1
|
Sigal A, Neher RA, Lessells RJ. The consequences of SARS-CoV-2 within-host persistence. Nat Rev Microbiol 2025; 23:288-302. [PMID: 39587352 DOI: 10.1038/s41579-024-01125-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/27/2024]
Abstract
SARS-CoV-2 causes an acute respiratory tract infection that resolves in most people in less than a month. Yet some people with severely weakened immune systems fail to clear the virus, leading to persistent infections with high viral titres in the respiratory tract. In a subset of cases, persistent SARS-CoV-2 replication results in an accelerated accumulation of adaptive mutations that confer escape from neutralizing antibodies and enhance cellular infection. This may lead to the evolution of extensively mutated SARS-CoV-2 variants and introduce an element of chance into the timing of variant evolution, as variant formation may depend on evolution in a single person. Whether long COVID is also caused by persistence of replicating SARS-CoV-2 is controversial. One line of evidence is detection of SARS-CoV-2 RNA and proteins in different body compartments long after SARS-CoV-2 infection has cleared from the upper respiratory tract. However, thus far, no replication competent virus has been cultured from individuals with long COVID who are immunocompetent. In this Review, we consider mechanisms of viral persistence, intra-host evolution in persistent infections, the connection of persistent infections with SARS-CoV-2 variants and the possible role of SARS-CoV-2 persistence in long COVID. Understanding persistent infections may therefore resolve much of what is still unclear in COVID-19 pathophysiology, with possible implications for other emerging viruses.
Collapse
Affiliation(s)
- Alex Sigal
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
- Africa Health Research Institute, Durban, South Africa.
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Richard A Neher
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Richard J Lessells
- KwaZulu-Natal Research Innovation & Sequencing Platform, School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| |
Collapse
|
2
|
Anzurez A, Runtuwene L, Dang TTT, Nakayama-Hosoya K, Koga M, Yoshimura Y, Sasaki H, Miyata N, Miyazaki K, Takahashi Y, Suzuki T, Yotsuyanagi H, Tachikawa N, Matano T, Kawana-Tachikawa A. Characterization of the Proinflammatory Cytokine Profile during Acute SARS-CoV-2 Infection in People with Human Immunodeficiency Virus. Jpn J Infect Dis 2024; 77:301-310. [PMID: 38945856 DOI: 10.7883/yoken.jjid.2024.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Persistent inflammation during chronic human immunodeficiency virus (HIV) infection may affect the immune response against severe acute respiratory syndrome-coronavirus 2 (SARS- CoV-2) infection. Plasma levels of multiple proinflammatory cytokines during acute SARS-CoV-2 infection were measured in people with HIV (PWH) with effective combination antiretroviral therapy. There were no significant differences in any of the measured cytokines between severity levels of coronavirus disease 2019 (COVID-19) in PWH, while most were significantly higher in HIV-uninfected individuals with severe COVID-19, suggesting that excess cytokines release by hyperinflammatory responses do not occur in individuals with severe COVID-19 with HIV infection. The strong associations between the cytokines observed in HIV-uninfected individuals, particularly between IFN-α/TNF-α and other cytokines, were lost in PWH. The steady-state plasma levels of IP-10, ICAM-1, and CD62E were significantly higher in PWH, indicating that they were in an enhanced inflammatory state. The absence of several inter-cytokine correlations was observed in in vitro lipopolysaccharide stimulus-driven cytokine production in PWH. These data suggest that inflammatory responses during SARS-CoV-2 infection in PWH are distinct from those in HIV-uninfected individuals, partially because of the underlying inflammatory state and/or impairment of innate immune cells.
Collapse
Affiliation(s)
- Alitzel Anzurez
- AIDS Research Center, National Institute of Infectious Diseases, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Japan
| | - Lucky Runtuwene
- AIDS Research Center, National Institute of Infectious Diseases, Japan
| | - Thi Thu Thao Dang
- AIDS Research Center, National Institute of Infectious Diseases, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Japan
| | | | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Japan
| | - Yukihiro Yoshimura
- Department of Infectious Diseases, Yokohama Municipal Citizens' Hospital, Japan
| | - Hiroaki Sasaki
- Department of Infectious Diseases, Yokohama Municipal Citizens' Hospital, Japan
| | - Nobuyuki Miyata
- Department of Infectious Diseases, Yokohama Municipal Citizens' Hospital, Japan
| | - Kazuhito Miyazaki
- Department of Infectious Diseases, Yokohama Municipal Citizens' Hospital, Japan
- Department of Respiratory Medicine, Yokohama Municipal Citizens' Hospital, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Japan
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Japan
| | - Natsuo Tachikawa
- Department of Infectious Diseases, Yokohama Municipal Citizens' Hospital, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Japan
- Department of AIDS Vaccine Development, Institute of Medical Science, University of Tokyo, Japan
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Japan
- Department of AIDS Vaccine Development, Institute of Medical Science, University of Tokyo, Japan
| |
Collapse
|
3
|
van der Mescht MA, Steel HC, de Beer Z, Masenge A, Abdullah F, Ueckermann V, Anderson R, Rossouw TM. T-Cell Phenotypes and Systemic Cytokine Profiles of People Living with HIV Admitted to Hospital with COVID-19. Microorganisms 2024; 12:2149. [PMID: 39597537 PMCID: PMC11596914 DOI: 10.3390/microorganisms12112149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Whether SARS-CoV-2 infection leads to a higher mortality and morbidity in people living with HIV (PLWH) in Africa remains inconclusive. In this study, we explored the differences in the T-cell phenotypes between people with and without HIV on the day of admission (V1) and ±7 days later (V2), as well as their cytokine/chemokine profiles on V1. Patients admitted with COVID-19 were recruited between May 2020 and December 2021 from the Steve Biko Academic and Tshwane District Hospitals in Pretoria, South Africa. Of 174 patients, 37 (21%) were PLWH. T-cell profiles were determined by flow cytometry, and cytokine levels were determined using a multiplex suspension bead array. PLWH were significantly younger than those without HIV, and were more likely to be female. In an adjusted analysis, PLWH had higher percentages of CD4+ central memory (CM) programmed cell death protein 1 (PD-1)+, CD8+ effector memory (EM)2, and CD8+ EM4 CD57+ cells, as well as higher concentrations of interleukin (IL)-35 at admission. PLWH with CD4+ T-cell counts of >200 cells/mm3 had altered CD4+ and CD8+ T-cell profiles, lower levels of systemic inflammation measured by plasma ferritin and PCT levels, and less severe disease. PLWH with CD4+ T-cell counts of <200 cells/mm3 on admission had higher concentrations of IL-6 and lower levels of IL-29. At V2, the percentages of CD4+ CM PD-1+ T-cells and CD8+ EM4 T-cells co-expressing CD57 and PD-1 remained higher in PLWH, while all other CD8+ EM populations were lower. Fewer CD8+ EM T-cells after ±7 days of admission may be indicative of mechanisms inhibiting EM T-cell survival, as indicated by the higher expression of IL-35 and the T-cell maturation arrest observed in PLWH. This profile was not observed in PLWH with severe immunodeficiency, highlighting the need for differentiated care in the broader PLWH population.
Collapse
Affiliation(s)
- Mieke A. van der Mescht
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.v.d.M.); (H.C.S.); (Z.d.B.); (R.A.)
| | - Helen C. Steel
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.v.d.M.); (H.C.S.); (Z.d.B.); (R.A.)
| | - Zelda de Beer
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.v.d.M.); (H.C.S.); (Z.d.B.); (R.A.)
- Tshwane District Hospital, Pretoria 0084, South Africa
| | - Andries Masenge
- Department of Statistics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0001, South Africa;
| | - Fareed Abdullah
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0001, South Africa; (F.A.); (V.U.)
