1
|
Ortega-Morales AI, Rodríguez-Pérez MA, Morales-Avitia IJ, Flores-Salas G, Wei L, Solis-Hernández M, Rodríguez-Martínez LM, Estrada-Franco JG, Fernández-Santos NA. FIRST RECORDS OF AEDES TORMENTOR AND CULEX PANOCOSSA AS A RESULT OF VECTOR SURVEILLANCE ACTIVITIES CONDUCTED DURING THE CHARACTERIZATION OF FOCI OF EASTERN EQUINE ENCEPHALITIS IN TAMAULIPAS, MEXICO. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2024; 40:137-140. [PMID: 39198317 DOI: 10.2987/24-7168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
We report the 1st records of Aedes tormentor and Culex panocossa throughout vector surveillance events carried out in putative foci of eastern equine encephalitis in Tamaulipas, Mexico. Formerly, Ae. tormentor had been reported in, at least, 2 Central American countries and Mexico. In Mexico, reports were from the states of Campeche, Chiapas, Quintana Roo, and Veracruz. Records of Ae. tormentor in these 4 Neotropical states were recently reviewed and eliminated; thus, the southernmost geographic distribution for this species is considered to be the state of Tamaulipas Mexico in its neotropical zone. Further, Cx. panocossa had been collected in Guerrero, Tabasco, and Veracruz. In Tamaulipas, there are 82 species of mosquitoes, being the 4th state accounting for the highest mosquito species diversity of 11 states in which comprehensive studies have been conducted on the subject of mosquito distribution.
Collapse
|
2
|
Carrera JP, Galué J, de Souza WM, Torres-Cosme R, Lezcano-Coba C, Cumbrera A, Vasilakis N, Tesh RB, Guzman H, Weaver SC, Vittor AY, Samudio R, Miguel Pascale J, Valderrama A, Cáceres Carrera L, Donnelly CA, Faria NR. Madariaga and Venezuelan equine encephalitis virus seroprevalence in rodent enzootic hosts in Eastern and Western Panama. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555226. [PMID: 37693579 PMCID: PMC10491141 DOI: 10.1101/2023.08.28.555226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
While rodents are primary reservoirs of Venezuelan equine encephalitis virus (VEEV), their role in Madariaga virus (MADV) transmission remains uncertain, particularly given their overlapping geographic distribution. This study explores the interplay of alphavirus prevalence, rodent diversity, and land use within Darien and Western Panama provinces. A total of three locations were selected for rodent sampling in Darien province: Los Pavitos, El Real de Santa Maria and Santa Librada. Two sites were selected in Western Panama province: El Cacao and Cirí Grande. We used plaque reduction neutralization tests to assess MADV and VEEV seroprevalences in 599 rodents of 16 species across five study sites. MADV seroprevalence was observed at higher rates in Los Pavitos (Darien province), 9.0%, 95% CI: 3.6-17.6, while VEEV seroprevalence was elevated in El Cacao (Western Panama province), 27.3%, 95% CI: 16.1-40.9, and El Real de Santa María (Darien province), 20.4%, 95% CI: 12.6-29.7. Species like Oryzomys coesi, 23.1%, 95% CI: 5.0-53.8, and Transandinomys bolivaris, 20.0%, 95% CI: 0.5-71.6 displayed higher MADV seroprevalences than other species, whereas Transandinomys bolivaris, 80.0%, 95% CI: 28.3-99.4, and Proechimys semispinosus, 27.3%, 95% CI: 17.0-39.6, exhibited higher VEEV seroprevalences. Our findings provide support to the notion that rodents are vertebrate reservoirs of MADV and reveal spatial variations in alphavirus seropositivity among rodent species, with different provinces exhibiting distinct rates for MADV and VEEV. Moreover, specific rodent species are linked to unique seroprevalence patterns for these viruses, suggesting that rodent diversity and environmental conditions might play a significant role in shaping alphavirus distribution.
