1
|
Pracher L, Zeitlinger M. Preclinical and clinical studies in the drug development process of European Medicines Agency-approved non-HIV antiviral agents: a narrative review. Clin Microbiol Infect 2025; 31:931-940. [PMID: 39389465 DOI: 10.1016/j.cmi.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Viral diseases represent a substantial global health challenge, necessitating the urgent development of effective antiviral medications. OBJECTIVES This review aims to present a thorough examination of systemic antiviral drugs approved by the European Medicines Agency (EMA) since its founding, excluding those targeting HIV, with a focus on preclinical and clinical studies in the drug development process. SOURCES Data was extracted from the European Public Assessment Reports and Summary of Product Characteristics issued by the EMA. CONTENT In total, 21 currently approved agents were analysed with a focus on preclinical and clinical studies. The majority of substances have been approved for hepatitis C (38%) and B (19%) followed by influenza and SARS-CoV-2 (14% and 10%, respectively). A smaller subset obtained approval for the indications of hepatitis D, cytomegalovirus, and pox viruses. As for preclinical studies, heterogeneity in the methods used for efficacy studies was observed, which is at least partly explained by the diverse nature of viruses and their hosts and the lack of general guidelines for antiviral pharmacokinetics and pharmacodynamics studies by the EMA. Clinical studies varied in sample sizes, ranging from a few hundred to several thousand patients. Many antiviral agents have a high potential for cytochrome P450 (CYP) and other enzyme interactions, resulting in the need for a high number of drug-drug interaction studies. Special market authorizations are available, including conditional approval for urgently required drugs such as nirmatrelvir/ritonavir for the treatment of COVID-19, and authorization under exceptional circumstances when comprehensive data cannot be provided, as seen with tecovirimat for pox viruses. IMPLICATIONS Streamlining the drug development process of antiviral substances and providing more guidelines would be crucial given the ongoing demand for effective treatment options for existing and new viral diseases.
Collapse
Affiliation(s)
- Lena Pracher
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Shinohara K, Kobayakawa T, Tsuji K, Takamatsu Y, Mitsuya H, Tamamura H. Naphthalen-1-ylethanamine-containing small molecule inhibitors of the papain-like protease of SARS-CoV-2. Eur J Med Chem 2024; 280:116963. [PMID: 39442336 DOI: 10.1016/j.ejmech.2024.116963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has not yet been eradicated. SARS-CoV-2 has two types of proteases, a main protease (Mpro) and a papain-like protease (PLpro), which together process two translated non-structural polyproteins, pp1a and pp1ab, to produce functional viral proteins. In this study, effective inhibitors against PLpro of SARS-CoV-2 were designed and synthesized using GRL-0048 as a lead. A docking simulation of GRL-0048 and SARS-CoV-2 PLpro showed that GRL-0048 noncovalently interacts with PLpro, and there is a newly identified binding pocket in PLpro. Structure-activity relationship studies were next performed on GRL-0048, resulting in the development of several inhibitors, specifically compounds 1, 2b, and 3h, that have more potent inhibitory activity than GRL-0048.
Collapse
Affiliation(s)
- Kouki Shinohara
- Department of Medicinal Chemistry, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Takuya Kobayakawa
- Department of Medicinal Chemistry, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Kohei Tsuji
- Department of Medicinal Chemistry, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Yuki Takamatsu
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo, 162-8655, Japan; Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States; Department of Clinical Sciences, Kumamoto University Hospital, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, Chiyoda-ku, Tokyo, 101-0062, Japan.
| |
Collapse
|
3
|
Gonçalves do Amaral C, Pinto André E, Maffud Cilli E, Gomes da Costa V, Ricardo S Sanches P. Viral diseases and the environment relationship. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124845. [PMID: 39265774 DOI: 10.1016/j.envpol.2024.124845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024]
Abstract
Viral diseases have been present throughout human history, with early examples including influenza (1500 B.C.), smallpox (1000 B.C.), and measles (200 B.C.). The term "virus" was first used in the late 1800s to describe microorganisms smaller than bacteria, and significant milestones include the discovery of the polio virus and the development of its vaccine in the mid-1900s, and the identification of HIV/AIDS in the latter part of the 20th century. The 21st century has seen the emergence of new viral diseases such as West Nile Virus, Zika, SARS, MERS, and COVID-19. Human activities, including crowding, travel, poor sanitation, and environmental changes like deforestation and climate change, significantly influence the spread of these diseases. Conversely, viral diseases can impact the environment by polluting water resources, contributing to deforestation, and reducing biodiversity. These environmental impacts are exacerbated by disruptions in global supply chains and increased demands for resources. This review highlights the intricate relationship between viral diseases and environmental factors, emphasizing how human activities and viral disease progression influence each other. The findings underscore the need for integrated approaches to address the environmental determinants of viral diseases and mitigate their impacts on both health and ecosystems.
Collapse
Affiliation(s)
- Caio Gonçalves do Amaral
- School of Pharmaceutical Sciences, Laboratory of Molecular Virology, Department of Biological Science, São Paulo State University, UNESP, Brazil
| | - Eduardo Pinto André
- School of Pharmaceutical Sciences, Laboratory of Molecular Virology, Department of Biological Science, São Paulo State University, UNESP, Brazil
| | - Eduardo Maffud Cilli
- Institute of Chemistry, Laboratory of Synthesis and Studies of Biomolecules, Department of Biochemistry and Organic Chemistry, São Paulo State University, UNESP, Brazil
| | - Vivaldo Gomes da Costa
- Institute of Biosciences, Letters, and Exact Sciences, São Paulo State University, UNESP, Brazil
| | - Paulo Ricardo S Sanches
- School of Pharmaceutical Sciences, Laboratory of Molecular Virology, Department of Biological Science, São Paulo State University, UNESP, Brazil.
| |
Collapse
|
4
|
Gkekas I, Katsamakas S, Mylonas S, Fotopoulou T, Magoulas GΕ, Tenchiu AC, Dimitriou M, Axenopoulos A, Rossopoulou N, Kostova S, Wanker EE, Katsila T, Papahatjis D, Gorgoulis VG, Koufaki M, Karakasiliotis I, Calogeropoulou T, Daras P, Petrakis S. AI Promoted Virtual Screening, Structure-Based Hit Optimization, and Synthesis of Novel COVID-19 S-RBD Domain Inhibitors. J Chem Inf Model 2024; 64:8562-8585. [PMID: 39535926 PMCID: PMC11600510 DOI: 10.1021/acs.jcim.4c01110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by a new, highly pathogenic severe-acute-respiratory syndrome coronavirus 2 (SARS-CoV-2) that infects human cells through its transmembrane spike (S) glycoprotein. The receptor-binding domain (RBD) of the S protein interacts with the angiotensin-converting enzyme II (ACE2) receptor of the host cells. Therefore, pharmacological targeting of this interaction might prevent infection or spread of the virus. Here, we performed a virtual screening to identify small molecules that block S-ACE2 interaction. Large compound libraries were filtered for drug-like properties, promiscuity and protein-protein interaction-targeting ability based on their ADME-Tox descriptors and also to exclude pan-assay interfering compounds. A properly designed AI-based virtual screening pipeline was applied to the remaining compounds, comprising approximately 10% of the starting data sets, searching for molecules that could bind to the RBD of the S protein. All molecules were sorted according to their screening score, grouped based on their structure and postfiltered for possible interaction patterns with the ACE2 receptor, yielding 31 hits. These hit molecules were further tested for their inhibitory effect on Spike RBD/ACE2 (19-615) interaction. Six compounds inhibited the S-ACE2 interaction in a dose-dependent manner while two of them also prevented infection of human cells from a pseudotyped virus whose entry is mediated by the S protein of SARS-CoV-2. Of the two compounds, the benzimidazole derivative CKP-22 protected Vero E6 cells from infection with SARS-CoV-2, as well. Subsequent, hit-to-lead optimization of CKP-22 was effected through the synthesis of 29 new derivatives of which compound CKP-25 suppressed the Spike RBD/ACE2 (19-615) interaction, reduced the cytopathic effect of SARS-CoV-2 in Vero E6 cells (IC50 = 3.5 μM) and reduced the viral load in cell culture supernatants. Early in vitro ADME-Tox studies showed that CKP-25 does not possess biodegradation or liver metabolism issues, while isozyme-specific CYP450 experiments revealed that CKP-25 was a weak inhibitor of the CYP450 system. Moreover, CKP-25 does not elicit mutagenic effect on Escherichia coli WP2 uvrA strain. Thus, CKP-25 is considered a lead compound against COVID-19 infection.
Collapse
Affiliation(s)
- Ioannis Gkekas
- Institute
of Applied Biosciences, Centre for Research
and Technology Hellas, Thessaloniki 57001, Greece
| | - Sotirios Katsamakas
- Information
Technologies Institute, Centre for Research
and Technology Hellas, Thessaloniki 57001, Greece
- Institute
of Chemical Biology, National Hellenic Research
Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Stelios Mylonas
- Information
Technologies Institute, Centre for Research
and Technology Hellas, Thessaloniki 57001, Greece
| | - Theano Fotopoulou
- Institute
of Chemical Biology, National Hellenic Research
Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - George Ε. Magoulas
- Institute
of Chemical Biology, National Hellenic Research
Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Alia Cristina Tenchiu
- Institute
of Chemical Biology, National Hellenic Research
Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Marios Dimitriou
- Laboratory
of Biology, Department of Medicine, Democritus
University of Thrace, Alexandroupolis 68100, Greece
| | - Apostolos Axenopoulos
- Information
Technologies Institute, Centre for Research
and Technology Hellas, Thessaloniki 57001, Greece
| | - Nafsika Rossopoulou
- Institute
of Chemical Biology, National Hellenic Research
Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Simona Kostova
- Max-Delbrueck-Center
for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Erich E. Wanker
- Max-Delbrueck-Center
for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Theodora Katsila
- Institute
of Chemical Biology, National Hellenic Research
Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Demetris Papahatjis
- Institute
of Chemical Biology, National Hellenic Research
Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Vassilis G. Gorgoulis
- Molecular
Carcinogenesis Group, Department of Histology and Embryology, Medical
School, National and Kapodistrian University
of Athens, Athens 11635, Greece
- Ninewells
Hospital and Medical School, University
of Dundee, DD19SY Dundee, U.K.
| | - Maria Koufaki
- Institute
of Chemical Biology, National Hellenic Research
Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Ioannis Karakasiliotis
- Laboratory
of Biology, Department of Medicine, Democritus
University of Thrace, Alexandroupolis 68100, Greece
| | - Theodora Calogeropoulou
- Institute
of Chemical Biology, National Hellenic Research
Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Petros Daras
- Information
Technologies Institute, Centre for Research
and Technology Hellas, Thessaloniki 57001, Greece
| | - Spyros Petrakis
- Institute
of Applied Biosciences, Centre for Research
and Technology Hellas, Thessaloniki 57001, Greece
| |
Collapse
|
5
|
Kim HJ, Yoon JH, Lee KH. Investigating the Safety Profile of Fast-Track COVID-19 Drugs Using the FDA Adverse Event Reporting System Database: A Comparative Observational Study. Pharmacoepidemiol Drug Saf 2024; 33:e70043. [PMID: 39533148 DOI: 10.1002/pds.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/03/2024] [Accepted: 10/06/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The US Food and Drug Administration (US FDA) granted emergency use authorization (EUA) for multiple coronavirus disease 2019 (COVID-19) drugs as a medical countermeasure during the COVID-19 pandemic. Despite these drugs' fast-track nature, concerns persist regarding their efficacy and potential adverse effects. Thus, the continuous surveillance and understanding of these drugs' safety profiles are crucial in such scenarios. OBJECTIVE Using the FDA Adverse Event Reporting System (FAERS) database, we aimed to compare the adverse drug reactions (ADRs) of four fast-track COVID-19 drugs to explore the potential of real-world data for providing prompt feedback in clinical settings. METHODS To evaluate the post-marketing safety of fast-track COVID-19 drugs, we descriptively evaluated the ADRs of four COVID-19 drugs (bebtelovimab, molnupiravir, nirmatrelvir/ritonavir, and remdesivir) using FAERS data reported from January 2020 to June 2022. We examined FAERS case records of COVID-19 drugs reported as the "primary suspect drug" as a case group and the records of other drugs as the control. "Serious adverse drug reactions (SADRs)" were defined based on FDA guidelines. Using reporting odds ratios, disproportionality analysis was conducted to determine significant signals for ADRs related to each of the four drugs compared with those of others, both at the preferred term (PT) and system organ class (SOC) levels. To explore the occurrence of reporting each serious outcome reported to the four drugs, we fitted logistic regression models, adjusting for age and sex. RESULTS During the study period, 5 248 221 cases were submitted to FAERS, including 17 275 cases of the four COVID-19 drugs: bebtelovimab (532 cases), molnupiravir (1106 cases), nirmatrelvir/ritonavir (9217 cases), and remdesivir (6420 cases). A total of 64, 46, 116, and 207 PTs with significant disproportionality were identified for each drug, respectively. "Infusion-related reaction" (18.4%), "diarrhea" (7.4%), "dysgeusia" (11.4%), and "increased alanine aminotransferase" (14.5%) were the most frequently reported SADRs for bebtelovimab, molnupiravir, nirmatrelvir/ritonavir, and remdesivir, respectively. Among the 27 SOCs, statistically significant signals were observed in 10, 3, 0, and 8 SOCs for bebtelovimab, molnupiravir, nirmatrelvir/ritonavir, and remdesivir, respectively. Remdesivir showed a higher occurrence for the reporting of death or life-threatening ADRs compared with the control (adjusted odds ratio (OR) = 2.44, 95% confidence interval (CI) = 2.23-2.59; adjusted OR = 1.82, 95% CI = 1.64-2.02, respectively). CONCLUSIONS We identified potential ADRs associated with COVID-19 drugs and provided insights into their real-world safety. This study demonstrated that real-world data and real-time safety reviews could be effective methods for the timely detection of ADR signals of drugs that have received fast-track approval, as exemplified by COVID-19 drugs. These findings underscore the importance of the continued surveillance, efficient data processing, and establishment of automated pipelines for real-time safety reviews.
