1
|
Guo B, Rowley E, O'Connor TD, Takala-Harrison S. Potential and pitfalls of using identity-by-descent for malaria genomic surveillance. Trends Parasitol 2025; 41:387-400. [PMID: 40263027 DOI: 10.1016/j.pt.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/24/2025]
Abstract
The ability to genotype malaria parasites on an epidemiological scale is crucial for genomic surveillance as it aids in understanding malaria transmission dynamics and parasite demography changes in response to antimalarial interventions. Identity-by-descent (IBD)-based methods have demonstrated potential in various aspects of malaria genomic surveillance. However, there is a need for validation of existing approaches and development of new techniques to address challenges posed by the parasites' unique evolutionary dynamics and complex biological characteristics, which differ markedly from organisms like humans. This review examines current IBD use cases, identifies limitations of IBD-based methods, and explores promising future directions to enhance malaria genomic surveillance.
Collapse
Affiliation(s)
- Bing Guo
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emma Rowley
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Timothy D O'Connor
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Early AM, Pelleau S, Musset L, Neafsey DE. Temporal Patterns of Haplotypic and Allelic Diversity Reflect the Changing Selection Landscape of the Malaria Parasite Plasmodium falciparum. Mol Biol Evol 2025; 42:msaf075. [PMID: 40164958 PMCID: PMC12004115 DOI: 10.1093/molbev/msaf075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025] Open
Abstract
The malaria parasite Plasmodium falciparum regularly confronts orchestrated changes in frontline drug treatment that drastically alter its selection landscape. When this has occurred, the parasite has successfully adapted to new drugs through novel resistance mutations. These novel mutations, however, emerge in a genetic background already shaped by prior drug selection. In some instances, selection imposed by different drugs targets the same loci in either synergistic or antagonistic ways, which may leave genomic signatures that are hard to attribute to a specific agent. Here, we use two approaches for detecting sequential bouts of drug adaptation: haplotype-based selection testing and temporal changes in allele frequencies. Using a set of longitudinal samples from French Guiana, we determine that since the official introduction of artemisinin combination therapy in 2007 there have been rapid hard selective sweeps at both known and novel loci. At four high-profile genes with demonstrated involvement in drug resistance (pfcrt, pfmdr1, pfaat1, and pfgch1), we see selection signals both before and after drug regime change; however, selection favored different haplotypes in the two time periods. Similarly, allele frequency analysis identified coding variants whose frequency trajectory changed signs under the new drug pressure. These selected alleles were enriched for genes implicated in artemisinin or partner-drug resistance in other global populations. Overall, these results suggest that drug resistance in P. falciparum is governed by known alleles of large effect along with a polygenic architecture of potentially more subtle variants, any of which can experience fitness reversals under distinct drug regimes.
Collapse
Affiliation(s)
- Angela M Early
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Stéphane Pelleau
- Infectious Diseases Epidemiology and Analytics Unit, Department of Global Health, lnstitut Pasteur, Université Paris Cité, Paris 75015, France
- Centre National de Référence du Paludisme, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, lnstitut Pasteur de la Guyane, Cayenne 97300, French Guiana
| | - Lise Musset
- Centre National de Référence du Paludisme, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, lnstitut Pasteur de la Guyane, Cayenne 97300, French Guiana
| | - Daniel E Neafsey
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
3
|
Aranda-Díaz A, Neubauer Vickers E, Murie K, Palmer B, Hathaway N, Gerlovina I, Boene S, García-Ulloa M, Cisteró P, Katairo T, Semakuba FD, Nsengimaana B, Gwarinda H, García-Fernández C, Louie W, Esayas E, Da Silva C, Datta D, Kiyaga S, Wiringilimaana I, Feleke SM, Bennett A, Smith JL, Gadisa E, Parr JB, Conrad MD, Raman J, Tukwasibwe S, Ssewanyana I, Rovira-Vallbona E, Tato CM, Briggs J, Mayor A, Greenhouse B. Sensitive and modular amplicon sequencing of Plasmodium falciparum diversity and resistance for research and public health. Sci Rep 2025; 15:10737. [PMID: 40155691 PMCID: PMC11953298 DOI: 10.1038/s41598-025-94716-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
Targeted amplicon sequencing is a powerful and efficient tool for interrogating the Plasmodium falciparum genome, generating actionable data from infections to complement traditional malaria epidemiology. For maximum impact, genomic tools should be multi-purpose, robust, sensitive, and reproducible. We developed, characterized, and implemented MAD4HatTeR, an amplicon sequencing panel based on Multiplex Amplicons for Drug, Diagnostic, Diversity, and Differentiation Haplotypes using Targeted Resequencing, along with a bioinformatic pipeline for data analysis. Additionally, we introduce an analytical approach to detect gene duplications and deletions from amplicon sequencing data. Laboratory control and field samples were used to demonstrate the panel's high sensitivity and robustness. MAD4HatTeR targets 165 highly diverse loci, focusing on multiallelic microhaplotypes, key markers for drug and diagnostic resistance (including duplications and deletions), and CSP and potential vaccine targets. The panel can also detect non-falciparum Plasmodium species. MAD4HatTeR successfully generated data from low-parasite-density dried blood spot and mosquito midgut samples and detected minor alleles at within-sample allele frequencies as low as 1% with high specificity in high-parasite-density dried blood spot samples. Gene deletions and duplications were reliably detected in mono- and polyclonal controls. Data generated by MAD4HatTeR were highly reproducible across multiple laboratories. The successful implementation of MAD4HatTeR in five laboratories, including three in malaria-endemic African countries, showcases its feasibility and reproducibility in diverse settings. MAD4HatTeR is thus a powerful tool for research and a robust resource for malaria public health surveillance and control.
Collapse
Affiliation(s)
- Andrés Aranda-Díaz
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Eric Neubauer Vickers
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Kathryn Murie
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Brian Palmer
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Nicholas Hathaway
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Inna Gerlovina
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Simone Boene
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
- ISGlobal, Barcelona, Spain
| | | | | | - Thomas Katairo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | - Hazel Gwarinda
- Laboratory for Antimalarial Resistance Monitoring and Malaria Operational Research (ARMMOR), Centre of Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | | | - William Louie
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | | | | | | | - Shahiid Kiyaga
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
- The African Center of Excellence in Bioinformatics and Data Intensive Sciences, Kampala, Uganda
| | | | - Sindew Mekasha Feleke
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- Department of Environment and Genetics, La Trobe University, Melbourne, Australia
| | | | - Jennifer L Smith
- Global Health Group, Malaria Elimination Initiative, University of California, San Francisco, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, USA
| | | | - Jonathan B Parr
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Melissa D Conrad
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Jaishree Raman
- Laboratory for Antimalarial Resistance Monitoring and Malaria Operational Research (ARMMOR), Centre of Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
- Wits Research Institute for Malaria, University of Witwatersrand, Johannesburg, South Africa
- University of Pretoria Institute for Sustainable Malaria Control (UPISMC), University of Pretoria, Pretoria, South Africa
| | | | | | | | | | - Jessica Briggs
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Alfredo Mayor
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
- ISGlobal, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Department of Physiologic Sciences, Faculty of Medicine, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Bryan Greenhouse
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
4
|
Tennessen JA, Brosula R, Chabanol E, Bickersmith S, Early AM, Laws M, Kelley KA, Grillet ME, Gamboa D, Lucas ER, Duchemin JB, Quiñones ML, Sallum MAM, Bergo ES, Moreno JE, Nagi S, Arisco NJ, Sooklall M, Niles-Robin R, Castro MC, Cox H, Gendrin M, Conn JE, Neafsey DE. Population genomics of Anopheles darlingi, the principal South American malaria vector mosquito. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.643102. [PMID: 40161849 PMCID: PMC11952511 DOI: 10.1101/2025.03.13.643102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Malaria in South America remains a serious public health problem. Anopheles (Nyssorhynchus) darlingi is the most important malaria vector across tropical Latin America. Vector-targeted disease control efforts require a thorough understanding of mosquito demographic and evolutionary patterns. We present and analyze whole genomes of 1094 A. darlingi (median depth 18x) from six South American countries. We observe deep geographic population structure, high genetic diversity including thirteen putative segregating inversions, and no evidence for cryptic sympatric taxa despite high interpopulation divergence. Strong signals of selection are plausibly driven by insecticides, especially on cytochrome P450 genes, one of which we validated experimentally. Our results will facilitate effective mosquito surveillance and control, while highlighting ongoing challenges that a diverse vector poses for malaria elimination in the western hemisphere.
Collapse
Affiliation(s)
- Jacob A. Tennessen
- Harvard T.H. Chan School of Public Health; Boston, MA USA
- Broad Institute; Cambridge, MA USA
| | | | | | - Sara Bickersmith
- New York State Department of Health, Wadsworth Center; Albany, NY USA
| | | | - Margaret Laws
- Harvard T.H. Chan School of Public Health; Boston, MA USA
- Broad Institute; Cambridge, MA USA
| | - Katrina A. Kelley
- Harvard T.H. Chan School of Public Health; Boston, MA USA
- Broad Institute; Cambridge, MA USA
| | - Maria Eugenia Grillet
- Instituto de Zoología y Ecología Tropical, Facultad de Ciencias, Universidad Central de Venezuela; Caracas, Venezuela
| | - Dionicia Gamboa
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia; Lima, Peru
| | - Eric R. Lucas
- Liverpool School of Tropical Medicine; Liverpool, UK
| | | | | | | | | | - Jorge E. Moreno
- Instituto de Altos Estudios Dr. Arnoldo Gabaldón, Centro de Investigaciones de Campo Francesco Vitanza; Bolivar, Venezuela
| | - Sanjay Nagi
- Liverpool School of Tropical Medicine; Liverpool, UK
| | | | - Mohini Sooklall
- Vector Control Services, Ministry of Health; Georgetown, Guyana
| | | | | | - Horace Cox
- Vector Control Services, Ministry of Health; Georgetown, Guyana
| | | | - Jan E. Conn
- New York State Department of Health, Wadsworth Center; Albany, NY USA
- Department of Biomedical Sciences, College of Integrated Health Sciences, State University of New York at Albany; Albany, NY USA
| | - Daniel E. Neafsey
- Harvard T.H. Chan School of Public Health; Boston, MA USA
- Broad Institute; Cambridge, MA USA
| |
Collapse
|
5
|
Segovia X, Srivastava B, Serrato-Arroyo S, Guerrero A, Huijben S. Assessing fitness costs in malaria parasites: a comprehensive review and implications for drug resistance management. Malar J 2025; 24:65. [PMID: 40025552 PMCID: PMC11871665 DOI: 10.1186/s12936-025-05286-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 02/10/2025] [Indexed: 03/04/2025] Open
Abstract
Artemisinin-based combination therapy (ACT) remains a broadly effective anti-malarial drug combination, but the emergence of resistance is threatening its effectiveness. Limiting the spread of these drug-resistant parasites and delaying the emergence of resistance in new areas are of high priority. Understanding the evolution of resistance relies on discerning the fitness costs and benefits associated with resistance mutations. If the cost associated with resistance in an untreated host is sufficiently large relative to the benefit of resistance in a treated host, then the spread of resistance can be mitigated by ensuring sufficient hosts free from that active pharmaceutical ingredient. There is no straightforward way to measure these fitness costs, and each approach that has been used has its limitations. Here, the evidence of fitness costs as measured using field data, animal models, and in vitro models is reviewed for three of the main current or past first-line treatments for malaria: chloroquine (CQ), sulfadoxine-pyrimethamine (SP), and artemisinin derivatives (ART). Despite the difficulties of assessing fitness costs, there is a good amount of evidence of fitness costs in drug-resistant Plasmodium falciparum parasites. The most persuasive evidence comes from resistance reversal observed following the cessation of the use of chloroquine. Comparable evidence cannot be obtained for SP- and ART-resistant parasites, due to the absence of complete cessation of these drugs in the field. Data from in vitro and animal models are variable. While fitness costs are often observed, their presence is not universal across all resistant strains. The extent and nature of these fitness costs can vary greatly depending on the specific genetic factors involved and the ecological context in which the parasites evolve. As a result, it is essential to avoid making broad generalizations about the prevalence or impact of fitness costs in drug-resistant malaria parasites. Focusing on fitness costs as a vulnerability in resistant parasites can guide their evolutionary trajectory towards minimizing their fitness. By accurately predicting these costs, efforts to extend the effectiveness of anti-malarials can be enhanced, limiting resistance evolution and advancing malaria control and elimination goals.
Collapse
Affiliation(s)
- Xyonane Segovia
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Sergio Serrato-Arroyo
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Ashley Guerrero
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Silvie Huijben
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Computational and Modeling Sciences Center, Simon A. Levin Mathematical, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
6
|
Aranda-Díaz A, Vickers EN, Murie K, Palmer B, Hathaway N, Gerlovina I, Boene S, Garcia-Ulloa M, Cisteró P, Katairo T, Semakuba FD, Nsengimaana B, Gwarinda H, García-Fernández C, Louie W, Esayas E, Da Silva C, Datta D, Kiyaga S, Wiringilimaana I, Fekele SM, Bennett A, Smith JL, Gadisa E, Parr JB, Conrad M, Raman J, Tukwasibwe S, Ssewanyana I, Rovira-Vallbona E, Tato CM, Briggs J, Mayor A, Greenhouse B. Sensitive and modular amplicon sequencing of Plasmodium falciparum diversity and resistance for research and public health. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.22.609145. [PMID: 39229023 PMCID: PMC11370457 DOI: 10.1101/2024.08.22.609145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Background Targeted amplicon sequencing is a powerful and efficient tool for interrogating the Plasmodium falciparum genome, generating actionable data from infections to complement traditional malaria epidemiology. For maximum impact, genomic tools should be multi-purpose, robust, sensitive, and reproducible. Methods We developed, characterized, and implemented MAD4HatTeR, an amplicon sequencing panel based on Multiplex Amplicons for Drug, Diagnostic, Diversity, and Differentiation Haplotypes using Targeted Resequencing, along with a bioinformatic pipeline for data analysis. Additionally, we introduce an analytical approach to detect gene duplications and deletions from amplicon sequencing data. Laboratory control and field samples were used to demonstrate the panel's high sensitivity and robustness. Results MAD4HatTeR targets 165 highly diverse loci, focusing on multiallelic microhaplotypes, key markers for drug and diagnostic resistance (including duplications and deletions), and csp and potential vaccine targets. The panel can also detect non-falciparum Plasmodium species. MAD4HatTeR successfully generated data from low-parasite-density dried blood spot and mosquito midgut samples, and detected minor alleles at within-sample allele frequencies as low as 1% with high specificity in high-parasite-density dried blood spot samples. Gene deletions and duplications were reliably detected in mono- and polyclonal controls. Data generated by MAD4HatTeR were highly reproducible across multiple laboratories. Conclusions The successful implementation of MAD4HatTeR in five laboratories, including three in malaria-endemic African countries, showcases its feasibility and reproducibility in diverse settings. MAD4HatTeR is thus a powerful tool for research and a robust resource for malaria public health surveillance and control.
Collapse
Affiliation(s)
- Andrés Aranda-Díaz
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Eric Neubauer Vickers
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Kathryn Murie
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Brian Palmer
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Nicholas Hathaway
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Inna Gerlovina
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Simone Boene
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | | | | | - Thomas Katairo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | - Hazel Gwarinda
- Laboratory for Antimalarial Resistance Monitoring and Malaria Operational Research (ARMMOR), Centre of Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | | | - William Louie
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | | | | | | | - Shahiid Kiyaga
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Sindew Mekasha Fekele
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- Department of Environment and Genetics, La Trobe University, Melbourne, Australia
| | | | - Jennifer L. Smith
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, United States of America
- Department of Epidemiology & Biostatistics, University of California, San Francisco, United States of America
| | | | - Jonathan B. Parr
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Melissa Conrad
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Jaishree Raman
- Laboratory for Antimalarial Resistance Monitoring and Malaria Operational Research (ARMMOR), Centre of Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
- Wits Research Institute for Malaria, University of Witwatersrand, Johannesburg, South Africa
- University of Pretoria Institute for Sustainable Malaria Control (UPISMC), University of Pretoria, Pretoria, South Africa
| | | | | | | | | | - Jessica Briggs
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Alfredo Mayor
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
- ISGlobal, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Department of Physiologic Sciences, Faculty of Medicine, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Bryan Greenhouse
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
7
|
Bouzón-Arnáiz I, Rawat M, Coyle R, Feufack-Donfack LB, Ea M, Orban A, Popovici J, Román-Álamo L, Fallica AN, Domínguez-Asenjo B, Moreno J, Arce EM, Mallo-Abreu A, Muñoz-Torrero D, Lee MCS, Fernàndez-Busquets X. YAT2150 is irresistible in Plasmodium falciparum and active against Plasmodium vivax and Leishmania clinical isolates. Sci Rep 2025; 15:2941. [PMID: 39848983 PMCID: PMC11758391 DOI: 10.1038/s41598-025-85346-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/02/2025] [Indexed: 01/25/2025] Open
Abstract
We recently characterized the potent antiplasmodial activity of the aggregated protein dye YAT2150, whose presumed mode of action is the inhibition of protein aggregation in the malaria parasite. Using single-dose and ramping methods, assays were done to select Plasmodium falciparum parasites resistant to YAT2150 concentrations ranging from 3× to 0.25× the in vitro IC50 of the compound (in the two-digit nM range) and performed a cross-resistance assessment in P. falciparum lines harboring mutations that make them resistant to a variety of antimalarial drugs. Resistant parasites did not emerge in vitro after 60 days of incubation, which postulates YAT2150 as an 'irresistible' antimalarial. The lyophilized compound is stable for at least one year stored at 25 °C. Tests performed in clinical isolates indicated that YAT2150 had also strong activity against Plasmodium vivax (IC50 between 4 and 36 nM) and Leishmania infantum (1.27 and 1.11 µM), placing it as a unique compound with perspectives of becoming the first drug to be used against both malaria and leishmaniasis.
