1
|
Abdel-Raheem SM, Al-Sultan SI, El-Tarabili RM. First Detection of Vibrio parahaemolyticus in Migratory Birds in Egypt: Antibiogram, Virulence, and Resistance Gene Profiles Indicating Zoonotic and Public Health Risks. Curr Microbiol 2024; 82:15. [PMID: 39601954 DOI: 10.1007/s00284-024-03992-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
This study examined the occurrence of Vibrio parahaemolyticus obtained from migrating birds, marking the first instance of such research conducted in Egypt. The study assessed potential risks using an antibiogram, virulence characteristics, antibiotic-resistance, and gene profile. Randomly collected 80 samples were tested for V. parahaemolyticus. Eleven (13.75%) samples were V. parahaemolyticus-contaminated. All isolates were positive for 16SrRNA and species-specific toxR genes. Interestingly, our strain is genetically similar to human and shrimp isolates, suggesting zoonotic transmission may pose a health danger. All isolates had 100% l-lysine decarboxylase, 45.45% beta-hemolytic, and 100% l-ornithine decarboxylase activity. All isolates displayed no l-arginine decarboxylase activity. Notably, every isolate possessed a minimum of two virulence genes. In addition, the profiles of virulence genes were identified, tdh + /trh + (27.3%), tdh-/trh + (27.3%), and tdh + /trh- (45.4%). Out of the V. parahaemolyticus isolates, 18.2% (2/11) were extensively drug-resistant (XDR) to six different antimicrobials classes and possessed the blaTEM, blaOXA, sul1, and tetA genes. Furthermore, 63.6% of the isolates displayed multidrug resistance (MDR). The correlation highlights a strong relationship between phenotypic and genotypic resistance. Besides the strong correlation between virulence and resistance genes. In summary, this work highlighted the presence of newly identified MDR and XDR V. parahaemolyticus carried toxR, trh, and tdh virulence genes, as well as blaTEM, blaOXA, sul1, and tetA resistance genes in migratory birds, indicating a significant public health risk.
Collapse
Affiliation(s)
- Sherief M Abdel-Raheem
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, 31982, Al-Hofuf, Al-Ahsa, Saudi Arabia.
- Department of Animal Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Saad Ibrahim Al-Sultan
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, 31982, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Reham M El-Tarabili
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
2
|
Engku Abd Rahman ENS, Irekeola AA, Elmi AH, Chua WC, Chan YY. Global prevalence patterns and distribution of Vibrio cholerae: A systematic review and meta-analysis of 176,740 samples. J Infect Public Health 2024; 17:102558. [PMID: 39413666 DOI: 10.1016/j.jiph.2024.102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024] Open
Abstract
This global systematic review and meta-analysis of Vibrio cholerae prevalence, covering environmental, food, animal, and human samples, analysed 111 studies from five databases. The meta-analysis, adhering to standard reporting guidelines, revealed a pooled prevalence of 10.6 % (95 % CI; 8.2 - 13.5; I2 = 99.595 %, p < 0.001) from 176,740 samples, including 27,219 cholera cases. Despite significant publication bias (Egger's test, p = 0.00018), prevalence estimate remained stable in leave-one-out analysis. Subgroup analysis showed prevalence varied by region, with Indonesia highest (55.2 %) and Jordan lowest (0.2 %). Asia continent had the highest prevalence (13.9 %), followed by South America (12.1 %), and lowest in Europe (3.8 %). Environmental samples exhibited the highest prevalence (24.9 %), while human samples had the lowest (7.1 %). The pervasive presence of V. cholerae in environmental resources highlights the persistent risk of global cholera outbreaks, necessitating urgent proactive measures and ongoing surveillance for effective cholera control.
