geological timeline of Opisthokonta diversification. We also conducted sensitivity analysis by subsampling genes or taxa from the full data matrix based on filtering criteria previously shown to improve phylogenomic inference. We found that approximately 85% of internal branches were congruent across data matrices and the approaches used. Notably, the use of different orthology inference methods was a substantial contributor to the observed incongruence: analyses using the same set of orthologs showed high congruence of 97% to 98%, whereas different sets of orthologs resulted in somewhat lower congruence (87% to 91%). Examination of unicellular Holozoa relationships suggests that the instability observed across varying gene sets may stem from weak phylogenetic signals. Our results provide a comprehensive Opisthokonta phylogenomic framework that will be useful for illuminating ancient evolutionary episodes concerning the origin and diversification of the 2 major eukaryotic kingdoms and emphasize the importance of investigating effects of orthology inference on phylogenetic analyses to resolve ancient divergences.
Collapse
Affiliation(s)
- Hongyue Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Darrin T Schultz
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
- Monterey Bay Aquarium Research Institute, Moss Landing, California, United States of America
| | - Kevin M Kocot
- University of Alabama, Department of Biological Sciences & Alabama Museum of Natural History, Tuscaloosa, Alabama, United States of America
| | - Xing-Xing Shen
- Institute of Insect Sciences and Centre for Evolutionary and Organismal Biology, Zhejiang University, Hangzhou, China
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
6
|
Alfonso P, Butković A, Fernández R, Riesgo A, Elena SF. Unveiling the hidden viromes across the animal tree of life: insights from a taxonomic classification pipeline applied to invertebrates of 31 metazoan phyla. mSystems 2024; 9:e0012424. [PMID: 38651902 PMCID: PMC11097642 DOI: 10.1128/msystems.00124-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Invertebrates constitute the majority of animal species on Earth, including most disease-causing agents or vectors, with more diverse viromes when compared to vertebrates. Recent advancements in high-throughput sequencing have significantly expanded our understanding of invertebrate viruses, yet this knowledge remains biased toward a few well-studied animal lineages. In this study, we analyze invertebrate DNA and RNA viromes for 31 phyla using 417 publicly available RNA-Seq data sets from diverse environments in the marine-terrestrial and marine-freshwater gradients. This study aims to (i) estimate virome compositions at the family level for the first time across the animal tree of life, including the first exploration of the virome in several phyla, (ii) quantify the diversity of invertebrate viromes and characterize the structure of invertebrate-virus infection networks, and (iii) investigate host phylum and habitat influence on virome differences. Results showed that a set of few viral families of eukaryotes, comprising Retroviridae, Flaviviridae, and several families of giant DNA viruses, were ubiquitous and highly abundant. Nevertheless, some differences emerged between phyla, revealing for instance a less diverse virome in Ctenophora compared to the other animal phyla. Compositional analysis of the viromes showed that the host phylum explained over five times more variance in composition than its habitat. Moreover, significant similarities were observed between the viromes of some phylogenetically related phyla, which could highlight the influence of co-evolution in shaping invertebrate viromes.IMPORTANCEThis study significantly enhances our understanding of the global animal virome by characterizing the viromes of previously unexamined invertebrate lineages from a large number of animal phyla. It showcases the great diversity of viromes within each phylum and investigates the role of habitat shaping animal viral communities. Furthermore, our research identifies dominant virus families in invertebrates and distinguishes phyla with analogous viromes. This study sets the road toward a deeper understanding of the virome across the animal tree of life.
Collapse
Affiliation(s)
- Pau Alfonso
- Instituto de Biología Integrativa de Sistemas (CSIC-Universitat de València), Paterna, València, Spain
| | - Anamarija Butković
- Institut Pasteur, Université Paris Cité, CNRS UMR6047 Archaeal Virology Unit, Paris, France
| | - Rosa Fernández
- Instituto de Biología Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Ana Riesgo
- Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
- Department of Life Sciences, Natural History Museum of London, London, United Kingdom
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas (CSIC-Universitat de València), Paterna, València, Spain
- The Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
7
|
Abstract
Reconstructing the tree of life remains a central goal in biology. Early methods, which relied on small numbers of morphological or genetic characters, often yielded conflicting evolutionary histories, undermining confidence in the results. Investigations based on phylogenomics, which use hundreds to thousands of loci for phylogenetic inquiry, have provided a clearer picture of life's history, but certain branches remain problematic. To resolve difficult nodes on the tree of life, 2 recent studies tested the utility of synteny, the conserved collinearity of orthologous genetic loci in 2 or more organisms, for phylogenetics. Synteny exhibits compelling phylogenomic potential while also raising new challenges. This Essay identifies and discusses specific opportunities and challenges that bear on the value of synteny data and other rare genomic changes for phylogenomic studies. Synteny-based analyses of highly contiguous genome assemblies mark a new chapter in the phylogenomic era and the quest to reconstruct the tree of life.
Collapse
Affiliation(s)
- Jacob L. Steenwyk
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Nicole King
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| |
Collapse
|
8
|
Mussini G, Dunn FS. Decline and fall of the Ediacarans: late-Neoproterozoic extinctions and the rise of the modern biosphere. Biol Rev Camb Philos Soc 2024; 99:110-130. [PMID: 37667585 DOI: 10.1111/brv.13014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
The end-Neoproterozoic transition marked a gradual but permanent shift between distinct configurations of Earth's biosphere. This interval witnessed the demise of the enigmatic Ediacaran Biota, ushering in the structured trophic webs and disparate animal body plans of Phanerozoic ecosystems. However, little consensus exists on the reality, drivers, and macroevolutionary implications of end-Neoproterozoic extinctions. Here we evaluate potential drivers of late-Neoproterozoic turnover by addressing recent findings on Ediacaran geochronology, the persistence of classical Ediacaran macrobionts into the Cambrian, and the existence of Ediacaran crown-group eumetazoans. Despite renewed interest in the possibility of Phanerozoic-style 'mass extinctions' in the latest Neoproterozoic, our synthesis of the available evidence does not support extinction models based on episodic geochemical triggers, nor does it validate simple ecological interpretations centred on direct competitive displacement. Instead, we argue that the protracted and indirect effects of early bilaterian innovations, including escalations in sediment engineering, predation, and the largely understudied impacts of reef-building, may best account for the temporal structure and possible selectivity of late-Neoproterozoic extinctions. We integrate these processes into a generalised model of early eumetazoan-dominated ecologies, charting the disruption of spatial and temporal isotropy on the Ediacaran benthos as a consequence of diversifying macrofaunal interactions. Given the nature of resource distribution in Ediacaran ecologies, the continuities among Ediacaran and Cambrian faunas, and the convergent origins of ecologically disruptive innovations among bilaterians we suggest that the rise of Phanerozoic-type biotas may have been unstoppable.
Collapse
Affiliation(s)
- Giovanni Mussini
- Department of Earth Sciences, Downing Street, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Frances S Dunn
- Oxford University Museum of Natural History, Parks Road, University of Oxford, Oxford, OX1 3PW, UK
| |
Collapse
|
9
|
Romanova DY, Varoqueaux F, Eitel M, Yoshida MA, Nikitin MA, Moroz LL. Long-Term Culturing of Placozoans (Trichoplax and Hoilungia). Methods Mol Biol 2024; 2757:509-529. [PMID: 38668981 DOI: 10.1007/978-1-0716-3642-8_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The phylum Placozoa remains one of the least explored among early-branching metazoan lineages. For over 130 years, this phylum had been represented by the single species Trichoplax adhaerens-an animal with the simplest known body plan (three cell layers without any organs) but complex behaviors. Recently, extensive sampling of placozoans across the globe and their subsequent genetic analysis have revealed incredible biodiversity with numerous cryptic species worldwide. However, only a few culture protocols are available to date, and all are for one species only. Here, we describe the breeding of four different species representing two placozoan genera: Trichoplax adhaerens, Trichoplax sp. H2, Hoilungia sp. H4, and Hoilungia hongkongensis originating from diverse biotopes. Our protocols allow to culture all species under comparable conditions. Next, we outlined various food sources and optimized strain-specific parameters enabling long-term culturing. These protocols can facilitate comparative analyses of placozoan biology and behaviors, which together will contribute to deciphering general principles of animal organization.
Collapse
Affiliation(s)
- Daria Y Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia.
| | - Frédérique Varoqueaux
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.
| | - Michael Eitel
- Department of Earth and Environmental Sciences Palaeontology & Geobiology, LMU München, Munich, Germany
| | - Masa-Aki Yoshida
- Marine Biological Science Section, Education and Research Center for Biological Resources, Faculty of Life and Environmental Science, Shimane University, Okinoshima, Oki, Shimane, Japan
| | - Mikhail A Nikitin
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
- Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
| | - Leonid L Moroz
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA.
| |
Collapse
|
10
|
Romanova DY, Moroz LL. Brief History of Placozoa. Methods Mol Biol 2024; 2757:103-122. [PMID: 38668963 DOI: 10.1007/978-1-0716-3642-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Placozoans are morphologically the simplest free-living animals. They represent a unique window of opportunities to understand both the origin of the animal organization and the rules of life for the system and synthetic biology of the future. However, despite more than 100 years of their investigations, we know little about their organization, natural habitats, and life strategies. Here, we introduce this unique animal phylum and highlight some directions vital to broadening the frontiers of the biomedical sciences. In particular, understanding the genomic bases of placozoan biodiversity, cell identity, connectivity, reproduction, and cellular bases of behavior are critical hot spots for future studies.