Collapse
Affiliation(s)
- Inés Bouzón-Arnáiz
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-University of Barcelona), Rosselló 149-153, Barcelona, 08036, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain
| | - Mukul Rawat
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Rachael Coyle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | | | - Malen Ea
- Malaria Research Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, 120210, Phnom Penh, Cambodia
| | - Agnes Orban
- Malaria Research Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, 120210, Phnom Penh, Cambodia
| | - Jean Popovici
- Malaria Research Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, 120210, Phnom Penh, Cambodia
- Infectious Disease Epidemiology and Analytics, Institut Pasteur, Paris, 75015, France
| | - Lucía Román-Álamo
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-University of Barcelona), Rosselló 149-153, Barcelona, 08036, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain
| | - Antonino Nicolò Fallica
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-University of Barcelona), Rosselló 149-153, Barcelona, 08036, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain
| | - Bárbara Domínguez-Asenjo
- WHO Collaborating Centre for Leishmaniasis, National Centre for Microbiology Instituto de Salud Carlos III, Majadahonda, 28220, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFECT), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Moreno
- WHO Collaborating Centre for Leishmaniasis, National Centre for Microbiology Instituto de Salud Carlos III, Majadahonda, 28220, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFECT), Instituto de Salud Carlos III, Madrid, Spain
| | - Elsa M Arce
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, Barcelona, 08028, Spain
| | - Ana Mallo-Abreu
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, Barcelona, 08028, Spain
- Institute of Biomedicine (IBUB), University of Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
| | - Diego Muñoz-Torrero
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, Barcelona, 08028, Spain
- Institute of Biomedicine (IBUB), University of Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
| | - Marcus C S Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Xavier Fernàndez-Busquets
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-University of Barcelona), Rosselló 149-153, Barcelona, 08036, Spain.
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain.
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, Barcelona, 08028, Spain.
| |
Collapse
|
8
|
White NJ, Chotivanich K. Artemisinin-resistant malaria. Clin Microbiol Rev 2024; 37:e0010924. [PMID: 39404268 PMCID: PMC11629630 DOI: 10.1128/cmr.00109-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
SUMMARYThe artemisinin antimalarials are the cornerstone of current malaria treatment. The development of artemisinin resistance in Plasmodium falciparum poses a major threat to malaria control and elimination. Recognized first in the Greater Mekong subregion of Southeast Asia nearly 20 years ago, artemisinin resistance has now been documented in Guyana, South America, in Papua New Guinea, and most recently, it has emerged de novo in East Africa (Rwanda, Uganda, South Sudan, Tanzania, Ethiopia, Eritrea, and eastern DRC) where it has now become firmly established. Artemisinin resistance is associated with mutations in the propeller region of the PfKelch gene, which play a causal role, although the parasites' genetic background also makes an important contribution to the phenotype. Clinically, artemisinin resistance manifests as reduced parasiticidal activity and slower parasite clearance and thus an increased risk of treatment failure following artemisinin-based combination therapy (ACT). This results from the loss of artemisinin activity against the younger circulating ring stage parasites. This loss of activity is likely to diminish the life-saving advantage of artesunate in the treatment of severe falciparum malaria. Gametocytocidal and thus transmission blocking activities are also reduced. At current levels of resistance, artemisinin-resistant parasites still remain susceptible at the trophozoite stage of asexual development, and so, artemisinin still contributes to the therapeutic response. As ACTs are the most widely used antimalarial drugs in the world, it is essential from a malaria control perspective that ACT cure rates remain high. Better methods of identifying uncomplicated hyperparasitemia, the main cause of ACT treatment failure, are required so that longer courses of treatment can be given to these high-risk patients. Reducing the use of artemisinin monotherapies will reduce the continued selection pressure which could lead potentially to higher levels of artemisinin resistance. Triple artemisinin combination therapies should be deployed as soon as possible to protect the ACT partner drugs and thereby delay the emergence of higher levels of resistance. As new affordable antimalarial drugs are still several years away, the control of artemisinin resistance must depend on the better use of available tools.
Collapse
Affiliation(s)
- N. J. White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - K. Chotivanich
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
9
|
Nayak S, Peto TJ, Kucharski M, Tripura R, Callery JJ, Quang Huy DT, Gendrot M, Lek D, Nghia HDT, van der Pluijm RW, Dong N, Long LT, Vongpromek R, Rekol H, Hoang Chau N, Miotto O, Mukaka M, Dhorda M, von Seidlein L, Imwong M, Roca X, Day NPJ, White NJ, Dondorp AM, Bozdech Z. Population genomics and transcriptomics of Plasmodium falciparum in Cambodia and Vietnam uncover key components of the artemisinin resistance genetic background. Nat Commun 2024; 15:10625. [PMID: 39639029 PMCID: PMC11621345 DOI: 10.1038/s41467-024-54915-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
The emergence of Plasmodium falciparum parasites resistant to artemisinins compromises the efficacy of Artemisinin Combination Therapies (ACTs), the global first-line malaria treatment. Artemisinin resistance is a complex genetic trait in which nonsynonymous SNPs in PfK13 cooperate with other genetic variations. Here, we present population genomic/transcriptomic analyses of P. falciparum collected from patients with uncomplicated malaria in Cambodia and Vietnam between 2018 and 2020. Besides the PfK13 SNPs, several polymorphisms, including nonsynonymous SNPs (N1131I and N821K) in PfRad5 and an intronic SNP in PfWD11 (WD40 repeat-containing protein on chromosome 11), appear to be associated with artemisinin resistance, possibly as new markers. There is also a defined set of genes whose steady-state levels of mRNA and/or splice variants or antisense transcripts correlate with artemisinin resistance at the base level. In vivo transcriptional responses to artemisinins indicate the resistant parasite's capacity to decelerate its intraerythrocytic developmental cycle (IDC), which can contribute to the resistant phenotype. During this response, PfRAD5 and PfWD11 upregulate their respective alternatively/aberrantly spliced isoforms, suggesting their contribution to the protective response to artemisinins. PfRAD5 and PfWD11 appear under selective pressure in the Greater Mekong Sub-region over the last decade, suggesting their role in the genetic background of the artemisinin resistance.
Collapse
Affiliation(s)
- Sourav Nayak
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Thomas J Peto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Michal Kucharski
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Amsterdam UMC, University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | - Rupam Tripura
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - James J Callery
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Duong Tien Quang Huy
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Mathieu Gendrot
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Dysoley Lek
- Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
- National Institute for Public Health, Phnom Penh, Cambodia
| | - Ho Dang Trung Nghia
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Rob W van der Pluijm
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Institut Pasteur, Université Paris Cité, G5 Infectious Disease Epidemiology and Analytics, Paris, France
| | - Nguyen Dong
- Khanh Hoa Hospital for Tropical diseases, Ho Chi Minh City, Khanh Hoa province, Vietnam
| | - Le Thanh Long
- Phuoc Long Hospital, Ho Chi Minh City, Binh Phuoc province, Vietnam
| | - Ranitha Vongpromek
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- WorldWide Antimalarial Resistance Network - Asia-Pacific Regional Centre, Bangkok, Thailand
| | - Huy Rekol
- Amsterdam UMC, University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | | | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mavuto Mukaka
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mehul Dhorda
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- WorldWide Antimalarial Resistance Network - Asia-Pacific Regional Centre, Bangkok, Thailand
| | - Lorenz von Seidlein
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mallika Imwong
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
- Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam.
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
10
|
Ouji M, Reyser T, Yamaryo-Botté Y, Nguyen M, Rengel D, Dutreuil A, Marcellin M, Burlet-Schiltz O, Augereau JM, Riscoe MK, Paloque L, Botté C, Benoit-Vical F. In artemisinin-resistant falciparum malaria parasites, mitochondrial metabolic pathways are essential for survival but not those of apicoplast. Int J Parasitol Drugs Drug Resist 2024; 26:100565. [PMID: 39332236 PMCID: PMC11466614 DOI: 10.1016/j.ijpddr.2024.100565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Emergence and spread of parasite resistance to artemisinins, the first-line antimalarial therapy, threaten the malaria eradication policy. To identify therapeutic targets to eliminate artemisinin-resistant parasites, the functioning of the apicoplast and the mitochondrion was studied, focusing on the fatty acid synthesis type II (FASII) pathway in the apicoplast and the electron transfer chain in the mitochondrion. A significant enrichment of the FASII pathway among the up-regulated genes in artemisinin-resistant parasites under dihydroartemisinin treatment was found, in agreement with published transcriptomic data. However, using GC-MS analyzes of fatty acids, we demonstrated for the first time that the FASII pathway is non-functional, ruling out the use of FASII inhibitors to target artemisinin-resistant parasites. Conversely, by assessing the modulation of the oxygen consumption rate, we evidenced that mitochondrial respiration remains functional and flexible in artemisinin-resistant parasites and even at the quiescent stage. Two novel compounds targeting electron transport chain (ELQ300, ELQ400) efficiently killed quiescent artemisinin-resistant parasites. Therefore, mitochondrial respiration represents a key target for the elimination of artemisinin-resistant persistent Plasmodium falciparum parasites.
Collapse
Affiliation(s)
- Manel Ouji
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France; MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Thibaud Reyser
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France; MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Yoshiki Yamaryo-Botté
- ApicoLipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Michel Nguyen
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France; MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - David Rengel
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Axelle Dutreuil
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France; MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Marlène Marcellin
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France; Infrastructure nationale de Protéomique, ProFI, FR 2048, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France; Infrastructure nationale de Protéomique, ProFI, FR 2048, Toulouse, France
| | - Jean-Michel Augereau
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France; MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Michael K Riscoe
- VA Portland Health Care System Research and Development Service, 3710 SW US Veterans Hospital Road, RD-33, Portland, OR, 97239, USA; Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Lucie Paloque
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France; MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Cyrille Botté
- ApicoLipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Françoise Benoit-Vical
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France; MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| |
Collapse
|
11
|
Manaranche J, Laurent M, Tressieres R, Nguyen M, Salim M, Ouji M, Reyser T, Egwu CO, Robert A, Augereau JM, Benoit-Vical F, Paloque L. In vitro evaluation of ganaplacide/lumefantrine combination against Plasmodium falciparum in a context of artemisinin resistance. J Antimicrob Chemother 2024; 79:2877-2886. [PMID: 39206510 PMCID: PMC11531816 DOI: 10.1093/jac/dkae300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Ganaplacide, also known as KAF156, is among the new antimalarial drug candidates that have successfully reached Phase III clinical trials, and is proposed in combination with lumefantrine. This combination could replace the current front-line artemisinin-based combination therapies (ACTs) in case of Plasmodium falciparum resistance to both artemisinins and partner drugs. Indeed, the African continent, where the malaria burden is the highest, is currently experiencing worrying multiple emergences and spread of artemisinin resistance, which urges for the exploration of the antiparasitic properties of KAF156 in this context. OBJECTIVES AND METHODS The objectives of this work were firstly to evaluate the risk of cross-resistance between artemisinins and KAF156 alone, and in combination with lumefantrine, using a panel of artemisinin-resistant strains carrying different pfk13 mutations and markers of other antiplasmodial drug resistances; secondly to explore in vitro the relevance of combining KAF156 and lumefantrine with artemisinins, based on the model of triple ACTs. RESULTS Our results highlighted that KAF156 activity was not impaired by mutations in pfk13, pfcrt, pfmdr1, pfmdr2, pfdhps and pfdhfr genes or by pfmdr1 amplification. Moreover, we demonstrated that KAF156 alone and in combination with lumefantrine was active against artemisinin-resistant parasites, including when they are quiescent. CONCLUSIONS All these in vitro results evidence that multi-drug resistant parasites currently in circulation in the field might not affect KAF156 efficacy, and are encouraging signs for KAF156 use in a triple ACT to preserve the use of artemisinins for as long as possible.
Collapse
Affiliation(s)
- Jeanne Manaranche
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Marion Laurent
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Roxane Tressieres
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Michel Nguyen
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Maryam Salim
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Manel Ouji
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Thibaud Reyser
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Chinedu O Egwu
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Anne Robert
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Jean-Michel Augereau
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Françoise Benoit-Vical
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Lucie Paloque
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| |
Collapse
|
12
|
Cox H, Roeder F, Okell L, Niles-Robin R, James K, Valz O, Hauck K, Sicuri E. The private market for antimicrobials: an exploration of two selected mining and frontier areas of Guyana. Rev Panam Salud Publica 2024; 48:e109. [PMID: 39494446 PMCID: PMC11528820 DOI: 10.26633/rpsp.2024.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/23/2024] [Indexed: 11/05/2024] Open
Abstract
Objective To identify challenges that may raise pathogens' resistance to antimicrobial drugs by exploring the private market for antimicrobials in two selected mining and frontier areas of Guyana. Methods The private sector supply was mapped by approaching all authorized pharmacies and informal outlets, e.g., street vendors and grocery stores, around the two selected towns. Interviews were conducted with a) sellers on the availability of drugs, expiration dates, prices, and main producers; and b) customers on purchased drugs, diagnoses, and prescriptions received before purchasing drugs, and intention to complete the treatment. The information collected was described, and the determinants of the self-reported intention of customers to complete the whole treatment were identified. Results From the perspective of the supply of antimicrobials, essential medicines faced low and insecure availability, and prescriptions frequently deviated from diagnoses. From the perspective of the demand for antimicrobials, one-third of purchased antibiotics had a high potential for antimicrobial resistance as per the World Health Organization AWaRe classification. A high price reduced the self-reported intention to complete the treatment among those who had a prescription, while buying the medication in a licensed pharmacy increased such intention. Conclusions In Guyana, there persists a need to establish and revise policies addressing both supply and demand, such as restricting the sale of antimicrobials to licensed pharmacies and upon prescription, improving prescription practices while reducing the financial burden to patients, guaranteeing access to first-line treatment drugs, and instructing patients on appropriate use of antimicrobials. Revising such policies is an essential step to contain antimicrobial resistance in the analyzed areas and across Guyana.
Collapse
Affiliation(s)
- Horace Cox
- Caribbean Public Health AgencyPort of SpainTrinidad and TobagoCaribbean Public Health Agency, Port of Spain, Trinidad and Tobago
| | | | - Lucy Okell
- Imperial College LondonLondonUnited KingdomImperial College London, London, United Kingdom
| | - Reza Niles-Robin
- Ministry of Health GuyanaGeorgetownGuyanaMinistry of Health Guyana, Georgetown, Guyana
| | - Kashana James
- Ministry of Health GuyanaGeorgetownGuyanaMinistry of Health Guyana, Georgetown, Guyana
| | - Olivia Valz
- Ministry of Health GuyanaGeorgetownGuyanaMinistry of Health Guyana, Georgetown, Guyana
| | - Katharina Hauck
- Imperial College LondonLondonUnited KingdomImperial College London, London, United Kingdom
| | - Elisa Sicuri
- ISGlobalBarcelonaSpainISGlobal, Barcelona, Spain
| |
Collapse
|
13
|
Hathaway NJ, Kim IE, WernsmanYoung N, Hui ST, Crudale R, Liang EY, Nixon CP, Giesbrecht D, Juliano JJ, Parr JB, Bailey JA. Interchromosomal segmental duplication drives translocation and loss of P. falciparum histidine-rich protein 3. eLife 2024; 13:RP93534. [PMID: 39373634 PMCID: PMC11458181 DOI: 10.7554/elife.93534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
Most malaria rapid diagnostic tests (RDTs) detect Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and PfHRP3, but deletions of pfhrp2 and phfrp3 genes make parasites undetectable by RDTs. We analyzed 19,313 public whole-genome-sequenced P. falciparum field samples to understand these deletions better. Pfhrp2 deletion only occurred by chromosomal breakage with subsequent telomere healing. Pfhrp3 deletions involved loss from pfhrp3 to the telomere and showed three patterns: no other associated rearrangement with evidence of telomere healing at breakpoint (Asia; Pattern 13-TARE1); associated with duplication of a chromosome 5 segment containing multidrug-resistant-1 gene (Asia; Pattern 13-5++); and most commonly, associated with duplication of a chromosome 11 segment (Americas/Africa; Pattern 13-11++). We confirmed a 13-11 hybrid chromosome with long-read sequencing, consistent with a translocation product arising from recombination between large interchromosomal ribosome-containing segmental duplications. Within most 13-11++ parasites, the duplicated chromosome 11 segments were identical. Across parasites, multiple distinct haplotype groupings were consistent with emergence due to clonal expansion of progeny from intrastrain meiotic recombination. Together, these observations suggest negative selection normally removes 13-11++pfhrp3 deletions, and specific conditions are needed for their emergence and spread including low transmission, findings that can help refine surveillance strategies.
