1
|
Rooholamini Z, Dianat-Moghadam H, Esmaeilifallah M, Khanahmad H. From classical approaches to new developments in genetic engineering of live attenuated vaccine against cutaneous leishmaniasis: potential and immunization. Front Public Health 2024; 12:1382996. [PMID: 39035184 PMCID: PMC11257927 DOI: 10.3389/fpubh.2024.1382996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/07/2024] [Indexed: 07/23/2024] Open
Abstract
Despite the development of a vaccine against cutaneous leishmaniasis in preclinical and clinical studies, we still do not have a safe and effective vaccine for human use. Given this situation, the search for a new prophylactic alternative to control leishmaniasis should be a global priority. A first-generation vaccine strategy-leishmanization, in which live Leishmania major parasites are inoculated into the skin to protect against reinfection, is taking advantage of this situation. Live attenuated Leishmania vaccine candidates are promising alternatives due to their robust protective immune responses. Importantly, they do not cause disease and could provide long-term protection following challenges with a virulent strain. In addition to physical and chemical methods, genetic tools, including the Cre-loxP system, have enabled the selection of safer null mutant live attenuated Leishmania parasites obtained by gene disruption. This was followed by the discovery and introduction of CRISPR/Cas-based gene editing tools, which can be easily and precisely used to modify genes. Here, we briefly review the immunopathology of L. major parasites and then present the classical methods and their limitations for the production of live attenuated vaccines. We then discuss the potential of current genetic engineering tools to generate live attenuated vaccine strains by targeting key genes involved in L. major pathogenesis and then discuss their discovery and implications for immune responses to control leishmaniasis.
Collapse
Affiliation(s)
- Zahra Rooholamini
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Esmaeilifallah
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Islam A, do Prado BR, Dittz D, Rodrigues BL, Silva SMD, do Monte-Neto RL, Shabeer M, Frézard F, Demicheli C. Susceptibility of Leishmania to novel pentavalent organometallics: Investigating impact on DNA and membrane integrity in antimony(III)-sensitive and -resistant strains. Drug Dev Res 2024; 85:e22194. [PMID: 38704828 DOI: 10.1002/ddr.22194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024]
Abstract
The aim the present study was to investigate the impact of novel pentavalent organobismuth and organoantimony complexes on membrane integrity and their interaction with DNA, activity against Sb(III)-sensitive and -resistant Leishmania strains and toxicity in mammalian peritoneal macrophages. Ph3M(L)2 type complexes were synthesized, where M = Sb(V) or Bi(V) and L = deprotonated 3-(dimethylamino)benzoic acid or 2-acetylbenzoic acid. Both organobismuth(V) and organoantimony(V) complexes exhibited efficacy at micromolar concentrations against Leishmania amazonensis and L. infantum but only the later ones demonstrated biocompatibility. Ph3Sb(L1)2 and Ph3Bi(L1)2 demonstrated distinct susceptibility profiles compared to inorganic Sb(III)-resistant strains of MRPA-overexpressing L. amazonensis and AQP1-mutated L. guyanensis. These complexes were able to permeate the cell membrane and interact with the Leishmania DNA, suggesting that this effect may contribute to the parasite growth inhibition via apoptosis. Taken altogether, our data substantiate the notion of a distinct mechanism of uptake pathway and action in Leishmania for these organometallic complexes, distinguishing them from the conventional inorganic antimonial drugs.
Collapse
Affiliation(s)
- Arshad Islam
- Department of Physiology and Biophysics, Postgraduate Program in Physiology and Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Department of Pathology, Government Lady Reading Hospital Medical Teaching Institution, Peshawar, Pakistan
| | - Bruno Rodrigues do Prado
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Dalton Dittz
- Department of Biochemistry and Pharmacology, Health Sciences Center, Federal University of Piauí (UFPI), Av. Universitária, Teresina, Brazil
| | - Bernardo Lages Rodrigues
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Sydnei Magno da Silva
- Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Av Amazonas, s/n, Umuarama, Brazil
| | | | - Muhammad Shabeer
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Frédéric Frézard
- Department of Physiology and Biophysics, Postgraduate Program in Physiology and Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Cynthia Demicheli
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
3
|
Kordi B, Basmenj ER, Majidiani H, Basati G, Sargazi D, Nazari N, Shams M. In Silico Characterization of an Important Metacyclogenesis Marker in Leishmania donovani, HASPB1, as a Potential Vaccine Candidate. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3763634. [PMID: 37323936 PMCID: PMC10266922 DOI: 10.1155/2023/3763634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023]
Abstract
Visceral leishmaniasis is a life-threatening infectious disease worldwide. Extensive experiments have been done to introduce potential vaccine candidates to combat leishmaniasis. The present study was done to evaluate Leishmania donovani hydrophilic acylated surface protein B1 as a potential vaccine candidate using in silico methods. For this aim, server-based predictions were performed regarding physicochemical characteristics, solubility, antigenicity, allergenicity, signal peptide, transmembrane domain, and posttranslational modifications (PTMs). Also, secondary and tertiary structures were predicted using NetSurfP-3.0 and I-TASSER, respectively. The 3D model was further subjected to refinement and validation, and promising B-cell, cytotoxic T-lymphocyte (CTL; human, dog), and helper T-lymphocyte (HTL; human) epitopes were predicted. The protein had a molecular weight of 42.19 kDa, with high solubility (0.749), stability (instability index: 21.34), and hydrophilicity (GRAVY: -2.322). No signal peptide or transmembrane domain was predicted, and the most abundant PTMs were phosphorylation, O-glycosylation, and acetylation. Many coils and disordered regions existed in the secondary structure analysis, and the tertiary model had a good confidence score (-0.79). Next, the ProSA-web and PROCHECK tools showed adequate improvements in the refined model compared to the crude model. Only 4 shared B-cell epitopes among three web servers (ABCpred, BepiPred 2.0, and SVMTriP) were shown to be antigenic, nonallergenic, and with good water solubility. Also, five potent CTL epitopes in dogs and five in humans were predicted. Notably, two HTL epitopes were found to be potential IFN-γ inducers. In conclusion, our results demonstrated several immunogenic epitopes in this protein, which could be directed towards multiepitope vaccine design.
Collapse
Affiliation(s)
- Bahareh Kordi
- Department of Agricultural Science, Technical and Vocational University (TVU), Tehran, Iran
| | | | - Hamidreza Majidiani
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Healthy Aging Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Gholam Basati
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Dariush Sargazi
- Veterinary Medicine, Zabol Veterinary Network, Zabol, Sistan and Baluchistan, Iran
| | - Naser Nazari
- Department of Parasitology and Mycology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Morteza Shams
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
4
|
Moreira POL, Nogueira PM, Monte-Neto RL. Next-Generation Leishmanization: Revisiting Molecular Targets for Selecting Genetically Engineered Live-Attenuated Leishmania. Microorganisms 2023; 11:microorganisms11041043. [PMID: 37110466 PMCID: PMC10145799 DOI: 10.3390/microorganisms11041043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Despite decades of research devoted to finding a vaccine against leishmaniasis, we are still lacking a safe and effective vaccine for humans. Given this scenario, the search for a new prophylaxis alternative for controlling leishmaniasis should be a global priority. Inspired by leishmanization-a first generation vaccine strategy where live L. major parasites are inoculated in the skin to protect against reinfection-live-attenuated Leishmania vaccine candidates are promising alternatives due to their robust elicited protective immune response. In addition, they do not cause disease and could provide long-term protection upon challenge with a virulent strain. The discovery of a precise and easy way to perform CRISPR/Cas-based gene editing allowed the selection of safer null mutant live-attenuated Leishmania parasites obtained by gene disruption. Here, we revisited molecular targets associated with the selection of live-attenuated vaccinal strains, discussing their function, their limiting factors and the ideal candidate for the next generation of genetically engineered live-attenuated Leishmania vaccines to control leishmaniasis.
Collapse
Affiliation(s)
- Paulo O L Moreira
- Biotechnology Applied to Pathogens (BAP), Instituto René Rachou, Fundação Oswaldo Cruz, Fiocruz Minas, Belo Horizonte 30190-009, Brazil
| | - Paula M Nogueira
- Biotechnology Applied to Pathogens (BAP), Instituto René Rachou, Fundação Oswaldo Cruz, Fiocruz Minas, Belo Horizonte 30190-009, Brazil
| | - Rubens L Monte-Neto
- Biotechnology Applied to Pathogens (BAP), Instituto René Rachou, Fundação Oswaldo Cruz, Fiocruz Minas, Belo Horizonte 30190-009, Brazil
| |
Collapse
|
5
|
Beyzay F, Zavaran Hosseini A, Hazrati A, Karimi M, Soudi S. Autophagy induced macrophages by α-alumina(α-AL2O3) conjugated cysteine peptidase, enhances the cytotoxic activity of CD8 + T lymphocytes against Leishmania major. BIOIMPACTS : BI 2023; 13:393-403. [PMID: 37736336 PMCID: PMC10509742 DOI: 10.34172/bi.2023.25282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 09/23/2023]
Abstract
Introduction Induction of a protective immune response against Leishmania major requires the activation of both TH1 and CD8+ T lymphocytes. Because L. major is an intra-phagosomal parasite, its antigens do not have access to MHC-I. The present study aimed to evaluate the effect of cysteine peptidase A (CPA)/cysteine peptidase B (CPB) conjugated to α-AL2O3 on autophagy induction in L. major infected macrophages and subsequent activation of cytotoxic CD8+ T lymphocytes. Methods Recombinant CPA and CPB of L. major were produced in expression vectors and purified. Aldehyde functionalized α-AL2O3 were conjugated to hydrazine-modified CPA/CPB by a chemical bond was confirmed by Fourier-transform infrared spectroscopy (FTIR). The High efficient internalization of α-AL2O3 conjugated CPA/CPB to macrophages was confirmed using a fluorescence microscope and flowcytometry. Induction of the acidic autophagosome and LC3 conversion in macrophages was determined by acridine orange (AO) staining and western blot. Autophagy-activated macrophages were used for CD8+ T cell priming. Cytotoxic activity of the primed CD8+ T cell against L. major infected macrophages was measured using apoptosis assay. Results α-AL2O3 conjugated CPA/CPB enhances macrophages antigen uptake and increases acidic vacuole formation and LC-3I to LC-3II conversion. Co-culture of autophagy-activated macrophages with CD8+ T cells augmented CD8+ T cells priming and proliferation more than in other study groups. These primed CD8+ T cells induce significant apoptotic death of L. major infected macrophages compared with non-primed CD8+ T cells. Conclusion α-AL2O3 nanoparticles enhance the cross-presentation of L. major antigens to CD8+ T cells by inducing autophagy. This finding supports the positive role of autophagy and encourages the use of α-AL2O3 in vaccine design.
