1
|
Abbo SR, Yan K, Geertsema C, Hick TAH, Altenburg JJ, Nowee G, van Toor C, van Lent JW, Nakayama E, Tang B, Metz SW, Bhowmik R, de Silva AM, Prow NA, Correia R, Alves PM, Roldão A, Martens DE, van Oers MM, Suhrbier A, Pijlman GP. Virus-like particle vaccine with authentic quaternary epitopes protects against Zika virus-induced viremia and testicular damage. J Virol 2025; 99:e0232224. [PMID: 40013767 PMCID: PMC11998496 DOI: 10.1128/jvi.02322-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
Zika virus (ZIKV) caused unprecedented outbreaks in South America and the Caribbean in 2015-2016, leading primarily to a series of abnormalities in neonates termed congenital Zika syndrome. The threat of ZIKV reemergence has seen the development of multiple ZIKV vaccines that are at the preclinical stage or in early-stage clinical trials. Herein, we describe a pathway to the development of ZIKV vaccines generated using a baculovirus-insect cell expression system, which is widely applied for the manufacture of biologics for human use. Virus-like particle (VLP) vaccines comprising CprME and subviral particle (SVP) vaccines comprising prME were evaluated for their ability to mediate protection against ZIKV challenge in Ifnar1-/- mice. Initial attempts resulted in VLP and SVP vaccines that failed to present quaternary epitopes and did not provide effective protection. To improve the SVP vaccine, two modifications were introduced: firstly, an alanine to cysteine substitution (A264C) in the E domain II region to promote the formation of stabilized E homodimers and, secondly, the use of Spodoptera frugiperda Sf9 insect cells that had been adapted to grow and produce vaccine at a neutral pH of 7. E homodimers largely retain their pre-fusion conformation at pH 7, which is a requirement for the induction of effective neutralizing antibody responses. The stabilized SVP-A26C vaccine induced high levels of neutralizing antibodies and protected male Ifnar1-/- mice against viremia and testicular damage. Our study reiterates the need to present the immune system with E dimers arranged in authentic quaternary conformations and provides a scalable production method for this novel ZIKV vaccine.IMPORTANCEWe describe the generation of a subviral particle (SVP) vaccine comprising prME proteins of ZIKV, with an envelope protein substitution, A264C, that stabilizes E dimer formation. The SVP vaccine was produced in a novel Sf9 insect cell line adapted to grow in suspension at pH 7. The study highlights the importance of challenge experiments to ascertain whether the responses induced by an experimental vaccine actually mediate protection against virus infection and disease. The study also reiterates the contention that effective flavivirus vaccines need to present the immunogen in an authentic tertiary and quaternary structure with a pre-fusion conformation.
Collapse
Affiliation(s)
- Sandra R. Abbo
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Corinne Geertsema
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Tessy A. H. Hick
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands
| | - Jort J. Altenburg
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands
| | - Gwen Nowee
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Chris van Toor
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Jan W. van Lent
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Eri Nakayama
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Bing Tang
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Stefan W. Metz
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ryan Bhowmik
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Aravinda M. de Silva
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Natalie A. Prow
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ricardo Correia
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paula M. Alves
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - António Roldão
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Dirk E. Martens
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands
| | - Monique M. van Oers
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, Queensland, Australia
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
2
|
Johnson A, Dodes Traian M, Walsh RM, Jenni S, Harrison SC. Octahedral small virus-like particles of dengue virus type 2. J Virol 2025; 99:e0180924. [PMID: 39745459 PMCID: PMC11853069 DOI: 10.1128/jvi.01809-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/02/2024] [Indexed: 02/26/2025] Open
Abstract
Flavivirus envelope (E) and precursor M (prM) proteins, when ectopically expressed, assemble into empty, virus-like particles (VLPs). Cleavage of prM to M and loss of the pr fragment converts the VLPs from immature to mature particles, mimicking a similar maturation of authentic virions. Most of the VLPs obtained by prM-E expression are smaller than virions; early, low-resolution cryo-EM studies suggested a simple, 60-subunit, icosahedral organization. We describe here the cryo-EM structure of immature, small VLPs (smVLPs) from dengue virus type 2 and show that they have octahedral rather than icosahedral symmetry. The asymmetric unit of the octahedral particle is an asymmetric trimer of prM-E heterodimers, just as it is on icosahedral immature virions; the full, octahedrally symmetric particle thus has 24 such asymmetric trimers or 72 prM-E heterodimers in all. Cleavage of prM and release of pr generates ovoid, somewhat irregular, mature particles. Previous work has shown that mature smVLPs have fusion properties identical to those of virions, consistent with local, virion-like clustering of 36 E dimers on their surface. The cryo-EM structure and the properties of the smVLPs described here relate directly to ongoing efforts to use them as vaccine immunogens. IMPORTANCE Ectopic expression of flavivirus envelope (E) and precursor M (prM) proteins leads to the formation and secretion of empty, virus-like particles (VLPs). We show that a major class of VLPs, of smaller diameter than those of virion size ("small VLPs": smVLPs), are octahedrally symmetric particles. The known characteristics of immature virions (asymmetric trimers of prM-E heterodimers) allow us to understand the assembly of an octahedral (rather than icosahedral) surface lattice. Cleavage of prM and formation of mature, fusogenic smVLPs yield somewhat irregular, ovoid particles. These observations are directly relevant to proposals for using immunogenic but non-infectious VLPs as components of specific flavivirus vaccines.