Collapse
Affiliation(s)
- Nicholas J Hathaway
- Department of Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Isaac E Kim
- Center for Computational Molecular Biology, Brown UniversityProvidenceUnited States
- Warren Alpert Medical School, Brown UniversityProvidenceUnited States
| | - Neeva WernsmanYoung
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown UniversityProvidenceUnited States
| | - Sin Ting Hui
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| | - Rebecca Crudale
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| | - Emily Y Liang
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| | - Christian P Nixon
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| | - David Giesbrecht
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| | - Jonathan J Juliano
- Department of Epidemiology, Gillings School of Global Public Health, University of North CarolinaChapel HillUnited States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North CarolinaChapel HillUnited States
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
| | - Jonathan B Parr
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North CarolinaChapel HillUnited States
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
| | - Jeffrey A Bailey
- Center for Computational Molecular Biology, Brown UniversityProvidenceUnited States
- Warren Alpert Medical School, Brown UniversityProvidenceUnited States
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| |
Collapse
|
14
|
Ferreira LT, Cassiano GC, Alvarez LCS, Okombo J, Calit J, Fontinha D, Gil-Iturbe E, Coyle R, Andrade CH, Sunnerhagen P, Bargieri DY, Prudêncio M, Quick M, Cravo PV, Lee MCS, Fidock DA, Costa FTM. A novel 4-aminoquinoline chemotype with multistage antimalarial activity and lack of cross-resistance with PfCRT and PfMDR1 mutants. PLoS Pathog 2024; 20:e1012627. [PMID: 39471233 PMCID: PMC11521309 DOI: 10.1371/journal.ppat.1012627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/30/2024] [Indexed: 11/01/2024] Open
Abstract
Artemisinin-based combination therapy (ACT) is the mainstay of effective treatment of Plasmodium falciparum malaria. However, the long-term utility of ACTs is imperiled by widespread partial artemisinin resistance in Southeast Asia and its recent emergence in parts of East Africa. This underscores the need to identify chemotypes with new modes of action (MoAs) to circumvent resistance to ACTs. In this study, we characterized the asexual blood stage antiplasmodial activity and resistance mechanisms of LDT-623, a 4-aminoquinoline (4-AQ). We also detected LDT-623 activity against multiple stages (liver schizonts, stage IV-V gametocytes, and ookinetes) of Plasmodium's life cycle, a feature unlike other 4-AQs such as chloroquine (CQ) and piperaquine (PPQ). Using heme fractionation profiling and drug uptake studies in PfCRT-containing proteoliposomes, we observed inhibition of hemozoin formation and PfCRT-mediated transport, which constitute characteristic features of 4-AQs' MoA. We also found minimal cross-resistance to LDT-623 in a panel of mutant pfcrt or pfmdr1 lines, but not the PfCRT F145I mutant that is highly resistant to PPQ resistance yet is very unfit. No P. falciparum parasites were recovered in an in vitro resistance selection study, suggesting a high barrier for resistance to emerge. Finally, a competitive growth assay comprising >50 barcoded parasite lines with mutated resistance mediators or major drug targets found no evidence of cross-resistance. Our findings support further exploration of this promising 4-AQ.
Collapse
Affiliation(s)
- Letícia Tiburcio Ferreira
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Gustavo Capatti Cassiano
- Global Health and Tropical Medicine, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Luis Carlos Salazar Alvarez
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Juliana Calit
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Rachael Coyle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
| | - Carolina Horta Andrade
- Laboratory of Molecular Modeling and Drug Design, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- Center for the Research and Advancement in Fragments and molecular Targets, School of Pharmaceutical Sciences at Ribeirao Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Center for Excellence in Artificial Intelligence, Institute of Informatics, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Youssef Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Matthias Quick
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Physiology & Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, United States of America
- New York State Psychiatric Institute, Area Neuroscience – Molecular Therapeutics, New York, New York, United States of America
| | - Pedro V. Cravo
- Global Health and Tropical Medicine, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Marcus C. S. Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, United States of America
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
- Global Health and Tropical Medicine, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
15
|
Camarero-Hoyos C, Bouzón-Arnáiz I, Avalos-Padilla Y, Fallica AN, Román-Álamo L, Ramírez M, Portabella E, Cuspinera O, Currea-Ayala D, Orozco-Quer M, Ribera M, Siden-Kiamos I, Spanos L, Iglesias V, Crespo B, Viera S, Andreu D, Sulleiro E, Zarzuela F, Urtasun N, Pérez-Torras S, Pastor-Anglada M, Arce EM, Muñoz-Torrero D, Fernàndez-Busquets X. Leveraging the Aggregated Protein Dye YAT2150 for Malaria Chemotherapy. Pharmaceutics 2024; 16:1290. [PMID: 39458619 PMCID: PMC11514582 DOI: 10.3390/pharmaceutics16101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/09/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: YAT2150 is a first-in-class antiplasmodial compound that has been recently proposed as a new interesting drug for malaria therapy. Methods/Results: The fluorescence of YAT2150 rapidly increases upon its entry into Plasmodium, a property that can be of use for the design of highly sensitive diagnostic approaches. YAT2150 blocks the in vitro development of the ookinete stage of Plasmodium and, when added to an infected blood meal, inhibits oocyst formation in the mosquito. Thus, the compound could possibly contribute to future transmission-blocking antimalarial strategies. Cell influx/efflux studies in Caco-2 cells suggest that YAT2150 is internalized by endocytosis and also through the OATP2B1 transporter, whereas its main export route would be via OSTα. YAT2150 has an overall favorable drug metabolism and pharmacokinetics profile, and its moderate cytotoxicity can be significantly reduced upon encapsulation in immunoliposomes, which leads to a dramatic increase in the drug selectivity index to values close to 1000. Although YAT2150 binds amyloid-forming peptides, its in vitro fluorescence emission is stronger upon association with peptides that form amorphous aggregates, suggesting that regions enriched in unstructured proteins are the preferential binding sites of the drug inside Plasmodium cells. The reduction of protein aggregation in the parasite after YAT2150 treatment, which has been suggested to be directly related to the drug's mode of action, is also observed following treatment with quinoline antimalarials like chloroquine and primaquine. Conclusions: Altogether, the data presented here indicate that YAT2150 can represent the spearhead of a new family of compounds for malaria diagnosis and therapy due to its presumed novel mode of action based on the interaction with functional protein aggregates in the pathogen.
Collapse
Affiliation(s)
- Claudia Camarero-Hoyos
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 149-153, 08036 Barcelona, Spain; (C.C.-H.); (I.B.-A.); (Y.A.-P.); (A.N.F.); (L.R.-Á.); (M.R.); (E.P.); (O.C.); (D.C.-A.); (M.O.-Q.); (M.R.); (V.I.)
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Doctoral School of Biotechnology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Inés Bouzón-Arnáiz
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 149-153, 08036 Barcelona, Spain; (C.C.-H.); (I.B.-A.); (Y.A.-P.); (A.N.F.); (L.R.-Á.); (M.R.); (E.P.); (O.C.); (D.C.-A.); (M.O.-Q.); (M.R.); (V.I.)
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Yunuen Avalos-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 149-153, 08036 Barcelona, Spain; (C.C.-H.); (I.B.-A.); (Y.A.-P.); (A.N.F.); (L.R.-Á.); (M.R.); (E.P.); (O.C.); (D.C.-A.); (M.O.-Q.); (M.R.); (V.I.)
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Antonino Nicolò Fallica
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 149-153, 08036 Barcelona, Spain; (C.C.-H.); (I.B.-A.); (Y.A.-P.); (A.N.F.); (L.R.-Á.); (M.R.); (E.P.); (O.C.); (D.C.-A.); (M.O.-Q.); (M.R.); (V.I.)
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Lucía Román-Álamo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 149-153, 08036 Barcelona, Spain; (C.C.-H.); (I.B.-A.); (Y.A.-P.); (A.N.F.); (L.R.-Á.); (M.R.); (E.P.); (O.C.); (D.C.-A.); (M.O.-Q.); (M.R.); (V.I.)
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Miriam Ramírez
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 149-153, 08036 Barcelona, Spain; (C.C.-H.); (I.B.-A.); (Y.A.-P.); (A.N.F.); (L.R.-Á.); (M.R.); (E.P.); (O.C.); (D.C.-A.); (M.O.-Q.); (M.R.); (V.I.)
| | - Emma Portabella
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 149-153, 08036 Barcelona, Spain; (C.C.-H.); (I.B.-A.); (Y.A.-P.); (A.N.F.); (L.R.-Á.); (M.R.); (E.P.); (O.C.); (D.C.-A.); (M.O.-Q.); (M.R.); (V.I.)
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Ona Cuspinera
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 149-153, 08036 Barcelona, Spain; (C.C.-H.); (I.B.-A.); (Y.A.-P.); (A.N.F.); (L.R.-Á.); (M.R.); (E.P.); (O.C.); (D.C.-A.); (M.O.-Q.); (M.R.); (V.I.)
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Daniela Currea-Ayala
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 149-153, 08036 Barcelona, Spain; (C.C.-H.); (I.B.-A.); (Y.A.-P.); (A.N.F.); (L.R.-Á.); (M.R.); (E.P.); (O.C.); (D.C.-A.); (M.O.-Q.); (M.R.); (V.I.)
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Marc Orozco-Quer
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 149-153, 08036 Barcelona, Spain; (C.C.-H.); (I.B.-A.); (Y.A.-P.); (A.N.F.); (L.R.-Á.); (M.R.); (E.P.); (O.C.); (D.C.-A.); (M.O.-Q.); (M.R.); (V.I.)
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Maria Ribera
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 149-153, 08036 Barcelona, Spain; (C.C.-H.); (I.B.-A.); (Y.A.-P.); (A.N.F.); (L.R.-Á.); (M.R.); (E.P.); (O.C.); (D.C.-A.); (M.O.-Q.); (M.R.); (V.I.)
| | - Inga Siden-Kiamos
- Institute of Molecular Biology and Biotechnology, FORTH, N. Plastira 100, 700 13 Heraklion, Greece; (I.S.-K.); (L.S.)
| | - Lefteris Spanos
- Institute of Molecular Biology and Biotechnology, FORTH, N. Plastira 100, 700 13 Heraklion, Greece; (I.S.-K.); (L.S.)
| | - Valentín Iglesias
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 149-153, 08036 Barcelona, Spain; (C.C.-H.); (I.B.-A.); (Y.A.-P.); (A.N.F.); (L.R.-Á.); (M.R.); (E.P.); (O.C.); (D.C.-A.); (M.O.-Q.); (M.R.); (V.I.)
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Clinical Research Centre, Medical University of Białystok, Kilińskiego 1, 15-369 Białystok, Poland
| | - Benigno Crespo
- Global Health Medicines R&D, GlaxoSmithKline (GSK), 28760 Tres Cantos, Spain; (B.C.); (S.V.)
| | - Sara Viera
- Global Health Medicines R&D, GlaxoSmithKline (GSK), 28760 Tres Cantos, Spain; (B.C.); (S.V.)
| | - David Andreu
- Department of Medicine and Life Sciences, Barcelona Biomedical Research Park, Pompeu Fabra University, Dr. Aiguader 88, 08003 Barcelona, Spain;
| | - Elena Sulleiro
- Microbiology Department, Vall d’Hebron University Hospital (VHUH), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (E.S.); (F.Z.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III Health Institute, 28029 Madrid, Spain
| | - Francesc Zarzuela
- Microbiology Department, Vall d’Hebron University Hospital (VHUH), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (E.S.); (F.Z.)
| | - Nerea Urtasun
- Molecular Pharmacology and Experimental Therapeutics (MPET), Department of Biochemistry and Molecular Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (N.U.); (S.P.-T.); (M.P.-A.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Carlos III Health Institute, 28029 Madrid, Spain
- Institut de Recerca Hospital Sant Joan de Déu de Barcelona (IRSJD), Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- Institute of Biomedicine (IBUB), University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain;
| | - Sandra Pérez-Torras
- Molecular Pharmacology and Experimental Therapeutics (MPET), Department of Biochemistry and Molecular Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (N.U.); (S.P.-T.); (M.P.-A.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Carlos III Health Institute, 28029 Madrid, Spain
- Institut de Recerca Hospital Sant Joan de Déu de Barcelona (IRSJD), Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- Institute of Biomedicine (IBUB), University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain;
| | - Marçal Pastor-Anglada
- Molecular Pharmacology and Experimental Therapeutics (MPET), Department of Biochemistry and Molecular Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (N.U.); (S.P.-T.); (M.P.-A.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Carlos III Health Institute, 28029 Madrid, Spain
- Institut de Recerca Hospital Sant Joan de Déu de Barcelona (IRSJD), Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- Institute of Biomedicine (IBUB), University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain;
| | - Elsa M. Arce
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain;
| | - Diego Muñoz-Torrero
- Institute of Biomedicine (IBUB), University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain;
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain;
| | - Xavier Fernàndez-Busquets
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 149-153, 08036 Barcelona, Spain; (C.C.-H.); (I.B.-A.); (Y.A.-P.); (A.N.F.); (L.R.-Á.); (M.R.); (E.P.); (O.C.); (D.C.-A.); (M.O.-Q.); (M.R.); (V.I.)
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
16
|
Zheng D, Liu T, Yu S, Liu Z, Wang J, Wang Y. Antimalarial Mechanisms and Resistance Status of Artemisinin and Its Derivatives. Trop Med Infect Dis 2024; 9:223. [PMID: 39330912 PMCID: PMC11435542 DOI: 10.3390/tropicalmed9090223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Artemisinin is an endoperoxide sesquiterpene lactone isolated from Artemisia annua and is often used to treat malaria. Artemisinin's peroxide bridge is the key structure behind its antimalarial action. Scientists have created dihydroartemisinin, artemether, artesunate, and other derivatives preserving artemisinin's peroxide bridge to increase its clinical utility value. Artemisinin compounds exhibit excellent efficacy, quick action, and minimal toxicity in malaria treatment and have greatly contributed to malaria control. With the wide and unreasonable application of artemisinin-based medicines, malaria parasites have developed artemisinin resistance, making malaria prevention and control increasingly challenging. Artemisinin-resistant Plasmodium strains have been found in many countries and regions. The mechanisms of antimalarials and artemisinin resistance are not well understood, making malaria prevention and control a serious challenge. Understanding the antimalarial and resistance mechanisms of artemisinin drugs helps develop novel antimalarials and guides the rational application of antimalarials to avoid the spread of resistance, which is conducive to malaria control and elimination efforts. This review will discuss the antimalarial mechanisms and resistance status of artemisinin and its derivatives, which will provide a reference for avoiding drug resistance and the research and development of new antimalarial drugs.
Collapse
Affiliation(s)
- Dan Zheng
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (D.Z.); (T.L.); (S.Y.); (Z.L.); (J.W.)
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Tingting Liu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (D.Z.); (T.L.); (S.Y.); (Z.L.); (J.W.)
| | - Shasha Yu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (D.Z.); (T.L.); (S.Y.); (Z.L.); (J.W.)
| | - Zhilong Liu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (D.Z.); (T.L.); (S.Y.); (Z.L.); (J.W.)
| | - Jing Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (D.Z.); (T.L.); (S.Y.); (Z.L.); (J.W.)
| | - Ying Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (D.Z.); (T.L.); (S.Y.); (Z.L.); (J.W.)