Collapse
Affiliation(s)
- Daria Y Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russian Federation.
| | - Leonid L Moroz
- Department of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Whitney Laboratory for Marine Biosciences University of Florida, St. Augustine, FL, USA.
| |
Collapse
|
11
|
Wanninger A. Hox, homology, and parsimony: An organismal perspective. Semin Cell Dev Biol 2024; 152-153:16-23. [PMID: 36670036 DOI: 10.1016/j.semcdb.2023.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/21/2022] [Accepted: 01/08/2023] [Indexed: 01/20/2023]
Abstract
Hox genes are important regulators in animal development. They often show a mosaic of conserved (e.g., longitudinal axis patterning) and lineage-specific novel functions (e.g., development of skeletal, sensory, or locomotory systems). Despite extensive research over the past decades, it remains controversial at which node in the animal tree of life the Hox cluster evolved. Its presence already in the last common metazoan ancestor has been proposed, although the genomes of both putative earliest extant metazoan offshoots, the ctenophores and the poriferans, are devoid of Hox sequences. The lack of Hox genes in the supposedly "simple"-built poriferans and their low number in cnidarians and the basally branching bilaterians, the xenacoelomorphs, seems to support the classical notion that the number of Hox genes is correlated with the degree of animal complexity. However, the 4-fold increase of the Hox cluster in xiphosurans, a basally branching chelicerate clade, as well as the situation in some teleost fishes that show a multitude of Hox genes compared to, e.g., human, demonstrates, that there is no per se direct correlation between organismal complexity and Hox number. Traditional approaches have tried to base homology on the morphological level on shared expression profiles of individual genes, but recent data have shown that, in particular with respect to Hox and other regulatory genes, complex gene-gene interactions rather than expression signatures of individual genes alone are responsible for shaping morphological traits during ontogeny. Accordingly, for sound homology assessments and reconstructions of character evolution on organ system level, additional independent datasets (e.g., morphological, developmental) need to be included in any such analyses. If supported by solid data, proposed structural homology should be regarded as valid and not be rejected solely on the grounds of non-parsimonious distribution of the character over a given phylogenetic topology.
Collapse
Affiliation(s)
- Andreas Wanninger
- University of Vienna, Department of Evolutionary Biology, Unit for Integrative Zoology, Djerassiplatz 1, 1030 Vienna, Austria.
| |
Collapse
|
12
|
Steenwyk JL, Li Y, Zhou X, Shen XX, Rokas A. Incongruence in the phylogenomics era. Nat Rev Genet 2023; 24:834-850. [PMID: 37369847 PMCID: PMC11499941 DOI: 10.1038/s41576-023-00620-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 06/29/2023]
Abstract
Genome-scale data and the development of novel statistical phylogenetic approaches have greatly aided the reconstruction of a broad sketch of the tree of life and resolved many of its branches. However, incongruence - the inference of conflicting evolutionary histories - remains pervasive in phylogenomic data, hampering our ability to reconstruct and interpret the tree of life. Biological factors, such as incomplete lineage sorting, horizontal gene transfer, hybridization, introgression, recombination and convergent molecular evolution, can lead to gene phylogenies that differ from the species tree. In addition, analytical factors, including stochastic, systematic and treatment errors, can drive incongruence. Here, we review these factors, discuss methodological advances to identify and handle incongruence, and highlight avenues for future research.
Collapse
Affiliation(s)
- Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xing-Xing Shen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA.
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.
| |
Collapse
|
13
|
Kapli P, Kotari I, Telford MJ, Goldman N, Yang Z. DNA Sequences Are as Useful as Protein Sequences for Inferring Deep Phylogenies. Syst Biol 2023; 72:1119-1135. [PMID: 37366056 PMCID: PMC10627555 DOI: 10.1093/sysbio/syad036] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 06/28/2023] Open
Abstract
Inference of deep phylogenies has almost exclusively used protein rather than DNA sequences based on the perception that protein sequences are less prone to homoplasy and saturation or to issues of compositional heterogeneity than DNA sequences. Here, we analyze a model of codon evolution under an idealized genetic code and demonstrate that those perceptions may be misconceptions. We conduct a simulation study to assess the utility of protein versus DNA sequences for inferring deep phylogenies, with protein-coding data generated under models of heterogeneous substitution processes across sites in the sequence and among lineages on the tree, and then analyzed using nucleotide, amino acid, and codon models. Analysis of DNA sequences under nucleotide-substitution models (possibly with the third codon positions excluded) recovered the correct tree at least as often as analysis of the corresponding protein sequences under modern amino acid models. We also applied the different data-analysis strategies to an empirical dataset to infer the metazoan phylogeny. Our results from both simulated and real data suggest that DNA sequences may be as useful as proteins for inferring deep phylogenies and should not be excluded from such analyses. Analysis of DNA data under nucleotide models has a major computational advantage over protein-data analysis, potentially making it feasible to use advanced models that account for among-site and among-lineage heterogeneity in the nucleotide-substitution process in inference of deep phylogenies.
Collapse
Affiliation(s)
- Paschalia Kapli
- Department of Genetics, University College London, Gower Street, London WC1E 6BT, UK
| | - Ioanna Kotari
- Department of Genetics, University College London, Gower Street, London WC1E 6BT, UK
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, 1210, Austria
| | - Maximilian J Telford
- Department of Genetics, University College London, Gower Street, London WC1E 6BT, UK
| | - Nick Goldman
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ziheng Yang
- Department of Genetics, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
14
|
Najle SR, Grau-Bové X, Elek A, Navarrete C, Cianferoni D, Chiva C, Cañas-Armenteros D, Mallabiabarrena A, Kamm K, Sabidó E, Gruber-Vodicka H, Schierwater B, Serrano L, Sebé-Pedrós A. Stepwise emergence of the neuronal gene expression program in early animal evolution. Cell 2023; 186:4676-4693.e29. [PMID: 37729907 PMCID: PMC10580291 DOI: 10.1016/j.cell.2023.08.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/13/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
The assembly of the neuronal and other major cell type programs occurred early in animal evolution. We can reconstruct this process by studying non-bilaterians like placozoans. These small disc-shaped animals not only have nine morphologically described cell types and no neurons but also show coordinated behaviors triggered by peptide-secreting cells. We investigated possible neuronal affinities of these peptidergic cells using phylogenetics, chromatin profiling, and comparative single-cell genomics in four placozoans. We found conserved cell type expression programs across placozoans, including populations of transdifferentiating and cycling cells, suggestive of active cell type homeostasis. We also uncovered fourteen peptidergic cell types expressing neuronal-associated components like the pre-synaptic scaffold that derive from progenitor cells with neurogenesis signatures. In contrast, earlier-branching animals like sponges and ctenophores lacked this conserved expression. Our findings indicate that key neuronal developmental and effector gene modules evolved before the advent of cnidarian/bilaterian neurons in the context of paracrine cell signaling.
Collapse
Affiliation(s)
- Sebastián R Najle
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Xavier Grau-Bové
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anamaria Elek
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cristina Navarrete
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Damiano Cianferoni
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cristina Chiva
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Didac Cañas-Armenteros
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Arrate Mallabiabarrena
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Kai Kamm
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Harald Gruber-Vodicka
- Max Planck Institute for Marine Microbiology, Bremen, Germany; Zoological Institute, Christian Albrechts University, Kiel, Germany
| | - Bernd Schierwater
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany; American Museum of Natural History, Richard Gilder Graduate School, NY, USA
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Barcelona, Spain
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Barcelona, Spain.
| |
Collapse
|
15
|
Moon J, Caron JB, Moysiuk J. A macroscopic free-swimming medusa from the middle Cambrian Burgess Shale. Proc Biol Sci 2023; 290:20222490. [PMID: 37528711 PMCID: PMC10394413 DOI: 10.1098/rspb.2022.2490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/10/2023] [Indexed: 08/03/2023] Open
Abstract
Cnidarians are regarded as one of the earliest-diverging animal phyla. One of the hallmarks of the cnidarian body plan is the evolution of a free-swimming medusa in some medusozoan classes, but the origin of this innovation remains poorly constrained by the fossil record and molecular data. Previously described macrofossils, putatively representing medusa stages of crown-group medusozoans from the Cambrian of Utah and South China, are here reinterpreted as ctenophore-grade organisms. Other putative Ediacaran to Cambrian medusozoan fossils consist mainly of microfossils and tubular forms. Here we describe Burgessomedusa phasmiformis gen. et sp. nov., the oldest unequivocal macroscopic free-swimming medusa in the fossil record. Our study is based on 182 exceptionally preserved body fossils from the middle Cambrian Burgess Shale (Raymond Quarry, British Columbia, Canada). Burgessomedusa possesses a cuboidal umbrella up to 20 cm high and over 90 short, finger-like tentacles. Phylogenetic analysis supports a medusozoan affinity, most likely as a stem group to Cubozoa or Acraspeda (a group including Staurozoa, Cubozoa and Scyphozoa). Burgessomedusa demonstrates an ancient origin for the free-swimming medusa life stage and supports a growing number of studies showing an early evolutionary diversification of Medusozoa, including of the crown group, during the late Precambrian-Cambrian transition.
Collapse
Affiliation(s)
- Justin Moon
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada M5S 2C6
| | - Jean-Bernard Caron
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada M5S 2C6
- Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3B1
| | - Joseph Moysiuk
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada M5S 2C6
| |
Collapse
|
16
|
DeSalle R, Narechania A, Tessler M. Multiple Outgroups Can Cause Random Rooting in Phylogenomics. Mol Phylogenet Evol 2023; 184:107806. [PMID: 37172862 DOI: 10.1016/j.ympev.2023.107806] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/06/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Outgroup selection has been a major challenge since the rise of phylogenetics, and it has remained so in the phylogenomic era. Our goal here is to use large phylogenomic animal datasets to examine the impact of outgroup selection on the final topology. The results of our analyses further solidify the fact that distant outgroups can cause random rooting, and that this holds for concatenated and coalescent-based methods. The results also indicate that the standard practice of using multiple outgroups often causes random rooting. Most researchers go out of their way to get multiple outgroups, as this has been standard practice for decades. Based on our findings, this practice should stop. Instead, our results suggest that a single (most closely) related relative should be selected as the outgroup, unless all outgroups are roughly equally closely related to the ingroup.