Collapse
Affiliation(s)
- Engku Nur Syafirah Engku Abd Rahman
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia; Department of Biological Sciences, Microbiology Unit, College of Natural and Applied Sciences, Summit University Offa, PMB 4412 Offa, Kwara State, Nigeria.
| | - Abdirahman Hussein Elmi
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia; Department of Medical Laboratory Sciences, Faculty of Medicine and Health Sciences, Jamhuriya University of Science and Technology, Mogadishu, Somalia.
| | - Wei Chuan Chua
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia; Hospital USM, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Yean Yean Chan
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia; Hospital USM, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
3
|
Ayala AJ, Ogbunugafor CB. When Vibrios Take Flight: A Meta-Analysis of Pathogenic Vibrio Species in Wild and Domestic Birds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:295-336. [PMID: 36792882 DOI: 10.1007/978-3-031-22997-8_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Of the over 100 species in the genus Vibrio, approximately twelve are associated with clinical disease, such as cholera and vibriosis. Crucially, eleven of those twelve, including Vibrio cholerae and Vibrio vulnificus, have been isolated from birds. Since 1965, pathogenic Vibrio species have been consistently isolated from aquatic and ground-foraging bird species, which has implications for public health, as well as the One Health paradigm defined as an ecology-inspired, integrative framework for the study of health and disease, inclusive of environmental, human, and animal health. In this meta-analysis, we identified 76 studies from the primary literature which report on or examine birds as hosts for pathogenic Vibrio species. We found that the burden of disease in birds was most commonly associated with V. cholerae, followed by V. metschnikovii and V. parahaemolyticus. Meta-analysis wide prevalence of our Vibrio pathogens varied from 19% for V. parahaemolyticus to 1% for V. mimicus. Wild and domestic birds were both affected, which may have implications for conservation, as well as agriculturally associated avian species. As pathogenic Vibrios become more abundant throughout the world as a result of warming estuaries and oceans, susceptible avian species should be continually monitored as potential reservoirs for these pathogens.
Collapse
Affiliation(s)
- Andrea J Ayala
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - C Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
4
|
Environmental Reservoirs of Pathogenic Vibrio spp. and Their Role in Disease: The List Keeps Expanding. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:99-126. [PMID: 36792873 DOI: 10.1007/978-3-031-22997-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Vibrio species are natural inhabitants of aquatic environments and have complex interactions with the environment that drive the evolution of traits contributing to their survival. These traits may also contribute to their ability to invade or colonize animal and human hosts. In this review, we attempt to summarize the relationships of Vibrio spp. with other organisms in the aquatic environment and discuss how these interactions could potentially impact colonization of animal and human hosts.
Collapse
|
5
|
Multilocus Sequence Typing and Virulence Potential of Vibrio parahaemolyticus Strains Isolated from Aquatic Bird Feces. Microbiol Spectr 2022; 10:e0088622. [PMID: 35695558 PMCID: PMC9241773 DOI: 10.1128/spectrum.00886-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio parahaemolyticus is a Gram-negative, foodborne pathogenic bacterium that causes human gastroenteritis. This organism is ubiquitously present in the marine environment. Detection of V. parahaemolyticus in aquatic birds has been previously reported; however, the characterization of isolates of this bacterium recovered from these birds remains limited. The present study isolated and characterized V. parahaemolyticus from aquatic bird feces at the Bangpu Recreation Center (Samut Prakan province, Thailand) from 2016 to 2017, using multilocus sequence typing (MLST) and genome analysis. The results showed that V. parahaemolyticus was present in 34.9% (76/218) of the collected bird fecal samples. Among the ldh-positive V. parahaemolyticus isolates (n = 308), 1% (3/308) were positive for tdh, 1.3% (4/308) were positive for trh, and 0.3% (1/308) were positive for both tdh and trh. In turn, the MLST analysis revealed that 49 selected V. parahaemolyticus isolates resolved to 36 STs, 26 of which were novel (72.2%). Moreover, a total of 10 identified STs were identical to globally reported pathogenic strains (ST1309, ST1919, ST491, ST799, and ST2516) and environmental strains (ST1879, ST985, ST288, ST1925, and ST260). The genome analysis of isolates possessing tdh and/or trh (ST985, ST1923, ST1924, ST1929 and ST2516) demonstrated that the organization of the T3SS2α and T3SS2β genes in bird fecal isolates were almost identical to those of human clinical strains posing public health concerns of pathogen dissemination in the recreational area. The results of this study suggest that aquatic birds are natural reservoirs of new strains with high genetic diversity and are alternative sources of potentially pathogenic V. parahaemolyticus in the marine environment. IMPORTANCE To our knowledge, infection of foodborne bacterium V. parahamolyticus occurs via the consumption of undercooked seafood contaminated with pathogenic strains. Aquatic bird is a neglectable source that can transmit V. parahaemolyticus along coastal areas. This study reported the detection of potentially pathogenic V. parahamolyticus harboring virulence genes from aquatic bird feces at the recreational center situated near the Gulf of Thailand. These strains shared identical genetic profile to the clinical isolates that previously reported in many countries. Furthermore, the strains from aquatic birds showed extremely high genetic diversity. Our research pointed out that the aquatic bird is possibly involved in the evolution of novel strains of V. parahaemolyticus and play a role in dissimilation of the potentially pathogenic strains across geographical distance.