Collapse
Affiliation(s)
- Hyo Jung Kim
- Department of Digital Health, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Korea
- Center of Research Resource Standardization, Research Institution for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Jeong-Hwa Yoon
- Medical Big Data Research Center, Medical Research Center, Seoul National University, Seoul, Korea
| | - Kye Hwa Lee
- Department of Information Medicine, Asan Medical Center, Seoul, Korea
- Department of Digital Medicine, Ulsan University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Yang C, Yu Y, Peng Q, Song J, Sun B, Shi Y, Ding Q. Drupacine as a potent SARS-CoV-2 replication inhibitor in vitro. BIOSAFETY AND HEALTH 2024; 6:270-278. [PMID: 40078736 PMCID: PMC11895013 DOI: 10.1016/j.bsheal.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 03/14/2025] Open
Abstract
Despite the availability of vaccines and antiviral treatments, the continued emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and breakthrough infections underscores the need for new, potent antiviral therapies. In a previous study, we established a transcription and replication-competent SARS-CoV-2 virus-like particle (trVLP) system that recapitulates the complete viral life cycle. In this study, we combined high-content screening (HCS) with the SARS-CoV-2 trVLP cell culture system, providing a powerful phenotype-oriented approach to assess the antiviral potential of compounds on a large scale. We screened a library of 3,200 natural compounds and identified drupacine as a potential candidate against SARS-CoV-2 infection. Furthermore, we utilized a SARS-CoV-2 replicon system to demonstrate that drupacine could inhibit viral genome transcription and replication. However, in vitro, enzymatic assays revealed that the inhibition could not be attributed to conventional antiviral targets, such as the viral non-structural proteins nsp5 (MPro) or nsp12 (RdRp). In conclusion, our findings position drupacine as a promising antiviral candidate against SARS-CoV-2, providing a novel scaffold for developing anti-coronavirus disease 2019 therapeutics. Further investigation is required to pinpoint its precise target and mechanism of action.
Collapse
Affiliation(s)
- Chen Yang
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yanying Yu
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Qi Peng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingwei Song
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Bo Sun
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiang Ding
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
7
|
Bolinger AA, Li J, Xie X, Li H, Zhou J. Lessons learnt from broad-spectrum coronavirus antiviral drug discovery. Expert Opin Drug Discov 2024; 19:1023-1041. [PMID: 39078037 PMCID: PMC11390334 DOI: 10.1080/17460441.2024.2385598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Highly pathogenic coronaviruses (CoVs), such as severe acute respiratory syndrome CoV (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV), and the most recent SARS-CoV-2 responsible for the COVID-19 pandemic, pose significant threats to human populations over the past two decades. These CoVs have caused a broad spectrum of clinical manifestations ranging from asymptomatic to severe distress syndromes (ARDS), resulting in high morbidity and mortality. AREAS COVERED The accelerated advancements in antiviral drug discovery, spurred by the COVID-19 pandemic, have shed new light on the imperative to develop treatments effective against a broad spectrum of CoVs. This perspective discusses strategies and lessons learnt in targeting viral non-structural proteins, structural proteins, drug repurposing, and combinational approaches for the development of antivirals against CoVs. EXPERT OPINION Drawing lessons from the pandemic, it becomes evident that the absence of efficient broad-spectrum antiviral drugs increases the vulnerability of public health systems to the potential onslaught by highly pathogenic CoVs. The rapid and sustained spread of novel CoVs can have devastating consequences without effective and specifically targeted treatments. Prioritizing the effective development of broad-spectrum antivirals is imperative for bolstering the resilience of public health systems and mitigating the potential impact of future highly pathogenic CoVs.
Collapse
Affiliation(s)
- Andrew A. Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jun Li
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
8
|
Hershan AA. Pathogenesis of COVID19 and the applications of US FDA-approved repurposed antiviral drugs to combat SARS-CoV-2 in Saudi Arabia: A recent update by review of literature. Saudi J Biol Sci 2024; 31:104023. [PMID: 38799719 PMCID: PMC11127266 DOI: 10.1016/j.sjbs.2024.104023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Still, there is no cure for the highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-caused coronavirus disease 2019 (COVID19). The COVID19 pandemic caused health emergencies which resulted in enormous medical and financial consequences worldwide including Saudi Arabia. Saudi Arabia is the largest Arab country of the Middle East. The urban setting of Saudi Arabia makes it vulnerable towards SARS-CoV-2 (SCV-2). Religious areas of this country are visited by millions of pilgrims every year for the Umrah and Hajj pilgrimage, which contributes to the potential COVID19 epidemic risk. COVID19 throws various challenges to healthcare professionals to choose the right drugs or therapy in clinical settings because of the lack of availability of newer drugs. Current drug development and discovery is an expensive, complex, and long process, which involves a high failure rate in clinical trials. While repurposing of United States Food and Drug Administration (US FDA)-approved antiviral drugs offers numerous benefits including complete pharmacokinetic and safety profiles, which significantly shorten drug development cycles and reduce costs. A range of repurposed US FDA-approved antiviral drugs including ribavirin, lopinavir/ritonavir combination, oseltamivir, darunavir, remdesivir, nirmatrelvir/ritonavir combination, and molnupiravir showed encouraging results in clinical trials in COVID19 treatment. In this article, several COVID19-related discussions have been provided including emerging variants of concern of, COVID19 pathogenesis, COVID19 pandemic scenario in Saudi Arabia, drug repurposing strategies against SCV-2, as well as repurposing of US FDA-approved antiviral drugs that might be considered to combat SCV-2 in Saudi Arabia. Moreover, drug repurposing in the context of COVID19 management along with its limitations and future perspectives have been summarized.
Collapse
Affiliation(s)
- Almonther Abdullah Hershan
- The University of Jeddah, College of Medicine, Department of Medical microbiology and parasitology, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Liu K, Li Z, Li L, Heyward S, Wang SR, He L, Wang H. Mechanistic Understanding of Dexamethasone-Mediated Protection against Remdesivir-Induced Hepatotoxicity. Mol Pharmacol 2024; 106:71-82. [PMID: 38769019 PMCID: PMC12164689 DOI: 10.1124/molpharm.124.000894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
Remdesivir (RDV), a broad-spectrum antiviral agent, is often used together with dexamethasone (DEX) for hospitalized COVID-19 patients requiring respiratory support. Potential hepatic adverse drug reaction is a safety concern associated with the use of RDV. We previously reported that DEX cotreatment effectively mitigates RDV-induced hepatotoxicity and reduces elevated serum alanine aminotransferase and aspartate aminotransferase levels in cultured human primary hepatocytes (HPH) and hospitalized COVID-19 patients, respectively. Yet, the precise mechanism behind this protective drug-drug interaction remains largely unknown. Here, we show that through the activation of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling, RDV induces apoptosis (cleavage of caspases 8, 9, and 3), autophagy (increased autophagosome and LC3-II), and mitochondrial damages (decreased membrane potential, respiration, ATP levels, and increased expression of Bax and the released cytosolic cytochrome C) in HPH. Importantly, cotreatment with DEX partially reversed RDV-induced apoptosis, autophagy, and cell death. Mechanistically, DEX deactivates/dephosphorylates p38, JNK, and ERK1/2 signaling by enhancing the expression of dual specificity protein phosphatase 1 (DUSP1), a mitogen-activated protein kinase (MAPK) phosphatase, in a glucocorticoid receptor (GR)-dependent manner. Knockdown of GR in HPH attenuates DEX-mediated DUSP1 induction, MAPK dephosphorylation, as well as protection against RDV-induced hepatotoxicity. Collectively, our findings suggest a molecular mechanism by which DEX modulates the GR-DUSP1-MAPK regulatory axis to alleviate the adverse actions of RDV in the liver. SIGNIFICANCE STATEMENT: The research uncovers the molecular mechanisms by which dexamethasone safeguards against remdesivir-associated liver damage in the context of COVID-19 treatment.
Collapse
Affiliation(s)
- Kaiyan Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (K.L., Z.L., L.L., S.R.W., H.W.); BioIVT, Halethorpe, Maryland (S.H.); and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland (L.H.)
| | - Zhihui Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (K.L., Z.L., L.L., S.R.W., H.W.); BioIVT, Halethorpe, Maryland (S.H.); and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland (L.H.)
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (K.L., Z.L., L.L., S.R.W., H.W.); BioIVT, Halethorpe, Maryland (S.H.); and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland (L.H.)
| | - Scott Heyward
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (K.L., Z.L., L.L., S.R.W., H.W.); BioIVT, Halethorpe, Maryland (S.H.); and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland (L.H.)
| | - Shelley R Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (K.L., Z.L., L.L., S.R.W., H.W.); BioIVT, Halethorpe, Maryland (S.H.); and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland (L.H.)
| | - Ling He
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (K.L., Z.L., L.L., S.R.W., H.W.); BioIVT, Halethorpe, Maryland (S.H.); and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland (L.H.)
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (K.L., Z.L., L.L., S.R.W., H.W.); BioIVT, Halethorpe, Maryland (S.H.); and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland (L.H.)
| |
Collapse
|
10
|
Idrees S, Chen H, Panth N, Paudel KR, Hansbro PM. Exploring Viral-Host Protein Interactions as Antiviral Therapies: A Computational Perspective. Microorganisms 2024; 12:630. [PMID: 38543681 PMCID: PMC10975578 DOI: 10.3390/microorganisms12030630] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 06/15/2025] Open
Abstract
The interactions between human and viral proteins are pivotal in viral infection and host immune responses. These interactions traverse different stages of the viral life cycle, encompassing initial entry into host cells, replication, and the eventual deployment of immune evasion strategies. As viruses exploit host cellular machinery for their replication and survival, targeting key protein-protein interactions offer a strategic approach for developing antiviral drugs. This review discusses how viruses interact with host proteins to develop viral-host interactions. In addition, we also highlight valuable resources that aid in identifying new interactions, incorporating high-throughput methods, and computational approaches, ultimately helping to understand how these tools can be effectively utilized to study viral-host interactions.
Collapse
Affiliation(s)
| | | | | | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia; (S.I.); (H.C.); (N.P.)
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia; (S.I.); (H.C.); (N.P.)
| |
Collapse
|
11
|
Altincekic N, Jores N, Löhr F, Richter C, Ehrhardt C, Blommers MJJ, Berg H, Öztürk S, Gande SL, Linhard V, Orts J, Abi Saad MJ, Bütikofer M, Kaderli J, Karlsson BG, Brath U, Hedenström M, Gröbner G, Sauer UH, Perrakis A, Langer J, Banci L, Cantini F, Fragai M, Grifagni D, Barthel T, Wollenhaupt J, Weiss MS, Robertson A, Bax A, Sreeramulu S, Schwalbe H. Targeting the Main Protease (M pro, nsp5) by Growth of Fragment Scaffolds Exploiting Structure-Based Methodologies. ACS Chem Biol 2024; 19:563-574. [PMID: 38232960 PMCID: PMC10877576 DOI: 10.1021/acschembio.3c00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024]
Abstract
The main protease Mpro, nsp5, of SARS-CoV-2 (SCoV2) is one of its most attractive drug targets. Here, we report primary screening data using nuclear magnetic resonance spectroscopy (NMR) of four different libraries and detailed follow-up synthesis on the promising uracil-containing fragment Z604 derived from these libraries. Z604 shows time-dependent binding. Its inhibitory effect is sensitive to reducing conditions. Starting with Z604, we synthesized and characterized 13 compounds designed by fragment growth strategies. Each compound was characterized by NMR and/or activity assays to investigate their interaction with Mpro. These investigations resulted in the four-armed compound 35b that binds directly to Mpro. 35b could be cocrystallized with Mpro revealing its noncovalent binding mode, which fills all four active site subpockets. Herein, we describe the NMR-derived fragment-to-hit pipeline and its application for the development of promising starting points for inhibitors of the main protease of SCoV2.