Collapse
Affiliation(s)
- Rob DeSalle
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA; Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Apurva Narechania
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Michael Tessler
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA; Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA; St. Francis College, Department of Biology, Brooklyn, NY 11201, USA
| |
Collapse
|
17
|
Fleming JF, Struck TH. nRCFV: a new, dataset-size-independent metric to quantify compositional heterogeneity in nucleotide and amino acid datasets. BMC Bioinformatics 2023; 24:145. [PMID: 37046225 PMCID: PMC10099917 DOI: 10.1186/s12859-023-05270-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
MOTIVATION Compositional heterogeneity-when the proportions of nucleotides and amino acids are not broadly similar across the dataset-is a cause of a great number of phylogenetic artefacts. Whilst a variety of methods can identify it post-hoc, few metrics exist to quantify compositional heterogeneity prior to the computationally intensive task of phylogenetic tree reconstruction. Here we assess the efficacy of one such existing, widely used, metric: Relative Composition Frequency Variability (RCFV), using both real and simulated data. RESULTS Our results show that RCFV can be biased by sequence length, the number of taxa, and the number of possible character states within the dataset. However, we also find that missing data does not appear to have an appreciable effect on RCFV. We discuss the theory behind this, the consequences of this for the future of the usage of the RCFV value and propose a new metric, nRCFV, which accounts for these biases. Alongside this, we present a new software that calculates both RCFV and nRCFV, called nRCFV_Reader. AVAILABILITY AND IMPLEMENTATION nRCFV has been implemented in RCFV_Reader, available at: https://github.com/JFFleming/RCFV_Reader . Both our simulation and real data are available at Datadryad: https://doi.org/10.5061/dryad.wpzgmsbpn .
Collapse
Affiliation(s)
- James F Fleming
- University of Oslo Natural History Museum, Sars' Gata 1, Oslo, Norway.
| | - Torsten H Struck
- University of Oslo Natural History Museum, Sars' Gata 1, Oslo, Norway
| |
Collapse
|
18
|
Lopez-Anido RN, Batzel GO, Ramirez G, Goodheart JA, Wang Y, Neal S, Lyons DC. Spatial-temporal expression analysis of lineage-restricted shell matrix proteins reveals shell field regionalization and distinct cell populations in the slipper snail Crepidula atrasolea. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.532128. [PMID: 36993573 PMCID: PMC10055211 DOI: 10.1101/2023.03.18.532128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Molluscs are one of the most morphologically diverse clades of metazoans, exhibiting an immense diversification of calcium carbonate structures, such as the shell. Biomineralization of the calcified shell is dependent on shell matrix proteins (SMPs). While SMP diversity is hypothesized to drive molluscan shell diversity, we are just starting to unravel SMP evolutionary history and biology. Here we leveraged two complementary model mollusc systems, Crepidula fornicata and Crepidula atrasolea , to determine the lineage-specificity of 185 Crepidula SMPs. We found that 95% of the adult C. fornicata shell proteome belongs to conserved metazoan and molluscan orthogroups, with molluscan-restricted orthogroups containing half of all SMPs in the shell proteome. The low number of C. fornicata -restricted SMPs contradicts the generally-held notion that an animal’s biomineralization toolkit is dominated by mostly novel genes. Next, we selected a subset of lineage-restricted SMPs for spatial-temporal analysis using in situ hybridization chain reaction (HCR) during larval stages in C. atrasolea . We found that 12 out of 18 SMPs analyzed are expressed in the shell field. Notably, these genes are present in 5 expression patterns, which define at least three distinct cell populations within the shell field. These results represent the most comprehensive analysis of gastropod SMP evolutionary age and shell field expression patterns to date. Collectively, these data lay the foundation for future work to interrogate the molecular mechanisms and cell fate decisions underlying molluscan mantle specification and diversification.
Collapse
|
19
|
Reply to: Available data do not rule out Ctenophora as the sister group to all other Metazoa. Nat Commun 2023; 14:710. [PMID: 36765060 PMCID: PMC9918546 DOI: 10.1038/s41467-023-36152-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/18/2023] [Indexed: 02/12/2023] Open
|
20
|
Shimpi GG, Bentlage B. Ancient endosymbiont-mediated transmission of a selfish gene provides a model for overcoming barriers to gene transfer into animal mitochondrial genomes. Bioessays 2023; 45:e2200190. [PMID: 36412071 DOI: 10.1002/bies.202200190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022]
Abstract
In contrast to bilaterian animals, non-bilaterian mitochondrial genomes contain atypical genes, often attributed to horizontal gene transfer (HGT) as an ad hoc explanation. Although prevalent in plants, HGT into animal mitochondrial genomes is rare, lacking suitable explanatory models for their occurrence. HGT of the mismatch DNA repair gene (mtMutS) from giant viruses to octocoral (soft corals and their kin) mitochondrial genomes provides a model for how barriers to HGT to animal mitochondria may be overcome. A review of the available literature suggests that this HGT was mediated by an alveolate endosymbiont infected with a lysogenic phycodnavirus that enabled insertion of the homing endonuclease containing mtMutS into octocoral mitochondrial genomes. We posit that homing endonuclease domains and similar selfish elements play a crucial role in such inter-domain gene transfers. Understanding the role of selfish genetic elements in HGT has the potential to aid development of tools for manipulating animal mitochondrial DNA.
Collapse
|
21
|
Li Y, Hui JHL. Small RNAs in Cnidaria: A review. Evol Appl 2023; 16:354-364. [PMID: 36793685 PMCID: PMC9923473 DOI: 10.1111/eva.13445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/18/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022] Open
Abstract
As fundamental components of RNA silencing, small RNA (sRNA) molecules ranging from 20 to 32 nucleotides in length have been found as potent regulators of gene expression and genome stability in many biological processes of eukaryotes. Three major small RNAs are active in animals, including the microRNA (miRNA), short interfering RNA (siRNA), and PIWI-interacting RNA (piRNA). Cnidarians, the sister group to bilaterians, are at a critical phylogenetic node to better model eukaryotic small RNA pathway evolution. To date, most of our understanding of sRNA regulation and its potential contribution to evolution has been limited to a few triploblastic bilaterian and plant models. The diploblastic nonbilaterians, including the cnidarians, are understudied in this regard. Therefore, this review will present the current-known small RNA information in cnidarians to enhance our understanding of the development of the small RNA pathways in early branch animals.
Collapse
Affiliation(s)
- Yiqian Li
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life SciencesThe Chinese University of Hong KongHong Kong CityHong Kong
| | - Jerome H. L. Hui
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life SciencesThe Chinese University of Hong KongHong Kong CityHong Kong
| |
Collapse
|
22
|
McCarthy CGP, Mulhair PO, Siu-Ting K, Creevey CJ, O’Connell MJ. Improving Orthologous Signal and Model Fit in Datasets Addressing the Root of the Animal Phylogeny. Mol Biol Evol 2023; 40:6989790. [PMID: 36649189 PMCID: PMC9848061 DOI: 10.1093/molbev/msac276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
There is conflicting evidence as to whether Porifera (sponges) or Ctenophora (comb jellies) comprise the root of the animal phylogeny. Support for either a Porifera-sister or Ctenophore-sister tree has been extensively examined in the context of model selection, taxon sampling, and outgroup selection. The influence of dataset construction is comparatively understudied. We re-examine five animal phylogeny datasets that have supported either root hypothesis using an approach designed to enrich orthologous signal in phylogenomic datasets. We find that many component orthogroups in animal datasets fail to recover major lineages as monophyletic with the exception of Ctenophora, regardless of the supported root. Enriching these datasets to retain orthogroups recovering ≥3 major lineages reduces dataset size by up to 50% while retaining underlying phylogenetic information and taxon sampling. Site-heterogeneous phylogenomic analysis of these enriched datasets recovers both Porifera-sister and Ctenophora-sister positions, even with additional constraints on outgroup sampling. Two datasets which previously supported Ctenophora-sister support Porifera-sister upon enrichment. All enriched datasets display improved model fitness under posterior predictive analysis. While not conclusively rooting animals at either Porifera or Ctenophora, we do see an increase in signal for Porifera-sister and a decrease in signal for Ctenophore-sister when data are filtered for orthologous signal. Our results indicate that dataset size and construction as well as model fit influence animal root inference.
Collapse
Affiliation(s)
| | | | - Karen Siu-Ting
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Christopher J Creevey
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | | |
Collapse
|
23
|
Juravel K, Porras L, Höhna S, Pisani D, Wörheide G. Exploring genome gene content and morphological analysis to test recalcitrant nodes in the animal phylogeny. PLoS One 2023; 18:e0282444. [PMID: 36952565 PMCID: PMC10035847 DOI: 10.1371/journal.pone.0282444] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/14/2023] [Indexed: 03/25/2023] Open
Abstract
An accurate phylogeny of animals is needed to clarify their evolution, ecology, and impact on shaping the biosphere. Although datasets of several hundred thousand amino acids are nowadays routinely used to test phylogenetic hypotheses, key deep nodes in the metazoan tree remain unresolved: the root of animals, the root of Bilateria, and the monophyly of Deuterostomia. Instead of using the standard approach of amino acid datasets, we performed analyses of newly assembled genome gene content and morphological datasets to investigate these recalcitrant nodes in the phylogeny of animals. We explored extensively the choices for assembling the genome gene content dataset and model choices of morphological analyses. Our results are robust to these choices and provide additional insights into the early evolution of animals, they are consistent with sponges as the sister group of all the other animals, the worm-like bilaterian lineage Xenacoelomorpha as the sister group of the other Bilateria, and tentatively support monophyletic Deuterostomia.