Collapse
Affiliation(s)
- Jean-Paul Carrera
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Pandemic Sciences Institute, University of Oxford, Oxford United Kingdom
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Viral Emerging Disease Dynamics Group, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Carson Centre for Research in Environment and Emerging Infectious Diseases, La Peñita, Darien, Panama
| | - Josefrancisco Galué
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Viral Emerging Disease Dynamics Group, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Carson Centre for Research in Environment and Emerging Infectious Diseases, La Peñita, Darien, Panama
| | - William M. de Souza
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| | - Rolando Torres-Cosme
- Department of Medical Entomology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Carlos Lezcano-Coba
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Viral Emerging Disease Dynamics Group, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Carson Centre for Research in Environment and Emerging Infectious Diseases, La Peñita, Darien, Panama
| | - Alberto Cumbrera
- Department of Medical Entomology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Nikos Vasilakis
- Institute for Human infection and Immunity, University of Texas Medical Branch, Texas, USA
- Geographic System Information Unit, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Department of Pathology, University of Texas Medical Branch, Galveston Texas, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Robert B. Tesh
- Geographic System Information Unit, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Department of Pathology, University of Texas Medical Branch, Galveston Texas, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Hilda Guzman
- Geographic System Information Unit, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Scott C. Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human infection and Immunity, University of Texas Medical Branch, Texas, USA
- Department of Pathology, University of Texas Medical Branch, Galveston Texas, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Amy Y. Vittor
- Department of Medicine, Division of Infectious Disease and Global Medicine, University of Florida, Gainesville, Florida, USA
| | | | - Juan Miguel Pascale
- Clinical Research Unit, Gorgas Memorial Institute of health Studies, Panama City, Panama
| | - Anayansi Valderrama
- Carson Centre for Research in Environment and Emerging Infectious Diseases, La Peñita, Darien, Panama
- Department of Medical Entomology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Lorenzo Cáceres Carrera
- Department of Medical Entomology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Christl A. Donnelly
- Pandemic Sciences Institute, University of Oxford, Oxford United Kingdom
- Department of Statistics, University of Oxford, Oxford United Kingdom
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, UK
| | - Nuno R. Faria
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, UK
| |
Collapse
|
3
|
Weinberg M, Yovel Y. Revising the paradigm: Are bats really pathogen reservoirs or do they possess an efficient immune system? iScience 2022; 25:104782. [PMID: 35982789 PMCID: PMC9379578 DOI: 10.1016/j.isci.2022.104782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While bats are often referred to as reservoirs of viral pathogens, a meta-analysis of the literature reveals many cases in which there is not enough evidence to claim so. In many cases, bats are able to confront viruses, recover, and remain immune by developing a potent titer of antibodies, often without becoming a reservoir. In other cases, bats might have carried an ancestral virus that at some time point might have mutated into a human pathogen. Moreover, bats exhibit a balanced immune response against viruses that have evolved over millions of years. Using genomic tools, it is now possible to obtain a deeper understanding of that unique immune system and its variability across the order Chiroptera. We conclude, that with the exception of a few viruses, bats pose little zoonotic danger to humans and that they operate a highly efficient anti-inflammatory response that we should strive to understand.
Collapse
Affiliation(s)
- Maya Weinberg
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Corresponding author
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
4
|
Moreira Marrero L, Botto Nuñez G, Frabasile S, Delfraro A. Alphavirus Identification in Neotropical Bats. Viruses 2022; 14:269. [PMID: 35215862 PMCID: PMC8877408 DOI: 10.3390/v14020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
Alphaviruses (Togaviridae) are arthropod-borne viruses responsible for several emerging diseases, maintained in nature through transmission between hematophagous arthropod vectors and susceptible vertebrate hosts. Although bats harbor many species of viruses, their role as reservoir hosts in emergent zoonoses has been verified only in a few cases. With bats being the second most diverse order of mammals, their implication in arbovirus infections needs to be elucidated. Reports on arbovirus infections in bats are scarce, especially in South American indigenous species. In this work, we report the genomic detection and identification of two different alphaviruses in oral swabs from bats captured in Northern Uruguay. Phylogenetic analysis identified Río Negro virus (RNV) in two different species: Tadarida brasiliensis (n = 6) and Myotis spp. (n = 1) and eastern equine encephalitis virus (EEEV) in Myotis spp. (n = 2). Previous studies of our group identified RNV and EEEV in mosquitoes and horse serology, suggesting that they may be circulating in enzootic cycles in our country. Our findings reveal that bats can be infected by these arboviruses and that chiropterans could participate in the viral natural cycle as virus amplifiers or dead-end hosts. Further studies are warranted to elucidate the role of these mammals in the biological cycle of these alphaviruses in Uruguay.
