1
|
Li Q, Hu T, Lu T, Yu B, Zhao Y. Calcium-dependent protein kinases CPK3/4/6/11 and 27 respond to osmotic stress and activate SnRK2s in Arabidopsis. Dev Cell 2025:S1534-5807(24)00774-3. [PMID: 39814016 DOI: 10.1016/j.devcel.2024.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/30/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025]
Abstract
Drought and salinity are significant environmental threats that cause hyperosmotic stress in plants, which respond with a transient elevation of cytosolic Ca2+ and activation of Snf1-related protein kinase 2s (SnRK2s) and downstream responses. The exact regulators decoding Ca2+ signals to activate downstream responses remained unclear. Here, we show that the calcium-dependent protein kinases CPK3/4/6/11 and 27 respond to moderate osmotic stress and dehydration to activate SnRK2 phosphorylation in Arabidopsis. Using quantitative phosphoproteomics in a higher-order mutant lacking 12 pyrabactin resistance 1-like (PYL) abscisic acid (ABA) receptors, we identified six CPKs that are phosphorylated under osmotic stress. CPK3/4/6/11/27 phosphorylate the SnRK2s on multiple phosphosites within the activation loop. The cpk3/4/6/11/27 mutant is defective in SnRK2 activation, seed germination, and seedling growth under mild osmotic stress. Our findings elucidate the critical roles of CPK3/4/6/11/27 in decoding Ca2+ signals to activate SnRK2s and demonstrate a CPK-SnRK2 kinase cascade controlling osmotic stress responses in plants.
Collapse
Affiliation(s)
- Qingzhong Li
- Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tao Hu
- Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tianjiao Lu
- Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Yu
- Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yang Zhao
- Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Chen L, Zhang Y, Bu Y, Zhou J, Man Y, Wu X, Yang H, Lin J, Wang X, Jing Y. Imaging the spatial distribution of structurally diverse plant hormones. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6980-6997. [PMID: 39269320 DOI: 10.1093/jxb/erae384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Plant hormones are essential and structurally diverse molecules that regulate various aspects of plant growth, development, and stress responses. However, the precise analysis of plant hormones in complex biological samples poses a challenge due to their low concentrations, dynamic levels, and intricate spatial distribution. Moreover, the complexity and interconnectedness of hormone signaling networks make it difficult to simultaneously trace multiple hormone spatial distributions. In this review, we provide an overview of currently recognized small-molecule plant hormones, signal peptide hormones, and plant growth regulators, along with the analytical methods employed for their analysis. We delve into the latest advancements in mass spectrometry imaging and in situ fluorescence techniques, which enable the examination of the spatial distribution of plant hormones. The advantages and disadvantages of these imaging techniques are further discussed. Finally, we propose potential avenues in imaging techniques to further enhance our understanding of plant hormone biology.
Collapse
Affiliation(s)
- Lulu Chen
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Yue Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Yufen Bu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Junhui Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Yi Man
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Xinyuan Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Haobo Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Jinxing Lin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Xiaodong Wang
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Yanping Jing
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
3
|
Piechatzek A, Feng X, Sai N, Yi C, Hurgobin B, Lewsey M, Herrmann J, Dittrich M, Ache P, Müller T, Kromdijk J, Hedrich R, Xu B, Gilliham M. GABA does not regulate stomatal CO2 signalling in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6856-6871. [PMID: 38628155 PMCID: PMC11565201 DOI: 10.1093/jxb/erae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/16/2024] [Indexed: 11/16/2024]
Abstract
Optimal stomatal regulation is important for plant adaptation to changing environmental conditions and for maintaining crop yield. The guard cell signal γ-aminobutyric acid (GABA) is produced from glutamate by glutamate decarboxylase (GAD) during a reaction that generates CO2 as a by-product. Here, we investigated a putative connection between GABA signalling and the more clearly defined CO2 signalling pathway in guard cells. The GABA-deficient mutant Arabidopsis lines gad2-1, gad2-2, and gad1/2/4/5 were examined for stomatal sensitivity to various CO2 concentrations. Our findings show a phenotypical discrepancy between the allelic mutant lines gad2-1 and gad2-2-a weakened CO2 response in gad2-1 (GABI_474_E05) in contrast to a wild-type response in gad2-2 (SALK_028819) and gad1/2/4/5. Through transcriptomic and genomic investigation, we traced the response of gad2-1 to a deletion of full-length Mitogen-activated protein kinase 12 (MPK12) in the GABI-KAT line, thereafter renamed as gad2-1*. Guard cell-specific complementation of MPK12 in gad2-1* restored the wild-type CO2 phenotype, which confirms the proposed importance of MPK12 in CO2 sensitivity. Additionally, we found that stomatal opening under low atmospheric CO2 occurs independently of the GABA-modulated opening channel ALUMINIUM-ACTIVATED MALATE TRANSPORTER 9 (ALMT9). Our results demonstrate that GABA has a role in modulating the rate of stomatal opening and closing, but not in response to CO2per se.
Collapse
Affiliation(s)
- Adriane Piechatzek
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, Glen Osmond, SA 5064, Australia
- School of Agriculture, Food and Wine, Waite Research Precinct, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Xueying Feng
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, Glen Osmond, SA 5064, Australia
- School of Agriculture, Food and Wine, Waite Research Precinct, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Na Sai
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, Glen Osmond, SA 5064, Australia
- School of Agriculture, Food and Wine, Waite Research Precinct, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Changyu Yi
- La Trobe Institute for Agriculture and Food, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Bhavna Hurgobin
- La Trobe Institute for Agriculture and Food, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Mathew Lewsey
- La Trobe Institute for Agriculture and Food, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
- ARC Centre of Excellence in Plants for Space, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Johannes Herrmann
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg 97078, Germany
| | - Marcus Dittrich
- Department of Bioinformatics, University of Würzburg, Würzburg 97078, Germany
- Institute of Human Genetics, University of Würzburg, Würzburg 97074, Germany
| | - Peter Ache
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg 97078, Germany
| | - Tobias Müller
- Department of Bioinformatics, University of Würzburg, Würzburg 97078, Germany
| | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg 97078, Germany
| | - Bo Xu
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, Glen Osmond, SA 5064, Australia
- School of Agriculture, Food and Wine, Waite Research Precinct, University of Adelaide, Glen Osmond, SA 5064, Australia
- ARC Centre of Excellence in Plants for Space, School of Agriculture, Food and Wine & Waite Research Institute, Glen Osmond, SA 5064, Australia
| | - Matthew Gilliham
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, Glen Osmond, SA 5064, Australia
- School of Agriculture, Food and Wine, Waite Research Precinct, University of Adelaide, Glen Osmond, SA 5064, Australia
- ARC Centre of Excellence in Plants for Space, School of Agriculture, Food and Wine & Waite Research Institute, Glen Osmond, SA 5064, Australia
| |
Collapse
|
4
|
Li J, Lardon R, Mangelinckx S, Geelen D. A practical guide to the discovery of biomolecules with biostimulant activity. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3797-3817. [PMID: 38630561 DOI: 10.1093/jxb/erae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
The growing demand for sustainable solutions in agriculture, which are critical for crop productivity and food quality in the face of climate change and the need to reduce agrochemical usage, has brought biostimulants into the spotlight as valuable tools for regenerative agriculture. With their diverse biological activities, biostimulants can contribute to crop growth, nutrient use efficiency, and abiotic stress resilience, as well as to the restoration of soil health. Biomolecules include humic substances, protein lysates, phenolics, and carbohydrates have undergone thorough investigation because of their demonstrated biostimulant activities. Here, we review the process of the discovery and development of extract-based biostimulants, and propose a practical step-by-step pipeline that starts with initial identification of biomolecules, followed by extraction and isolation, determination of bioactivity, identification of active compound(s), elucidation of mechanisms, formulation, and assessment of effectiveness. The different steps generate a roadmap that aims to expedite the transfer of interdisciplinary knowledge from laboratory-scale studies to pilot-scale production in practical scenarios that are aligned with the prevailing regulatory frameworks.
Collapse
Affiliation(s)
- Jing Li
- HortiCell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Robin Lardon
- HortiCell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Sven Mangelinckx
- SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Danny Geelen
- HortiCell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Gan X, Sengottaiyan P, Park KH, Assmann SM, Albert R. A network-based modeling framework reveals the core signal transduction network underlying high carbon dioxide-induced stomatal closure in guard cells. PLoS Biol 2024; 22:e3002592. [PMID: 38691548 PMCID: PMC11090369 DOI: 10.1371/journal.pbio.3002592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/13/2024] [Accepted: 03/15/2024] [Indexed: 05/03/2024] Open
Abstract
Stomata are pores on plant aerial surfaces, each bordered by a pair of guard cells. They control gas exchange vital for plant survival. Understanding how guard cells respond to environmental signals such as atmospheric carbon dioxide (CO2) levels is not only insightful to fundamental biology but also relevant to real-world issues of crop productivity under global climate change. In the past decade, multiple important signaling elements for stomatal closure induced by elevated CO2 have been identified. Yet, there is no comprehensive understanding of high CO2-induced stomatal closure. In this work, we assemble a cellular signaling network underlying high CO2-induced stomatal closure by integrating evidence from a comprehensive literature analysis. We further construct a Boolean dynamic model of the network, which allows in silico simulation of the stomatal closure response to high CO2 in wild-type Arabidopsis thaliana plants and in cases of pharmacological or genetic manipulation of network nodes. Our model has a 91% accuracy in capturing known experimental observations. We perform network-based logical analysis and reveal a feedback core of the network, which dictates cellular decisions in closure response to high CO2. Based on these analyses, we predict and experimentally confirm that applying nitric oxide (NO) induces stomatal closure in ambient CO2 and causes hypersensitivity to elevated CO2. Moreover, we predict a negative regulatory relationship between NO and the protein phosphatase ABI2 and find experimentally that NO inhibits ABI2 phosphatase activity. The experimental validation of these model predictions demonstrates the effectiveness of network-based modeling and highlights the decision-making role of the feedback core of the network in signal transduction. We further explore the model's potential in predicting targets of signaling elements not yet connected to the CO2 network. Our combination of network science, in silico model simulation, and experimental assays demonstrates an effective interdisciplinary approach to understanding system-level biology.
Collapse
Affiliation(s)
- Xiao Gan
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Palanivelu Sengottaiyan
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kyu Hyong Park
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Réka Albert
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
6
|
Xu H, Liang X, Lloyd JR, Chen Y. Visualizing calcium-dependent signaling networks in plants. TRENDS IN PLANT SCIENCE 2024; 29:117-119. [PMID: 37968199 DOI: 10.1016/j.tplants.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are a multigene protein kinase family that have key regulatory roles in plants. However, imaging CDPK signals in plant cells remains challenging. The recently developed genetically encoded CDPK-Förster resonance energy transfer (FRET) reporter developed by Liese et al. allows visualization of calcium (Ca2+)-dependent conformational changes during activation or inactivation of CDPKs, providing a powerful tool for real-time monitoring of calcium decoding in plants.