Collapse
|
6
|
ToxT Regulon Is Nonessential for Vibrio cholerae Colonization in Adult Mice. Appl Environ Microbiol 2022; 88:e0007222. [PMID: 35384706 DOI: 10.1128/aem.00072-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae is the causative agent of cholera, a life-threatening diarrheal disease in humans. The ability of V. cholerae to colonize the intestine of different animals is a key factor for its fitness and transmissibility between hosts. Many virulence factors, including the ToxT regulon, have been identified to be the major components allowing V. cholerae to colonize the small intestine of suckling mice; however, the mechanism of V. cholerae colonization in the adult mammalian intestine is unclear. In this study, using the streptomycin-treated adult mouse animal model, we characterized the role of the ToxT regulon in V. cholerae colonization in adult mammalian intestine. We first found that the activity of TcpP regulating ToxT regulon expression was attenuated by intestinal reactive oxygen species (ROS). We then found that V. cholerae containing a deletion of the ToxT regulon showed a competition advantage in colonizing adult mice; however, a mutant containing a constitutively active ToxT regulon showed a significant defect in colonizing adult mice. Constitutively producing the virulence factors in the ToxT regulon causes a V. cholerae competition defect in nutrient-limiting conditions. The results of this study demonstrate that modulating the activity of the ToxT regulon through ROS sensed by TcpP is critical for V. cholerae to enhance its colonization in the intestine of adult mice. IMPORTANCE Vibrio cholerae can inhabit both marine and freshwater ecosystems and can also enter and proliferate in the intestine of different animals which consume contaminated food or water. To successfully colonize the intestines of different hosts, V. cholerae coordinates its gene expression in response to different environments. Here, we describe how V. cholerae modulates the activity of the ToxT regulon by TcpP sensing ROS signals in the intestine of adult mice to better survive in this environment. We found that the constitutively active ToxT regulon causes V. cholerae growth retardation and colonization defect in adult mice. Our work highlights the distinctive role that regulating the activity of the ToxT regulon plays for V. cholerae to achieve full survival fitness in the adult mammalian intestine.
Collapse
|
7
|
Albuixech-Martí S, Lynch SA, Culloty SC. Connectivity dynamics in Irish mudflats between microorganisms including Vibrio spp., common cockles Cerastoderma edule, and shorebirds. Sci Rep 2021; 11:22159. [PMID: 34773053 PMCID: PMC8589998 DOI: 10.1038/s41598-021-01610-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
Shellfish, including the key species the common cockle Cerastoderma edule, living and feeding in waters contaminated by infectious agents can accumulate them within their tissues. It is unknown if microbial pathogens and microparasites can subsequently be transmitted via concomitant predation to their consumers, including shorebirds. The objective of this study was to assess if pathogens associated with C. edule could be detected seasonally in the faeces of shorebirds that feed on C. edule and in the physical environment (sediment) in which C. edule reside, along the Irish and Celtic Seas. Two potentially pathogenic global groups, Vibrio and Haplosporidia, were detected in C. edule. Although Haplosporidia were not detected in the bird faeces nor in the sediment, identical strains of Vibrio splendidus were detected in C. edule and bird faecal samples at sites where the oystercatcher Haematopus ostralegus and other waders were observed to be feeding on cockles. Vibrio spp. prevalence was seasonal and increased in C. edule and bird faecal samples during the warmer months, possibly due to higher seawater temperatures that promote the replication of this bacteria. The sediment samples showed an overall higher prevalence of Vibrio spp. than the bird faecal and C. edule samples, and its detection remained consistently high through the sites and throughout the seasons, which further supports the role of the sediment as a Vibrio reservoir. Our findings shed light on the fact that not all pathogen groups are transmitted from prey to predator via feeding but bacteria such as V. splendidus can be. As most of the wading birds observed in this study are migratory, the results also indicate the potential for this bacterium to be dispersed over greater geographic distances, which will have consequences for areas where it may be introduced.