Collapse
Affiliation(s)
- Lucía Moreira Marrero
- Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Programa para la Conservación de los Murciélagos de Uruguay, Museo Nacional de Historia Natural, Montevideo 11000, Uruguay;
| | - Germán Botto Nuñez
- Programa para la Conservación de los Murciélagos de Uruguay, Museo Nacional de Historia Natural, Montevideo 11000, Uruguay;
- Departamento de Métodos Cuantitativos, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Departamento de Biodiversidad y Genética, Instituto de Investigaciones Biológicas Clemente, Montevideo 11600, Uruguay
| | - Sandra Frabasile
- Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
| | - Adriana Delfraro
- Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
| |
Collapse
|
5
|
Fischer C, Pontier D, Filippi-Codaccioni O, Pons JB, Postigo-Hidalgo I, Duhayer J, Brünink S, Drexler JF. Venezuelan Equine Encephalitis Complex Alphavirus in Bats, French Guiana. Emerg Infect Dis 2021; 27. [PMID: 33756099 PMCID: PMC8007291 DOI: 10.3201/eid2704.202676] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Although essential for control strategies, knowledge about transmission cycles is limited for Venezuelan equine encephalitis complex alphaviruses (VEEVs). After testing 1,398 bats from French Guiana for alphaviruses, we identified and isolated a new strain of the encephalitogenic VEEV species Tonate virus (TONV). Bats may contribute to TONV spread in Latin America.
Collapse
|
6
|
Using Data Mining and Network Analysis to Infer Arboviral Dynamics: The Case of Mosquito-Borne Flaviviruses Reported in Mexico. INSECTS 2021; 12:insects12050398. [PMID: 33946977 PMCID: PMC8146811 DOI: 10.3390/insects12050398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022]
Abstract
Given the significant impact of mosquito-borne flaviviruses (MBFVs) on both human and animal health, predicting their dynamics and understanding their transmission cycle is of the utmost importance. Usually, predictions about the distribution of priority pathogens, such as Dengue, Yellow fever, West Nile Virus and St. Louis encephalitis, relate abiotic elements to simple biotic components, such as a single causal agent. Furthermore, focusing on single pathogens neglects the possibility of interactions and the existence of common elements in the transmission cycles of multiple pathogens. A necessary, but not sufficient, condition that a mosquito be a vector of a MBFV is that it co-occurs with hosts of the pathogen. We therefore use a recently developed modeling framework, based on co-occurrence data, to infer potential biotic interactions between those mosquito and mammal species which have previously been identified as vectors or confirmed positives of at least one of the considered MBFVs. We thus create models for predicting the relative importance of mosquito species as potential vectors for each pathogen, and also for all pathogens together, using the known vectors to validate the models. We infer that various mosquito species are likely to be significant vectors, even though they have not currently been identified as such, and are likely to harbor multiple pathogens, again validating the predictions with known results. Besides the above "niche-based" viewpoint we also consider an assemblage-based analysis, wherein we use a community-identification algorithm to identify those mosquito and/or mammal species that form assemblages by dint of their significant degree of co-occurrence. The most cohesive assemblage includes important primary vectors, such as A. aegypti, A. albopictus, C. quinquefasciatus, C. pipiens and mammals with abundant populations that are well-adapted to human environments, such as the white-tailed deer (Odocoileus virginianus), peccary (Tayassu pecari), opossum (Didelphis marsupialis) and bats (Artibeus lituratus and Sturnira lilium). Our results suggest that this assemblage has an important role in the transmission dynamics of this viral group viewed as a complex multi-pathogen-vector-host system. By including biotic risk factors our approach also modifies the geographical risk profiles of the spatial distribution of MBFVs in Mexico relative to a consideration of only abiotic niche variables.