Collapse
Affiliation(s)
- Huimin Xu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xinlin Liang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - James R Lloyd
- Department of Genetics, Institute for Plant Biotechnology, Stellenbosch University, 7600 Stellenbosch, South Africa
| | - Yanmei Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Liese A, Eichstädt B, Lederer S, Schulz P, Oehlschläger J, Matschi S, Feijó JA, Schulze WX, Konrad KR, Romeis T. Imaging of plant calcium-sensor kinase conformation monitors real time calcium-dependent decoding in planta. THE PLANT CELL 2024; 36:276-297. [PMID: 37433056 PMCID: PMC11210078 DOI: 10.1093/plcell/koad196] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/14/2023] [Accepted: 07/10/2023] [Indexed: 07/13/2023]
Abstract
Changes in cytosolic calcium (Ca2+) concentration are among the earliest reactions to a multitude of stress cues. While a plethora of Ca2+-permeable channels may generate distinct Ca2+ signatures and contribute to response specificities, the mechanisms by which Ca2+ signatures are decoded are poorly understood. Here, we developed a genetically encoded Förster resonance energy transfer (FRET)-based reporter that visualizes the conformational changes in Ca2+-dependent protein kinases (CDPKs/CPKs). We focused on two CDPKs with distinct Ca2+-sensitivities, highly Ca2+-sensitive Arabidopsis (Arabidopsis thaliana) AtCPK21 and rather Ca2+-insensitive AtCPK23, to report conformational changes accompanying kinase activation. In tobacco (Nicotiana tabacum) pollen tubes, which naturally display coordinated spatial and temporal Ca2+ fluctuations, CPK21-FRET, but not CPK23-FRET, reported oscillatory emission ratio changes mirroring cytosolic Ca2+ changes, pointing to the isoform-specific Ca2+-sensitivity and reversibility of the conformational change. In Arabidopsis guard cells, CPK21-FRET-monitored conformational dynamics suggest that CPK21 serves as a decoder of signal-specific Ca2+ signatures in response to abscisic acid and the flagellin peptide flg22. Based on these data, CDPK-FRET is a powerful approach for tackling real-time live-cell Ca2+ decoding in a multitude of plant developmental and stress responses.
Collapse
Affiliation(s)
- Anja Liese
- Department for Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Bernadette Eichstädt
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Sarah Lederer
- Department for Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - Philipp Schulz
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Jan Oehlschläger
- Department for Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - Susanne Matschi
- Department for Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - José A Feijó
- Department of Cell Biology & Molecular Genetics, University of Maryland, 2136 Bioscience Research Bldg, College Park, MD 20742-5815, USA
| | - Waltraud X Schulze
- Plant Systems Biology, Universität Hohenheim, D-70593 Stuttgart, Germany
| | - Kai R Konrad
- Julius-Von-Sachs Institute for Biosciences, Julius Maximilians Universität Würzburg, D-97082 Würzburg, Germany
| | - Tina Romeis
- Department for Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| |
Collapse
|
8
|
Pri-Tal O, Sun Y, Dadras A, Fürst-Jansen JMR, Zimran G, Michaeli D, Wijerathna-Yapa A, Shpilman M, Merilo E, Yarmolinsky D, Efroni I, de Vries J, Kollist H, Mosquna A. Constitutive activation of ABA receptors in Arabidopsis reveals unique regulatory circuitries. THE NEW PHYTOLOGIST 2024; 241:703-714. [PMID: 37915144 DOI: 10.1111/nph.19363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
Abscisic acid (ABA) is best known for regulating the responses to abiotic stressors. Thus, applications of ABA signaling pathways are considered promising targets for securing yield under stress. ABA levels rise in response to abiotic stress, mounting physiological and metabolic responses that promote plant survival under unfavorable conditions. ABA elicits its effects by binding to a family of soluble receptors found in monomeric and dimeric states, differing in their affinity to ABA and co-receptors. However, the in vivo significance of the biochemical differences between these receptors remains unclear. We took a gain-of-function approach to study receptor-specific functionality. First, we introduced activating mutations that enforce active ABA-bound receptor conformation. We then transformed Arabidopsis ABA-deficient mutants with the constitutive receptors and monitored suppression of the ABA deficiency phenotype. Our findings suggest that PYL4 and PYL5, monomeric ABA receptors, have differential activity in regulating transpiration and transcription of ABA biosynthesis and stress response genes. Through genetic and metabolic data, we demonstrate that PYR1, but not PYL5, is sufficient to activate the ABA positive feedback mechanism. We propose that ABA signaling - from perception to response - flows differently when triggered by different PYLs, due to tissue and transcription barriers, thus resulting in distinct circuitries.
Collapse
Affiliation(s)
- Oded Pri-Tal
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| | - Yufei Sun
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| | - Armin Dadras
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, 37077, Goettingen, Germany
| | - Janine M R Fürst-Jansen
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, 37077, Goettingen, Germany
| | - Gil Zimran
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| | - Daphna Michaeli
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| | - Akila Wijerathna-Yapa
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| | - Michal Shpilman
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| | - Ebe Merilo
- Institute of Technology, University of Tartu, Tartu, 50411, Estonia
| | | | - Idan Efroni
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, 37077, Goettingen, Germany
- Department of Applied Bioinformatics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goldschmidtsr. 1, 37077, Goettingen, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077, Goettingen, Germany
| | - Hannes Kollist
- Institute of Technology, University of Tartu, Tartu, 50411, Estonia
| | - Assaf Mosquna
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| |
Collapse
|
9
|
Seller CA, Schroeder JI. Distinct guard cell-specific remodeling of chromatin accessibility during abscisic acid- and CO 2-dependent stomatal regulation. Proc Natl Acad Sci U S A 2023; 120:e2310670120. [PMID: 38113262 PMCID: PMC10756262 DOI: 10.1073/pnas.2310670120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023] Open
Abstract
In plants, epidermal guard cells integrate and respond to numerous environmental signals to control stomatal pore apertures, thereby regulating gas exchange. Chromatin structure controls transcription factor (TF) access to the genome, but whether large-scale chromatin remodeling occurs in guard cells during stomatal movements, and in response to the hormone abscisic acid (ABA) in general, remains unknown. Here, we isolate guard cell nuclei from Arabidopsis thaliana plants to examine whether the physiological signals, ABA and CO2 (carbon dioxide), regulate guard cell chromatin during stomatal movements. Our cell type-specific analyses uncover patterns of chromatin accessibility specific to guard cells and define cis-regulatory sequences supporting guard cell-specific gene expression. We find that ABA triggers extensive and dynamic chromatin remodeling in guard cells, roots, and mesophyll cells with clear patterns of cell type specificity. DNA motif analyses uncover binding sites for distinct TFs enriched in ABA-induced and ABA-repressed chromatin. We identify the Abscisic Acid Response Element (ABRE) Binding Factor (ABF) bZIP-type TFs that are required for ABA-triggered chromatin opening in guard cells and roots and implicate the inhibition of a clade of bHLH-type TFs in controlling ABA-repressed chromatin. Moreover, we demonstrate that ABA and CO2 induce distinct programs of chromatin remodeling, whereby elevated atmospheric CO2 had only minimal impact on chromatin dynamics. We provide insight into the control of guard cell chromatin dynamics and propose that ABA-induced chromatin remodeling primes the genome for abiotic stress resistance.
Collapse
Affiliation(s)
- Charles A. Seller
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA92093-0116
| | - Julian I. Schroeder
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA92093-0116
| |
Collapse
|
10
|
Li Y, Hui S, Yuan Y, Ye Y, Ma X, Zhang X, Zhang S, Zhang C, Chen Y. PhyB-dependent phosphorylation of mitogen-activated protein kinase cascade MKK2-MPK2 positively regulates red light-induced stomatal opening. PLANT, CELL & ENVIRONMENT 2023; 46:3323-3336. [PMID: 37493364 DOI: 10.1111/pce.14675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/20/2023] [Accepted: 07/02/2023] [Indexed: 07/27/2023]
Abstract
Red light induces stomatal opening by affecting photosynthesis, metabolism and triggering signal transductions in guard cells. Phytochrome B (phyB) plays a positive role in mediating red light-induced stomatal opening. However, phyB-mediated red light guard cell signalling is poorly understood. Here, we found that phyB-mediated sequential phosphorylation of mitogen-activated protein kinase kinase 2 (MAPKK2, MKK2) and MPK2 in guard cells is essential for red light-induced stomatal opening. Mutations in MKK2 and MPK2 led to reduced stomatal opening in response to white light, and these phenotypes could be observed under red light, not blue light. MKK2 interacted with MPK2 in vitro and in plants. MPK2 was directly phosphorylated by MKK2 in vitro. Red light triggered the phosphorylation of MKK2 in guard cells, and MKK2 phosphorylation was greatly reduced in phyB mutant. Simultaneously, red light-stimulated MPK2 phosphorylation in guard cells was inhibited in mkk2 mutant. Furthermore, mkk2 and mpk2 mutants exhibit significantly smaller stomatal apertures than that of wild type during the stomatal opening stage in the diurnal stomatal movements. Our results indicate that red light-promoted phyB-dependent phosphorylation of MKK2-MPK2 cascade in guard cells is essential for stomatal opening, which contributes to the fine-tuning of stomatal opening apertures under light.
Collapse
Affiliation(s)
- Yuzhen Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, China
| | - Shimiao Hui
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yaxin Yuan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, China
| | - Yahong Ye
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaohan Ma
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, China
| | - Xiaolu Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shasha Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Chunguang Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, China
| | - Yuling Chen
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, China
| |
Collapse
|
11
|
Seller CA, Schroeder JI. Distinct guard cell specific remodeling of chromatin accessibility during abscisic acid and CO 2 dependent stomatal regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540345. [PMID: 37215031 PMCID: PMC10197618 DOI: 10.1101/2023.05.11.540345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In plants, epidermal guard cells integrate and respond to numerous environmental signals to control stomatal pore apertures thereby regulating gas exchange. Chromatin structure controls transcription factor access to the genome, but whether large-scale chromatin remodeling occurs in guard cells during stomatal movements, and in response to the hormone abscisic acid (ABA) in general, remain unknown. Here we isolate guard cell nuclei from Arabidopsis thaliana plants to examine whether the physiological signals, ABA and CO2, regulate guard cell chromatin during stomatal movements. Our cell type specific analyses uncover patterns of chromatin accessibility specific to guard cells and define novel cis-regulatory sequences supporting guard cell specific gene expression. We find that ABA triggers extensive and dynamic chromatin remodeling in guard cells, roots, and mesophyll cells with clear patterns of cell-type specificity. DNA motif analyses uncover binding sites for distinct transcription factors enriched in ABA-induced and ABA-repressed chromatin. We identify the ABF/AREB bZIP-type transcription factors that are required for ABA-triggered chromatin opening in guard cells and implicate the inhibition of a set of bHLH-type transcription factors in controlling ABA-repressed chromatin. Moreover, we demonstrate that ABA and CO2 induce distinct programs of chromatin remodeling. We provide insight into the control of guard cell chromatin dynamics and propose that ABA-induced chromatin remodeling primes the genome for abiotic stress resistance.
