1
|
Shen R, Yang S, Zhou Y, Li J. Analysis of the characteristics of blood inflammatory cytokines and their influencing factors in acute exacerbations of allergic asthma in children. Front Pediatr 2025; 13:1571556. [PMID: 40260311 PMCID: PMC12009797 DOI: 10.3389/fped.2025.1571556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/24/2025] [Indexed: 04/23/2025] Open
Abstract
Background Exploring the characteristics of serum inflammatory cytokine changes during acute exacerbations of pediatric allergic asthma, and analyzing factors influencing poor asthma control and predictive indicators. Methods Forty children with acute exacerbations of allergic asthma, either outpatients or inpatients, were selected as the observation group, and 40 healthy children undergoing physical examinations during the same period served as the control group. Flow cytometry was used to analyze the characteristics of blood inflammatory cytokines in both groups. Logistic multiple regression was used to analyze the influencing factors of poor asthma control, and ROC curve analysis was used to evaluate the indicators for predicting poor asthma control. Results There were statistically significant differences in the levels of IL-2, IL-4, IL-10, IL-13,IFN-γ, TNF-α, as well as the ratios of IL-2/IL-4, IL-2/IL-5, IL-2/IL-10, IL-2/IL-13, IFN-γ/IL-4, IFN-γ/IL-5, IFN-γ/IL-13, TNF-α/IL-4, TNF-α/IL-5, TNF-α/IL-6, TNF-α/IL-13 in the peripheral serum, and the expression of CD86, CD206, and CD86/CD206 in peripheral blood mononuclear cells (PBMCs) between the observation group and the control group (P < 0.05). Univariate analysis indicated that respiratory infections, exposure to allergens, irregular use of inhaled corticosteroids (ICS), and peripheral blood eosinophil counts may be associated with poor asthma control (P < 0.05). Receiving Subcutaneous Specific Allergen Immunotherapy (SCIT) may serve as a protective factor against poor asthma control (P < 0.05). Logistic multiple regression analysis showed that respiratory infections and irregular use of ICS were independent risk factors for poor asthma control (P < 0.05), while SCIT was an independent protective factor against poor asthma control (P < 0.05). ROC curve analysis shows that IL-13 has a high accuracy in predicting poor asthma control, with areas under the curve of 0.741. Conclusions In pediatric allergic asthma exacerbations, there is a decrease in the activity of Th1 cytokines and an increase in the activity of Th2 cytokines in the peripheral blood, accompanied by enhanced polarization of macrophages towards the M2 phenotype. Respiratory infections and irregular use of ICS are independent risk factors for poor asthma control, whereas SCIT is an independent protective factor against poor asthma control. IL-13 has high accuracy in predicting poor asthma control.
Collapse
Affiliation(s)
- Ren Shen
- Department of Pediatrics, Yuhuan People’s Hospital, Taizhou, China
| | - Shanpu Yang
- Department of Pediatrics, Yuhuan People’s Hospital, Taizhou, China
| | - Yan Zhou
- Department of Pediatrics, Yuhuan People’s Hospital, Taizhou, China
| | - Jinɡjinɡ Li
- Department of Laboratory Medicine, Yuhuan People’s Hospital, Taizhou, China
| |
Collapse
|
2
|
Toumpanakis D, Bartziokas K, Bakakos A, Fouka E, Bakakos P, Loukides S, Steiropoulos P, Papaioannou AI. Monoclonal Antibodies for the Treatment of Chronic Obstructive Pulmonary Disease. Pulm Ther 2025:10.1007/s41030-025-00291-5. [PMID: 40123030 DOI: 10.1007/s41030-025-00291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/26/2025] [Indexed: 03/25/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common and complex disease characterized by persistent airflow limitation and the presence of exacerbations, resulting in significant morbidity and mortality. Although the pathogenesis of COPD is multifactorial, airway inflammation plays a significant role in disease progression. Despite the advantages of non-pharmaceutical and pharmaceutical interventions that have significantly improved the symptom burden and exacerbation frequency in COPD, there is a lack of disease-modifying therapies that target the underlying disease mechanisms. Monoclonal antibodies (mAbs), a drug class that has improved treatment in severe asthma by blocking mediators of the type 2 (Th2) and allergic inflammatory cascades, are currently under investigation for their efficacy in COPD. Our review summarizes the evidence for the use of monoclonal antibodies in COPD and discusses current limitations and promising advances. Although targeting Th1 inflammation has failed to improve COPD outcomes, recent clinical trials have shown beneficial effects of monoclonal antibodies targeting Th2 inflammation, providing evidence for a personalized approach in COPD treatment.
Collapse
Affiliation(s)
- Dimitrios Toumpanakis
- 2Nd Department of Critical Care, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Konstantinos Bartziokas
- 2Nd Respiratory Medicine Department, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Agamemnon Bakakos
- 1St Respiratory Medicine Department, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Diseases Hospital, Athens, Greece
| | - Evangelia Fouka
- Respiratory Medicine Department, Aristotle University of Thessaloniki, G Papanikolaou Hospital, Thessaloniki, Greece
| | - Petros Bakakos
- 1St Respiratory Medicine Department, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Diseases Hospital, Athens, Greece
| | - Stelios Loukides
- 2Nd Respiratory Medicine Department, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Paschalis Steiropoulos
- Department of Pneumonology, Medical School, Democritus University of Thrace, 68100, Alexandroupolis, Greece.
| | - Andriana I Papaioannou
- 1St Respiratory Medicine Department, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Diseases Hospital, Athens, Greece
| |
Collapse
|
3
|
Chavda VP, Bezbaruah R, Ahmed N, Alom S, Bhattacharjee B, Nalla LV, Rynjah D, Gadanec LK, Apostolopoulos V. Proinflammatory Cytokines in Chronic Respiratory Diseases and Their Management. Cells 2025; 14:400. [PMID: 40136649 PMCID: PMC11941495 DOI: 10.3390/cells14060400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Pulmonary homeostasis can be agitated either by external environmental insults or endogenous factors produced during respiratory/pulmonary diseases. The lungs counter these insults by initiating mechanisms of inflammation as a localized, non-specific first-line defense response. Cytokines are small signaling glycoprotein molecules that control the immune response. They are formed by numerous categories of cell types and induce the movement, growth, differentiation, and death of cells. During respiratory diseases, multiple proinflammatory cytokines play a crucial role in orchestrating chronic inflammation and structural changes in the respiratory tract by recruiting inflammatory cells and maintaining the release of growth factors to maintain inflammation. The issue aggravates when the inflammatory response is exaggerated and/or cytokine production becomes dysregulated. In such instances, unresolving and chronic inflammatory reactions and cytokine production accelerate airway remodeling and maladaptive outcomes. Pro-inflammatory cytokines generate these deleterious consequences through interactions with receptors, which in turn initiate a signal in the cell, triggering a response. The cytokine profile and inflammatory cascade seen in different pulmonary diseases vary and have become fundamental targets for advancement in new therapeutic strategies for lung diseases. There are considerable therapeutic approaches that target cytokine-mediated inflammation in pulmonary diseases; however, blocking specific cytokines may not contribute to clinical benefit. Alternatively, broad-spectrum anti-inflammatory approaches are more likely to be clinically effective. Herein, this comprehensive review of the literature identifies various cytokines (e.g., interleukins, chemokines, and growth factors) involved in pulmonary inflammation and the pathogenesis of respiratory diseases (e.g., asthma, chronic obstructive pulmonary, lung cancer, pneumonia, and pulmonary fibrosis) and investigates targeted therapeutic treatment approaches.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India; (R.B.); (N.A.); (S.A.)