Collapse
Affiliation(s)
- Sara Albuixech-Martí
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, VGV5+95, Ireland.
| | - Sharon A Lynch
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, VGV5+95, Ireland
- Aquaculture and Fisheries Development Centre, University College Cork, Cork, VGV5+95, Ireland
| | - Sarah C Culloty
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, VGV5+95, Ireland
- Aquaculture and Fisheries Development Centre, University College Cork, Cork, VGV5+95, Ireland
- MaREI Centre for Climate, Energy and Marine, Environmental Research Institute, University College Cork, Cork, VGV5+95, Ireland
| |
Collapse
|
8
|
Saiful Islam M, Paul A, Talukder M, Roy K, Abdus Sobur M, Ievy S, Mehedi Hasan Nayeem M, Rahman S, Nazmul Hussain Nazir KHM, Tofazzal Hossain M, Tanvir Rahman M. Migratory birds travelling to Bangladesh are potential carriers of multi-drug resistant Enterococcus spp., Salmonella spp., and Vibrio spp. Saudi J Biol Sci 2021; 28:5963-5970. [PMID: 34588913 PMCID: PMC8459117 DOI: 10.1016/j.sjbs.2021.06.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/12/2021] [Accepted: 06/20/2021] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial resistance (AMR) is a major health crisis globally. Migratory birds could be a potential source for antibiotic resistant (ABR) bacteria. Not much is known about their role in the transmission of ABR in Bangladesh. In this study, a total of 66 freshly dropped fecal materials of migratory birds were analyzed. Bacterial isolation and identification were based on cultural properties, biochemical tests, and polymerase chain reaction (PCR). The disk diffusion method was employed to evaluate antibiogram profiles. By PCR, out of 66 samples, the detection rate of Enterococcus spp. (60.61%; 95% confidence interval: 48.55-71.50%) was found significantly higher than Salmonella spp. (21.21%; 95% CI: 13.08-32.51%) and Vibrio spp. (39.40%; 95% CI: 28.50-51.45%). Enterococcus isolates were frequently found resistant (100-40%) to ampicillin, streptomycin, meropenem, erythromycin, and gentamicin; Salmonella isolates were frequently resistant (72-43%) to chloramphenicol, tetracycline, ampicillin, streptomycin, and erythromycin; and Vibrio spp. isolates were frequently resistant (77-31%) to vancomycin, ampicillin, erythromycin, tetracycline, and streptomycin. In addition, 60% (95% CI: 44.60-73.65%) Enterococcus spp., 85.71% (95% CI: 60.06-97.46%) Salmonella spp., and 76.92% (95% CI: 57.95-88.97%) Vibrio spp. isolates were multi-drug resistant (MDR) in nature. Three isolates (one from each bacterium) were found resistant against six classes of antibiotics. The bivariate analysis revealed strong associations (both positive and negative) between several antibiotic pairs which were resistant to isolated organisms. To the best of our knowledge, this is the first study in detecting MDR Enterococcus spp., Salmonella spp., and Vibrio spp. from migratory birds travelling to Bangladesh. Frequent detection of MDR bacteria from migratory birds travelling to Bangladesh suggests that these birds have the potential to carry and spread ABR bacteria and could implicate potential risks to public health. We recommend that these birds should be kept under an AMR surveillance program to minimize the potential risk of contamination of the environment with ABR as well as to reduce their hazardous impacts on health.