Collapse
Affiliation(s)
- Charles A. Seller
- School of Biological Sciences, Cell and Developmental Biology Department University of California San Diego, La Jolla, CA 92093-0116
| | - Julian I. Schroeder
- School of Biological Sciences, Cell and Developmental Biology Department University of California San Diego, La Jolla, CA 92093-0116
| |
Collapse
|
12
|
Wang A, Liu Y, Li Q, Li X, Zhang X, Kong J, Liu Z, Yang Y, Wang J. FlbZIP12 gene enhances drought tolerance via modulating flavonoid biosynthesis in Fagopyrum leptopodum. FRONTIERS IN PLANT SCIENCE 2023; 14:1279468. [PMID: 37885669 PMCID: PMC10598875 DOI: 10.3389/fpls.2023.1279468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023]
Abstract
Karst lands provide a poor substrate to support plant growth, as they are low in nutrients and water content. Common buckwheat (Fagopyrum esculentum) is becoming a popular crop for its gluten-free grains and their high levels of phenolic compounds, but buckwheat yields are affected by high water requirements during grain filling. Here, we describe a wild population of drought-tolerant Fagopyrum leptopodum and its potential for enhancing drought tolerance in cultivated buckwheat. We determined that the expression of a gene encoding a Basic leucine zipper (bZIP) transcription factor, FlbZIP12, from F. leptopodum is induced by abiotic stresses, including treatment with the phytohormone abscisic acid, salt, and polyethylene glycol. In addition, we show that overexpressing FlbZIP12 in Tartary buckwheat (Fagopyrum tataricum) root hairs promoted drought tolerance by increasing the activities of the enzymes superoxide dismutase and catalase, decreasing malondialdehyde content, and upregulating the expression of stress-related genes. Notably, FlbZIP12 overexpression induced the expression of key genes involved in flavonoid biosynthesis. We also determined that FlbZIP12 interacts with protein kinases from the FlSnRK2 family in vitro and in vivo. Taken together, our results provide a theoretical basis for improving drought tolerance in buckwheat via modulating the expression of FlbZIP12 and flavonoid contents.
Collapse
Affiliation(s)
- Anhu Wang
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang, China
| | - Yu Liu
- Key Laboratory of Bio-resource and Ecoenvironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qiujie Li
- Key Laboratory of Bio-resource and Ecoenvironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaoyi Li
- Key Laboratory of Bio-resource and Ecoenvironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinrong Zhang
- Key Laboratory of Bio-resource and Ecoenvironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiao Kong
- Key Laboratory of Bio-resource and Ecoenvironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhibing Liu
- Key Laboratory of Bio-resource and Ecoenvironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yi Yang
- Key Laboratory of Bio-resource and Ecoenvironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jianmei Wang
- Key Laboratory of Bio-resource and Ecoenvironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Meddya S, Meshram S, Sarkar D, S R, Datta R, Singh S, Avinash G, Kumar Kondeti A, Savani AK, Thulasinathan T. Plant Stomata: An Unrealized Possibility in Plant Defense against Invading Pathogens and Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:3380. [PMID: 37836120 PMCID: PMC10574665 DOI: 10.3390/plants12193380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023]
Abstract
Stomata are crucial structures in plants that play a primary role in the infection process during a pathogen's attack, as they act as points of access for invading pathogens to enter host tissues. Recent evidence has revealed that stomata are integral to the plant defense system and can actively impede invading pathogens by triggering plant defense responses. Stomata interact with diverse pathogen virulence factors, granting them the capacity to influence plant susceptibility and resistance. Moreover, recent studies focusing on the environmental and microbial regulation of stomatal closure and opening have shed light on the epidemiology of bacterial diseases in plants. Bacteria and fungi can induce stomatal closure using pathogen-associated molecular patterns (PAMPs), effectively preventing entry through these openings and positioning stomata as a critical component of the plant's innate immune system; however, despite this defense mechanism, some microorganisms have evolved strategies to overcome stomatal protection. Interestingly, recent research supports the hypothesis that stomatal closure caused by PAMPs may function as a more robust barrier against pathogen infection than previously believed. On the other hand, plant stomatal closure is also regulated by factors such as abscisic acid and Ca2+-permeable channels, which will also be discussed in this review. Therefore, this review aims to discuss various roles of stomata during biotic and abiotic stress, such as insects and water stress, and with specific context to pathogens and their strategies for evading stomatal defense, subverting plant resistance, and overcoming challenges faced by infectious propagules. These pathogens must navigate specific plant tissues and counteract various constitutive and inducible resistance mechanisms, making the role of stomata in plant defense an essential area of study.
Collapse
Affiliation(s)
- Sandipan Meddya
- School of Agriculture, Lovely Professional University, Phagwara 144411, India
| | - Shweta Meshram
- School of Agriculture, Lovely Professional University, Phagwara 144411, India
| | - Deepranjan Sarkar
- Department of Agriculture, Integral Institute of Agricultural Science and Technology, Integral University, Lucknow 226026, India;
| | - Rakesh S
- Department of Soil Science and Agricultural Chemistry, Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar 736165, India;
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 61300 Brno, Czech Republic;
| | - Sachidanand Singh
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar 384315, India;
| | - Gosangi Avinash
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141027, India;
| | - Arun Kumar Kondeti
- Department of Agronomy, Acharya N.G. Ranga Agricultural University, Regional Agricultural Research Station, Nandyal 518502, India;
| | - Ajit Kumar Savani
- Department of Plant Pathology, Assam Agricultural University, Jorhat 785013, India;
| | - Thiyagarajan Thulasinathan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| |
Collapse
|
14
|
Safi A, Smagghe W, Gonçalves A, Wang Q, Xu K, Fernandez AI, Cappe B, Riquet FB, Mylle E, Eeckhout D, De Winne N, Van De Slijke E, Persyn F, Persiau G, Van Damme D, Geelen D, De Jaeger G, Beeckman T, Van Leene J, Vanneste S. Phase separation-based visualization of protein-protein interactions and kinase activities in plants. THE PLANT CELL 2023; 35:3280-3302. [PMID: 37378595 PMCID: PMC10473206 DOI: 10.1093/plcell/koad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/23/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
Protein activities depend heavily on protein complex formation and dynamic posttranslational modifications, such as phosphorylation. The dynamic nature of protein complex formation and posttranslational modifications is notoriously difficult to monitor in planta at cellular resolution, often requiring extensive optimization. Here, we generated and exploited the SYnthetic Multivalency in PLants (SYMPL)-vector set to assay protein-protein interactions (PPIs) (separation of phases-based protein interaction reporter) and kinase activities (separation of phases-based activity reporter of kinase) in planta, based on phase separation. This technology enabled easy detection of inducible, binary and ternary PPIs among cytoplasmic and nuclear proteins in plant cells via a robust image-based readout. Moreover, we applied the SYMPL toolbox to develop an in vivo reporter for SNF1-related kinase 1 activity, allowing us to visualize tissue-specific, dynamic SnRK1 activity in stable transgenic Arabidopsis (Arabidopsis thaliana) plants. The SYMPL cloning toolbox provides a means to explore PPIs, phosphorylation, and other posttranslational modifications with unprecedented ease and sensitivity.
Collapse
Affiliation(s)
- Alaeddine Safi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Wouter Smagghe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Amanda Gonçalves
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- VIB, Bioimaging Core, B-9052 Ghent, Belgium
| | - Qing Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Ke Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Ana Ibis Fernandez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Benjamin Cappe
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
| | - Franck B Riquet
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, 59000 Lille, France
| | - Evelien Mylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Nancy De Winne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Eveline Van De Slijke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Freya Persyn
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Geert Persiau
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Danny Geelen
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
15
|
Habibpourmehraban F, Wu Y, Masoomi-Aladizgeh F, Amirkhani A, Atwell BJ, Haynes PA. Pre-Treatment of Rice Plants with ABA Makes Them More Tolerant to Multiple Abiotic Stress. Int J Mol Sci 2023; 24:ijms24119628. [PMID: 37298579 DOI: 10.3390/ijms24119628] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Multiple abiotic stress is known as a type of environmental unfavourable condition maximizing the yield and growth gap of crops compared with the optimal condition in both natural and cultivated environments. Rice is the world's most important staple food, and its production is limited the most by environmental unfavourable conditions. In this study, we investigated the pre-treatment of abscisic acid (ABA) on the tolerance of the IAC1131 rice genotype to multiple abiotic stress after a 4-day exposure to combined drought, salt and extreme temperature treatments. A total of 3285 proteins were identified and quantified across the four treatment groups, consisting of control and stressed plants with and without pre-treatment with ABA, with 1633 of those proteins found to be differentially abundant between groups. Compared with the control condition, pre-treatment with the ABA hormone significantly mitigated the leaf damage against combined abiotic stress at the proteome level. Furthermore, the application of exogenous ABA did not affect the proteome profile of the control plants remarkably, while the results were different in stress-exposed plants by a greater number of proteins changed in abundance, especially those which were increased. Taken together, these results suggest that exogenous ABA has a potential priming effect for enhancing the rice seedlings' tolerance against combined abiotic stress, mainly by affecting stress-responsive mechanisms dependent on ABA signalling pathways in plants.
Collapse
Affiliation(s)
- Fatemeh Habibpourmehraban
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Biomolecular Discovery Research Centre, Macquarie University, North Ryde, NSW 2109, Australia
| | - Yunqi Wu
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Australian Proteome Analysis Facility (APAF), Macquarie University, North Ryde, NSW 2109, Australia
| | - Farhad Masoomi-Aladizgeh
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Biomolecular Discovery Research Centre, Macquarie University, North Ryde, NSW 2109, Australia
| | - Ardeshir Amirkhani
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Australian Proteome Analysis Facility (APAF), Macquarie University, North Ryde, NSW 2109, Australia
| | - Brian J Atwell
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Biomolecular Discovery Research Centre, Macquarie University, North Ryde, NSW 2109, Australia
| | - Paul A Haynes
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Biomolecular Discovery Research Centre, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
16
|
Lu J, Zheng D, Li M, Fu M, Zhang X, Wan X, Zhang S, Chen Q. A hierarchical model of ABA-mediated signal transduction in tea plant revealed by systematic genome mining analysis and interaction validation. TREE PHYSIOLOGY 2023; 43:867-878. [PMID: 36694977 DOI: 10.1093/treephys/tpad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/20/2022] [Accepted: 01/19/2023] [Indexed: 05/13/2023]
Abstract
As a critical signaling molecule, ABA plays an important role in plant growth, development and stresses response. However, tea plant [Camellia sinensis (L.)], an important economical perennial woody plant, has not been systematically reported in response to ABA signal transduction in vivo. In this study, we mined and identified the gene structure of CsPYL/CsPP2C-A/CsSnRK gene families in the ABA signal transduction pathway through the genome-wide analysis of tea plants. Spatiotemporal expression and stress response (drought, salt, chilling) expression patterns were characterized. The results showed that most members of CsPYLs were conserved, and the gene structures of members of A-type CsPP2Cs were highly similar, whereas the gene structure of CsSnRK2s was highly variable. The transcription levels of different family members were differentially expressed with plant growth and development, and their response to stress signal patterns was highly correlated. The expression patterns of CsPYL/CsPP2C-A/CsSnRK2 gene family members in different tissues of tea plant cuttings after exogenous ABA treatment were detected by qRT-PCR, and the hierarchical model of ABA signaling was constructed by correlation analysis to preliminarily obtain three potential ABA-dependent signaling transduction pathways. Subsequently, the protein interaction of the CsPYL4/7-CsPP2C-A2-CsSnRK2.8 signaling pathway was verified by yeast two-hybrid and surface plasmon resonance experiments, indicating that there is specific selectivity in the ABA signaling pathway. Our results provided novel insights into the ABA-dependent signal transduction model in tea plant and information for future functional characterizations of stress tolerance genes in tea plant.