- Office of AIDS and TB Research, South African Medical Research Council, Pretoria 0001, South Africa
- Department of Public Health Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Veronica Ueckermann
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0001, South Africa; (F.A.); (V.U.)
| | - Ronald Anderson
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.v.d.M.); (H.C.S.); (Z.d.B.); (R.A.)
| | - Theresa M. Rossouw
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.v.d.M.); (H.C.S.); (Z.d.B.); (R.A.)
| |
Collapse
|
4
|
McMahon WC, Kwatra G, Izu A, Jones SA, Mbele NJ, Jafta N, Lala R, Shalekoff S, Tiemessen CT, Madhi SA, Nunes MC. T-cell responses to ancestral SARS-CoV-2 and Omicron variant among unvaccinated pregnant and postpartum women living with and without HIV in South Africa. Sci Rep 2024; 14:20348. [PMID: 39223211 PMCID: PMC11369237 DOI: 10.1038/s41598-024-70725-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
SARS-CoV-2 cell-mediated immunity remains understudied during pregnancy in unvaccinated Black African women living with HIV (WLWH) from low- and middle-income countries. We investigated SARS-CoV-2-specific T-cell responses 1 month following infection in 24 HIV-uninfected women and 15 WLWH at any stage during pregnancy or postpartum. The full-length spike (FLS) glycoprotein and nucleocapsid (N) protein of wild-type (WT) SARS-CoV-2, as well as mutated spike protein regions found in the Omicron variant (B.1.1.529) were targeted by flow cytometry. WT-specific CD4+ and CD8+ T cells elicited similar FLS- and N-specific responses in HIV-uninfected women and WLWH. SARS-CoV-2-specific T-lymphocytes were predominantly TNF-α monofunctional in pregnant and postpartum women living with and without HIV, with fever cells producing either IFN-γ or IL-2. Furthermore, T-cell responses were unaffected by Omicron-specific spike mutations as similar responses between Omicron and the ancestral virus were detected for CD4+ and CD8+ T cells. Our results collectively demonstrate comparable T-cell responses between WLWH on antiretroviral therapy and HIV-uninfected pregnant and postpartum women who were naïve to Covid-19 vaccination. Additionally, we show that T cells from women infected with the ancestral virus, Beta variant (B.1.351), or Delta variant (B.1.617.2) can cross-recognize Omicron, suggesting an overall preservation of T-cell immunity.
Collapse
Affiliation(s)
- William C McMahon
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- South African Research Chair Initiative in Vaccine Preventable Diseases, Department of Science and Innovation/National Research Foundation, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gaurav Kwatra
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA.
- Department of Clinical Microbiology, Christian Medical College, Vellore, India.
| | - Alane Izu
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stephanie A Jones
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nkululeko J Mbele
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nwabisa Jafta
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Rushil Lala
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sharon Shalekoff
- A Division of the National Health Laboratory Service, Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Caroline T Tiemessen
- A Division of the National Health Laboratory Service, Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shabir A Madhi
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Marta C Nunes
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- South African Research Chair Initiative in Vaccine Preventable Diseases, Department of Science and Innovation/National Research Foundation, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Center of Excellence in Respiratory Pathogens, Hospices Civils de Lyon, and Centre International de Recherche en Infectiologie, Inserm U1111, CNRS UMR5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
5
|
Gupta A, Righi E, Konnova A, Sciammarella C, Spiteri G, Van Averbeke V, Berkell M, Hotterbeekx A, Sartor A, Mirandola M, Malhotra-Kumar S, Azzini AM, Pezzani D, Monaco MGL, Vanham G, Porru S, Tacconelli E, Kumar-Singh S. Interleukin-2-mediated CD4 T-cell activation correlates highly with effective serological and T-cell responses to SARS-CoV-2 vaccination in people living with HIV. J Med Virol 2024; 96:e29820. [PMID: 39056205 DOI: 10.1002/jmv.29820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
People living with HIV (PLWH) despite having an appreciable depletion of CD4+ T-cells show a good severe acute respiratory syndrome coronavirus 2 vaccination response. The underlying mechanism(s) are currently not understood. We studied serological and polyfunctional T-cell responses in PLWH receiving anti-retroviral therapy stratified on CD4+ counts as PLWH-high (CD4 ≥ 500 cells/mm3) and PLWH-low (<500 cells/mm3). Responses were assessed longitudinally before the first vaccination (T0), 1-month after the first dose (T1), 3-months (T2), and 6-months (T3) after the second dose. Expectedly, both PLWH-high and -low groups developed similar serological responses after T2, which were also non-significantly different from age and vaccination-matched HIV-negative controls at T3. The immunoglobulin G titers were also protective showing a good correlation with angiotensin-converting enzyme 2-neutralizations (R = 0.628, p = 0.005). While surface and intracellular activation analysis showed no significant difference at T3 between PLWH and controls in activated CD4+CD154+ and CD4+ memory T-cells, spike-specific CD4+ polyfunctional cytokine expression analysis showed that PLWH preferentially express interleukin (IL)-2 (p < 0.001) and controls, interferon-γ (p = 0.017). CD4+ T-cell counts negatively correlated with IL-2-expressing CD4+ T-cells including CD4+ memory T-cells (Spearman ρ: -0.85 and -0.80, respectively; p < 0.001). Our results suggest that the durable serological and CD4+ T-cell responses developing in vaccinated PLWH are associated with IL-2-mediated CD4+ T-cell activation that likely compensates for CD4+ T-cell depletion in PLWH.
Collapse
Affiliation(s)
- Akshita Gupta
- Molecular Pathology Group, Cell Biology & Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Elda Righi
- Infectious Diseases Division, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Angelina Konnova
- Molecular Pathology Group, Cell Biology & Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Concetta Sciammarella
- Infectious Diseases Division, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Gianluca Spiteri
- Occupational Medicine Unit, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Vincent Van Averbeke
- Molecular Pathology Group, Cell Biology & Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Matilda Berkell
- Molecular Pathology Group, Cell Biology & Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - An Hotterbeekx
- Molecular Pathology Group, Cell Biology & Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Assunta Sartor
- Microbiology Unit, Udine University Hospital, Udine, Italy
| | - Massimo Mirandola
- Infectious Diseases Division, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- School of Health Sciences, University of Brighton, Brighton, UK
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Anna Maria Azzini
- Infectious Diseases Division, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Diletta Pezzani
- Infectious Diseases Division, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Maria Grazia Lourdes Monaco
- Occupational Medicine Unit, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Guido Vanham
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Stefano Porru
- Occupational Medicine Unit, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Evelina Tacconelli
- Infectious Diseases Division, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Samir Kumar-Singh
- Molecular Pathology Group, Cell Biology & Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Lin J, Bai S, He L, Yang Y, Li X, Luo L, Wang Y, Chen YY, Qin J, Zhong Y. Cytotoxic Lymphocyte-Monocyte Complex Reflects the Dynamics of Coronavirus Disease 2019 Systemic Immune Response. J Infect Dis 2024; 230:5-14. [PMID: 39052699 DOI: 10.1093/infdis/jiae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes a variety of clinical manifestations, many of which originate from altered immune responses, either locally or systemically. Immune cell cross-talk occurs mainly in lymphoid organs. However, systemic cell interaction specific to coronavirus disease 2019 has not been well characterized. Here, by employing single-cell RNA sequencing and imaging flow cytometry analysis, we unraveled, in peripheral blood, a heterogeneous group of cell complexes formed by the adherence of CD14+ monocytes to different cytotoxic lymphocytes, including SARS-CoV-2-specific CD8+ T cells, γδ T cells, and natural killer T cells. These lymphocytes attached to CD14+ monocytes that showed enhanced inflammasome activation and pyroptosis-induced cell death in progression stage; in contrast, in the convalescent phase, CD14+ monocytes with elevated antigen presentation potential were targeted by cytotoxic lymphocytes, thereby restricting the excessive immune activation. Collectively, our study reports previously unrecognized cell-cell interplay in the SARS-CoV-2-specific immune response, providing new insight into the intricacy of dynamic immune cell interaction representing antiviral defense.