Collapse
Affiliation(s)
- Fatemeh Beyzay
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Zavaran Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mozhdeh Karimi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Dinc R. Leishmania Vaccines: the Current Situation with Its Promising Aspect for the Future. THE KOREAN JOURNAL OF PARASITOLOGY 2022; 60:379-391. [PMID: 36588414 PMCID: PMC9806502 DOI: 10.3347/kjp.2022.60.6.379] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/09/2022] [Accepted: 11/25/2022] [Indexed: 12/29/2022]
Abstract
Leishmaniasis is a serious parasitic disease caused by Leishmania spp. transmitted through sandfly bites. This disease is a major public health concern worldwide. It can occur in 3 different clinical forms: cutaneous, mucocutaneous, and visceral Leishmaniasis (CL, MCL, and VL, respectively), caused by different Leishmania spp. Currently, licensed vaccines are unavailable for the treatment of human Leishmaniasis. The treatment and prevention of this disease rely mainly on chemotherapeutics, which are highly toxic and have an increasing resistance problem. The development of a safe, effective, and affordable vaccine for all forms of vector-borne disease is urgently needed to block transmission of the parasite between the host and vector. Immunological mechanisms in the pathogenesis of Leishmaniasis are complex. IL-12-driven Th1-type immune response plays a crucial role in host protection. The essential purpose of vaccination is to establish a protective immune response. To date, numerous vaccine studies have been conducted using live/attenuated/killed parasites, fractionated parasites, subunits, recombinant or DNA technology, delivery systems, and chimeric peptides. Most of these studies were limited to animals. In addition, standardization has not been achieved in these studies due to the differences in the virulence dynamics of the Leishmania spp. and the feasibility of the adjuvants. More studies are needed to develop a safe and effective vaccine, which is the most promising approach against Leishmania infection.
Collapse
Affiliation(s)
- Rasit Dinc
- INVAMED RD Global, Mutlukent Mah, 1961 Cd. No.27 Cankaya, Ankara 06810,
Turkey
| |
Collapse
|
7
|
Lajevardi MS, Taheri T, Gholami E, Seyed N, Rafati S. Structural analysis of PpSP15 and PsSP9 sand fly salivary proteins designed with a self-cleavable linker as a live vaccine candidate against cutaneous leishmaniasis. Parasit Vectors 2022; 15:377. [PMID: 36261836 PMCID: PMC9580450 DOI: 10.1186/s13071-022-05437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background Leishmania parasites are deposited in the host through sand fly bites along with sand fly saliva. Therefore, salivary proteins are promising vaccine candidates for controlling leishmaniasis. Herein, two immunogenic salivary proteins, PpSP15 from Phlebotomus papatasi and PsSP9 from Phlebotomus sergenti, were selected as vaccine candidates to be delivered by live Leishmania tarentolae as vector. The stepwise in silico protocol advantaged in this study for multi-protein design in L. tarentolae is then described in detail. Methods All possible combinations of two salivary proteins, PpSP15 and PsSP9, with or without T2A peptide were designed at the mRNA and protein levels. Then, the best combination for the vaccine candidate was selected based on mRNA and protein stability along with peptide analysis. Results At the mRNA level, the most favored secondary structure was PpSP15-T2A-PsSP9. At the protein level, the refined three-dimensional models of all combinations were structurally valid; however, local quality estimation showed that the PpSp15-T2A-PsSP9 fusion had higher stability for each amino acid position, with low root-mean-square deviation (RMSD), compared with the original proteins. In silico evaluation confirmed the PpSP15-T2A-PsSP9 combination as a good Th1-polarizing candidate in terms of high IFN-γ production and low IL-10/TGF-β ratio in response to three consecutive immunizations. Potential protein expression was then confirmed by Western blotting. Conclusions The approach presented herein is among the first studies to have privileged protein homology modeling along with mRNA analysis for logical live vaccine design-coding multi-proteins. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05437-x.
Collapse
Affiliation(s)
- Mahya Sadat Lajevardi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran.,Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Gholami
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran.
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
8
|
Lajevardi MS, Gholami E, Taheri T, Sarvnaz H, Habibzadeh S, Seyed N, Mortazavi Y, Rafati S. Leishmania tarentolae as Potential Live Vaccine Co-Expressing Distinct Salivary Gland Proteins Against Experimental Cutaneous Leishmaniasis in BALB/c Mice Model. Front Immunol 2022; 13:895234. [PMID: 35757692 PMCID: PMC9226313 DOI: 10.3389/fimmu.2022.895234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/27/2022] [Indexed: 12/01/2022] Open
Abstract
Leishmaniasis is a neglected vector-borne disease caused by Leishmania parasites transmitted through the infected sand flies bite. Current treatments are limited, partly due to their high cost and significant adverse effects, and no human vaccine is yet available. Sand flies saliva has been examined for their potential application as an anti-Leishmania vaccine. The salivary protein, PpSP15, was the first protective vaccine candidate against L. major. Additionally, PsSP9 was already introduced as a highly immunogenic salivary protein against L. tropica. Herein, we aimed to develop an effective multivalent live vaccine to control Cutaneous Leishmaniasis induced by two main species, L. major and L. tropica. Hence, the two above-mentioned salivary proteins using T2A linker were incorporated inside the L. tarentolae genome as a safe live vector. Then, the immunogenicity and protective effects of recombinant L. tarentolae co-expressing PpSP15 and PsSP9 were evaluated in pre-treated BALB/c mice with CpG against L. major and L. tropica. Following the cytokine assays, parasite burden and antibody assessment at different time-points at pre and post-infection, promising protective Th1 immunity was obtained in vaccinated mice with recombinant L. tarentolae co-expressing PpSP15 and PsSP9. This is the first study demonstrating the potency of a safe live vaccine based on the combination of different salivary proteins against the infectious challenge with two different species of Leishmania.
Collapse
Affiliation(s)
- Mahya Sadat Lajevardi
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Gholami
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Hamzeh Sarvnaz
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Habibzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Yousef Mortazavi
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
9
|
Gonçalves LO, Pulido AFV, Mathias FAS, Enes AES, Carvalho MGR, de Melo Resende D, Polak ME, Ruiz JC. Expression Profile of Genes Related to the Th17 Pathway in Macrophages Infected by Leishmania major and Leishmania amazonensis: The Use of Gene Regulatory Networks in Modeling This Pathway. Front Cell Infect Microbiol 2022; 12:826523. [PMID: 35774406 PMCID: PMC9239034 DOI: 10.3389/fcimb.2022.826523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Leishmania amazonensis and Leishmania major are the causative agents of cutaneous and mucocutaneous diseases. The infections‘ outcome depends on host–parasite interactions and Th1/Th2 response, and in cutaneous form, regulation of Th17 cytokines has been reported to maintain inflammation in lesions. Despite that, the Th17 regulatory scenario remains unclear. With the aim to gain a better understanding of the transcription factors (TFs) and genes involved in Th17 induction, in this study, the role of inducing factors of the Th17 pathway in Leishmania–macrophage infection was addressed through computational modeling of gene regulatory networks (GRNs). The Th17 GRN modeling integrated experimentally validated data available in the literature and gene expression data from a time-series RNA-seq experiment (4, 24, 48, and 72 h post-infection). The generated model comprises a total of 10 TFs, 22 coding genes, and 16 cytokines related to the Th17 immune modulation. Addressing the Th17 induction in infected and uninfected macrophages, an increase of 2- to 3-fold in 4–24 h was observed in the former. However, there was a decrease in basal levels at 48–72 h for both groups. In order to evaluate the possible outcomes triggered by GRN component modulation in the Th17 pathway. The generated GRN models promoted an integrative and dynamic view of Leishmania–macrophage interaction over time that extends beyond the analysis of single-gene expression.
Collapse
Affiliation(s)
- Leilane Oliveira Gonçalves
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Brazil
| | - Andrés F. Vallejo Pulido
- Systems Immunology Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | - Alexandre Estevão Silvério Enes
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Brazil
| | | | - Daniela de Melo Resende
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Brazil
| | - Marta E. Polak
- Systems Immunology Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- *Correspondence: Jeronimo C. Ruiz, ; Marta E. Polak,
| | - Jeronimo C. Ruiz
- Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Brazil
- *Correspondence: Jeronimo C. Ruiz, ; Marta E. Polak,
| |
Collapse
|
10
|
Abstract
Leishmaniasis is a zoonotic and vector-borne infectious disease that is caused by the genus Leishmania belonging to the trypanosomatid family. The protozoan parasite has a digenetic life cycle involving a mammalian host and an insect vector. Leishmaniasisis is a worldwide public health problem falling under the neglected tropical disease category, with over 90 endemic countries, and approximately 1 million new cases and 20,000 deaths annually. Leishmania infection can progress toward the development of species–specific pathologic disorders, ranging in severity from self-healing cutaneous lesions to disseminating muco-cutaneous and fatal visceral manifestations. The severity and the outcome of leishmaniasis is determined by the parasite’s antigenic epitope characteristics, the vector physiology, and most importantly, the immune response and immune status of the host. This review examines the nature of host–pathogen interaction in leishmaniasis, innate and adaptive immune responses, and various strategies that have been employed for vaccine development.
Collapse
|
11
|
Sirak B, Asres K, Hailu A, Dube M, Arnold N, Häberli C, Keiser J, Imming P. In Vitro Antileishmanial and Antischistosomal Activities of Anemonin Isolated from the Fresh Leaves of Ranunculus multifidus Forsk. Molecules 2021; 26:molecules26247473. [PMID: 34946555 PMCID: PMC8703683 DOI: 10.3390/molecules26247473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Leishmaniasis and schistosomiasis are neglected tropical diseases (NTDs) infecting the world’s poorest populations. Effectiveness of the current antileishmanial and antischistosomal therapies are significantly declining, which calls for an urgent need of new effective and safe drugs. In Ethiopia fresh leaves of Ranunculus multifidus Forsk. are traditionally used for the treatment of various ailments including leishmaniasis and eradication of intestinal worms. In the current study, anemonin isolated from the fresh leaves of R. multifidus was assessed for its in vitro antileishmanial and antischistosomal activities. Anemonin was isolated from the hydro-distilled extract of the leaves of R. multifidus. Antileishmanial activity was assessed on clinical isolates of the promastigote and amastigote forms of Leishmania aethiopica and L. donovani clinical isolates. Resazurin reduction assay was used to determine antipromastigote activity, while macrophages were employed for antiamastigote and cytotoxicity assays. Antischistosomal assays were performed against adult Schistosoma mansoni and newly transformed schistosomules (NTS). Anemonin displayed significant antileishmanial activity with IC50 values of 1.33 nM and 1.58 nM against promastigotes and 1.24 nM and 1.91 nM against amastigotes of L. aethiopica and L. donovani, respectively. It also showed moderate activity against adult S. mansoni and NTS (49% activity against adult S. mansoni at 10 µM and 41% activity against NTS at 1 µM). The results obtained in this investigation indicate that anemonin has the potential to be used as a template for designing novel antileishmanial and antischistosomal pharmacophores.
Collapse
Affiliation(s)
- Betelhem Sirak
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia;
- Department of Pharmacy, College of Medicine and Health Sciences, Arba Minch University, Arba Minch P.O. Box 21, Ethiopia
| | - Kaleab Asres
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia;
- Correspondence: (K.A.); (P.I.)
| | - Asrat Hailu
- Department of Microbiology, Immunology and Parasitology, Faculty of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia;
| | - Mthandazo Dube
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany; (M.D.); (N.A.)
| | - Norbert Arnold
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany; (M.D.); (N.A.)
| | - Cecile Häberli
- Swiss Tropical and Public Health Institute, Socinstr. 57, CH-4051 Basel, Switzerland; (C.H.); (J.K.)
- University of Basel, CH-4051 Basel, Switzerland
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Socinstr. 57, CH-4051 Basel, Switzerland; (C.H.); (J.K.)