Collapse
Affiliation(s)
- Jing Lu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Dongqiao Zheng
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Mengshuang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Maoyin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Xianchen Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036 , China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Shihua Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, 947 Peace Avenue, Wuhan 430081, China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| |
Collapse
|
17
|
Postiglione AE, Muday GK. Abscisic acid increases hydrogen peroxide in mitochondria to facilitate stomatal closure. PLANT PHYSIOLOGY 2023; 192:469-487. [PMID: 36573336 PMCID: PMC10152677 DOI: 10.1093/plphys/kiac601] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/04/2022] [Indexed: 05/03/2023]
Abstract
Abscisic acid (ABA) drives stomatal closure to minimize water loss due to transpiration in response to drought. We examined the subcellular location of ABA-increased accumulation of reactive oxygen species (ROS) in guard cells, which drive stomatal closure, in Arabidopsis (Arabidopsis thaliana). ABA-dependent increases in fluorescence of the generic ROS sensor, dichlorofluorescein (DCF), were observed in mitochondria, chloroplasts, cytosol, and nuclei. The ABA response in all these locations was lost in an ABA-insensitive quintuple receptor mutant. The ABA-increased fluorescence in mitochondria of both DCF- and an H2O2-selective probe, Peroxy Orange 1, colocalized with Mitotracker Red. ABA treatment of guard cells transformed with the genetically encoded H2O2 reporter targeted to the cytoplasm (roGFP2-Orp1), or mitochondria (mt-roGFP2-Orp1), revealed H2O2 increases. Consistent with mitochondrial ROS changes functioning in stomatal closure, we found that guard cells of a mutant with mitochondrial defects, ABA overly sensitive 6 (abo6), have elevated ABA-induced ROS in mitochondria and enhanced stomatal closure. These effects were phenocopied with rotenone, which increased mitochondrial ROS. In contrast, the mitochondrially targeted antioxidant, MitoQ, dampened ABA effects on mitochondrial ROS accumulation and stomatal closure in Col-0 and reversed the guard cell closure phenotype of the abo6 mutant. ABA-induced ROS accumulation in guard cell mitochondria was lost in mutants in genes encoding respiratory burst oxidase homolog (RBOH) enzymes and reduced by treatment with the RBOH inhibitor, VAS2870, consistent with RBOH machinery acting in ABA-increased ROS in guard cell mitochondria. These results demonstrate that ABA elevates H2O2 accumulation in guard cell mitochondria to promote stomatal closure.
Collapse
Affiliation(s)
- Anthony E Postiglione
- Department of Biology and the Center for Molecular Signaling, Wake Forest University, Winston Salem, North Carolina, USA 27109
| | - Gloria K Muday
- Department of Biology and the Center for Molecular Signaling, Wake Forest University, Winston Salem, North Carolina, USA 27109
| |
Collapse
|
18
|
Subodh, Ravina, Priyanka, Narang J, Mohan H. Biosensors for phytohormone Abscisic acid and its role in humans: A review. SENSORS INTERNATIONAL 2023. [DOI: 10.1016/j.sintl.2023.100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
|
19
|
Verslues PE, Bailey-Serres J, Brodersen C, Buckley TN, Conti L, Christmann A, Dinneny JR, Grill E, Hayes S, Heckman RW, Hsu PK, Juenger TE, Mas P, Munnik T, Nelissen H, Sack L, Schroeder JI, Testerink C, Tyerman SD, Umezawa T, Wigge PA. Burning questions for a warming and changing world: 15 unknowns in plant abiotic stress. THE PLANT CELL 2023; 35:67-108. [PMID: 36018271 PMCID: PMC9806664 DOI: 10.1093/plcell/koac263] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/21/2022] [Indexed: 05/08/2023]
Abstract
We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.
Collapse
Affiliation(s)
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, Connecticut 06511, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Lucio Conti
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Alexander Christmann
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Erwin Grill
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - Scott Hayes
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Robert W Heckman
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Po-Kai Hsu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Paloma Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Teun Munnik
- Department of Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam NL-1098XH, The Netherlands
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095, USA
| | - Julian I Schroeder
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Stephen D Tyerman
- ARC Center Excellence, Plant Energy Biology, School of Agriculture Food and Wine, University of Adelaide, Adelaide, South Australia 5064, Australia
| | - Taishi Umezawa
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 6708 PB, Japan
| | - Philip A Wigge
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Großbeeren 14979, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| |
Collapse
|
20
|
Chen G, Shi Y, Shen X, Zhang Y, Lu X, Li Y, Jin C, Wang J, Wu J. Guard cell anion channel PbrSLAC1 regulates stomatal closure through PbrSnRK2.3 protein kinases. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111487. [PMID: 36209939 DOI: 10.1016/j.plantsci.2022.111487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/06/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Stomatal pores on the leaf surface are the gateways for gas exchange between plants and the atmosphere, which is regulated mainly by the S-type anion channel SLAC1. However, the gene encoding the main S-type anion channel SLAC1 in pear and its genetic characteristics remain unknown. In this study, Pbr015894.1 was identified as the candidate for PbrSLAC1 in pear, and it was found to be expressed abundantly in leaves, particularly in the guard cells. Virus-induced gene silencing experiments indicated that stomatal closure was achieved by a change in cell turgor instigated by PbrSLAC1 channel transport of NO3- in pear leaves and induced by abscisic acid. Furthermore, the expression of PbrSLAC1 in Arabidopsis slac1-3 and slac1-4 rescued the defective NO3- transport seen in these mutants, pointing to its role in anion transport. Fluorescence microscopy suggested that PbrSLAC1 was localized in the plasma membrane, and a dual-luciferase assay system demonstrated an interaction between PbrSLAC1 and PbrSnRK2.3/2.8. Moreover, anion conductance mediated by PbrSLAC1 was activated by PbrSnRK2.3 in Xenopus laevis oocytes and the channel showed greater permeability for nitrate than chloride, sulfate, or malate ions. Taken together, these results demonstrate that PbrSLAC1, an anion channel regulated by PbrSnRK2.3, is involved in stomatal closure by mediating the efflux of NO3- in pear leaf.
Collapse
Affiliation(s)
- Guodong Chen
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China; Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yunyong Shi
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Xue Shen
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yanan Zhang
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Xiangyu Lu
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yang Li
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Cong Jin
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Jizhong Wang
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Juyou Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
21
|
Ando E, Kollist H, Fukatsu K, Kinoshita T, Terashima I. Elevated CO 2 induces rapid dephosphorylation of plasma membrane H + -ATPase in guard cells. THE NEW PHYTOLOGIST 2022; 236:2061-2074. [PMID: 36089821 PMCID: PMC9828774 DOI: 10.1111/nph.18472] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Light induces stomatal opening, which is driven by plasma membrane (PM) H+ -ATPase in guard cells. The activation of guard-cell PM H+ -ATPase is mediated by phosphorylation of the penultimate C-terminal residue, threonine. The phosphorylation is induced by photosynthesis as well as blue light photoreceptor phototropin. Here, we investigated the effects of cessation of photosynthesis on the phosphorylation level of guard-cell PM H+ -ATPase in Arabidopsis thaliana. Immunodetection of guard-cell PM H+ -ATPase, time-resolved leaf gas-exchange analyses and stomatal aperture measurements were carried out. We found that light-dark transition of leaves induced dephosphorylation of the penultimate residue at 1 min post-transition. Gas-exchange analyses confirmed that the dephosphorylation is accompanied by an increase in the intercellular CO2 concentration, caused by the cessation of photosynthetic CO2 fixation. We discovered that CO2 induces guard-cell PM H+ -ATPase dephosphorylation as well as stomatal closure. Interestingly, reverse-genetic analyses using guard-cell CO2 signal transduction mutants suggested that the dephosphorylation is mediated by a mechanism distinct from the established CO2 signalling pathway. Moreover, type 2C protein phosphatases D6 and D9 were required for the dephosphorylation and promoted stomatal closure upon the light-dark transition. Our results indicate that CO2 -mediated dephosphorylation of guard-cell PM H+ -ATPase underlies stomatal closure.
Collapse
Affiliation(s)
- Eigo Ando
- Department of Biological Sciences, School of ScienceThe University of TokyoHongo 7‐3‐1, BunkyoTokyo113‐0033Japan
- Division of Biological Science, Graduate School of ScienceNagoya UniversityFuro‐cho, ChikusaNagoyaAichi464‐8602Japan
| | - Hannes Kollist
- Institute of TechnologyUniversity of TartuTartu50411Estonia
| | - Kohei Fukatsu
- Division of Biological Science, Graduate School of ScienceNagoya UniversityFuro‐cho, ChikusaNagoyaAichi464‐8602Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of ScienceNagoya UniversityFuro‐cho, ChikusaNagoyaAichi464‐8602Japan
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityFuro‐cho, ChikusaNagoyaAichi464‐8602Japan
| | - Ichiro Terashima
- Department of Biological Sciences, School of ScienceThe University of TokyoHongo 7‐3‐1, BunkyoTokyo113‐0033Japan
| |
Collapse
|
22
|
Son S, Park SR. Climate change impedes plant immunity mechanisms. FRONTIERS IN PLANT SCIENCE 2022; 13:1032820. [PMID: 36523631 PMCID: PMC9745204 DOI: 10.3389/fpls.2022.1032820] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/14/2022] [Indexed: 06/02/2023]
Abstract
Rapid climate change caused by human activity is threatening global crop production and food security worldwide. In particular, the emergence of new infectious plant pathogens and the geographical expansion of plant disease incidence result in serious yield losses of major crops annually. Since climate change has accelerated recently and is expected to worsen in the future, we have reached an inflection point where comprehensive preparations to cope with the upcoming crisis can no longer be delayed. Development of new plant breeding technologies including site-directed nucleases offers the opportunity to mitigate the effects of the changing climate. Therefore, understanding the effects of climate change on plant innate immunity and identification of elite genes conferring disease resistance are crucial for the engineering of new crop cultivars and plant improvement strategies. Here, we summarize and discuss the effects of major environmental factors such as temperature, humidity, and carbon dioxide concentration on plant immunity systems. This review provides a strategy for securing crop-based nutrition against severe pathogen attacks in the era of climate change.
Collapse
|
23
|
Toyota M, Betsuyaku S. In vivo Imaging Enables Understanding of Seamless Plant Defense Responses to Wounding and Pathogen Attack. PLANT & CELL PHYSIOLOGY 2022; 63:1391-1404. [PMID: 36165346 DOI: 10.1093/pcp/pcac135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/31/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Plants are exposed to varied biotic stresses, including sequential or simultaneous attack by insects and pathogens. To overcome these complex stresses, plants must perceive each of the stresses, then integrate and relay the information throughout the plant body and eventually activate local and systemic resistance responses. Previous molecular genetic studies identified jasmonic acid and salicylic acid as key plant hormones of wound and immune responses. These hormones, combined with their antagonistic interaction, play critical roles in the initiation and regulation of defense responses against insects and pathogens. Aside from molecular and genetic information, the latest in vivo imaging technology has revealed that plant defense responses are regulated spatially and temporally. In this review, we summarize the current knowledge of local and systemic defense responses against wounding and diseases with a focus on past and recent advances in imaging technologies. We discuss how imaging-based multiparametric analysis has improved our understanding of the spatiotemporal regulation of dynamic plant stress responses. We also emphasize the importance of compiling the knowledge generated from individual studies on plant wounding and immune responses for a more seamless understanding of plant defense responses in the natural environment.