Collapse
Affiliation(s)
- Adam Johnson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Martín Dodes Traian
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard M. Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen C. Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Samsudin F, Zuzic L, Marzinek JK, Bond PJ. Mechanisms of allostery at the viral surface through the eyes of molecular simulation. Curr Opin Struct Biol 2024; 84:102761. [PMID: 38142635 DOI: 10.1016/j.sbi.2023.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/13/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023]
Abstract
The outermost surface layer of any virus is formed by either a capsid shell or envelope. Such layers have traditionally been thought of as immovable structures, but it is becoming apparent that they cannot be viewed exclusively as static architectures protecting the viral genome. A limited number of proteins on the virion surface must perform a multitude of functions in order to orchestrate the viral life cycle, and allostery can regulate their structures at multiple levels of organization, spanning individual molecules, protomers, large oligomeric assemblies, or entire viral surfaces. Here, we review recent contributions from the molecular simulation field to viral surface allostery, with a particular focus on the trimeric spike glycoprotein emerging from the coronavirus surface, and the icosahedral flaviviral envelope complex. As emerging viral pathogens continue to pose a global threat, an improved understanding of viral dynamics and allosteric regulation will prove crucial in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Firdaus Samsudin
- Bioinformatics Institute (A∗STAR), 30 Biopolis Street, 07-01 Matrix, 138671, Singapore
| | - Lorena Zuzic
- Department of Chemistry, Langelandsgade 140, Aarhus University, Aarhus 8000, Denmark
| | - Jan K Marzinek
- Bioinformatics Institute (A∗STAR), 30 Biopolis Street, 07-01 Matrix, 138671, Singapore
| | - Peter J Bond
- Bioinformatics Institute (A∗STAR), 30 Biopolis Street, 07-01 Matrix, 138671, Singapore; Department of Biological Sciences, 16 Science Drive 4, National University of Singapore, 117558, Singapore.
| |
Collapse
|
4
|
Salem GM, Galula JU, Wu SR, Liu JH, Chen YH, Wang WH, Wang SF, Song CS, Chen FC, Abarientos AB, Chen GW, Wang CI, Chao DY. Antibodies from dengue patients with prior exposure to Japanese encephalitis virus are broadly neutralizing against Zika virus. Commun Biol 2024; 7:15. [PMID: 38267569 PMCID: PMC10808242 DOI: 10.1038/s42003-023-05661-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024] Open
Abstract
Exposure to multiple mosquito-borne flaviviruses within a lifetime is not uncommon; however, how sequential exposures to different flaviviruses shape the cross-reactive humoral response against an antigen from a different serocomplex has yet to be explored. Here, we report that dengue-infected individuals initially primed with the Japanese encephalitis virus (JEV) showed broad, highly neutralizing potencies against Zika virus (ZIKV). We also identified a rare class of ZIKV-cross-reactive human monoclonal antibodies with increased somatic hypermutation and broad neutralization against multiple flaviviruses. One huMAb, K8b, binds quaternary epitopes with heavy and light chains separately interacting with overlapping envelope protein dimer units spanning domains I, II, and III through cryo-electron microscopy and structure-based mutagenesis. JEV virus-like particle immunization in mice further confirmed that such cross-reactive antibodies, mainly IgG3 isotype, can be induced and proliferate through heterologous dengue virus (DENV) serotype 2 virus-like particle stimulation. Our findings highlight the role of prior immunity in JEV and DENV in shaping the breadth of humoral response and provide insights for future vaccination strategies in flavivirus-endemic countries.
Collapse
Affiliation(s)
- Gielenny M Salem
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Jedhan Ucat Galula
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, School of Dentistry, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Jyung-Hurng Liu
- Graduate Institute of Genomics and Bioinformatics, College of Life Sciences, National Chung Hsing University, Taichung City, 40227, Taiwan
| | - Yen-Hsu Chen
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung City, 80424, Taiwan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Wen-Hung Wang
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung City, 80424, Taiwan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Cheng-Sheng Song
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Fan-Chi Chen
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung City, 402, Taiwan
| | - Adrian B Abarientos
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Guan-Wen Chen
- Institute of Oral Medicine, School of Dentistry, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Cheng-I Wang
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore, 138648, Singapore
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan.
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung City, 402, Taiwan.