Collapse
Affiliation(s)
- Md Saiful Islam
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Anamika Paul
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mithun Talukder
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Krishna Roy
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Abdus Sobur
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Samina Ievy
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Mehedi Hasan Nayeem
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Saifur Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - K H M Nazmul Hussain Nazir
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Muhammad Tofazzal Hossain
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
9
|
Abioye OE, Osunla AC, Okoh AI. Molecular Detection and Distribution of Six Medically Important Vibrio spp. in Selected Freshwater and Brackish Water Resources in Eastern Cape Province, South Africa. Front Microbiol 2021; 12:617703. [PMID: 34149632 PMCID: PMC8208477 DOI: 10.3389/fmicb.2021.617703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/29/2021] [Indexed: 01/22/2023] Open
Abstract
Water resources contaminated with pathogenic Vibrio species are usually a source of devastating infection outbreaks that have been a public health concern in both developed and developing countries over the decades. The present study assessed the prevalence of six medically significant Vibrio species in some water resources in Eastern Cape Province, South Africa for 12 months. We detected vibrios in all the 194 water samples analyzed using polymerase chain reaction (PCR). The prevalence of Vibrio cholerae, Vibrio mimicus, Vibrio fluvialis, Vibrio vulnificus, Vibrio alginolyticus, and Vibrio parahaemolyticus in freshwater samples was 34, 19, 9, 2, 3, and 2%, and that in brackish water samples was 44, 28, 10, 7, 46, and 51%, respectively. The population of the presumptive Vibrio spp. isolated from freshwater (628) and brackish water (342) samples that were confirmed by PCR was 79% (497/628) and 85% (291/342), respectively. Twenty-two percent of the PCR-confirmed Vibrio isolates from freshwater (n = 497) samples and 41% of the PCR-confirmed Vibrio isolates from brackish water samples (n = 291) fall among the Vibrio species of interest. The incidences of V. cholerae, V. mimicus, V. fluvialis, V. vulnificus, V. alginolyticus, and V. parahaemolyticus amidst these Vibrio spp. of interest that were recovered from freshwater samples were 75, 14, 4, 6, 1, and 1%, whereas those from brackish water samples were 24, 7, 3, 3, 47, and 18%, respectively. Our observation during the study suggests pollution as the reason for the unusual isolation of medically important vibrios in winter. Correlation analysis revealed that temperature drives the frequency of isolation, whereas salinity drives the composition of the targeted Vibrio species at our sampling sites. The finding of the study is of public health importance going by the usefulness of the water resources investigated. Although controlling and preventing most of the factors that contribute to the prevalence of medically important bacteria, such as Vibrio species, at the sampling points might be difficult, regular monitoring for creating health risk awareness will go a long way to prevent possible Vibrio-related infection outbreaks at the sampling sites and their immediate environment.
Collapse
Affiliation(s)
- Oluwatayo E Abioye
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.,Department of Microbiology, Obafemi Awolowo University, Ife, Nigeria
| | - Ayodeji Charles Osunla
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.,Department of Microbiology, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.,Department of Environmental Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
10
|
Zhao H, Sun R, Yu P, Alvarez PJJ. High levels of antibiotic resistance genes and opportunistic pathogenic bacteria indicators in urban wild bird feces. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115200. [PMID: 32663725 DOI: 10.1016/j.envpol.2020.115200] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
This study analyzed fresh feces from three common bird species that live in urban environments and interact with human communities. Antibiotic resistance genes (ARGs) encoding resistance to three major classes of antibiotics (i.e., tetracyclines, β-lactams, and sulfonamides) and the mobile genetic element integrase gene (intI1) were abundant (up to 109, 108, 109, and 1010 copies/g dry feces for tetW, blaTEM, sul1, and intI1, respectively), with relative concentrations surprisingly comparable to that in poultry and livestock that are occasionally fed antibiotics. Biomarkers for opportunistic pathogens were also abundant (up to 107 copies/g dry feces) and the dominant isolates (i.e., Enterococcus spp. and Pseudomonas aeruginosa) harbored both ARGs and virulence genes. ARGs in bird feces followed first-order attenuation with half-lives ranging from 1.3 to 11.1 days in impacted soil. Although residual antibiotics were detected in the feces, no significant correlation was observed between fecal antibiotic concentrations and ARG relative abundance. Thus, other unaccounted factors likely contributed selective pressure for ARG maintenance. These findings highlight the contribution of wild urban bird feces to the maintenance and dissemination of ARGs, and the associated health risks.
Collapse
Affiliation(s)
- Huiru Zhao
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Ruonan Sun
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA
| | - Pingfeng Yu
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA.