Collapse
Affiliation(s)
- Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570 Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284 Japan
- Department of Botany, University of Wisconsin, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Shigeyuki Betsuyaku
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194 Japan
| |
Collapse
|
24
|
Sun P, Isner JC, Coupel-Ledru A, Zhang Q, Pridgeon AJ, He Y, Menguer PK, Miller AJ, Sanders D, Mcgrath SP, Noothong F, Liang YK, Hetherington AM. Countering elevated CO 2 induced Fe and Zn reduction in Arabidopsis seeds. THE NEW PHYTOLOGIST 2022; 235:1796-1806. [PMID: 35637611 DOI: 10.1111/nph.18290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 05/17/2022] [Indexed: 05/27/2023]
Abstract
Growth at increased concentrations of CO2 induces a reduction in seed zinc (Zn) and iron (Fe). Using Arabidopsis thaliana, we investigated whether this could be mitigated by reducing the elevated CO2 -induced decrease in transpiration. We used an infrared imaging-based screen to isolate mutants in At1g08080 that encodes ALPHA CARBONIC ANHYDRASE 7 (ACA7). aca7 mutant alleles display wild-type (WT) responses to abscisic acid (ABA) and light but are compromised in their response to elevated CO2 . ACA7 is expressed in guard cells. When aca7 mutants are grown at 1000 ppm CO2 they exhibit higher transpiration and higher seed Fe and Zn content than WT grown under the same conditions. Our data show that by increasing transpiration it is possible to partially mitigate the reduction in seed Fe and Zn content when Arabidopsis is grown at elevated CO2 .
Collapse
Affiliation(s)
- Peng Sun
- Department of Plant Sciences, College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Jean-Charles Isner
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Aude Coupel-Ledru
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- Institut Agro, LEPSE, INRAE, University of Montpellier, Montpellier, 75338 Cedex 07, France
| | - Qi Zhang
- Department of Plant Sciences, College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Ashley J Pridgeon
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Yaqian He
- Department of Plant Sciences, College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Paloma K Menguer
- Centro de Biotechnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501970, Brazil
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Dale Sanders
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Steve P Mcgrath
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Fonthip Noothong
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Yun-Kuan Liang
- Department of Plant Sciences, College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Alistair M Hetherington
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
25
|
Kim SW, Alci K, Van Gaever F, Driege Y, Bicalho K, Goeminne G, Libert C, Goossens A, Beyaert R, Staal J. Engineering a highly sensitive biosensor for abscisic acid in mammalian cells. FEBS Lett 2022; 596:2576-2590. [PMID: 35727199 DOI: 10.1002/1873-3468.14431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022]
Abstract
Abscisic acid (ABA) is a signaling molecule conserved in plants, bacteria, fungi and animals. Recently, ABA has gained attention for its pharmacological activities and its potential as a biomarker for the severity of chronic obstructive pulmonary disease (COPD) and glioma. This prompts the development of a reliable, sensitive, rapid, and cost-effective method to quantify ABA levels in mammalian cells and tissues. The previously described ABA biosensor system based on the ABA-dependent interaction between the plant ABA receptor PYL1 and co-receptor ABI1 is not sensitive enough for the low ABA levels seen in mammals. Therefore, we optimized this system by replacing PYL1 with other high-affinity plant PYL proteins. The optimized biosensor system engineered with the PYL8 receptor enabled the quantification of ABA at low concentrations in HEK293T cells.
Collapse
Affiliation(s)
- Seo Woo Kim
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Kübra Alci
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,BCCM/GeneCorner, Ghent University, Ghent, Belgium
| | - Femke Van Gaever
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yasmine Driege
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | | | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Alain Goossens
- Center for Plant Systems Biology, VIB, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jens Staal
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
26
|
Abstract
Plant hormones are signalling compounds that regulate crucial aspects of growth, development and environmental stress responses. Abiotic stresses, such as drought, salinity, heat, cold and flooding, have profound effects on plant growth and survival. Adaptation and tolerance to such stresses require sophisticated sensing, signalling and stress response mechanisms. In this Review, we discuss recent advances in understanding how diverse plant hormones control abiotic stress responses in plants and highlight points of hormonal crosstalk during abiotic stress signalling. Control mechanisms and stress responses mediated by plant hormones including abscisic acid, auxin, brassinosteroids, cytokinins, ethylene and gibberellins are discussed. We discuss new insights into osmotic stress sensing and signalling mechanisms, hormonal control of gene regulation and plant development during stress, hormone-regulated submergence tolerance and stomatal movements. We further explore how innovative imaging approaches are providing insights into single-cell and tissue hormone dynamics. Understanding stress tolerance mechanisms opens new opportunities for agricultural applications.
Collapse
|
27
|
Live Imaging of Abscisic Acid Dynamics Using Genetically Encoded Fluorescence Resonance Energy Transfer (FRET )-Based ABA Biosensors. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2462:135-154. [PMID: 35152386 DOI: 10.1007/978-1-0716-2156-1_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The phytohormone abscisic acid (ABA) regulates various aspects of plant physiology, growth, and development to maintain a balanced plant water status. Cellular ABA levels are regulated through the combined activities of biosynthesis, catabolism, and transport proteins and depend on the developmental stage, the cell-type and on environmental conditions. Genetically encoded Förster (fluorescence) Resonance Energy Transfer (FRET)-based ABA-responsive biosensors enable the direct monitoring of ABA dynamics in intact plants. Thus, ABA biosensor-based in vivo imaging can provide novel insights about the spatiotemporal patterns of biosynthesis- and transport-dependent ABA dynamics that are required for the regulation of seed dormancy and germination, root growth and hydrotropism, and stomatal closure under water limiting conditions. Here, I describe a protocol for the in vivo analysis of ABA in 5-day-old Arabidopsis seedlings (roots) expressing the FRET-based ABA biosensor ABAleonSD1-3L21.
Collapse
|
28
|
Colin L, Martin-Arevalillo R, Bovio S, Bauer A, Vernoux T, Caillaud MC, Landrein B, Jaillais Y. Imaging the living plant cell: From probes to quantification. THE PLANT CELL 2022; 34:247-272. [PMID: 34586412 PMCID: PMC8774089 DOI: 10.1093/plcell/koab237] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/20/2021] [Indexed: 05/20/2023]
Abstract
At the center of cell biology is our ability to image the cell and its various components, either in isolation or within an organism. Given its importance, biological imaging has emerged as a field of its own, which is inherently highly interdisciplinary. Indeed, biologists rely on physicists and engineers to build new microscopes and imaging techniques, chemists to develop better imaging probes, and mathematicians and computer scientists for image analysis and quantification. Live imaging collectively involves all the techniques aimed at imaging live samples. It is a rapidly evolving field, with countless new techniques, probes, and dyes being continuously developed. Some of these new methods or reagents are readily amenable to image plant samples, while others are not and require specific modifications for the plant field. Here, we review some recent advances in live imaging of plant cells. In particular, we discuss the solutions that plant biologists use to live image membrane-bound organelles, cytoskeleton components, hormones, and the mechanical properties of cells or tissues. We not only consider the imaging techniques per se, but also how the construction of new fluorescent probes and analysis pipelines are driving the field of plant cell biology.
Collapse
Affiliation(s)
- Leia Colin
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Raquel Martin-Arevalillo
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Simone Bovio
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
- LYMIC-PLATIM imaging and microscopy core facility, Univ Lyon, SFR Biosciences, ENS de Lyon, Inserm US8, CNRS UMS3444, UCBL-50 Avenue Tony Garnier, 69007 Lyon, France
| | - Amélie Bauer
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Marie-Cecile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Benoit Landrein
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| |
Collapse
|
29
|
Duan Z, Li K, Duan W, Zhang J, Xing J. Probing membrane protein interactions and signaling molecule homeostasis in plants by Förster resonance energy transfer analysis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:68-77. [PMID: 34610124 DOI: 10.1093/jxb/erab445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Membrane proteins have key functions in signal transduction, transport, and metabolism. Therefore, deciphering the interactions between membrane proteins provides crucial information on signal transduction and the spatiotemporal organization of protein complexes. However, detecting the interactions and behaviors of membrane proteins in their native environments remains difficult. Förster resonance energy transfer (FRET) is a powerful tool for quantifying the dynamic interactions and assembly of membrane proteins without disrupting their local environment, supplying nanometer-scale spatial information and nanosecond-scale temporal information. In this review, we briefly introduce the basic principles of FRET and assess the current state of progress in the development of new FRET techniques (such as FRET-FLIM, homo-FRET, and smFRET) for the analysis of plant membrane proteins. We also describe the various FRET-based biosensors used to quantify the homeostasis of signaling molecules and the active state of kinases. Furthermore, we summarize recent applications of these advanced FRET sensors in probing membrane protein interactions, stoichiometry, and protein clustering, which have shed light on the complex biological functions of membrane proteins in living plant cells.
Collapse
Affiliation(s)
- Zhikun Duan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Kaiwen Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Wenwen Duan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jingjing Xing
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
30
|
Karanam A, Rappel WJ. Boolean modelling in plant biology. QUANTITATIVE PLANT BIOLOGY 2022; 3:e29. [PMID: 37077966 PMCID: PMC10095905 DOI: 10.1017/qpb.2022.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/24/2022] [Accepted: 11/16/2022] [Indexed: 05/03/2023]
Abstract
Signalling and genetic networks underlie most biological processes and are often complex, containing many highly connected components. Modelling these networks can provide insight into mechanisms but is challenging given that rate parameters are often not well defined. Boolean modelling, in which components can only take on a binary value with connections encoded by logic equations, is able to circumvent some of these challenges, and has emerged as a viable tool to probe these complex networks. In this review, we will give an overview of Boolean modelling, with a specific emphasis on its use in plant biology. We review how Boolean modelling can be used to describe biological networks and then discuss examples of its applications in plant genetics and plant signalling.
Collapse
Affiliation(s)
- Aravind Karanam
- Department of Physics, University of California, San Diego, La Jolla, California92093, USA
| | - Wouter-Jan Rappel
- Department of Physics, University of California, San Diego, La Jolla, California92093, USA
- Author for correspondence: W.-J. Rappel, E-mail:
| |
Collapse
|
31
|
Karanam A, He D, Hsu PK, Schulze S, Dubeaux G, Karmakar R, Schroeder JI, Rappel WJ. Boolink: a graphical interface for open access Boolean network simulations and use in guard cell CO2 signaling. PLANT PHYSIOLOGY 2021; 187:2311-2322. [PMID: 34618035 PMCID: PMC8644243 DOI: 10.1093/plphys/kiab344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/30/2021] [Indexed: 05/02/2023]
Abstract
Signaling networks are at the heart of almost all biological processes. Most of these networks contain large number of components, and often either the connections between these components are not known or the rate equations that govern the dynamics of soluble signaling components are not quantified. This uncertainty in network topology and parameters can make it challenging to formulate detailed mathematical models. Boolean networks, in which all components are either on or off, have emerged as viable alternatives to detailed mathematical models that contain rate constants and other parameters. Therefore, open-source platforms of Boolean models for community use are desirable. Here, we present Boolink, a freely available graphical user interface that allows users to easily construct and analyze existing Boolean networks. Boolink can be applied to any Boolean network. We demonstrate its application using a previously published network for abscisic acid (ABA)-driven stomatal closure in Arabidopsis spp. (Arabidopsis thaliana). We also show how Boolink can be used to generate testable predictions by extending the network to include CO2 regulation of stomatal movements. Predictions of the model were experimentally tested, and the model was iteratively modified based on experiments showing that ABA effectively closes Arabidopsis stomata at near-zero CO2 concentrations (1.5-ppm CO2). Thus, Boolink enables public generation and the use of existing Boolean models, including the prior developed ABA signaling model with added CO2 signaling components.