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung City, 402, Taiwan.
| |
Collapse
|
5
|
Wang SH, Kuo BJ, Ho TC, Wan SW, Yen KL, Huang PH, Perng OGC, Chen PL, Chien YW, Lo YC. Lambda-free light chain: A serum marker of dengue disease via NS3 protease-mediated antibody cleavage. Virulence 2023; 14:2279355. [PMID: 37927064 PMCID: PMC10766417 DOI: 10.1080/21505594.2023.2279355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023] Open
Abstract
Dengue poses a significant global public health threat, with diverse clinical manifestations due to complex interactions between the host and the pathogen. Recent reports have highlighted elevated serum-free light chain (FLC) levels in viral infectious diseases. Hence, our study aimed to investigate serum FLC levels in dengue patients. The findings revealed elevated serum λ FLCs, which were associated with the severity of dengue. Receiver operating characteristic curve (ROC) analysis demonstrated that λ FLCs may serve as a serum marker for identifying dengue disease (AUC: 0.7825, sensitivity: 80, specificity: 71.43) and classifying severe dengue (AUC: 0.8102, sensitivity: 75, specificity: 79.52). The viral protease, Dengue virus (DENV) nonstructural protein 3 (NS3), acts as a protease that cleaves viral polyproteins as well as host substrates. Therefore, we proposed that antibodies might be potential targets of NS3 protease, leading to an increase in FLCs. LC/MS-MS analysis confirmed that λ FLCs were the predominant products after antibody degradation by NS3 protease. Additionally, purified NS3 protease cleaved both human IgG and DENV2-neutralizing antibodies, resulting in the presence of λ FLCs. Moreover, NS3 protease administration in vitro led to a reduction in the neutralizing efficacy of DENV2-neutralizing antibodies. In summary, the elevated serum λ FLC levels effectively differentiate dengue patients from healthy individuals and identify severe dengue. Furthermore, the elevation of serum λ FLCs is, at least in part, mediated through NS3 protease-mediated antibody cleavage. These findings provide new insights for developing diagnostic tools and understanding the pathogenesis of DENV infection.
Collapse
Affiliation(s)
- Sheng-Hsuan Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bai-Jiun Kuo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Chuan Ho
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Wen Wan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Ko-Lun Yen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Hui Huang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Oscar Guey Chuen Perng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Po-Lin Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- Center for Infection Control, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan
| | - Yu-Wen Chien
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yu-Chih Lo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
6
|
Kuhn RJ, Barrett ADT, Desilva AM, Harris E, Kramer LD, Montgomery RR, Pierson TC, Sette A, Diamond MS. A Prototype-Pathogen Approach for the Development of Flavivirus Countermeasures. J Infect Dis 2023; 228:S398-S413. [PMID: 37849402 PMCID: PMC10582523 DOI: 10.1093/infdis/jiad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/28/2023] [Indexed: 10/19/2023] Open
Abstract
Flaviviruses are a genus within the Flaviviridae family of positive-strand RNA viruses and are transmitted principally through mosquito and tick vectors. These viruses are responsible for hundreds of millions of human infections worldwide per year that result in a range of illnesses from self-limiting febrile syndromes to severe neurotropic and viscerotropic diseases and, in some cases, death. A vaccine against the prototype flavivirus, yellow fever virus, has been deployed for 85 years and is highly effective. While vaccines against some medically important flaviviruses are available, others have proven challenging to develop. The emergence and spread of flaviviruses, including dengue virus and Zika virus, demonstrate their pandemic potential. This review highlights the gaps in knowledge that need to be addressed to allow for the rapid development of vaccines against emerging flaviviruses in the future.
Collapse
Affiliation(s)
- Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Alan D T Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Aravinda M Desilva
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Laura D Kramer
- School of Public Health, State University of New York at Albany, Albany, New York, USA
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Theodore C Pierson
- Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, University of California in San Diego, San Diego, California, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
7
|
Sarker A, Dhama N, Gupta RD. Dengue virus neutralizing antibody: a review of targets, cross-reactivity, and antibody-dependent enhancement. Front Immunol 2023; 14:1200195. [PMID: 37334355 PMCID: PMC10272415 DOI: 10.3389/fimmu.2023.1200195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
Dengue is the most common viral infection spread by mosquitoes, prevalent in tropical countries. The acute dengue virus (DENV) infection is a benign and primarily febrile illness. However, secondary infection with alternative serotypes can worsen the condition, leading to severe and potentially fatal dengue. The antibody raised by the vaccine or the primary infections are frequently cross-reactive; however, weakly neutralizing, and during subsequent infection, they may increase the odds of antibody-dependent enhancement (ADE). Despite that, many neutralizing antibodies have been identified against the DENV, which are thought to be useful in reducing dengue severity. Indeed, an antibody must be free from ADE for therapeutic application, as it is pretty common in dengue infection and escalates disease severity. Therefore, this review has described the critical characteristics of DENV and the potential immune targets in general. The primary emphasis is given to the envelope protein of DENV, where potential epitopes targeted for generating serotype-specific and cross-reactive antibodies have critically been described. In addition, a novel class of highly neutralizing antibodies targeted to the quaternary structure, similar to viral particles, has also been described. Lastly, we have discussed different aspects of the pathogenesis and ADE, which would provide significant insights into developing safe and effective antibody therapeutics and equivalent protein subunit vaccines.