Collapse
Affiliation(s)
- Jiajia Lin
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine
- Shanghai Immune Therapy Institute, Renji Hospital and Baoshan Branch of Renji Hospital, Shanghai Jiao Tong University School of Medicine
| | - Shiyu Bai
- Shanghai Immune Therapy Institute, Renji Hospital and Baoshan Branch of Renji Hospital, Shanghai Jiao Tong University School of Medicine
| | - Liheng He
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine
| | - Ye Yang
- Xinhua Hospital, Shanghai Jiao Tong University School of Medicine
| | - Xiyue Li
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine
- Shanghai Immune Therapy Institute, Renji Hospital and Baoshan Branch of Renji Hospital, Shanghai Jiao Tong University School of Medicine
| | - Liulin Luo
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine
| | - Ying Wang
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying-Ying Chen
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinhong Qin
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine
| | - Yi Zhong
- Shanghai Immune Therapy Institute, Renji Hospital and Baoshan Branch of Renji Hospital, Shanghai Jiao Tong University School of Medicine
| |
Collapse
|
7
|
Melton A, Rowe LA, Penney T, Krzykwa C, Goff K, Scheuermann SE, Melton HJ, Williams K, Golden N, Green KM, Smith B, Russell-Lodrigue K, Dufour JP, Doyle-Meyers LA, Schiro F, Aye PP, Lifson JD, Beddingfield BJ, Blair RV, Bohm RP, Kolls JK, Rappaport J, Hoxie JA, Maness NJ. The Impact of SIV-Induced Immunodeficiency on SARS-CoV-2 Disease, Viral Dynamics, and Antiviral Immune Response in a Nonhuman Primate Model of Coinfection. Viruses 2024; 16:1173. [PMID: 39066335 PMCID: PMC11281476 DOI: 10.3390/v16071173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The effects of immunodeficiency associated with chronic HIV infection on COVID-19 disease and viral persistence have not been directly addressed in a controlled setting. In this pilot study, we exposed two pigtail macaques (PTMs) chronically infected with SIVmac239, exhibiting from very low to no CD4 T cells across all compartments, to SARS-CoV-2. We monitored the disease progression, viral replication, and evolution, and compared these outcomes with SIV-naïve PTMs infected with SARS-CoV-2. No overt signs of COVID-19 disease were observed in either animal, and the SARS-CoV-2 viral kinetics and evolution in the SIVmac239 PTMs were indistinguishable from those in the SIV-naïve PTMs in all sampled mucosal sites. However, the single-cell RNA sequencing of bronchoalveolar lavage cells revealed an infiltration of functionally inert monocytes after SARS-CoV-2 infection. Critically, neither of the SIV-infected PTMs mounted detectable anti-SARS-CoV-2 T-cell responses nor anti-SARS-CoV-2 binding or neutralizing antibodies. Thus, HIV-induced immunodeficiency alone may not be sufficient to drive the emergence of novel viral variants but may remove the ability of infected individuals to mount adaptive immune responses against SARS-CoV-2.
Collapse
Affiliation(s)
- Alexandra Melton
- Tulane National Primate Research Center, Covington, LA 70433, USA; (A.M.); (L.A.R.); (T.P.); (C.K.); (K.G.); (S.E.S.); (K.W.); (N.G.); (K.M.G.); (B.S.); (K.R.-L.); (J.P.D.); (L.A.D.-M.); (F.S.); (P.P.A.); (B.J.B.); (R.V.B.); (R.P.B.); (J.R.)
- Biomedical Science Training Program, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Lori A. Rowe
- Tulane National Primate Research Center, Covington, LA 70433, USA; (A.M.); (L.A.R.); (T.P.); (C.K.); (K.G.); (S.E.S.); (K.W.); (N.G.); (K.M.G.); (B.S.); (K.R.-L.); (J.P.D.); (L.A.D.-M.); (F.S.); (P.P.A.); (B.J.B.); (R.V.B.); (R.P.B.); (J.R.)
| | - Toni Penney
- Tulane National Primate Research Center, Covington, LA 70433, USA; (A.M.); (L.A.R.); (T.P.); (C.K.); (K.G.); (S.E.S.); (K.W.); (N.G.); (K.M.G.); (B.S.); (K.R.-L.); (J.P.D.); (L.A.D.-M.); (F.S.); (P.P.A.); (B.J.B.); (R.V.B.); (R.P.B.); (J.R.)
| | - Clara Krzykwa
- Tulane National Primate Research Center, Covington, LA 70433, USA; (A.M.); (L.A.R.); (T.P.); (C.K.); (K.G.); (S.E.S.); (K.W.); (N.G.); (K.M.G.); (B.S.); (K.R.-L.); (J.P.D.); (L.A.D.-M.); (F.S.); (P.P.A.); (B.J.B.); (R.V.B.); (R.P.B.); (J.R.)
| | - Kelly Goff
- Tulane National Primate Research Center, Covington, LA 70433, USA; (A.M.); (L.A.R.); (T.P.); (C.K.); (K.G.); (S.E.S.); (K.W.); (N.G.); (K.M.G.); (B.S.); (K.R.-L.); (J.P.D.); (L.A.D.-M.); (F.S.); (P.P.A.); (B.J.B.); (R.V.B.); (R.P.B.); (J.R.)
| | - Sarah E. Scheuermann
- Tulane National Primate Research Center, Covington, LA 70433, USA; (A.M.); (L.A.R.); (T.P.); (C.K.); (K.G.); (S.E.S.); (K.W.); (N.G.); (K.M.G.); (B.S.); (K.R.-L.); (J.P.D.); (L.A.D.-M.); (F.S.); (P.P.A.); (B.J.B.); (R.V.B.); (R.P.B.); (J.R.)
| | - Hunter J. Melton
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA;
| | - Kelsey Williams
- Tulane National Primate Research Center, Covington, LA 70433, USA; (A.M.); (L.A.R.); (T.P.); (C.K.); (K.G.); (S.E.S.); (K.W.); (N.G.); (K.M.G.); (B.S.); (K.R.-L.); (J.P.D.); (L.A.D.-M.); (F.S.); (P.P.A.); (B.J.B.); (R.V.B.); (R.P.B.); (J.R.)
| | - Nadia Golden
- Tulane National Primate Research Center, Covington, LA 70433, USA; (A.M.); (L.A.R.); (T.P.); (C.K.); (K.G.); (S.E.S.); (K.W.); (N.G.); (K.M.G.); (B.S.); (K.R.-L.); (J.P.D.); (L.A.D.-M.); (F.S.); (P.P.A.); (B.J.B.); (R.V.B.); (R.P.B.); (J.R.)
| | - Kristyn Moore Green
- Tulane National Primate Research Center, Covington, LA 70433, USA; (A.M.); (L.A.R.); (T.P.); (C.K.); (K.G.); (S.E.S.); (K.W.); (N.G.); (K.M.G.); (B.S.); (K.R.-L.); (J.P.D.); (L.A.D.-M.); (F.S.); (P.P.A.); (B.J.B.); (R.V.B.); (R.P.B.); (J.R.)
| | - Brandon Smith
- Tulane National Primate Research Center, Covington, LA 70433, USA; (A.M.); (L.A.R.); (T.P.); (C.K.); (K.G.); (S.E.S.); (K.W.); (N.G.); (K.M.G.); (B.S.); (K.R.-L.); (J.P.D.); (L.A.D.-M.); (F.S.); (P.P.A.); (B.J.B.); (R.V.B.); (R.P.B.); (J.R.)
| | - Kasi Russell-Lodrigue
- Tulane National Primate Research Center, Covington, LA 70433, USA; (A.M.); (L.A.R.); (T.P.); (C.K.); (K.G.); (S.E.S.); (K.W.); (N.G.); (K.M.G.); (B.S.); (K.R.-L.); (J.P.D.); (L.A.D.-M.); (F.S.); (P.P.A.); (B.J.B.); (R.V.B.); (R.P.B.); (J.R.)