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| |
Collapse
|
17
|
Tully MK, Dini S, Flegg JA, McCarthy JS, Price DJ, Simpson JA. Evaluation of a Bayesian hierarchical pharmacokinetic-pharmacodynamic model for predicting parasitological outcomes in Phase 2 studies of new antimalarial drugs. Antimicrob Agents Chemother 2024; 68:e0086324. [PMID: 39136464 PMCID: PMC11373224 DOI: 10.1128/aac.00863-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 09/05/2024] Open
Abstract
The rise of multidrug-resistant malaria requires accelerated development of novel antimalarial drugs. Pharmacokinetic-pharmacodynamic (PK-PD) models relate blood antimalarial drug concentrations with the parasite-time profile to inform dosing regimens. We performed a simulation study to assess the utility of a Bayesian hierarchical mechanistic PK-PD model for predicting parasite-time profiles for a Phase 2 study of a new antimalarial drug, cipargamin. We simulated cipargamin concentration- and malaria parasite-profiles based on a Phase 2 study of eight volunteers who received cipargamin 7 days after inoculation with malaria parasites. The cipargamin profiles were generated from a two-compartment PK model and parasite profiles from a previously published biologically informed PD model. One thousand PK-PD data sets of eight patients were simulated, following the sampling intervals of the Phase 2 study. The mechanistic PK-PD model was incorporated in a Bayesian hierarchical framework, and the parameters were estimated. Population PK model parameters describing absorption, distribution, and clearance were estimated with minimal bias (mean relative bias ranged from 1.7% to 8.4%). The PD model was fitted to the parasitaemia profiles in each simulated data set using the estimated PK parameters. Posterior predictive checks demonstrate that our PK-PD model adequately captures the simulated PD profiles. The bias of the estimated population average PD parameters was low-moderate in magnitude. This simulation study demonstrates the viability of our PK-PD model to predict parasitological outcomes in Phase 2 volunteer infection studies. This work will inform the dose-effect relationship of cipargamin, guiding decisions on dosing regimens to be evaluated in Phase 3 trials.
Collapse
Affiliation(s)
- Meg K Tully
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Saber Dini
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Jennifer A Flegg
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
| | - James S McCarthy
- Department of Infectious Diseases, The University of Melbourne, at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - David J Price
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Department of Infectious Diseases, The University of Melbourne, at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Rosenthal PJ, Asua V, Bailey JA, Conrad MD, Ishengoma DS, Kamya MR, Rasmussen C, Tadesse FG, Uwimana A, Fidock DA. The emergence of artemisinin partial resistance in Africa: how do we respond? THE LANCET. INFECTIOUS DISEASES 2024; 24:e591-e600. [PMID: 38552654 DOI: 10.1016/s1473-3099(24)00141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 04/21/2024]
Abstract
Malaria remains one of the most important infectious diseases in the world, with the greatest burden in sub-Saharan Africa, primarily from Plasmodium falciparum infection. The treatment and control of malaria is challenged by resistance to most available drugs, but partial resistance to artemisinins (ART-R), the most important class for the treatment of malaria, was until recently confined to southeast Asia. This situation has changed, with the emergence of ART-R in multiple countries in eastern Africa. ART-R is mediated primarily by single point mutations in the P falciparum kelch13 protein, with several mutations present in African parasites that are now validated resistance mediators based on clinical and laboratory criteria. Major priorities at present are the expansion of genomic surveillance for ART-R mutations across the continent, more frequent testing of the efficacies of artemisinin-based regimens against uncomplicated and severe malaria in trials, more regular assessment of ex-vivo antimalarial drug susceptibilities, consideration of changes in treatment policy to deter the spread of ART-R, and accelerated development of new antimalarial regimens to overcome the impacts of ART-R. The emergence of ART-R in Africa is an urgent concern, and it is essential that we increase efforts to characterise its spread and mitigate its impact.
Collapse
Affiliation(s)
- Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, CA, USA.
| | - Victor Asua
- Infectious Diseases Research Collaboration, Kampala, Uganda; University of Tübingen, Tübingen, Germany
| | - Jeffrey A Bailey
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA; Departments of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Melissa D Conrad
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Deus S Ishengoma
- National Institute for Medical Research, Dar es Salaam, Tanzania; Department of Biochemistry, Kampala International University in Tanzania, Dar es Salaam, Tanzania; School of Public Health, Harvard University, Boston, MA, USA
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda; Department of Medicine, Makerere University, Kampala, Uganda
| | | | - Fitsum G Tadesse
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia; London School of Hygiene and Tropical Medicine, London, UK
| | - Aline Uwimana
- Rwanda Biomedical Center, Kigali, Rwanda; Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - David A Fidock
- Department of Microbiology and Immunology and Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
19
|
Ñacata I, Early AM, Boboy J, Neafsey DE, Sáenz FE. Effects of drug pressure and human migration on antimalarial resistance in circulating Plasmodium falciparum malaria parasites in Ecuador. RESEARCH SQUARE 2024:rs.3.rs-4638168. [PMID: 39184096 PMCID: PMC11343295 DOI: 10.21203/rs.3.rs-4638168/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Antimalarial resistance in Plasmodium falciparum is a public health problem in the fight against malaria in Ecuador. Characterizing the molecular epidemiology of drug resistance genes helps to understand the emergence and spread of resistant parasites. In this study, the effects of drug pressure and human migration on antimalarial resistance in P. falciparum were evaluated. Sixty-seven samples from northwestern Ecuador from the 2019-2021 period were analyzed. SNPs in Pfcrt , Pfdhps , Pfdhfr , Pfmdr-1 , Pfk13 and Pfaat1 were identified by Sanger sequencing and whole-genome sequencing. A comparison of the frequencies of the haplotypes was made with data from the 2013-2015 period. Also, nucleotide and haplotype diversity were calculated. The frequencies of the mutant haplotypes, CVM ET in Pfcrt and C I C N I in Pfdhfr , increased. NED F S D F Y in Pfmdr-1 was detected for the first time. While the wild-type haplotypes, SAKAA in Pfdhps and MYRIC in Pfk13 , remained dominant. Interestingly, the A16 V mutation in Pfdhfr that gives resistance to proguanil is reported in Ecuador. In conclusion, parasites resistant to chloroquine ( Pfcrt ) and pyrimethamine ( Pfdhfr ) increased in recent years, while parasites sensitive to sulfadoxine ( Pfdhps ) and artemisinin ( Pfk13 ) prevail in Ecuador. Therefore, the current treatment is still useful against P. falciparum . The frequent human migration between Ecuador and Colombia has likely contributed to the spread of resistant parasites. Keys words : Plasmodium falciparum , resistance, antimalarial, selective pressure, human migration.
Collapse
|
20
|
Gawriljuk VO, Godoy AS, Oerlemans R, Welker LAT, Hirsch AKH, Groves MR. Cryo-EM structure of 1-deoxy-D-xylulose 5-phosphate synthase DXPS from Plasmodium falciparum reveals a distinct N-terminal domain. Nat Commun 2024; 15:6642. [PMID: 39103329 PMCID: PMC11300867 DOI: 10.1038/s41467-024-50671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/17/2024] [Indexed: 08/07/2024] Open
Abstract
Plasmodium falciparum is the main causative agent of malaria, a deadly disease that mainly affects children under five years old. Artemisinin-based combination therapies have been pivotal in controlling the disease, but resistance has arisen in various regions, increasing the risk of treatment failure. The non-mevalonate pathway is essential for the isoprenoid synthesis in Plasmodium and provides several under-explored targets to be used in the discovery of new antimalarials. 1-deoxy-D-xylulose-5-phosphate synthase (DXPS) is the first and rate-limiting enzyme of the pathway. Despite its importance, there are no structures available for any Plasmodium spp., due to the complex sequence which contains large regions of high disorder, making crystallisation a difficult task. In this manuscript, we use cryo-electron microscopy to solve the P. falciparum DXPS structure at a final resolution of 2.42 Å. Overall, the structure resembles other DXPS enzymes but includes a distinct N-terminal domain exclusive to the Plasmodium genus. Mutational studies show that destabilization of the cap domain interface negatively impacts protein stability and activity. Additionally, a density for the co-factor thiamine diphosphate is found in the active site. Our work highlights the potential of cryo-EM to obtain structures of P. falciparum proteins that are unfeasible by means of crystallography.
Collapse
Affiliation(s)
- Victor O Gawriljuk
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Andre S Godoy
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, 13563-120, Brazil
| | - Rick Oerlemans
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Luise A T Welker
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
- Saarland University, Department of Pharmacy, Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Matthew R Groves
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
21
|
Gaur R, Jyoti, Khan S, Cheema HS, Khan F, Darokar MP, Bhakuni RS. Synthesis, molecular modelling studies of artemisinin-chalcone derivatives and their antimalarial activity evaluation. Nat Prod Res 2024:1-11. [PMID: 39066511 DOI: 10.1080/14786419.2024.2375784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Twenty-two monomers and dimers of artemisinin having chalcone as a linker were synthesised, and their antimalarial activity against Plasmodium falciparum was determined, and a quantitative structure-activity relationship (QSAR) was developed. Artemisinin is a frontline antimalarial drug known worldwide but is threatened because of the rapidly emerging artemisinin-resistant strain Plasmodium falciparum. In vitro, antimalarial IC50 (half-maximal inhibitory concentration) activity of a molecule against malaria parasites provides a good first screen for identifying the antimalarial potential of a particular molecule. The most active compound was artemisinin dimer dimethoxy chalcone as a linker (22) with IC50 of 4.34 nM. The molecular mechanism was explored through in silico docking & ADMET studies for the active compounds.
Collapse
Affiliation(s)
- Rashmi Gaur
- Medicinal Chemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Organic & Medicinal Chemistry Division, Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Jyoti
- Medicinal Chemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Sana Khan
- Structural Biology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Harveer Singh Cheema
- Molecular Bio-Prospection Department Metabolic, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Department of Botany, Meerut College, Meerut, UP, India
| | - Feroz Khan
- Structural Biology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Mahendra Padurang Darokar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Molecular Bio-Prospection Department Metabolic, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Rajendra Singh Bhakuni
- Medicinal Chemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
22
|
Milong Melong CS, Peloewetse E, Russo G, Tamgue O, Tchoumbougnang F, Paganotti GM. An overview of artemisinin-resistant malaria and associated Pfk13 gene mutations in Central Africa. Parasitol Res 2024; 123:277. [PMID: 39023630 DOI: 10.1007/s00436-024-08301-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Malaria caused by Plasmodium falciparum is one of the deadliest and most common tropical infectious diseases. However, the emergence of artemisinin drug resistance associated with the parasite's Pfk13 gene, threatens the public health of individual countries as well as current efforts to reduce malaria burdens globally. It is of concern that artemisinin-resistant parasites may be selected or have already emerged in Africa. This narrative review aims to evaluate the published evidence concerning validated, candidate, and novel Pfk13 polymorphisms in ten Central African countries. Results show that four validated non-synonymous polymorphisms (M476I, R539T, P553L, and P574L), directly associated with a delayed therapy response, have been reported in the region. Also, two Pfk13 polymorphisms associated to artemisinin resistance but not validated (C469F and P527H) have been reported. Furthermore, several non-validated mutations have been observed in Central Africa, and one allele A578S, is commonly found in different countries, although additional molecular and biochemical studies are needed to investigate whether those mutations alter artemisinin effects. This information is discussed in the context of biochemical and genetic aspects of Pfk13, and related to the regional malaria epidemiology of Central African countries.
Collapse
Affiliation(s)
- Charlotte Sabine Milong Melong
- Department of Biochemistry, Faculty of Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon
- Botswana-University of Pennsylvania Partnership, P.O. Box 45498, Gaborone, Riverwalk, Botswana
| | - Elias Peloewetse
- Department of Biological Sciences, Faculty of Sciences, University of Botswana, Private Bag, 0022, Gaborone, UB, Botswana
| | - Gianluca Russo
- Department of Public Health and Infectious Diseases, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - Ousman Tamgue
- Department of Biochemistry, Faculty of Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon
| | - Francois Tchoumbougnang
- Department of Processing and Quality Control of Aquatic Products, Institute of Fisheries and Aquatic Sciences, University of Douala, P.O. Box 7236, Douala, Cameroon
| | - Giacomo Maria Paganotti
- Botswana-University of Pennsylvania Partnership, P.O. Box 45498, Gaborone, Riverwalk, Botswana.
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
23
|
Yoshida N, Kikuchi H, Hirai M, Balikagala B, Anywar DA, Taka H, Kaga N, Miura Y, Fukuda N, Odongo-Aginya EI, Kubohara Y, Mita T. A longer-chain acylated derivative of Dictyostelium differentiation-inducing factor-1 enhances the antimalarial activity against Plasmodium parasites. Biochem Pharmacol 2024; 225:116243. [PMID: 38697310 DOI: 10.1016/j.bcp.2024.116243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024]
Abstract
The spread of malarial parasites resistant to first-line treatments such as artemisinin combination therapies is a global health concern. Differentiation-inducing factor 1 (DIF-1) is a chlorinated alkylphenone (1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl) hexan-1-one) originally found in the cellular slime mould Dictyostelium discoideum. We previously showed that some derivatives of DIF-1, particularly DIF-1(+2) (1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl) octan-1-one), exert potent antimalarial activities. In this study, we synthesised DIF-1(+3) (1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl) nonan-1-one). We then evaluated the effects of DIF-1(+3) in vitro on Plasmodium falciparum and in vivo over 7 days (50-100 mg/kg/day) in a mouse model of Plasmodium berghei. DIF-1(+3) exhibited a half-maximal inhibitory concentration of approximately 20-30 % of DIF-1(+2) in three laboratory strains with a selectivity index > 263, including in strains resistant to chloroquine and artemisinin. Parasite growth and multiplication were almost completely suppressed by treatment with 100 mg/kg DIF-1(+3). The survival time of infected mice was significantly increased (P = 0.006) with no apparent adverse effects. In summary, addition of an acyl group to DIF-1(+2) to prepare DIF-1(+3) substantially enhanced antimalarial activity, even in drug-resistant malaria, indicating the potential of applying DIF-1(+3) for malaria treatment.
Collapse
Affiliation(s)
- Naoko Yoshida
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Haruhisa Kikuchi
- Division of Natural Medicines, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Makoto Hirai
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Betty Balikagala
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Denis A Anywar
- Faculty of Medicine, Gulu University, P.O. Box 166, Gulu, Uganda
| | - Hikari Taka
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Core Facilities, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Naoko Kaga
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Core Facilities, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoshiki Miura
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Core Facilities, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Naoyuki Fukuda
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | - Yuzuru Kubohara
- Laboratory of Health and Life Science, Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba 270-1695, Japan.
| | - Toshihiro Mita
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| |
Collapse
|
24
|
Sima-Biyang YV, Ontoua SS, Longo-Pendy NM, Mbou-Boutambe C, Makouloutou-Nzassi P, Moussadji CK, Lekana-Douki JB, Boundenga L. Epidemiology of malaria in Gabon: A systematic review and meta-analysis from 1980 to 2023. J Infect Public Health 2024; 17:102459. [PMID: 38870682 DOI: 10.1016/j.jiph.2024.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
The objective of this were conducted to elucidate spatiotemporal variations in malaria epidemiology in Gabon since 1980. For that, five databases, were used to collect and identify all studies published between 1980 and 2023 on malaria prevalence, antimalarial drug resistance, markers of antimalarial drug resistance and insecticide resistance marker. The findings suggest that Gabon continues to face malaria as an urgent public health problem, with persistently high prevalence rates. Markers of resistance to CQ persist despite its withdrawal, and markers of resistance to SP have emerged with a high frequency, reaching 100 %, while ACTs remain effective. Also, recent studies have identified markers of resistance to the insecticides Kdr-w and Kdr-e at frequencies ranging from 25 % to 100 %. Ace1R mutation was reported with a frequency of 0.4 %. In conclusion, the efficacy of ACTs remains above the threshold recommended by the WHO. Organo-phosphates and carbamates could provide an alternative for vector control.
Collapse
Affiliation(s)
- Yann Vital Sima-Biyang
- Unit of Research in Ecology of Health (URES), Franceville Interdisciplinary Center for Medical Research (CIRMF), BP 769 Franceville, Gabon; Central African Regional Doctoral School in Tropical Infectiology (EDR), BP 876 Franceville, Gabon
| | - Steede Seinnat Ontoua
- Central African Regional Doctoral School in Tropical Infectiology (EDR), BP 876 Franceville, Gabon; Unit of Evolution, Epidemiology and Parasite Resistance (UNEEREP), Franceville Interdisciplinary Center for Medical Research (CIRMF), BP 769 Franceville, Gabon
| | - Neil Michel Longo-Pendy
- Unit of Research in Ecology of Health (URES), Franceville Interdisciplinary Center for Medical Research (CIRMF), BP 769 Franceville, Gabon
| | - Clark Mbou-Boutambe
- Unit of Research in Ecology of Health (URES), Franceville Interdisciplinary Center for Medical Research (CIRMF), BP 769 Franceville, Gabon; Central African Regional Doctoral School in Tropical Infectiology (EDR), BP 876 Franceville, Gabon
| | - Patrice Makouloutou-Nzassi
- Unit of Research in Ecology of Health (URES), Franceville Interdisciplinary Center for Medical Research (CIRMF), BP 769 Franceville, Gabon; Department of Animal Biology and Ecology, Tropical Ecology Research Institute (IRET/CENAREST), Libreville BP 13354, Gabon
| | - Cyr Kinga Moussadji
- Primatology Center, Franceville Interdisciplinary Center for Medical Research (CIRMF), BP 769 Franceville, Gabon
| | - Jean-Bernard Lekana-Douki
- Unit of Evolution, Epidemiology and Parasite Resistance (UNEEREP), Franceville Interdisciplinary Center for Medical Research (CIRMF), BP 769 Franceville, Gabon; Department of Parasitology-Mycology-Tropical Medicine, University of Health Sciences, Faculty of Medicine, BP 4009 Libreville, Gabon
| | - Larson Boundenga
- Unit of Research in Ecology of Health (URES), Franceville Interdisciplinary Center for Medical Research (CIRMF), BP 769 Franceville, Gabon; Department of Anthropology, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
25
|
Collins JE, Jiang T, Lee JW, Wendt K, Nardella F, Jeon J, Paes R, Santos NM, Rocamora F, Chang M, Schaefer S, Cichewicz RH, Winzeler EA, Chakrabarti D. Understanding the Antiplasmodial Action of Resistance-Refractory Xanthoquinodin A1. ACS Infect Dis 2024; 10:2276-2287. [PMID: 38810215 PMCID: PMC11533362 DOI: 10.1021/acsinfecdis.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Our previous work identified a series of 12 xanthoquinodin analogues and 2 emodin-dianthrones with broad-spectrum activities against Trichomonas vaginalis, Mycoplasma genitalium, Cryptosporidium parvum, and Plasmodium falciparum. Analyses conducted in this study revealed that the most active analogue, xanthoquinodin A1, also inhibits Toxoplasma gondii tachyzoites and the liver stage of Plasmodium berghei, with no cross-resistance to the known antimalarial targets PfACS, PfCARL, PfPI4K, or DHODH. In Plasmodium, inhibition occurs prior to multinucleation and induces parasite death following 12 h of compound exposure. This moderately fast activity has impeded resistance line generation, with xanthoquinodin A1 demonstrating an irresistible phenotype in both T. gondii and P. falciparum.