Collapse
Affiliation(s)
- Aravind Karanam
- Physics Department, University of California, San Diego, La Jolla, California 92093, USA
| | - David He
- Physics Department, University of California, San Diego, La Jolla, California 92093, USA
| | - Po-Kai Hsu
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Sebastian Schulze
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Guillaume Dubeaux
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Richa Karmakar
- Physics Department, University of California, San Diego, La Jolla, California 92093, USA
| | - Julian I Schroeder
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Wouter-Jan Rappel
- Physics Department, University of California, San Diego, La Jolla, California 92093, USA
- Author for communication:
| |
Collapse
|
32
|
Dubeaux G, Hsu PK, Ceciliato PHO, Swink KJ, Rappel WJ, Schroeder JI. Deep dive into CO2-dependent molecular mechanisms driving stomatal responses in plants. PLANT PHYSIOLOGY 2021; 187:2032-2042. [PMID: 35142859 PMCID: PMC8644143 DOI: 10.1093/plphys/kiab342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/30/2021] [Indexed: 05/04/2023]
Abstract
Recent advances are revealing mechanisms mediating CO2-regulated stomatal movements in Arabidopsis, stomatal architecture and stomatal movements in grasses, and the long-term impact of CO2 on growth.
Collapse
Affiliation(s)
- Guillaume Dubeaux
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Po-Kai Hsu
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Paulo H O Ceciliato
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Kelsey J Swink
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Wouter-Jan Rappel
- Physics Department, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
- Author for communication:
| |
Collapse
|
33
|
Hsu PK, Takahashi Y, Merilo E, Costa A, Zhang L, Kernig K, Lee KH, Schroeder JI. Raf-like kinases and receptor-like (pseudo)kinase GHR1 are required for stomatal vapor pressure difference response. Proc Natl Acad Sci U S A 2021; 118:e2107280118. [PMID: 34799443 PMCID: PMC8617523 DOI: 10.1073/pnas.2107280118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 12/19/2022] Open
Abstract
Stomatal pores close rapidly in response to low-air-humidity-induced leaf-to-air vapor pressure difference (VPD) increases, thereby reducing excessive water loss. The hydroactive signal-transduction mechanisms mediating high VPD-induced stomatal closure remain largely unknown. The kinetics of stomatal high-VPD responses were investigated by using time-resolved gas-exchange analyses of higher-order mutants in guard-cell signal-transduction branches. We show that the slow-type anion channel SLAC1 plays a relatively more substantial role than the rapid-type anion channel ALMT12/QUAC1 in stomatal VPD signaling. VPD-induced stomatal closure is not affected in mpk12/mpk4GC double mutants that completely disrupt stomatal CO2 signaling, indicating that VPD signaling is independent of the early CO2 signal-transduction pathway. Calcium imaging shows that osmotic stress causes cytoplasmic Ca2+ transients in guard cells. Nevertheless, osca1-2/1.3/2.2/2.3/3.1 Ca2+-permeable channel quintuple, osca1.3/1.7-channel double, cngc5/6-channel double, cngc20-channel single, cngc19/20crispr-channel double, glr3.2/3.3-channel double, cpk-kinase quintuple, cbl1/4/5/8/9 quintuple, and cbl2/3rf double mutants showed wild-type-like stomatal VPD responses. A B3-family Raf-like mitogen-activated protein (MAP)-kinase kinase kinase, M3Kδ5/RAF6, activates the OST1/SnRK2.6 kinase in plant cells. Interestingly, B3 Raf-kinase m3kδ5 and m3kδ1/δ5/δ6/δ7 (raf3/6/5/4) quadruple mutants, but not a 14-gene raf-kinase mutant including osmotic stress-linked B4-family Raf-kinases, exhibited slowed high-VPD responses, suggesting that B3-family Raf-kinases play an important role in stomatal VPD signaling. Moreover, high VPD-induced stomatal closure was impaired in receptor-like pseudokinase GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1) mutant alleles. Notably, the classical transient "wrong-way" VPD response was absent in ghr1 mutant alleles. These findings reveal genes and signaling mechanisms in the elusive high VPD-induced stomatal closing response pathway.
Collapse
Affiliation(s)
- Po-Kai Hsu
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Yohei Takahashi
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Ebe Merilo
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Alex Costa
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
- Department of Biosciences, University of Milan, Milan 20133, Italy
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy
| | - Li Zhang
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Klara Kernig
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Katie H Lee
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Julian I Schroeder
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093;
| |
Collapse
|
34
|
Rowe JH, Jones AM. Focus on biosensors: Looking through the lens of quantitative biology. QUANTITATIVE PLANT BIOLOGY 2021; 2:e12. [PMID: 37077214 PMCID: PMC10095858 DOI: 10.1017/qpb.2021.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 05/02/2023]
Abstract
In recent years, plant biologists interested in quantifying molecules and molecular events in vivo have started to complement reporter systems with genetically encoded fluorescent biosensors (GEFBs) that directly sense an analyte. Such biosensors can allow measurements at the level of individual cells and over time. This information is proving valuable to mathematical modellers interested in representing biological phenomena in silico, because improved measurements can guide improved model construction and model parametrisation. Advances in synthetic biology have accelerated the pace of biosensor development, and the simultaneous expression of spectrally compatible biosensors now allows quantification of multiple nodes in signalling networks. For biosensors that directly respond to stimuli, targeting to specific cellular compartments allows the observation of differential accumulation of analytes in distinct organelles, bringing insights to reactive oxygen species/calcium signalling and photosynthesis research. In conjunction with improved image analysis methods, advances in biosensor imaging can help close the loop between experimentation and mathematical modelling.
Collapse
Affiliation(s)
- James H. Rowe
- Sainsbury Laboratory, Cambridge University, Cambridge, United Kingdom
| | | |
Collapse
|
35
|
Zhang L, Takahashi Y, Schroeder JI. Protein kinase sensors: an overview of new designs for visualizing kinase dynamics in single plant cells. PLANT PHYSIOLOGY 2021; 187:527-536. [PMID: 35142856 PMCID: PMC8491035 DOI: 10.1093/plphys/kiab277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/16/2021] [Indexed: 05/15/2023]
Abstract
Protein kinase dynamics play key roles in regulation of cell differentiation, growth, development and in diverse cell signaling networks. Protein kinase sensors enable visualization of protein kinase activity in living cells and tissues in time and space. These sensors have therefore become important and powerful molecular tools for investigation of diverse kinase activities and can resolve long-standing and challenging biological questions. In the present Update, we review new advanced approaches for genetically encoded protein kinase biosensor designs developed in animal systems together with the basis of each biosensor's working principle and components. In addition, we review recent first examples of real time plant protein kinase activity biosensor development and application. We discuss how these sensors have helped to resolve how stomatal signal transduction in response to elevated CO2 merges with abscisic acid signaling downstream of a resolved basal SnRK2 kinase activity in guard cells. Furthermore, recent advances, combined with the new strategies described in this Update, can help deepen the understanding of how signaling networks regulate unique functions and responses in distinct plant cell types and tissues and how different stimuli and signaling pathways can interact.
Collapse
Affiliation(s)
- Li Zhang
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, California 92093, USA
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Yohei Takahashi
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, California 92093, USA
| | | |
Collapse
|
36
|
Balcerowicz M, Shetty KN, Jones AM. Fluorescent biosensors illuminating plant hormone research. PLANT PHYSIOLOGY 2021; 187:590-602. [PMID: 35237816 PMCID: PMC8491072 DOI: 10.1093/plphys/kiab278] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/22/2021] [Indexed: 05/20/2023]
Abstract
Phytohormones act as key regulators of plant growth that coordinate developmental and physiological processes across cells, tissues and organs. As such, their levels and distribution are highly dynamic owing to changes in their biosynthesis, transport, modification and degradation that occur over space and time. Fluorescent biosensors represent ideal tools to track these dynamics with high spatiotemporal resolution in a minimally invasive manner. Substantial progress has been made in generating a diverse set of hormone sensors with recent FRET biosensors for visualising hormone concentrations complementing information provided by transcriptional, translational and degron-based reporters. In this review, we provide an update on fluorescent biosensor designs, examine the key properties that constitute an ideal hormone biosensor, discuss the use of these sensors in conjunction with in vivo hormone perturbations and highlight the latest discoveries made using these tools.
Collapse
Affiliation(s)
| | | | - Alexander M. Jones
- Sainsbury Laboratory, Cambridge University, Cambridge CB2 1LR, UK
- Author for communication:
| |
Collapse
|
37
|
Waadt R, Kudla J, Kollist H. Multiparameter in vivo imaging in plants using genetically encoded fluorescent indicator multiplexing. PLANT PHYSIOLOGY 2021; 187:537-549. [PMID: 35237819 PMCID: PMC8491039 DOI: 10.1093/plphys/kiab399] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/03/2021] [Indexed: 05/20/2023]
Abstract
Biological processes are highly dynamic, and during plant growth, development, and environmental interactions, they occur and influence each other on diverse spatiotemporal scales. Understanding plant physiology on an organismic scale requires analyzing biological processes from various perspectives, down to the cellular and molecular levels. Ideally, such analyses should be conducted on intact and living plant tissues. Fluorescent protein (FP)-based in vivo biosensing using genetically encoded fluorescent indicators (GEFIs) is a state-of-the-art methodology for directly monitoring cellular ion, redox, sugar, hormone, ATP and phosphatidic acid dynamics, and protein kinase activities in plants. The steadily growing number of diverse but technically compatible genetically encoded biosensors, the development of dual-reporting indicators, and recent achievements in plate-reader-based analyses now allow for GEFI multiplexing: the simultaneous recording of multiple GEFIs in a single experiment. This in turn enables in vivo multiparameter analyses: the simultaneous recording of various biological processes in living organisms. Here, we provide an update on currently established direct FP-based biosensors in plants, discuss their functional principles, and highlight important biological findings accomplished by employing various approaches of GEFI-based multiplexing. We also discuss challenges and provide advice for FP-based biosensor analyses in plants.