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jason P. Dufour
- Tulane National Primate Research Center, Covington, LA 70433, USA; (A.M.); (L.A.R.); (T.P.); (C.K.); (K.G.); (S.E.S.); (K.W.); (N.G.); (K.M.G.); (B.S.); (K.R.-L.); (J.P.D.); (L.A.D.-M.); (F.S.); (P.P.A.); (B.J.B.); (R.V.B.); (R.P.B.); (J.R.)
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Lara A. Doyle-Meyers
- Tulane National Primate Research Center, Covington, LA 70433, USA; (A.M.); (L.A.R.); (T.P.); (C.K.); (K.G.); (S.E.S.); (K.W.); (N.G.); (K.M.G.); (B.S.); (K.R.-L.); (J.P.D.); (L.A.D.-M.); (F.S.); (P.P.A.); (B.J.B.); (R.V.B.); (R.P.B.); (J.R.)
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Faith Schiro
- Tulane National Primate Research Center, Covington, LA 70433, USA; (A.M.); (L.A.R.); (T.P.); (C.K.); (K.G.); (S.E.S.); (K.W.); (N.G.); (K.M.G.); (B.S.); (K.R.-L.); (J.P.D.); (L.A.D.-M.); (F.S.); (P.P.A.); (B.J.B.); (R.V.B.); (R.P.B.); (J.R.)
| | - Pyone P. Aye
- Tulane National Primate Research Center, Covington, LA 70433, USA; (A.M.); (L.A.R.); (T.P.); (C.K.); (K.G.); (S.E.S.); (K.W.); (N.G.); (K.M.G.); (B.S.); (K.R.-L.); (J.P.D.); (L.A.D.-M.); (F.S.); (P.P.A.); (B.J.B.); (R.V.B.); (R.P.B.); (J.R.)
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jeffery D. Lifson
- AIDS and Cancer Viruses Program, Frederick National Laboratory, Frederick, MD 21701, USA;
| | - Brandon J. Beddingfield
- Tulane National Primate Research Center, Covington, LA 70433, USA; (A.M.); (L.A.R.); (T.P.); (C.K.); (K.G.); (S.E.S.); (K.W.); (N.G.); (K.M.G.); (B.S.); (K.R.-L.); (J.P.D.); (L.A.D.-M.); (F.S.); (P.P.A.); (B.J.B.); (R.V.B.); (R.P.B.); (J.R.)
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Robert V. Blair
- Tulane National Primate Research Center, Covington, LA 70433, USA; (A.M.); (L.A.R.); (T.P.); (C.K.); (K.G.); (S.E.S.); (K.W.); (N.G.); (K.M.G.); (B.S.); (K.R.-L.); (J.P.D.); (L.A.D.-M.); (F.S.); (P.P.A.); (B.J.B.); (R.V.B.); (R.P.B.); (J.R.)
| | - Rudolf P. Bohm
- Tulane National Primate Research Center, Covington, LA 70433, USA; (A.M.); (L.A.R.); (T.P.); (C.K.); (K.G.); (S.E.S.); (K.W.); (N.G.); (K.M.G.); (B.S.); (K.R.-L.); (J.P.D.); (L.A.D.-M.); (F.S.); (P.P.A.); (B.J.B.); (R.V.B.); (R.P.B.); (J.R.)
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay K. Kolls
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA;
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay Rappaport
- Tulane National Primate Research Center, Covington, LA 70433, USA; (A.M.); (L.A.R.); (T.P.); (C.K.); (K.G.); (S.E.S.); (K.W.); (N.G.); (K.M.G.); (B.S.); (K.R.-L.); (J.P.D.); (L.A.D.-M.); (F.S.); (P.P.A.); (B.J.B.); (R.V.B.); (R.P.B.); (J.R.)
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - James A. Hoxie
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Nicholas J. Maness
- Tulane National Primate Research Center, Covington, LA 70433, USA; (A.M.); (L.A.R.); (T.P.); (C.K.); (K.G.); (S.E.S.); (K.W.); (N.G.); (K.M.G.); (B.S.); (K.R.-L.); (J.P.D.); (L.A.D.-M.); (F.S.); (P.P.A.); (B.J.B.); (R.V.B.); (R.P.B.); (J.R.)
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
8
|
Ruta S, Popescu CP, Matei L, Grancea C, Paun AM, Oprea C, Sultana C. SARS-CoV-2 Humoral and Cellular Immune Responses in People Living with HIV. Vaccines (Basel) 2024; 12:663. [PMID: 38932392 PMCID: PMC11209143 DOI: 10.3390/vaccines12060663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Immunosuppressed individuals, such as people living with HIV (PLWH), remain vulnerable to severe COVID-19. We analyzed the persistence of specific SARS-CoV-2 humoral and cellular immune responses in a retrospective, cross-sectional study in PLWH on antiretroviral therapy. Among 104 participants, 70.2% had anti-S IgG antibodies, and 55.8% had significant neutralizing activity against the Omicron variant in a surrogate virus neutralization test. Only 38.5% were vaccinated (8.76 ± 4.1 months prior), all displaying anti-S IgG, 75% with neutralizing antibodies and anti-S IgA. Overall, 29.8% of PLWH had no SARS-CoV-2 serologic markers; they displayed significantly lower CD4 counts and higher HIV viral load. Severe immunosuppression (present in 12.5% of participants) was linked to lower levels of detectable anti-S IgG (p = 0.0003), anti-S IgA (p < 0.0001) and lack of neutralizing activity against the Omicron variant (p < 0.0001). T-cell responses were present in 86.7% of tested participants, even in those lacking serological markers. In PLWH without severe immunosuppression, neutralizing antibodies and T-cell responses persisted for up to 9 months post-infection or vaccination. Advanced immunosuppression led to diminished humoral immune responses but retained specific cellular immunity.
Collapse
Affiliation(s)
- Simona Ruta
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.R.); (C.O.); (C.S.)
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.M.); (C.G.)
| | - Corneliu Petru Popescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.R.); (C.O.); (C.S.)
- Dr. Victor Babes Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania;
| | - Lilia Matei
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.M.); (C.G.)
| | - Camelia Grancea
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.M.); (C.G.)
| | - Adrian Marius Paun
- Dr. Victor Babes Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania;
| | - Cristiana Oprea
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.R.); (C.O.); (C.S.)
- Dr. Victor Babes Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania;
| | - Camelia Sultana
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.R.); (C.O.); (C.S.)