Collapse
|
7
|
Affiliation(s)
- Marcione B. De Oliveira
- Graduate Program in Zoology, National Museum, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista s/n, São Cristóvão, Rio de Janeiro, RJ, 20940-040, Brazil
| | - Cibele R. Bonvicino
- Graduate Program in Zoology, National Museum, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista s/n, São Cristóvão, Rio de Janeiro, RJ, 20940-040, Brazil
| |
Collapse
|
8
|
Azar SR, Campos RK, Bergren NA, Camargos VN, Rossi SL. Epidemic Alphaviruses: Ecology, Emergence and Outbreaks. Microorganisms 2020; 8:E1167. [PMID: 32752150 PMCID: PMC7464724 DOI: 10.3390/microorganisms8081167] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past century, the emergence/reemergence of arthropod-borne zoonotic agents has been a growing public health concern. In particular, agents from the genus Alphavirus pose a significant risk to both animal and human health. Human alphaviral disease presents with either arthritogenic or encephalitic manifestations and is associated with significant morbidity and/or mortality. Unfortunately, there are presently no vaccines or antiviral measures approved for human use. The present review examines the ecology, epidemiology, disease, past outbreaks, and potential to cause contemporary outbreaks for several alphavirus pathogens.
Collapse
Affiliation(s)
- Sasha R. Azar
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | - Rafael K. Campos
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | | | - Vidyleison N. Camargos
- Host-Microorganism Interaction Lab, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Shannan L. Rossi
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| |
Collapse
|
9
|
Guzmán-Terán C, Calderón-Rangel A, Rodriguez-Morales A, Mattar S. Venezuelan equine encephalitis virus: the problem is not over for tropical America. Ann Clin Microbiol Antimicrob 2020; 19:19. [PMID: 32429942 PMCID: PMC7236962 DOI: 10.1186/s12941-020-00360-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/30/2020] [Indexed: 12/31/2022] Open
Abstract
The equine encephalitis viruses, Venezuelan (VEEV), East (EEEV) and West (WEEV), belong to the genus alphavirus, family Togaviridae and still represent a threat for human and animal public health in the Americas. In both, these infections are characterized by high viremia, rash, fever, encephalitis and death. VEEV encephalitis is similar, clinically, to other arboviral diseases, such as dengue, Zika or chikungunya. Most of the alphaviruses are transmitted between vertebrates and mosquitoes. They are able to replicate in a wide number of hosts, including mammals, birds, reptiles, amphibian and arthropods. The VEEV has enzootic and epizootic transmission cycles. At the enzootic one, enzootic strains (subtype I, serotypes D-F and serotypes II-VI) are continuously circulating between mosquitoes and wild rodents in tropical forests and mangroves of the Americas. The main reseroivrs are wild rodent species of the subfamily Sigmodontinae. However, bats can be also accidental reservoirs of VEEV. In this article, we reviewed the main features, epidemiology, clinical aspects and the current perspectives of the VEEV.
Collapse
Affiliation(s)
- Camilo Guzmán-Terán
- Instituto de Investigaciones Biológicas del Trópico (IIBT), Programa Regencia en Farmacia, Facultad de Ciencias de la Salud, Universidad de Córdoba, Montería, Córdoba, Colombia
| | - Alfonso Calderón-Rangel
- Instituto de Investigaciones Biológicas del Trópico (IIBT), Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Montería, Córdoba, Colombia
| | - Alfonso Rodriguez-Morales
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda, Colombia
| | - Salim Mattar
- Instituto de Investigaciones Biológicas del Trópico (IIBT), Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Montería, Córdoba, Colombia.