Collapse
|
8
|
Abstract
Maturation of dengue viruses (DENVs) alters the structure, immunity, and infectivity of the virion and highly mature particles represent the dominant form in vivo. The production of highly mature virions principally relies on the structure and function of the viral premature membrane protein (prM) and its cleavage by the host protease furin. We redeveloped a reliable clonal cell line (VF1) which produces single-round mature DENVs without the need for DENV reverse genetics. More importantly, using protein engineering and directed evolution of the prM cleavage site, we engineered genetically stable mature DENVs in all serotypes independent of cell or host, usually with minimal impact on viral yield. Using these complementary strategies to regulate maturation, we demonstrate that the resulting mature DENVs are antigenically distinct from their isogenic partially mature forms. Given the clinical importance of mature DENVs in immunity, our study provides reliable strategies and reagents for the production of stable, high-titer mature DENVs for DENV antibody neutralization and vaccination immunity studies. Biologically, our data from directed evolution across host species reveals distinct maturation-dependent selective pressures between mammalian and insect cells, verifying the substrate preference between mammalian and insect furin, while hinting at an evolutionary equilibrium of DENV prM cleavage site between its host and vector in nature.
Collapse
|
9
|
Wollner CJ, Richner M, Hassert MA, Pinto AK, Brien JD, Richner JM. A Dengue Virus Serotype 1 mRNA-LNP Vaccine Elicits Protective Immune Responses. J Virol 2021; 95:e02482-20. [PMID: 33762420 PMCID: PMC8315947 DOI: 10.1128/jvi.02482-20] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Dengue virus (DENV) is the most common vector-borne viral disease, with nearly 400 million worldwide infections each year concentrated in the tropical and subtropical regions of the world. Severe dengue complications are often associated with a secondary heterotypic infection of one of the four circulating serotypes. In this scenario, humoral immune responses targeting cross-reactive, poorly neutralizing epitopes can lead to increased infectivity of susceptible cells via antibody-dependent enhancement (ADE). In this way, antibodies produced in response to infection or vaccination are capable of contributing to enhanced disease in subsequent infections. Currently, there are no available therapeutics to combat DENV disease, and there is an urgent need for a safe and efficacious vaccine. Here, we developed a nucleotide-modified mRNA vaccine encoding the membrane and envelope structural proteins from DENV serotype 1 encapsulated in lipid nanoparticles (prM/E mRNA-LNP). Vaccination of mice elicited robust antiviral immune responses comparable to viral infection, with high levels of neutralizing antibody titers and antiviral CD4+ and CD8+ T cells. Immunocompromised AG129 mice vaccinated with the prM/E mRNA-LNP vaccine were protected from a lethal DENV challenge. Vaccination with either a wild-type vaccine or a vaccine with mutations in the immunodominant fusion loop epitope elicited equivalent humoral and cell-mediated immune responses. Neutralizing antibodies elicited by the vaccine were sufficient to protect against a lethal challenge. Both vaccine constructs demonstrated serotype-specific immunity with minimal serum cross-reactivity and reduced ADE in comparison to a live DENV1 viral infection.IMPORTANCE With 400 million worldwide infections each year, dengue is the most common vector-borne viral disease. Forty percent of the world's population is at risk, with dengue experiencing consistent geographic spread over the years. With no therapeutics available and vaccines performing suboptimally, the need for an effective dengue vaccine is urgent. Here, we develop and characterize a novel mRNA vaccine encoding the dengue serotype 1 envelope and premembrane structural proteins that is delivered via a lipid nanoparticle. Our DENV1 prM/E mRNA-LNP vaccine induces neutralizing antibody and cellular immune responses in immunocompetent mice and protects an immunocompromised mouse from a lethal DENV challenge. Existing antibodies against dengue can enhance subsequent infections via antibody-dependent enhancement (ADE). Importantly our vaccine induced only serotype-specific immune responses and did not induce ADE.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibody-Dependent Enhancement
- Cell Line
- Cross Reactions
- Dengue/immunology
- Dengue/prevention & control
- Dengue Vaccines/administration & dosage
- Dengue Vaccines/immunology
- Dengue Virus/classification
- Dengue Virus/genetics
- Dengue Virus/immunology
- Immunity, Humoral
- Immunization Schedule
- Liposomes
- Mice
- Mice, Inbred C57BL
- Nanoparticles
- RNA, Messenger/genetics
- RNA, Viral/genetics
- Serogroup
- T-Lymphocytes/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Proteins/genetics
- Viral Proteins/immunology
- mRNA Vaccines
Collapse
Affiliation(s)
- Clayton J Wollner
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Michelle Richner
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Mariah A Hassert
- Department of Molecular Microbiology and Immunology, St. Louis University College of Medicine, St. Louis, Missouri, USA
| | - Amelia K Pinto
- Department of Molecular Microbiology and Immunology, St. Louis University College of Medicine, St. Louis, Missouri, USA
| | - James D Brien
- Department of Molecular Microbiology and Immunology, St. Louis University College of Medicine, St. Louis, Missouri, USA
| | - Justin M Richner
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
10
|
Galula JU, Salem GM, Destura RV, Remenyi R, Chao DY. Comparable Accuracies of Nonstructural Protein 1- and Envelope Protein-Based Enzyme-Linked Immunosorbent Assays in Detecting Anti-Dengue Immunoglobulin G Antibodies. Diagnostics (Basel) 2021; 11:diagnostics11050741. [PMID: 33919324 PMCID: PMC8143319 DOI: 10.3390/diagnostics11050741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Dengue virus (DENV) infection remains a global public health concern. Enzyme-linked immunosorbent assays (ELISAs), which detect antibodies targeting the envelope (E) protein of DENV, serve as the front-line serological test for presumptive dengue diagnosis. Very few studies have determined the serostatus by detecting antibodies targeting the nonstructural protein 1 (NS1), which can function as diagnostic biomarkers to distinguish natural immunity from vaccine-induced immunity. Methods: We used community-acquired human serum specimens, with the serostatus confirmed by focus reduction microneutralization test (FRμNT), to evaluate the diagnostic performances of two NS1-based ELISA methods, namely, immunoglobulin G antibody-capture ELISA (NS1 GAC–ELISA) and indirect NS1 IgG ELISA, and compared the results with an E-based virus-like particle (VLP) GAC–ELISA. Results: NS1-based methods had comparable accuracies as VLP GAC–ELISA. Although the sensitivity in detecting anti-NS1 IgM was poor, indirect NS1 IgG ELISA showed similar limits of detection (~1–2 ng/mL) as NS1 GAC–ELISA in detecting anti-NS1 IgG. Combining the results from two or more tests as a composite reference standard can determine the DENV serostatus with a specificity reaching 100%. Conclusion: NS1-based ELISAs have comparable accuracies as VLP GAC–ELISA in determining dengue serostatus, which could effectively assist clinicians during assessments of vaccine eligibility.