Collapse
Affiliation(s)
- Jennifer E Collins
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Tiantian Jiang
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Jin Woo Lee
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Karen Wendt
- Department of Chemistry and Biochemistry, Institute for Natural Products Applications & Research Technologies, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Flore Nardella
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Jin Jeon
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Raphaella Paes
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Natalia Mojica Santos
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Frances Rocamora
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Maya Chang
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Samuel Schaefer
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Robert H Cichewicz
- Department of Chemistry and Biochemistry, Institute for Natural Products Applications & Research Technologies, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Debopam Chakrabarti
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| |
Collapse
|
26
|
Vanhove M, Schwabl P, Clementson C, Early AM, Laws M, Anthony F, Florimond C, Mathieu L, James K, Knox C, Singh N, Buckee CO, Musset L, Cox H, Niles-Robin R, Neafsey DE. Temporal and spatial dynamics of Plasmodium falciparum clonal lineages in Guyana. PLoS Pathog 2024; 20:e1012013. [PMID: 38870266 PMCID: PMC11206942 DOI: 10.1371/journal.ppat.1012013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/26/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024] Open
Abstract
Plasmodium parasites, the causal agents of malaria, are eukaryotic organisms that obligately undergo sexual recombination within mosquitoes. In low transmission settings, parasites recombine with themselves, and the clonal lineage is propagated rather than broken up by outcrossing. We investigated whether stochastic/neutral factors drive the persistence and abundance of Plasmodium falciparum clonal lineages in Guyana, a country with relatively low malaria transmission, but the only setting in the Americas in which an important artemisinin resistance mutation (pfk13 C580Y) has been observed. We performed whole genome sequencing on 1,727 Plasmodium falciparum samples collected from infected patients across a five-year period (2016-2021). We characterized the relatedness between each pair of monoclonal infections (n = 1,409) through estimation of identity-by-descent (IBD) and also typed each sample for known or candidate drug resistance mutations. A total of 160 multi-isolate clones (mean IBD ≥ 0.90) were circulating in Guyana during the study period, comprising 13 highly related clusters (mean IBD ≥ 0.40). In the five-year study period, we observed a decrease in frequency of a mutation associated with artemisinin partner drug (piperaquine) resistance (pfcrt C350R) and limited co-occurence of pfcrt C350R with duplications of plasmepsin 2/3, an epistatic interaction associated with piperaquine resistance. We additionally observed 61 nonsynonymous substitutions that increased markedly in frequency over the study period as well as a novel pfk13 mutation (G718S). However, P. falciparum clonal dynamics in Guyana appear to be largely driven by stochastic factors, in contrast to other geographic regions, given that clones carrying drug resistance polymorphisms do not demonstrate enhanced persistence or higher abundance than clones carrying polymorphisms of comparable frequency that are unrelated to resistance. The use of multiple artemisinin combination therapies in Guyana may have contributed to the disappearance of the pfk13 C580Y mutation.
Collapse
Affiliation(s)
- Mathieu Vanhove
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Philipp Schwabl
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | | | - Angela M. Early
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Margaret Laws
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Frank Anthony
- National Malaria Program, Ministry of Health, Georgetown, Guyana
| | - Célia Florimond
- Laboratoire de Parasitologie, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, Center Nationale de Référence du Paludisme, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Luana Mathieu
- Laboratoire de Parasitologie, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, Center Nationale de Référence du Paludisme, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Kashana James
- National Malaria Program, Ministry of Health, Georgetown, Guyana
| | - Cheyenne Knox
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Narine Singh
- National Malaria Program, Ministry of Health, Georgetown, Guyana
| | - Caroline O. Buckee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Lise Musset
- Laboratoire de Parasitologie, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, Center Nationale de Référence du Paludisme, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Horace Cox
- National Malaria Program, Ministry of Health, Georgetown, Guyana
- Caribbean Public Health Agency, Port of Spain, Trinidad and Tobago
| | - Reza Niles-Robin
- National Malaria Program, Ministry of Health, Georgetown, Guyana
| | - Daniel E. Neafsey
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
27
|
Small-Saunders JL, Sinha A, Bloxham TS, Hagenah LM, Sun G, Preiser PR, Dedon PC, Fidock DA. tRNA modification reprogramming contributes to artemisinin resistance in Plasmodium falciparum. Nat Microbiol 2024; 9:1483-1498. [PMID: 38632343 PMCID: PMC11153160 DOI: 10.1038/s41564-024-01664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
Plasmodium falciparum artemisinin (ART) resistance is driven by mutations in kelch-like protein 13 (PfK13). Quiescence, a key aspect of resistance, may also be regulated by a yet unidentified epigenetic pathway. Transfer RNA modification reprogramming and codon bias translation is a conserved epitranscriptomic translational control mechanism that allows cells to rapidly respond to stress. We report a role for this mechanism in ART-resistant parasites by combining tRNA modification, proteomic and codon usage analyses in ring-stage ART-sensitive and ART-resistant parasites in response to drug. Post-drug, ART-resistant parasites differentially hypomodify mcm5s2U on tRNA and possess a subset of proteins, including PfK13, that are regulated by Lys codon-biased translation. Conditional knockdown of the terminal s2U thiouridylase, PfMnmA, in an ART-sensitive parasite background led to increased ART survival, suggesting that hypomodification can alter the parasite ART response. This study describes an epitranscriptomic pathway via tRNA s2U reprogramming that ART-resistant parasites may employ to survive ART-induced stress.
Collapse
Affiliation(s)
- Jennifer L Small-Saunders
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA.
| | - Ameya Sinha
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore
| | - Talia S Bloxham
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Laura M Hagenah
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Guangxin Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter R Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore
| | - Peter C Dedon
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David A Fidock
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
28
|
Rosenthal PJ, Asua V, Conrad MD. Emergence, transmission dynamics and mechanisms of artemisinin partial resistance in malaria parasites in Africa. Nat Rev Microbiol 2024; 22:373-384. [PMID: 38321292 DOI: 10.1038/s41579-024-01008-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 02/08/2024]
Abstract
Malaria, mostly due to Plasmodium falciparum infection in Africa, remains one of the most important infectious diseases in the world. Standard treatment for uncomplicated P. falciparum malaria is artemisinin-based combination therapy (ACT), which includes a rapid-acting artemisinin derivative plus a longer-acting partner drug, and standard therapy for severe P. falciparum malaria is intravenous artesunate. The efficacy of artemisinins and ACT has been threatened by the emergence of artemisinin partial resistance in Southeast Asia, mediated principally by mutations in the P. falciparum Kelch 13 (K13) protein. High ACT treatment failure rates have occurred when resistance to partner drugs is also seen. Recently, artemisinin partial resistance has emerged in Rwanda, Uganda and the Horn of Africa, with independent emergences of different K13 mutants in each region. In this Review, we summarize our current knowledge of artemisinin partial resistance and focus on the emergence of resistance in Africa, including its epidemiology, transmission dynamics and mechanisms. At present, the clinical impact of emerging resistance in Africa is unclear and most available evidence suggests that the efficacies of leading ACTs remain excellent, but there is an urgent need to better appreciate the extent of the problem and its consequences for the treatment and control of malaria.
Collapse
Affiliation(s)
| | - Victor Asua
- Infectious Diseases Research Collaboration, Kampala, Uganda
- University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
29
|
de Aguiar-Barros J, Granja F, de Abreu-Fernandes R, de Queiroz LT, da Silva e Silva D, Citó AC, Mocelin NKADO, Daniel-Ribeiro CT, Ferreira-da-Cruz MDF. Molecular Surveillance of Artemisinin-Resistant Plasmodium falciparum Parasites in Mining Areas of the Roraima Indigenous Territory in Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:679. [PMID: 38928926 PMCID: PMC11203648 DOI: 10.3390/ijerph21060679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Multidrug- and artemisinin-resistant (ART-R) Plasmodium falciparum (Pf) parasites represent a challenge for malaria elimination worldwide. Molecular monitoring in the Kelch domain region (pfk13) gene allows tracking mutations in parasite resistance to artemisinin. The increase in illegal miners in the Roraima Yanomami indigenous land (YIL) could favor ART-R parasites. Thus, this study aimed to investigate ART-R in patients from illegal gold mining areas in the YIL of Roraima, Brazil. A questionnaire was conducted, and blood was collected from 48 patients diagnosed with P. falciparum or mixed malaria (Pf + P. vivax). The DNA was extracted and the pfk13 gene was amplified by PCR. The amplicons were subjected to DNA-Sanger-sequencing and the entire amplified fragment was analyzed. Among the patients, 96% (46) were from illegal mining areas of the YIL. All parasite samples carried the wild-type genotypes/ART-sensitive phenotypes. These data reinforce the continued use of artemisinin-based combination therapies (ACTs) in Roraima, as well as the maintenance of systematic monitoring for early detection of parasite populations resistant to ART, mainly in regions with an intense flow of individuals from mining areas, such as the YIL. This is especially true when the achievement of falciparum malaria elimination in Brazil is planned and expected by 2030.
Collapse
Affiliation(s)
- Jacqueline de Aguiar-Barros
- Malaria Control Center, Epidemiological Surveillance Department, General Health Surveillance Coordination, SESAU-RR, Roraima 69305-080, Brazil;
- Postgraduate Program in Biodiversity and Biotechnology–BIONORTE Network/Roraima Federal University (UFRR), Roraima 69310-000, Brazil;
| | - Fabiana Granja
- Postgraduate Program in Biodiversity and Biotechnology–BIONORTE Network/Roraima Federal University (UFRR), Roraima 69310-000, Brazil;
- Biodiversity Research Centre, Roraima Federal University (UFRR), Roraima 69304-000, Brazil;
- Graduate Program in Natural Resources, Federal University of Roraima (UFRR), Roraima 69304-000, Brazil
| | - Rebecca de Abreu-Fernandes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil; (R.d.A.-F.); (L.T.d.Q.); (N.K.A.-d.-O.M.); (C.T.D.-R.)
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal)/Reference Center for Malaria in the Extra-Amazon Region of the Brazilian Ministry of Health, Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Lucas Tavares de Queiroz
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil; (R.d.A.-F.); (L.T.d.Q.); (N.K.A.-d.-O.M.); (C.T.D.-R.)
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal)/Reference Center for Malaria in the Extra-Amazon Region of the Brazilian Ministry of Health, Fiocruz, Rio de Janeiro 21040-900, Brazil
| | | | - Arthur Camurça Citó
- Research Support Center in Roraima (NAPRR) of the National Institute for Amazonian Research (INPA), Roraima 69301-150, Brazil;
| | - Natália Ketrin Almeida-de-Oliveira Mocelin
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil; (R.d.A.-F.); (L.T.d.Q.); (N.K.A.-d.-O.M.); (C.T.D.-R.)
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal)/Reference Center for Malaria in the Extra-Amazon Region of the Brazilian Ministry of Health, Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil; (R.d.A.-F.); (L.T.d.Q.); (N.K.A.-d.-O.M.); (C.T.D.-R.)
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal)/Reference Center for Malaria in the Extra-Amazon Region of the Brazilian Ministry of Health, Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Maria de Fátima Ferreira-da-Cruz
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-360, Brazil; (R.d.A.-F.); (L.T.d.Q.); (N.K.A.-d.-O.M.); (C.T.D.-R.)
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal)/Reference Center for Malaria in the Extra-Amazon Region of the Brazilian Ministry of Health, Fiocruz, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
30
|
Sanna A, Suárez-Mutis M, Lambert Y, Carvalho L, Cairo H, Cox H, de Bort C, Gomes do Socorro Mendonça M, Forero-Peña DA, Gabaldón-Figueira JC, Grillet ME, Klein F, Lazarus C, Lazrek Y, Louzada J, Malafaia D, Marchesini P, Musset L, Oliveira-Ferreira J, Peterka C, Rousseau C, Roux E, Villegas L, Vreden S, Wiedner-Papin S, Laporta GZ, Hiwat H, Douine M. Cooperation for malaria control and elimination in the Guiana Shield. Lancet Glob Health 2024; 12:e875-e881. [PMID: 38614635 DOI: 10.1016/s2214-109x(24)00047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/28/2023] [Accepted: 01/23/2024] [Indexed: 04/15/2024]
Abstract
The Guiana Shield, a small region of South America, is currently one of the main hotspots of malaria transmission on the continent. This Amazonian area is characterised by remarkable socioeconomic, cultural, health, and political heterogeneity and a high degree of regional and cross-border population mobility, which has contributed to the increase of malaria in the region in the past few years. In this context, regional cooperation to control malaria represents both a challenge and an indispensable initiative. This Viewpoint advocates for the creation of a regional cooperative mechanism for the elimination of malaria in the Guiana Shield. This strategy would help address operational and political obstacles to successful technical cooperation in the region and could contribute to reversing the regional upsurge in malaria incidence through creating a functional international control and elimination partnership.