| |
Collapse
|
10
|
Guzmán C, Calderón A, Oviedo T, Mattar S, Castañeda J, Rodriguez V, Moraes Figueiredo LT. Molecular and cellular evidence of natural Venezuelan equine encephalitis virus infection in frugivorous bats in Colombia. Vet World 2020; 13:495-501. [PMID: 32367955 PMCID: PMC7183472 DOI: 10.14202/vetworld.2020.495-501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/22/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND AIM Venezuelan equine encephalitis virus (VEEV) is an alphavirus that causes encephalitis with a high impact on public health in Latin America. However, only in Guatemala, Trinidad and Tobago, and Mexico have found antibodies in VEEV in bats, using immunohistochemistry, the sensitivity and specificity are improved; thus, it is better for demonstrating natural infection in bats as potential hosts. This study aimed to determine the presence of VEEV in tissues of frugivorous bats. MATERIALS AND METHODS A prospective descriptive cross-sectional study with a non-probabilistic sampling was carried out in 12 localities of Córdoba and Sucre area of the Colombian Caribbean. Two hundred and eighty-six bats were captured using fog nets, and the specimens according to taxonomic keys were classified. According to the Ethics Committee of the University of Córdoba, the bats were treated with analgesics and anesthetics. Blood samples were taken and then euthanized to obtain tissues and organs which were preserved in liquid N2 at -196°C. A portion of each organ was fixed in 10% buffered formalin for the detection of antigens by immunohistochemistry. Several pathological anatomy analyses were performed to determine the histological characteristics of tissue lesions of frugivorous bats naturally infected with the VEEV. RESULTS Of the 286 bats captured, 23 species were identified. In samples of the brain, spleen, and lung of two frugivorous bats (2/286=0.70%) Artibeus planirostris and Sturnira lilium, the presence of VEEV was confirmed by immunohistochemistry. CONCLUSION A fragment of the nsP4 non-structural protein gene corresponding to the alphavirus was amplified. Two samples were positive (2/286=0.70%) in frugivorous bats; A. planirostris (code GenBank: MG820274) and S. lilium (code GenBank: MG820275). The present study showed the first molecular evidence and cellular evidence (histopathology and immunohistochemistry) of natural VEEV infection in frugivorous bats in Colombia; these bats could be a host of this zoonosis.
Collapse
Affiliation(s)
- Camilo Guzmán
- Department of Pharmacy, Faculty of Health Sciences, Institute of Biological Research of the Tropics, University of Córdoba, Colombia
| | - Alfonso Calderón
- Faculty of Veterinary Medicine and Animal, Institute for Biological Research in the Tropics, University of Córdoba, Colombia
| | | | - Salim Mattar
- Faculty of Veterinary Medicine and Animal, Institute of Biological Research of the Tropics, University of Córdoba, Colombia
| | | | | | | |
Collapse
|
11
|
Duarte-Andrade M, Vázquez-Marroquín R, Chan-Chablé RJ, Siller-Rodríguez QK, Sánchez-Rámos FJ, Valdés-Perezgasga MT, González-Acosta C, Correa-Morales F, Ortega-Morales AI. First Record of Psorophora ferox In Durango State, Mexico. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2019; 35:217-219. [PMID: 31647711 DOI: 10.2987/19-6822.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
During August-November of 2018, mosquito collections were conducted with the intention of monitoring the presence of arboviruses in Durango State, Mexico. Species collected included Psorophora (Janthinosoma) ferox. In Mexico, 24 species of the genus Psorophora have been previously reported, whereas in the state of Durango, only 2 species have been reported: Psorophora (Grabhamia) columbiae and Ps. (Gra.) signipennis. This is the 1st record of Ps. ferox and the subgenus Janthinosoma in Durango. With the addition of Ps. ferox to the list of mosquito species found in Durango, the number of mosquito species occurring in the state stands at 31.
Collapse
|
12
|
Root JJ, Bosco-Lauth AM. West Nile Virus Associations in Wild Mammals: An Update. Viruses 2019; 11:v11050459. [PMID: 31117189 PMCID: PMC6563505 DOI: 10.3390/v11050459] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 02/06/2023] Open
Abstract
Although West Nile virus (WNV) is generally thought to circulate among mosquitoes and birds, several historic and recent works providing evidence of WNV activity in wild mammals have been published. Indeed, a previous review tabulated evidence of WNV exposure in at least 100 mammalian species. Herein, we provide an update on WNV activity in wild and select other mammals that have been reported since the last major review article on this subject was published in early 2013. Of interest, new species, such as Hoffman’s two-toed sloths (Choloepus hoffmanni), are now included in the growing list of wild mammals that have been naturally exposed to WNV. Furthermore, new instances of WNV viremia as well as severe disease presumably caused by this virus have been reported in wild mammals (e.g., the Virginia opossum [Didelphis virginiana]) from natural and semi-captive (e.g., zoological institution) settings. Regrettably, few recent challenge studies have been conducted on wild mammals, which would provide key information as to their potential role(s) in WNV cycles. Largely based on these recent findings, important future lines of research are recommended to assess which mammalian species are commonly exposed to WNV, which mammal species develop viremias sufficient for infecting mosquitoes, and which mammal species might be negatively affected by WNV infection at the species or population level.