Collapse
Affiliation(s)
- Ksenia Juravel
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany
| | - Luis Porras
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany
| | - Sebastian Höhna
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, München, Germany
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, München, Germany
- SNSB-Bayerische Staatssammlung für Paläontologie und Geologie, München, Germany
| |
Collapse
|
24
|
Duruz J, Sprecher SG. Evolution and Origins of Nervous Systems. Neurogenetics 2023. [DOI: 10.1007/978-3-031-07793-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Tessler M, Neumann JS, Kamm K, Osigus HJ, Eshel G, Narechania A, Burns JA, DeSalle R, Schierwater B. Phylogenomics and the first higher taxonomy of Placozoa, an ancient and enigmatic animal phylum. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1016357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Placozoa is an ancient phylum of extraordinarily unusual animals: miniscule, ameboid creatures that lack most fundamental animal features. Despite high genetic diversity, only recently have the second and third species been named. While prior genomic studies suffer from incomplete placozoan taxon sampling, we more than double the count with protein sequences from seven key genomes and produce the first nuclear phylogenomic reconstruction of all major placozoan lineages. This leads us to the first complete Linnaean taxonomic classification of Placozoa, over a century after its discovery: This may be the only time in the 21st century when an entire higher taxonomy for a whole animal phylum is formalized. Our classification establishes 2 new classes, 4 new orders, 3 new families, 1 new genus, and 1 new species, namely classes Polyplacotomia and Uniplacotomia; orders Polyplacotomea, Trichoplacea, Cladhexea, and Hoilungea; families Polyplacotomidae, Cladtertiidae, and Hoilungidae; and genus Cladtertia with species Cladtertia collaboinventa, nov. Our likelihood and gene content tree topologies refine the relationships determined in previous studies. Adding morphological data into our phylogenomic matrices suggests sponges (Porifera) as the sister to other animals, indicating that modest data addition shifts this node away from comb jellies (Ctenophora). Furthermore, by adding the first genomic protein data of the exceptionally distinct and branching Polyplacotoma mediterranea, we solidify its position as sister to all other placozoans; a divergence we estimate to be over 400 million years old. Yet even this deep split sits on a long branch to other animals, suggesting a bottleneck event followed by diversification. Ancestral state reconstructions indicate large shifts in gene content within Placozoa, with Hoilungia hongkongensis and its closest relatives having the most unique genetics.
Collapse
|
26
|
Sowa ST, Bosetti C, Galera-Prat A, Johnson MS, Lehtiö L. An Evolutionary Perspective on the Origin, Conservation and Binding Partner Acquisition of Tankyrases. Biomolecules 2022; 12:1688. [PMID: 36421702 PMCID: PMC9688111 DOI: 10.3390/biom12111688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 01/04/2024] Open
Abstract
Tankyrases are poly-ADP-ribosyltransferases that regulate many crucial and diverse cellular processes in humans such as Wnt signaling, telomere homeostasis, mitotic spindle formation and glucose metabolism. While tankyrases are present in most animals, functional differences across species may exist. In this work, we confirm the widespread distribution of tankyrases throughout the branches of multicellular animal life and identify the single-celled choanoflagellates as earliest origin of tankyrases. We further show that the sequences and structural aspects of TNKSs are well-conserved even between distantly related species. We also experimentally characterized an anciently diverged tankyrase homolog from the sponge Amphimedon queenslandica and show that the basic functional aspects, such as poly-ADP-ribosylation activity and interaction with the canonical tankyrase binding peptide motif, are conserved. Conversely, the presence of tankyrase binding motifs in orthologs of confirmed interaction partners varies greatly between species, indicating that tankyrases may have different sets of interaction partners depending on the animal lineage. Overall, our analysis suggests a remarkable degree of conservation for tankyrases, and that their regulatory functions in cells have likely changed considerably throughout evolution.
Collapse
Affiliation(s)
- Sven T. Sowa
- Faculty for Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Chiara Bosetti
- Faculty for Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Albert Galera-Prat
- Faculty for Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering and InFLAMES Research Flagship Center, Åbo Akademi University, 20520 Turku, Finland
| | - Lari Lehtiö
- Faculty for Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| |
Collapse
|
27
|
Hauser F, Koch TL, Grimmelikhuijzen CJP. Review: The evolution of peptidergic signaling in Cnidaria and Placozoa, including a comparison with Bilateria. Front Endocrinol (Lausanne) 2022; 13:973862. [PMID: 36213267 PMCID: PMC9545775 DOI: 10.3389/fendo.2022.973862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Bilateria have bilateral symmetry and are subdivided into Deuterostomia (animals like vertebrates) and Protostomia (animals like insects and mollusks). Neuropeptides occur in both Proto- and Deuterostomia and they are frequently structurally related across these two lineages. For example, peptides belonging to the oxytocin/vasopressin family exist in both clades. The same is true for the G protein-coupled receptors (GPCRs) of these peptides. These observations suggest that these neuropeptides and their GPCRs were already present in the common ancestor of Proto- and Deuterostomia, which lived about 700 million years ago (MYA). Furthermore, neuropeptides and their GPCRs occur in two early-branching phyla that diverged before the emergence of Bilateria: Cnidaria (animals like corals and sea anemones), and Placozoa (small disk-like animals, feeding on algae). The sequences of these neuropeptides and their GPCRs, however, are not closely related to those from Bilateria. In addition, cnidarian neuropeptides and their receptors are not closely related to those from Placozoa. We propose that the divergence times between Cnidaria, Placozoa, and Bilateria might be too long for recognizing sequence identities. Leucine-rich repeats-containing GPCRs (LGRs) are a special class of GPCRs that are characterized by a long N-terminus containing 10-20 leucine-rich domains, which are used for ligand binding. Among the ligands for LGRs are dimeric glycoprotein hormones, and insulin-like peptides, such as relaxin. LGRs have been found not only in Proto- and Deuterostomia, but also in early emerging phyla, such as Cnidaria and Placozoa. Humans have eight LGRs. In our current review, we have revisited the annotations of LGRs from the sea anemone Nematostella vectensis and the placozoan Trichoplax adhaerens. We identified 13 sea anemone LGRs and no less than 46 LGRs from T. adhaerens. All eight human LGRs appear to have orthologues in sea anemones and placozoans. LGRs and their ligands, therefore, have a long evolutionary history, going back to the common ancestor of Cnidaria and Placozoa.
Collapse
Affiliation(s)
- Frank Hauser
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas L. Koch
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
28
|
Deppisch P, Helfrich-Förster C, Senthilan PR. The Gain and Loss of Cryptochrome/Photolyase Family Members during Evolution. Genes (Basel) 2022; 13:1613. [PMID: 36140781 PMCID: PMC9498864 DOI: 10.3390/genes13091613] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
The cryptochrome/photolyase (CRY/PL) family represents an ancient group of proteins fulfilling two fundamental functions. While photolyases repair UV-induced DNA damages, cryptochromes mainly influence the circadian clock. In this study, we took advantage of the large number of already sequenced and annotated genes available in databases and systematically searched for the protein sequences of CRY/PL family members in all taxonomic groups primarily focusing on metazoans and limiting the number of species per taxonomic order to five. Using BLASTP searches and subsequent phylogenetic tree and motif analyses, we identified five distinct photolyases (CPDI, CPDII, CPDIII, 6-4 photolyase, and the plant photolyase PPL) and six cryptochrome subfamilies (DASH-CRY, mammalian-type MCRY, Drosophila-type DCRY, cnidarian-specific ACRY, plant-specific PCRY, and the putative magnetoreceptor CRY4. Manually assigning the CRY/PL subfamilies to the species studied, we have noted that over evolutionary history, an initial increase of various CRY/PL subfamilies was followed by a decrease and specialization. Thus, in more primitive organisms (e.g., bacteria, archaea, simple eukaryotes, and in basal metazoans), we find relatively few CRY/PL members. As species become more evolved (e.g., cnidarians, mollusks, echinoderms, etc.), the CRY/PL repertoire also increases, whereas it appears to decrease again in more recent organisms (humans, fruit flies, etc.). Moreover, our study indicates that all cryptochromes, although largely active in the circadian clock, arose independently from different photolyases, explaining their different modes of action.