Collapse
Affiliation(s)
- Nadide Altincekic
- Institute
for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, D-60438 Frankfurt, Germany
- Center
of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt am Main, D-60438 Frankfurt, Germany
| | - Nathalie Jores
- Institute
for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, D-60438 Frankfurt, Germany
- Center
of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt am Main, D-60438 Frankfurt, Germany
| | - Frank Löhr
- Center
of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt am Main, D-60438 Frankfurt, Germany
- Institute
of Biophysical Chemistry, Goethe University
Frankfurt am Main, D-60438 Frankfurt, Germany
| | - Christian Richter
- Institute
for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, D-60438 Frankfurt, Germany
- Center
of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt am Main, D-60438 Frankfurt, Germany
| | - Claus Ehrhardt
- Department
of Biochemistry, University of Zurich, 8093 Zurich, Switzerland
| | | | - Hannes Berg
- Institute
for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, D-60438 Frankfurt, Germany
- Center
of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt am Main, D-60438 Frankfurt, Germany
| | - Sare Öztürk
- Institute
for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, D-60438 Frankfurt, Germany
| | - Santosh L. Gande
- Institute
for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, D-60438 Frankfurt, Germany
- Center
of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt am Main, D-60438 Frankfurt, Germany
| | - Verena Linhard
- Institute
for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, D-60438 Frankfurt, Germany
- Center
of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt am Main, D-60438 Frankfurt, Germany
| | - Julien Orts
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Marie Jose Abi Saad
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Matthias Bütikofer
- Swiss
Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, 8093 Zürich, Switzerland
| | - Janina Kaderli
- Swiss
Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, 8093 Zürich, Switzerland
| | - B. Göran Karlsson
- Swedish
NMR Centre, Department of Chemistry and Molecular Biology, University of Gothenburg, SE40530 Göteborg, Sweden
- SciLifeLab, University of Gothenburg, SE40530 Göteborg, Sweden
| | - Ulrika Brath
- Swedish
NMR Centre, Department of Chemistry and Molecular Biology, University of Gothenburg, SE40530 Göteborg, Sweden
| | - Mattias Hedenström
- Swedish
NMR Centre, Department of Chemistry, University
of Umeå, SE-90187 Umeå, Sweden
| | - Gerhard Gröbner
- Swedish
NMR Centre, Department of Chemistry, University
of Umeå, SE-90187 Umeå, Sweden
| | - Uwe H. Sauer
- Protein
Production Sweden, Department of Chemistry, University of Umeå, SE-90187 Umeå, Sweden
| | - Anastassis Perrakis
- Oncode
Institute and Division of Biochemistry, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Julian Langer
- Max Planck Institute of
Biophysics, D-60438 Frankfurt am Main, Germany
| | - Lucia Banci
- Magnetic
Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche Metalloproteine, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Francesca Cantini
- Magnetic
Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche Metalloproteine, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic
Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche Metalloproteine, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Deborah Grifagni
- Magnetic
Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Tatjana Barthel
- Macromolecular
Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, D-12489 Berlin, Germany
| | - Jan Wollenhaupt
- Macromolecular
Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, D-12489 Berlin, Germany
| | - Manfred S. Weiss
- Macromolecular
Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, D-12489 Berlin, Germany
| | | | - Adriaan Bax
- NIH, LCP NIDDK, Bethesda, Maryland 20892, United States
| | - Sridhar Sreeramulu
- Institute
for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, D-60438 Frankfurt, Germany
- Center
of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt am Main, D-60438 Frankfurt, Germany
| | - Harald Schwalbe
- Institute
for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, D-60438 Frankfurt, Germany
- Center
of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt am Main, D-60438 Frankfurt, Germany
| |
Collapse
|
12
|
Pitsillou E, Beh RC, Liang JJ, Tang TS, Zhou X, Siow YY, Ma Y, Hu Z, Wu Z, Hung A, Karagiannis TC. EpiMed Coronabank Chemical Collection: Compound selection, ADMET analysis, and utilisation in the context of potential SARS-CoV-2 antivirals. J Mol Graph Model 2023; 125:108602. [PMID: 37597309 DOI: 10.1016/j.jmgm.2023.108602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
Antiviral drugs are important for the coronavirus disease 2019 (COVID-19) response, as vaccines and antibodies may have reduced efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Antiviral drugs that have been made available for use, albeit with questionable efficacy, include remdesivir (Veklury®), nirmatrelvir-ritonavir (Paxlovid™), and molnupiravir (Lagevrio®). To expand the options available for COVID-19 and prepare for future pandemics, there is a need to investigate new uses for existing drugs and design novel compounds. To support these efforts, we have created a comprehensive library of 750 molecules that have been sourced from in vitro, in vivo, and in silico studies. It is publicly available at our dedicated website (https://epimedlab.org/crl/). The EpiMed Coronabank Chemical Collection consists of compounds that have been divided into 10 main classes based on antiviral properties, as well as the potential to be used for the management, prevention, or treatment of COVID-19 related complications. A detailed description of each compound is provided, along with the molecular formula, canonical SMILES, and U.S. Food and Drug Administration approval status. The chemical structures have been obtained and are available for download. Moreover, the pharmacokinetic properties of the ligands have been characterised. To demonstrate an application of the EpiMed Coronabank Chemical Collection, molecular docking was used to evaluate the binding characteristics of ligands against SARS-CoV-2 nonstructural and accessory proteins. Overall, our database can be used to aid the drug repositioning process, and for gaining further insight into the molecular mechanisms of action of potential compounds of interest.
Collapse
Affiliation(s)
- Eleni Pitsillou
- Epigenomic Medicine Laboratory at prospED, Carlton, VIC, 3053, Australia; School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Raymond C Beh
- Epigenomic Medicine Laboratory at prospED, Carlton, VIC, 3053, Australia; School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Julia J Liang
- Epigenomic Medicine Laboratory at prospED, Carlton, VIC, 3053, Australia; School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Thinh Sieu Tang
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Xun Zhou
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ya Yun Siow
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yinghao Ma
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Zifang Hu
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Zifei Wu
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Tom C Karagiannis
- Epigenomic Medicine Laboratory at prospED, Carlton, VIC, 3053, Australia; Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
13
|
Comunale BA, Larson RJ, Jackson-Ward E, Singh A, Koback FL, Engineer LD. The Functional Implications of Broad Spectrum Bioactive Compounds Targeting RNA-Dependent RNA Polymerase (RdRp) in the Context of the COVID-19 Pandemic. Viruses 2023; 15:2316. [PMID: 38140557 PMCID: PMC10747147 DOI: 10.3390/v15122316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND As long as COVID-19 endures, viral surface proteins will keep changing and new viral strains will emerge, rendering prior vaccines and treatments decreasingly effective. To provide durable targets for preventive and therapeutic agents, there is increasing interest in slowly mutating viral proteins, including non-surface proteins like RdRp. METHODS A scoping review of studies was conducted describing RdRp in the context of COVID-19 through MEDLINE/PubMed and EMBASE. An iterative approach was used with input from content experts and three independent reviewers, focused on studies related to either RdRp activity inhibition or RdRp mechanisms against SARS-CoV-2. RESULTS Of the 205 records screened, 43 studies were included in the review. Twenty-five evaluated RdRp activity inhibition, and eighteen described RdRp mechanisms of existing drugs or compounds against SARS-CoV-2. In silico experiments suggested that RdRp inhibitors developed for other RNA viruses may be effective in disrupting SARS-CoV-2 replication, indicating a possible reduction of disease progression from current and future variants. In vitro, in vivo, and human clinical trial studies were largely consistent with these findings. CONCLUSIONS Future risk mitigation and treatment strategies against forthcoming SARS-CoV-2 variants should consider targeting RdRp proteins instead of surface proteins.
Collapse
Affiliation(s)
- Brittany A. Comunale
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Robin J. Larson
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Department of Palliative Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Erin Jackson-Ward
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Aditi Singh
- Department of Biological Sciences, University of California San Diego, La Jolla, CA 92161, USA
| | | | - Lilly D. Engineer
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
14
|
Debroy B, De A, Bhattacharya S, Pal K. In silico screening of herbal phytochemicals to develop a Rasayana for immunity against Nipah virus. J Ayurveda Integr Med 2023; 14:100825. [PMID: 38048723 PMCID: PMC10746367 DOI: 10.1016/j.jaim.2023.100825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 09/09/2023] [Accepted: 10/27/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND The first emergence of the Nipah virus (NiV) in 1998 from Malaysia became a major concern when it came to light and resurfaced on different occasions thereafter. NiV is a bat-borne zoonotic and pleomorphic virus that causes severe infection in human and animal hosts. Studies revealed fruit bats are the major reservoirs as natural hosts and pigs as intermediate hosts for the spread of this infection. This became a major concern as the disease was characterized by high pathogenicity varying from 40% to 80% depending on its acuteness. Moreover, the solemnity lies in the fact that the infection transcends from being a mere mild illness to an acute respiratory infection leading to fatal encephalitis with a reportedly high mortality rate. Currently, there is no treatment or vaccine available against the NiV. Many antiviral drugs have been explored and developed but with limited efficacy. METHODOLOGY In search of high-affinity ayurvedic alternatives, we conducted a pan-proteome in silico exploration of the NiV proteins for their interaction with the best-suited phytoconstituents. The toxicity prediction of thirty phytochemicals based on their LD50 value identified thirteen potential candidates. Molecular docking studies of those thirteen phytochemicals with five important NiV proteins identified Tanshinone I as the potential compound with a high binding affinity. RESULTS The pharmacokinetics and pharmacodynamics studies also aided in determining the absorption, distribution, metabolism, excretion, and toxicity of the selected phytoconstituent. Interestingly, docking studies also revealed Rosmariquinone as a potent alternative to the antiviral drug Remdesivir binding the same pocket of RNA-dependent RNA polymerase of the NiV. A molecular dynamics simulation study of the surface glycoprotein of NiV against Tanshinone I showed a stable complex formation and significant allosteric changes in the protein structure, implying that these phytochemicals could be a natural alternative to synthetic drugs against NiV. CONCLUSION This study provides preliminary evidence based on in silico analysis that the herbal molecules showed an effect against NiV. However, it is essential to further evaluate the efficacy of this approach through cell-based experiments, organoid models, and eventually clinical trials.
Collapse
Affiliation(s)
- Bishal Debroy
- Department of Biological Sciences, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal, 700126, India
| | - Arkajit De
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal, 700126, India
| | - Somdatta Bhattacharya
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal, 700126, India
| | - Kuntal Pal
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal, 700126, India; School of Biosciences and Technology (SBST), Vellore Institute Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
15
|
Tsuji K, Ishii T, Kobayakawa T, Higashi-Kuwata N, Shinohara K, Azuma C, Miura Y, Nakano H, Wada N, Hattori SI, Bulut H, Mitsuya H, Tamamura H. Structure-Activity Relationship Studies of SARS-CoV-2 Main Protease Inhibitors Containing 4-Fluorobenzothiazole-2-carbonyl Moieties. J Med Chem 2023; 66:13516-13529. [PMID: 37756225 DOI: 10.1021/acs.jmedchem.3c00777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The main protease (Mpro) of SARS-CoV-2 is an attractive target for the development of drugs to treat COVID-19. Here, we report the design, synthesis, and structure-activity relationship (SAR) studies of highly potent SARS-CoV-2 Mpro inhibitors including TKB245 (5)/TKB248 (6). Since we have previously developed Mpro inhibitors (3) and (4), several hybrid molecules of these previous compounds combined with nirmatrelvir (1) were designed and synthesized. Compounds such as TKB245 (5) and TKB248 (6), containing a 4-fluorobenzothiazole moiety at the P1' site, are highly effective in the blockade of SARS-CoV-2 replication in VeroE6 cells. Replacement of the P1-P2 amide with the thioamide surrogate in TKB248 (6) improved its PK profile in mice compared to that of TKB245 (5). A new diversity-oriented synthetic route to TKB245 (5) derivatives was also developed. The results of the SAR studies suggest that TKB245 (5) and TKB248 (6) are useful lead compounds for the further development of Mpro inhibitors.
Collapse
Affiliation(s)
- Kohei Tsuji
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takahiro Ishii
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takuya Kobayakawa
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Nobuyo Higashi-Kuwata
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Kouki Shinohara
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Chika Azuma
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yutaro Miura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Hiroki Nakano
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Naoya Wada
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Shin-Ichiro Hattori
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Haydar Bulut
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo 162-8655, Japan
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Department of Clinical Sciences, Kumamoto University Hospital, Chuo-ku, Kumamoto 860-8556, Japan
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
16
|
Cianci R, Massaro MG, De Santis E, Totti B, Gasbarrini A, Gambassi G, Giambra V. Changes in Lymphocyte Subpopulations after Remdesivir Therapy for COVID-19: A Brief Report. Int J Mol Sci 2023; 24:14973. [PMID: 37834421 PMCID: PMC10573452 DOI: 10.3390/ijms241914973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Remdesivir (RDV) has demonstrated clinical benefit in hospitalized COronaVIrus Disease (COVID)-19 patients. The objective of this brief report was to assess a possible correlation between RDV therapy and the variation in lymphocyte subpopulations. We retrospectively studied 43 hospitalized COVID-19 patients: 30 men and 13 women (mean age 69.3 ± 15 years); 9/43 had received RDV therapy. Six patients had no need for oxygen (severity group 0); 22 were on oxygen treatment with a fraction of inspired oxygen (FiO2) ≤ 50% (group 1); 7 on not-invasive ventilation (group 2); 3 on invasive mechanical ventilation (group 3); and 5 had died (group 4). Cytofluorimetric assessment of lymphocyte subpopulations showed substantial changes after RDV therapy: B lymphocytes and plasmablasts were significantly increased (p = 0.002 and p = 0.08, respectively). Cytotoxic T lymphocytes showed a robust reduction (p = 0.008). No changes were observed in CD4+-T cells and natural killers (NKs). There was a significant reduction in regulatory T cells (Tregs) (p = 0.02) and a significant increase in circulating monocytes (p = 0.03). Stratifying by disease severity, after RDV therapy, patients with severity 0-2 had significantly higher B lymphocyte and monocyte counts and lower memory and effector cytotoxic T cell counts. Instead, patients with severity 3-4 had significantly higher plasmablast and lower memory T cell counts. No significant differences for CD4+-T cells, Tregs, and NKs were observed. Our brief report showed substantial changes in the lymphocyte subpopulations analyzed between patients who did not receive RDV therapy and those after RDV treatment. Despite the small sample size, due to the retrospective nature of this brief report, the substantial changes in lymphocyte subpopulations reported could lead to speculation on the role of RDV treatment both on immune responses against the virus and on the possible downregulation of the cytokine storm observed in patients with more severe disease.
Collapse
Affiliation(s)
- Rossella Cianci
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.G.M.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Maria Grazia Massaro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.G.M.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Elisabetta De Santis
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (E.D.S.); (B.T.); (V.G.)
| | - Beatrice Totti
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (E.D.S.); (B.T.); (V.G.)