Collapse
Affiliation(s)
- J Jeffrey Root
- U.S. Department of Agriculture, National Wildlife Research Center, Fort Collins, CO 80521, USA.
| | - Angela M Bosco-Lauth
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
13
|
Fagre AC, Kading RC. Can Bats Serve as Reservoirs for Arboviruses? Viruses 2019; 11:E215. [PMID: 30832426 PMCID: PMC6466281 DOI: 10.3390/v11030215] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/22/2022] Open
Abstract
Bats are known to harbor and transmit many emerging and re-emerging viruses, many of which are extremely pathogenic in humans but do not cause overt pathology in their bat reservoir hosts: henipaviruses (Nipah and Hendra), filoviruses (Ebola and Marburg), and coronaviruses (SARS-CoV and MERS-CoV). Direct transmission cycles are often implicated in these outbreaks, with virus shed in bat feces, urine, and saliva. An additional mode of virus transmission between bats and humans requiring further exploration is the spread of disease via arthropod vectors. Despite the shared ecological niches that bats fill with many hematophagous arthropods (e.g. mosquitoes, ticks, biting midges, etc.) known to play a role in the transmission of medically important arboviruses, knowledge surrounding the potential for bats to act as reservoirs for arboviruses is limited. To this end, a comprehensive literature review was undertaken examining the current understanding and potential for bats to act as reservoirs for viruses transmitted by blood-feeding arthropods. Serosurveillance and viral isolation from either free-ranging or captive bats are described in relation to four arboviral groups (Bunyavirales, Flaviviridae, Reoviridae, Togaviridae). Further, ecological associations between bats and hematophagous viral vectors are characterized (e.g. bat bloodmeals in mosquitoes, ingestion of mosquitoes by bats, etc). Lastly, knowledge gaps related to hematophagous ectoparasites (bat bugs and bed bugs (Cimicidae) and bat flies (Nycteribiidae and Streblidae)), in addition to future directions for characterization of bat-vector-virus relationships are described.
Collapse
Affiliation(s)
- Anna C Fagre
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Rebekah C Kading
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
14
|
Guzmán C, Calderón A, Martinez C, Oviedo M, Mattar S. Eco-epidemiology of the Venezuelan equine encephalitis virus in bats of Córdoba and Sucre, Colombia. Acta Trop 2019; 191:178-184. [PMID: 30578748 PMCID: PMC7172953 DOI: 10.1016/j.actatropica.2018.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/01/2018] [Accepted: 12/08/2018] [Indexed: 12/02/2022]
Abstract
Alphavirus infection associated encephalitis is an emerging infectious disease with a high impact on public health in Latin America. OBJECTIVE To study the eco-epidemiology of alphaviruses in bats of departments of Córdoba and Sucre, Colombia. METHODOLOGY A prospective descriptive cross-sectional study with a non-probabilistic sampling, in 12 localities of Córdoba and Sucre was carried out. Using mist nets capture of the specimens was carried out. The size of the sample was 286 bats, each specimen captured was taxonomically classified. The bats were immobilized with anesthetic and analgesic treatment according to the ethics committee of the University of Córdoba, morphometric measurements and blood samples were taken, later they were necropsied in the field to obtain a collection of tissues which were preserved in liquid N2 -190 °C. The averages of the climatic conditions of the sampling sites were extracted from the WorldClim database (http://www.worldclim.org/). The open source software QGIS (Quantum GIS Development Team.2015) was used to map and visualize bioclimatic regions of Córdoba. We used descriptive and retrospective information about the equine population and reports of foci of equine encephalitis. RESULTS In Córdoba and Sucre, 286 bats were captured and 23 species were classified, Artibeus and Phyllostomus discolor were the most frequent captured genus. The geographic ranges of the captured species were variable, some had a wide distribution and others were restricted to some areas. Venezuelan equine encephalitis virus RNA was detected in Artibeus planirostris and Sturnira lilium (2/286 = 0.70%) from Cordoba - Colombia. The univariate descriptive analysis showed no significant association for any of the analyzed variables climatic. CONCLUSIONS Frugivorous bats from the Caribbean area of Colombia may be involved in the Venezuelan equine encephalitis virus enzootic cycle.