- Institute of Pharmacy, Assam Medical College and Hospital, Dibrugarh 786002, Assam, India
| | - Nasima Ahmed
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India; (R.B.); (N.A.); (S.A.)
| | - Shahnaz Alom
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India; (R.B.); (N.A.); (S.A.)
- Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India; (B.B.); (D.R.)
| | - Bedanta Bhattacharjee
- Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India; (B.B.); (D.R.)
| | - Lakshmi Vineela Nalla
- Department of Pharmacology, GITAM School of Pharmacy, GITAM (Deemed to be University), Rushikonda, Visakhapatnam 530045, Andhra Pradesh, India;
| | - Damanbhalang Rynjah
- Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India; (B.B.); (D.R.)
| | - Laura Kate Gadanec
- Institute for Health and Sport, Immunology and Translational Research Group, Victoria University, Werribee, VIC 3030, Australia;
| | - Vasso Apostolopoulos
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia;
| |
Collapse
|
4
|
Torres T, Mendes-Bastos P, Cruz MJ, Duarte B, Filipe P, Lopes MJP, Gonçalo M. Interleukin-4 and Atopic Dermatitis: Why Does it Matter? A Narrative Review. Dermatol Ther (Heidelb) 2025; 15:579-597. [PMID: 39930311 PMCID: PMC11909353 DOI: 10.1007/s13555-025-01352-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/28/2025] [Indexed: 03/15/2025] Open
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory skin condition that significantly impairs patients' quality of life as a result of intense itching and persistent eczematous lesions. Although AD has a multifaceted etiology-including genetic predisposition, environmental triggers, barrier dysfunction, and dysregulated immune responses-interleukin-4 (IL-4) has a recognized central role in its pathogenesis. This narrative review explores the role of IL-4 in the pathophysiology of AD, its contribution to the atopic march, and the therapeutic impact of IL-4 inhibition. IL-4 plays a critical role in skin barrier dysfunction, dysbiosis, pruritus, and inflammation, all of which contribute to the debilitating symptoms of AD. Moreover, IL-4 is implicated in other atopic conditions, such as asthma, allergic rhinitis, and food allergies, underscoring its role beyond AD and its importance in the atopic march. Recent advances in targeted therapies, particularly IL-4/IL-13 signaling inhibitors, have changed AD management. Dupilumab, an IL-4 receptor antagonist, has demonstrated significant efficacy in reducing AD symptoms and enhancing patient outcomes in both children and adults. In addition to symptomatic relief, suppressing IL-4 signaling may also offer potential for disease modification, altering AD's progression and possibly preventing the onset of other atopic conditions. This review highlights the crucial role of IL-4 as a therapeutic target in AD. By understanding the role of IL-4 in AD pathogenesis and exploring the therapeutic implications of targeting IL-4 pathways, this work can contribute to guide future research concerning treatment approaches and also emphasize the need for early and targeted interventions to mitigate disease impact and ultimately improve patient quality of life.
Collapse
Affiliation(s)
- Tiago Torres
- Department of Dermatology, Unidade Local de Saúde de Santo António, Porto, Portugal.
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal.
| | | | - Maria J Cruz
- Dermatology Department, Unidade Local de Saúde de São João, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Bruno Duarte
- Dermatology Department, Unidade Local de Saúde de São José, Lisboa, Portugal
| | - Paulo Filipe
- Dermatology Department, Unidade Local de Saúde de Santa Maria, Lisboa, Portugal
| | - Maria J P Lopes
- Dermatology Department, Unidade Local de Saúde de São José, Lisboa, Portugal
- Centro Clínico Académico de Lisboa, Lisboa, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Margarida Gonçalo
- Dermatology Clinic, University Hospital, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
5
|
Fairweather SJ, Hammerton G, Paternoster L, Gilbody S, Jones HJ, Khandaker GM. Childhood allergy and anxiety/depression in early adulthood: A longitudinal study in the ALSPAC birth cohort. Brain Behav Immun 2025; 124:226-236. [PMID: 39662640 DOI: 10.1016/j.bbi.2024.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/30/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Allergic disease and common mental disorders frequently co-occur. However, little is known about the longitudinal impact of childhood allergy on the subsequent risk of developing anxiety or depression, and the possible biological mechanisms for this. METHODS We performed longitudinal analyses of data from the Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort. The baseline sample comprised n = 5256 children with allergy data available at age 7yrs. We used multivariable regression to test associations between childhood allergy at age 7yrs and: a) four inflammatory markers at age 9yrs; b) depression and anxiety measures between ages 10-24yrs. Allergy measures included biological markers (total serum immunoglobulin E (tIgE), number of positive skin prick tests (SPTs)), and presence of eczema, asthma and/or food allergy (mother reported). Inflammatory markers were interleukin-6 (IL-6), C-reactive protein (CRP), IL-4 and IL-13. We used structural equation modelling to test whether inflammatory markers mediated the association between tIgE and depression/anxiety. RESULTS tIgE and having ≥ 1 positive SPT at age 7 were associated with IL-6 levels at age 9 (adjusted β = 0.09; 95 % CI 0.06-0.13; p < 0.001 and adjusted β = 0.06; 95 % CI 0.03-0.09; p < 0.001 respectively), but not with CRP, IL-4 or IL13 levels. We found no strong evidence of an association between childhood allergy and subsequent depression/anxiety during adolescence and early adulthood. This finding was consistent across biological and mother-reported allergy measures. CONCLUSIONS Biological markers of childhood allergy are associated with IL-6, a key inflammatory cytokine. However, childhood allergy may not have a large long-term effect on subsequent depression/anxiety.
Collapse
Affiliation(s)
- Sophie J Fairweather
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Population Health Sciences, Bristol Medical School, Bristol, UK; NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK; Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Gemma Hammerton
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Population Health Sciences, Bristol Medical School, Bristol, UK; Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lavinia Paternoster
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Population Health Sciences, Bristol Medical School, Bristol, UK; NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Simon Gilbody
- Mental Health and Addiction Research Group, Department of Health Sciences, University of York, York YO10 5DD, UK
| | - Hannah J Jones
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Population Health Sciences, Bristol Medical School, Bristol, UK; NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK; Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Golam M Khandaker
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Population Health Sciences, Bristol Medical School, Bristol, UK; NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK; Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Avon and Wiltshire Mental Health Partnership NHS Trust, Bristol, UK
| |
Collapse
|
6
|
Li B, Dong B, Xie L, Li Y. Exploring Advances in Natural Plant Molecules for Allergic Rhinitis Immunomodulation in Vivo and in Vitro. Int J Gen Med 2025; 18:529-565. [PMID: 39911299 PMCID: PMC11796455 DOI: 10.2147/ijgm.s493021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/20/2024] [Indexed: 02/07/2025] Open
Abstract
Allergic rhinitis (AR) is a prevalent allergic disease that imposes significant economic burdens and life pressures on individuals, families, and society, particularly in the context of accelerating globalization and increasing pathogenic factors. Current clinical therapies for AR include antihistamines, glucocorticoids administered via various routes, leukotriene receptor antagonists, immunotherapy, and several decongestants. These treatments have demonstrated efficacy in alleviating clinical symptoms and pathological states. However, with the growing awareness of AR and rising expectations for improvements in quality of life, these treatments have become associated with a higher incidence of side effects and an elevated risk of drug resistance. Furthermore, the development of AR is intricately associated with dysregulation of the immune system, yet the underlying pathogenetic mechanisms remain incompletely understood. In contrast, widely available natural plant molecules offer multiple targeting pathways that uniquely modify the typical pathophysiology of AR through immunomodulatory processes. This review presents a comprehensive analysis of both in vivo and in vitro studies on natural plant molecules that modulate immunity for treating AR. Additionally, we examine their specific mechanisms of action in animal models to provide new insights for developing safe and effective targeted therapies while guiding experimental and clinical applications against AR.