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.G.M.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.G.M.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Vincenzo Giambra
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (E.D.S.); (B.T.); (V.G.)
| |
Collapse
|
17
|
Awad AM, Hansen K, Del Rio D, Flores D, Barghash RF, Kakkola L, Julkunen I, Awad K. Insights into COVID-19: Perspectives on Drug Remedies and Host Cell Responses. Biomolecules 2023; 13:1452. [PMID: 37892134 PMCID: PMC10604481 DOI: 10.3390/biom13101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
In light of the COVID-19 global pandemic caused by SARS-CoV-2, ongoing research has centered on minimizing viral spread either by stopping viral entry or inhibiting viral replication. Repurposing antiviral drugs, typically nucleoside analogs, has proven successful at inhibiting virus replication. This review summarizes current information regarding coronavirus classification and characterization and presents the broad clinical consequences of SARS-CoV-2 activation of the angiotensin-converting enzyme 2 (ACE2) receptor expressed in different human cell types. It provides publicly available knowledge on the chemical nature of proposed therapeutics and their target biomolecules to assist in the identification of potentially new drugs for the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ahmed M. Awad
- Department of Chemistry, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Kamryn Hansen
- Department of Chemistry, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Diana Del Rio
- Department of Chemistry, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Derek Flores
- Department of Chemistry, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Reham F. Barghash
- Institute of Chemical Industries Research, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Laura Kakkola
- Institute of Biomedicine, Faculty of Medicine, University of Turku, 20014 Turku, Finland
| | - Ilkka Julkunen
- Institute of Biomedicine, Faculty of Medicine, University of Turku, 20014 Turku, Finland
- Clinical Microbiology, Turku University Hospital, 20521 Turku, Finland
| | - Kareem Awad
- Institute of Biomedicine, Faculty of Medicine, University of Turku, 20014 Turku, Finland
- Department of Therapeutic Chemistry, Institute of Pharmaceutical and Drug Industries Research, National Research Center, Dokki, Cairo 12622, Egypt
| |
Collapse
|
18
|
Williams AH, Zhan CG. Staying Ahead of the Game: How SARS-CoV-2 has Accelerated the Application of Machine Learning in Pandemic Management. BioDrugs 2023; 37:649-674. [PMID: 37464099 DOI: 10.1007/s40259-023-00611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2023] [Indexed: 07/20/2023]
Abstract
In recent years, machine learning (ML) techniques have garnered considerable interest for their potential use in accelerating the rate of drug discovery. With the emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, the utilization of ML has become even more crucial in the search for effective antiviral medications. The pandemic has presented the scientific community with a unique challenge, and the rapid identification of potential treatments has become an urgent priority. Researchers have been able to accelerate the process of identifying drug candidates, repurposing existing drugs, and designing new compounds with desirable properties using machine learning in drug discovery. To train predictive models, ML techniques in drug discovery rely on the analysis of large datasets, including both experimental and clinical data. These models can be used to predict the biological activities, potential side effects, and interactions with specific target proteins of drug candidates. This strategy has proven to be an effective method for identifying potential coronavirus disease 2019 (COVID-19) and other disease treatments. This paper offers a thorough analysis of the various ML techniques implemented to combat COVID-19, including supervised and unsupervised learning, deep learning, and natural language processing. The paper discusses the impact of these techniques on pandemic drug development, including the identification of potential treatments, the understanding of the disease mechanism, and the creation of effective and safe therapeutics. The lessons learned can be applied to future outbreaks and drug discovery initiatives.
Collapse
Affiliation(s)
- Alexander H Williams
- Molecular Modeling and Biopharmaceutical Center, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- GSK Upper Providence, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| |
Collapse
|
19
|
Mandal N, Rath SL. Identification of inhibitors against SARS-CoV-2 variants of concern using virtual screening and metadynamics-based enhanced sampling. Chem Phys 2023; 573:111995. [PMID: 37342284 PMCID: PMC10265933 DOI: 10.1016/j.chemphys.2023.111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/12/2023] [Accepted: 06/11/2023] [Indexed: 06/22/2023]
Abstract
Among the variants of SARS-CoV-2, some are more infectious than the Wild-type. Interestingly, these mutations enable the virus to evade the therapeutic efforts. Hence, there is a need for candidate drug molecules that can potently bind with all the variants. We have adopted a strategy combining virtual screening, molecular docking followed by rigorous sampling by metadynamics simulations to find candidate molecules. From our results we found four highly potent drug candidates that can bind to the Spike-RBD of all the variants of the virus. Additionally, we also found that certain signature residues on the RBM region commonly bind to each of these inhibitors. Thus, our study not only gives information on the chemical compounds, but also residues on the proteins which could be targeted for future drug and vaccine development studies.
Collapse
Affiliation(s)
- Nabanita Mandal
- Department of Biotechnology, National Institute of Technology Warangal, Telangana, India
| | - Soumya Lipsa Rath
- Department of Biotechnology, National Institute of Technology Warangal, Telangana, India
| |
Collapse
|
20
|
Manna S, Das K, Santra S, Nosova EV, Zyryanov GV, Halder S. Structural and Synthetic Aspects of Small Ring Oxa- and Aza-Heterocyclic Ring Systems as Antiviral Activities. Viruses 2023; 15:1826. [PMID: 37766233 PMCID: PMC10536032 DOI: 10.3390/v15091826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Antiviral properties of different oxa- and aza-heterocycles are identified and properly correlated with their structural features and discussed in this review article. The primary objective is to explore the activity of such ring systems as antiviral agents, as well as their synthetic routes and biological significance. Eventually, the structure-activity relationship (SAR) of the heterocyclic compounds, along with their salient characteristics are exhibited to build a suitable platform for medicinal chemists and biotechnologists. The synergistic conclusions are extremely important for the introduction of a newer tool for the future drug discovery program.
Collapse
Affiliation(s)
- Sibasish Manna
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Koushik Das
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Sougata Santra
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia; (S.S.); (E.V.N.); (G.V.Z.)
| | - Emily V. Nosova
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia; (S.S.); (E.V.N.); (G.V.Z.)
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russia
| | - Grigory V. Zyryanov
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia; (S.S.); (E.V.N.); (G.V.Z.)
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russia
| | - Sandipan Halder
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| |
Collapse
|
21
|
Jeong JH, Choi JH, Kim BK, Min SC, Chokkakula S, Oh S, Park JH, Shim SM, Kim EG, Choi YK, Lee JY, Baek YH, Song MS. Evaluating Z-FA-FMK, a host cathepsin L protease inhibitor, as a potent and broad-spectrum antiviral therapy against SARS-CoV-2 and related coronaviruses. Antiviral Res 2023; 216:105669. [PMID: 37437781 DOI: 10.1016/j.antiviral.2023.105669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/22/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Even though the World Health Organization announced the end of the COVID-19 pandemic as a global public health emergency on May 5, 2023, SARS-CoV-2 continues to pose a significant health threat worldwide, resulting in substantial numbers of infections and fatalities. This study investigated the antiviral potential of Z-FA-FMK (FMK), a novel host cathepsin L protease inhibitor, against SARS-CoV-2 infection using both in vitro and in vivo models. In vitro assessments of FMK against a diverse set of SARS-CoV-2 strains, including the Wuhan-like strain and nine variants, demonstrated potent inhibition with EC50 values ranging from 0.55 to 2.41 μM, showcasing similar or superior efficacy compared to FDA-approved antivirals nirmatrelvir (NTV) and molnupiravir (MPV). In vivo experiments using orally administered FMK (25 mg/kg) in SARS-CoV-2-infected K18 hACE2 transgenic mice revealed improved survival rates of 60% and accelerated recovery compared to NTV and MPV treatments. Additionally, FMK displayed a longer half-life (17.26 ± 8.89 h) than NTV and MPV in the mouse model. Due to its host-targeting mechanism, FMK offers potential advantages such as reduced drug resistance and broad-spectrum antiviral activity against multiple coronaviruses. These findings indicate that FMK may serve as a promising candidate for further clinical evaluation in the fight against SARS-CoV-2.
Collapse
Affiliation(s)
- Ju Hwan Jeong
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Jang-Hoon Choi
- Division of Acute Viral Disease, Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea National Institute of Health, Cheongju, 28159, Republic of Korea
| | - Beom Kyu Kim
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Seong Cheol Min
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Santosh Chokkakula
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sol Oh
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Ji-Hyun Park
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sang-Mu Shim
- Division of Acute Viral Disease, Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea National Institute of Health, Cheongju, 28159, Republic of Korea
| | - Eung-Gook Kim
- Department of Biochemistry, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Young Ki Choi
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, 28644, Republic of Korea; Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - Joo-Yeon Lee
- Center for Emerging Virus Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si, Republic of Korea.
| | - Yun Hee Baek
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, 28644, Republic of Korea.
| | - Min-Suk Song
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
22
|
Suhandi C, Alfathonah SS, Hasanah AN. Potency of Xanthone Derivatives from Garcinia mangostana L. for COVID-19 Treatment through Angiotensin-Converting Enzyme 2 and Main Protease Blockade: A Computational Study. Molecules 2023; 28:5187. [PMID: 37446849 DOI: 10.3390/molecules28135187] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/23/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
ACE2 and Mpro in the pathology of SARS-CoV-2 show great potential in developing COVID-19 drugs as therapeutic targets, due to their roles as the "gate" of viral entry and viral reproduction. Of the many potential compounds for ACE2 and Mpro inhibition, α-mangostin is a promising candidate. Unfortunately, the potential of α-mangostin as a secondary metabolite with the anti-SARS-CoV-2 activity is hindered due to its low solubility in water. Other xanthone isolates, which also possess the xanthone core structure like α-mangostin, are predicted to be potential alternatives to α-mangostin in COVID-19 treatment, addressing the low drug-likeness of α-mangostin. This study aims to assess the potential of xanthone derivative compounds in the pericarp of mangosteen (Garcinia mangostana L.) through computational study. The study was conducted through screening activity using molecular docking study, drug-likeness prediction using Lipinski's rule of five filtration, pharmacokinetic and toxicity prediction to evaluate the safety profile, and molecular dynamic study to evaluate the stability of formed interactions. The research results showed that there were 11 compounds with high potential to inhibit ACE2 and 12 compounds to inhibit Mpro. However, only garcinone B, in addition to being indicated as active, also possesses a drug-likeness, pharmacokinetic, and toxicity profile that was suitable. The molecular dynamic study exhibited proper stability interaction between garcinone B with ACE2 and Mpro. Therefore, garcinone B, as a xanthone derivative isolate compound, has promising potential for further study as a COVID-19 treatment as an ACE2 and Mpro inhibitor.
Collapse
Affiliation(s)
- Cecep Suhandi
- Department Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Department Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Siti Sarah Alfathonah
- Department Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Aliya Nur Hasanah
- Department Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
23
|
Iwamoto S, Muhar BK, Chen H, Chu H, Johnstone M, Sidhu A, Chu H, Fischer J, Chu G. Different COVID-19 treatments' impact on hospital length of stay. Eur J Med Res 2023; 28:218. [PMID: 37400927 PMCID: PMC10316632 DOI: 10.1186/s40001-023-01201-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023] Open
Abstract
IMPORTANCE COVID-19 has adversely affected global healthcare infrastructure since 2019. Currently, there are no large-scale published reports on the efficacy of combination therapy of dexamethasone, remdesivir, and tocilizumab on COVID-19 patients. OBJECTIVES Is the combination therapy of dexamethasone, remdesivir, and tocilizumab superior to other treatments on hospitalized COVID-19 patients? DESIGN This is a retrospective, comparative effectiveness study. SETTING Single-center study PARTICIPANTS/INTERVENTIONS: We analyzed different inpatient COVID-19 treatment options available in the United States and their impact on hospital length of stay (LOS) and mortality. Hospitalized COVID-19 were categorized as "mild," "moderate" and "severe'' based on the highest level of oxygen required; room air, nasal cannula, or high flow/PAP/intubation, respectively. Patients were treated in accordance with the availability of medications and the latest treatment guidelines. MAIN OUTCOMES The endpoints of the study are hospital discharges and death during hospitalization. RESULTS 1233 COVID-19 patients were admitted from 2020 to 2021. No treatment combinations showed a statistically significant decrease in hospital LOS in mild COVID-19 patients (p = 0.186). In moderate patients, the combination of remdesivir and dexamethasone slightly decreased LOS by 1 day (p = 0.007). In severe patients, the three-drug combination of remdesivir, dexamethasone, and tocilizumab decreased LOS by 8 days (p = 0.0034) when compared to nonviable treatments, such as hydroxychloroquine and convalescent plasma transfusion. However, it did not show any statistically significant benefit when compared to two-drug regimens (dexamethasone plus remdesivir) in severe COVID-19 (p = 0.116). No treatment arm appeared to show a statistically significant decrease in mortality for severe COVID-19 patients. CONCLUSIONS Our findings suggest that three-drug combination may decrease LOS in severe COVID-19 patients when compared to two-drug therapy. However, the trend was not supported by statistical analysis. Remdesivir may not be clinically beneficial for mild hospitalized COVID-19 patients; considering its cost, one could reserve it for moderate and severe patients. Triple drug therapies, while potentially reducing LOS for severe patients, do not affect overall mortality. Additional patient data may increase statistical power and solidify these findings.
Collapse
Affiliation(s)
- Satori Iwamoto
- California Northstate University College of Medicine, Elk Grove, USA
| | - Bahaar Kaur Muhar
- California Northstate University College of Medicine, Elk Grove, USA
| | - Hao Chen
- Department of Respiratory Internal Medicine, Yokohama City University, Yokohama, Japan
| | - Harrison Chu
- California Northstate University College of Medicine, Elk Grove, USA
| | - Mason Johnstone
- California Northstate University College of Medicine, Elk Grove, USA
| | - Ashwin Sidhu
- California Northstate University College of Medicine, Elk Grove, USA
| | - Hillary Chu
- California Northstate University College of Medicine, Elk Grove, USA
| | - Joseph Fischer
- California Northstate University College of Medicine, Elk Grove, USA
| | - Gary Chu
- California Northstate University College of Medicine, Elk Grove, USA.
| |
Collapse
|
24
|
Lee HJ, Choi H, Nowakowska A, Kang LW, Kim M, Kim YB. Antiviral Activity Against SARS-CoV-2 Variants Using in Silico and in Vitro Approaches. J Microbiol 2023; 61:703-711. [PMID: 37358709 DOI: 10.1007/s12275-023-00062-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/17/2023] [Accepted: 05/26/2023] [Indexed: 06/27/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emergence in 2019 led to global health crises and the persistent risk of viral mutations. To combat SARS-CoV-2 variants, researchers have explored new approaches to identifying potential targets for coronaviruses. This study aimed to identify SARS-CoV-2 inhibitors using drug repurposing. In silico studies and network pharmacology were conducted to validate targets and coronavirus-associated diseases to select potential candidates, and in vitro assays were performed to evaluate the antiviral effects of the candidate drugs to elucidate the mechanisms of the viruses at the molecular level and determine the effective antiviral drugs for them. Plaque and cytopathic effect reduction were evaluated, and real-time quantitative reverse transcription was used to evaluate the antiviral activity of the candidate drugs against SARS-CoV-2 variants in vitro. Finally, a comparison was made between the molecular docking binding affinities of fenofibrate and remdesivir (positive control) to conventional and identified targets validated from protein-protein interaction (PPI). Seven candidate drugs were obtained based on the biological targets of the coronavirus, and potential targets were identified by constructing complex disease targets and PPI networks. Among the candidates, fenofibrate exhibited the strongest inhibition effect 1 h after Vero E6 cell infection with SARS-CoV-2 variants. This study identified potential targets for coronavirus disease (COVID-19) and SARS-CoV-2 and suggested fenofibrate as a potential therapy for COVID-19.