Collapse
Affiliation(s)
- Jedhan Ucat Galula
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan; (J.U.G.); (G.M.S.)
| | - Gielenny M. Salem
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan; (J.U.G.); (G.M.S.)
| | - Raul V. Destura
- Institute of Molecular Biology and Biotechnology, National Institutes of Health, University of the Philippines Manila, Manila 1000, Philippines;
| | - Roland Remenyi
- Biomedical Research Unit, Clinical and Translational Research Institute, The Medical City, Pasig 1605, Philippines;
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan; (J.U.G.); (G.M.S.)
- Correspondence: ; Tel.: +886-4-22840694
| |
Collapse
|
11
|
Remmel JL, Frei JC, Butler SE, Lai JR, Ackerman ME. Diverse contributions of avidity to the broad neutralization of Dengue virus by antibodies targeting the E dimer epitope. Virology 2021; 559:57-64. [PMID: 33819753 DOI: 10.1016/j.virol.2021.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/05/2021] [Accepted: 03/21/2021] [Indexed: 10/21/2022]
Abstract
Antibodies (Abs) recognizing the Dengue virus (DENV) E dimer epitope (EDE) that potently neutralize all DENV serotypes are promising templates for vaccine design. As an important feature for some Abs is their bivalency, we sought to define the role avidity plays in neutralization by EDE Abs. We compared neutralization activity between bivalent IgGs and monovalent Ab fragments (Fabs) for two EDE Abs, A11 and C10. IgG forms of both Abs exhibited more potent neutralization activity than their counterpart Fabs, yet only for C10 was this enhanced activity associated with bivalent binding. A11 and C10 also exhibited differential binding profiles to DENV virus-like particles under acidic conditions mimicking the environment that triggers viral membrane fusion, suggesting that EDE Abs employ diverse neutralization mechanisms despite sharing an epitope. Delineating the full range of Ab binding modes and neutralization mechanisms against a single epitope may inform therapeutic approaches and refine vaccine design.
Collapse
Affiliation(s)
- Jennifer L Remmel
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Julia C Frei
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Savannah E Butler
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA; Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
12
|
Soñora M, Martínez L, Pantano S, Machado MR. Wrapping Up Viruses at Multiscale Resolution: Optimizing PACKMOL and SIRAH Execution for Simulating the Zika Virus. J Chem Inf Model 2021; 61:408-422. [PMID: 33415985 DOI: 10.1021/acs.jcim.0c01205] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Simulating huge biomolecular complexes of million atoms at relevant biological time scales is becoming accessible to the broad scientific community. That proves to be crucial for urgent responses against emergent diseases in real time. Yet, there are still issues to sort regarding the system setup so that molecular dynamics (MD) simulations can be run in a simple and standard way. Here, we introduce an optimized pipeline for building and simulating enveloped virus-like particles (VLP). First, the membrane packing problem is tackled with new features and optimized options in PACKMOL. This allows preparing accurate membrane models of thousands of lipids in the context of a VLP within a few hours using a single CPU. Then, the assembly of the VLP system is done within the multiscale framework of the coarse-grained SIRAH force field. Finally, the equilibration protocol provides a system ready for production MD simulations within a few days on broadly accessible GPU resources. The pipeline is applied to study the Zika virus as a test case for large biomolecular systems. The VLP stabilizes at approximately 0.5 μs of MD simulation, reproducing correlations greater than 0.90 against experimental density maps from cryo-electron microscopy. Detailed structural analysis of the protein envelope also shows very good agreement in root-mean-square deviations and B-factors with the experimental data. The level of details attained shows for the first time a possible role for anionic phospholipids in stabilizing the envelope. Combining an efficient and reliable setup procedure with an accurate coarse-grained force field provides a valuable pipeline for simulating arbitrary viral systems or subcellular compartments, paving the way toward whole-cell simulations.