Collapse
Affiliation(s)
- Bingquan Li
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Boyang Dong
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Liangzhen Xie
- Ear-Nose-Throat Department, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Yan Li
- Ear-Nose-Throat Department, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| |
Collapse
|
7
|
He Y, Shen X, Zhai K, Nian S. Advances in understanding the role of interleukins in pulmonary fibrosis (Review). Exp Ther Med 2025; 29:25. [PMID: 39650776 PMCID: PMC11619568 DOI: 10.3892/etm.2024.12775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/03/2024] [Indexed: 12/11/2024] Open
Abstract
Pulmonary fibrosis (PF) is a progressive, irreversible disease characterized by heterogeneous interstitial lung tissue damage. It originates from persistent or repeated lung epithelial injury and leads to the activation and differentiation of fibroblasts into myofibroblasts. Interleukins (ILs) are a group of lymphokines crucial for immunomodulation that are implicated in the pathogenesis of PF. However, different types of ILs exert disparate effects on PF. In the present review, based on the effect on PF, ILs are classified into three categories: i) Promotors of PF; ii) inhibitors of PF; and iii) those that exert dual effects on PF. Several types of ILs can promote PF by provoking inflammation, initiating proliferation and transdifferentiation of epithelial cells, exacerbating lung injury, while other ILs can inhibit PF through suppressing expression of inflammatory factors, modulating the Th1/Th2 balance and autophagy. The present review summarizes the association of ILs and PF, focusing on the roles and mechanisms of ILs underlying PF.
Collapse
Affiliation(s)
- Yuqing He
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Xuebin Shen
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Kefeng Zhai
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, P.R. China
| | - Sihui Nian
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| |
Collapse
|
8
|
Zhang Z, Ding Y. MG132-mediated Suppression of the Ubiquitin-proteasome Pathway Enhances the Sensitivity of Endometrial Cancer Cells to Cisplatin. Anticancer Agents Med Chem 2025; 25:281-291. [PMID: 39354755 DOI: 10.2174/0118715206343550240919055701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Tumor cell resistance to cisplatin is a common challenge in endometrial cancer chemotherapy, stemming from various mechanisms. Targeted therapies using proteasome inhibitors, such as MG132, have been investigated to enhance cisplatin sensitivity, potentially offering a novel treatment approach. OBJECTIVE The aim of this study was to investigate the effects of MG132 on cisplatin sensitivity in the human endometrial cancer (EC) cell line RL95-2, focusing on cell proliferation, apoptosis, and cell signaling. METHODS Human endometrial cancer RL95-2 cells were exposed to MG132, and cell viability was assessed in a dose-dependent manner. The study evaluated the effect of MG132 on cisplatin-induced proliferation inhibition and apoptosis, correlating with caspase-3 activation and reactive oxygen species (ROS) upregulation. Additionally, we examined the inhibition of the ubiquitin-proteasome system and the expression of pro-inflammatory cytokines IL-1β, IL-6, IL-8, and IL-13 during MG132 and cisplatin co-administration. RESULTS MG132 exposure significantly reduced cell viability in a dose-dependent manner. It augmented cisplatin- induced proliferation inhibition and enhanced apoptosis, correlating with caspase-3 activation and ROS upregulation. Molecular analysis revealed a profound inhibition of the ubiquitin-proteasome system. MG132 also significantly increased the expression of cisplatin-induced pro-inflammatory cytokines, suggesting a transition from chronic to acute inflammation. CONCLUSION MG132 enhances the therapeutic efficacy of cisplatin in human EC cells by suppressing the ubiquitin- proteasome pathway, reducing cell viability, enhancing apoptosis, and shifting the inflammatory response. These findings highlighted the potential of MG132 as an adjuvant in endometrial cancer chemotherapy. Further research is needed to explore detailed mechanisms and clinical applications of this combination therapy.
Collapse
Affiliation(s)
- Zhanhu Zhang
- Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Yiqian Ding
- Department of Gynaecology, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| |
Collapse
|
9
|
Hu X, Zhao M, Wang M, Wang D, Zhu L, Su C, Wu Q. Elevated serum and cerebrospinal fluid levels of Interleukin-4 related to poor outcome of Aneurysmal subarachnoid hemorrhage. Cytokine 2024; 184:156780. [PMID: 39432948 DOI: 10.1016/j.cyto.2024.156780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/26/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a hemorrhagic cerebrovascular disease that seriously jeopardizes human life and health. Some studies have shown that although Interleukin-4 (IL-4) acts as an anti-inflammatory factor, IL-4 levels are elevated when the disease occurs. This study focuses on exploring the relationship between IL and 4 concentrations in the serum and cerebrospinal fluid (CSF) and poor outcome in patients with aSAH. This study was a prospective observational study and 210 aSAH patients who met the inclusion criteria were divided into two groups according to the mRS score at 3 months after discharge, and 210 healthy people were selected as controls. The IL-4 concentrations were quantitatively determined with enzyme-linked adsorption assay (ELISA). We can draw a conclusion that Serum and CSF IL-4 concentrations are generally elevated in patients with poor outcome(P < 0.05), and the CSF IL-4 concentration decreased gradually over the progress of time (P < 0.05). The IL-4 concentration in the CSF was positively correlated with age, platelet-lymphocyte ratio (PLR), C-reactive protein (CRP), Hunt-Hess grade, mRS score, and World Federation of Neurological Surgeons score (WFNS) (P < 0.0001). Additionally, IL-4 concentrations in the CSF were correlated with complications such as intracranial infection (P = 0.01), cerebral edema (P < 0.01), hydrocephalus (P = 0.02), and complications by DCI (P = 0.02). Elevated serum and CSF concentrations of IL-4 may associated with the outcome of aSAH and may be a candidate early biomarkers for outcome of aSAH.