Collapse
Affiliation(s)
| | | | - Pingkalai R. Senthilan
- Neurobiology & Genetics, Theodor-Boveri Institute, Biocenter, Julius-Maximilians-University Würzburg, 97074 Wurzburg, Germany
| |
Collapse
|
29
|
Uribe JE, González VL, Irisarri I, Kano Y, Herbert DG, Strong EE, Harasewych MG. A phylogenomic backbone for gastropod molluscs. Syst Biol 2022; 71:1271-1280. [PMID: 35766870 DOI: 10.1093/sysbio/syac045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Gastropods have survived several mass extinctions during their evolutionary history resulting in extraordinary diversity in morphology, ecology, and developmental modes, which complicate the reconstruction of a robust phylogeny. Currently, gastropods are divided into six subclasses: Caenogastropoda, Heterobranchia, Neomphaliones, Neritimorpha, Patellogastropoda, and Vetigastropoda. Phylogenetic relationships among these taxa historically lack consensus, despite numerous efforts using morphological and molecular information. We generated sequence data for transcriptomes derived from twelve taxa belonging to clades with little or no prior representation in previous studies in order to infer the deeper cladogenetic events within Gastropoda and, for the first time, infer the position of the deep-sea Neomphaliones using a phylogenomic approach. We explored the impact of missing data, homoplasy, and compositional heterogeneity on the inferred phylogenetic hypotheses. We recovered a highly supported backbone for gastropod relationships that is congruent with morphological and mitogenomic evidence, in which Patellogastropoda, true limpets, are the sister lineage to all other gastropods (Orthogastropoda) which are divided into two main clades (i) Vetigastropoda s.l. (including Pleurotomariida + Neomphaliones) and (ii) Neritimorpha + (Caenogastropoda + Heterobranchia). As such, our results support the recognition of five subclasses (or infraclasses) in Gastropoda: Patellogastropoda, Vetigastropoda, Neritimorpha, Caenogastropoda and Heterobranchia.
Collapse
Affiliation(s)
- Juan E Uribe
- Department of Invertebrate Zoology, MRC 163, National Museum of Natural History, Smithsonian Institution, P O Box 37012 Washington, DC 20013-7012, USA
| | - Vanessa L González
- Global Genome Initiative, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Iker Irisarri
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Göttingen, and Campus Institute Data Science (CIDAS), Göttingen, Germany.,Leibniz Institute for the Analysis of Biodiversity Change (LIB), Zoological Museum Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Yasunori Kano
- Department of Marine Ecosystems Dynamics, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - David G Herbert
- Department of Natural Sciences, National Museum Wales, Cathays Park, Cardiff, CF10 3NP, UK
| | - Ellen E Strong
- Department of Invertebrate Zoology, MRC 163, National Museum of Natural History, Smithsonian Institution, P O Box 37012 Washington, DC 20013-7012, USA
| | - M G Harasewych
- Department of Invertebrate Zoology, MRC 163, National Museum of Natural History, Smithsonian Institution, P O Box 37012 Washington, DC 20013-7012, USA
| |
Collapse
|
30
|
Romanova DY, Nikitin MA, Shchenkov SV, Moroz LL. Expanding of Life Strategies in Placozoa: Insights From Long-Term Culturing of Trichoplax and Hoilungia. Front Cell Dev Biol 2022; 10:823283. [PMID: 35223848 PMCID: PMC8864292 DOI: 10.3389/fcell.2022.823283] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/20/2022] [Indexed: 12/05/2022] Open
Abstract
Placozoans are essential reference species for understanding the origins and evolution of animal organization. However, little is known about their life strategies in natural habitats. Here, by maintaining long-term culturing for four species of Trichoplax and Hoilungia, we extend our knowledge about feeding and reproductive adaptations relevant to the diversity of life forms and immune mechanisms. Three modes of population dynamics depended upon feeding sources, including induction of social behaviors, morphogenesis, and reproductive strategies. In addition to fission, representatives of all species produced “swarmers” (a separate vegetative reproduction stage), which could also be formed from the lower epithelium with greater cell-type diversity. We monitored the formation of specialized spheroid structures from the upper cell layer in aging culture. These “spheres” could be transformed into juvenile animals under favorable conditions. We hypothesize that spheroid structures represent a component of the innate immune defense response with the involvement of fiber cells. Finally, we showed that regeneration could be a part of the adaptive reproductive strategies in placozoans and a unique experimental model for regenerative biology.
Collapse
Affiliation(s)
- Daria Y. Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
- *Correspondence: Daria Y. Romanova, ; Leonid L. Moroz,
| | - Mikhail A. Nikitin
- Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Sergey V. Shchenkov
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Leonid L. Moroz
- Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, United States
- *Correspondence: Daria Y. Romanova, ; Leonid L. Moroz,
| |
Collapse
|
31
|
Mayorova TD, Hammar K, Jung JH, Aronova MA, Zhang G, Winters CA, Reese TS, Smith CL. Placozoan fiber cells: mediators of innate immunity and participants in wound healing. Sci Rep 2021; 11:23343. [PMID: 34857844 PMCID: PMC8639732 DOI: 10.1038/s41598-021-02735-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/19/2021] [Indexed: 12/22/2022] Open
Abstract
Placozoa is a phylum of non-bilaterian marine animals. These small, flat organisms adhere to the substrate via their densely ciliated ventral epithelium, which mediates mucociliary locomotion and nutrient uptake. They have only six morphological cell types, including one, fiber cells, for which functional data is lacking. Fiber cells are non-epithelial cells with multiple processes. We used electron and light microscopic approaches to unravel the roles of fiber cells in Trichoplax adhaerens, a representative member of the phylum. Three-dimensional reconstructions of serial sections of Trichoplax showed that each fiber cell is in contact with several other cells. Examination of fiber cells in thin sections and observations of live dissociated fiber cells demonstrated that they phagocytose cell debris and bacteria. In situ hybridization confirmed that fiber cells express genes involved in phagocytic activity. Fiber cells also are involved in wound healing as evidenced from microsurgery experiments. Based on these observations we conclude that fiber cells are multi-purpose macrophage-like cells. Macrophage-like cells have been described in Porifera, Ctenophora, and Cnidaria and are widespread among Bilateria, but our study is the first to show that Placozoa possesses this cell type. The phylogenetic distribution of macrophage-like cells suggests that they appeared early in metazoan evolution.
Collapse
Affiliation(s)
- Tatiana D Mayorova
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 49 Convent Drive, Bethesda, MD, 20892, USA.
| | - Katherine Hammar
- Central Microscopy Facility, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Jae H Jung
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 49 Convent Drive, Bethesda, MD, 20892, USA
| | - Maria A Aronova
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, USA
| | - Guofeng Zhang
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, USA
| | - Christine A Winters
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 49 Convent Drive, Bethesda, MD, 20892, USA
| | - Thomas S Reese
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 49 Convent Drive, Bethesda, MD, 20892, USA
| | - Carolyn L Smith
- Light Imaging Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| |
Collapse
|
32
|
Koch TL, Hauser F, Grimmelikhuijzen CJP. An evolutionary genomics view on neuropeptide genes in Hydrozoa and Endocnidozoa (Myxozoa). BMC Genomics 2021; 22:862. [PMID: 34847889 PMCID: PMC8638164 DOI: 10.1186/s12864-021-08091-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The animal phylum Cnidaria consists of six classes or subphyla: Hydrozoa, Scyphozoa, Cubozoa, Staurozoa, Anthozoa, and Endocnidozoa. Cnidarians have an early evolutionary origin, diverging before the emergence of the Bilateria. Extant members from this phylum, therefore, are important resources for understanding the evolution of the nervous system. Cnidarian nervous systems are strongly peptidergic. Using genomics, we have recently shown that three neuropeptide families (the X1PRX2amides, GRFamides, and GLWamides) are wide-spread in four (Scyphozoa, Cubozoa, Staurozoa, Anthozoa) out of six cnidarian classes or subphyla, suggesting that these three neuropeptide families emerged in the common cnidarian ancestor. In the current paper, we analyze the remaining cnidarian class, Hydrozoa, and the subphylum Endocnidozoa, to make firm conclusions about the evolution of neuropeptide genes in Cnidaria. RESULTS We analyzed sixteen hydrozoan species with a sequenced genome or transcriptome, using a recently developed software program for discovering neuropeptide genes. These species belonged to various hydrozoan subclasses and orders, among them the laboratory models Hydra, Hydractinia, and Clytia. We found that each species contained three to five neuropeptide families. A common feature for all hydrozoans was that they contained genes coding for (i) X1PRX2amide peptides, (ii) GRFamide peptides, and (iii) GLWamide peptides. These results support our previous conclusions that these three neuropeptide families evolved early in evolution. In addition to these three neuropeptide families, hydrozoans expressed up to two other neuropeptide gene families, which, however, were only occurring in certain animal groups. Endocnidozoa (Myxozoa) are microscopically small endoparasites, which are strongly reduced. For long, it was unknown to which phylum these parasites belonged, but recently they have been associated with cnidarians. We analyzed nine endocnidozoan species and found that two of them (Polypodium hydriforme and Buddenbrockia plumatellae) expressed neuropeptide genes. These genes coded for neuropeptides belonging to the GRFamide and GLWamide families with structures closely resembling them from hydrozoans. CONCLUSIONS We found X1PRX2amide, GRFamide, and GLWamide peptides in all species belonging to the Hydrozoa, confirming that these peptides originated in the common cnidarian ancestor. In addition, we discovered GRFamide and GLWamide peptide genes in some members of the Endocnidozoa, thereby linking these parasites to Hydrozoa.
Collapse
Affiliation(s)
- Thomas L. Koch
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Frank Hauser
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Cornelis J. P. Grimmelikhuijzen
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| |
Collapse
|
33
|
Burkhardt P, Jékely G. Evolution of synapses and neurotransmitter systems: The divide-and-conquer model for early neural cell-type evolution. Curr Opin Neurobiol 2021; 71:127-138. [PMID: 34826676 DOI: 10.1016/j.conb.2021.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/09/2021] [Accepted: 11/02/2021] [Indexed: 01/08/2023]
Abstract
Nervous systems evolved around 560 million years ago to coordinate and empower animal bodies. Ctenophores - one of the earliest-branching lineages - are thought to share a few neuronal genes with bilaterians and may have evolved neurons convergently. Here we review our current understanding of the evolution of neuronal molecules in nonbilaterians. We also reanalyse single-cell sequencing data in light of new cell-cluster identities from a ctenophore and uncover evidence supporting the homology of one ctenophore neuron-type with neurons in Bilateria. The specific coexpression of the presynaptic proteins Unc13 and RIM with voltage-gated channels, neuropeptides and homeobox genes pinpoint a spiking sensory-peptidergic cell in the ctenophore mouth. Similar Unc13-RIM neurons may have been present in the first eumetazoans to rise to dominance only in stem Bilateria. We hypothesise that the Unc13-RIM lineage ancestrally innervated the mouth and conquered other parts of the body with the rise of macrophagy and predation during the Cambrian explosion.