Collapse
Affiliation(s)
- Hee-Jung Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hanul Choi
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Aleksandra Nowakowska
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Minjee Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Young Bong Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
25
|
Torreele E, Boum Y, Adjaho I, Alé FGB, Issoufou SH, Harczi G, Okonta C, Olliaro P. Breakthrough treatments for Ebola virus disease, but no access-what went wrong, and how can we do better? THE LANCET. INFECTIOUS DISEASES 2023; 23:e253-e258. [PMID: 36682365 DOI: 10.1016/s1473-3099(22)00810-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 01/21/2023]
Abstract
Three years since proving effective for Ebola virus disease in a clinical trial, two breakthrough treatments are registered and stockpiled in the USA but still not registered and generally available in the countries most affected by this deadly infection of epidemic potential. Analysing the reasons for this, we see a fragmentation of the research and development value chain, with different stakeholders taking on different steps of the research and development process, without the public health-focused leadership needed to ensure the end goal of equitable access in countries where Ebola virus disease is prevalent. Current financial incentives for companies to overcome market failures and engage in epidemic-prone diseases are geared towards registration and stockpiling in the USA, without responsibility to provide access where and when needed. Ebola virus disease is the case in point, but not unique-a situation seen again for mpox and likely to occur again for other epidemics primarily affecting disempowered communities. Stronger leadership in African countries will help drive drug development efforts for diseases that primarily affect their communities, and ensure all partners align with and commit to an end-to-end approach to pharmaceutical development and manufacturing that puts equitable access when and where needed at its core.
Collapse
Affiliation(s)
- Els Torreele
- Médecins Sans Frontières West and Central Africa (MSF WaCA), Marcory, Abidjan, Côte d'Ivoire; Institute for Innovation and Public Purpose, University College London, London, UK.
| | - Yap Boum
- Epicentre, Yaoundé, Cameroon; Institut Pasteur Bangui, Bangui, Central African Republic
| | - Ismael Adjaho
- Médecins Sans Frontières West and Central Africa (MSF WaCA), Marcory, Abidjan, Côte d'Ivoire
| | - Franck Guy Biaou Alé
- Médecins Sans Frontières West and Central Africa (MSF WaCA), Marcory, Abidjan, Côte d'Ivoire
| | - Sal Ha Issoufou
- Médecins Sans Frontières West and Central Africa (MSF WaCA), Marcory, Abidjan, Côte d'Ivoire
| | - Geza Harczi
- Médecins Sans Frontières West and Central Africa (MSF WaCA), Marcory, Abidjan, Côte d'Ivoire
| | - Chibuzo Okonta
- Médecins Sans Frontières West and Central Africa (MSF WaCA), Marcory, Abidjan, Côte d'Ivoire
| | - Piero Olliaro
- International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) Global Support Centre, University of Oxford, Oxford, UK
| |
Collapse
|
26
|
Sacchi A, Giannessi F, Sabatini A, Percario ZA, Affabris E. SARS-CoV-2 Evasion of the Interferon System: Can We Restore Its Effectiveness? Int J Mol Sci 2023; 24:ijms24119353. [PMID: 37298304 DOI: 10.3390/ijms24119353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Type I and III Interferons (IFNs) are the first lines of defense in microbial infections. They critically block early animal virus infection, replication, spread, and tropism to promote the adaptive immune response. Type I IFNs induce a systemic response that impacts nearly every cell in the host, while type III IFNs' susceptibility is restricted to anatomic barriers and selected immune cells. Both IFN types are critical cytokines for the antiviral response against epithelium-tropic viruses being effectors of innate immunity and regulators of the development of the adaptive immune response. Indeed, the innate antiviral immune response is essential to limit virus replication at the early stages of infection, thus reducing viral spread and pathogenesis. However, many animal viruses have evolved strategies to evade the antiviral immune response. The Coronaviridae are viruses with the largest genome among the RNA viruses. Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) caused the coronavirus disease 2019 (COVID-19) pandemic. The virus has evolved numerous strategies to contrast the IFN system immunity. We intend to describe the virus-mediated evasion of the IFN responses by going through the main phases: First, the molecular mechanisms involved; second, the role of the genetic background of IFN production during SARS-CoV-2 infection; and third, the potential novel approaches to contrast viral pathogenesis by restoring endogenous type I and III IFNs production and sensitivity at the sites of infection.
Collapse
Affiliation(s)
- Alessandra Sacchi
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Flavia Giannessi
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Andrea Sabatini
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Zulema Antonia Percario
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Elisabetta Affabris
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| |
Collapse
|
27
|
Tsuji K, Baffour-Awuah Owusu K, Miura Y, Ishii T, Shinohara K, Kobayakawa T, Emi A, Nakano T, Suzuki Y, Tamamura H. Dimerized fusion inhibitor peptides targeting the HR1-HR2 interaction of SARS-CoV-2. RSC Adv 2023; 13:8779-8793. [PMID: 36950081 PMCID: PMC10026625 DOI: 10.1039/d2ra07356k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/27/2023] [Indexed: 03/22/2023] Open
Abstract
Membrane fusion is a critical and indispensable step in the replication cycles of viruses such as SARS-CoV-2 and human immunodeficiency virus type-1 (HIV-1). In this step, a trimer of the heptad repeat 1 (HR1) region interacts with the three HR2 regions and forms a 6-helix bundle (6-HB) structure to proceed with membrane fusion of the virus envelope and host cells. Recently, several researchers have developed potent peptidic SARS-CoV-2 fusion inhibitors based on the HR2 sequence and including some modifications. We have developed highly potent HIV-1 fusion inhibitors by dimerization of its HR2 peptides. Here, we report the development of dimerized HR2 peptides of SARS-CoV-2, which showed significantly higher antiviral activity than the corresponding monomers, suggesting that the dimerization strategy can facilitate the design of potent inhibitors of SARS-CoV-2.
Collapse
Affiliation(s)
- Kohei Tsuji
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan +81-3-5280-8038 +81-3-5280-8036
| | - Kofi Baffour-Awuah Owusu
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan +81-3-5280-8038 +81-3-5280-8036
| | - Yutaro Miura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan +81-3-5280-8038 +81-3-5280-8036
| | - Takahiro Ishii
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan +81-3-5280-8038 +81-3-5280-8036
| | - Kouki Shinohara
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan +81-3-5280-8038 +81-3-5280-8036
| | - Takuya Kobayakawa
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan +81-3-5280-8038 +81-3-5280-8036
| | - Akino Emi
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University Takatsuki Osaka 569-8686 Japan
| | - Takashi Nakano
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University Takatsuki Osaka 569-8686 Japan
| | - Youichi Suzuki
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University Takatsuki Osaka 569-8686 Japan
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan +81-3-5280-8038 +81-3-5280-8036
| |
Collapse
|
28
|
Huq AKMM, Roney M, Imran S, Khan SU, Uddin MN, Htar TT, Baig AA, Bhuiyan MA, Zakaria ZA, Aluwi MFFM, Tajuddin SN. Virtual screening of bioactive anti-SARS-CoV natural products and identification of 3β,12-diacetoxyabieta-6,8,11,13-tetraene as a potential inhibitor of SARS-CoV-2 virus and its infection related pathways by MD simulation and network pharmacology. J Biomol Struct Dyn 2023; 41:13923-13936. [PMID: 36786766 DOI: 10.1080/07391102.2023.2176926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/28/2023] [Indexed: 02/15/2023]
Abstract
Since the first prevalence of COVID-19 in 2019, it still remains the most devastating pandemic throughout the world. The current research aimed to find potential natural products to inhibit the novel coronavirus and associated infection by MD simulation and network pharmacology approach. Molecular docking was performed for 39 natural products having potent anti-SARS-CoV activity. Five natural products showed high binding interaction with the viral main protease for the SARS-CoV-2 virus, where 3β,12-diacetoxyabieta-6,8,11,13 tetraene showed stable binding in MD simulation until 100 ns. Both 3β,12-diacetoxyabieta-6,8,11,13 tetraene and tomentin A targeted 11 common genes that are related to COVID-19 and interact with each other. Gene ontology development analysis further showed that all these 11 genes are attached to various biological processes. The KEGG pathway analysis also showed that the proteins that are targeted by 3β,12-diacetoxyabieta-6,8,11,13 tetraene and tomentin A are associated with multiple pathways related to COVID-19 infection. Furthermore, the ADMET and MDS studies reveals 3β,12-diacetoxyabieta-6,8,11,13 as the best-suited compound for oral drug delivery.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- A K M Moyeenul Huq
- Bio Aromatic Research Centre, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
- School of Medicine, Department of Pharmacy, University of Asia Pacific, Dhaka, Bangladesh
| | - Miah Roney
- Bio Aromatic Research Centre, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Puncak Alam, Selangor, Malaysia
- Faculty of Applied Science, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor, Malaysia
| | - Shafi Ullah Khan
- Product & Process Innovation Department, Qarshi Brands (Pvt) Ltd, Haripur, KPK, Pakistan
| | - Md Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh
| | - Thet Thet Htar
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Atif Amin Baig
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Terengannu, Malaysia
| | | | - Zainul Amiruddin Zakaria
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Bio Aromatic Research Centre, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
| | - Saiful Nizam Tajuddin
- Bio Aromatic Research Centre, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
| |
Collapse
|
29
|
Nakajima S, Ohashi H, Akazawa D, Torii S, Suzuki R, Fukuhara T, Watashi K. Antiviral Activity of Micafungin and Its Derivatives against SARS-CoV-2 RNA Replication. Viruses 2023; 15:v15020452. [PMID: 36851666 PMCID: PMC9958940 DOI: 10.3390/v15020452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Echinocandin antifungal drugs, including micafungin, anidulafungin, and caspofungin, have been recently reported to exhibit antiviral effects against various viruses such as flavivirus, alphavirus, and coronavirus. In this study, we focused on micafungin and its derivatives and analyzed their antiviral activities against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The micafungin derivatives Mi-2 and Mi-5 showed higher antiviral activity than micafungin, with 50% maximal inhibitory concentration (IC50) of 5.25 and 6.51 µM, respectively (3.8 to 4.7-fold stronger than micafungin) and 50% cytotoxic concentration (CC50) of >64 µM in VeroE6/TMPRSS2 cells. This high anti-SARS-CoV-2 activity was also conserved in human lung epithelial cell-derived Calu-3 cells. Micafungin, Mi-2, and Mi-5 were suggested to inhibit the intracellular virus replication process; additionally, these compounds were active against SARS-CoV-2 variants, including Delta (AY.122, hCoV-19/Japan/TY11-927/2021), Omicron (BA.1.18, hCoV-19/Japan/TY38-873/2021), a variant resistant to remdesivir (R10/E796G C799F), and a variant resistant to casirivimab/imdevimab antibody cocktail (E406W); thus, our results provide basic evidence for the potential use of micafungin derivatives for developing antiviral agents.
Collapse
Affiliation(s)
- Shogo Nakajima
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Choju Medical Institute, Fukushimura Hospital, 19-14 Yamanaka, Noyoricho, Toyohashi-shi 441-8124, Japan
| | - Hirofumi Ohashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Daisuke Akazawa
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Shiho Torii
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
- Insect-Virus Interactions Unit, Department of Virology, Institut Pasteur, 75015 Paris, France
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo 060-8638, Japan
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo 060-8638, Japan
| | - Koichi Watashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Department of Applied Biological Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
- Correspondence:
| |
Collapse
|
30
|
Blaskovich MAT, Verderosa AD. Use of Antiviral Agents and other Therapies for COVID-19. Semin Respir Crit Care Med 2023; 44:118-129. [PMID: 36646090 DOI: 10.1055/s-0042-1758837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic led to a remarkably rapid development of a range of effective prophylactic vaccines, including new technologies that had not previously been approved for human use. In contrast, the development of new small molecule antiviral therapeutics has taken years to produce the first approved drugs specifically targeting severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), with the intervening years filled with attempts to repurpose existing drugs and the development of biological therapeutics. This review will discuss the reasons behind this variation in timescale and provide a survey of the many new treatments that are progressing through the clinical pipeline.
Collapse
Affiliation(s)
- Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Anthony D Verderosa
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
31
|
Tsuji K, Kobayakawa T, Ishii T, Higashi-Kuwata N, Azuma C, Shinohara K, Miura Y, Yamamoto K, Nishimura S, Hattori SI, Bulut H, Mitsuya H, Tamamura H. Exploratory Studies of Effective Inhibitors against the SARS-CoV-2 Main Protease by Halogen Incorporation and Amide Bond Replacement. Chem Pharm Bull (Tokyo) 2023; 71:879-886. [PMID: 38044140 DOI: 10.1248/cpb.c23-00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
In the development of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs, its main protease (Mpro), which is an essential enzyme for viral replication, is a promising target. To date, the Mpro inhibitors, nirmatrelvir and ensitrelvir, have been clinically developed by Pfizer Inc. and Shionogi & Co., Ltd., respectively, as orally administrable drugs to treat coronavirus disease of 2019 (COVID-19). We have also developed several potent inhibitors of SARS-CoV-2 Mpro that include compounds 4, 5, TKB245 (6), and TKB248 (7), which possesses a 4-fluorobenzothiazole ketone moiety as a reactive warhead. In compounds 5 and TKB248 (7) we have also found that replacement of the P1-P2 amide of compounds 4 and TKB245 (6) with the corresponding thioamide improved their pharmacokinetics (PK) profile in mice. Here, we report the design, synthesis and evaluation of SARS-CoV-2 Mpro inhibitors with replacement of a digestible amide bond by surrogates (9-11, 33, and 34) and introduction of fluorine atoms in a metabolically reactive methyl group on the indole moiety (8). As the results, these compounds showed comparable or less potency compared to the corresponding parent compounds, YH-53/5h (2) and 4. These results should provide useful information for further development of Mpro inhibitors.