Collapse
Affiliation(s)
- Xuemei Hu
- Clinical Medical College of Jining Medical University, Jining 272067, China; Department of Emergency, Jining No. 1 People's Hospital, Jining 272011, China
| | - Mingyang Zhao
- Clinical Medical College of Jining Medical University, Jining 272067, China; Department of Emergency, Jining No. 1 People's Hospital, Jining 272011, China
| | - Meixue Wang
- Clinical Medical College of Jining Medical University, Jining 272067, China; Department of Emergency, Jining No. 1 People's Hospital, Jining 272011, China
| | - Dongsen Wang
- Department of Emergency, Zouping People's Hospital, Binzhou 256200, China
| | - Liangzhen Zhu
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, China
| | - Chunhai Su
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining 272011, China.
| | - Qingjian Wu
- Department of Emergency, Jining No. 1 People's Hospital, Jining 272011, China.
| |
Collapse
|
10
|
Chen M, Wang R, Wang T. Gut microbiota and skin pathologies: Mechanism of the gut-skin axis in atopic dermatitis and psoriasis. Int Immunopharmacol 2024; 141:112658. [PMID: 39137625 DOI: 10.1016/j.intimp.2024.112658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 08/15/2024]
Abstract
Atopic dermatitis (AD) and psoriasis are chronic skin diseases with a global impact, posing significant challenges to public health systems and severely affecting patients' quality of life. This review delves into the key role of the gut microbiota in these diseases, emphasizing the importance of the gut-skin axis in inflammatory mediators and immune regulation and revealing a complex bidirectional communication system. We comprehensively assessed the pathogenesis, clinical manifestations, and treatment strategies for AD and psoriasis, with a particular focus on how the gut microbiota and their metabolites influence disease progression via the gut-skin axis. In addition, personalized treatment plans based on individual patient microbiome characteristics have been proposed, offering new perspectives for future treatment approaches. We call for enhanced interdisciplinary cooperation to further explore the interactions between gut microbiota and skin diseases and to assess the potential of drugs and natural products in modulating the gut-skin axis, aiming to advance the treatment of skin diseases.
Collapse
Affiliation(s)
- Meng Chen
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Rui Wang
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China.
| | - Ting Wang
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China.
| |
Collapse
|
11
|
Jiang Y, Wang Y, Guo J, Wang Z, Wang X, Yao X, Yang H, Zou Y. Exploring potential therapeutic targets for asthma: a proteome-wide Mendelian randomization analysis. J Transl Med 2024; 22:978. [PMID: 39472987 PMCID: PMC11520847 DOI: 10.1186/s12967-024-05782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Asthma poses a significant global health challenge, characterized by high rates of morbidity and mortality. Despite available treatments, many severe asthma patients remain poorly managed, highlighting the need for novel therapeutic strategies. This study aims to identify potential drug targets for asthma by examining the influence of circulating plasma proteins on asthma risk. METHODS This study employs summary-data-based Mendelian randomization (MR) and two-sample MR methods to investigate the association between 2940 plasma proteins from the UK Biobank study and asthma. The analysis includes discovery (FinnGen cohort) and replication (GERA cohort) phases, with Bayesian colocalization used to validate the relationships between proteins and asthma. Furthermore, protein-protein interaction and druggability assessments were conducted on high-evidence strength protein biomarkers, and candidate drug prediction and molecular docking were performed for proteins without targeted drugs. Given the complexity of asthma pathogenesis, the study also explores the relationships between plasma proteins and asthma-related endpoints (e.g., obesity-related asthma, infection-related asthma, childhood asthma) to identify potential therapeutic targets for different subtypes. RESULTS In the discovery cohort, 75 plasma proteins were associated with asthma, including IL1RAP, IL1RL1, IL6, CXCL5, and CXCL8. Additionally, 6 proteins (IL4R, LTB, CASP8, MAX, PCDH12, and SCLY) were validated through co-localization analysis and validation cohort. The assessment of drug targetability revealed potential drug targets for IL4R, CASP8, and SCLY, while candidate drugs were predicted for LTB and MAX proteins. MAX exhibited strong binding affinity with multiple small molecules indicating a highly stable interaction and significant druggability potential. Analysis of the 75 proteins with 9 asthma-related endpoints highlighted promising targets such as DOK2, ITGAM, CA1, BTN2A1, and GZMB. CONCLUSION These findings elucidate the link between asthma, its related endpoints, and plasma proteins, advancing our understanding of molecular pathogenesis and treatment strategies. The discovery of potential therapeutic targets offers new insights into asthma drug target research.
Collapse
Affiliation(s)
- Yuhan Jiang
- Clinical School of Pediatrics, Tianjin Medical University, Tianjin, China
- Department of Pulmonology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Machang Compus, 225 Machang Road, Hexi District, Tianjin, 300074, China
| | - Yifan Wang
- Clinical School of Pediatrics, Tianjin Medical University, Tianjin, China
- Department of Pulmonology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Machang Compus, 225 Machang Road, Hexi District, Tianjin, 300074, China
| | - Ju Guo
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zixuan Wang
- Clinical School of Pediatrics, Tianjin Medical University, Tianjin, China
| | - Xuelin Wang
- Department of Pulmonology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Machang Compus, 225 Machang Road, Hexi District, Tianjin, 300074, China
| | - Xueming Yao
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hongxi Yang
- Department of Bioinformatics, School of Basic Medical Science, Tianjin Medical University, Tianjin, 300070, China.
| | - Yingxue Zou
- Clinical School of Pediatrics, Tianjin Medical University, Tianjin, China.
- Department of Pulmonology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Machang Compus, 225 Machang Road, Hexi District, Tianjin, 300074, China.
| |
Collapse
|
12
|
Liu C, He Y, Zhou K, Wang H, Zhou M, Sun J, Lu Y, Huang Y, Wang Y, Liu T, Li Y. Mitigation of allergic asthma in mice: A compound mixture comprising luteolin, arbutin, and marmesin from Gerbera Piloselloides Herba by suppression of PI3K/Akt pathway. Heliyon 2024; 10:e37632. [PMID: 39381113 PMCID: PMC11456855 DOI: 10.1016/j.heliyon.2024.e37632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024] Open
Abstract
Background Gerberae Piloselloidis Herba (GPH) exhibits notable efficacy in alleviating allergic asthma. Previous studies in our research have identified a mixture of luteolin, arbutin, and marmesin as effective components of GPH in treating allergic asthma. However, the underlying mechanism remains unclear. This study aims to elucidate the molecular mechanism of these active components. Method Using an ovalbumin (OVA)-induced allergic asthma mouse model, various treatment groups were administered, including GPH, the active component mixture (termed "Mixture") containing luteolin, arbutin, and marmesin, and a positive drug (dexamethasone, DEX). Relevant indices were assessed, including behavioral characteristics, inflammatory cell counts, cytokine levels, histopathological examination of lung tissue, apoptosis, and expression of key proteins such as Caspase-3, Bax, Bcl-2, PI3K, p-PI3K, Akt, and p-Akt. The effect of the Mixture on the PI3K/Akt signaling pathway was further verified using the PI3K inhibitor LY294002. Results The Mixture significantly alleviated asthma symptoms, decreased IgE levels, cytokine levels (IL-4, IL-5, IL-13 and TNF-α), and the number of inflammatory cells in serum or bronchoalveolar lavage fluid (BALF), leading to the alleviation of lung pathological lesions. Additionally, the Mixture reduced the expression of Bax and Caspase-3 while increasing Bcl-2 expression, resulting in mitigated apoptosis in lung tissue. Furthermore, there appeared a decrease in the levels of PI3K and p-PI3K, as well as the ratio of p-Akt to Akt in the Mixture group, indicating the suppression of PI3K and Akt phosphorylation. Interestingly, the effects of the Mixture were comparable to those of GPH, LY294002, or the combination of LY294002 with the Mixture. Conclusion The study confirms that the Mixture containing luteolin, arbutin, and marmesin indeed alleviates allergic asthma induced by OVA in mice by suppressing the PI3K/Akt signaling pathway. These findings highlight the potential of the GPH-derived Mixture as a novel therapeutic for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Chunhua Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| | - Yu He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