Collapse
Affiliation(s)
- Camilo Guzmán
- Universidad de Córdoba, Instituto de Investigaciones Biológicas del Trópico, Montería, Colombia; Doctorado en Medicina Tropical SUE-Caribe, Universidad de Córdoba, Colombia
| | - Alfonso Calderón
- Universidad de Córdoba, Instituto de Investigaciones Biológicas del Trópico, Montería, Colombia; Doctorado en Medicina Tropical SUE-Caribe, Universidad de Córdoba, Colombia
| | - Catty Martinez
- Universidad de Córdoba, Instituto de Investigaciones Biológicas del Trópico, Montería, Colombia
| | - Misael Oviedo
- Universidad de Córdoba, Instituto de Investigaciones Biológicas del Trópico, Montería, Colombia
| | - Salim Mattar
- Universidad de Córdoba, Instituto de Investigaciones Biológicas del Trópico, Montería, Colombia.
| |
Collapse
|
15
|
Santos CS, Pie MR, da Rocha TC, Navarro-Silva MA. Molecular identification of blood meals in mosquitoes (Diptera, Culicidae) in urban and forested habitats in southern Brazil. PLoS One 2019; 14:e0212517. [PMID: 30779816 PMCID: PMC6380548 DOI: 10.1371/journal.pone.0212517] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/04/2019] [Indexed: 11/18/2022] Open
Abstract
The study of host associations of mosquitoes (Diptera, Culicidae) provides valuable information to assist in our understanding of a variety of related issues, from their life-history to the entomological surveillance of pathogens. In this study, we identified and characterized mosquito blood meals from both urban and forested areas in the city of Paranaguá, state of Paraná, Brazil, by analyzing the amplification of host DNA ingested by mosquitoes under different storage conditions and digestion levels. Host DNA preservation was evaluated in fresh blood meals according to storage duration (30 to 180 days) and temperature (-20°C / -80°C) and, in digested blood, according the degree of digestion classified on the Sella scale. Molecular analysis of blood meals was based on DNA extraction and amplification of a fragment of the mitochondrial COI gene. We determined that, up to180 days of storage, the evaluated temperatures did not influence the preservation of fresh blood meals DNA, whereas the amplification success was increasingly reduced over the course of the digestion process. The species Anopheles cruzii, Aedes fluviatilis, Aedes scapularis, Psorophora ferox, Culex quinquefasciatus, Culex mollis, and Culex intrincatus, together with specimens representing four subgenera and one genus of Culicidae [Ae. (Ochlerotatus), Cx. (Culex), Cx. (Melanoconion), Cx. (Microculex), and Limatus, respectively] had their blood meals identified. Their diverse host use was evidenced by the identification of 19 species of vertebrate host, namely two amphibians, three mammals and 14 birds. Birds were the most commonly identified host in blood meals. These results not only show the diversity of mosquito hosts, but also underscore the challenges involved in monitoring arboviruses of public health importance, given potential combinations of host use for each mosquito species.
Collapse
Affiliation(s)
- Camila Silva Santos
- Departamento de Zoologia, Laboratório de Morfologia e Fisiologia de Culicidae e Chironomidae, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Marcio Roberto Pie
- Departamento de Zoologia, Laboratório de Dinâmica Evolutiva e Sistemas Complexos, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Tatiana Carneiro da Rocha
- Departamento de Farmácia, Laboratório de Saúde Pública e Ambiental, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Mario Antonio Navarro-Silva
- Departamento de Zoologia, Laboratório de Morfologia e Fisiologia de Culicidae e Chironomidae, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|