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.M.); (C.G.)
| |
Collapse
|
9
|
Congedo P, Sedile R, Guido M, Banchelli F, Zizza A. Detectable Virological Load and Associated Factors among People Living with HIV on Antiretroviral Treatment: A Retrospective Study. Pathogens 2024; 13:359. [PMID: 38787211 PMCID: PMC11124327 DOI: 10.3390/pathogens13050359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The complete and prolonged suppression of viral load is the primary objective of HAART in people living with HIV. Some people may experience therapeutic failure, while others may achieve virological suppression but are unable to maintain it, developing persistent or single detection of low-level viremia. This study aims to evaluate the determinants of a detectable viral load among patients on HAART to identify and address them promptly. In this retrospective study, all patients referring to the Infectious Disease Operative Unit of the Vito Fazzi Hospital in Lecce, Puglia, older than 18 years, receiving HAART for at least 12 months as of 30 June 2022, were included. For each patient, demographic characteristics such as age, sex, educational level, stable relationship, cohabitation, employment status, and information relating to habits and lifestyles such as physical activity, use of drugs, and substances or supplements for sport, abuse of alcohol, and smoking were collected. Degree of comorbidity was quantified according to the Charlson Comorbidity Index, and the presence of obesity and the COVID-19 infection was also considered. Univariable and multivariable logistic regression models were used to assess the association between patients' characteristics and the outcome. In the multivariable logistic regression model, the odds were lower for the duration of therapy (OR: 0.96; p = 0.0397), prescriber's perception of adherence to therapy (OR: 0.50; p < 0.0001), and Nadir CD4+ T-cell count (OR: 0.85; p = 0.0329), and higher for the presence of AIDS (OR: 1.89; p = 0.0423) and COVID-19 (OR: 2.31; p = 0.0182). Our findings support the early initiation of HAART to achieve virological suppression. Additionally, measures to improve adherence to therapy should be adopted to ensure better outcomes for patients.
Collapse
Affiliation(s)
| | - Raffaella Sedile
- Institute of Clinical Physiology, National Research Council, 73100 Lecce, Italy; (R.S.); (A.Z.)
| | - Marcello Guido
- Laboratory of Hygiene, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Federico Banchelli
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41100 Modena, Italy;
| | - Antonella Zizza
- Institute of Clinical Physiology, National Research Council, 73100 Lecce, Italy; (R.S.); (A.Z.)
| |
Collapse
|
10
|
Amegashie EA, Asamoah P, Ativi LEA, Adusei-Poku M, Bonney EY, Tagoe EA, Paintsil E, Torpey K, Quaye O. Clinical outcomes and immunological response to SARS-CoV-2 infection among people living with HIV. Exp Biol Med (Maywood) 2024; 249:10059. [PMID: 38628843 PMCID: PMC11020089 DOI: 10.3389/ebm.2024.10059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/22/2024] [Indexed: 04/19/2024] Open
Abstract
People living with HIV (PLWH) usually suffer from co-infections and co-morbidities including respiratory tract infections. SARS-CoV-2 has been reported to cause respiratory infections. There are uncertainties in the disease severity and immunological response among PLWH who are co-infected with COVID-19. This review outlines the current knowledge on the clinical outcomes and immunological response to SARS-CoV-2 among PLWH. Literature was searched in Google scholar, Scopus, PubMed, and Science Direct conforming with the Preferred Reporting Items for Systematic reviews and Meta-analyses (PRISMA) guidelines from studies published from January 2020 to June 2023. A total of 81 studies from 25 countries were identified, and RT-PCR was used in confirming COVID-19 in 80 of the studies. Fifty-seven studies assessed risk factors and clinical outcomes in HIV patients co-infected with COVID-19. Thirty-nine of the studies indicated the following factors being associated with severe outcomes in HIV/SARS-CoV-2: older age, the male sex, African American race, smoking, obesity, cardiovascular diseases, low CD4+ count, high viral load, tuberculosis, high levels of inflammatory markers, chronic kidney disease, hypertension, diabetes, interruption, and delayed initiation of ART. The severe outcomes are patients' hospitalization, admission at intensive care unit, mechanical ventilation, and death. Twenty (20) studies, however, reported no difference in clinical presentation among co-infected compared to mono-infected individuals. Immune response to SARS-CoV-2 infection was investigated in 25 studies, with some of the studies reporting high levels of inflammatory markers, T cell exhaustion and lower positive conversion rate of IgG in PLWH. There is scanty information on the cytokines that predisposes to severity among HIV/SARS-CoV-2 co-infected individuals on combined ART. More research work should be carried out to validate co-infection-related cytokines and/or immune markers to SARS-CoV-2 among PLWH.
Collapse
Affiliation(s)
- Esimebia Adjovi Amegashie
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Prince Asamoah
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Lawrencia Emefa Ami Ativi
- Department of Medical Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Mildred Adusei-Poku
- Department of Medical Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Evelyn Yayra Bonney
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Emmanuel Ayitey Tagoe
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Elijah Paintsil
- Department of Paediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Kwasi Torpey
- Department of Population, Family and Reproductive Health, School of Public Health, University of Ghana, Accra, Ghana
| | - Osbourne Quaye
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| |
Collapse
|
11
|
Höft MA, Burgers WA, Riou C. The immune response to SARS-CoV-2 in people with HIV. Cell Mol Immunol 2024; 21:184-196. [PMID: 37821620 PMCID: PMC10806256 DOI: 10.1038/s41423-023-01087-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
This review examines the intersection of the HIV and SARS-CoV-2 pandemics. People with HIV (PWH) are a heterogeneous group that differ in their degree of immune suppression, immune reconstitution, and viral control. While COVID-19 in those with well-controlled HIV infection poses no greater risk than that for HIV-uninfected individuals, people with advanced HIV disease are more vulnerable to poor COVID-19 outcomes. COVID-19 vaccines are effective and well tolerated in the majority of PWH, though reduced vaccine efficacy, breakthrough infections and faster waning of vaccine effectiveness have been demonstrated in PWH. This is likely a result of suboptimal humoral and cellular immune responses after vaccination. People with advanced HIV may also experience prolonged infection that may give rise to new epidemiologically significant variants, but initiation or resumption of antiretroviral therapy (ART) can effectively clear persistent infection. COVID-19 vaccine guidelines reflect these increased risks and recommend prioritization for vaccination and additional booster doses for PWH who are moderately to severely immunocompromised. We recommend continued research and monitoring of PWH with SARS-CoV-2 infection, especially in areas with a high HIV burden.
Collapse
Affiliation(s)
- Maxine A Höft
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Wendy A Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa.
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa.
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa.
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
12
|
Ng’uni TL, Musale V, Nkosi T, Mandolo J, Mvula M, Michelo C, Karim F, Moosa MYS, Khan K, Jambo KC, Hanekom W, Sigal A, Kilembe W, Ndhlovu ZM. Low pre-existing endemic human coronavirus (HCoV-NL63)-specific T cell frequencies are associated with impaired SARS-CoV-2-specific T cell responses in people living with HIV. Front Immunol 2024; 14:1291048. [PMID: 38343437 PMCID: PMC10853422 DOI: 10.3389/fimmu.2023.1291048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/18/2023] [Indexed: 02/15/2024] Open
Abstract
Background Understanding how HIV affects SARS-CoV-2 immunity is crucial for managing COVID-19 in sub-Saharan populations due to frequent coinfections. Our previous research showed that unsuppressed HIV is associated with weaker immune responses to SARS-CoV-2, but the underlying mechanisms are unclear. We investigated how pre-existing T cell immunity against an endemic human coronavirus HCoV-NL63 impacts SARS-CoV-2 T cell responses in people living with HIV (PLWH) compared to uninfected individuals, and how HIV-related T cell dysfunction influences responses to SARS-CoV-2 variants. Methods We used flow cytometry to measure T cell responses following PBMC stimulation with peptide pools representing beta, delta, wild-type, and HCoV-NL63 spike proteins. Luminex bead assay was used to measure circulating plasma chemokine and cytokine levels. ELISA and MSD V-PLEX COVID-19 Serology and ACE2 Neutralization assays were used to measure humoral responses. Results Regardless of HIV status, we found a strong positive correlation between responses to HCoV-NL63 and SARS-CoV-2. However, PLWH exhibited weaker CD4+ T cell responses to both HCoV-NL63 and SARS-CoV-2 than HIV-uninfected individuals. PLWH also had higher proportions of functionally exhausted (PD-1high) CD4+ T cells producing fewer proinflammatory cytokines (IFNγ and TNFα) and had elevated plasma IL-2 and IL-12(p70) levels compared to HIV-uninfected individuals. HIV status didn't significantly affect IgG antibody levels against SARS-CoV-2 antigens or ACE2 binding inhibition activity. Conclusion Our results indicate that the decrease in SARS-CoV-2 specific T cell responses in PLWH may be attributable to reduced frequencies of pre-existing cross-reactive responses. However, HIV infection minimally affected the quality and magnitude of humoral responses, and this could explain why the risk of severe COVID-19 in PLWH is highly heterogeneous.