Collapse
Affiliation(s)
- Kohei Tsuji
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Takuya Kobayakawa
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Takahiro Ishii
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Nobuyo Higashi-Kuwata
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute
| | - Chika Azuma
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Kouki Shinohara
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Yutaro Miura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Kenichi Yamamoto
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Soshi Nishimura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Shin-Ichiro Hattori
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute
| | - Haydar Bulut
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health
- Department of Clinical Sciences, Kumamoto University Hospital
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| |
Collapse
|
32
|
Dofuor AK, Quartey NKA, Osabutey AF, Boateng BO, Lutuf H, Osei JHN, Ayivi-Tosuh SM, Aiduenu AF, Ekloh W, Loh SK, Opoku MJ, Aidoo OF. The Global Impact of COVID-19: Historical Development, Molecular Characterization, Drug Discovery and Future Directions. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2023; 16:2632010X231218075. [PMID: 38144436 PMCID: PMC10748929 DOI: 10.1177/2632010x231218075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 12/26/2023]
Abstract
In December 2019, an outbreak of a respiratory disease called the coronavirus disease 2019 (COVID-19) caused by a new coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began in Wuhan, China. The SARS-CoV-2, an encapsulated positive-stranded RNA virus, spread worldwide with disastrous consequences for people's health, economies, and quality of life. The disease has had far-reaching impacts on society, including economic disruption, school closures, and increased stress and anxiety. It has also highlighted disparities in healthcare access and outcomes, with marginalized communities disproportionately affected by the SARS-CoV-2. The symptoms of COVID-19 range from mild to severe. There is presently no effective cure. Nevertheless, significant progress has been made in developing COVID-19 vaccine for different therapeutic targets. For instance, scientists developed multifold vaccine candidates shortly after the COVID-19 outbreak after Pfizer and AstraZeneca discovered the initial COVID-19 vaccines. These vaccines reduce disease spread, severity, and mortality. The addition of rapid diagnostics to microscopy for COVID-19 diagnosis has proven crucial. Our review provides a thorough overview of the historical development of COVID-19 and molecular and biochemical characterization of the SARS-CoV-2. We highlight the potential contributions from insect and plant sources as anti-SARS-CoV-2 and present directions for future research.
Collapse
Affiliation(s)
- Aboagye Kwarteng Dofuor
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Naa Kwarley-Aba Quartey
- Department of Food Science and Technology, Faculty of Biosciences, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Belinda Obenewa Boateng
- Coconut Research Program, Oil Palm Research Institute, Council for Scientific and Industrial Research, Sekondi-Takoradi, Ghana
| | - Hanif Lutuf
- Crop Protection Division, Oil Palm Research Institute, Council for Scientific and Industrial Research, Kade, Ghana
| | - Joseph Harold Nyarko Osei
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Selina Mawunyo Ayivi-Tosuh
- Department of Biochemistry, School of Life Sciences, Northeast Normal University, Changchun, Jilin Province, China
| | - Albert Fynn Aiduenu
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | - William Ekloh
- Department of Biochemistry, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Seyram Kofi Loh
- Department of Built Environment, School of Sustainable Development, University of Environment and Sustainable Development, Somanya, Ghana
| | - Maxwell Jnr Opoku
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Owusu Fordjour Aidoo
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| |
Collapse
|
33
|
Ludhiadch A, Yadav UP, Munshi A. Currently available COVID-19 management options. OMICS APPROACHES AND TECHNOLOGIES IN COVID-19 2023:111-124. [DOI: 10.1016/b978-0-323-91794-0.00001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
34
|
Verma R, Raj S, Berry U, Ranjith-Kumar CT, Surjit M. Drug Repurposing for COVID-19 Therapy: Pipeline, Current Status and Challenges. DRUG REPURPOSING FOR EMERGING INFECTIOUS DISEASES AND CANCER 2023:451-478. [DOI: 10.1007/978-981-19-5399-6_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
35
|
Santos LH, Kronenberger T, Almeida RG, Silva EB, Rocha REO, Oliveira JC, Barreto LV, Skinner D, Fajtová P, Giardini MA, Woodworth B, Bardine C, Lourenço AL, Craik CS, Poso A, Podust LM, McKerrow JH, Siqueira-Neto JL, O'Donoghue AJ, da Silva Júnior EN, Ferreira RS. Structure-Based Identification of Naphthoquinones and Derivatives as Novel Inhibitors of Main Protease M pro and Papain-like Protease PL pro of SARS-CoV-2. J Chem Inf Model 2022; 62:6553-6573. [PMID: 35960688 PMCID: PMC9397563 DOI: 10.1021/acs.jcim.2c00693] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 01/07/2023]
Abstract
The worldwide COVID-19 pandemic caused by the coronavirus SARS-CoV-2 urgently demands novel direct antiviral treatments. The main protease (Mpro) and papain-like protease (PLpro) are attractive drug targets among coronaviruses due to their essential role in processing the polyproteins translated from the viral RNA. In this study, we virtually screened 688 naphthoquinoidal compounds and derivatives against Mpro of SARS-CoV-2. Twenty-four derivatives were selected and evaluated in biochemical assays against Mpro using a novel fluorogenic substrate. In parallel, these compounds were also assayed with SARS-CoV-2 PLpro. Four compounds inhibited Mpro with half-maximal inhibitory concentration (IC50) values between 0.41 μM and 9.0 μM. In addition, three compounds inhibited PLpro with IC50 ranging from 1.9 μM to 3.3 μM. To verify the specificity of Mpro and PLpro inhibitors, our experiments included an assessment of common causes of false positives such as aggregation, high compound fluorescence, and inhibition by enzyme oxidation. Altogether, we confirmed novel classes of specific Mpro and PLpro inhibitors. Molecular dynamics simulations suggest stable binding modes for Mpro inhibitors with frequent interactions with residues in the S1 and S2 pockets of the active site. For two PLpro inhibitors, interactions occur in the S3 and S4 pockets. In summary, our structure-based computational and biochemical approach identified novel naphthoquinonal scaffolds that can be further explored as SARS-CoV-2 antivirals.
Collapse
Affiliation(s)
- Lucianna H Santos
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Thales Kronenberger
- Department of Oncology and Pneumonology, Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Straße 10, DE72076 Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Renata G Almeida
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Elany B Silva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0657, United States
| | - Rafael E O Rocha
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Joyce C Oliveira
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Luiza V Barreto
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Danielle Skinner
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0657, United States
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0657, United States
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic
| | - Miriam A Giardini
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0657, United States
| | - Brendon Woodworth
- Department of Medicine, Division of Infectious Diseases, University of California San Diego, La Jolla, California 92093, United States
| | - Conner Bardine
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
| | - André L Lourenço
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
| | - Antti Poso
- Department of Oncology and Pneumonology, Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Straße 10, DE72076 Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Larissa M Podust
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0657, United States
| | - James H McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0657, United States
| | - Jair L Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0657, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0657, United States
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Rafaela S Ferreira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| |
Collapse
|
36
|
Kumawat A, Namsani S, Pramanik D, Roy S, Singh JK. Integrated docking and enhanced sampling-based selection of repurposing drugs for SARS-CoV-2 by targeting host dependent factors. J Biomol Struct Dyn 2022; 40:9897-9908. [PMID: 34155961 PMCID: PMC8220434 DOI: 10.1080/07391102.2021.1937319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Since the onset of global pandemic, the most focused research currently in progress is the development of potential drug candidates and clinical trials of existing FDA approved drugs for other relevant diseases, in order to repurpose them for the COVID-19. At the same time, several high throughput screenings of drugs have been reported to inhibit the viral components during the early course of infection but with little proven efficacies. Here, we investigate the drug repurposing strategies to counteract the coronavirus infection which involves several potential targetable host proteins involved in viral replication and disease progression. We report the high throughput analysis of literature-derived repurposing drug candidates that can be used to target the genetic regulators known to interact with viral proteins based on experimental and interactome studies. In this work we have performed integrated molecular docking followed by molecular dynamics (MD) simulations and free energy calculations through an expedite in silico process where the number of screened candidates reduces sequentially at every step based on physicochemical interactions. We elucidate that in addition to the pre-clinical and FDA approved drugs that targets specific regulatory proteins, a range of chemical compounds (Nafamostat, Chloramphenicol, Ponatinib) binds to the other gene transcription and translation regulatory proteins with higher affinity and may harbour potential for therapeutic uses. There is a rapid growing interest in the development of combination therapy for COVID-19 to target multiple enzymes/pathways. Our in silico approach would be useful in generating leads for experimental screening for rapid drug repurposing against SARS-CoV-2 interacting host proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amit Kumawat
- Prescience Insilico Private Limited, Bangalore, India,Department of Chemical Engineering, Indian Institute of Technology, Kanpur, India
| | | | - Debabrata Pramanik
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur, India
| | - Sudip Roy
- Prescience Insilico Private Limited, Bangalore, India,CONTACT Sudip Roy ;
| | - Jayant K. Singh
- Prescience Insilico Private Limited, Bangalore, India,Department of Chemical Engineering, Indian Institute of Technology, Kanpur, India,Jayant K. Singh
| |
Collapse
|
37
|
Tsuji K, Ishii T, Kobayakawa T, Higashi-Kuwata N, Azuma C, Nakayama M, Onishi T, Nakano H, Wada N, Hori M, Shinohara K, Miura Y, Kawada T, Hayashi H, Hattori SI, Bulut H, Das D, Takamune N, Kishimoto N, Saruwatari J, Okamura T, Nakano K, Misumi S, Mitsuya H, Tamamura H. Potent and biostable inhibitors of the main protease of SARS-CoV-2. iScience 2022; 25:105365. [PMID: 36338434 PMCID: PMC9623849 DOI: 10.1016/j.isci.2022.105365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/24/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022] Open
Abstract
Potent and biostable inhibitors of the main protease (Mpro) of SARS-CoV-2 were designed and synthesized based on an active hit compound 5h (2). Our strategy was based not only on the introduction of fluorine atoms into the inhibitor molecule for an increase of binding affinity for the pocket of Mpro and cell membrane permeability but also on the replacement of the digestible amide bond by a surrogate structure to increase the biostability of the compounds. Compound 3 is highly potent and blocks SARS-CoV-2 infection in vitro without a viral breakthrough. The derivatives, which contain a thioamide surrogate in the P2-P1 amide bond of these compounds (2 and 3), showed remarkably preferable pharmacokinetics in mice compared with the corresponding parent compounds. These data show that compounds 3 and its biostable derivative 4 are potential drugs for treating COVID-19 and that replacement of the digestible amide bond by its thioamide surrogate structure is an effective method.
Collapse
Affiliation(s)
- Kohei Tsuji
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takahiro Ishii
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takuya Kobayakawa
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Nobuyo Higashi-Kuwata
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Chika Azuma
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Miyuki Nakayama
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takato Onishi
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Hiroki Nakano
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Naoya Wada
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Miki Hori
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kouki Shinohara
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yutaro Miura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takuma Kawada
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Hironori Hayashi
- Department of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, Aoba-ku, Sendai 980-8572, Japan
| | - Shin-ichiro Hattori
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Haydar Bulut
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Debananda Das
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nobutoki Takamune
- Department of Environmental and Molecular Health Sciences, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto 862-0973, Japan
| | - Naoki Kishimoto
- Department of Environmental and Molecular Health Sciences, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto 862-0973, Japan
| | - Junji Saruwatari
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Shogo Misumi
- Department of Environmental and Molecular Health Sciences, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo 162-8655, Japan
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Clinical Sciences, Kumamoto University Hospital, Chuo-ku, Kumamoto 860-8556, Japan
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
38
|
Peng S, Wang H, Wang Z, Wang Q. Progression of Antiviral Agents Targeting Viral Polymerases. Molecules 2022; 27:7370. [PMID: 36364196 PMCID: PMC9654062 DOI: 10.3390/molecules27217370] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 08/08/2023] Open
Abstract
Viral DNA and RNA polymerases are two kinds of very important enzymes that synthesize the genetic materials of the virus itself, and they have become extremely favorable targets for the development of antiviral drugs because of their relatively conserved characteristics. There are many similarities in the structure and function of different viral polymerases, so inhibitors designed for a certain viral polymerase have acted as effective universal inhibitors on other types of viruses. The present review describes the development of classical antiviral drugs targeting polymerases, summarizes a variety of viral polymerase inhibitors from the perspective of chemically synthesized drugs and natural product drugs, describes novel approaches, and proposes promising development strategies for antiviral drugs.
Collapse
Affiliation(s)
| | | | - Zhengtao Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qingzhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
39
|
Madariaga-Mazón A, Naveja JJ, Becerra A, Alberto Campillo-Balderas J, Hernández-Morales R, Jácome R, Lazcano A, Martinez-Mayorga K. Subtle structural differences of nucleotide analogs may impact SARS-CoV-2 RNA-dependent RNA polymerase and exoribonuclease activity. Comput Struct Biotechnol J 2022; 20:5181-5192. [PMID: 36097553 PMCID: PMC9452397 DOI: 10.1016/j.csbj.2022.08.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/05/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
The rapid spread and public health impact of the novel SARS-CoV-2 variants that cause COVID-19 continue to produce major global impacts and social distress. Several vaccines were developed in record time to prevent and limit the spread of the infection, thus playing a pivotal role in controlling the pandemic. Although the repurposing of available drugs attempts to provide therapies of immediate access against COVID-19, there is still a need for developing specific treatments for this disease. Remdesivir, molnupiravir and Paxlovid remain the only evidence-supported antiviral drugs to treat COVID-19 patients, and only in severe cases. To contribute on the search of potential Covid-19 therapeutic agents, we targeted the viral RNA-dependent RNA polymerase (RdRp) and the exoribonuclease (ExoN) following two strategies. First, we modeled and analyzed nucleoside analogs sofosbuvir, remdesivir, favipiravir, ribavirin, and molnupiravir at three key binding sites on the RdRp-ExoN complex. Second, we curated and virtually screened a database containing 517 nucleotide analogs in the same binding sites. Finally, we characterized key interactions and pharmacophoric features presumably involved in viral replication halting at multiple sites. Our results highlight structural modifications that might lead to more potent SARS-CoV-2 inhibitors against an expansive range of variants and provide a collection of nucleotide analogs useful for screening campaigns.