- School of Pharmacy, Guizhou Medical University, Guiyang, 561113, China
| | - Kun Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
- School of Pharmacy, Guizhou Medical University, Guiyang, 561113, China
| | - Hong Wang
- Department of Pediatrics, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Meng Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| | - Jia Sun
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Yuan Lu
- Computer Education and Information Technology Center, Guizhou Medical University,Guiyang, 561113, China
| | - Yong Huang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Yonglin Wang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Ting Liu
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| |
Collapse
|
13
|
Biswas B, Chattopadhyay S, Hazra S, Goswami R. Calcitriol Impairs the Secretion of IL-4 and IL-13 in Th2 Cells via Modulating the VDR-Gata3-Gfi1 Axis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:831-842. [PMID: 39082935 DOI: 10.4049/jimmunol.2400078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/16/2024] [Indexed: 09/05/2024]
Abstract
Calcitriol, the bioactive form of vitamin D, exerts its biological functions by binding to its cognate receptor, the vitamin D receptor (VDR). The indicators of the severity of allergies and asthma have been linked to low vitamin D levels. However, the role of calcitriol in regulating IL-4 and IL-13, two cytokines pivotal to allergic inflammation, remained unclear. Our study observed diminished IL-4 and IL-13 secretion in murine and human Th2 cells treated with calcitriol. In murine Th2 cells, Gata3 expression was attenuated by calcitriol. However, the expression of the transcriptional repressor Gfi1, too, was attenuated in the presence of calcitriol. Ectopic expression of either Gfi1 or VDR impaired the secretion of IL-13 in Th2 cells. In murine Th2 cells, VDR interacted with Gata3 but not Gfi1. Gfi1 significantly impaired Il13 promoter activation, which calcitriol failed to restore. Conversely, calcitriol augmented Gfi1 recruitment to the Il13 promoter. Ecr, a conserved region between these two genes, which enhanced the transactivation of Il4 and Il13 promoters, is essential for calcitriol-mediated suppression of both the genes. Calcitriol augmented the recruitment of VDR to the Il13 promoter and Ecr regions. Gata3 recruitment was significantly impaired at the Il13 and Ecr loci in the presence of calcitriol but increased at the Il4 promoter. Furthermore, the recruitment of the histone deacetylase HDAC1 was universally increased at the promoters of Il4, Il13, and Ecr when calcitriol was present. Together, our data clearly elucidate that calcitriol modulates VDR, Gata3, and Gfi1 to suppress IL-4 and IL-13 production in Th2 cells.
Collapse
Affiliation(s)
- Biswajit Biswas
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Shagnik Chattopadhyay
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Sayantee Hazra
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Ritobrata Goswami
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| |
Collapse
|
14
|
Zhao G, Wang Z, Zhang J, Lin Y, Zhou T, Liu K, Yang C, Liao C. Preclinical Development of SHR-1819, a Potent Humanized IL-4Rα Antibody for Treating Type 2 Inflammatory Diseases. J Inflamm Res 2024; 17:6375-6388. [PMID: 39296644 PMCID: PMC11410029 DOI: 10.2147/jir.s471963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/07/2024] [Indexed: 09/21/2024] Open
Abstract
Background Interleukin (IL)-4 and IL-13 are critical pathogenic factors for type 2 inflammation-related allergic diseases, sharing the mutual receptor subunit IL-4Rα. However, it was ineffective for certain type 2 inflammation diseases by targeting IL-4, IL-13 ligand alone or both in clinical studies. The work presented herein aimed to evaluate the preclinical efficacy and pharmacokinetics profile of a novel monoclonal antibody against IL-4Rα, SHR-1819, as a promising therapy for type 2 inflammation diseases. Methods SHR-1819 was generated through immunization by C57BL/6 mice with recombinant hIL-4Rα protein, followed by humanization and affinity maturation. Then, its binding properties with IL-4Rα were determined using surface plasmon resonance (SPR) and ELISA. In vitro inhibitory effects of SHR-1819 were assessed on hIL-4-/hIL-13-induced cell proliferation and signal transducer and activator of transcription 6 (STAT6) signaling activation. In vivo efficacy of SHR-1819 was evaluated in several type 2 inflammatory diseases models, including asthma, atopic dermatitis (AD), and allergic rhinitis (AR) by using hIL-4/hIL-4Rα transgenic mice. Furthermore, the pharmacokinetic (PK) profiles of SHR-1819 were characterized. Results SHR-1819 showed high binding affinity to human IL-4Rα and effectively blocked IL-4Rα at sub-nanomolar concentration. In vitro assays indicated that SHR-1819 significantly inhibited TF-1 cell proliferation and STAT6 activation induced by hIL-4/hIL-13. In the asthma model, SHR-1819 could reduce airway hyperresponsiveness, decrease serum IgE levels, and alleviated inflammatory lung cell infiltration. In the AD model, SHR-1819 could significantly alleviate inflammatory and skin symptoms. In the AR model, it could remarkably decrease the frequencies of nasal rubbing and sneezing, and inflammatory cell infiltration in nasal tissues. These in vivo efficacy studies demonstrated the therapeutic potential of SHR-1819 in preclinical disease models. Moreover, subcutaneous administration of SHR-1819 exhibited favorable bioavailability in mice. Conclusion The results supported SHR-1819 as a promising preclinical candidate for the treatment of type 2 inflammatory diseases, including asthma, AD and AR.
Collapse
Affiliation(s)
- Guolin Zhao
- Department of Preclinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, Jiangsu, People's Republic of China
- Department of Preclinical Research and Development, Shanghai Shengdi Pharmaceutical Co., Ltd., Shanghai, People's Republic of China
| | - Zhijun Wang
- Department of Preclinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, Jiangsu, People's Republic of China
- Department of Preclinical Research and Development, Shanghai Shengdi Pharmaceutical Co., Ltd., Shanghai, People's Republic of China
| | - Jun Zhang
- Department of Preclinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, Jiangsu, People's Republic of China
- Department of Preclinical Research and Development, Shanghai Shengdi Pharmaceutical Co., Ltd., Shanghai, People's Republic of China
| | - Yuan Lin
- Department of Preclinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, Jiangsu, People's Republic of China
- Department of Preclinical Research and Development, Shanghai Shengdi Pharmaceutical Co., Ltd., Shanghai, People's Republic of China
| | - Tang Zhou
- Department of Preclinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, Jiangsu, People's Republic of China
- Department of Preclinical Research and Development, Shanghai Shengdi Pharmaceutical Co., Ltd., Shanghai, People's Republic of China
| | - Kaili Liu
- Department of Preclinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, Jiangsu, People's Republic of China
- Department of Preclinical Research and Development, Shanghai Shengdi Pharmaceutical Co., Ltd., Shanghai, People's Republic of China
| | - Changyong Yang
- Department of Preclinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, Jiangsu, People's Republic of China
| | - Cheng Liao
- Department of Preclinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, Jiangsu, People's Republic of China
| |
Collapse
|
15
|
Zheng Y, Chen Q, Shi X, Lei L, Wang D. Causality between various cytokines and asthma: a bidirectional two-sample Mendelian randomization analysis. Front Med (Lausanne) 2024; 11:1447673. [PMID: 39175819 PMCID: PMC11338859 DOI: 10.3389/fmed.2024.1447673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Background Many studies have shown that cytokines play an important role in the pathogenesis of asthma, but their biological effects on asthma remain unclear. The Mendelian randomization (MR) method was used to evaluate the causal relationship between various cytokines [such as interleukins (ILs), interferons (IFNs), tumor necrosis factors (TNFs), colony-stimulating factors (CSFs), transforming growth factor (TGF), etc.,] and asthma. Methods In this study, inverse variance weighting was used to evaluate the causal relationship between asthma and cytokines. In addition, the reliability of the results is ensured by multiple methods such as MR-Egger, weighted median, MR-Raps, MR-Presso, and RadialMR, as well as sensitivity analysis. Results The results showed that none of the 11 cytokines was associated with the risk of asthma. In contrast, asthma can increase levels of IL-5 [odds ratio (OR) = 1.112, 95% confidence interval (CI): 1.009-1.224, P = 0.032] and IL-9 (OR = 1.111, 95% CI: 1.013-1.219, P = 0.025). Conclusion Genetically predicted asthma was positively associated with elevated levels of IL-5 and IL-9, indicating the downstream effects of IL-5 and IL-9 on asthma. Medical treatments can thus be designed to target IL-5 and IL-9 to prevent asthma exacerbations.