Collapse
Affiliation(s)
- Alice Sanna
- French West Indies-French Guiana Center for Clinical Investigation (CIC Inserm 1424), Department of Research, Innovation, and Public Health, Cayenne Hospital, Cayenne, French Guiana, France.
| | - Martha Suárez-Mutis
- Laboratory of Parasitic Diseases, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; International Joint Laboratory Sentinela, Fundação Oswaldo Cruz, University of Brasília, French National Research Institute for Sustainable Development, Rio de Janeiro, Brazil
| | - Yann Lambert
- French West Indies-French Guiana Center for Clinical Investigation (CIC Inserm 1424), Department of Research, Innovation, and Public Health, Cayenne Hospital, Cayenne, French Guiana, France
| | | | - Hedley Cairo
- National Malaria Program, Ministry of Health, Paramaribo, Suriname
| | - Horace Cox
- Vector-Borne Diseases Unit, Caribbean Public Health Agency, Port of Spain, Trinidad and Tobago
| | - Clara de Bort
- Regional Health Agency, Cayenne, French Guiana, France
| | | | - David A Forero-Peña
- Faculty of Medicine, Central University of Venezuela, Caracas, Venezuela; Biomedical Research and Therapeutic Vaccines Institute, Ciudad Bolívar, Venezuela
| | | | - Maria Eugenia Grillet
- Laboratory of Biology of Vectors and Parasites, Institute of Zoology and Tropical Ecology, Faculty of Sciences, Central University of Venezuela, Caracas, Venezuela
| | - François Klein
- Directorate General for Health, Ministry of Health and Prevention, Paris, France
| | - Clément Lazarus
- Directorate General for Health, Ministry of Health and Prevention, Paris, France
| | - Yassamine Lazrek
- Laboratory of Parasitology, Pasteur Institute in French Guiana, Cayenne, French Guiana, France
| | - Jaime Louzada
- Department of Nursing Science, Federal University of Roraima, Boa Vista, Brazil
| | - Dorinaldo Malafaia
- Vigifronteiras Program, Fundação Oswald Cruz, Rio de Janeiro, Brazil; Chamber of Deputies, National Congress, Brasília, Brazil
| | - Paola Marchesini
- Overall Coordination of Surveillance of Zoonoses and Vector-Borne Diseases, Ministry of Health of Brazil, Brasília, Brazil
| | - Lise Musset
- Laboratory of Parasitology, Pasteur Institute in French Guiana, Cayenne, French Guiana, France
| | - Joseli Oliveira-Ferreira
- Laboratory of Immunoparasitology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Cassio Peterka
- Coordination of Malaria Elimination, Ministry of Health of Brazil, Brasília, Brazil
| | - Cyril Rousseau
- Division of Decentralized Primary Care Centers, Cayenne Hospital, Cayenne, French Guiana, France
| | - Emmanuel Roux
- ESPACE-DEV, French National Research Institute for Sustainable Development, University of Montpellier, University of the French West Indies, University of French Guiana, University of Reunion Island, and University of Perpignan Via Domitia, Montpellier, France; International Joint Laboratory Sentinela, Fundação Oswaldo Cruz, University of Brasília, French National Research Institute for Sustainable Development, Rio de Janeiro, Brazil
| | | | - Stephen Vreden
- Foundation for the Advancement of Scientific Research in Suriname, Paramaribo, Suriname
| | | | | | - Helene Hiwat
- National Malaria Program, Ministry of Health, Paramaribo, Suriname
| | - Maylis Douine
- French West Indies-French Guiana Center for Clinical Investigation (CIC Inserm 1424), Department of Research, Innovation, and Public Health, Cayenne Hospital, Cayenne, French Guiana, France
| |
Collapse
|
31
|
Pickering PA, Harris I, Smith D, McCallum F, Kaminiel P, Auliff A, Cheng Q. Burden of Submicroscopic Plasmodium Infections and Detection of kelch13 Mutant Parasites in Military and Civilian Populations in Papua New Guinea. Am J Trop Med Hyg 2024; 110:639-647. [PMID: 38377613 PMCID: PMC10993850 DOI: 10.4269/ajtmh.23-0508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/22/2023] [Indexed: 02/22/2024] Open
Abstract
Malaria remains a major public health problem in Papua New Guinea (PNG) and an important force health protection issue for both PNG and Australian Defence Forces. To investigate the malaria burden in the military and civilians residing on military bases, a cross-sectional survey was conducted in April 2019 at three military bases in Wewak, Manus Island, and Vanimo, PNG. A total of 1,041 participants were enrolled; 235 military personnel from three bases and 806 civilians from Wewak and Vanimo. Polymerase chain reaction (PCR) revealed an overall high prevalence of Plasmodium infection in both the military and civilians. Among the military, the infection prevalence was significantly higher in Wewak (35.5%) and Vanimo (33.3%) bases than on Manus Island (11.8%). Among civilians, children (<16 years old) had significantly higher odds of being PCR positive than adults (≥16 years old). At Wewak and Vanimo, Plasmodium vivax accounted for 85.4%, 78.2%, and 66.2% of infections in military, children, and adult populations. Overall, 87.3%, 41.3%, and 61.3% of Plasmodium infections in the military, children, and adults, respectively, were detected only by PCR, not by microscopy (submicroscopic [SM] infections). Children had a significantly lower proportion of SM infections than adults and Papua New Guinea Defence Force personnel. Infection status was not associated with hemoglobin levels in these populations at the time of the survey. Mutant kelch13 (C580Y) parasites were identified in 5/68 Plasmodium falciparum-infected individuals. The survey results indicate extensive malaria transmission on these bases, especially in Wewak and Vanimo. More intensified interventions are required to reduce malaria transmission on PNG military bases.
Collapse
Affiliation(s)
- Paul A. Pickering
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Ivor Harris
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - David Smith
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Fiona McCallum
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Peter Kaminiel
- Papua New Guinea Defence Force Health Service, Port Moresby, Papua New Guinea
| | - Alyson Auliff
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Qin Cheng
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| |
Collapse
|
32
|
Platon L, Leroy D, Fidock DA, Ménard D. Drug-induced stress mediates Plasmodium falciparum ring-stage growth arrest and reduces in vitro parasite susceptibility to artemisinin. Microbiol Spectr 2024; 12:e0350023. [PMID: 38363132 PMCID: PMC10986542 DOI: 10.1128/spectrum.03500-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
During blood-stage infection, Plasmodium falciparum parasites are constantly exposed to a range of extracellular stimuli, including host molecules and drugs such as artemisinin derivatives, the mainstay of artemisinin-based combination therapies currently used as first-line treatment worldwide. Partial resistance of P. falciparum to artemisinin has been associated with mutations in the propeller domain of the Pfkelch13 gene, resulting in a fraction of ring stages that are able to survive exposure to artemisinin through a temporary growth arrest. Here, we investigated whether the growth arrest in ring-stage parasites reflects a general response to stress. We mimicked a stressful environment in vitro by exposing parasites to chloroquine or dihydroartemisinin (DHA). We observed that early ring-stage parasites pre-exposed to a stressed culture supernatant exhibited a temporary growth arrest and a reduced susceptibility to DHA, as assessed by the ring-stage survival assay, irrespective of their Pfkelch13 genotype. These data suggest that temporary growth arrest of early ring stages may be a constitutive, Pfkelch13-independent survival mechanism in P. falciparum.IMPORTANCEPlasmodium falciparum ring stages have the ability to sense the extracellular environment, regulate their growth, and enter a temporary growth arrest state in response to adverse conditions such as drug exposure. This temporary growth arrest results in reduced susceptibility to artemisinin in vitro. The signal responsible for this process is thought to be small molecules (less than 3 kDa) released by stressed mature-stage parasites. These data suggest that Pfkelch13-dependent artemisinin resistance and the growth arrest phenotype are two complementary but unrelated mechanisms of ring-stage survival in P. falciparum. This finding provides new insights into the field of P. falciparum antimalarial drug resistance by highlighting the extracellular compartment and cellular communication as an understudied mechanism.
Collapse
Affiliation(s)
- Lucien Platon
- Malaria Genetics and Resistance Unit, INSERM U1201, Institut Pasteur, Université Paris Cité, Paris, France
- Sorbonne Université, Collège Doctoral ED 515 Complexité du Vivant, Paris, France
- Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host–Pathogen Interactions, Université de Strasbourg, Strasbourg, France
| | - Didier Leroy
- Department of Drug Discovery, Medicines for Malaria Venture, Geneva, Switzerland
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Didier Ménard
- Malaria Genetics and Resistance Unit, INSERM U1201, Institut Pasteur, Université Paris Cité, Paris, France
- Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host–Pathogen Interactions, Université de Strasbourg, Strasbourg, France
- Laboratory of Parasitology and Medical Mycology, CHU Strasbourg, Strasbourg, France
| |
Collapse
|
33
|
Guo B, Borda V, Laboulaye R, Spring MD, Wojnarski M, Vesely BA, Silva JC, Waters NC, O'Connor TD, Takala-Harrison S. Strong positive selection biases identity-by-descent-based inferences of recent demography and population structure in Plasmodium falciparum. Nat Commun 2024; 15:2499. [PMID: 38509066 PMCID: PMC10954658 DOI: 10.1038/s41467-024-46659-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Malaria genomic surveillance often estimates parasite genetic relatedness using metrics such as Identity-By-Decent (IBD), yet strong positive selection stemming from antimalarial drug resistance or other interventions may bias IBD-based estimates. In this study, we use simulations, a true IBD inference algorithm, and empirical data sets from different malaria transmission settings to investigate the extent of this bias and explore potential correction strategies. We analyze whole genome sequence data generated from 640 new and 3089 publicly available Plasmodium falciparum clinical isolates. We demonstrate that positive selection distorts IBD distributions, leading to underestimated effective population size and blurred population structure. Additionally, we discover that the removal of IBD peak regions partially restores the accuracy of IBD-based inferences, with this effect contingent on the population's background genetic relatedness and extent of inbreeding. Consequently, we advocate for selection correction for parasite populations undergoing strong, recent positive selection, particularly in high malaria transmission settings.
Collapse
Affiliation(s)
- Bing Guo
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Victor Borda
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Roland Laboulaye
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michele D Spring
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mariusz Wojnarski
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Brian A Vesely
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (NOVA), Lisbon, Portugal
| | - Norman C Waters
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Timothy D O'Connor
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
34
|
Avalos-Padilla Y, Fernàndez-Busquets X. Nanotherapeutics against malaria: A decade of advancements in experimental models. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1943. [PMID: 38426407 DOI: 10.1002/wnan.1943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 11/01/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024]
Abstract
Malaria, caused by different species of protists of the genus Plasmodium, remains among the most common causes of death due to parasitic diseases worldwide, mainly for children aged under 5. One of the main obstacles to malaria eradication is the speed with which the pathogen evolves resistance to the drug schemes developed against it. For this reason, it remains urgent to find innovative therapeutic strategies offering sufficient specificity against the parasite to minimize resistance evolution and drug side effects. In this context, nanotechnology-based approaches are now being explored for their use as antimalarial drug delivery platforms due to the wide range of advantages and tuneable properties that they offer. However, major challenges remain to be addressed to provide a cost-efficient and targeted therapeutic strategy contributing to malaria eradication. The present work contains a systematic review of nanotechnology-based antimalarial drug delivery systems generated during the last 10 years. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Yunuen Avalos-Padilla
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
35
|
Zupko RJ, Servadio JL, Nguyen TD, Tran TNA, Tran KT, Somé AF, Boni MF. Role of seasonal importation and genetic drift on selection for drug-resistant genotypes of Plasmodium falciparum in high-transmission settings. J R Soc Interface 2024; 21:20230619. [PMID: 38442861 PMCID: PMC10914515 DOI: 10.1098/rsif.2023.0619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Historically Plasmodium falciparum has followed a pattern of drug resistance first appearing in low-transmission settings before spreading to high-transmission settings. Several features of low-transmission regions are hypothesized as explanations: higher chance of symptoms and treatment seeking, better treatment access, less within-host competition among clones and lower rates of recombination. Here, we test whether importation of drug-resistant parasites is more likely to lead to successful emergence and establishment in low-transmission or high-transmission periods of the same epidemiological setting, using a spatial, individual-based stochastic model of malaria and drug-resistance evolution calibrated for Burkina Faso. Upon controlling for the timing of importation of drug-resistant genotypes and examination of key model variables, we found that drug-resistant genotypes imported during the low-transmission season were (i) more susceptible to stochastic extinction due to the action of genetic drift, and (ii) more likely to lead to establishment of drug resistance when parasites are able to survive early stochastic loss due to drift. This implies that rare importation events are more likely to lead to establishment if they occur during a high-transmission season, but that constant importation (e.g. neighbouring countries with high levels of resistance) may produce a greater risk during low-transmission periods.
Collapse
Affiliation(s)
- Robert J. Zupko
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Joseph L. Servadio
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Tran Dang Nguyen
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Thu Nguyen-Anh Tran
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Kien Trung Tran
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Anyirékun Fabrice Somé
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l'Ouest, Bobo Dioulasso, Burkina Faso
| | - Maciej F. Boni
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
36
|
Collins JE, Lee JW, Rocamora F, Saggu GS, Wendt KL, Pasaje CFA, Smick S, Santos NM, Paes R, Jiang T, Mittal N, Luth MR, Chin T, Chang H, McLellan JL, Morales-Hernandez B, Hanson KK, Niles JC, Desai SA, Winzeler EA, Cichewicz RH, Chakrabarti D. Antiplasmodial peptaibols act through membrane directed mechanisms. Cell Chem Biol 2024; 31:312-325.e9. [PMID: 37995692 PMCID: PMC10923054 DOI: 10.1016/j.chembiol.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 08/29/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
Our previous study identified 52 antiplasmodial peptaibols isolated from fungi. To understand their antiplasmodial mechanism of action, we conducted phenotypic assays, assessed the in vitro evolution of resistance, and performed a transcriptome analysis of the most potent peptaibol, HZ NPDG-I. HZ NPDG-I and 2 additional peptaibols were compared for their killing action and stage dependency, each showing a loss of digestive vacuole (DV) content via ultrastructural analysis. HZ NPDG-I demonstrated a stepwise increase in DV pH, impaired DV membrane permeability, and the ability to form ion channels upon reconstitution in planar membranes. This compound showed no signs of cross resistance to targets of current clinical candidates, and 3 independent lines evolved to resist HZ NPDG-I acquired nonsynonymous changes in the P. falciparum multidrug resistance transporter, pfmdr1. Conditional knockdown of PfMDR1 showed varying effects to other peptaibol analogs, suggesting differing sensitivity.
Collapse
Affiliation(s)
- Jennifer E Collins
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA
| | - Jin Woo Lee
- Department of Chemistry and Biochemistry, Institute for Natural Products Applications & Research Technologies, University of Oklahoma, Norman OK 73019, USA
| | - Frances Rocamora
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Gagandeep S Saggu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Karen L Wendt
- Department of Chemistry and Biochemistry, Institute for Natural Products Applications & Research Technologies, University of Oklahoma, Norman OK 73019, USA
| | - Charisse Flerida A Pasaje
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Sebastian Smick
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Natalia Mojica Santos
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA
| | - Raphaella Paes
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA
| | - Tiantian Jiang
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Nimisha Mittal
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Madeline R Luth
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Taylor Chin
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Howard Chang
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - James L McLellan
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, University of Texas San Antonio, San Antonio, TX 78249, USA
| | - Beatriz Morales-Hernandez
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, University of Texas San Antonio, San Antonio, TX 78249, USA
| | - Kirsten K Hanson
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, University of Texas San Antonio, San Antonio, TX 78249, USA
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Sanjay A Desai
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Elizabeth A Winzeler
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA.
| | - Robert H Cichewicz
- Department of Chemistry and Biochemistry, Institute for Natural Products Applications & Research Technologies, University of Oklahoma, Norman OK 73019, USA.
| | - Debopam Chakrabarti
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA.
| |
Collapse
|
37
|
Florimond C, de Laval F, Early AM, Sauthier S, Lazrek Y, Pelleau S, Monteiro WM, Agranier M, Taudon N, Morin F, Magris M, Lacerda MVG, Viana GMR, Herrera S, Adhin MR, Ferreira MU, Woodrow CJ, Awab GR, Cox H, Ade MP, Mosnier E, Djossou F, Neafsey DE, Ringwald P, Musset L. Impact of piperaquine resistance in Plasmodium falciparum on malaria treatment effectiveness in The Guianas: a descriptive epidemiological study. THE LANCET. INFECTIOUS DISEASES 2024; 24:161-171. [PMID: 37858325 PMCID: PMC10808503 DOI: 10.1016/s1473-3099(23)00502-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/17/2023] [Accepted: 08/01/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Plasmodium falciparum is an apicomplexan parasite responsible for lethal cases of malaria. According to WHO recommendations, P falciparum cases are treated with artemisinin-based combination therapy including dihydroartemisinin-piperaquine. However, the emergence of resistant parasites against dihydroartemisinin-piperaquine was reported in southeast Asia in 2008 and, a few years later, suspected in South America. METHODS To characterise resistance emergence, a treatment efficacy study was performed on the reported patients infected with P falciparum and treated with dihydroartemisinin-piperaquine in French Guiana (n=6, 2016-18). Contemporary isolates collected in French Guiana were genotyped for P falciparum chloroquine resistance transporter (pfCRT; n=845) and pfpm2 and pfpm3 copy number (n=231), phenotyped using the in vitro piperaquine survival assay (n=86), and analysed through genomic studies (n=50). Additional samples from five Amazonian countries and one outside the region were genotyped (n=1440). FINDINGS In field isolates, 40 (47%) of 86 (95% CI 35·9-57·1) were resistant to piperaquine in vitro; these phenotypes were more associated with pfCRTC350R (ie, Cys350Arg) and pfpm2 and pfpm3 amplifications (Dunn test, p<0·001). Those markers were also associated with dihydroartemisinin-piperaquine treatment failure (n=3 [50%] of 6). A high prevalence of piperaquine resistance markers was observed in Suriname in 19 (83%) of 35 isolates and in Guyana in 579 (73%) of 791 isolates. The pfCRTC350R mutation emerged before pfpm2 and pfpm3 amplification in a temporal sequence different from southeast Asia, and in the absence of artemisinin partial resistance, suggesting a geographically distinctive epistatic relationship between these genetic markers. INTERPRETATION The high prevalence of piperaquine resistance markers in parasite populations of the Guianas, and the risk of associated therapeutic failures calls for caution on dihydroartemisinin-piperaquine use in the region. Furthermore, greater attention should be given to potential differences in genotype to phenotype mapping across genetically distinct parasite populations from different continents. FUNDING Pan American Health Organization and WHO, French Ministry for Research, European Commission, Santé publique France, Agence Nationale de la Recherche, Fundação de Amparo à Pesquisa do Estado do Amazonas, Ministry of Health of Brazil, Oswaldo Cruz Foundation, and National Institutes of Health. TRANSLATIONS For the French and Portuguese translations of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Celia Florimond
- Laboratoire de parasitologie, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, Center Nationale de Référence du Paludisme, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Franck de Laval
- Service de Santé des Armées (SSA), Centre d'Epidémiologie et de Santé Publique des Armées (CESPA), Marseille, France; Sciences Economiques Sociales de la Santé & Traitement de l'Information Médicale (SESSTIM), Aix Marseille University, INSERM, IRD, Marseille, France
| | - Angela M Early
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, USA; Department of Immunology and Infectious Diseases, Harvard T H Chan School of Public Health, Boston, MA, USA
| | - Swaélie Sauthier
- Laboratoire de parasitologie, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, Center Nationale de Référence du Paludisme, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Yassamine Lazrek
- Laboratoire de parasitologie, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, Center Nationale de Référence du Paludisme, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Stéphane Pelleau
- Laboratoire de parasitologie, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, Center Nationale de Référence du Paludisme, Institut Pasteur de la Guyane, Cayenne, French Guiana; Infectious Diseases Epidemiology and Analytics Unit, Department of Global Health, Institut Pasteur, Université Paris Cité, Paris, France
| | - Wuelton M Monteiro
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil; Escola de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Maxime Agranier
- Laboratoire de parasitologie, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, Center Nationale de Référence du Paludisme, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Nicolas Taudon
- Unité de développements analytiques et bioanalyse, Institut de recherche biomédicale des armées, Brétigny-sur-Orge, France
| | - François Morin
- Service de Santé des Armées (SSA), Centre d'Epidémiologie et de Santé Publique des Armées (CESPA), Marseille, France
| | - Magda Magris
- Amazonic Center for Research and Control of Tropical Diseases "Simón Bolívar", Puerto Ayacucho, Venezuela
| | - Marcus V G Lacerda
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil; Instituto Leônidas & Maria Deane, Fiocruz, Manaus, Brazil
| | - Giselle M R Viana
- Laboratory of Basic Research in Malaria, Evandro Chagas Institute, Brazil Ministry of Health, Ananindeua, Brazil
| | - Sócrates Herrera
- Malaria Vaccine and Drug Development Center, Cali, Colombia; Caucaseco Scientific Research Center, Cali, Colombia
| | - Malti R Adhin
- Department of Biochemistry Kernkampweg 5, Faculty of Medical Sciences, Anton de Kom Universiteit van Suriname, Paramaribo, Suriname
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Nova University of Lisbon, Lisbon, Portugal
| | - Charles J Woodrow
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ghulam R Awab
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Ministry of Public Health, Kabul, Afghanistan
| | - Horace Cox
- National Malaria Program, Ministry of Health, Georgetown, Guyana
| | - Maria-Paz Ade
- Department of Communicable Diseases and Environmental Determinants of Health, Pan American Health Organization/World Health Organization, Washington DC, USA
| | - Emilie Mosnier
- Sciences Economiques Sociales de la Santé & Traitement de l'Information Médicale (SESSTIM), Aix Marseille University, INSERM, IRD, Marseille, France
| | - Félix Djossou
- Infectious and Tropical Diseases Unit, Cayenne General Hospital, Cayenne, French Guiana
| | - Daniel E Neafsey
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, USA; Department of Immunology and Infectious Diseases, Harvard T H Chan School of Public Health, Boston, MA, USA
| | - Pascal Ringwald
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Lise Musset
- Laboratoire de parasitologie, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, Center Nationale de Référence du Paludisme, Institut Pasteur de la Guyane, Cayenne, French Guiana.