Collapse
Affiliation(s)
- Abraham Madariaga-Mazón
- Instituto de Química Unidad Mérida, Universidad Nacional Autónoma de México, Carretera Mérida-Tetiz Km. 4.5, Ucú, Yucatán, Mexico.,Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas Unidad Mérida, Universidad Nacional Autónoma de México, Sierra Papacál Mérida, Yucatán 97302, Mexico
| | - José J Naveja
- Instituto de Química Unidad Mérida, Universidad Nacional Autónoma de México, Carretera Mérida-Tetiz Km. 4.5, Ucú, Yucatán, Mexico.,Institute for Molecular Biology and University Cancer Center (UCT) Mainz, Germany
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Rodrigo Jácome
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Antonio Lazcano
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.,El Colegio Nacional, Mexico City, Mexico
| | - Karina Martinez-Mayorga
- Instituto de Química Unidad Mérida, Universidad Nacional Autónoma de México, Carretera Mérida-Tetiz Km. 4.5, Ucú, Yucatán, Mexico.,Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas Unidad Mérida, Universidad Nacional Autónoma de México, Sierra Papacál Mérida, Yucatán 97302, Mexico
| |
Collapse
|
40
|
Gonzalez S, Brzuska G, Ouarti A, Gallier F, Solarte C, Ferry A, Uziel J, Krol E, Lubin-Germain N. Anti-HCV and Zika activities of ribavirin C-nucleosides analogues. Bioorg Med Chem 2022; 68:116858. [PMID: 35661850 DOI: 10.1016/j.bmc.2022.116858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/27/2022]
Abstract
Ribavirin is an unnatural nucleoside exhibiting broad spectrum of antiviral and antitumor activities, still very widely studied particularly in a repositioning approach. C-triazolyl nucleoside analogues of ribavirin have been synthesized, as well as prodrugs and glycosylated or peptide conjugates to allow a better activity by vectorization into the liver or by facilitating uptake into the cells. The antiviral properties of all synthesized compounds have been evaluated in vitro against two important human viral pathogens belonging to the Flaviviridae family: hepatitis C virus (HCV) and Zika virus (ZIKV). There are no therapeutic options for Zika virus, whereas those available for HCV can be still improved. Our results indicated that compound 2 carrying an N-hydroxy carboxamide function exhibits the most inhibitory activities against both viruses. This compound moderately inhibited the propagation of HCV with an IC50 value of 49.1 μM and Zika virus with an IC50 of 33.2 μM comparable to ribavirin in the Vero cell line. The results suggest that compound 2 and its new derivatives may be candidates for further development of new anti-HCV and anti-ZIKV antiviral drugs.
Collapse
Affiliation(s)
- Simon Gonzalez
- CY Cergy Paris Université, CNRS, BioCIS, 95000 Cergy Pontoise, France; Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Gabriela Brzuska
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Abdelhakim Ouarti
- CY Cergy Paris Université, CNRS, BioCIS, 95000 Cergy Pontoise, France; Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Florian Gallier
- CY Cergy Paris Université, CNRS, BioCIS, 95000 Cergy Pontoise, France; Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Carmen Solarte
- CY Cergy Paris Université, CNRS, BioCIS, 95000 Cergy Pontoise, France; Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Angélique Ferry
- CY Cergy Paris Université, CNRS, BioCIS, 95000 Cergy Pontoise, France; Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Jacques Uziel
- CY Cergy Paris Université, CNRS, BioCIS, 95000 Cergy Pontoise, France; Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Ewelina Krol
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| | - Nadège Lubin-Germain
- CY Cergy Paris Université, CNRS, BioCIS, 95000 Cergy Pontoise, France; Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France.
| |
Collapse
|
41
|
Li H, Cheng C, Shi S, Wu Y, Gao Y, Liu Z, Liu M, Li Z, Huo L, Pan X, Liu S, Song G. Identification, optimization, and biological evaluation of 3-O-β-chacotriosyl ursolic acid derivatives as novel SARS-CoV-2 entry inhibitors by targeting the prefusion state of spike protein. Eur J Med Chem 2022; 238:114426. [PMID: 35551037 PMCID: PMC9076589 DOI: 10.1016/j.ejmech.2022.114426] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 01/18/2023]
Abstract
The COVID-19 pandemic generates a global threat to public health and continuously emerging SARS-CoV-2 variants bring a great challenge to the development of both vaccines and antiviral agents. In this study, we identified UA-18 and its optimized analog UA-30 via the hit-to-lead strategy as novel SARS-CoV-2 fusion inhibitors. The lead compound UA-30 showed potent antiviral activity against infectious SARS-CoV-2 (wuhan-HU-1 variant) in Vero-E6 cells and was also effective against infection of diverse pseudotyped SARS-CoV-2 variants with mutations in the S protein including the Omicron and Delta variants. More importantly, UA-30 might target the cavity between S1 and S2 subunits to stabilize the prefusion state of the SARS-CoV-2 S protein, thus leading to interfering with virus-cell membrane fusion. This study offers a set of novel SARS-CoV-2 fusion inhibitors against SARS-CoV-2 and its variants based on the 3-O-β-chacotriosyl UA skeleton.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Chen Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shanshan Shi
- Department of Microbiology and Immunology, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou, 510632, China
| | - Yan Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yongfeng Gao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Zhihao Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Mingjian Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaodong Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Lijian Huo
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoyan Pan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, 510515, China.
| | - Gaopeng Song
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
42
|
Cheong EZK, Quek JP, Xin L, Li C, Chan JY, Liew CW, Mu Y, Zheng J, Luo D. Crystal structure of the Rubella virus protease reveals a unique papain-like protease fold. J Biol Chem 2022; 298:102250. [PMID: 35835220 PMCID: PMC9271420 DOI: 10.1016/j.jbc.2022.102250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/22/2022] Open
Abstract
Rubella, a viral disease characterized by a red skin rash, is well controlled because of an effective vaccine, but outbreaks are still occurring in the absence of available antiviral treatments. The Rubella virus (RUBV) papain-like protease (RubPro) is crucial for RUBV replication, cleaving the nonstructural polyprotein p200 into two multifunctional proteins, p150 and p90. This protease could represent a potential drug target, but structural and mechanistic details important for the inhibition of this enzyme are unclear. Here, we report a novel crystal structure of RubPro at a resolution of 1.64 Å. The RubPro adopts a unique papain-like protease fold, with a similar catalytic core to that of proteases from Severe acute respiratory syndrome coronavirus 2 and foot-and-mouth disease virus while having a distinctive N-terminal fingers domain. RubPro has well-conserved sequence motifs that are also found in its newly discovered Rubivirus relatives. In addition, we show that the RubPro construct has protease activity in trans against a construct of RUBV protease-helicase and fluorogenic peptides. A protease-helicase construct, exogenously expressed in Escherichia coli, was also cleaved at the p150-p90 cleavage junction, demonstrating protease activity of the protease-helicase protein. We also demonstrate that RubPro possesses deubiquitylation activity, suggesting a potential role of RubPro in modulating the host's innate immune responses. We anticipate that these structural and functional insights of RubPro will advance our current understanding of its function and help facilitate more structure-based research into the RUBV replication machinery, in hopes of developing antiviral therapeutics against RUBV.
Collapse
Affiliation(s)
- Ezekiel Ze Ken Cheong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jun Ping Quek
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Liu Xin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chaoqiang Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jing Yi Chan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Chong Wai Liew
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jie Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
43
|
Farooq M, Khan AW, Ahmad B, Kim MS, Choi S. Therapeutic Targeting of Innate Immune Receptors Against SARS-CoV-2 Infection. Front Pharmacol 2022; 13:915565. [PMID: 35847031 PMCID: PMC9280161 DOI: 10.3389/fphar.2022.915565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
The innate immune system is the first line of host's defense against invading pathogens. Multiple cellular sensors that detect viral components can induce innate antiviral immune responses. As a result, interferons and pro-inflammatory cytokines are produced which help in the elimination of invading viruses. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) belongs to Coronaviridae family, and has a single-stranded, positive-sense RNA genome. It can infect multiple hosts; in humans, it is responsible for the novel coronavirus disease 2019 (COVID-19). Successful, timely, and appropriate detection of SARS-CoV-2 can be very important for the early generation of the immune response. Several drugs that target the innate immune receptors as well as other signaling molecules generated during the innate immune response are currently being investigated in clinical trials. In this review, we summarized the current knowledge of the mechanisms underlying host sensing and innate immune responses against SARS-CoV-2 infection, as well as the role of innate immune receptors in terms of their therapeutic potential against SARS-CoV-2. Moreover, we discussed the drugs undergoing clinical trials and the FDA approved drugs against SARS-CoV-2. This review will help in understanding the interactions between SARS-CoV-2 and innate immune receptors and thus will point towards new dimensions for the development of new therapeutics, which can be beneficial in the current pandemic.
Collapse
Affiliation(s)
- Mariya Farooq
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
- S&K Therapeutics, Ajou University, Suwon, South Korea
| | - Abdul Waheed Khan
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Bilal Ahmad
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
- S&K Therapeutics, Ajou University, Suwon, South Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
- S&K Therapeutics, Ajou University, Suwon, South Korea
| |
Collapse
|
44
|
Elswood TR, Turner C, Hornsby J. Idiopathic chronic eosinophilic pneumonia: a differential diagnosis of lower respiratory tract infection. BMJ Case Rep 2022; 15:e244458. [PMID: 35606034 PMCID: PMC9125709 DOI: 10.1136/bcr-2021-244458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 11/04/2022] Open
Abstract
A 43-year-old woman presented with a presumed lower respiratory tract infection, with symptoms of persistent cough, lethargy, fevers and night sweats. Initial general practitioner assessment revealed raised C reactive protein and a leucocytosis comprising both a neutrophilia and an eosinophilia. The patient was initially treated for bacterial pneumonia. Despite treatment, the patient's condition did not improve and hospital admission was arranged for further investigation. Initial physical examination was unremarkable. A chest X-ray revealed bilateral, symmetrical, peripheral consolidation with an upper zone predominance. Subsequently, endobronchial washings revealed abundant eosinophils. A diagnosis of idiopathic chronic eosinophilic pneumonia was made, and the patient responded well to oral corticosteroids with complete resolution of radiological appearances 1 month later.
Collapse
Affiliation(s)
| | | | - James Hornsby
- Respiratory and Intensive Care Medicine, Royal Alexandra Hospital, Paisley, Renfrewshire, UK
| |
Collapse
|
45
|
Ng TI, Correia I, Seagal J, DeGoey DA, Schrimpf MR, Hardee DJ, Noey EL, Kati WM. Antiviral Drug Discovery for the Treatment of COVID-19 Infections. Viruses 2022; 14:961. [PMID: 35632703 PMCID: PMC9143071 DOI: 10.3390/v14050961] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a recently emerged human coronavirus. COVID-19 vaccines have proven to be successful in protecting the vaccinated from infection, reducing the severity of disease, and deterring the transmission of infection. However, COVID-19 vaccination faces many challenges, such as the decline in vaccine-induced immunity over time, and the decrease in potency against some SARS-CoV-2 variants including the recently emerged Omicron variant, resulting in breakthrough infections. The challenges that COVID-19 vaccination is facing highlight the importance of the discovery of antivirals to serve as another means to tackle the pandemic. To date, neutralizing antibodies that block viral entry by targeting the viral spike protein make up the largest class of antivirals that has received US FDA emergency use authorization (EUA) for COVID-19 treatment. In addition to the spike protein, other key targets for the discovery of direct-acting antivirals include viral enzymes that are essential for SARS-CoV-2 replication, such as RNA-dependent RNA polymerase and proteases, as judged by US FDA approval for remdesivir, and EUA for Paxlovid (nirmatrelvir + ritonavir) for treating COVID-19 infections. This review presents an overview of the current status and future direction of antiviral drug discovery for treating SARS-CoV-2 infections, covering important antiviral targets such as the viral spike protein, non-structural protein (nsp) 3 papain-like protease, nsp5 main protease, and the nsp12/nsp7/nsp8 RNA-dependent RNA polymerase complex.
Collapse
Affiliation(s)
- Teresa I. Ng
- Virology Drug Discovery, AbbVie Inc., North Chicago, IL 60064, USA;
| | - Ivan Correia
- Department of Cell and Protein Sciences, Drug Discovery Science and Technology, AbbVie Inc., Worcester, MA 01605, USA;
| | - Jane Seagal
- Department of Biologics Discovery, Drug Discovery Science and Technology, AbbVie Inc., Worcester, MA 01605, USA;
| | - David A. DeGoey
- Department of Centralized Medicinal Chemistry, Drug Discovery Science and Technology, AbbVie Inc., North Chicago, IL 60064, USA; (D.A.D.); (M.R.S.); (D.J.H.)
| | - Michael R. Schrimpf
- Department of Centralized Medicinal Chemistry, Drug Discovery Science and Technology, AbbVie Inc., North Chicago, IL 60064, USA; (D.A.D.); (M.R.S.); (D.J.H.)
| | - David J. Hardee
- Department of Centralized Medicinal Chemistry, Drug Discovery Science and Technology, AbbVie Inc., North Chicago, IL 60064, USA; (D.A.D.); (M.R.S.); (D.J.H.)
| | - Elizabeth L. Noey
- Department of Structural Biology, Drug Discovery Science and Technology, AbbVie Inc., North Chicago, IL 60064, USA;
| | - Warren M. Kati
- Virology Drug Discovery, AbbVie Inc., North Chicago, IL 60064, USA;
| |
Collapse
|
46
|
Elberry MH, Abdelgawad HAH, Hamdallah A, Abdella WS, Ahmed AS, Ghaith HS, Negida A. A systematic review of vaccine-induced thrombotic thrombocytopenia in individuals who received COVID-19 adenoviral-vector-based vaccines. J Thromb Thrombolysis 2022; 53:798-823. [PMID: 35157188 PMCID: PMC8853120 DOI: 10.1007/s11239-021-02626-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/25/2021] [Indexed: 12/22/2022]
Abstract
Reports of thrombotic response after receiving COVID-19 Adenoviral-Vector Based Vaccines raise concerns about vaccine-induced thrombotic thrombocytopenia (VITT); therefore, we conduct this systematic review to report susceptible demographics outcomes, commonalities, and prognosis of reporting cases. We identified published articles by searching PubMed, SCOPUS, and Web of Science from December 2020 till May 2021, with an updated search in September 2021. All case reports and case series reporting thrombotic response after receiving COVID-19 Adenoviral-Vector Based Vaccines were eligible for including. In addition, two authors independently extracted data and assessed the quality of the included studies. A total of 157 patients with thrombotic events after the ChAdOx1 nCoV-19 vaccine and 16 patients with thrombotic events after Ad26.COV2. S vaccine was included in our study. 72% of the ChAdOx1 nCoV-19 cases were females, while in Ad26.COV2.S subgroup, all reported patients were females. The commonest presentations were deep vein thrombosis 20 (12.7%) and cerebral venous sinus thrombosis 18 (11.5%) in the ChAdOx1 nCoV-19 subgroup while cerebral venous sinus thrombosis 14 (87.5%) and pulmonary embolism 2 (12.5%) in the Ad26.COV2. S subgroup. In this study, we described the certain demographics associated with VITT and the clinical presentations of those cases in the ChAdOx1 nCoV-19 and Ad26.COV2. S vaccines. Young individuals, particularly females, may be more susceptible to VITT, and future studies should seek to confirm this association. In addition, the clinical presentation of VITT commonly includes cerebral thrombi, pulmonary embolism, and deep venous thrombosis, but other presentations are also possible, highlighting the importance of clinical vigilance in recent vaccine recipients.