Collapse
Affiliation(s)
- Yansen Zheng
- Medical School, Huanghe Science and Technology College, Zhengzhou, China
| | - Qi Chen
- Jice Medical Institute, Xi’an, Shaanxi, China
| | - Xiaqing Shi
- Jice Medical Institute, Xi’an, Shaanxi, China
| | - Lei Lei
- Jice Medical Institute, Xi’an, Shaanxi, China
| | - Donglin Wang
- Medical School, Huanghe Science and Technology College, Zhengzhou, China
| |
Collapse
|
16
|
Cui W, Jin Z, Lin H, Wang B, Chen G, Cheng Y. Astragalus polysaccharide alleviates IL-13-induced oxidative stress injury in nasal epithelial cells by inhibiting WTAP-mediated FBXW7 m 6A modification. Toxicol Res (Camb) 2024; 13:tfae099. [PMID: 38957784 PMCID: PMC11215160 DOI: 10.1093/toxres/tfae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/10/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
Background Allergic rhinitis (AR) a common and complicated upper airway disease mediated by specific IgE antibodies. Our study aims to explore the pharmacological effects of astragalus polysaccharide (APS) on AR and elucidate the mechanisms involved. Methods RT-qPCR and Western blotting were used to analyze mRNA and protein expression. Interleukin (IL)-13-treated human nasal epithelial cells (hNECs) was employed as the AR cell model. Cell apoptosis and viability were evaluated by TUNEL staining and MTT assay, respectively. ROS level was examined by the DCFH-DA probe. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) levels were measured by the corresponding kits. FBXW7 m6A modification level was assessed by MeRIP assay. Methods Our results showed that APS treatment reduced cell apoptosis, ROS, and MDA levels while increasing SOD, CAT, and GSH-Px levels in IL-13-treated hNECs by activating the Nrf2/HO-1 pathway. Moreover, APS alleviated IL-13-induced oxidative stress injury in hNECs by downregulating WTAP. In addition, WTAP knockdown increased FBXW7 mRNA stability by regulating FBXW7 mRNA m6A modification. It also turned out that APS alleviated IL-13-induced oxidative stress injury in hNECs through the WTAP/FBXW7 axis. Conclusions Taken together, APS inhibited WTAP-mediated FBXW7 m6A modification to alleviate IL-13-induced oxidative stress injury in hNECs.
Collapse
Affiliation(s)
- Wei Cui
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Baiyun District, Guangzhou 510405, People's Republic of China
- Affiliated Jiangmen Traditional Chinese Medicine Hospital of Jinan University, Preventive Treatment Department. No. 30 Huayuan East Road, Pengjiang District, Jiangmen City, Guangdong Province, China
| | - Zhenglong Jin
- Affiliated Jiangmen Traditional Chinese Medicine Hospital of Jinan University, Preventive Treatment Department. No. 30 Huayuan East Road, Pengjiang District, Jiangmen City, Guangdong Province, China
| | - Hanyu Lin
- Affiliated Jiangmen Traditional Chinese Medicine Hospital of Jinan University, Preventive Treatment Department. No. 30 Huayuan East Road, Pengjiang District, Jiangmen City, Guangdong Province, China
| | - Bin Wang
- Shenzhen Bao’an Authentic TCM Therapy Hospital, Preventive Treatment Department. No. 99 Lai'an Road Xixiang Street, Bao'an District, Shenzhen City, Guangdong Province 518000, P.R. China
| | - Guojian Chen
- Affiliated Jiangmen Traditional Chinese Medicine Hospital of Jinan University, Preventive Treatment Department. No. 30 Huayuan East Road, Pengjiang District, Jiangmen City, Guangdong Province, China
| | - Yongming Cheng
- Affiliated Jiangmen Traditional Chinese Medicine Hospital of Jinan University, Preventive Treatment Department. No. 30 Huayuan East Road, Pengjiang District, Jiangmen City, Guangdong Province, China
| |
Collapse
|
17
|
Yuan C, Lin X, Liao R. Decoding the genetic landscape of allergic rhinitis: a comprehensive network analysis revealing key genes and potential therapeutic targets. J Asthma 2024; 61:823-834. [PMID: 38266128 DOI: 10.1080/02770903.2024.2306619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/13/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Allergic Rhinitis (AR), an inflammatory affliction impacting the upper respiratory tract, has been registering a substantial surge in incidence across the globe. METHODS We embarked on examination of differentially expressed genes (DEGs) and the Weighted Gene Co-Expression Network Analysis (WGCNA). With this armory of genes identified, we engaged the tools of Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Our study continued with the establishment of a protein-protein interaction (PPI) network and the application of LASSO regression. Finally, we leveraged a docking model to elucidate potential drug-gene interactions involving these key genes. RESULTS Through WGCNA and different express genes screening, PPI network was performed, identifying top 20 key genes, including CD44, CD69, CD274. LASSO regression identified three independent factors, STARD5, CST1, and CHAC1, that were significantly associated with AR. A predictive model was developed with an AUC value over 0.75. Also, 105 potential therapeutic agents were discovered, including Fluorouracil, Cyclophosphamide, Doxorubicin, and Hydrocortisone, offering promising therapeutic strategies for AR. CONCLUSION By fuzing DEGs with key genes derived from WGCNA, this study has illuminated a comprehensive network of gene interactions involved in the pathogenesis of AR, paving the way for future biomarker and therapeutic target discovery in AR.