| |
Collapse
|
38
|
Vanhove M, Schwabl P, Clementson C, Early AM, Laws M, Anthony F, Florimond C, Mathieu L, James K, Knox C, Singh N, Buckee CO, Musset L, Cox H, Niles-Robin R, Neafsey DE. Temporal and spatial dynamics of Plasmodium falciparum clonal lineages in Guyana. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578156. [PMID: 38352461 PMCID: PMC10862847 DOI: 10.1101/2024.01.31.578156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Plasmodium parasites, the causal agents of malaria, are eukaryotic organisms that obligately undergo sexual recombination within mosquitoes. However, in low transmission settings where most mosquitoes become infected with only a single parasite clone, parasites recombine with themselves, and the clonal lineage is propagated rather than broken up by outcrossing. We investigated whether stochastic/neutral factors drive the persistence and abundance of Plasmodium falciparum clonal lineages in Guyana, a country with relatively low malaria transmission, but the only setting in the Americas in which an important artemisinin resistance mutation (pfk13 C580Y) has been observed. To investigate whether this clonality was potentially associated with the persistence and spatial spread of the mutation, we performed whole genome sequencing on 1,727 Plasmodium falciparum samples collected from infected patients across a five-year period (2016-2021). We characterized the relatedness between each pair of monoclonal infections (n=1,409) through estimation of identity by descent (IBD) and also typed each sample for known or candidate drug resistance mutations. A total of 160 clones (mean IBD ≥ 0.90) were circulating in Guyana during the study period, comprising 13 highly related clusters (mean IBD ≥ 0.40). In the five-year study period, we observed a decrease in frequency of a mutation associated with artemisinin partner drug (piperaquine) resistance (pfcrt C350R) and limited co-occurence of pfcrt C350R with duplications of plasmepsin 2/3, an epistatic interaction associated with piperaquine resistance. We additionally report polymorphisms exhibiting evidence of selection for drug resistance or other phenotypes and reported a novel pfk13 mutation (G718S) as well as 61 nonsynonymous substitutions that increased markedly in frequency. However, P. falciparum clonal dynamics in Guyana appear to be largely driven by stochastic factors, in contrast to other geographic regions. The use of multiple artemisinin combination therapies in Guyana may have contributed to the disappearance of the pfk13 C580Y mutation.
Collapse
Affiliation(s)
- Mathieu Vanhove
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Philipp Schwabl
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Angela M Early
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Margaret Laws
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Frank Anthony
- National Malaria Program, Ministry of Health, Georgetown, Guyana
| | - Célia Florimond
- Laboratoire de parasitologie, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, Center Nationale de Référence du Paludisme, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Luana Mathieu
- Laboratoire de parasitologie, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, Center Nationale de Référence du Paludisme, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Kashana James
- National Malaria Program, Ministry of Health, Georgetown, Guyana
| | - Cheyenne Knox
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Narine Singh
- National Malaria Program, Ministry of Health, Georgetown, Guyana
| | - Caroline O Buckee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lise Musset
- Laboratoire de parasitologie, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, Center Nationale de Référence du Paludisme, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Horace Cox
- National Malaria Program, Ministry of Health, Georgetown, Guyana
- Caribbean Public Health Agency, Trinidad and Tobago
| | - Reza Niles-Robin
- National Malaria Program, Ministry of Health, Georgetown, Guyana
| | - Daniel E Neafsey
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
39
|
Mok S, Fidock DA. Determinants of piperaquine-resistant malaria in South America. THE LANCET. INFECTIOUS DISEASES 2024; 24:114-116. [PMID: 37858324 PMCID: PMC10872569 DOI: 10.1016/s1473-3099(23)00564-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 10/21/2023]
Affiliation(s)
- Sachel Mok
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David A Fidock
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
40
|
Grossman T, Vainer J, Paran Y, Studentsky L, Manor U, Dzikowski R, Schwartz E. Emergence of artemisinin-based combination treatment failure in patients returning from sub-Saharan Africa with P. falciparum malaria. J Travel Med 2023; 30:taad114. [PMID: 37606241 DOI: 10.1093/jtm/taad114] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Artemisinin-based combination therapies (ACTs) are recommended as first-line treatment against uncomplicated Plasmodium falciparum infection. Mutations in the PfKelch13 (PF3D7_1343700) gene led to resistance to artemisinin in Southeast Asia. Mutations in the Pfcoronin (PF3D7_1251200) gene confer reduced artemisinin susceptibility in vitro to an African Plasmodium strain, but their role in clinical resistance has not been established. METHODS We conducted a retrospective observational study of Israeli travellers returning from sub-Saharan Africa with P. falciparum malaria, including patients with artemether-lumefantrine (AL) failure. Blood samples from all malaria-positive patients are delivered to the national Parasitology Reference Laboratory along with personal information. Confirmation of malaria, species identification and comparative parasite load analysis were performed using real-time PCR. DNA extractions from stored leftover samples were analysed for the presence of mutations in Pfkelch13 and Pfcoronin. Age, weight, initial parasitaemia level and Pfcoronin status were compared in patients who failed treatment vs responders. RESULTS During 2009-2020, 338 patients had P. falciparum malaria acquired in Africa. Of those, 15 (24-69 years old, 14 males) failed treatment with AL. Four were still parasitemic at the end of treatment, and 11 had malaria recrudescence. Treatment failure rates were 0% during 2009-2012, 9.1% during 2013-2016 and 17.4% during 2017-2020. In all patients, the Pfkelch13 propeller domain had a wild-type sequence. We did find the P76S mutation in the propeller domain of Pfcoronin in 4/15 (28.6%) of the treatment-failure cases compared to only 3/56 (5.5%) in the successfully treated patients (P = 0.027). CONCLUSION AL treatment failure emergence was not associated with mutations in Pfkelch13. However, P76S mutation in the Pfcoronin gene was more frequently present in the treatment-failure group and merits further investigation. The increase of malaria incidence in sub-Saharan-Africa partly attributed to the COVID-19 pandemic might also reflect a wider spread of ACT resistance.
Collapse
Affiliation(s)
- Tamar Grossman
- Parasitology Reference Laboratory, Public Health Laboratories-Jerusalem (PHL-J), Public Health Services (PHS), Ministry of Health (MOH), Jerusalem 9134302, Israel
| | - Julia Vainer
- Parasitology Reference Laboratory, Public Health Laboratories-Jerusalem (PHL-J), Public Health Services (PHS), Ministry of Health (MOH), Jerusalem 9134302, Israel
| | - Yael Paran
- Infectious Disease Department, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Liora Studentsky
- Parasitology Reference Laboratory, Public Health Laboratories-Jerusalem (PHL-J), Public Health Services (PHS), Ministry of Health (MOH), Jerusalem 9134302, Israel
| | - Uri Manor
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- The Center for Geographic Medicine, Sheba Medical Center, Tel HaShomer 5262000, Israel
| | - Ron Dzikowski
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Eli Schwartz
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- The Center for Geographic Medicine, Sheba Medical Center, Tel HaShomer 5262000, Israel
| |
Collapse
|
41
|
Schmidt S, Wichers-Misterek JS, Behrens HM, Birnbaum J, Henshall IG, Dröge J, Jonscher E, Flemming S, Castro-Peña C, Mesén-Ramírez P, Spielmann T. The Kelch13 compartment contains highly divergent vesicle trafficking proteins in malaria parasites. PLoS Pathog 2023; 19:e1011814. [PMID: 38039338 PMCID: PMC10718435 DOI: 10.1371/journal.ppat.1011814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/13/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023] Open
Abstract
Single amino acid changes in the parasite protein Kelch13 (K13) result in reduced susceptibility of P. falciparum parasites to artemisinin and its derivatives (ART). Recent work indicated that K13 and other proteins co-localising with K13 (K13 compartment proteins) are involved in the endocytic uptake of host cell cytosol (HCCU) and that a reduction in HCCU results in reduced susceptibility to ART. HCCU is critical for parasite survival but is poorly understood, with the K13 compartment proteins among the few proteins so far functionally linked to this process. Here we further defined the composition of the K13 compartment by analysing more hits from a previous BioID, showing that MyoF and MCA2 as well as Kelch13 interaction candidate (KIC) 11 and 12 are found at this site. Functional analyses, tests for ART susceptibility as well as comparisons of structural similarities using AlphaFold2 predictions of these and previously identified proteins showed that vesicle trafficking and endocytosis domains were frequent in proteins involved in resistance or endocytosis (or both), comprising one group of K13 compartment proteins. While this strengthened the link of the K13 compartment to endocytosis, many proteins of this group showed unusual domain combinations and large parasite-specific regions, indicating a high level of taxon-specific adaptation of this process. Another group of K13 compartment proteins did not influence endocytosis or ART susceptibility and lacked detectable vesicle trafficking domains. We here identified the first protein of this group that is important for asexual blood stage development and showed that it likely is involved in invasion. Overall, this work identified novel proteins functioning in endocytosis and at the K13 compartment. Together with comparisons of structural predictions it provides a repertoire of functional domains at the K13 compartment that indicate a high level of adaption of endocytosis in malaria parasites.
Collapse
Affiliation(s)
- Sabine Schmidt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | - Jakob Birnbaum
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Jana Dröge
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ernst Jonscher
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sven Flemming
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
42
|
Zupko RJ, Servadio JL, Nguyen TD, Tran TNA, Tran KT, Somé AF, Boni MF. Role of Seasonal Importation and Random Genetic Drift on Selection for Drug-Resistant Genotypes of Plasmodium falciparum in High Transmission Settings. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563204. [PMID: 37961194 PMCID: PMC10634683 DOI: 10.1101/2023.10.20.563204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Historically Plasmodium falciparum has followed a pattern of drug resistance first appearing in low transmission settings before spreading to high transmission settings. Several features of low-transmission regions are hypothesized as explanations: higher chance of symptoms and treatment seeking, better treatment access, less within-host competition among clones, and lower rates of recombination. Here, we test whether importation of drug-resistant parasites is more likely to lead to successful emergence and establishment in low-transmission or high-transmission periods of the same epidemiological setting, using a spatial, individual-based stochastic model of malaria and drug-resistance evolution calibrated for Burkina Faso. Upon controlling for the timing of importation of drug-resistant genotypes and examination of key model variables, we found that drug-resistant genotypes imported during the low transmission season were, (1) more susceptible to stochastic extinction due to the action of random genetic drift, and (2) more likely to lead to establishment of drug resistance when parasites are able to survive early stochastic loss due to drift. This implies that rare importation events are more likely to lead to establishment if they occur during a high-transmission season, but that constant importation (e.g., neighboring countries with high levels of resistance) may produce a greater risk during low-transmission periods.
Collapse
Affiliation(s)
- Robert J. Zupko
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Joseph L. Servadio
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Tran Dang Nguyen
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Thu Nguyen-Anh Tran
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Kien Trung Tran
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Anyirékun Fabrice Somé
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l’Ouest, Bobo Dioulasso, Burkina Faso
| | - Maciej F. Boni
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Sandoval-Bances J, Saavedra-Samillán M, Huyhua-Gutiérrez S, Rojas LM, Tejada-Muñoz S, Tapia-Limonchi R, Chenet SM. Molecular characterization of the Plasmodium falciparum k13 gene helix domain in samples from native communities of Condorcanqui, Amazonas, Perú. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2023; 43:352-359. [PMID: 37871569 PMCID: PMC10624420 DOI: 10.7705/biomedica.6849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/27/2023] [Indexed: 10/25/2023]
Abstract
Introduction. Resistance of Plasmodium falciparum to different antimalarial drugs is an obstacle to disease elimination. The artemisinin-resistant genotype of P. falciparum can be assessed by examining polymorphisms in the helix domain of the Pfk13 gene. The World Health Organization recommends these mutations as molecular markers to detect artemisinin-resistant in countries where P. falciparum malaria is endemic. Objective. To identify artemisinin resistance-related mutations present in the helix domain of the P. falciparum k13 gene. Materials and methods. We collected a total of 51 samples through passive case detection, positive for Plasmodium by microscopy, from six communities in the district of Río Santiago in Condorcanqui, Amazonas. Molecular species confirmation was performed by real-time PCR and Pfk13 helix domain was amplified and sequenced by capillary electrophoresis. The obtained sequences were compared with the wild type 3D7 reference strain. Results. A total of 51 positive samples were confirmed for P. falciparum from the communities of Ayambis, Chapiza, Palometa, Muchinguis, Alianza Progreso and Caterpiza. DNA sequences alignment showed the absence of resistance-associated mutations in the k13 gene of the collected samples. Discussion. The obtained results are consistent with similar studies conducted in other South American countries, including Perú, so these data provide a baseline for artemisinin-resistance molecular surveillance in the Amazon region and reinforce the efficacy of artemisinin-based combination therapy in this area.
Collapse
Affiliation(s)
- Julio Sandoval-Bances
- nstituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Triunfo, Chachapoyas, Perú.
| | - Milagros Saavedra-Samillán
- nstituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Triunfo, Chachapoyas, Perú.
| | - Sonia Huyhua-Gutiérrez
- Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Triunfo, Chachapoyas, Perú; Facultad de Ciencias de la Salud, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Triunfo, Chachapoyas, Perú.
| | - Luis M Rojas
- Dirección Regional de Salud de Amazonas, Chachapoyas, Perú.
| | - Sonia Tejada-Muñoz
- Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Triunfo, Chachapoyas, Perú 2 Facultad de Ciencias de la Salud, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Triunfo, Chachapoyas, Perú.
| | - Rafael Tapia-Limonchi
- Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Triunfo, Chachapoyas, Perú; Instituto de Investigaciones en Ciencias Biomédicas, Universidad Ricardo Palma, Lima, Perú.
| | - Stella M Chenet
- Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Triunfo, Chachapoyas, Perú; Instituto de Investigaciones en Ciencias Biomédicas, Universidad Ricardo Palma, Lima, Perú.
| |
Collapse
|
44
|
Haldar K, Alam MS, Koepfli C, Lobo NF, Phru CS, Islam MN, Faiz A, Khan WA, Haque R. Bangladesh in the era of malaria elimination. Trends Parasitol 2023; 39:760-773. [PMID: 37500334 DOI: 10.1016/j.pt.2023.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
Bangladesh has dramatically reduced malaria by 93% from 2008 to 2020. The strategy has been district-wise, phased elimination; however, the last districts targeted for elimination include remote, forested regions which present several challenges for prevention, detection, and treatment of malaria. These districts border Myanmar which harbors Plasmodium falciparum malaria parasites resistant to artemisinins, key drugs used in artemisinin-based combination therapies (ACTs) that have been vital for control programs. Challenges in monitoring emergence of artemisinin resistance (AR), tracking parasite reservoirs, changes in vector behavior and responses to insecticides, as well as other environmental and host factors (including the migration of Forcibly Displaced Myanmar Nationals; FDMNs) may pose added hazards in the final phase of eliminating malaria in Bangladesh.