Collapse
Affiliation(s)
- Pawel Burkhardt
- Sars International Centre for Marine Molecular Biology, University of Bergen, Norway.
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK.
| |
Collapse
|
34
|
Benavides LR, Daniels SR, Giribet G. Understanding the real magnitude of the arachnid order Ricinulei through deep Sanger sequencing across its distribution range and phylogenomics, with the formalization of the first species from the Lesser Antilles. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ligia R. Benavides
- Museum of Comparative Zoology Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
| | - Savel R. Daniels
- Department of Botany and Zoology Stellenbosch University Matieland South Africa
| | - Gonzalo Giribet
- Museum of Comparative Zoology Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
| |
Collapse
|
35
|
Abstract
Identifying our most distant animal relatives has emerged as one of the most challenging problems in phylogenetics. This debate has major implications for our understanding of the origin of multicellular animals and of the earliest events in animal evolution, including the origin of the nervous system. Some analyses identify sponges as our most distant animal relatives (Porifera-sister hypothesis), and others identify comb jellies (Ctenophora-sister hypothesis). These analyses vary in many respects, making it difficult to interpret previous tests of these hypotheses. To gain insight into why different studies yield different results, an important next step in the ongoing debate, we systematically test these hypotheses by synthesizing 15 previous phylogenomic studies and performing new standardized analyses under consistent conditions with additional models. We find that Ctenophora-sister is recovered across the full range of examined conditions, and Porifera-sister is recovered in some analyses under narrow conditions when most outgroups are excluded and site-heterogeneous CAT models are used. We additionally find that the number of categories in site-heterogeneous models is sufficient to explain the Porifera-sister results. Furthermore, our cross-validation analyses show CAT models that recover Porifera-sister have hundreds of additional categories and fail to fit significantly better than site-heterogenuous models with far fewer categories. Systematic and standardized testing of diverse phylogenetic models suggests that we should be skeptical of Porifera-sister results both because they are recovered under such narrow conditions and because the models in these conditions fit the data no better than other models that recover Ctenophora-sister.
Collapse
Affiliation(s)
- Yuanning Li
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Benjamin Evans
- Yale Center for Research Computing, Yale University, New Haven, CT, USA
| | - Casey W Dunn
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
36
|
Schierwater B, Osigus HJ, Bergmann T, Blackstone NW, Hadrys H, Hauslage J, Humbert PO, Kamm K, Kvansakul M, Wysocki K, DeSalle R. The enigmatic Placozoa part 2: Exploring evolutionary controversies and promising questions on earth and in space. Bioessays 2021; 43:e2100083. [PMID: 34490659 DOI: 10.1002/bies.202100083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/21/2021] [Accepted: 08/16/2021] [Indexed: 12/28/2022]
Abstract
The placozoan Trichoplax adhaerens has been bridging gaps between research disciplines like no other animal. As outlined in part 1, placozoans have been subject of hot evolutionary debates and placozoans have challenged some fundamental evolutionary concepts. Here in part 2 we discuss the exceptional genetics of the phylum Placozoa and point out some challenging model system applications for the best known species, Trichoplax adhaerens.
Collapse
Affiliation(s)
- Bernd Schierwater
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Hans-Jürgen Osigus
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Tjard Bergmann
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Neil W Blackstone
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Heike Hadrys
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jens Hauslage
- Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Patrick O Humbert
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria, Australia
| | - Kai Kamm
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Marc Kvansakul
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria, Australia
| | - Kathrin Wysocki
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Rob DeSalle
- American Museum of Natural History, New York, New York, USA
| |
Collapse
|
37
|
Schierwater B, Osigus HJ, Bergmann T, Blackstone NW, Hadrys H, Hauslage J, Humbert PO, Kamm K, Kvansakul M, Wysocki K, DeSalle R. The enigmatic Placozoa part 1: Exploring evolutionary controversies and poor ecological knowledge. Bioessays 2021; 43:e2100080. [PMID: 34472126 DOI: 10.1002/bies.202100080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/21/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022]
Abstract
The placozoan Trichoplax adhaerens is a tiny hairy plate and more simply organized than any other living metazoan. After its original description by F.E. Schulze in 1883, it attracted attention as a potential model for the ancestral state of metazoan organization, the "Urmetazoon". Trichoplax lacks any kind of symmetry, organs, nerve cells, muscle cells, basal lamina, and extracellular matrix. Furthermore, the placozoan genome is the smallest (not secondarily reduced) genome of all metazoan genomes. It harbors a remarkably rich diversity of genes and has been considered the best living surrogate for a metazoan ancestor genome. The phylum Placozoa presently harbors three formally described species, while several dozen "cryptic" species are yet awaiting their description. The phylogenetic position of placozoans has recently become a contested arena for modern phylogenetic analyses and view-driven claims. Trichoplax offers unique prospects for understanding the minimal requirements of metazoan animal organization and their corresponding malfunctions.
Collapse
Affiliation(s)
- Bernd Schierwater
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Hans-Jürgen Osigus
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Tjard Bergmann
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Neil W Blackstone
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Heike Hadrys
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jens Hauslage
- Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Patrick O Humbert
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Kai Kamm
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Marc Kvansakul
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Kathrin Wysocki
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Rob DeSalle
- American Museum of Natural History, New York, New York, USA
| |
Collapse
|
38
|
Romanova DY, Varoqueaux F, Daraspe J, Nikitin MA, Eitel M, Fasshauer D, Moroz LL. Hidden cell diversity in Placozoa: ultrastructural insights from Hoilungia hongkongensis. Cell Tissue Res 2021; 385:623-637. [PMID: 33876313 PMCID: PMC8523601 DOI: 10.1007/s00441-021-03459-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
From a morphological point of view, placozoans are among the most simple free-living animals. This enigmatic phylum is critical for our understanding of the evolution of animals and their cell types. Their millimeter-sized, disc-like bodies consist of only three cell layers that are shaped by roughly seven major cell types. Placozoans lack muscle cells and neurons but are able to move using their ciliated lower surface and take up food in a highly coordinated manner. Intriguingly, the genome of Trichoplax adhaerens, the founding member of the enigmatic phylum, has disclosed a surprising level of genetic complexity. Moreover, recent molecular and functional investigations have uncovered a much larger, so-far hidden cell-type diversity. Here, we have extended the microanatomical characterization of a recently described placozoan species-Hoilungia hongkongensis. In H. hongkongensis, we recognized the established canonical three-layered placozoan body plan but also came across several morphologically distinct and potentially novel cell types, among them novel gland cells and "shiny spheres"-bearing cells at the upper epithelium. Thus, the diversity of cell types in placozoans is indeed higher than anticipated.
Collapse
Affiliation(s)
- Daria Y Romanova
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland.
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Moscow, 117485, Russia.
| | - Frédérique Varoqueaux
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Jean Daraspe
- Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
| | - Mikhail A Nikitin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994, Russia
| | - Michael Eitel
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians Universität München, Munich, Germany
| | - Dirk Fasshauer
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland.
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Leonid L Moroz
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA.
- Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
39
|
Kraus A, Buckley KM, Salinas I. Sensing the world and its dangers: An evolutionary perspective in neuroimmunology. eLife 2021; 10:66706. [PMID: 33900197 PMCID: PMC8075586 DOI: 10.7554/elife.66706] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Detecting danger is key to the survival and success of all species. Animal nervous and immune systems cooperate to optimize danger detection. Preceding studies have highlighted the benefits of bringing neurons into the defense game, including regulation of immune responses, wound healing, pathogen control, and survival. Here, we summarize the body of knowledge in neuroimmune communication and assert that neuronal participation in the immune response is deeply beneficial in each step of combating infection, from inception to resolution. Despite the documented tight association between the immune and nervous systems in mammals or invertebrate model organisms, interdependence of these two systems is largely unexplored across metazoans. This review brings a phylogenetic perspective of the nervous and immune systems in the context of danger detection and advocates for the use of non-model organisms to diversify the field of neuroimmunology. We identify key taxa that are ripe for investigation due to the emergence of key evolutionary innovations in their immune and nervous systems. This novel perspective will help define the primordial principles that govern neuroimmune communication across taxa.
Collapse
Affiliation(s)
- Aurora Kraus
- Department of Biology, University of New Mexico, Albuquerque, United States
| | | | - Irene Salinas
- Department of Biology, University of New Mexico, Albuquerque, United States
| |
Collapse
|
40
|
Hernandez AM, Ryan JF. Six-state Amino Acid Recoding is not an Effective Strategy to Offset Compositional Heterogeneity and Saturation in Phylogenetic Analyses. Syst Biol 2021; 70:1200-1212. [PMID: 33837789 PMCID: PMC8513762 DOI: 10.1093/sysbio/syab027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 01/25/2023] Open
Abstract
Six-state amino acid recoding strategies are commonly applied to combat the effects of compositional heterogeneity and substitution saturation in phylogenetic analyses. While these methods have been endorsed from a theoretical perspective, their performance has never been extensively tested. Here, we test the effectiveness of six-state recoding approaches by comparing the performance of analyses on recoded and non-recoded data sets that have been simulated under gradients of compositional heterogeneity or saturation. In our simulation analyses, non-recoding approaches consistently outperform six-state recoding approaches. Our results suggest that six-state recoding strategies are not effective in the face of high saturation. Furthermore, while recoding strategies do buffer the effects of compositional heterogeneity, the loss of information that accompanies six-state recoding outweighs its benefits. In addition, we evaluate recoding schemes with 9, 12, 15, and 18 states and show that these consistently outperform six-state recoding. Our analyses of other recoding schemes suggest that under conditions of very high compositional heterogeneity, it may be advantageous to apply recoding using more than six states, but we caution that applying any recoding should include sufficient justification. Our results have important implications for the more than 90 published papers that have incorporated six-state recoding, many of which have significant bearing on relationships across the tree of life. [Compositional heterogeneity; Dayhoff 6-state recoding; S&R 6-state recoding; six-state amino acid recoding; substitution saturation.]