Collapse
Affiliation(s)
- Chile Yuan
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaohong Lin
- WEN Ziyuan Pediatric Academic School Inheritance Studio, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ruosha Liao
- Department of Pediatrics, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Yu L, Bi J, Xu B, Yu B, Fu Y. Clinical significance of T helper-1/T helper-2 cytokines in peripheral blood of children with otitis media with effusion and allergic rhinitis. Int J Pediatr Otorhinolaryngol 2024; 182:111996. [PMID: 38879907 DOI: 10.1016/j.ijporl.2024.111996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024]
Abstract
OBJECTIVE Otitis media with effusion (OME) is a prevalent and costly disease, especially in children. This article analyzed the expression patterns and clinical significance of T helper-1 (Th1)/Th2 cytokines in the peripheral blood of children with OME and allergic rhinitis (AR). METHODS Subjects were assigned to the OME + AR group and the Control group (children with OME), with their clinical baseline data documented. The correlations between Th1/Th2 cytokines and between the total nasal symptom score (TNSS) and Th1/Th2 cytokines were analyzed. The risk factors and the predictive value of Th1/Th2 cytokines for OME + AR were analyzed using logistics multivariate regression analysis and receiver operating characteristic curve. RESULTS Significant differences were observed in tympanic pressure/speech frequency/air conduction valve/TNSS score/immunoglobulin E (IgE) level between both groups. The OME + AR children exhibited evidently elevated interleukin-2 (IL-2)/tumor necrosis factor-α (TNF-α)/IL-4/IL-10/IL-6 levels and no significant difference in interferon-γ (IFN-γ) level. Th1/Th2 cytokines were remarkably positively-correlated with the TNSS score. IL-2/TNF-α/IL-4/IL-6 were risk factors for OME with AR. The area under the curves (AUCs) of IL-6/IL-2/IL-4/TNF-α levels in predicting the occurrence of OME + AR were 0.805/0.806/0.775/0.781, with sensitivities of 75.76 %/89.39 %/72.21 %/72.73 % and specificities of 74.29 %/61.34 %/72.86 %/70.00 %, and the cut-off values were 239.600/20.300/29.880/34.800 (pg/mL). The AUC of their combination in predicting OME + AR was 0.955 (93.94 % sensitivity, 85.71 % specificity). CONCLUSION Th1/Th2 cytokine levels were imbalanced and obviously positively-correlated with the TNSS score in OME + AR children. IL-2, TNF-α, IL-4, and IL-6 levels had auxiliary predictive value in the occurrence of OME + AR.
Collapse
Affiliation(s)
- Lulu Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Bi
- Department of Otorhinolaryngology-Head and Neck Surgery, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Fu
- Department of Otorhinolaryngology-Head and Neck Surgery, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
19
|
Tharabenjasin P, Moonwiriyakit A, Sontikun J, Timpratueang K, Kuno S, Aiebchun T, Jongkon N, Mongkolrob R, Pabalan N, Choowongkomon K, Muanprasat C. The barrier-protective effect of β-eudesmol against type 2-inflammatory cytokine-induced tight junction disassembly in airway epithelial cells. PLoS One 2024; 19:e0302851. [PMID: 38687777 PMCID: PMC11060601 DOI: 10.1371/journal.pone.0302851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 04/14/2024] [Indexed: 05/02/2024] Open
Abstract
Allergic inflammation, which is the pathogenesis of allergic rhinitis and asthma, is associated with disruption of the airway epithelial barrier due to the effects of type 2 inflammatory cytokines, i.e. interleukin-4 and interleukin-13 (IL-4/13). The anti-allergic inflammatory effect of β-eudesmol (BE) on the tight junction (TJ) of the airway epithelium has not previously been reported. Herein, the barrier protective effect of BE was determined by measurement of transepithelial electrical resistance and by paracellular permeability assay in an IL-4/13-treated 16HBE14o- monolayer. Pre-treatment of BE concentration- and time- dependently inhibited IL-4/13-induced TJ barrier disruption, with the most significant effect observed at 20 μM. Cytotoxicity analyses showed that BE, either alone or in combination with IL-4/13, had no effect on cell viability. Western blot and immunofluorescence analyses showed that BE inhibited IL-4/13-induced mislocalization of TJ components, including occludin and zonula occludens-1 (ZO-1), without affecting the expression of these two proteins. In addition, the mechanism of the TJ-protective effect of BE was mediated by inhibition of IL-4/13-induced STAT6 phosphorylation, in which BE might serve as an antagonist of cytokine receptors. In silico molecular docking analysis demonstrated that BE potentially interacted with the site I pocket of the type 2 IL-4 receptor, likely at Asn-126 and Tyr-127 amino acid residues. It can therefore be concluded that BE is able to prevent IL-4/13-induced TJ disassembly by interfering with cytokine-receptor interaction, leading to suppression of STAT6-induced mislocalization of occludin and ZO-1. BE is a promising candidate for a therapeutic intervention for inflammatory airway epithelial disorders driven by IL-4/13.
Collapse
Affiliation(s)
- Phuntila Tharabenjasin
- Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Klongluang, Pathumthani, Thailand
| | - Aekkacha Moonwiriyakit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakan, Thailand
| | - Jenjira Sontikun
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakan, Thailand
| | - Kanokphorn Timpratueang
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakan, Thailand
| | - Suhaibee Kuno
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakan, Thailand
| | - Thitinan Aiebchun
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Nathjanan Jongkon
- Department of Social and Applied Science, College of Industrial Technology, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| | - Rungrawee Mongkolrob
- Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Klongluang, Pathumthani, Thailand
| | - Noel Pabalan
- Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Klongluang, Pathumthani, Thailand
| | | | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakan, Thailand
| |
Collapse
|
20
|
Xerfan EMS, Andersen ML, Tufik S, Facina AS, Tomimori J. The impact on the quality of life and sleep complaints in a vitiligo sample and the influence of inflammatory cytokines in the interaction between vitiligo and sleep. Cytokine 2024; 176:156493. [PMID: 38246012 DOI: 10.1016/j.cyto.2023.156493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/21/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Vitiligo is an autoimmune dermatosis that affects quality of life, which englobes sleep quality. Sleep regulates the immune system, including inflammatory cytokines, and other pathways, which may influence vitiligo pathogenesis. OBJECTIVES To analyze levels of immune serum components (cytokines) in a vitiligo group, and assess whether there was any association with sleep. METHODS This study comprised 30 vitiligo patients and 26 control individuals. Quality of life and sleep questionnaires were completed [Dermatology Life Quality Index (DLQI), Short-Form Health Survey (SF-36), Pittsburgh Sleep Quality Index (PSQI) and Insomnia Severity Index (ISI)]. Seven cytokines have been measured: IFN-γ, interleukin (IL)-4, IL-6, IL-10, IL-17A, IL-12 p40 and TNF-α. RESULTS The mean age of the vitiligo group was 47.7 years-old, with prevalence of females (66.7 %). Mucosal (70 %), acral (60 %) and focal subtype (53.3 %) predominated. Signs of vitiligo activity were identified in 63.3 % of the disease sample. Total PSQI scores and scores for domain 4 (sleep efficiency) were statistically worse in vitiligo group. The SF-36 and ISI total scores were worse in the vitiligo group, although not statistically significant compared with controls. Four SF-36 domains were statistically worse in vitiligo sample, and the DLQI mean score was mild to moderate (5.57). Cytokine levels were not different between groups, or when associated with PSQI. Higher ISI scores (more severe insomnia) were related to increased IL-17A. Higher IL-4, IL-6 and IL-10 levels were associated with previous phototherapy. CONCLUSIONS Poor sleep and impaired aspects of quality of life predominated in the vitiligo sample. Insomnia was related to IL-17A increase in vitiligo. Increased levels of IL-4, IL-6 and IL-10 were related to previous ultraviolet B narrow band (UVB-NB) phototherapy, suggesting an interaction of this treatment on immune system. Sleep disruption and the course of vitiligo may have common pathways in respect of circadian cytokines, which may represent an important subject in vitiligo management.