Collapse
Affiliation(s)
- Tiza L. Ng’uni
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, Durban, South Africa
| | - Vernon Musale
- Emory-University of Georgia, Center of Excellence of Influenza Research and Surveillance (CEIRS), Lusaka, Zambia
- Center for Family Health Research in Zambia (CFHRZ), formerly Zambia Emory HIV Research Project (ZEHRP), Lusaka, Zambia
| | - Thandeka Nkosi
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, Durban, South Africa
| | - Jonathan Mandolo
- Infection and Immunity Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Memory Mvula
- Infection and Immunity Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Clive Michelo
- Emory-University of Georgia, Center of Excellence of Influenza Research and Surveillance (CEIRS), Lusaka, Zambia
- Center for Family Health Research in Zambia (CFHRZ), formerly Zambia Emory HIV Research Project (ZEHRP), Lusaka, Zambia
| | - Farina Karim
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, Durban, South Africa
| | - Mohomed Yunus S. Moosa
- Human Immunodeficiency Virus (HIV) Pathogenesis Program, School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal, Durban, South Africa
| | - Khadija Khan
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, Durban, South Africa
| | - Kondwani Charles Jambo
- Infection and Immunity Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Willem Hanekom
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Alex Sigal
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, Durban, South Africa
| | - William Kilembe
- Emory-University of Georgia, Center of Excellence of Influenza Research and Surveillance (CEIRS), Lusaka, Zambia
- Center for Family Health Research in Zambia (CFHRZ), formerly Zambia Emory HIV Research Project (ZEHRP), Lusaka, Zambia
| | - Zaza M. Ndhlovu
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, Durban, South Africa
- Human Immunodeficiency Virus (HIV) Pathogenesis Program, School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, United States
| |
Collapse
|
13
|
Augello M, Bono V, Rovito R, Tincati C, Bianchi S, Taramasso L, Di Biagio A, Callegaro A, Maggiolo F, Borghi E, Monforte AD, Marchetti G. Association between SARS-CoV-2 RNAemia, skewed T cell responses, inflammation, and severity in hospitalized COVID-19 people living with HIV. iScience 2024; 27:108673. [PMID: 38188525 PMCID: PMC10770729 DOI: 10.1016/j.isci.2023.108673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/31/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Severe COVID-19 outcomes have been reported in people living with HIV (PLWH), yet the underlying pathogenetic factors are largely unknown. We therefore aimed to assess SARS-CoV-2 RNAemia and plasma cytokines in PLWH hospitalized for COVID-19 pneumonia, exploring associations with magnitude and functionality of SARS-CoV-2-specific immune responses. Eighteen unvaccinated PLWH (16/18 on cART; median CD4 T cell count 361.5/μL; HIV-RNA<50 cp/mL in 15/18) and 18 age/sex-matched people without HIV were consecutively recruited at a median time of 10 days from symptoms onset. PLWH showed greater SARS-CoV-2 RNAemia, a distinct plasma cytokine profile, and worse respiratory function (lower PaO2/FiO2nadir), all correlating with skewed T cell responses (higher perforin production by cytotoxic T cells as well as fewer and less polyfunctional SARS-CoV-2-specific T cells), despite preserved humoral immunity. In conclusion, these data suggest a link between HIV-related T cell dysfunction and poor control over SARS-CoV-2 replication/dissemination that may in turn influence COVID-19 severity in PLWH.
Collapse
Affiliation(s)
- Matteo Augello
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Valeria Bono
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Roberta Rovito
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Camilla Tincati
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Silvia Bianchi
- Microbiology and Clinical Microbiology, Department of Health Sciences, University of Milan, Milan, Italy
| | - Lucia Taramasso
- Infectious Diseases Unit, San Martino Policlinico Hospital, Genoa, Italy
| | - Antonio Di Biagio
- Infectious Diseases Unit, San Martino Policlinico Hospital, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Annapaola Callegaro
- Biobank Unit and Microbiology and Virology Laboratory, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Franco Maggiolo
- Division of Infectious Diseases, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Elisa Borghi
- Microbiology and Clinical Microbiology, Department of Health Sciences, University of Milan, Milan, Italy
| | - Antonella d’Arminio Monforte
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
14
|
Melton A, Rowe LA, Penney T, Krzykwa C, Goff K, Scheuermann S, Melton HJ, Williams K, Golden N, Green KM, Smith B, Russell-Lodrigue K, Dufour JP, Doyle-Meyers LA, Schiro F, Aye PP, Lifson JD, Beddingfield BJ, Blair RV, Bohm RP, Kolls JK, Rappaport J, Hoxie JA, Maness NJ. The Impact of SIV-Induced Immunodeficiency on Clinical Manifestation, Immune Response, and Viral Dynamics in SARS-CoV-2 Coinfection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.567132. [PMID: 38014096 PMCID: PMC10680717 DOI: 10.1101/2023.11.15.567132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Persistent and uncontrolled SARS-CoV-2 replication in immunocompromised individuals has been observed and may be a contributing source of novel viral variants that continue to drive the pandemic. Importantly, the effects of immunodeficiency associated with chronic HIV infection on COVID-19 disease and viral persistence have not been directly addressed in a controlled setting. Here we conducted a pilot study wherein two pigtail macaques (PTM) chronically infected with SIVmac239 were exposed to SARS-CoV-2 and monitored for six weeks for clinical disease, viral replication, and viral evolution, and compared to our previously published cohort of SIV-naïve PTM infected with SARS-CoV-2. At the time of SARS-CoV-2 infection, one PTM had minimal to no detectable CD4+ T cells in gut, blood, or bronchoalveolar lavage (BAL), while the other PTM harbored a small population of CD4+ T cells in all compartments. Clinical signs were not observed in either PTM; however, the more immunocompromised PTM exhibited a progressive increase in pulmonary infiltrating monocytes throughout SARS-CoV-2 infection. Single-cell RNA sequencing (scRNAseq) of the infiltrating monocytes revealed a less activated/inert phenotype. Neither SIV-infected PTM mounted detectable anti-SARS-CoV-2 T cell responses in blood or BAL, nor anti-SARS-CoV-2 neutralizing antibodies. Interestingly, despite the diminished cellular and humoral immune responses, SARS-CoV-2 viral kinetics and evolution were indistinguishable from SIV-naïve PTM in all sampled mucosal sites (nasal, oral, and rectal), with clearance of virus by 3-4 weeks post infection. SIV-induced immunodeficiency significantly impacted immune responses to SARS-CoV-2 but did not alter disease progression, viral kinetics or evolution in the PTM model. SIV-induced immunodeficiency alone may not be sufficient to drive the emergence of novel viral variants.