Collapse
Affiliation(s)
- Mostafa H Elberry
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Hussien Ahmed H Abdelgawad
- Clinical Research Management Program, Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, USA.
- Center for Urban Health Disparities Research and Innovation, Morgan State University, Baltimore, MD, USA.
- Department of Biology, Morgan State University, Baltimore, MD, USA.
| | | | | | | | | | - Ahmed Negida
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA.
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.
- Faculty of Medicine, Zagazig University, Sharkia, Egypt.
| |
Collapse
|
47
|
Wang Q, Cao R, Li L, Liu J, Yang J, Li W, Yan L, Wang Y, Yan Y, Li J, Deng F, Zhou Y, Wang M, Zhong W, Hu Z. In vitro and in vivo efficacy of a novel nucleoside analog H44 against Crimean–Congo hemorrhagic fever virus. Antiviral Res 2022; 199:105273. [DOI: 10.1016/j.antiviral.2022.105273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 11/02/2022]
|
48
|
Bai B, Belovodskiy A, Hena M, Kandadai AS, Joyce MA, Saffran HA, Shields JA, Khan MB, Arutyunova E, Lu J, Bajwa SK, Hockman D, Fischer C, Lamer T, Vuong W, van Belkum MJ, Gu Z, Lin F, Du Y, Xu J, Rahim M, Young HS, Vederas JC, Tyrrell DL, Lemieux MJ, Nieman JA. Peptidomimetic α-Acyloxymethylketone Warheads with Six-Membered Lactam P1 Glutamine Mimic: SARS-CoV-2 3CL Protease Inhibition, Coronavirus Antiviral Activity, and in Vitro Biological Stability. J Med Chem 2022; 65:2905-2925. [PMID: 34242027 PMCID: PMC8291138 DOI: 10.1021/acs.jmedchem.1c00616] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Indexed: 12/11/2022]
Abstract
Recurring coronavirus outbreaks, such as the current COVID-19 pandemic, establish a necessity to develop direct-acting antivirals that can be readily administered and are active against a broad spectrum of coronaviruses. Described in this Article are novel α-acyloxymethylketone warhead peptidomimetic compounds with a six-membered lactam glutamine mimic in P1. Compounds with potent SARS-CoV-2 3CL protease and in vitro viral replication inhibition were identified with low cytotoxicity and good plasma and glutathione stability. Compounds 15e, 15h, and 15l displayed selectivity for SARS-CoV-2 3CL protease over CatB and CatS and superior in vitro SARS-CoV-2 antiviral replication inhibition compared with the reported peptidomimetic inhibitors with other warheads. The cocrystallization of 15l with SARS-CoV-2 3CL protease confirmed the formation of a covalent adduct. α-Acyloxymethylketone compounds also exhibited antiviral activity against an alphacoronavirus and non-SARS betacoronavirus strains with similar potency and a better selectivity index than remdesivir. These findings demonstrate the potential of the substituted heteroaromatic and aliphatic α-acyloxymethylketone warheads as coronavirus inhibitors, and the described results provide a basis for further optimization.
Collapse
Affiliation(s)
- Bing Bai
- Li Ka Shing Applied Virology Institute,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Medical Microbiology and Immunology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
| | - Alexandr Belovodskiy
- Li Ka Shing Applied Virology Institute,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Medical Microbiology and Immunology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
| | - Mostofa Hena
- Li Ka Shing Applied Virology Institute,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Medical Microbiology and Immunology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
| | - Appan Srinivas Kandadai
- Li Ka Shing Applied Virology Institute,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Medical Microbiology and Immunology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
| | - Michael A. Joyce
- Li Ka Shing Institute of Virology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Medical Microbiology and Immunology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
| | - Holly A. Saffran
- Li Ka Shing Institute of Virology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Medical Microbiology and Immunology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
| | - Justin A. Shields
- Li Ka Shing Institute of Virology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Medical Microbiology and Immunology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
| | - Muhammad Bashir Khan
- Department of Biochemistry, University of
Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Elena Arutyunova
- Li Ka Shing Institute of Virology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Biochemistry, University of
Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Jimmy Lu
- Li Ka Shing Institute of Virology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Biochemistry, University of
Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Sardeev K. Bajwa
- Department of Biochemistry, University of
Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Darren Hockman
- Li Ka Shing Applied Virology Institute,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Medical Microbiology and Immunology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
| | - Conrad Fischer
- Department of Chemistry, University of
Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tess Lamer
- Department of Chemistry, University of
Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Wayne Vuong
- Department of Chemistry, University of
Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Marco J. van Belkum
- Department of Chemistry, University of
Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Zhengxian Gu
- WuXi AppTec (Shanghai) Co., Ltd.,
G Warehouse #101, No. 10 Building, #227 Meisheng Road, WaiGaoQiao Free Trade Zone,
Shanghai 200131, China
| | - Fusen Lin
- WuXi AppTec (Shanghai) Co., Ltd.,
G Warehouse #101, No. 10 Building, #227 Meisheng Road, WaiGaoQiao Free Trade Zone,
Shanghai 200131, China
| | - Yanhua Du
- WuXi AppTec (Shanghai) Co., Ltd.,
G Warehouse #101, No. 10 Building, #227 Meisheng Road, WaiGaoQiao Free Trade Zone,
Shanghai 200131, China
| | - Jia Xu
- WuXi AppTec (Shanghai) Co., Ltd.,
G Warehouse #101, No. 10 Building, #227 Meisheng Road, WaiGaoQiao Free Trade Zone,
Shanghai 200131, China
| | - Mohammad Rahim
- Rane Pharmaceuticals, Inc.
4290 91a Street NW, Edmonton, Alberta T6E 5V2, Canada
| | - Howard S. Young
- Department of Biochemistry, University of
Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - John C. Vederas
- Department of Chemistry, University of
Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - D. Lorne Tyrrell
- Li Ka Shing Applied Virology Institute,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Li Ka Shing Institute of Virology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Medical Microbiology and Immunology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
| | - M. Joanne Lemieux
- Li Ka Shing Institute of Virology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Biochemistry, University of
Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - James A. Nieman
- Li Ka Shing Applied Virology Institute,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Medical Microbiology and Immunology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
| |
Collapse
|
49
|
Konno S, Kobayashi K, Senda M, Funai Y, Seki Y, Tamai I, Schäkel L, Sakata K, Pillaiyar T, Taguchi A, Taniguchi A, Gütschow M, Müller CE, Takeuchi K, Hirohama M, Kawaguchi A, Kojima M, Senda T, Shirasaka Y, Kamitani W, Hayashi Y. 3CL Protease Inhibitors with an Electrophilic Arylketone Moiety as Anti-SARS-CoV-2 Agents. J Med Chem 2022; 65:2926-2939. [PMID: 34313428 PMCID: PMC8340582 DOI: 10.1021/acs.jmedchem.1c00665] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Indexed: 02/08/2023]
Abstract
The novel coronavirus, SARS-CoV-2, has been identified as the causative agent for the current coronavirus disease (COVID-19) pandemic. 3CL protease (3CLpro) plays a pivotal role in the processing of viral polyproteins. We report peptidomimetic compounds with a unique benzothiazolyl ketone as a warhead group, which display potent activity against SARS-CoV-2 3CLpro. The most potent inhibitor YH-53 can strongly block the SARS-CoV-2 replication. X-ray structural analysis revealed that YH-53 establishes multiple hydrogen bond interactions with backbone amino acids and a covalent bond with the active site of 3CLpro. Further results from computational and experimental studies, including an in vitro absorption, distribution, metabolism, and excretion profile, in vivo pharmacokinetics, and metabolic analysis of YH-53 suggest that it has a high potential as a lead candidate to compete with COVID-19.
Collapse
Affiliation(s)
- Sho Konno
- School of Pharmacy, Department of Medicinal Chemistry,
Tokyo University of Pharmacy and Life Sciences, Hachioji,
Tokyo, 192-0392, Japan
| | - Kiyotaka Kobayashi
- School of Pharmacy, Department of Medicinal Chemistry,
Tokyo University of Pharmacy and Life Sciences, Hachioji,
Tokyo, 192-0392, Japan
| | - Miki Senda
- Structural Biology Research Center, Institute of
Materials Structure Science, High Energy Accelerator Research Organization
(KEK), Tsukuba 305-0801, Japan
| | - Yuta Funai
- Faculty of Pharmacy, Institute of Medical,
Pharmaceutical and Health Sciences, Kanazawa University,
Kanazawa 920-1192, Japan
| | - Yuta Seki
- Faculty of Pharmacy, Institute of Medical,
Pharmaceutical and Health Sciences, Kanazawa University,
Kanazawa 920-1192, Japan
| | - Ikumi Tamai
- Faculty of Pharmacy, Institute of Medical,
Pharmaceutical and Health Sciences, Kanazawa University,
Kanazawa 920-1192, Japan
| | - Laura Schäkel
- Pharmaceutical Institute, Pharmaceutical &
Medicinal Chemistry, University of Bonn, Bonn 53121,
Germany
| | - Kyousuke Sakata
- School of Life Sciences, Tokyo University
of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392,
Japan
| | - Thanigaimalai Pillaiyar
- Pharmaceutical Institute, Pharmaceutical/Medicinal Chemistry,
University of Tübingen, Tübingen 72076,
Germany
| | - Akihiro Taguchi
- School of Pharmacy, Department of Medicinal Chemistry,
Tokyo University of Pharmacy and Life Sciences, Hachioji,
Tokyo, 192-0392, Japan
| | - Atsuhiko Taniguchi
- School of Pharmacy, Department of Medicinal Chemistry,
Tokyo University of Pharmacy and Life Sciences, Hachioji,
Tokyo, 192-0392, Japan
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical &
Medicinal Chemistry, University of Bonn, Bonn 53121,
Germany
| | - Christa E. Müller
- Pharmaceutical Institute, Pharmaceutical &
Medicinal Chemistry, University of Bonn, Bonn 53121,
Germany
| | - Koh Takeuchi
- Cellular and Molecular Biotechnology Research
Institute, National Institute of Advanced Industrial Science and
Technology, Koto, Tokyo 135-0064, Japan
| | - Mikako Hirohama
- Faculty of Medicine, Transborder Medical Research
Center, University of Tsukuba, Tsukuba 305-8575,
Japan
| | - Atsushi Kawaguchi
- Faculty of Medicine, Transborder Medical Research
Center, University of Tsukuba, Tsukuba 305-8575,
Japan
| | - Masaki Kojima
- School of Life Sciences, Tokyo University
of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392,
Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of
Materials Structure Science, High Energy Accelerator Research Organization
(KEK), Tsukuba 305-0801, Japan
| | - Yoshiyuki Shirasaka
- Faculty of Pharmacy, Institute of Medical,
Pharmaceutical and Health Sciences, Kanazawa University,
Kanazawa 920-1192, Japan
| | - Wataru Kamitani
- Department of Infectious Diseases and Host Defense,
Gunma University Graduate School of Medicine, Maebashi
371-8511, Japan
| | - Yoshio Hayashi
- School of Pharmacy, Department of Medicinal Chemistry,
Tokyo University of Pharmacy and Life Sciences, Hachioji,
Tokyo, 192-0392, Japan
| |
Collapse
|
50
|
Possible Therapeutic Intervention Strategies for COVID-19 by Manipulating the Cellular Proteostasis Network. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1352:125-147. [PMID: 35132598 DOI: 10.1007/978-3-030-85109-5_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The recent outbreak of coronavirus infection by SARS-CoV-2 that started from the Wuhan Province of China in 2019 has spread to most parts of the world infecting millions of people. Although the case fatality rate of SARS-CoV-2 infection is less than the previous epidemics by other closely related coronaviruses, due to its high infectivity, the total number of SARS-CoV-2 infection-associated disease, called Covid-19, is a matter of global concern. Despite drastic preventive measures, the number of Covid-19 cases are steadily increasing, and the future course of this pandemic is highly unpredictable. The most concerning fact about Covid-19 is the absence of specific and effective preventive or therapeutic agents against the disease. Finding an immediate intervention against Covid-19 is the need of the hour. In this chapter, we have discussed the role of different branches of the cellular proteostasis network, represented by Hsp70-Hsp40 chaperone system, Ubiquitin-Proteasome System (UPS), autophagy, and endoplasmic reticulum-Unfolded Protein Response (ER-UPR) pathway in the pathogenesis of coronavirus infections and in the host antiviral defense mechanisms. RESULTS Based on scientific literature, we present that pharmacological manipulation of proteostasis network can alter the fate of coronavirus infections and may help to prevent the resulting pathologies like Covid-19.
Collapse
|