Collapse
Affiliation(s)
- Alexandra M Hernandez
- Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Boulevard, St. Augustine, FL, 32080, USA.,Department of Biology, University of Florida, 220 Bartram Hall, P.O. Box 118525, Gainesville, FL, 32611, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Boulevard, St. Augustine, FL, 32080, USA.,Department of Biology, University of Florida, 220 Bartram Hall, P.O. Box 118525, Gainesville, FL, 32611, USA
| |
Collapse
|
41
|
Moroz LL, Romanova DY, Kohn AB. Neural versus alternative integrative systems: molecular insights into origins of neurotransmitters. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190762. [PMID: 33550949 PMCID: PMC7935107 DOI: 10.1098/rstb.2019.0762] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Transmitter signalling is the universal chemical language of any nervous system, but little is known about its early evolution. Here, we summarize data about the distribution and functions of neurotransmitter systems in basal metazoans as well as outline hypotheses of their origins. We explore the scenario that neurons arose from genetically different populations of secretory cells capable of volume chemical transmission and integration of behaviours without canonical synapses. The closest representation of this primordial organization is currently found in Placozoa, disk-like animals with the simplest known cell composition but complex behaviours. We propose that injury-related signalling was the evolutionary predecessor for integrative functions of early transmitters such as nitric oxide, ATP, protons, glutamate and small peptides. By contrast, acetylcholine, dopamine, noradrenaline, octopamine, serotonin and histamine were recruited as canonical neurotransmitters relatively later in animal evolution, only in bilaterians. Ligand-gated ion channels often preceded the establishment of novel neurotransmitter systems. Moreover, lineage-specific diversification of neurotransmitter receptors occurred in parallel within Cnidaria and several bilaterian lineages, including acoels. In summary, ancestral diversification of secretory signal molecules provides unique chemical microenvironments for behaviour-driven innovations that pave the way to complex brain functions and elementary cognition. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.
Collapse
Affiliation(s)
- Leonid L. Moroz
- Department of Neuroscience, McKnight Brain Institute and Whitney laboratory, University of Florida, 9505 Ocean shore Blvd, St Augustine, FL 32080, USA
| | - Daria Y. Romanova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of RAS, 5A Butlerova Street, Moscow 117485, Russia
| | - Andrea B. Kohn
- Department of Neuroscience, McKnight Brain Institute and Whitney laboratory, University of Florida, 9505 Ocean shore Blvd, St Augustine, FL 32080, USA
| |
Collapse
|
42
|
Evidence for sponges as sister to all other animals from partitioned phylogenomics with mixture models and recoding. Nat Commun 2021; 12:1783. [PMID: 33741994 PMCID: PMC7979703 DOI: 10.1038/s41467-021-22074-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/24/2021] [Indexed: 11/08/2022] Open
Abstract
Resolving the relationships between the major lineages in the animal tree of life is necessary to understand the origin and evolution of key animal traits. Sponges, characterized by their simple body plan, were traditionally considered the sister group of all other animal lineages, implying a gradual increase in animal complexity from unicellularity to complex multicellularity. However, the availability of genomic data has sparked tremendous controversy as some phylogenomic studies support comb jellies taking this position, requiring secondary loss or independent origins of complex traits. Here we show that incorporating site-heterogeneous mixture models and recoding into partitioned phylogenomics alleviates systematic errors that hamper commonly-applied phylogenetic models. Testing on real datasets, we show a great improvement in model-fit that attenuates branching artefacts induced by systematic error. We reanalyse key datasets and show that partitioned phylogenomics does not support comb jellies as sister to other animals at either the supermatrix or partition-specific level.
Collapse
|
43
|
Abstract
The Ediacara Biota preserves the oldest fossil evidence of abundant, complex metazoans. Despite their significance, assigning individual taxa to specific phylogenetic groups has proved problematic. To better understand these forms, we identify developmentally controlled characters in representative taxa from the Ediacaran White Sea assemblage and compare them with the regulatory tools underlying similar traits in modern organisms. This analysis demonstrates that the genetic pathways for multicellularity, axial polarity, musculature, and a nervous system were likely present in some of these early animals. Equally meaningful is the absence of evidence for major differentiation of macroscopic body units, including distinct organs, localized sensory machinery or appendages. Together these traits help to better constrain the phylogenetic position of several key Ediacara taxa and inform our views of early metazoan evolution. An apparent lack of heads with concentrated sensory machinery or ventral nerve cords in such taxa supports the hypothesis that these evolved independently in disparate bilaterian clades.
Collapse
Affiliation(s)
- Scott D Evans
- Department of Paleobiology MRC-121, National Museum of Natural History, Washington, DC 20013-7012, USA
| | - Mary L Droser
- Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521, USA
| | - Douglas H Erwin
- Department of Paleobiology MRC-121, National Museum of Natural History, Washington, DC 20013-7012, USA
| |
Collapse
|
44
|
Neumann JS, Desalle R, Narechania A, Schierwater B, Tessler M. Morphological Characters Can Strongly Influence Early Animal Relationships Inferred from Phylogenomic Data Sets. Syst Biol 2021; 70:360-375. [PMID: 32462193 PMCID: PMC7875439 DOI: 10.1093/sysbio/syaa038] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/19/2022] Open
Abstract
There are considerable phylogenetic incongruencies between morphological and phylogenomic data for the deep evolution of animals. This has contributed to a heated debate over the earliest-branching lineage of the animal kingdom: the sister to all other Metazoa (SOM). Here, we use published phylogenomic data sets ($\sim $45,000-400,000 characters in size with $\sim $15-100 taxa) that focus on early metazoan phylogeny to evaluate the impact of incorporating morphological data sets ($\sim $15-275 characters). We additionally use small exemplar data sets to quantify how increased taxon sampling can help stabilize phylogenetic inferences. We apply a plethora of common methods, that is, likelihood models and their "equivalent" under parsimony: character weighting schemes. Our results are at odds with the typical view of phylogenomics, that is, that genomic-scale data sets will swamp out inferences from morphological data. Instead, weighting morphological data 2-10$\times $ in both likelihood and parsimony can in some cases "flip" which phylum is inferred to be the SOM. This typically results in the molecular hypothesis of Ctenophora as the SOM flipping to Porifera (or occasionally Placozoa). However, greater taxon sampling improves phylogenetic stability, with some of the larger molecular data sets ($>$200,000 characters and up to $\sim $100 taxa) showing node stability even with $\geqq100\times $ upweighting of morphological data. Accordingly, our analyses have three strong messages. 1) The assumption that genomic data will automatically "swamp out" morphological data is not always true for the SOM question. Morphological data have a strong influence in our analyses of combined data sets, even when outnumbered thousands of times by molecular data. Morphology therefore should not be counted out a priori. 2) We here quantify for the first time how the stability of the SOM node improves for several genomic data sets when the taxon sampling is increased. 3) The patterns of "flipping points" (i.e., the weighting of morphological data it takes to change the inferred SOM) carry information about the phylogenetic stability of matrices. The weighting space is an innovative way to assess comparability of data sets that could be developed into a new sensitivity analysis tool. [Metazoa; Morphology; Phylogenomics; Weighting.].
Collapse
Affiliation(s)
- Johannes S Neumann
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY 10024, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Rob Desalle
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Apurva Narechania
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Bernd Schierwater
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
- ITZ, Division of Ecology and Evolution, Tierärztliche Hochschule Hannover, Bünteweg 9, 30559 Hannover, Germany
| | - Michael Tessler
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| |
Collapse
|
45
|
Knutson VL, Brenzinger B, Schrödl M, Wilson NG, Giribet G. Most Cephalaspidea have a shell, but transcriptomes can provide them with a backbone (Gastropoda: Heterobranchia). Mol Phylogenet Evol 2020; 153:106943. [DOI: 10.1016/j.ympev.2020.106943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/21/2020] [Indexed: 01/14/2023]
|
46
|
Czekanski‐Moir JE, Rundell RJ. Endless forms most stupid, icky, and small: The preponderance of noncharismatic invertebrates as integral to a biologically sound view of life. Ecol Evol 2020; 10:12638-12649. [PMID: 33304481 PMCID: PMC7713927 DOI: 10.1002/ece3.6892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 01/02/2023] Open
Abstract
Big, beautiful organisms are useful for biological education, increasing evolution literacy, and biodiversity conservation. But if educators gloss over the ubiquity of streamlined and miniaturized organisms, they unwittingly leave students and the public vulnerable to the idea that the primary evolutionary plot of every metazoan lineage is "progressive" and "favors" complexity. We show that simple, small, and intriguingly repulsive invertebrate animals provide a counterpoint to misconceptions about evolution. Our examples can be immediately deployed in biology courses and outreach. This context emphasizes that chordates are not the pinnacle of evolution. Rather, in the evolution of animals, miniaturization, trait loss, and lack of perfection are at least as frequent as their opposites. Teaching about invertebrate animals in a "tree thinking" context uproots evolution misconceptions (for students and the public alike), provides a mental scaffold for understanding all animals, and helps to cultivate future ambassadors and experts on these little-known, weird, and fascinating taxa.