Collapse
Affiliation(s)
- Martín Soñora
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | - Leandro Martínez
- Institute of Chemistry and Center for Computational Engineering & Science, University of Campinas, Rua Josué de Castro s/n, Cidade Universitária "Zeferino Vaz", Barão Geraldo, 13083-861 Campinas, SP, Brazil
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | - Matías R Machado
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| |
Collapse
|
13
|
Chen X, Anderson LJ, Rostad CA, Ding L, Lai L, Mulligan M, Rouphael N, Natrajan MS, McCracken C, Anderson EJ. Development and optimization of a Zika virus antibody-dependent cell-mediated cytotoxicity (ADCC) assay. J Immunol Methods 2020; 488:112900. [PMID: 33075363 DOI: 10.1016/j.jim.2020.112900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 11/19/2022]
Abstract
Zika virus (ZIKV) has become a global public health issue due to its teratogenicity and ability to cause Guillain-Barré syndrome in adults. Although anti-ZIKV envelope protein neutralizing antibodies correlate with protection, the non-neutralizing function of ZIKV antibodies including antibody-dependent cell-mediated cytotoxicity (ADCC) is incompletely understood. To study the role of ADCC antibodies during ZIKV infections, we generated a stably transfected, dual-reporter target cell line with inducible expression of a chimeric ZIKV prM-E protein on the cell surface as the target cell for the assay. By using this assay, nine of ten serum samples from ZIKV-infected patients had >20% ADCC killing of target cells, whereas none of the 12 healthy control sera had >10% ADCC killing. We also observed a time-dependent ADCC response in 2 patients with Zika. This demonstrates that this assay can detect ZIKV ADCC with high sensitivity and specificity, which could be useful for measurement of ADCC responses to ZIKV infection or vaccination.
Collapse
Affiliation(s)
- Xuemin Chen
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Larry J Anderson
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Christina A Rostad
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Lingmei Ding
- Cincinnati Children's Hospital Medical Center, Division of Infectious Diseases, Cincinnati, OH, USA
| | - Lilin Lai
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Division of Infectious Diseases and Microbiology and NYU Langone Vaccine Center, New York University, New York City, New York, USA
| | - Mark Mulligan
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Division of Infectious Diseases and Microbiology and NYU Langone Vaccine Center, New York University, New York City, New York, USA
| | - Nadine Rouphael
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Muktha S Natrajan
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Courtney McCracken
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Evan J Anderson
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Atlanta, GA, USA; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
14
|
Wong R, Belk JA, Govero J, Uhrlaub JL, Reinartz D, Zhao H, Errico JM, D'Souza L, Ripperger TJ, Nikolich-Zugich J, Shlomchik MJ, Satpathy AT, Fremont DH, Diamond MS, Bhattacharya D. Affinity-Restricted Memory B Cells Dominate Recall Responses to Heterologous Flaviviruses. Immunity 2020; 53:1078-1094.e7. [PMID: 33010224 DOI: 10.1016/j.immuni.2020.09.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/11/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
Abstract
Memory B cells (MBCs) can respond to heterologous antigens either by molding new specificities through secondary germinal centers (GCs) or by selecting preexisting clones without further affinity maturation. To distinguish these mechanisms in flavivirus infections and immunizations, we studied recall responses to envelope protein domain III (DIII). Conditional deletion of activation-induced cytidine deaminase (AID) between heterologous challenges of West Nile, Japanese encephalitis, Zika, and dengue viruses did not affect recall responses. DIII-specific MBCs were contained mostly within the plasma-cell-biased CD80+ subset, and few GCs arose following heterologous boosters, demonstrating that recall responses are confined by preexisting clonal diversity. Measurement of monoclonal antibody (mAb) binding affinity to DIII proteins, timed AID deletion, single-cell RNA sequencing, and lineage tracing experiments point to selection of relatively low-affinity MBCs as a mechanism to promote diversity. Engineering immunogens to avoid this MBC diversity may facilitate flavivirus-type-specific vaccines with minimized potential for infection enhancement.