Collapse
Affiliation(s)
- Rainer Waadt
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, Münster 48149, Germany
- Author for communication:
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, Münster 48149, Germany
| | - Hannes Kollist
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| |
Collapse
|
38
|
Zamora O, Schulze S, Azoulay-Shemer T, Parik H, Unt J, Brosché M, Schroeder JI, Yarmolinsky D, Kollist H. Jasmonic acid and salicylic acid play minor roles in stomatal regulation by CO 2 , abscisic acid, darkness, vapor pressure deficit and ozone. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:134-150. [PMID: 34289193 PMCID: PMC8842987 DOI: 10.1111/tpj.15430] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 05/08/2023]
Abstract
Jasmonic acid (JA) and salicylic acid (SA) regulate stomatal closure, preventing pathogen invasion into plants. However, to what extent abscisic acid (ABA), SA and JA interact, and what the roles of SA and JA are in stomatal responses to environmental cues, remains unclear. Here, by using intact plant gas-exchange measurements in JA and SA single and double mutants, we show that stomatal responsiveness to CO2 , light intensity, ABA, high vapor pressure deficit and ozone either did not or, for some stimuli only, very slightly depended upon JA and SA biosynthesis and signaling mutants, including dde2, sid2, coi1, jai1, myc2 and npr1 alleles. Although the stomata in the mutants studied clearly responded to ABA, CO2 , light and ozone, ABA-triggered stomatal closure in npr1-1 was slightly accelerated compared with the wild type. Stomatal reopening after ozone pulses was quicker in the coi1-16 mutant than in the wild type. In intact Arabidopsis plants, spraying with methyl-JA led to only a modest reduction in stomatal conductance 80 min after treatment, whereas ABA and CO2 induced pronounced stomatal closure within minutes. We could not document a reduction of stomatal conductance after spraying with SA. Coronatine-induced stomatal opening was initiated slowly after 1.5-2.0 h, and reached a maximum by 3 h after spraying intact plants. Our results suggest that ABA, CO2 and light are major regulators of rapid guard cell signaling, whereas JA and SA could play only minor roles in the whole-plant stomatal response to environmental cues in Arabidopsis and Solanum lycopersicum (tomato).
Collapse
Affiliation(s)
- Olena Zamora
- Plant Signal Research Group, Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Sebastian Schulze
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tamar Azoulay-Shemer
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, CA 92093, USA
- Fruit Tree Sciences, Agricultural Research Organization (ARO), the Volcani Center, Newe Ya’ar Research Center, Ramat Yishay, Israel, and
| | - Helen Parik
- Plant Signal Research Group, Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Jaanika Unt
- Plant Signal Research Group, Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Mikael Brosché
- Plant Signal Research Group, Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 65 (Viikinkaari 1), Helsinki FI-00014, Finland
| | - Julian I. Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dmitry Yarmolinsky
- Plant Signal Research Group, Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
- For correspondence ()
| | - Hannes Kollist
- Plant Signal Research Group, Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| |
Collapse
|
39
|
Jalakas P, Takahashi Y, Waadt R, Schroeder JI, Merilo E. Molecular mechanisms of stomatal closure in response to rising vapour pressure deficit. THE NEW PHYTOLOGIST 2021; 232:468-475. [PMID: 34197630 PMCID: PMC8455429 DOI: 10.1111/nph.17592] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/28/2021] [Indexed: 05/26/2023]
Abstract
Vapour pressure deficit (VPD), the difference between the saturation and actual air vapour pressures, indicates the level of atmospheric drought and evaporative pressure on plants. VPD increases during climate change due to changes in air temperature and relative humidity. Rising VPD induces stomatal closure to counteract the VPD-mediated evaporative water loss from plants. There are important gaps in our understanding of the molecular VPD-sensing and signalling mechanisms in stomatal guard cells. Here, we discuss recent advances, research directions and open questions with respect to the three components that participate in VPD-induced stomatal closure in Arabidopsis, including: (1) abscisic acid (ABA)-dependent and (2) ABA-independent regulation of the protein kinase OPEN STOMATA 1 (OST1), and (3) the passive hydraulic stomatal response. In the ABA-dependent component, two models are proposed: ABA may be rapidly synthesised or its basal levels may be involved in the stomatal VPD response. Further studies on stomatal VPD signalling should clarify: (1) whether OST1 activation above basal activity is needed for VPD responses, (2) which components are involved in ABA-independent regulation of OST1, (3) the role of other potential OST1 targets in VPD signalling, and (4) to which extent OST1 contributes to stomatal VPD sensitivity in other plant species.
Collapse
Affiliation(s)
- Pirko Jalakas
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Yohei Takahashi
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Rainer Waadt
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Julian I. Schroeder
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Ebe Merilo
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
40
|
Kamiyama Y, Katagiri S, Umezawa T. Growth Promotion or Osmotic Stress Response: How SNF1-Related Protein Kinase 2 (SnRK2) Kinases Are Activated and Manage Intracellular Signaling in Plants. PLANTS 2021; 10:plants10071443. [PMID: 34371646 PMCID: PMC8309267 DOI: 10.3390/plants10071443] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022]
Abstract
Reversible phosphorylation is a major mechanism for regulating protein function and controls a wide range of cellular functions including responses to external stimuli. The plant-specific SNF1-related protein kinase 2s (SnRK2s) function as central regulators of plant growth and development, as well as tolerance to multiple abiotic stresses. Although the activity of SnRK2s is tightly regulated in a phytohormone abscisic acid (ABA)-dependent manner, recent investigations have revealed that SnRK2s can be activated by group B Raf-like protein kinases independently of ABA. Furthermore, evidence is accumulating that SnRK2s modulate plant growth through regulation of target of rapamycin (TOR) signaling. Here, we summarize recent advances in knowledge of how SnRK2s mediate plant growth and osmotic stress signaling and discuss future challenges in this research field.
Collapse
Affiliation(s)
- Yoshiaki Kamiyama
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; (Y.K.); (S.K.)
| | - Sotaro Katagiri
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; (Y.K.); (S.K.)
| | - Taishi Umezawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; (Y.K.); (S.K.)
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan
- Correspondence:
| |
Collapse
|
41
|
Movahedi M, Zoulias N, Casson SA, Sun P, Liang YK, Hetherington AM, Gray JE, Chater CCC. Stomatal responses to carbon dioxide and light require abscisic acid catabolism in Arabidopsis. Interface Focus 2021; 11:20200036. [PMID: 33633834 DOI: 10.1098/rsfs.2020.0036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 11/12/2022] Open
Abstract
In plants, stomata control water loss and CO2 uptake. The aperture and density of stomatal pores, and hence the exchange of gases between the plant and the atmosphere, are controlled by internal factors such as the plant hormone abscisic acid (ABA) and external signals including light and CO2. In this study, we examine the importance of ABA catabolism in the stomatal responses to CO2 and light. By using the ABA 8'-hydroxylase-deficient Arabidopsis thaliana double mutant cyp707a1 cyp707a3, which is unable to break down and instead accumulates high levels of ABA, we reveal the importance of the control of ABA concentration in mediating stomatal responses to CO2 and light. Intriguingly, our experiments suggest that endogenously produced ABA is unable to close stomata in the absence of CO2. Furthermore, we show that when plants are grown in short day conditions ABA breakdown is required for the modulation of both elevated [CO2]-induced stomatal closure and elevated [CO2]-induced reductions in leaf stomatal density. ABA catabolism is also required for the stomatal density response to light intensity, and for the full range of light-induced stomatal opening, suggesting that ABA catabolism is critical for the integration of stomatal responses to a range of environmental stimuli.
Collapse
Affiliation(s)
- Mahsa Movahedi
- Clinical Biomanufacturing Facility, Old Road, Headington, Oxford OX3 7JT, UK
| | - Nicholas Zoulias
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Stuart A Casson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Peng Sun
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yun-Kuan Liang
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Alistair M Hetherington
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Julie E Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Caspar C C Chater
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.,Department of Natural Capital and Plant Health, Royal Botanic Gardens, Kew, Richmond TW9 3AE, UK
| |
Collapse
|
42
|
Huque AKMM, So W, Noh M, You MK, Shin JS. Overexpression of AtBBD1, Arabidopsis Bifunctional Nuclease, Confers Drought Tolerance by Enhancing the Expression of Regulatory Genes in ABA-Mediated Drought Stress Signaling. Int J Mol Sci 2021; 22:ijms22062936. [PMID: 33805821 PMCID: PMC8001636 DOI: 10.3390/ijms22062936] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
Drought is the most serious abiotic stress, which significantly reduces crop productivity. The phytohormone ABA plays a pivotal role in regulating stomatal closing upon drought stress. Here, we characterized the physiological function of AtBBD1, which has bifunctional nuclease activity, on drought stress. We found that AtBBD1 localized to the nucleus and cytoplasm, and was expressed strongly in trichomes and stomatal guard cells of leaves, based on promoter:GUS constructs. Expression analyses revealed that AtBBD1 and AtBBD2 are induced early and strongly by ABA and drought, and that AtBBD1 is also strongly responsive to JA. We then compared phenotypes of two AtBBD1-overexpression lines (AtBBD1-OX), single knockout atbbd1, and double knockout atbbd1/atbbd2 plants under drought conditions. We did not observe any phenotypic difference among them under normal growth conditions, while OX lines had greatly enhanced drought tolerance, lower transpirational water loss, and higher proline content than the WT and KOs. Moreover, by measuring seed germination rate and the stomatal aperture after ABA treatment, we found that AtBBD1-OX and atbbd1 plants showed significantly higher and lower ABA-sensitivity, respectively, than the WT. RNA sequencing analysis of AtBBD1-OX and atbbd1 plants under PEG-induced drought stress showed that overexpression of AtBBD1 enhances the expression of key regulatory genes in the ABA-mediated drought signaling cascade, particularly by inducing genes related to ABA biosynthesis, downstream transcription factors, and other regulatory proteins, conferring AtBBD1-OXs with drought tolerance. Taken together, we suggest that AtBBD1 functions as a novel positive regulator of drought responses by enhancing the expression of ABA- and drought stress-responsive genes as well as by increasing proline content.
Collapse
Affiliation(s)
- A. K. M. Mahmudul Huque
- Division of Life Sciences, Korea University, Seoul 02841, Korea; (A.K.M.M.H.); (W.S.); (M.N.)
| | - Wonmi So
- Division of Life Sciences, Korea University, Seoul 02841, Korea; (A.K.M.M.H.); (W.S.); (M.N.)
| | - Minsoo Noh
- Division of Life Sciences, Korea University, Seoul 02841, Korea; (A.K.M.M.H.); (W.S.); (M.N.)
| | - Min Kyoung You
- Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea
- Correspondence: (M.K.Y.); (J.S.S.)
| | - Jeong Sheop Shin
- Division of Life Sciences, Korea University, Seoul 02841, Korea; (A.K.M.M.H.); (W.S.); (M.N.)
- Correspondence: (M.K.Y.); (J.S.S.)
| |
Collapse
|
43
|
Biosensors: A Sneak Peek into Plant Cell's Immunity. Life (Basel) 2021; 11:life11030209. [PMID: 33800034 PMCID: PMC7999283 DOI: 10.3390/life11030209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 12/26/2022] Open
Abstract
Biosensors are indispensable tools to understand a plant’s immunity as its spatiotemporal dimension is key in withstanding complex plant immune signaling. The diversity of genetically encoded biosensors in plants is expanding, covering new analytes with ever higher sensitivity and robustness, but their assortment is limited in some respects, such as their use in following biotic stress response, employing more than one biosensor in the same chassis, and their implementation into crops. In this review, we focused on the available biosensors that encompass these aspects. We show that in vivo imaging of calcium and reactive oxygen species is satisfactorily covered with the available genetically encoded biosensors, while on the other hand they are still underrepresented when it comes to imaging of the main three hormonal players in the immune response: salicylic acid, ethylene and jasmonic acid. Following more than one analyte in the same chassis, upon one or more conditions, has so far been possible by using the most advanced genetically encoded biosensors in plants which allow the monitoring of calcium and the two main hormonal pathways involved in plant development, auxin and cytokinin. These kinds of biosensor are also the most evolved in crops. In the last section, we examine the challenges in the use of biosensors and demonstrate some strategies to overcome them.