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
11
|
Laviad-Shitrit S, Izhaki I, Halpern M. Accumulating evidence suggests that some waterbird species are potential vectors of Vibrio cholerae. PLoS Pathog 2019; 15:e1007814. [PMID: 31437258 PMCID: PMC6706228 DOI: 10.1371/journal.ppat.1007814] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Vibrio cholerae is the causative agent of cholera, a life-threatening diarrheal disease. Cholera causes epidemics and pandemics, but the ways this disease spreads worldwide is still unclear. This review highlights a relatively new hypothesis regarding the way V. cholerae can be globally dispersed. Copepods and chironomids are natural reservoirs of V. cholerae and are part of different fish species’ diet. Furthermore, V. cholerae inhabits marine and freshwater fish species. Waterbird species feed on fish or on small invertebrates such as copepods and chironomids. Waterbirds have also been found to carry living copepods and/or chironomids internally or externally from one waterbody to another. All of the above points to the fact that some waterbird species might be vectors of V. cholerae. Indeed, we and others have found evidence for the presence of V. cholerae non-O1 as well as O1 in waterbird cloacal swabs, feces, and intestine samples. Moreover, hand-reared cormorants that were fed on tilapia, a fish that naturally carries V. cholerae, became infected with this bacterial species, demonstrating that V. cholerae can be transferred to cormorants from their fish prey. Great cormorants as well as other waterbird species can cover distances of up to 1,000 km/day and thus may potentially transfer V. cholerae in a short time across and between continents. We hope this review will inspire further studies regarding the understanding of the waterbirds' role in the global dissemination of V. cholerae.
Collapse
Affiliation(s)
- Sivan Laviad-Shitrit
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ido Izhaki
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Malka Halpern
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Tivon, Israel
- * E-mail:
| |
Collapse
|
12
|
Cardoso MD, Lemos LS, Roges EM, de Moura JF, Tavares DC, Matias CAR, Rodrigues DP, Siciliano S. A comprehensive survey of Aeromonas sp. and Vibrio sp. in seabirds from southeastern Brazil: outcomes for public health. J Appl Microbiol 2018; 124:1283-1293. [PMID: 29356247 DOI: 10.1111/jam.13705] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/22/2017] [Accepted: 01/14/2018] [Indexed: 12/15/2022]
Abstract
AIMS To perform a microbiological survey regarding the presence, prevalence and characterization of Aeromonas sp. and Vibrio sp. in debilitated wrecked marine birds recovered from the centre-north coast of the state of Rio de Janeiro, Brazil. METHODS AND RESULTS Swabs obtained from 116 alive and debilitated wrecked marine birds, comprising 19 species, from the study area were evaluated by biochemical methods. Antimicrobial susceptibility tests and pathogenicity gene screening were performed for bacterial strains of public health importance. Vibrio sp. and Aeromonas sp. were identified, as well as certain pathogenic genes and resistance to selected antimicrobials. CONCLUSIONS This study demonstrates that the identified bacteria, mainly Vibrio sp., are fairly prevalent and widespread among several species of seabirds and highlights the importance of migratory birds in bacterial dispersion. In addition, it demonstrates the importance of the bacterial strains regarding their pathogenic potential. Therefore, seabirds can act as bacterial reservoirs, and their monitoring is of the utmost importance in a public health context. SIGNIFICANCE AND IMPACT OF THE STUDY The study comprehensively evaluates the importance of seabirds as bacteria of public health importance reservoirs, since birds comprising several pathogenic bacterial species were evaluated.
Collapse
Affiliation(s)
- M D Cardoso
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública Sérgio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - L S Lemos
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.,Geospatial Ecology of Marine Megafauna Laboratory, Hatfield Marine Science Center, Newport, OR, USA
| | - E M Roges
- Laboratório de Referência Nacional de Enteroinfecções Bacterianas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - J F de Moura
- Systems Ecology, Leibniz Centre for Tropical Marine Research-ZMT, Bremen, Germany
| | - D C Tavares
- Programa de Pós-graduação em Ecologia e Recursos Naturais, Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brazil
| | - C A R Matias
- Departamento de Epidemiologia e Saúde Pública, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - D P Rodrigues
- Laboratório de Referência Nacional de Enteroinfecções Bacterianas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - S Siciliano
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
13
|
Occurrence and virulence properties of Vibrio and Salinivibrio isolates from tropical lagoons of the southern Caribbean Sea. Antonie van Leeuwenhoek 2017; 110:833-841. [DOI: 10.1007/s10482-017-0856-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/08/2017] [Indexed: 12/19/2022]
|