- University of Basel, CH-4051 Basel, Switzerland
| | - Peter Imming
- Institut fuer Pharmazie, Martin-Luther-Universitaet Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
- Correspondence: (K.A.); (P.I.)
| |
Collapse
|
12
|
Ramu D, Singh S. Potential molecular targets of Leishmania pathways in developing novel antileishmanials. Future Microbiol 2021; 17:41-57. [PMID: 34877877 DOI: 10.2217/fmb-2021-0094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The illness known as leishmaniasis has not become a household name like malaria, although it stands as the second-largest parasitic disease, surpassed only by malaria. As no licensed vaccine is available, treatment for leishmaniasis mostly relies on chemotherapy. Inefficiency and drug resistance are the major impediments in current therapeutics. In this scenario, identification of novel molecular drug candidates is indispensable to develop robust antileishmanials. The exploration of structure-based drugs to target enzymes/molecules of Leishmania which differ structurally/functionally from their equivalents in mammalian hosts not only helps in developing a new class of antileishmanials, but also paves the way to understand Leishmania biology. This review provides a comprehensive overview on possible drug candidates relating to various Leishmania molecular pathways.
Collapse
Affiliation(s)
- Dandugudumula Ramu
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, 201314, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
13
|
Mutile MC, Muli MJ, Muita GM. Safety and Efficacy of Prosopis juliflora Leaf Extract as a Potential Treatment against Visceral Leishmaniasis in Balb/c Mice. IRANIAN JOURNAL OF PARASITOLOGY 2021; 16:652-662. [PMID: 35082894 PMCID: PMC8710203 DOI: 10.18502/ijpa.v16i4.7878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/14/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Visceral Leishmaniasis caused by Leishmania donovani is a major health problem in the tropics and sub-tropic regions where it is endemic. We aimed in testing the leishmanicidal activity and toxicity of Prosopis juliflora leaf extract in BALB/c mice and in vitro test systems respectively. METHODS In the year 2017 until 2019, BALB/c mice of mixed sexes aged between 6 and 8 weeks in groups of 8 were used. Group I treated with 100 mg/kg of P. juliflora extract, Group II -1 mg/kg of Sodium stibogluconate (SSG) and Group III treated with normal saline. All mice were anaesthized and sacrificed to obtain blood, spleen samples for antibody measurements, and determination of parasite loads. RESULTS There was significant inhibitory effect (P<0.05) exhibited by P. juliflora leaf extract on promastigote growth during the in vitro test whereby up to 98% parasites were killed at the highest concentrations of 100 μg/Ml of the extract as compared to SSG, which showed less inhibitory effect on promastigotes. P. juliflora exhibited a higher splenic antiamastigote effect after 21 days of administration as compared to SSG. P. juliflora methanolic leaf extract induced a higher total IgG level as compared to the reference drug which could be attributed to higher titer in IgG2a subtype in mice treated with the extract, which was not induced in mice, treated with SSG. CONCLUSION P. juliflora exhibited higher inhibitory effects against L. donovani promastigotes as well as amastigotes and induced significantly higher IgG antibody levels as compared to SSG (P<0.05). Furthermore, it was safer than SSG on Vero E6 cells.
Collapse
|
14
|
Peptide-based vaccine successfully induces protective immunity against canine visceral leishmaniasis. NPJ Vaccines 2019; 4:49. [PMID: 31815006 PMCID: PMC6884440 DOI: 10.1038/s41541-019-0144-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/06/2019] [Indexed: 12/27/2022] Open
Abstract
Dogs are the main reservoir of zoonotic visceral leishmaniasis. Vaccination is a promising approach to help control leishmaniasis and to interrupt transmission of the Leishmania parasite. The promastigote surface antigen (PSA) is a highly immunogenic component of Leishmania excretory/secretory products. A vaccine based on three peptides derived from the carboxy-terminal part of Leishmania amazonensis PSA and conserved among Leishmania species, formulated with QA-21 as adjuvant, was tested on naive Beagle dogs in a preclinical trial. Four months after the full course of vaccination, dogs were experimentally infected with Leishmania infantum promastigotes. Immunization of dogs with peptide-based vaccine conferred immunity against experimental infection with L. infantum. Evidence for macrophage nitric oxide production and anti-leishmanial activity associated with IFN-γ production by lymphocytes was only found in the vaccinated group. An increase in specific IgG2 antibodies was also measured in vaccinated dogs from 2 months after immunization. Additionally, after challenge with L. infantum, the parasite burden was significantly lower in vaccinated dogs than in the control group. These data strongly suggest that this peptide-based vaccine candidate generated cross-protection against zoonotic leishmaniasis by inducing a Th1-type immune response associated with production of specific IgG2 antibodies. This preclinical trial including a peptide-based vaccine against leishmaniasis clearly demonstrates effective protection in a natural host. This approach deserves further investigation to enhance the immunogenicity of the peptides and to consider the possible engineering of a vaccine targeting several Leishmania species. Leishmaniasis, caused by the protozoan parasite Leishmania, can present in different forms depending on the infecting species. Visceral leishmaniasis is associated with migration of the parasite, in this case Leishmania infantum, to various organs and can infect both humans and canids. Here Rachel Bras-Gonçalves and colleagues test a Leishmania vaccine for dogs as they are the main reservoir for this zoonotic disease. The vaccine is based on the abundant immunogenic component of Leishmania excretory/secretory product, promastigote surface antigen (PSA); specifically, three peptides from the carboxyl-terminal of PSA, which is conserved in Leishmania species. Uninfected Beagle dogs were immunized with QA-21 as an adjuvant, and no local or systemic adverse reactions were observed. Four months later after three doses of the vaccine, dogs were infected with L. infantum promastigotes. Vaccination provided immunity with reduced parasite burden and this was associated with macrophage anti-leishmanial activity, increased IFN-y and nitric oxide production and increased Leishmania-specific IgG2 antibodies.
Collapse
|
15
|
Moafi M, Rezvan H, Sherkat R, Taleban R. Leishmania Vaccines Entered in Clinical Trials: A Review of Literature. Int J Prev Med 2019; 10:95. [PMID: 31360342 PMCID: PMC6592111 DOI: 10.4103/ijpvm.ijpvm_116_18] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
Abstract
Leishmaniasis is considered as a zoonotic infection and neglected tropical disease. Leishmania treatment is not totally successful and imposes high expenditures, especially in developing countries. Since the natural infection leads to the robust immunity in most of the human cases, many bodies of research have been focusing on Leishmania vaccines, being capable to control Leishmania infection. First generation vaccines (such as Leishmune® and CaniLeish®) have proved robust protective immunity in dogs. In human, recombinant vaccines, including Leish-F1 could confer some degrees of protective immunity against natural infection. Recently, ChAd63-KH DNA vaccine has been accomplished in providing prevention against Leishmania infection; however, this vaccine should be further evaluated in other clinical trials.
Collapse
Affiliation(s)
- Mohammad Moafi
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Hossein Rezvan
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Taleban
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
Moreno J. Assessment of Vaccine-Induced Immunity Against Canine Visceral Leishmaniasis. Front Vet Sci 2019; 6:168. [PMID: 31214607 PMCID: PMC6558161 DOI: 10.3389/fvets.2019.00168] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/16/2019] [Indexed: 12/20/2022] Open
Abstract
Canine visceral leishmaniasis is an increasingly important public health problem. Dogs infected by Leishmania infantum are the main domestic reservoir of the parasite and play a key role in its transmission to humans. Recent findings have helped in the development of novel diagnostic methods, and of control measures such as vaccines, some of which are already commercially available. However, quantitative procedures should be followed to confirm whether these vaccines elicit a cell-mediated immune response. The present work describes the need for this evaluation, and the techniques available for confirming this type of immune response.
Collapse
Affiliation(s)
- Javier Moreno
- WHO Collaborating Centre for Leishmaniasis, Laboratory for Reference and Research in Parasitology, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| |
Collapse
|
17
|
Rashidi S, Mojtahedi Z, Shahriari B, Kalantar K, Ghalamfarsa G, Mohebali M, Hatam G. An immunoproteomic approach to identifying immunoreactive proteins in Leishmania infantum amastigotes using sera of dogs infected with canine visceral leishmaniasis. Pathog Glob Health 2019; 113:124-132. [PMID: 31099725 DOI: 10.1080/20477724.2019.1616952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Visceral leishmaniasis (VL), the most severe form of leishmaniasis, is caused by Leishmania donovani and Leishmania infantum. The infected dogs with canine visceral leishmaniasis (CVL) are important reservoirs for VL in humans, so the diagnosis, treatment and vaccination of the infected dogs will ultimately decrease the rate of human VL. Proteomics and immunoproteomics techniques have facilitated the introduction of novel drug, vaccine and diagnostic targets. Our immunoproteomic study was conducted to identify new immunoreactive proteins in amastigote form of L. infantum. The strain of L. infantum (MCAN/IR/07/Moheb-gh) was obtained from CVL-infected dogs. J774 macrophage cells were infected with the L. infantum promastigotes. The infected macrophages were ruptured, and pure amastigotes were extracted from the macrophages. After protein extraction, two-dimensional gel electrophoresis was employed for protein separation followed by Western blotting. Western blotting was performed, using symptomatic and asymptomatic sera of the infected dogs with CVL. Thirteen repeatable immunoreactive spots were identified by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Some, including prohibitin, ornithine aminotransferase, annexin A4, and apolipoprotein A-I, have been critically involved in metabolic pathways, survival, and pathogenicity of Leishmania parasites. Further investigations are required to confirm our identified immunoreactive proteins as a biomarker for CVL.
Collapse
Affiliation(s)
- Sajad Rashidi
- a Department of Parasitology and Mycology , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Zahra Mojtahedi
- b Institute for Cancer Research, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Bahador Shahriari
- c Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Kurosh Kalantar
- d Department of Immunology , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Ghasem Ghalamfarsa
- e Medicinal Plants Research Center, Faculty of Medicine , Yasuj University of Medical Sciences , Yasuj , Iran
| | - Mehdi Mohebali
- f Department of Medical Parasitology and Mycology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| | - Gholamreza Hatam
- c Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
18
|
ÖZAVCI H, KAPLAN M. Cloning and molecular characterization of thiol-specific antioxidant gene of Leishmania tropica Turkey isolate. Turk J Med Sci 2019; 49:392-402. [PMID: 30761841 PMCID: PMC7350880 DOI: 10.3906/sag-1808-98] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Background/aim Thiol-specific antioxidant (TSA) protein is one of the most promising molecules among candidates for vaccine against cutaneous leishmaniasis. It was found to be significantly protective against different Leishmania species. In this study, cloning and molecular characterization of thiol-specific antioxidant gene of L. tropica Turkey isolate (LtTSA) were aimed. Materials and methods LtTSA was amplified by PCR using the specific primers of TSA gene and cloned into the pcDNA3.1 vector. The cloning was confirmed by PCR screening, restriction enzyme reactions, and DNA sequence analysis. Finally, three-dimensional structure and antigenic properties of the protein encoded by the LtTSA were determined Results Six hundred base pair bands belonging to LtTSA were shown with electrophoresis. It was found that LtTSA and its encoded protein have high similarity with different Leishmania species. LtTSA protein consisting of 199 amino acids was found to have 7 different antigenic regions. Conclusion LtTSA and its encoded TSA protein were found to be highly immunogenic and similar to TSA proteins previously tested as a vaccine candidate.