Collapse
|
44
|
Weihs F, Anderson A, Trowell S, Caron K. Resonance Energy Transfer-Based Biosensors for Point-of-Need Diagnosis-Progress and Perspectives. SENSORS (BASEL, SWITZERLAND) 2021; 21:660. [PMID: 33477883 PMCID: PMC7833371 DOI: 10.3390/s21020660] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
The demand for point-of-need (PON) diagnostics for clinical and other applications is continuing to grow. Much of this demand is currently serviced by biosensors, which combine a bioanalytical sensing element with a transducing device that reports results to the user. Ideally, such devices are easy to use and do not require special skills of the end user. Application-dependent, PON devices may need to be capable of measuring low levels of analytes very rapidly, and it is often helpful if they are also portable. To date, only two transduction modalities, colorimetric lateral flow immunoassays (LFIs) and electrochemical assays, fully meet these requirements and have been widely adopted at the point-of-need. These modalities are either non-quantitative (LFIs) or highly analyte-specific (electrochemical glucose meters), therefore requiring considerable modification if they are to be co-opted for measuring other biomarkers. Förster Resonance Energy Transfer (RET)-based biosensors incorporate a quantitative and highly versatile transduction modality that has been extensively used in biomedical research laboratories. RET-biosensors have not yet been applied at the point-of-need despite its advantages over other established techniques. In this review, we explore and discuss recent developments in the translation of RET-biosensors for PON diagnoses, including their potential benefits and drawbacks.
Collapse
Affiliation(s)
- Felix Weihs
- CSIRO Health & Biosecurity, Parkville, 343 Royal Parade, Melbourne, VIC 3030, Australia;
| | - Alisha Anderson
- CSIRO Health & Biosecurity, Black Mountain, Canberra, ACT 2600, Australia;
| | - Stephen Trowell
- PPB Technology Pty Ltd., Centre for Entrepreneurial Agri-Technology, Australian National University, Canberra, ACT 2601, Australia;
| | - Karine Caron
- CSIRO Health & Biosecurity, Black Mountain, Canberra, ACT 2600, Australia;
| |
Collapse
|
45
|
Bharath P, Gahir S, Raghavendra AS. Abscisic Acid-Induced Stomatal Closure: An Important Component of Plant Defense Against Abiotic and Biotic Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:615114. [PMID: 33746999 PMCID: PMC7969522 DOI: 10.3389/fpls.2021.615114] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/10/2021] [Indexed: 05/04/2023]
Abstract
Abscisic acid (ABA) is a stress hormone that accumulates under different abiotic and biotic stresses. A typical effect of ABA on leaves is to reduce transpirational water loss by closing stomata and parallelly defend against microbes by restricting their entry through stomatal pores. ABA can also promote the accumulation of polyamines, sphingolipids, and even proline. Stomatal closure by compounds other than ABA also helps plant defense against both abiotic and biotic stress factors. Further, ABA can interact with other hormones, such as methyl jasmonate (MJ) and salicylic acid (SA). Such cross-talk can be an additional factor in plant adaptations against environmental stresses and microbial pathogens. The present review highlights the recent progress in understanding ABA's multifaceted role under stress conditions, particularly stomatal closure. We point out the importance of reactive oxygen species (ROS), reactive carbonyl species (RCS), nitric oxide (NO), and Ca2+ in guard cells as key signaling components during the ABA-mediated short-term plant defense reactions. The rise in ROS, RCS, NO, and intracellular Ca2+ triggered by ABA can promote additional events involved in long-term adaptive measures, including gene expression, accumulation of compatible solutes to protect the cell, hypersensitive response (HR), and programmed cell death (PCD). Several pathogens can counteract and try to reopen stomata. Similarly, pathogens attempt to trigger PCD of host tissue to their benefit. Yet, ABA-induced effects independent of stomatal closure can delay the pathogen spread and infection within leaves. Stomatal closure and other ABA influences can be among the early steps of defense and a crucial component of plants' innate immunity response. Stomatal guard cells are quite sensitive to environmental stress and are considered good model systems for signal transduction studies. Further research on the ABA-induced stomatal closure mechanism can help us design strategies for plant/crop adaptations to stress.
Collapse
|
46
|
Xiang Q, Lott AA, Assmann SM, Chen S. Advances and perspectives in the metabolomics of stomatal movement and the disease triangle. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110697. [PMID: 33288010 DOI: 10.1016/j.plantsci.2020.110697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 05/20/2023]
Abstract
Crops are continuously exposed to microbial pathogens that cause tremendous yield losses worldwide. Stomatal pores formed by pairs of specialized guard cells in the leaf epidermis represent a major route of pathogen entry. Guard cells have an essential role as a first line of defense against pathogens. Metabolomics is an indispensable systems biology tool that has facilitated discovery and functional studies of metabolites that regulate stomatal movement in response to pathogens and other environmental factors. Guard cells, pathogens and environmental factors constitute the "stomatal disease triangle". The aim of this review is to highlight recent advances toward understanding the stomatal disease triangle in the context of newly discovered signaling molecules, hormone crosstalk, and consequent molecular changes that integrate pathogens and environmental sensing into stomatal immune responses. Future perspectives on emerging single-cell studies, multiomics and molecular imaging in the context of stomatal defense are discussed. Advances in this important area of plant biology will inform rational crop engineering and breeding for enhanced stomatal defense without disruption of other pathways that impact crop yield.
Collapse
Affiliation(s)
- Qingyuan Xiang
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL, USA
| | - Aneirin A Lott
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL, USA; Plant Molecular and Cellular Biology Program, University of Florida, FL, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, State College, PA, USA
| | - Sixue Chen
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL, USA; Plant Molecular and Cellular Biology Program, University of Florida, FL, USA; Proteomics and Mass Spectrometry Facility, University of Florida, FL, USA.
| |
Collapse
|
47
|
Isoda R, Yoshinari A, Ishikawa Y, Sadoine M, Simon R, Frommer WB, Nakamura M. Sensors for the quantification, localization and analysis of the dynamics of plant hormones. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:542-557. [PMID: 33231903 PMCID: PMC7898640 DOI: 10.1111/tpj.15096] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/19/2020] [Indexed: 05/13/2023]
Abstract
Plant hormones play important roles in plant growth and development and physiology, and in acclimation to environmental changes. The hormone signaling networks are highly complex and interconnected. It is thus important to not only know where the hormones are produced, how they are transported and how and where they are perceived, but also to monitor their distribution quantitatively, ideally in a non-invasive manner. Here we summarize the diverse set of tools available for quantifying and visualizing hormone distribution and dynamics. We provide an overview over the tools that are currently available, including transcriptional reporters, degradation sensors, and luciferase and fluorescent sensors, and compare the tools and their suitability for different purposes.
Collapse
Affiliation(s)
- Reika Isoda
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityChikusaNagoya464‐8601Japan
| | - Akira Yoshinari
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityChikusaNagoya464‐8601Japan
| | - Yuuma Ishikawa
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityChikusaNagoya464‐8601Japan
- Molecular PhysiologyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Mayuri Sadoine
- Molecular PhysiologyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Rüdiger Simon
- Developmental GeneticsHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Wolf B. Frommer
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityChikusaNagoya464‐8601Japan
- Molecular PhysiologyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Masayoshi Nakamura
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityChikusaNagoya464‐8601Japan
| |
Collapse
|
48
|
Hsu PK, Dubeaux G, Takahashi Y, Schroeder JI. Signaling mechanisms in abscisic acid-mediated stomatal closure. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:307-321. [PMID: 33145840 PMCID: PMC7902384 DOI: 10.1111/tpj.15067] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/18/2020] [Accepted: 10/29/2020] [Indexed: 05/09/2023]
Abstract
The plant hormone abscisic acid (ABA) plays a central role in the regulation of stomatal movements under water-deficit conditions. The identification of ABA receptors and the ABA signaling core consisting of PYR/PYL/RCAR ABA receptors, PP2C protein phosphatases and SnRK2 protein kinases has led to studies that have greatly advanced our knowledge of the molecular mechanisms mediating ABA-induced stomatal closure in the past decade. This review focuses on recent progress in illuminating the regulatory mechanisms of ABA signal transduction, and the physiological importance of basal ABA signaling in stomatal regulation by CO2 and, as hypothesized here, vapor-pressure deficit. Furthermore, advances in understanding the interactions of ABA and other stomatal signaling pathways are reviewed here. We also review recent studies investigating the use of ABA signaling mechanisms for the manipulation of stomatal conductance and the enhancement of drought tolerance and water-use efficiency of plants.
Collapse
Affiliation(s)
- Po-Kai Hsu
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| | - Guillaume Dubeaux
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| | - Yohei Takahashi
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| | - Julian I. Schroeder
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| |
Collapse
|
49
|
Ye W, Munemasa S, Shinya T, Wu W, Ma T, Lu J, Kinoshita T, Kaku H, Shibuya N, Murata Y. Stomatal immunity against fungal invasion comprises not only chitin-induced stomatal closure but also chitosan-induced guard cell death. Proc Natl Acad Sci U S A 2020; 117:20932-20942. [PMID: 32778594 PMCID: PMC7456093 DOI: 10.1073/pnas.1922319117] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many pathogenic fungi exploit stomata as invasion routes, causing destructive diseases of major cereal crops. Intensive interaction is expected to occur between guard cells and fungi. In the present study, we took advantage of well-conserved molecules derived from the fungal cell wall, chitin oligosaccharide (CTOS), and chitosan oligosaccharide (CSOS) to study how guard cells respond to fungal invasion. In Arabidopsis, CTOS induced stomatal closure through a signaling mediated by its receptor CERK1, Ca2+, and a major S-type anion channel, SLAC1. CSOS, which is converted from CTOS by chitin deacetylases from invading fungi, did not induce stomatal closure, suggesting that this conversion is a fungal strategy to evade stomatal closure. At higher concentrations, CSOS but not CTOS induced guard cell death in a manner dependent on Ca2+ but not CERK1. These results suggest that stomatal immunity against fungal invasion comprises not only CTOS-induced stomatal closure but also CSOS-induced guard cell death.
Collapse
Affiliation(s)
- Wenxiu Ye
- School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, 200240 Shanghai, China;
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka, 700-8530 Okayama, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Chikusa, 464-8602 Nagoya, Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka, 700-8530 Okayama, Japan
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046 Okayama, Japan
| | - Wei Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, 200240 Shanghai, China
| | - Tao Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, 200240 Shanghai, China
| | - Jiang Lu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, 200240 Shanghai, China
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules, Nagoya University, Chikusa, 464-8602 Nagoya, Japan
- Graduate School of Science, Nagoya University, Chikusa, 464-8602 Nagoya, Japan
| | - Hanae Kaku
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571 Kanagawa, Japan
| | - Naoto Shibuya
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571 Kanagawa, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka, 700-8530 Okayama, Japan;
| |
Collapse
|