Collapse
Affiliation(s)
- Alexandra Melton
- Tulane National Primate Research Center, Covington, Louisiana
- Biomedical Science Training Program, Tulane University School of Medicine, New Orleans, Louisiana
| | - Lori A Rowe
- Tulane National Primate Research Center, Covington, Louisiana
| | - Toni Penney
- Tulane National Primate Research Center, Covington, Louisiana
| | - Clara Krzykwa
- Tulane National Primate Research Center, Covington, Louisiana
| | - Kelly Goff
- Tulane National Primate Research Center, Covington, Louisiana
| | | | - Hunter J Melton
- Florida State University, Department of Statistics, Tallahassee, Florida
| | - Kelsey Williams
- Tulane National Primate Research Center, Covington, Louisiana
| | - Nadia Golden
- Tulane National Primate Research Center, Covington, Louisiana
| | | | - Brandon Smith
- Tulane National Primate Research Center, Covington, Louisiana
| | - Kasi Russell-Lodrigue
- Tulane National Primate Research Center, Covington, Louisiana
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Jason P Dufour
- Tulane National Primate Research Center, Covington, Louisiana
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Lara A Doyle-Meyers
- Tulane National Primate Research Center, Covington, Louisiana
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Faith Schiro
- Tulane National Primate Research Center, Covington, Louisiana
| | - Pyone P Aye
- Tulane National Primate Research Center, Covington, Louisiana
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Jeffery D Lifson
- AIDS and Cancer Viruses Program, Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Brandon J Beddingfield
- Tulane National Primate Research Center, Covington, Louisiana
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Robert V Blair
- Tulane National Primate Research Center, Covington, Louisiana
| | - Rudolf P Bohm
- Tulane National Primate Research Center, Covington, Louisiana
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
- Present address: Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Jay K Kolls
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay Rappaport
- Tulane National Primate Research Center, Covington, Louisiana
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana
| | - James A Hoxie
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nicholas J Maness
- Tulane National Primate Research Center, Covington, Louisiana
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
15
|
Shahbaz S, Sligl W, Osman M, Elahi S. Immunological responses in SARS-CoV-2 and HIV co-infection versus SARS-CoV-2 mono-infection: case report of the interplay between SARS-CoV-2 and HIV. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:91. [PMID: 37848967 PMCID: PMC10583436 DOI: 10.1186/s13223-023-00846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/08/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND There is an urgent need to understand the interplay between SARS-CoV-2 and HIV to inform risk-mitigation approaches for HIV-infected individuals. OBJECTIVES We conclude that people living with HIV (PLWH) who are antiretroviral therapy (ART) naïve could be at a greater risk of morbidity or mortality once co-infected with SARS-CoV-2. METHODS Here, we performed extensive immune phenotyping using flow cytometry. Moreover, to compare the range of values observed in the co-infected case, we have included a larger number of mono-infected cases with SARS-CoV-2. We also quantified soluble co-inhibitory/co-stimulatory molecules in the plasma of our patients. RESULTS We noted a robust immune activation characterized by the expansion of CD8+ T cells expressing co-inhibitory/stimulatory molecules (e.g. PD-1, TIM-3, 2B4, TIGIT, CD39, and ICOS) and activation markers (CD38, CD71, and HLA-DR) in the co-infected case. We further found that neutrophilia was more pronounced at the expense of lymphopenia in the co-infected case. In particular, naïve and central memory CD8+ T cells were scarce as a result of switching to effector and effector memory in the co-infected case. CD8+ T cell effector functions such as cytokine production (e.g. TNF-α and IFN-γ) and cytolytic molecules expression (granzyme B and perforin) following anti-CD3/CD28 or the Spike peptide pool stimulation were more prominent in the co-infected case versus the mono-infected case. We also observed that SARS-CoV-2 alters T cell exhaustion commonly observed in PLWH. CONCLUSION These findings imply that inadequate immune reconstitution and/or lack of access to ART could dysregulate immune response against SARS-CoV-2 infection, which can result in poor clinical outcomes in PLWH. Our study has implications for prioritizing PLWH in the vaccination program/access to ART in resource-constrained settings.
Collapse
Affiliation(s)
- Shima Shahbaz
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Wendy Sligl
- Department of Critical Care Medicine, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Department of Medicine, Division of Infectious Diseases, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Mohammed Osman
- Department of Medicine, Division of Rheumatology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
16
|
Abbasi SAA, Noor T, Mylavarapu M, Sahotra M, Bashir HA, Bhat RR, Jindal U, Amin U, V A, Siddiqui HF. Double Trouble Co-Infections: Understanding the Correlation Between COVID-19 and HIV Viruses. Cureus 2023; 15:e38678. [PMID: 37288215 PMCID: PMC10243673 DOI: 10.7759/cureus.38678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2023] [Indexed: 06/09/2023] Open
Abstract
A global outbreak of coronavirus disease 2019 (COVID-19), an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), mounted a substantial threat to public health worldwide. It initially emerged as a mere outbreak in Wuhan, China, in December 2019 and quickly engulfed the entire world, evolving into a global pandemic, consuming millions of lives and leaving a catastrophic effect on our lives in ways unimaginable. The entire healthcare system was significantly impacted and HIV healthcare was not spared. In this article, we reviewed the effect of HIV on COVID-19 disease and the ramifications of the recent COVID-19 pandemic over HIV management strategies. Our review highlights that contrary to the instinctive belief that HIV should render patients susceptible to COVID-19 infection, the studies depicted mixed results, although comorbidities and other confounders greatly affected the results. Few studies showed a higher rate of in-hospital mortality due to COVID-19 among HIV patients; however, the use of antiretroviral therapy had no consequential effect. COVID-19 vaccination was deemed safe among HIV patients in general. The recent pandemic can destabilize the HIV epidemic control as it hugely impacted access to care and preventive services and led to a marked reduction in HIV testing. The collision of these two disastrous pandemics warrants the need to materialize rigorous epidemiological measures and health policies, but most importantly, brisk research in prevention strategies to mitigate the combined burden of the two viruses and to battle similar future pandemics.
Collapse
Affiliation(s)
| | - Tarika Noor
- Department of Medicine, Government Medical College, Patiala, Ludhiana, IND
| | | | - Monika Sahotra
- Department of Medicine, Bukovinian State Medical University, Chernivtsi, UKR
| | - Hunmble A Bashir
- Forensic Medicine, Combined Military Hospital (CMH) Lahore Medical College and Institute of Dentistry, Lahore, PAK
| | - Rakshita Ramesh Bhat
- Medical Oncology, Mangalore Institute of Oncology, Mangalore, IND
- Internal Medicine, Bangalore Medical College and Research Institute, Bangalore, IND
| | - Urmi Jindal
- Department of Medicine, Karamshi Jethabhai Somaiya Medical College, Mumbai, IND
| | - Uzma Amin
- Pathology, Rawalpindi Medical University, Rawalpindi, PAK
| | - Anushree V
- Department of Medicine, Jagadguru Jayadeva Murugarajendra (JJM) Medical College, Davangere, IND
| | - Humza F Siddiqui
- Department of Medicine, Jinnah Sindh Medical University, Karachi, PAK
| |
Collapse
|
17
|
Riddell AC, Cutino-Moguel T. The origins of new SARS-COV-2 variants in immunocompromised individuals. Curr Opin HIV AIDS 2023; 18:148-156. [PMID: 36977190 DOI: 10.1097/coh.0000000000000794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
PURPOSE OF REVIEW To explore the origins of new severe acute respiratory coronavirus 2 (SARS-CoV-2) variants in immunocompromised individuals and whether the emergence of novel mutations in these individuals is responsible for the development of variants of concern (VOC). RECENT FINDINGS Next generation sequencing of samples from chronically infected immunocompromised patients has enabled identification of VOC- defining mutations in individuals prior to the emergence of these variants worldwide. Whether these individuals are the source of variant generation is uncertain. Vaccine effectiveness in immunocompromised individuals and with respect to VOCs is also discussed. SUMMARY Current evidence on chronic SARS-CoV-2 infection in immunocompromised populations is reviewed including the relevance of this to the generation of novel variants. Continued viral replication in the absence of an effective immune response at an individual level or high levels of viral infection at the population level are likely to have contributed to the appearance of the main VOC.