Collapse
Affiliation(s)
- Hamza ÖZAVCI
- Department of Medical Parasitology, Faculty of Medicine, Fırat University, ElazığTurkey
- * To whom correspondence should be addressed. E-mail:
| | - Mustafa KAPLAN
- Department of Medical Parasitology, Faculty of Medicine, Fırat University, ElazığTurkey
| |
Collapse
|
19
|
HOJATIZADE M, BADIEE A, KHAMESIPOUR A, JAAFARI MR. Evaluation of Immune Response against Leishmaniasis in BALB/c Mice Immunized with Cationic DOTAP/DOPE/CHOL Liposomes Containing Soluble Leishmania major Antigens. IRANIAN JOURNAL OF PARASITOLOGY 2019; 14:68-77. [PMID: 31123470 PMCID: PMC6511587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND Whole killed Leishmania vaccine reached phase III clinical trials but failed to display significant efficacy in human mainly due to limited Th1 inducer adjuvant. Liposomes consisting of 1, 2-dioleoyl-3trimethylammonium-propane (DOTAP) bearing an inherent adjuvanticity and 1, 2-dioleoyl-L-α-glycero-3-phosphatidylethanolamine (DOPE) is well known to intensify the efficacy of positively charged liposomes. METHODS Soluble Leishmania major antigens (SLA) encapsulated in cationic liposomes using lipid film method in 2016). BALB/c mice were immunized subcutaneously (SC), three times in a 2-wk interval, with Lip (DOTAP)-SLA+, Lip (DOTAP/DOPE)-SLA+, Lip (DOTAP/DOPE/CHO)-SLA+, Lip (DOTAP/DOPE/CHO), Lip (DOPE/CHO), SLA or HEPES buffer. At week 2 after the last booster injection, immunized mice have challenged SC in the footpad with L. major parasites. To investigate the rate of protection and the type of immune response generated in mice, lesions development was assessed, IL-4 and IFN-γ levels with the ratio of IgG2a/IgG1 isotype were studied to describe the type of generated immune response. RESULTS Mice immunized with all liposomal form of SLA showed smaller footpad swelling and lower parasite burden in the spleen and footpad compared to the group of mice received buffer. However, these formulations did not show protection against leishmaniosis because of a generated mixed Th1/Th2 response in mice characterized by high production of IFN-γ and IL4 and a high titer of IgG1 and IgG2a antibody. CONCLUSION Immunization with Lip (DOTAP/DOPE/CHO)-SLA+ was not an appropriate strategy to protect mice against leishmaniosis.
Collapse
Affiliation(s)
- Mansure HOJATIZADE
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ali BADIEE
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali KHAMESIPOUR
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza JAAFARI
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran,Correspondence
| |
Collapse
|
20
|
Oliveira MP, Martins VT, Santos TTO, Lage DP, Ramos FF, Salles BCS, Costa LE, Dias DS, Ribeiro PAF, Schneider MS, Machado-de-Ávila RA, Teixeira AL, Coelho EAF, Chávez-Fumagalli MA. Small Myristoylated Protein-3, Identified as a Potential Virulence Factor in Leishmania amazonensis, Proves to be a Protective Antigen against Visceral Leishmaniasis. Int J Mol Sci 2018; 19:E129. [PMID: 29301342 PMCID: PMC5796078 DOI: 10.3390/ijms19010129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/14/2017] [Accepted: 12/25/2017] [Indexed: 11/23/2022] Open
Abstract
In a proteomics approach conducted with Leishmania amazonensis, parasite proteins showed either an increase or a decrease in their expression content during extensive in vitro cultivation, and were related to the survival and the infectivity of the parasites, respectively. In the current study, a computational screening was performed to predict virulence factors among these molecules. Three proteins were selected, one of which presented no homology to human proteins. This candidate, namely small myristoylated protein-3 (SMP-3), was cloned, and its recombinant version (rSMP-3) was used to stimulate peripheral blood mononuclear cells (PBMCs) from healthy subjects living in an endemic area of leishmaniasis and from visceral leishmaniasis patients. Results showed high interferon-γ (IFN-γ) production and low levels of interleukin 10 (IL-10) in the cell supernatants. An in vivo experiment was then conducted on BALB/c mice, which were immunized with rSMP-3/saponin and later challenged with Leishmania infantum promastigotes. The rSMP-3/saponin combination induced high production of protein-specific IFN-γ, IL-12, and granulocyte-macrophage colony-stimulating factor (GM-CSF) by the spleen cells of the immunized mice. This pattern was associated with protection, which was characterized by a significant reduction in the parasite load in distinct organs of the animals. Altogether, these results have revealed that this new virulence factor is immunogenic in both mice and humans, and have proven its protective efficacy against visceral leishmaniasis in a murine model.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/metabolism
- Computational Biology
- Cytokines/metabolism
- Epitopes, T-Lymphocyte/metabolism
- Humans
- Immunity, Cellular
- Immunity, Humoral
- Leishmania/pathogenicity
- Leishmania infantum
- Leishmaniasis, Visceral/immunology
- Leishmaniasis, Visceral/parasitology
- Leishmaniasis, Visceral/prevention & control
- Leukocytes, Mononuclear/metabolism
- Linear Models
- Mice, Inbred BALB C
- Molecular Sequence Annotation
- Protozoan Proteins/chemistry
- Protozoan Proteins/metabolism
- Reproducibility of Results
- Structural Homology, Protein
- Virulence Factors/metabolism
Collapse
Affiliation(s)
- Marcelo P Oliveira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| | - Vívian T Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| | - Thaís T O Santos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| | - Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| | - Fernanda F Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| | - Beatriz C S Salles
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| | - Lourena E Costa
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| | - Daniel S Dias
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| | - Patrícia A F Ribeiro
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| | - Mônica S Schneider
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| | - Ricardo A Machado-de-Ávila
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Santa Catarina, Brazil.
| | - Antônio L Teixeira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX 77041, USA.
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
- Departamento de Patologia Clínica, do Colégio Técnico (COLTEC), Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Miguel A Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| |
Collapse
|
21
|
Ismail N, Kaul A, Bhattacharya P, Gannavaram S, Nakhasi HL. Immunization with Live Attenuated Leishmania donovani Centrin -/- Parasites Is Efficacious in Asymptomatic Infection. Front Immunol 2017; 8:1788. [PMID: 29312315 PMCID: PMC5732910 DOI: 10.3389/fimmu.2017.01788] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/29/2017] [Indexed: 12/17/2022] Open
Abstract
Currently, there is no vaccine against visceral leishmaniasis (VL). Toward developing an effective vaccine, we have reported extensively on the immunogenicity of live attenuated LdCentrin−/− mutants in naive animal models. In VL endemic areas, asymptomatic carriers outnumber symptomatic cases of VL and are considered to be a reservoir of infection. Vaccination of asymptomatic cases represents a viable strategy to eliminate VL. Immunological correlates of protection thus derived might have limited applicability in conditions where the immunized host has prior exposure to virulent infection. To examine whether LdCen−/− parasites can induce protective immunity in experimental hosts that have low-level parasitemia from a previous exposure mimicking an asymptomatic condition, we infected C57Bl/6 mice with wild-type Leishmania donovani parasites expressing LLO epitope (LdWTLLO 103, i.v.). After 3 weeks, the mice with low levels of parasitemia were immunized with LdCen−/− parasites expressing 2W epitope (LdCen−/−2W 3 × 106 i.v.) to characterize the immune responses in the same host. Antigen experienced CD4+ T cells from the asymptomatic (LdWTLLO infected) LdCen−/−2W immunized, and other control groups were enriched using LLO- and 2W-specific tetramers, followed by Flow cytometric analysis. Our analysis showed that comparable CD4+ T cell proliferation and CD4+ memory T cell responses (TCM) represented by CD62Lhi, CCR7+, and IL-7R+ T cell populations were induced with LdCen−/−2W in both asymptomatic and naive animals that received LdCen−/− immunization. Upon restimulation with peptide, TCM cells differentiated into effector T cells and there was no significant difference in the recall response in animals with asymptomatic infection. Following virulent challenge, comparable reduction in splenic parasite burden was observed in both asymptomatic and naive LdCen−/− immunized animals concomitant with the development of multifunctional CD4+ and CD8+ T cells. Further, LdCen−/−2W immunization resulted in complete clearance of the preexisting asymptomatic infection (LdWTLLO). Our results demonstrate that LdCen−/−2W immunization could be efficacious for use in asymptomatic VL individuals. Further, immunization with LdCen−/− could help in reducing the parasite burden in the asymptomatic cases and aid in controlling the VL in endemic areas.
Collapse
Affiliation(s)
- Nevien Ismail
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Amit Kaul
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
22
|
JEIBOUEI S, BANDEHPOUR M, KAZEMI B, HAGHIGHI A. Designing a DNA Vaccine-based Leishmania major Polytope (Preliminary Report). IRANIAN JOURNAL OF PARASITOLOGY 2017; 12:441-445. [PMID: 28979355 PMCID: PMC5623925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Leishmaniasis is a neglected disease affecting millions of people worldwide. The treatment of the disease is hampered due to high cost, toxicity and the crisis of drug resistance. Polytope approaches of genetic immunization could be a strategy for prevention of infectious diseases. Furthermore, the identification of Leishmania genome sequence and the application of bioinformatics assist us to devise an effective vaccine's candidate. METHODS A linear sequence from predicted epitopes of GP63, LACK and CPC antigens was designed and was optimized using online available algorithms. The synthesized sequence (LAKJB93) was ligated to pEGFP-N1 plasmid. RESULTS The 264bp sequence was cloned at N terminal of GFP into pEGFP_N1 expression vector and transfect into CHO cell line. Construct was efficient expressed in CHO cells. CONCLUSION The protein of LAKJB93 cosnstruct was expressed in CHO cells successfully.
Collapse
Affiliation(s)
- Shabnam JEIBOUEI
- Dept. of Parasitology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan BANDEHPOUR
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Dept. of Biotechnology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram KAZEMI
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Dept. of Biotechnology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Correspondence
| | - Ali HAGHIGHI
- Dept. of Parasitology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Live Attenuated Leishmania donovani Centrin Knock Out Parasites Generate Non-inferior Protective Immune Response in Aged Mice against Visceral Leishmaniasis. PLoS Negl Trop Dis 2016; 10:e0004963. [PMID: 27580076 PMCID: PMC5007048 DOI: 10.1371/journal.pntd.0004963] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/09/2016] [Indexed: 11/19/2022] Open
Abstract
Background Visceral leishmaniasis (VL) caused by the protozoan parasite Leishmania donovani causes severe disease. Age appears to be critical in determining the clinical outcome of VL and at present there is no effective vaccine available against VL for any age group. Previously, we showed that genetically modified live attenuated L. donovani parasites (LdCen-/-) induced a strong protective innate and adaptive immune response in young mice. In this study we analyzed LdCen-/- parasite mediated modulation of innate and adaptive immune response in aged mice (18 months) and compared to young (2 months) mice. Methodology Analysis of innate immune response in bone marrow derived dendritic cells (BMDCs) from both young and aged mice upon infection with LdCen-/- parasites, showed significant enhancement of innate effector responses, which consequently augmented CD4+ Th1 cell effector function compared to LdWT infected BMDCs in vitro. Similarly, parasitized splenic dendritic cells from LdCen-/- infected young and aged mice also revealed induction of proinflammatory cytokines (IL-12, IL-6, IFN-γ and TNF) and subsequent down regulation of anti-inflammatory cytokine (IL-10) genes compared to LdWT infected mice. We also evaluated in vivo protection of the LdCen-/- immunized young and aged mice against virulent L. donovani challenge. Immunization with LdCen-/- induced higher IgG2a antibodies, lymphoproliferative response, pro- and anti-inflammatory cytokine responses and stimulated splenocytes for heightened leishmanicidal activity associated with nitric oxide production in young and aged mice. Furthermore, upon virulent L. donovani challenge, LdCen-/- immunized mice from both age groups displayed multifunctional Th1-type CD4 and cytotoxic CD8 T cells correlating to a significantly reduced parasite burden in the spleen and liver compared to naïve mice. It is interesting to note that even though there was no difference in the LdCen-/- induced innate response in dendritic cells between aged and young mice; the adaptive response specifically in terms of T cell and B cell activation in aged animals was reduced compared to young mice which correlated with less protection in old mice compared to young mice. Conclusions Taken together, LdCen-/- immunization induced a significant but diminished host protective response in aged mice after challenge with virulent L. donovani parasites compared to young mice. Visceral leishmaniasis (VL) is caused by the protozoan parasite Leishmania donovani. There is no effective vaccine available against VL for any age group and importantly, there are no previous studies regarding immune responses against experimental Leishmania vaccines tested in aged animals. We have reported earlier that immunization with a live attenuated L. donovani parasites (LdCen-/-) induced protective immune response in young animals viz, mice, hamsters and dogs. In this study we analyzed LdCen-/- mediated modulation of innate and adaptive responses in aged mice and compared to young mice. We observed that LdCen-/- infected dendritic cells from young and aged mice resulted in enhanced innate effector functions compared to LdWT parasites both in vitro and in vivo. Further, upon virulent challenge, LdCen-/- immunized young and aged mice displayed protective Th1 immune response which correlated with a significantly reduced parasite burden in the visceral organs compared with naïve challenged mice. Although there was no difference in the LdCen-/- induced dendritic cell response between aged and young mice; adaptive response in aged was reduced, compared to young which correlated with less protection in aged compared to young mice. This study supports the potential use of LdCen-/- as vaccine candidate across all age groups against VL.