Collapse
Affiliation(s)
- Rachel Wong
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Immunobiology, University of Arizona, Tucson, AZ 85724, USA
| | - Julia A Belk
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jennifer Govero
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jennifer L Uhrlaub
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724, USA
| | - Dakota Reinartz
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724, USA
| | - Haiyan Zhao
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - John M Errico
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Lucas D'Souza
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724, USA
| | - Tyler J Ripperger
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724, USA
| | | | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | |
Collapse
|
15
|
Chang YH, Chiao DJ, Hsu YL, Lin CC, Wu HL, Shu PY, Chang SF, Chang JH, Kuo SC. Mosquito Cell-Derived Japanese Encephalitis Virus-Like Particles Induce Specific Humoral and Cellular Immune Responses in Mice. Viruses 2020; 12:v12030336. [PMID: 32204533 PMCID: PMC7150764 DOI: 10.3390/v12030336] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
The Japanese encephalitis virus (JEV) is the major cause of an acute encephalitis syndrome in many Asian countries, despite the fact that an effective vaccine has been developed. Virus-like particles (VLPs) are self-assembled multi-subunit protein structures which possess specific epitope antigenicities related to corresponding native viruses. These properties mean that VLPs are considered safe antigens that can be used in clinical applications. In this study, we developed a novel baculovirus/mosquito (BacMos) expression system which potentially enables the scalable production of JEV genotype III (GIII) VLPs (which are secreted from mosquito cells). The mosquito-cell-derived JEV VLPs comprised 30-nm spherical particles as well as precursor membrane protein (prM) and envelope (E) proteins with densities that ranged from 30% to 55% across a sucrose gradient. We used IgM antibody-capture enzyme-linked immunosorbent assays to assess the resemblance between VLPs and authentic virions and thereby characterized the epitope specific antigenicity of VLPs. VLP immunization was found to elicit a specific immune response toward a balanced IgG2a/IgG1 ratio. This response effectively neutralized both JEV GI and GIII and elicited a mixed Th1/Th2 response in mice. This study supports the development of mosquito cell-derived JEV VLPs to serve as candidate vaccines against JEV.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Cell Line
- Culicidae/virology
- Cytokines/metabolism
- Disease Models, Animal
- Encephalitis Virus, Japanese/immunology
- Encephalitis Virus, Japanese/ultrastructure
- Encephalitis, Japanese/immunology
- Encephalitis, Japanese/virology
- Enzyme-Linked Immunosorbent Assay
- Epitopes/immunology
- Fluorescent Antibody Technique
- Immunity, Cellular
- Immunity, Humoral
- Mice
- Neutralization Tests
- Vaccines, Virus-Like Particle/immunology
- Virion
Collapse
Affiliation(s)
- Yu-Hsiu Chang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
| | - Der-Jiang Chiao
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
| | - Yu-Lin Hsu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
| | - Chang-Chi Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hsueh-Ling Wu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
| | - Pei-Yun Shu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei 11561, Taiwan; (P.-Y.S.); (S.-F.C.)
| | - Shu-Fen Chang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei 11561, Taiwan; (P.-Y.S.); (S.-F.C.)
| | - Jui-Huan Chang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
| | - Szu-Cheng Kuo
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: ; Tel.: +886-2-8177-7038 (ext. 19946)
| |
Collapse
|
16
|
Sunita, Sajid A, Singh Y, Shukla P. Computational tools for modern vaccine development. Hum Vaccin Immunother 2020; 16:723-735. [PMID: 31545127 PMCID: PMC7227725 DOI: 10.1080/21645515.2019.1670035] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/28/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
Vaccines play an essential role in controlling the rates of fatality and morbidity. Vaccines not only arrest the beginning of different diseases but also assign a gateway for its elimination and reduce toxicity. This review gives an overview of the possible uses of computational tools for vaccine design. Moreover, we have described the initiatives of utilizing the diverse computational resources by exploring the immunological databases for developing epitope-based vaccines, peptide-based drugs, and other resources of immunotherapeutics. Finally, the applications of multi-graft and multivalent scaffolding, codon optimization and antibodyomics tools in identifying and designing in silico vaccine candidates are described.
Collapse
Affiliation(s)
- Sunita
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi
| | - Andaleeb Sajid
- National Institutes of Health, National Cancer Institute, Bethesda, MD, USA
| | - Yogendra Singh
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
17
|
Galula JU, Yang CY, Davis BS, Chang GJJ, Chao DY. Cross-reactivity reduced dengue virus 2 vaccine has no cross-protection against heterotypic dengue viruses. Future Virol 2020. [DOI: 10.2217/fvl-2019-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: This study assessed how prime-boost strategies influence the immunogenicity of a cross-reactivity reduced dengue virus 2 vaccine (DENV-2 RD). Materials & methods: Mice were immunized with DENV-2 RD vaccines in a heterologous DNA and virus-like particle (VLP) prime-boost. Elicited antibodies were analyzed for neutralization and protective efficacy against four DENV serotypes. Results: DENV-2 RD DNA-VLP had induced higher and broader levels of total IgG and neutralizing antibodies with statistically significant IgG titers against DENV-2 and -3. Only pups of DENV-2 RD DNA-VLP immunized female mice were fully protected against homotypic DENV challenge and partially protected (60% survival rate) against heterotypic DENV-3 lethal challenge. Conclusion: DENV-2 RD vaccine requires a multivalent format to effectively elicit a balanced and protective immunity across all four DENV serotypes.
Collapse
Affiliation(s)
- Jedhan U Galula
- Graduate Institute of Microbiology & Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Chung-Yu Yang
- Graduate Institute of Microbiology & Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Brent S Davis
- Division of Vector-Borne Diseases, Centers for Disease Control & Prevention, US Department of Health & Human Services, Fort Collins, CO 80521, USA
| | - Gwong-Jen J Chang
- Division of Vector-Borne Diseases, Centers for Disease Control & Prevention, US Department of Health & Human Services, Fort Collins, CO 80521, USA
| | - Day-Yu Chao
- Graduate Institute of Microbiology & Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
18
|
Durham ND, Agrawal A, Waltari E, Croote D, Zanini F, Fouch M, Davidson E, Smith O, Carabajal E, Pak JE, Doranz BJ, Robinson M, Sanz AM, Albornoz LL, Rosso F, Einav S, Quake SR, McCutcheon KM, Goo L. Broadly neutralizing human antibodies against dengue virus identified by single B cell transcriptomics. eLife 2019; 8:e52384. [PMID: 31820734 PMCID: PMC6927745 DOI: 10.7554/elife.52384] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/09/2019] [Indexed: 12/23/2022] Open
Abstract
Eliciting broadly neutralizing antibodies (bNAbs) against the four dengue virus serotypes (DENV1-4) that are spreading into new territories is an important goal of vaccine design. To define bNAb targets, we characterized 28 antibodies belonging to expanded and hypermutated clonal families identified by transcriptomic analysis of single plasmablasts from DENV-infected individuals. Among these, we identified J9 and J8, two somatically related bNAbs that potently neutralized DENV1-4. Mutagenesis studies showed that the major recognition determinants of these bNAbs are in E protein domain I, distinct from the only known class of human bNAbs against DENV with a well-defined epitope. B cell repertoire analysis from acute-phase peripheral blood suggested that J9 and J8 followed divergent somatic hypermutation pathways, and that a limited number of mutations was sufficient for neutralizing activity. Our study suggests multiple B cell evolutionary pathways leading to DENV bNAbs targeting a new epitope that can be exploited for vaccine design.