Collapse
Affiliation(s)
- Jesse E. Czekanski‐Moir
- Department of Environmental and Forest BiologyState University of New York College of Environmental Science and ForestrySyracuseNYUSA
| | - Rebecca J. Rundell
- Department of Environmental and Forest BiologyState University of New York College of Environmental Science and ForestrySyracuseNYUSA
| |
Collapse
|
47
|
Miyazawa H, Osigus HJ, Rolfes S, Kamm K, Schierwater B, Nakano H. Mitochondrial Genome Evolution of Placozoans: Gene Rearrangements and Repeat Expansions. Genome Biol Evol 2020; 13:5919586. [PMID: 33031489 PMCID: PMC7813641 DOI: 10.1093/gbe/evaa213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Placozoans, nonbilaterian animals with the simplest known metazoan bauplan, are currently classified into 20 haplotypes belonging to three genera, Polyplacotoma, Trichoplax, and Hoilungia. The latter two comprise two and five clades, respectively. In Trichoplax and Hoilungia, previous studies on six haplotypes belonging to four different clades have shown that their mtDNAs are circular chromosomes of 32–43 kb in size, which encode 12 protein-coding genes, 24 tRNAs, and two rRNAs. These mitochondrial genomes (mitogenomes) also show unique features rarely seen in other metazoans, including open reading frames (ORFs) of unknown function, and group I and II introns. Here, we report seven new mitogenomes, covering the five previously described haplotypes H2, H17, H19, H9, and H11, as well as two new haplotypes, H23 (clade III) and H24 (clade VII). The overall gene content is shared between all placozoan mitochondrial genomes, but genome sizes, gene orders, and several exon–intron boundaries vary among clades. Phylogenomic analyses strongly support a tree topology different from previous 16S rRNA analyses, with clade VI as the sister group to all other Hoilungia clades. We found small inverted repeats in all 13 mitochondrial genomes of the Trichoplax and Hoilungia genera and evaluated their distribution patterns among haplotypes. Because Polyplacotoma mediterranea (H0), the sister to the remaining haplotypes, has a small mitochondrial genome with few small inverted repeats and ORFs, we hypothesized that the proliferation of inverted repeats and ORFs substantially contributed to the observed increase in the size and GC content of the Trichoplax and Hoilungia mitochondrial genomes.
Collapse
Affiliation(s)
- Hideyuki Miyazawa
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka, Japan.,Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Hans-Jürgen Osigus
- Division of Molecular Evolution, Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Germany
| | - Sarah Rolfes
- Division of Molecular Evolution, Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Germany
| | - Kai Kamm
- Division of Molecular Evolution, Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Germany
| | - Bernd Schierwater
- Division of Molecular Evolution, Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Germany
| | - Hiroaki Nakano
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| |
Collapse
|
48
|
de Moya RS, Yoshizawa K, Walden KKO, Sweet AD, Dietrich CH, Kevin P J. Phylogenomics of Parasitic and Nonparasitic Lice (Insecta: Psocodea): Combining Sequence Data and Exploring Compositional Bias Solutions in Next Generation Data Sets. Syst Biol 2020; 70:719-738. [PMID: 32979270 DOI: 10.1093/sysbio/syaa075] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 11/13/2022] Open
Abstract
The insect order Psocodea is a diverse lineage comprising both parasitic (Phthiraptera) and nonparasitic members (Psocoptera). The extreme age and ecological diversity of the group may be associated with major genomic changes, such as base compositional biases expected to affect phylogenetic inference. Divergent morphology between parasitic and nonparasitic members has also obscured the origins of parasitism within the order. We conducted a phylogenomic analysis on the order Psocodea utilizing both transcriptome and genome sequencing to obtain a data set of 2370 orthologous genes. All phylogenomic analyses, including both concatenated and coalescent methods suggest a single origin of parasitism within the order Psocodea, resolving conflicting results from previous studies. This phylogeny allows us to propose a stable ordinal level classification scheme that retains significant taxonomic names present in historical scientific literature and reflects the evolution of the group as a whole. A dating analysis, with internal nodes calibrated by fossil evidence, suggests an origin of parasitism that predates the K-Pg boundary. Nucleotide compositional biases are detected in third and first codon positions and result in the anomalous placement of the Amphientometae as sister to Psocomorpha when all nucleotide sites are analyzed. Likelihood-mapping and quartet sampling methods demonstrate that base compositional biases can also have an effect on quartet-based methods.[Illumina; Phthiraptera; Psocoptera; quartet sampling; recoding methods.].
Collapse
Affiliation(s)
- Robert S de Moya
- Department of Entomology, University of Illinois Urbana-Champaign, 505 S. Goodwin Ave., Urbana, IL 61801, USA.,Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| | - Kazunori Yoshizawa
- Systematic Entomology, School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Kimberly K O Walden
- Department of Entomology, University of Illinois Urbana-Champaign, 505 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Andrew D Sweet
- Department of Entomology, Purdue University, 901 W. State St., West Lafayette, IN 47907, USA
| | - Christopher H Dietrich
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| | - Johnson Kevin P
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| |
Collapse
|
49
|
Moroz LL, Romanova DY, Nikitin MA, Sohn D, Kohn AB, Neveu E, Varoqueaux F, Fasshauer D. The diversification and lineage-specific expansion of nitric oxide signaling in Placozoa: insights in the evolution of gaseous transmission. Sci Rep 2020; 10:13020. [PMID: 32747709 PMCID: PMC7400543 DOI: 10.1038/s41598-020-69851-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Nitric oxide (NO) is a ubiquitous gaseous messenger, but we know little about its early evolution. Here, we analyzed NO synthases (NOS) in four different species of placozoans-one of the early-branching animal lineages. In contrast to other invertebrates studied, Trichoplax and Hoilungia have three distinct NOS genes, including PDZ domain-containing NOS. Using ultra-sensitive capillary electrophoresis assays, we quantified nitrites (products of NO oxidation) and L-citrulline (co-product of NO synthesis from L-arginine), which were affected by NOS inhibitors confirming the presence of functional enzymes in Trichoplax. Using fluorescent single-molecule in situ hybridization, we showed that distinct NOSs are expressed in different subpopulations of cells, with a noticeable distribution close to the edge regions of Trichoplax. These data suggest both the compartmentalized release of NO and a greater diversity of cell types in placozoans than anticipated. NO receptor machinery includes both canonical and novel NIT-domain containing soluble guanylate cyclases as putative NO/nitrite/nitrate sensors. Thus, although Trichoplax and Hoilungia exemplify the morphologically simplest free-living animals, the complexity of NO-cGMP-mediated signaling in Placozoa is greater to those in vertebrates. This situation illuminates multiple lineage-specific diversifications of NOSs and NO/nitrite/nitrate sensors from the common ancestor of Metazoa and the preservation of conservative NOS architecture from prokaryotic ancestors.
Collapse
Affiliation(s)
- Leonid L Moroz
- Whitney Laboratory for Marine Bioscience and Departments of Neuroscience, University of Florida, St. Augustine and Gainesville, FL, 32080, USA.
| | - Daria Y Romanova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Mikhail A Nikitin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Dosung Sohn
- Whitney Laboratory for Marine Bioscience and Departments of Neuroscience, University of Florida, St. Augustine and Gainesville, FL, 32080, USA
| | - Andrea B Kohn
- Whitney Laboratory for Marine Bioscience and Departments of Neuroscience, University of Florida, St. Augustine and Gainesville, FL, 32080, USA
| | - Emilie Neveu
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Frederique Varoqueaux
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Dirk Fasshauer
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| |
Collapse
|
50
|
Game M, Smith FW. Loss of intermediate regions of perpendicular body axes contributed to miniaturization of tardigrades. Proc Biol Sci 2020; 287:20201135. [PMID: 33043863 DOI: 10.1098/rspb.2020.1135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tardigrades have a miniaturized body plan. Miniaturization in tardigrades is associated with the loss of several organ systems and an intermediate region of their anteroposterior (AP) axis. However, how miniaturization has affected tardigrade legs is unclear. In arthropods and in onychophorans, the leg gap genes are expressed in regionalized proximodistal (PD) patterns in the legs. Functional studies indicate that these genes regulate growth in their respective expression domains and establish PD identities, partly through mutually antagonistic regulatory interactions. Here, we investigated the expression patterns of tardigrade orthologs of the leg gap genes. Rather than being restricted to a proximal leg region, as in arthropods and onychophorans, we detected coexpression of orthologues of homothorax and extradenticle broadly across the legs of the first three trunk segments in the tardigrade Hypsibius exemplaris. We could not identify a dachshund orthologue in tardigrade genomes, a gene that is expressed in an intermediate region of developing legs in arthropods and onychophorans, suggesting that this gene was lost in the tardigrade lineage. We detected Distal-less expression broadly across all developing leg buds in H. exemplaris embryos, unlike in arthropods and onychophorans, in which it exhibits a distally restricted expression domain. The broad expression patterns of the remaining leg gap genes in H. exemplaris legs may reflect the loss of dachshund and the accompanying loss of an intermediate region of the legs in the tardigrade lineage. We propose that the loss of intermediate regions of both the AP and PD body axes contributed to miniaturization of Tardigrada.
Collapse
Affiliation(s)
- Mandy Game
- Biology Department, University of North Florida, USA
| | - Frank W Smith
- Biology Department, University of North Florida, USA
| |
Collapse
|