Collapse
|
24
|
Duarte MC, Lage DP, Martins VT, Costa LE, Lage LMR, Carvalho AMRS, Ludolf F, Santos TTO, Roatt BM, Menezes-Souza D, Fernandes AP, Tavares CAP, Coelho EAF. A vaccine combining two Leishmania braziliensis proteins offers heterologous protection against Leishmania infantum infection. Mol Immunol 2016; 76:70-9. [PMID: 27387277 DOI: 10.1016/j.molimm.2016.06.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 11/17/2022]
Abstract
In the present study, two Leishmania braziliensis proteins, one hypothetical and the eukaryotic initiation factor 5a (EiF5a), were cloned and used as a polyproteins vaccine for the heterologous protection of BALB/c mice against infantum infection. Animals were immunized with the antigens separately or in association, and in both cases saponin was used as an adjuvant. In the results, spleen cells from mice inoculated with the individual or polyproteins vaccine and lately challenged produced significantly higher levels of protein- and parasite-specific IFN-γ, IL-12, and GM-CSF, when both a capture ELISA and flow cytometry assays were performed. Evaluating the parasite load by a limiting dilution as well as by RT-PCR, these animals presented significant reductions in the parasite number in all evaluated organs, when compared to the control (saline and saponin) groups. The best protection was reached when the polyproteins vaccine was employed. Protection was associated with the IFN-γ production against parasite extracts, which was mediated by both CD4(+) and CD8(+) T cells and correlated with the antileishmanial nitrite production. In this context, this vaccine combining two L. braziliensis proteins was able to induce a heterologous protection against VL, and could be considered in future studies to be tested against other Leishmania species or in other mammalian hosts.
Collapse
Affiliation(s)
- Mariana C Duarte
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vívian T Martins
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lourena E Costa
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Letícia M R Lage
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Maria R S Carvalho
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Ludolf
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thaís T O Santos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno M Roatt
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Menezes-Souza
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos A P Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo A F Coelho
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
25
|
Structure based medicinal chemistry-driven strategy to design substituted dihydropyrimidines as potential antileishmanial agents. Eur J Med Chem 2016; 115:230-44. [DOI: 10.1016/j.ejmech.2016.03.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 12/14/2022]
|
26
|
Seyed N, Taheri T, Rafati S. Post-Genomics and Vaccine Improvement for Leishmania. Front Microbiol 2016; 7:467. [PMID: 27092123 PMCID: PMC4822237 DOI: 10.3389/fmicb.2016.00467] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 03/21/2016] [Indexed: 01/27/2023] Open
Abstract
Leishmaniasis is a parasitic disease that primarily affects Asia, Africa, South America, and the Mediterranean basin. Despite extensive efforts to develop an effective prophylactic vaccine, no promising vaccine is available yet. However, recent advancements in computational vaccinology on the one hand and genome sequencing approaches on the other have generated new hopes in vaccine development. Computational genome mining for new vaccine candidates is known as reverse vaccinology and is believed to further extend the current list of Leishmania vaccine candidates. Reverse vaccinology can also reduce the intrinsic risks associated with live attenuated vaccines. Individual epitopes arranged in tandem as polytopes are also a possible outcome of reverse genome mining. Here, we will briefly compare reverse vaccinology with conventional vaccinology in respect to Leishmania vaccine, and we will discuss how it influences the aforementioned topics. We will also introduce new in vivo models that will bridge the gap between human and laboratory animal models in future studies.
Collapse
Affiliation(s)
- Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of IranTehran, Iran
| | | | | |
Collapse
|
27
|
NASIRI V, DALIMI A, GHAFFARIFAR F, BOLHASSANI A. Immunogenicity and Efficacy of Live L. tarentolae Expressing KMP11-NTGP96-GFP Fusion as a Vaccine Candidate against Experimental Visceral Leishmaniasis Caused by L. infantum. IRANIAN JOURNAL OF PARASITOLOGY 2016; 11:144-158. [PMID: 28096848 PMCID: PMC5236091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/16/2016] [Indexed: 10/29/2022]
Abstract
BACKGROUND The aim of present study was to evaluate the protective efficacy of live recombinant L. tarentolae expressing KMP11-NTGP96-GFP fusion as candidates for live engineered recombinant vaccine against visceral leishmaniasis in BALB/c mice. METHODS KMP-11 and NT-GP96 genes cloned into the pJET1.2/blunt cloning vector and then into pEGFP-N1 expression vector. The KMP-11, NT-GP96 and GFP fused in pEGFP-N1 and subcloned into Leishmanian pLEXSY-neo vector. Finally this construct was transferred to L. tarentolae by electroporation. Tranfection was confirmed by SDS-PAGE, WESTERN blot, flowcytometry and RT-PCR. Protective efficacy of this construct was evaluated as a vaccine candidate against visceral leishmaniasis. Parasite burden, humoral and cellular immune responses were assessed before and at 4 weeks after challenge. RESULTS KMP- NT-Gp96-GFP Fusion was cloned successfully into pLEXSY -neo vector and this construct successfully transferred to L. tarentolae. Finding indicated that immunization with L. tarentolae tarentolae-KMP11-NTGP96-GFP provides significant protection against visceral leishmaniasis and was able to induce an increased expression of IFN-γ and IgG2a. Following challenge, a reduced parasite load in the spleen of the KMP11-NTGP96-GFP immunized group was detected. CONCLUSION The present study is the first to use a combination of a Leishmania antigen with an immunologic antigen in live recombinant L. tarentolae and results suggest that L. tarentolae-KMP11-NTGP96-GFP could be considered as a potential tool in vaccination against visceral leishmaniasis and this vaccination strategy could provide a potent rout for future vaccine development.
Collapse
Affiliation(s)
- Vahid NASIRI
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdolhossein DALIMI
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh GHAFFARIFAR
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Azam BOLHASSANI
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
28
|
Cargnelutti DE, Salomón MC, Celedon V, García Bustos MF, Morea G, Cuello-Carrión FD, Scodeller EA. Immunization with antigenic extracts of Leishmania associated with Montanide ISA 763 adjuvant induces partial protection in BALB/c mice against Leishmania (Leishmania) amazonensis infection. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2016; 49:24-32. [DOI: 10.1016/j.jmii.2014.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 12/26/2022]
|
29
|
Gannavaram S, Bhattacharya P, Dey R, Ismail N, Avishek K, Salotra P, Selvapandiyan A, Satoskar A, Nakhasi HL. Methods to Evaluate the Preclinical Safety and Immunogenicity of Genetically Modified Live-Attenuated Leishmania Parasite Vaccines. Methods Mol Biol 2016; 1403:623-638. [PMID: 27076157 DOI: 10.1007/978-1-4939-3387-7_35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Live-attenuated parasite vaccines are being explored as potential vaccine candidates since other approaches of vaccination have not produced an effective vaccine so far. In order for live-attenuated parasite vaccines to be tested in preclinical studies and possibly in clinical studies, the safety and immunogenicity of these organisms must be rigorously evaluated. Here we describe methods to test persistence in the immunized host and immunogenicity, and to identify biomarkers of vaccine safety and efficacy with particular reference to genetically attenuated Leishmania parasites.
Collapse
Affiliation(s)
- Sreenivas Gannavaram
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA.
| | - Parna Bhattacharya
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Ranadhir Dey
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Nevien Ismail
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Kumar Avishek
- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Poonam Salotra
- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Angamuthu Selvapandiyan
- Institute of Molecular Medicine, 254 Okhla Industrial Estate Phase 3, New Delhi, 110020, India
| | - Abhay Satoskar
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Hira L Nakhasi
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| |
Collapse
|
30
|
Martins VT, Chávez-Fumagalli MA, Lage DP, Duarte MC, Garde E, Costa LE, da Silva VG, Oliveira JS, de Magalhães-Soares DF, Teixeira SMR, Fernandes AP, Soto M, Tavares CAP, Coelho EAF. Antigenicity, Immunogenicity and Protective Efficacy of Three Proteins Expressed in the Promastigote and Amastigote Stages of Leishmania infantum against Visceral Leishmaniasis. PLoS One 2015; 10:e0137683. [PMID: 26367128 PMCID: PMC4569552 DOI: 10.1371/journal.pone.0137683] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/19/2015] [Indexed: 11/30/2022] Open
Abstract
In the present study, two Leishmania infantum hypothetical proteins present in the amastigote stage, LiHyp1 and LiHyp6, were combined with a promastigote protein, IgE-dependent histamine-releasing factor (HRF); to compose a polyproteins vaccine to be evaluated against L. infantum infection. Also, the antigenicity of the three proteins was analyzed, and their use for the serodiagnosis of canine visceral leishmaniasis (CVL) was evaluated. The LiHyp1, LiHyp6, and HRF DNA coding sequences were cloned in prokaryotic expression vectors and the recombinant proteins were purified. When employed in ELISA assays, all proteins were recognized by sera from visceral leishmaniasis (VL) dogs, and presented no cross-reactivity with either sera from dogs vaccinated with a Brazilian commercial vaccine, or sera of Trypanosoma cruzi-infected or Ehrlichia canis-infected animals. In addition, the antigens were not recognized by antibodies from non-infected animals living in endemic or non-endemic areas for leishmaniasis. The immunogenicity and protective efficacy of the three proteins administered in the presence of saponin, individually or in combination (composing a polyproteins vaccine), were evaluated in a VL murine model: BALB/c mice infected with L. infantum. Spleen cells from mice inoculated with the individual proteins or with the polyproteins vaccine plus saponin showed a protein-specific production of IFN-γ, IL-12, and GM-CSF after an in vitro stimulation, which was maintained after infection. These animals presented significant reductions in the parasite burden in different evaluated organs, when compared to mice inoculated with saline or saponin. The decrease in parasite burden was associated with an IL-12-dependent production of IFN-γ against parasite total extracts (produced mainly by CD4+ T cells), correlated to the induction of parasite proteins-driven NO production. Mice inoculated with the recombinant protein-based vaccines showed also high levels of parasite-specific IgG2a antibodies. The polyproteins vaccine administration induced a more pronounced Th1 response before and after challenge infection than individual vaccines, which was correlated to a higher control of parasite dissemination to internal organs.