Collapse
Affiliation(s)
| | | | - Eric Waltari
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Derek Croote
- Department of BioengineeringStanford UniversityStanfordUnited States
| | - Fabio Zanini
- Department of BioengineeringStanford UniversityStanfordUnited States
| | | | | | - Olivia Smith
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | | | - John E Pak
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | | | - Makeda Robinson
- Division of Infectious Diseases and Geographic Medicine, Department of MedicineStanford University School of MedicineStanfordUnited States
- Department of Microbiology and ImmunologyStanford University School of MedicineStanfordUnited States
| | - Ana M Sanz
- Clinical Research CenterFundación Valle del LiliCaliColombia
| | - Ludwig L Albornoz
- Pathology and Laboratory DepartmentFundación Valle del LiliCaliColombia
| | - Fernando Rosso
- Clinical Research CenterFundación Valle del LiliCaliColombia
- Department of Internal Medicine, Division of Infectious DiseasesFundación Valle del LiliCaliColombia
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of MedicineStanford University School of MedicineStanfordUnited States
- Department of Microbiology and ImmunologyStanford University School of MedicineStanfordUnited States
| | - Stephen R Quake
- Chan Zuckerberg BiohubSan FranciscoUnited States
- Department of BioengineeringStanford UniversityStanfordUnited States
| | | | - Leslie Goo
- Chan Zuckerberg BiohubSan FranciscoUnited States
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
19
|
Galula JU, Salem GM, Chang GJJ, Chao DY. Does structurally-mature dengue virion matter in vaccine preparation in post-Dengvaxia era? Hum Vaccin Immunother 2019; 15:2328-2336. [PMID: 31314657 PMCID: PMC6816432 DOI: 10.1080/21645515.2019.1643676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The unexpectedly low vaccine efficacy of Dengvaxia®, developed by Sanofi Pasteur, and a higher risk of severe diseases after vaccination among dengue-naive children or children younger than 6 years old, have cast skepticism about the safety of dengue vaccination resulting in the suspension of school-based immunization programs in the Philippines. The absence of immune correlates of protection from dengue virus (DENV) infection hampers the development of other potential DENV vaccines. While tetravalent live-attenuated tetravalent vaccines (LATVs), which mimic natural infection by inducing both cellular and humoral immune responses, are still currently favored, developing a vaccine that provides a balanced immunity to all four DENV serotypes remains a challenge. With the recently advanced understanding of virion structure and B cell immune responses from naturally infected DENV patients, two points of view in developing a next-generation dengue vaccine emerged: one is to induce potent, type-specific neutralizing antibodies (NtAbs) recognizing quaternary structure-dependent epitopes by having four components of vaccine strains replicate equivalently; the other is to induce protective and broadly NtAbs against the four serotypes of DENV with a universal vaccine. This article reviews the studies related to these issues and the current knowledge gap that needs to be filled in.
Collapse
Affiliation(s)
- Jedhan Ucat Galula
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University , Taichung , Taiwan
| | - Gielenny M Salem
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University , Taichung , Taiwan
| | - Gwong-Jen J Chang
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, US Department of Health and Human Services , Fort Collins , CO , USA
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University , Taichung , Taiwan
| |
Collapse
|
20
|
Galula JU, Chang GJJ, Chao DY. Production and Purification of Dengue Virus-like Particles from COS-1 Cells. Bio Protoc 2019; 9:e3280. [PMID: 33654796 PMCID: PMC7854098 DOI: 10.21769/bioprotoc.3280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/30/2019] [Accepted: 06/26/2019] [Indexed: 11/10/2022] Open
Abstract
Non-infectious virus-like particles (VLPs) containing dengue virus (DENV) pre-membrane (prM) and envelope (E) proteins have been demonstrated to be highly immunogenic and can be used as a potential vaccine candidate as well as a tool for serodiagnostic assays. Successful application of VLPs requires abundant, and high-purity production methods. Here, we describe a robust protocol for producing DENV VLPs from transiently-transformed or stable COS-1 cells and further provide an easily adaptable antigen purification method by sucrose gradient centrifugation.
Collapse
Affiliation(s)
- Jedhan Ucat Galula
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Gwong-Jen J Chang
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, US Department of Health and Human Services, Fort Collins, Colorado, USA
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|