Collapse
Affiliation(s)
- Anna C Riddell
- Department of Virology, Division of Infection, Barts Health NHS Trust, London, UK
| | | |
Collapse
|
18
|
Augello M, Bono V, Rovito R, Tincati C, Marchetti G. Immunologic Interplay Between HIV/AIDS and COVID-19: Adding Fuel to the Flames? Curr HIV/AIDS Rep 2023; 20:51-75. [PMID: 36680700 PMCID: PMC9860243 DOI: 10.1007/s11904-023-00647-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2022] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW HIV/AIDS and COVID-19 have been the major pandemics overwhelming our times. Given the enduring immune disfunction featuring people living with HIV (PLWH) despite combination antiretroviral therapy (cART), concerns for higher incidence and severity of SARS-CoV-2 infection as well as for suboptimal responses to the newly developed vaccines in this population arose early during the pandemics. Herein, we discuss the complex interplay between HIV and SARS-CoV-2, with a special focus on the immune responses to SARS-CoV-2 natural infection and vaccination in PLWH. RECENT FINDINGS Overall, current literature shows that COVID-19 severity and outcomes may be worse and immune responses to infection or vaccination lower in PLWH with poor CD4 + T-cell counts and/or uncontrolled HIV viremia. Data regarding the risk of post-acute sequelae of SARS-CoV-2 infection (PASC) among PLWH are extremely scarce, yet they seem to suggest a higher incidence of such condition. Scarce immunovirological control appears to be the major driver of weak immune responses to SARS-CoV-2 infection/vaccination and worse COVID-19 outcomes in PLWH. Therefore, such individuals should be prioritized for vaccination and should receive additional vaccine doses. Furthermore, given the potentially higher risk of developing long-term sequelae, PLWH who experienced COVID-19 should be ensured a more careful and prolonged follow-up.
Collapse
Affiliation(s)
- Matteo Augello
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, San Paolo Hospital, ASST Santi Paolo E Carlo, University of Milan, Via A. Di Rudinì, 8, 20142, Milan, Italy
| | - Valeria Bono
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, San Paolo Hospital, ASST Santi Paolo E Carlo, University of Milan, Via A. Di Rudinì, 8, 20142, Milan, Italy
| | - Roberta Rovito
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, San Paolo Hospital, ASST Santi Paolo E Carlo, University of Milan, Via A. Di Rudinì, 8, 20142, Milan, Italy
| | - Camilla Tincati
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, San Paolo Hospital, ASST Santi Paolo E Carlo, University of Milan, Via A. Di Rudinì, 8, 20142, Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, San Paolo Hospital, ASST Santi Paolo E Carlo, University of Milan, Via A. Di Rudinì, 8, 20142, Milan, Italy.
| |
Collapse
|
19
|
Schnittman SR, Jung W, Fitch KV, Zanni MV, McCallum S, Lee JSL, Shin S, Davis BJ, Fulda ES, Diggs MR, Giguel F, Chinchay R, Sheth AN, Fichtenbaum CJ, Malvestutto C, Aberg JA, Currier J, Lauffenburger DA, Douglas PS, Ribaudo HJ, Alter G, Grinspoon SK. Effect of host factors and COVID-19 infection on the humoral immune repertoire in treated HIV. JCI Insight 2023; 8:e166848. [PMID: 36805331 PMCID: PMC10077482 DOI: 10.1172/jci.insight.166848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/27/2023] [Indexed: 02/22/2023] Open
Abstract
People with HIV (PWH) appear to be at higher risk for suboptimal pathogen responses and for worse COVID-19 outcomes, but the effects of host factors and COVID-19 on the humoral repertoire remain unclear. We assessed the antibody isotype/subclass and Fc-receptor binding Luminex arrays of non-SARS-CoV-2 and SARS-CoV-2 humoral responses among antiretroviral therapy-treated (ART-treated) PWH. Among the entire cohort, COVID-19 infection was associated with higher cytomegalovirus (CMV) responses (vs. the COVID- cohort ), potentially signifying increased susceptibility or a consequence of persistent inflammation. Among the COVID+ participants, (a) higher BMI was associated with a striking amplification of SARS-CoV-2 responses, suggesting exaggerated inflammatory responses, and (b) lower nadir CD4 was associated with higher SARS-CoV-2 IgM and FcγRIIB binding capacity, indicating poorly functioning extrafollicular and inhibitory responses. Among the COVID-19- participants, female sex, older age, and lower nadir CD4 were associated with unique repertoire shifts. In this first comprehensive assessment of the humoral repertoire in a global cohort of PWH, we identify distinct SARS-CoV-2-specific humoral immune profiles among PWH with obesity or lower nadir CD4+ T cell count, underlining plausible mechanisms associated with worse COVID-19-related outcomes in this setting. Host factors associated with the humoral repertoire in the COVID-19- cohort enhance our understanding of these important shifts among PWH.
Collapse
Affiliation(s)
- Samuel R. Schnittman
- Division of Infectious Diseases, Department of Medicine, and
- Metabolism Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wonyeong Jung
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Kathleen V. Fitch
- Metabolism Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Markella V. Zanni
- Metabolism Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sara McCallum
- Metabolism Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Sally Shin
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Brandon J. Davis
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Evelynne S. Fulda
- Metabolism Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Marissa R. Diggs
- Metabolism Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Francoise Giguel
- AIDS Clinical Trials Group Lab 01, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Romina Chinchay
- Houston AIDS Research Team, University of Texas Health Science Center Houston, Houston, Texas, USA
| | - Anandi N. Sheth
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Carl J. Fichtenbaum
- Division of Infectious Diseases, Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Carlos Malvestutto
- Division of Infectious Diseases, Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Judith A. Aberg
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Judith Currier
- Division of Infectious Diseases, Department of Medicine, UCLA, Los Angeles, California, USA
| | - Douglas A. Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Pamela S. Douglas
- Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA
| | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | | |
Collapse
|
20
|
Reeg DB, Hofmann M, Neumann-Haefelin C, Thimme R, Luxenburger H. SARS-CoV-2-Specific T Cell Responses in Immunocompromised Individuals with Cancer, HIV or Solid Organ Transplants. Pathogens 2023; 12:pathogens12020244. [PMID: 36839516 PMCID: PMC9966413 DOI: 10.3390/pathogens12020244] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Adaptive immune responses play an important role in the clinical course of SARS-CoV-2 infection. While evaluations of the virus-specific defense often focus on the humoral response, cellular immunity is crucial for the successful control of infection, with the early development of cytotoxic T cells being linked to efficient viral clearance. Vaccination against SARS-CoV-2 induces both CD4+ and CD8+ T cell responses and permits protection from severe COVID-19, including infection with the currently circulating variants of concern. Nevertheless, in immunocompromised individuals, first data imply significantly impaired SARS-CoV-2-specific immune responses after both natural infection and vaccination. Hence, these high-risk groups require particular consideration, not only in routine clinical practice, but also in the development of future vaccination strategies. In order to assist physicians in the guidance of immunocompromised patients, concerning the management of infection or the benefit of (booster) vaccinations, this review aims to provide a concise overview of the current knowledge about SARS-CoV-2-specific cellular immune responses in the vulnerable cohorts of cancer patients, people living with HIV (PLWH), and solid organ transplant recipients (SOT). Recent findings regarding the virus-specific cellular immunity in these differently immunocompromised populations might influence clinical decision-making in the future.
Collapse
|