Collapse
Affiliation(s)
- Kasturi Haldar
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, IN, USA; Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, IN, USA; Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, IN, USA.
| | - Mohammed Shafiul Alam
- Infectious Disease Division, International Center of Diarrheal Diseases, Bangladesh, (icddr, b), Dhaka, Bangladesh
| | - Cristian Koepfli
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, IN, USA; Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, IN, USA
| | - Neil F Lobo
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, IN, USA; Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, IN, USA
| | - Ching Shwe Phru
- Infectious Disease Division, International Center of Diarrheal Diseases, Bangladesh, (icddr, b), Dhaka, Bangladesh
| | | | - Abul Faiz
- Dev Care Foundation, Dhaka, Bangladesh
| | - Wasif Ali Khan
- Infectious Disease Division, International Center of Diarrheal Diseases, Bangladesh, (icddr, b), Dhaka, Bangladesh
| | - Rashidul Haque
- Infectious Disease Division, International Center of Diarrheal Diseases, Bangladesh, (icddr, b), Dhaka, Bangladesh
| |
Collapse
|
45
|
Rovira-Vallbona E, Kattenberg JH, Hong NV, Guetens P, Imamura H, Monsieurs P, Chiheb D, Erhart A, Phuc BQ, Xa NX, Rosanas-Urgell A. Molecular surveillance of Plasmodium falciparum drug-resistance markers in Vietnam using multiplex amplicon sequencing (2000-2016). Sci Rep 2023; 13:13948. [PMID: 37626131 PMCID: PMC10457381 DOI: 10.1038/s41598-023-40935-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Emergence and spread of Plasmodium falciparum resistance to artemisinin-based combination therapies (ACT) is a major challenge for Greater Mekong Subregion countries in their goal to eliminate malaria by 2030. Tools to efficiently monitor drug resistance beyond resource-demanding therapeutic efficacy studies are necessary. A custom multiplex amplicon sequencing assay based on Illumina technology was designed to target the marker of partial resistance to artemisinin (K13), five candidate modulators of artemisinin resistance, the marker of resistance to chloroquine (crt), and four neutral microsatellite loci. The assay was used to genotype 635 P. falciparum-positive blood samples collected across seven provinces of Vietnam and one of Cambodia between 2000 and 2016. Markers of resistance to artemisinin partner-drugs piperaquine (copy number of plasmepsin-2) and mefloquine (copy number of multidrug-resistance 1) were determined by qPCR. Parasite population structure was further assessed using a 101-SNP barcode. Validated mutations of artemisinin partial resistance in K13 were found in 48.1% of samples, first detection was in 2000, and by 2015 prevalence overcame > 50% in Central Highlands and Binh Phuoc province. K13-C580Y variant became predominant country-wide, quickly replacing an outbreak of K13-I543T in Central Highlands. Mutations in candidate artemisinin resistance modulator genes paralleled the trends of K13 mutants, whereas resistance to piperaquine and mefloquine remained low (≈ 10%) by 2015-2016. Genomic tools applied to malaria surveillance generate comprehensive information on dynamics of drug resistance and population structure and reflect drug efficacy profiles from in vivo studies.
Collapse
Affiliation(s)
- Eduard Rovira-Vallbona
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium
- ISGlobal, Hospital Clínic/Universitat de Barcelona, 08036, Barcelona, Catalonia, Spain
| | | | - Nguyen Van Hong
- National Institute of Malariology, Parasitology and Entomology, Hanoi, 10200, Vietnam
| | - Pieter Guetens
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium
| | - Hideo Imamura
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium
- Vrije Universiteit Brussel, Campus Jette, 1090, Brussels, Belgium
- UZ Brussel, Centre for Medical Genetics, 1090, Brussels, Belgium
| | - Pieter Monsieurs
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium
| | - Driss Chiheb
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium
| | - Annette Erhart
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium
- Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Bui Quang Phuc
- National Institute of Malariology, Parasitology and Entomology, Hanoi, 10200, Vietnam
| | - Nguyen Xuan Xa
- National Institute of Malariology, Parasitology and Entomology, Hanoi, 10200, Vietnam
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium.
| |
Collapse
|
46
|
Nguyen TD, Gao B, Amaratunga C, Dhorda M, Tran TNA, White NJ, Dondorp AM, Boni MF, Aguas R. Preventing antimalarial drug resistance with triple artemisinin-based combination therapies. Nat Commun 2023; 14:4568. [PMID: 37516752 PMCID: PMC10387089 DOI: 10.1038/s41467-023-39914-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/04/2023] [Indexed: 07/31/2023] Open
Abstract
Increasing levels of artemisinin and partner drug resistance threaten malaria control and elimination globally. Triple artemisinin-based combination therapies (TACTs) which combine artemisinin derivatives with two partner drugs are efficacious and well tolerated in clinical trials, including in areas of multidrug-resistant malaria. Whether early TACT adoption could delay the emergence and spread of antimalarial drug resistance is a question of vital importance. Using two independent individual-based models of Plasmodium falciparum epidemiology and evolution, we evaluated whether introduction of either artesunate-mefloquine-piperaquine or artemether-lumefantrine-amodiaquine resulted in lower long-term artemisinin-resistance levels and treatment failure rates compared with continued ACT use. We show that introduction of TACTs could significantly delay the emergence and spread of artemisinin resistance and treatment failure, extending the useful therapeutic life of current antimalarial drugs, and improving the chances of malaria elimination. We conclude that immediate introduction of TACTs should be considered by policy makers in areas of emerging artemisinin resistance.
Collapse
Affiliation(s)
- Tran Dang Nguyen
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Bo Gao
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chanaki Amaratunga
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mehul Dhorda
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Thu Nguyen-Anh Tran
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Arjen M Dondorp
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Maciej F Boni
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Ricardo Aguas
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
47
|
Guo B, Borda V, Laboulaye R, Spring MD, Wojnarski M, Vesely BA, Silva JC, Waters NC, O'Connor TD, Takala-Harrison S. Strong Positive Selection Biases Identity-By-Descent-Based Inferences of Recent Demography and Population Structure in Plasmodium falciparum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549114. [PMID: 37502843 PMCID: PMC10370022 DOI: 10.1101/2023.07.14.549114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Malaria genomic surveillance often estimates parasite genetic relatedness using metrics such as Identity-By-Decent (IBD). Yet, strong positive selection stemming from antimalarial drug resistance or other interventions may bias IBD-based estimates. In this study, we utilized simulations, a true IBD inference algorithm, and empirical datasets from different malaria transmission settings to investigate the extent of such bias and explore potential correction strategies. We analyzed whole genome sequence data generated from 640 new and 4,026 publicly available Plasmodium falciparum clinical isolates. Our findings demonstrated that positive selection distorts IBD distributions, leading to underestimated effective population size and blurred population structure. Additionally, we discovered that the removal of IBD peak regions partially restored the accuracy of IBD-based inferences, with this effect contingent on the population's background genetic relatedness. Consequently, we advocate for selection correction for parasite populations undergoing strong, recent positive selection, particularly in high malaria transmission settings.
Collapse
Affiliation(s)
- Bing Guo
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD USA
| | - Victor Borda
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Roland Laboulaye
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michele D Spring
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mariusz Wojnarski
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Brian A Vesely
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Norman C Waters
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Timothy D O'Connor
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
48
|
de Abreu-Fernandes R, Almeida-de-Oliveira NK, Gama BE, Gomes LR, De Lavigne Mello AR, Queiroz LTD, Barros JDA, Alecrim MDGC, Medeiros de Souza R, Pratt-Riccio LR, Brasil P, Daniel-Ribeiro CT, Ferreira-da-Cruz MDF. Plasmodium falciparum Chloroquine- pfcrt Resistant Haplotypes in Brazilian Endemic Areas Four Decades after CQ Withdrawn. Pathogens 2023; 12:pathogens12050731. [PMID: 37242401 DOI: 10.3390/pathogens12050731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: Malaria is a public health problem worldwide. Despite global efforts to control it, antimalarial drug resistance remains a great challenge. In 2009, our team identified, for the first time in Brazil, chloroquine (CQ)-susceptible Plasmodium falciparum parasites in isolates from the Brazilian Amazon. The present study extends those observations to include survey samples from 2010 to 2018 from the Amazonas and Acre states for the purpose of tracking pfcrt molecular changes in P. falciparum parasites. (2) Objective: to investigate SNPs in the P. falciparum gene associated with chemoresistance to CQ (pfcrt). (3) Methods: Sixty-six P. falciparum samples from the Amazonas and Acre states were collected from 2010 to 2018 in patients diagnosed at the Reference Research Center for Treatment and Diagnosis of Malaria (CPD-Mal/Fiocruz), FMT-HVD and Acre Health Units. These samples were subjected to PCR and DNA Sanger sequencing to identify mutations in pfcrt (C72S, M74I, N75E, and K76T). (4) Results: Of the 66 P. falciparum samples genotyped for pfcrt, 94% carried CQ-resistant genotypes and only 4 showed a CQ pfcrt sensitive-wild type genotype, i.e., 1 from Barcelos and 3 from Manaus. (5) Conclusion: CQ-resistant P. falciparum populations are fixed, and thus, CQ cannot be reintroduced in malaria falciparum therapy.
Collapse
Affiliation(s)
- Rebecca de Abreu-Fernandes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, Secretaria de Vigilância Sanitária & Fiocruz, Rio de Janeiro 21041-361, Brazil
| | - Natália Ketrin Almeida-de-Oliveira
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, Secretaria de Vigilância Sanitária & Fiocruz, Rio de Janeiro 21041-361, Brazil
| | - Bianca Ervatti Gama
- Centro de Transplante de Medula Óssea Laboratório de Oncovirologia, Instituto Nacional do Câncer, Rio de Janeiro 20230-130, Brazil
| | - Larissa Rodrigues Gomes
- Laboratório de Bioquímica e Proteínas de Peptídeos, CDTS Centro de Desenvolvimento Tecnológico em Saúde, Fiocruz, Rio de Janeiro 21041-361, Brazil
| | - Aline Rosa De Lavigne Mello
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, Secretaria de Vigilância Sanitária & Fiocruz, Rio de Janeiro 21041-361, Brazil
| | - Lucas Tavares de Queiroz
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil
| | - Jacqueline de Aguiar Barros
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil
- Núcleo de Controle da Malária/Departamento de Vigilância Epidemiológica/Coordenação Geral de Vigilância em Saúde/SESAU-RR, Boa Vista 69305-080, Brazil
| | | | - Rodrigo Medeiros de Souza
- Centro de Pesquisa em Doenças Infecciosas, Universidade Federal do Acre, Rio Branco 69920-900, Brazil
| | - Lilian Rose Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil
| | - Patrícia Brasil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, Secretaria de Vigilância Sanitária & Fiocruz, Rio de Janeiro 21041-361, Brazil
- Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro 21040-361, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, Secretaria de Vigilância Sanitária & Fiocruz, Rio de Janeiro 21041-361, Brazil
| | - Maria de Fátima Ferreira-da-Cruz
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, Secretaria de Vigilância Sanitária & Fiocruz, Rio de Janeiro 21041-361, Brazil
| |
Collapse
|
49
|
Yadav U, Pandey J. Molecular Docking Studies of Rifampicin - rpoB complex: Repurposing Drug Design Implications for against Plasmodium falciparum Malaria through a Computational Approach. Drug Res (Stuttg) 2023; 73:164-169. [PMID: 36623818 DOI: 10.1055/a-1974-9028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Malaria is one of the world's most devastating diseases, infecting well over 300 million people annually and killing between 2 and 3 million worldwide. Increasing parasite resistance to many existing drugs is exacerbating disease. Resistance to commonly used malarial drugs is increasing the need to develop new drugs urgently. Due to the slow pace and substantial costs of new drug development, repurposing of old drugs which is recently increasingly becoming an attractive proposition of highly efficient and effective way of drug discovery led us to study the drug rifampicin for this purpose. The present paper aims to investigate the route of Plasmodium falciparum apicoplast-targeted proteins that putatively encode β subunits of RNA polymerase with an objective to develop an effective antimalarial drug. Homology searching for conserved binding site to the rifampicin drug and the functional analysis of rpoB gene were done. Multiple Sequence alignment analysis of rpoB was compared with that in E.coli - rpoB and M. tuberculosis - rpoB. Docking studies of Rifampicin - rpoB complex was also done for finding binding affinity. The results of computational studies showed that rifampicin is a potential drug for malaria.
Collapse
Affiliation(s)
- Upasana Yadav
- Amity School of Applied Sciences Lucknow, Amity University Uttar Pradesh, Lucknow, India
| | - Jaya Pandey
- Amity School of Applied Sciences Lucknow, Amity University Uttar Pradesh, Lucknow, India
| |
Collapse
|
50
|
Kattenberg JH, Fernandez-Miñope C, van Dijk NJ, Llacsahuanga Allcca L, Guetens P, Valdivia HO, Van geertruyden JP, Rovira-Vallbona E, Monsieurs P, Delgado-Ratto C, Gamboa D, Rosanas-Urgell A. Malaria Molecular Surveillance in the Peruvian Amazon with a Novel Highly Multiplexed Plasmodium falciparum AmpliSeq Assay. Microbiol Spectr 2023; 11:e0096022. [PMID: 36840586 PMCID: PMC10101074 DOI: 10.1128/spectrum.00960-22] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/02/2022] [Indexed: 02/24/2023] Open
Abstract
Molecular surveillance for malaria has great potential to support national malaria control programs (NMCPs). To bridge the gap between research and implementation, several applications (use cases) have been identified to align research, technology development, and public health efforts. For implementation at NMCPs, there is an urgent need for feasible and cost-effective tools. We designed a new highly multiplexed deep sequencing assay (Pf AmpliSeq), which is compatible with benchtop sequencers, that allows high-accuracy sequencing with higher coverage and lower cost than whole-genome sequencing (WGS), targeting genomic regions of interest. The novelty of the assay is its high number of targets multiplexed into one easy workflow, combining population genetic markers with 13 nearly full-length resistance genes, which is applicable for many different use cases. We provide the first proof of principle for hrp2 and hrp3 deletion detection using amplicon sequencing. Initial sequence data processing can be performed automatically, and subsequent variant analysis requires minimal bioinformatic skills using any tabulated data analysis program. The assay was validated using a retrospective sample collection (n = 254) from the Peruvian Amazon between 2003 and 2018. By combining phenotypic markers and a within-country 28-single-nucleotide-polymorphism (SNP) barcode, we were able to distinguish different lineages with multiple resistance haplotypes (in dhfr, dhps, crt and mdr1) and hrp2 and hrp3 deletions, which have been increasing in recent years. We found no evidence to suggest the emergence of artemisinin (ART) resistance in Peru. These findings indicate a parasite population that is under drug pressure but is susceptible to current antimalarials and demonstrate the added value of a highly multiplexed molecular tool to inform malaria strategies and surveillance systems. IMPORTANCE While the power of next-generation sequencing technologies to inform and guide malaria control programs has become broadly recognized, the integration of genomic data for operational incorporation into malaria surveillance remains a challenge in most countries where malaria is endemic. The main obstacles include limited infrastructure, limited access to high-throughput sequencing facilities, and the need for local capacity to run an in-country analysis of genomes at a large-enough scale to be informative for surveillance. In addition, there is a lack of standardized laboratory protocols and automated analysis pipelines to generate reproducible and timely results useful for relevant stakeholders. With our standardized laboratory and bioinformatic workflow, malaria genetic surveillance data can be readily generated by surveillance researchers and malaria control programs in countries of endemicity, increasing ownership and ensuring timely results for informed decision- and policy-making.
Collapse
Affiliation(s)
| | - Carlos Fernandez-Miñope
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Norbert J. van Dijk
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| | - Lidia Llacsahuanga Allcca
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Pieter Guetens
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| | - Hugo O. Valdivia
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | | | - Eduard Rovira-Vallbona
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| | - Pieter Monsieurs
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| | - Christopher Delgado-Ratto
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Anna Rosanas-Urgell
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| |
Collapse
|