Collapse
Affiliation(s)
- Vivian Tamietti Martins
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela Pagliara Lage
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana Costa Duarte
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Esther Garde
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lourena Emanuele Costa
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Viviane Gomes da Silva
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jamil Silvano Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Santuza Maria Ribeiro Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Manuel Soto
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos Alberto Pereira Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
31
|
Kumar A, Arya R, Makwana PK, Dangi RS, Yadav U, Surolia A, Kundu S, Sundd M. The Structure of the Holo-Acyl Carrier Protein of Leishmania major Displays a Remarkably Different Phosphopantetheinyl Transferase Binding Interface. Biochemistry 2015; 54:5632-45. [DOI: 10.1021/acs.biochem.5b00394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ambrish Kumar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Richa Arya
- Department
of Biochemistry, University of Delhi South Campus, Benito Juarez
Road, New Delhi 110 021, India
| | - Pinakin K. Makwana
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Rohit Singh Dangi
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Usha Yadav
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Avadhesha Surolia
- Molecular
Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Suman Kundu
- Department
of Biochemistry, University of Delhi South Campus, Benito Juarez
Road, New Delhi 110 021, India
| | - Monica Sundd
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| |
Collapse
|
32
|
Weatherhead JE, Woc-Colburn L. Therapeutic options and vaccine development in the treatment of leishmaniasis. World J Pharmacol 2015; 4:210-218. [DOI: 10.5497/wjp.v4.i2.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 01/28/2015] [Accepted: 04/02/2015] [Indexed: 02/07/2023] Open
Abstract
Early treatment of leishmaniasis is critical to achieve cure, prevent psychological and social distress, and prevent transmission of disease. Untreated Leishmaniasis-cutaneous leishmaniasis, mucocutaneous leishmaniasis and visceral leishmaniasis - results in disfiguring scars and high rates of morbidity and mortality in highly endemic regions of the world. However, cure rates with available therapeutics are limited due to cost, therapeutic toxicity and the growing rate of resistance. New therapeutic targets for medications and vaccine development are under investigation to provide improved healing and efficacy for the treatment of Leishmania spp.
Collapse
|
33
|
Anand S, Madhubala R. Genetically Engineered Ascorbic acid-deficient Live Mutants of Leishmania donovani induce long lasting Protective Immunity against Visceral Leishmaniasis. Sci Rep 2015; 5:10706. [PMID: 26035062 PMCID: PMC4451804 DOI: 10.1038/srep10706] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 04/22/2015] [Indexed: 11/18/2022] Open
Abstract
Visceral leishmaniasis caused by Leishmania donovani is the most severe systemic form of the disease. There are still no vaccines available for humans and there are limitations associated with the current therapeutic regimens for leishmaniasis. Recently, we reported functional importance of Arabino-1, 4-lactone oxidase (ALO) enzyme from L. donovani involved in ascorbate biosynthesis pathway. In this study, we have shown that ΔALO parasites do not affect the ability of null mutants to invade visceral organs but severely impair parasite persistence beyond 16 week in BALB/c mice and hence are safe as an immunogen. Both short term (5 week) and long term (20 week) immunization with ΔALO parasites conferred sustained protection against virulent challenge in BALB/c mice, activated splenocytes and resulted in induction of pro-inflammatory cytokine response. Protection in immunized mice after challenge correlated with the stimulation of IFN-γ producing CD4+ and CD8+ T cells. Antigen-mediated cell immunity correlated with robust nitrite and superoxide generation, macrophage-derived oxidants critical in controlling Leishmania infection. Our data shows that live attenuated ΔALO parasites are safe, induce protective immunity and can provide sustained protection against Leishmania donovani. We further conclude that the parasites attenuated in their anti-oxidative defence mechanism can be exploited as vaccine candidates.
Collapse
Affiliation(s)
- Sneha Anand
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rentala Madhubala
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
34
|
Soto M, Corvo L, Garde E, Ramírez L, Iniesta V, Bonay P, Gómez-Nieto C, González VM, Martín ME, Alonso C, Coelho EAF, Barral A, Barral-Netto M, Iborra S. Coadministration of the Three Antigenic Leishmania infantum Poly (A) Binding Proteins as a DNA Vaccine Induces Protection against Leishmania major Infection in BALB/c Mice. PLoS Negl Trop Dis 2015; 9:e0003751. [PMID: 25955652 PMCID: PMC4425485 DOI: 10.1371/journal.pntd.0003751] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/11/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Highly conserved intracellular proteins from Leishmania have been described as antigens in natural and experimental infected mammals. The present study aimed to evaluate the antigenicity and prophylactic properties of the Leishmania infantum Poly (A) binding proteins (LiPABPs). METHODOLOGY/PRINCIPAL FINDINGS Three different members of the LiPABP family have been described. Recombinant tools based on these proteins were constructed: recombinant proteins and DNA vaccines. The three recombinant proteins were employed for coating ELISA plates. Sera from human and canine patients of visceral leishmaniasis and human patients of mucosal leishmaniasis recognized the three LiPABPs. In addition, the protective efficacy of a DNA vaccine based on the combination of the three Leishmania PABPs has been tested in a model of progressive murine leishmaniasis: BALB/c mice infected with Leishmania major. The induction of a Th1-like response against the LiPABP family by genetic vaccination was able to down-regulate the IL-10 predominant responses elicited by parasite LiPABPs after infection in this murine model. This modulation resulted in a partial protection against L. major infection. LiPABP vaccinated mice showed a reduction on the pathology that was accompanied by a decrease in parasite burdens, in antibody titers against Leishmania antigens and in the IL-4 and IL-10 parasite-specific mediated responses in comparison to control mice groups immunized with saline or with the non-recombinant plasmid. CONCLUSION/SIGNIFICANCE The results presented here demonstrate for the first time the prophylactic properties of a new family of Leishmania antigenic intracellular proteins, the LiPABPs. The redirection of the immune response elicited against the LiPABP family (from IL-10 towards IFN-γ mediated responses) by genetic vaccination was able to induce a partial protection against the development of the disease in a highly susceptible murine model of leishmaniasis.
Collapse
Affiliation(s)
- Manuel Soto
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Corvo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Esther Garde
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Ramírez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Virginia Iniesta
- LeishmanCeres Laboratory (GLP Compliance Certified), Parasitology Unit. Veterinary Faculty, University of Extremadura, Cáceres, Spain
| | - Pedro Bonay
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos Gómez-Nieto
- LeishmanCeres Laboratory (GLP Compliance Certified), Parasitology Unit. Veterinary Faculty, University of Extremadura, Cáceres, Spain
| | - Víctor M. González
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, Spain
| | - M. Elena Martín
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, Spain
| | - Carlos Alonso
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Eduardo A. F. Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aldina Barral
- Centro de Pesquisas Gonçalo Moniz (Fundação Oswaldo Cruz-FIOCRUZ), Salvador, Bahia, Brazil
| | - Manoel Barral-Netto
- Centro de Pesquisas Gonçalo Moniz (Fundação Oswaldo Cruz-FIOCRUZ), Salvador, Bahia, Brazil
| | - Salvador Iborra
- Immunobiology of Inflammation Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
35
|
Khadem F, Uzonna JE. Immunity to visceral leishmaniasis: implications for immunotherapy. Future Microbiol 2015; 9:901-15. [PMID: 25156379 DOI: 10.2217/fmb.14.43] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Visceral leishmaniasis, caused by Leishmania donovani, L. infantum (syn. Leishmania chagasi), is a globally widespread disease with a burden of about 400,000 new infections reported annually. It is the most dangerous form of human leishmaniasis in terms of mortality and morbidity and is spreading to several nonendemic areas because of migration, global traveling and military conflicts. The emergence of Leishmania-HIV co-infection and increased prevalence of drug-resistant strains have worsened the impact of the disease. The traditional low-cost drugs are often toxic with several adverse effects, highlighting the need for development of new therapeutic and prophylactic strategies. Therefore, a detailed understanding of mechanisms of protective immunity is extremely important in order to develop new therapeutics in the form of vaccines or immunotherapies. This review gives an overview of visceral leishmaniasis, with particular emphasis on the innate and adaptive immune responses, vaccine and vaccination strategies and their potentials for immunotherapy against the disease.
Collapse
Affiliation(s)
- Forough Khadem
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
36
|
Mwololo SW, Mutiso JM, Macharia JC, Bourdichon AJ, Gicheru MM. In vitro activity and in vivo efficacy of a combination therapy of diminazene and chloroquine against murine visceral leishmaniasis. J Biomed Res 2015; 29:214-23. [PMID: 26060445 PMCID: PMC4449489 DOI: 10.7555/jbr.29.20140072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/17/2014] [Accepted: 12/12/2014] [Indexed: 11/24/2022] Open
Abstract
The present study evaluated the in vitro activity and in vivo efficacy of diminazene combined with chloroquine as a potential drug against Leishmania donovani. Amphotericin B was used as a positive control drug. In vitro activity involved incubation of various drug concentrations with promastigotes or vero cells in culture before determination of parasite growth inhibition or cell death while in vivo evaluations involved infection of various mice groups with virulent L. donovani parasites and treatment with test drug compounds following disease establishment. Weight changes in experimental mice were also evaluated before infection and throughout the experiment. The results indicated that the diminazene–chloroquine combination was at least nine times more efficacious than individual drugs in killing promastigotes in culture. The diminazene–chloroquine combination was safer (Ld50 = 0.03±0.04) than Amphotericin B (Ld50 = 0.02±0.01). Body weight in infected mice increased significantly (P = 0.0007) from day 7 to day 37 following infection (P = 0.026). However, body weight remained comparable in all mice groups during treatment (P = 0.16). The diminazene–chloroquine combination significantly reduced splenic parasite numbers as compared to individual drug therapies (P = 0.0001) although Amphotericin B was still more efficacious than any other treatment (P = 0.0001). Amongst the test compounds, the diminazene–chloroquine combination showed the lowest level of IgG antibody responses with results indicating significant negative correlation between antileishmanial antibody responses and protection against disease. These findings demonstrate the positive advantage and the potential use of a combined therapy of diminazene–chloroquine over the constituent drugs. Further evaluation is recommended to determine the most efficacious combination ratio of the two compounds.
Collapse
Affiliation(s)
- Samuel W Mwololo
- Department of Zoological Sciences, Kenyatta University, P. O. Box 43844-00100, Nairobi, Kenya. ; Department of Tropical and Infectious Diseases, Institute of Primate Research, P. O. Box 24481-00502, Karen, Nairobi, Kenya
| | - Joshua M Mutiso
- Department of Zoological Sciences, Kenyatta University, P. O. Box 43844-00100, Nairobi, Kenya
| | - John C Macharia
- Department of Tropical and Infectious Diseases, Institute of Primate Research, P. O. Box 24481-00502, Karen, Nairobi, Kenya
| | - Alain J Bourdichon
- BPM Bulk Medicine and Pharmaceuticals Production, TROPMED GMbH, Neuhofer Welche 48, D-19370 Parchtm, Germany
| | - Michael M Gicheru
- Department of Zoological Sciences, Kenyatta University, P. O. Box 43844-00100, Nairobi, Kenya
| |
Collapse
|
37
|
Monte-Neto R, Laffitte MCN, Leprohon P, Reis P, Frézard F, Ouellette M. Intrachromosomal amplification, locus deletion and point mutation in the aquaglyceroporin AQP1 gene in antimony resistant Leishmania (Viannia) guyanensis. PLoS Negl Trop Dis 2015; 9:e0003476. [PMID: 25679388 PMCID: PMC4332685 DOI: 10.1371/journal.pntd.0003476] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/14/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Antimony resistance complicates the treatment of infections caused by the parasite Leishmania. METHODOLOGY/PRINCIPAL FINDINGS Using next generation sequencing, we sequenced the genome of four independent Leishmania guyanensis antimony-resistant (SbR) mutants and found different chromosomal alterations including aneuploidy, intrachromosomal gene amplification and gene deletion. A segment covering 30 genes on chromosome 19 was amplified intrachromosomally in three of the four mutants. The gene coding for the multidrug resistance associated protein A involved in antimony resistance was also amplified in the four mutants, most likely through chromosomal translocation. All mutants also displayed a reduced accumulation of antimony mainly due to genomic alterations at the level of the subtelomeric region of chromosome 31 harboring the gene coding for the aquaglyceroporin 1 (LgAQP1). Resistance involved the loss of LgAQP1 through subtelomeric deletions in three mutants. Interestingly, the fourth mutant harbored a single G133D point mutation in LgAQP1 whose role in resistance was functionality confirmed through drug sensitivity and antimony accumulation assays. In contrast to the Leishmania subspecies that resort to extrachromosomal amplification, the Viannia strains studied here used intrachromosomal amplification and locus deletion. CONCLUSIONS/SIGNIFICANCE This is the first report of a naturally occurred point mutation in AQP1 in antimony resistant parasites.
Collapse
Affiliation(s)
- Rubens Monte-Neto
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Marie-Claude N. Laffitte
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Priscila Reis
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Frédéric Frézard
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
- * E-mail:
| |
Collapse
|
38
|
Abstract
Dogs are the main reservoir host for zoonotic visceral leishmaniasis, a sand fly-borne disease caused by Leishmania infantum. In endemic areas, "susceptible" dogs suffer from a severe disease characterized by chronic polymorphic viscerocutaneous signs that manifest several months from the exposure, whereas "resistant" dogs can remain subclinically infected for years or lifelong. The protective immune response to Leishmania is cell-mediated; for visceralizing Leishmania species a mixed T helper (Th)1/Th2 response with a dominant Th1 profile is required for protection. The activation of the adaptive immune system in naturally resistant dogs is revealed by parasite-specific lymphoproliferation, delayed-type hypersensitivity, the production of interferon-γ and tumour necrosis factor-α cytokines, and enhanced macrophage leishmanicidal activity via nitric oxide. Hence, an effective canine Leishmania vaccine should induce strong and long-lasting Th1-dominated immunity to control both infection progression and the parasite transmissibility via the vector. Preclinical research in rodent models has evaluated the efficacy of several categories of Leishmania antigens including killed parasites, cell purified fractions, parasite protein components or subunits, single or multiple chimeric recombinant proteins, plasmid DNA and viral particles encoding parasite virulence factors. Promising antigen(s)/adjuvant combinations from each of the above categories have also been tested in dogs; they mostly resulted in limited or no protection in Phase I-II studies (designed to test vaccine safety, immunogenicity and laboratory-induced protection) in which vaccinated dogs were challenged by the artificial intravenous injection of high-load L. infantum promastigotes. The recombinant A2 antigen plus saponin conferred about 40% protection against infection by this challenge system and has been registered in Brazil as a canine vaccine (LeishTec(®)). An increasing number of efficacy studies have privileged the use of natural challenge consisting in the long-term exposure of vaccinated dogs in endemic settings (Phase III). A 2-year field model including regular assessments by a set of standard diagnostic markers useful for an accurate infection staging has been developed. Again, most of the vaccines tested by this system, which included several antigen categories and adjuvants, failed to protect against infection and disease. Only two vaccines, consisting of parasite purified fractions with saponin derivative adjuvants, showed to confer significant protection against disease and death under natural conditions, and have been registered as canine vaccines: FML-QuilA (Leishmune(®)) in Brazil, and LiESP/QA-21 (CaniLeish(®)) in Europe.
Collapse
Affiliation(s)
- Luigi Gradoni
- Unit of Vector-borne Diseases and International Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
39
|
Dagnino AP, Barros FMCD, Ccana-Ccapatinta GV, Prophiro JS, Poser GLV, Romão PRT. Leishmanicidal activity of lipophilic extracts of some Hypericum species. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:71-76. [PMID: 25636874 DOI: 10.1016/j.phymed.2014.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 08/29/2014] [Accepted: 10/17/2014] [Indexed: 06/04/2023]
Abstract
UNLABELLED Leishmaniasis has emerged as the third most prevalent parasite-borne disease worldwide after malaria and filariasis, with about 350 million people at risk of infection. Antileishmanial drugs currently available have various limitations, mainly because of the parasite resistance and side effects. The search of new antileishmanial drugs is ventured throughout the world. PURPOSE The purpose of this study was to assess the leishmanicidal activity of lipophilic extracts of eight Hypericum species against promastigote forms of Leishmania (Leishmania) amazonensis. MATERIAL AND METHODS The dried and powered materials of aerial parts of H. andinum Gleason, H. brevistylum Choisy, H. caprifoliatum Cham. & Schltdl., H. carinatum Griseb., H. linoides A. St.-Hil., H. myrianthum Cham. & Schltdl., H. polyanthemum Klotzsch ex Reichardt and H. silenoides Juss. were extracted by static maceration with n-hexane. Extracts were evaporated to dryness under reduced pressure and stored at -20°C until biological evaluation and HPLC analysis. The metabolites investigated were dimeric phloroglucinol derivatives, benzophenones and benzopyrans. The yields were expressed as mean of three injections in mg of compound per g of extract (mg/g extract). The effect of Hypericum species on the viability of infective forms of L. (L.) amazonensis was determined using a hemocytometer. Amphotericin B was used as a standard drug. The 50% inhibitory concentration (IC50) values for each extract were determined by linear regression analysis. The cytotoxic effects of extracts were assessed on peritoneal macrophages of BALB/c mice by MTT assay. The concentration that causes 50% of macrophage cytotoxicity (CC50) was determined by linear regression analysis. The selectivity index (SI) of the extracts was determined considering the following equation: CC50 against mammalian cells/IC50 against L. amazonensis. RESULTS We demonstrated that H. carinatum, H. linoides and H. polyanthemum were able to kill the parasites in a dose dependent manner. These extracts presented low cytotoxicity against murine macrophages. At 48h of incubation H. polyanthemum presented significant leishmanicidal activity with a 50% inhibitory concentration (IC50) of 36.1µg/ml. The leishmanicidal activity of H. myrianthum was significantly lower than that presented by H. polyanthemum, H. carinatum and H. linoides extracts. H. brevistylum and H. caprifoliatum showed significant leishmanicidal activity only at high concentrations (500 and 1000µg/ml), while H. andinum and H. silenoides were ineffective. CONCLUSION The promising results demonstrate the importance of the species of the genus Hypericum as source of compounds potentially useful for the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Ana Paula Dagnino
- Laboratório de Imunologia, Programa de Pós-Graduação em Ciências da Saúde, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, sala 206, CEP 90050-170, Porto Alegre, RS, Brazil
| | - Francisco Maikon Corrêa de Barros
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Gari Vidal Ccana-Ccapatinta
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Josiane Somariva Prophiro
- Laboratório de Imunologia, Programa de Pós-Graduação em Ciências da Saúde, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, sala 206, CEP 90050-170, Porto Alegre, RS, Brazil
| | - Gilsane Lino von Poser
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Pedro R T Romão
- Laboratório de Imunologia, Programa de Pós-Graduação em Ciências da Saúde, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, sala 206, CEP 90050-170, Porto Alegre, RS, Brazil.
| |
Collapse
|
40
|
An overview on Leishmania vaccines: A narrative review article. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2015; 6:1-7. [PMID: 25992245 PMCID: PMC4405679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 08/10/2014] [Indexed: 10/31/2022]
Abstract
Leishmaniasis is one of the major health problems and categorized as a class I disease (emerging and uncontrolled) by World Health Organization (WHO), causing highly significant morbidity and mortality. Indeed, more than 350 million individuals are at risk of Leishmania infection, and about 1.6 million new cases occur causing more than 50 thousands death annually. Because of the severe toxicity and drug resistance, present chemotherapy regimen against diverse forms of Leishmania infections is not totally worthwhile. However, sound immunity due to natural infection, implies that vigor cellular immunity against Leishmania parasites, via their live, attenuated or killed forms, can be developed in dogs and humans. Moreover, genetically conserved antigens (in most of Leishmania species), and components of sand fly saliva confer potential immunogenic molecules for Leishmania vaccination. Vaccines successes in animal studies and some clinical trials clearly justify more researches and investments illuminating opportunities in suitable vaccine designation.
Collapse
|
41
|
Oryan A. Plant-derived compounds in treatment of leishmaniasis. IRANIAN JOURNAL OF VETERINARY RESEARCH 2015; 16:1-19. [PMID: 27175144 PMCID: PMC4789233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 01/27/2015] [Accepted: 02/28/2015] [Indexed: 06/05/2023]
Abstract
Leishmaniasis is a neglected public health problem caused by the protozoan species belonging to the genus Leishmania affecting mostly the poor populations of developing countries. The causative organism is transmitted by female sandflies. Cutaneous, mucocutaneous, and visceral clinical manifestations are the most frequent forms of leishmaniasis. Chemotherapy still relies on the use of pentavalent antimonials, amphotericin B, paromomycin, miltefosin and liposomal amphotericin B. However, the application of these drugs is limited due to low efficacy, life-threatening side effects, high toxicity, induction of parasite resistance, length of treatment and high cost. Given the fact that antileishmanial vaccines may not become available in the near future, the search for better drugs should be continued. Natural products may offer an unlimited source of chemical diversity to identify new drug modules. New medicines should be less toxic or non-toxic, safe, more efficient, less expensive and readily available antileishmanial agents, especially for low-income populations. In the present review, special focus is on medicinal plants used against leishmanaiasis. The bioactive phytocompounds present in the plant derivatives including the crude extracts, essential oils, and other useful compounds can be a good source for discovering and producing new antileishmanial medicines.
Collapse
Affiliation(s)
- A Oryan
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
42
|
Ashok D, Acha-Orbea H. Timing is everything: dendritic cell subsets in murine Leishmania infection. Trends Parasitol 2014; 30:499-507. [DOI: 10.1016/j.pt.2014.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 02/02/2023]
|
43
|
Joshi S, Rawat K, Yadav NK, Kumar V, Siddiqi MI, Dube A. Visceral Leishmaniasis: Advancements in Vaccine Development via Classical and Molecular Approaches. Front Immunol 2014; 5:380. [PMID: 25202307 PMCID: PMC4141159 DOI: 10.3389/fimmu.2014.00380] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/24/2014] [Indexed: 11/13/2022] Open
Abstract
Visceral leishmaniasis (VL) or kala-azar, a vector-borne protozoan disease, shows endemicity in larger areas of the tropical, subtropical and the Mediterranean countries. WHO report suggested that an annual incidence of VL is nearly 200,000 to 400,000 cases, resulting in 20,000 to 30,000 deaths per year. Treatment with available anti-leishmanial drugs are not cost effective, with varied efficacies and higher relapse rate, which poses a major challenge to current kala-azar control program in Indian subcontinent. Therefore, a vaccine against VL is imperative and knowing the fact that recovered individuals developed lifelong immunity against re-infection, it is feasible. Vaccine development program, though time taking, has recently gained momentum with the emergence of omic era, i.e., from genomics to immunomics. Classical as well as molecular methodologies have been overtaken with alternative strategies wherein proteomics based knowledge combined with computational techniques (immunoinformatics) speed up the identification and detailed characterization of new antigens for potential vaccine candidates. This may eventually help in the designing of polyvalent synthetic and recombinant chimeric vaccines as an effective intervention measures to control the disease in endemic areas. This review focuses on such newer approaches being utilized for vaccine development against VL.
Collapse
Affiliation(s)
- Sumit Joshi
- Division of Parasitology, Central Drug Research Institute , Lucknow , India
| | - Keerti Rawat
- Division of Parasitology, Central Drug Research Institute , Lucknow , India
| | | | - Vikash Kumar
- Division of Molecular and Structural Biology, Central Drug Research Institute , Lucknow , India
| | - Mohammad Imran Siddiqi
- Division of Molecular and Structural Biology, Central Drug Research Institute , Lucknow , India
| | - Anuradha Dube
- Division of Parasitology, Central Drug Research Institute , Lucknow , India
| |
Collapse
|
44
|
Saljoughian N, Taheri T, Rafati S. Live vaccination tactics: possible approaches for controlling visceral leishmaniasis. Front Immunol 2014; 5:134. [PMID: 24744757 PMCID: PMC3978289 DOI: 10.3389/fimmu.2014.00134] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 03/17/2014] [Indexed: 01/15/2023] Open
Abstract
Vaccination with durable immunity is the main goal and fundamental to control leishmaniasis. To stimulate the immune response, small numbers of parasites are necessary to be presented in the mammalian host. Similar to natural course of infection, strategy using live vaccine is more attractive when compared to other approaches. Live vaccines present the whole spectrum of antigens to the host immune system in the absence of any adjuvant. Leishmanization was the first effort for live vaccination and currently used in a few countries against cutaneous leishmaniasis, in spite of their obstacle and safety. Then, live attenuated vaccines developed with similar promotion of creating long-term immunity in the host with lower side effect. Different examples of attenuated strains are generated through long-term in vitro culturing, culturing under drug pressure, temperature sensitivity, and chemical mutagenesis, but none is safe enough and their revision to virulent form is possible. Attenuation through genetic manipulation and disruption of virulence factors or essential enzymes for intracellular survival are among other approaches that are intensively under study. Other designs to develop live vaccines for visceral form of leishmaniasis are utilization of live avirulent microorganisms such as Lactococcus lactis, Salmonella enterica, and Leishmania tarentolae called as vectored vaccine. Apparently, these vaccines are intrinsically safer and can harbor the candidate antigens in their genome through different genetic manipulation and create more potential to control Leishmania parasite as an intracellular pathogen.
Collapse
Affiliation(s)
- Noushin Saljoughian
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Tahareh Taheri
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Rafati
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
45
|
Zahedifard F, Gholami E, Taheri T, Taslimi Y, Doustdari F, Seyed N, Torkashvand F, Meneses C, Papadopoulou B, Kamhawi S, Valenzuela JG, Rafati S. Enhanced protective efficacy of nonpathogenic recombinant leishmania tarentolae expressing cysteine proteinases combined with a sand fly salivary antigen. PLoS Negl Trop Dis 2014; 8:e2751. [PMID: 24675711 PMCID: PMC3967951 DOI: 10.1371/journal.pntd.0002751] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 02/06/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Novel vaccination approaches are needed to prevent leishmaniasis. Live attenuated vaccines are the gold standard for protection against intracellular pathogens such as Leishmania and there have been new developments in this field. The nonpathogenic to humans lizard protozoan parasite, Leishmania (L) tarentolae, has been used effectively as a vaccine platform against visceral leishmaniasis in experimental animal models. Correspondingly, pre-exposure to sand fly saliva or immunization with a salivary protein has been shown to protect mice against cutaneous leishmaniasis. METHODOLOGY/PRINCIPAL FINDINGS Here, we tested the efficacy of a novel combination of established protective parasite antigens expressed by L. tarentolae together with a sand fly salivary antigen as a vaccine strategy against L. major infection. The immunogenicity and protective efficacy of different DNA/Live and Live/Live prime-boost vaccination modalities with live recombinant L. tarentolae stably expressing cysteine proteinases (type I and II, CPA/CPB) and PpSP15, an immunogenic salivary protein from Phlebotomus papatasi, a natural vector of L. major, were tested both in susceptible BALB/c and resistant C57BL/6 mice. Both humoral and cellular immune responses were assessed before challenge and at 3 and 10 weeks after Leishmania infection. In both strains of mice, the strongest protective effect was observed when priming with PpSP15 DNA and boosting with PpSP15 DNA and live recombinant L. tarentolae stably expressing cysteine proteinase genes. CONCLUSION/SIGNIFICANCE The present study is the first to use a combination of recombinant L. tarentolae with a sand fly salivary antigen (PpSP15) and represents a novel promising vaccination approach against leishmaniasis.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/blood
- Cysteine Proteases/biosynthesis
- Cysteine Proteases/genetics
- Cysteine Proteases/immunology
- Disease Models, Animal
- Female
- Leishmania/immunology
- Leishmaniasis/prevention & control
- Leishmaniasis Vaccines/administration & dosage
- Leishmaniasis Vaccines/genetics
- Leishmaniasis Vaccines/immunology
- Leukocytes, Mononuclear/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Psychodidae
- Salivary Proteins and Peptides/biosynthesis
- Salivary Proteins and Peptides/genetics
- Salivary Proteins and Peptides/immunology
- Vaccination/methods
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Farnaz Zahedifard
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Gholami
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Tahereh Taheri
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Yasaman Taslimi
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Doustdari
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Negar Seyed
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | | | - Claudio Meneses
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, Maryland, United States of America
| | - Barbara Papadopoulou
- Research Centre in Infectious Disease, CHUL Research Centre (CHU de Québec Research Centre) and Department of Microbiology, Infectious Disease and Immunology, Laval University, Quebec, Canada
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, Maryland, United States of America
| | - Jesus G. Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, Maryland, United States of America
| | - Sima Rafati
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
- * E-mail: ,
| |
Collapse
|
46
|
Stephens P. Vaccine R&D: past performance is no guide to the future. Vaccine 2014; 32:2139-42. [PMID: 24613519 DOI: 10.1016/j.vaccine.2014.02.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/06/2013] [Accepted: 02/12/2014] [Indexed: 12/14/2022]
Abstract
Vaccines offer the most cost-effective solution to prevent both communicable and non-communicable disease in poor countries. Published studies suggest that vaccine research is seeing declining success. This study updates the latest analyses on success rates in vaccine research, and examines the potential causes of decline and their ongoing impact. Success rates are shown to decline, the observed probability of market entry being just 1.8%, almost a fourfold decline over 5 years, but in the context of a very different product portfolio from that seen in earlier studies. DNA vaccines see high Phase I failures as expected, and therapeutic vaccines have lower success rates than prophylactic vaccines. The changing scientific challenge, lack of investment and lack of co-operation are highlighted as potential causes of the decline. Many issues have now been resolved, but co-operation between academia, regulators and industry remains a significant challenge, requiring links across new disciplines and technologies.
Collapse
Affiliation(s)
- Peter Stephens
- IMS HEALTH, 210 Pentonville Road, London N1 9JY, United Kingdom; WHO Collaborating Centre for Pharmacoepidemiology and Pharmaceutical Policy Analysis, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht, The Netherlands.
| |
Collapse
|
47
|
Alkyl galactofuranosides strongly interact with Leishmania donovani membrane and provide antileishmanial activity. Antimicrob Agents Chemother 2014; 58:2156-66. [PMID: 24468785 DOI: 10.1128/aac.01350-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We investigated the in vitro effects of four alkyl-galactofuranoside derivatives, i.e., octyl-β-D-galactofuranoside (compound 1), 6-amino-β-D-galactofuranoside (compound 2), 6-N-acetamido-β-D-galactofuranoside (compound 3), and 6-azido-β-D-galactofuranoside (compound 4), on Leishmania donovani. Their mechanism of action was explored using electron paramagnetic resonance spectroscopy (EPR) and nuclear magnetic resonance (NMR), and ultrastructural alterations were analyzed by transmission electron microscopy (TEM). Compound 1 showed the most promising effects by inhibiting promastigote growth at a 50% inhibitory concentration (IC50) of 8.96±2.5 μM. All compounds exhibit low toxicity toward human macrophages. Compound 1 had a higher selectivity index than the molecule used for comparison, i.e., miltefosine (159.7 versus 37.9, respectively). EPR showed that compound 1 significantly reduced membrane fluidity compared to control promastigotes and to compound 3. The furanose ring was shown to support this effect, since the isomer galactopyranose had no effect on parasite membrane fluidity or growth. NMR showed a direct interaction of all compounds (greatest with compound 1, followed by compounds 2, 3, and 4, in descending order) with the promastigote membrane and with octyl-galactopyranose and octanol, providing evidence that the n-octyl chain was primarily involved in anchoring with the parasite membrane, followed by the putative crucial role of the furanose ring in the antileishmanial activity. A morphological analysis of compound 1-treated promastigotes by TEM revealed profound alterations in the parasite membrane and organelles, but this was not the case with compound 3. Quantification of annexin V binding by flow cytometry confirmed that compound 1 induced apoptosis in >90% of promastigotes. The effect of compound 1 was also assessed on intramacrophagic amastigotes and showed a reduction in amastigote growth associated with an increase of reactive oxygen species (ROS) production, thus validating its promising effect.
Collapse
|
48
|
Ramirez L, Corvo L, Duarte MC, Chávez-Fumagalli MA, Valadares DG, Santos DM, de Oliveira CI, Escutia MR, Alonso C, Bonay P, Tavares CAP, Coelho EAF, Soto M. Cross-protective effect of a combined L5 plus L3 Leishmania major ribosomal protein based vaccine combined with a Th1 adjuvant in murine cutaneous and visceral leishmaniasis. Parasit Vectors 2014; 7:3. [PMID: 24382098 PMCID: PMC3880976 DOI: 10.1186/1756-3305-7-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/28/2013] [Indexed: 12/14/2022] Open
Abstract
Background Two Leishmania major ribosomal proteins L3 (LmL3) and L5 (LmL5) have been described as protective molecules against cutaneous leishmaniasis due to infection with L. major and Leishmania braziliensis in BALB/c mice when immunized with a Th1 adjuvant (non-methylated CpG-oligodeoxynucleotides; CpG-ODN). In the present study we analyzed the cross-protective efficacy of an LmL3-LmL5-CpG ODN combined vaccine against infection with Leishmania amazonensis and Leishmania chagasi (syn. Leishmania infantum) the etiologic agents of different clinical forms of human leishmaniasis in South America. Methods The combined vaccine was administered subcutaneously to BALB/c mice. After immunization the cellular and humoral responses elicited were analyzed. Mice were independently challenged with L. amazonensis and L. chagasi. The size of the cutaneous lesions caused by the infection with the first species, the parasite loads and the immune response in both infection models were analyzed nine weeks after challenge. Results Mice vaccinated with the combined vaccine showed a Th1-like response against LmL3 and LmL5. Vaccinated mice were able to delay lesion development due to L. amazonensis infection and to control parasite loads in the site of infection. A reduction of the parasite burden in the lymph nodes draining the site of infection and in the liver and spleen was observed in the vaccinated mice after a subcutaneous infection with L. chagasi. In both models of infection, protection was correlated to parasite antigen-specific production of IFN-γ and down-regulation of parasite-mediated IL-4 and IL-10 responses. Conclusions The data presented here demonstrate the potential use of L. major L3 and L5 recombinant ribosomal proteins for the development of vaccines against various Leishmania species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Manuel Soto
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Nicolás Cabrera 1, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|