Collapse
Affiliation(s)
- Ellen M S Xerfan
- Postgraduate Program In Translational Medicine, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Dermatology, Hospital São Paulo, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Monica L Andersen
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil; Sleep Institute, São Paulo, Brazil
| | - Sergio Tufik
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil; Sleep Institute, São Paulo, Brazil
| | - Anamaria S Facina
- Department of Dermatology, Hospital São Paulo, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Jane Tomimori
- Postgraduate Program In Translational Medicine, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Dermatology, Hospital São Paulo, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Hu X, Liu S, Jing Z, He Y, Qin G, Jiang L. Immunomodulation in allergic rhinitis: Insights from Th2 cells and NLRP3/IL-18 pathway. Cell Biochem Funct 2024; 42:e3997. [PMID: 38555506 DOI: 10.1002/cbf.3997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
Allergic rhinitis (AR) is characterized by nasal symptoms such as rubbing and sneezing, often triggered by allergen exposure. The purpose of this study is to dissect the roles of NLRP3-mediated immune modulation and macrophage pyroptosis in modulating T cell differentiation within the context of ovalbumin (OVA)-induced AR in mice. OVA-induced AR was established in mice, evaluating nasal symptoms, macrophage infiltration, cytokine levels, and T cell differentiation. Manipulations using NLRP3-/-, ASC-/- mice, clodronate liposome treatment, and NLRP3 inhibitor MCC950 were performed to assess their impact on AR symptoms and immune responses. Following OVA stimulation, increased nasal symptoms were observed in the OVA group along with augmented GATA3 expression and elevated IL-4 and IL-1b levels, indicative of Th2 polarization and cellular pyroptosis involvement. NLRP3-/- and ASC-/- mice exhibited reduced CD3+ T cells post OVA induction, implicating cellular pyroptosis in AR. Macrophage depletion led to decreased IgE levels, highlighting their involvement in allergic responses. Further investigations revealed enhanced macrophage pyroptosis, influencing Th1/Th2 differentiation in AR models. IL-18 released through NLRP3-mediated pyroptosis induced Th2 differentiation, distinct from IL-1b. Additionally, MCC950 effectively mitigated AR symptoms by modulating Th2 responses and reducing macrophage infiltration. This comprehensive study unravels the pivotal role of NLRP3-mediated immune modulation and macrophage pyroptosis in Th1/Th2 balance regulation in OVA-induced AR. Targeting NLRP3 pathways with MCC950 emerged as a promising strategy to alleviate AR symptoms, providing insights for potential therapeutic interventions in AR management.
Collapse
Affiliation(s)
- Xiaoyan Hu
- Department of Pathogen Biology, School of Basic Medicine Southwest Medical University, Luzhou, China
- Public Center of Experimental Technology of Pathogen Biology Technology Platform Southwest Medical University, Luzhou, China
| | - Shuang Liu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhang Jing
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuxiao He
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Gang Qin
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Liang Jiang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
22
|
Adilis Maria Paiva Ferreira L, Karla Diega Paiva Ferreira L, Fragoso Pereira Cavalcanti R, Allysson de Assis Ferreira Gadelha F, Mangueira de Lima L, Francisco Alves A, Gabriel Lima Júnior C, Regina Piuvezam M. Morita-Baylis-Hillman adduct 2-(3-hydroxy-1-methyl-2-oxoindolin-3-il) acrylonitrile (CISACN) ameliorates the pulmonary allergic inflammation in CARAS model by increasing IFN-γ/IL-4 ratio towards the Th1 immune response. Int Immunopharmacol 2024; 130:111737. [PMID: 38401465 DOI: 10.1016/j.intimp.2024.111737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Combined allergic rhinitis and asthma syndrome (CARAS) is an airway-type 2 immune response with a profuse inflammatory process widely affecting the world population. Due to the compromise of quality of life and the lack of specific pharmacotherapy, the search for new molecules becomes relevant. This study aimed to evaluate the effectiveness of the Morita-Bailys-Hillman adduct (CISACN) treatment in the CARAS experimental model. Female BALB/c mice were ovalbumin (OVA) -sensitized and -challenged and treated with CISACN. The treatment decreased the eosinophil migration to the nasal and lung cavities and tissues and the goblet cell hyperplasia/hypertrophy, attenuated airway hyperactivity by reducing the hyperplasia/hypertrophy of the smooth muscle and the extracellular matrix's thickness. Also, the treatment reduced the clinical signs of rhinitis as nasal rubbing and sneezing in a histamine-induced nasal hyperreactivity assay. The immunomodulatory effect of CISACN was by reducing OVA-specific IgE serum level, and IL-33, IL-4, IL-13, and TGF-β production, dependent on IFN-γ increase. Furthermore, the effect of CISACN on lung granulocytes was by decreasing the p-p38MAPK/p65NF-κB signaling pathway. Indeed, CISACN reduced the p38MAPK and p65NF-κB activation. These data demonstrated the anti-inflammatory and immunomodulatory effects of the CISACN with scientific support to become a pharmacological tool to treat airway inflammatory diseases.
Collapse
Affiliation(s)
- Larissa Adilis Maria Paiva Ferreira
- Laboratory of Immunopharmacology, Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | - Raquel Fragoso Pereira Cavalcanti
- Laboratory of Immunopharmacology, Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | - Louise Mangueira de Lima
- Laboratory of Immunopharmacology, Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Adriano Francisco Alves
- Department of Physiology and Pathology, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | - Marcia Regina Piuvezam
- Laboratory of Immunopharmacology, Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil; Drug Research Institute of the Federal University of Paraíba, Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil.
| |
Collapse
|
23
|
Kun W, Xiaomei C, Lei Y, Huizhi Z. Modulating Th1/Th2 drift in asthma-related immune inflammation by enhancing bone mesenchymal stem cell homing through targeted inhibition of the Notch1/Jagged1 signaling pathway. Int Immunopharmacol 2024; 130:111713. [PMID: 38387192 DOI: 10.1016/j.intimp.2024.111713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/29/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Asthma, a disease intricately linked to immune inflammation, is significantly influenced by the immune regulatory effect of bone mesenchymal stem cells (BMSCs). This study aims to investigate changes in the homing of BMSCs in bronchial asthma, focusing on the Notch homolog (Notch)1/Jagged1 signaling pathway's role in regulating T helper 1(Th1)/T helper 2(Th2) drift. Additionally, we further explore the effects and mechanisms of homologous BMSCs implantation in asthma-related immune inflammation. Following intervention with BMSCs, a significant improvement in the pathology of rats with asthma was observed. Simultaneously, a reduction in the expression of inflammatory cells and inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin(IL)-4, and IL-13 was observed in bronchoalveolar lavage fluid (BALF). Furthermore, there was an increase in the expression of Th1 cytokine Interferon-γ(IFN-γ)and the transcription factor T-box expressed in T cell (T-bet), while the expression of Th2 cytokine IL-13 and transcription factor GATA binding protein (GATA)-3 decreased in lung tissue. This indicates that the Th1/Th2 drift leans towards Th1, which a crucial in ameliorating asthma inflammation. Importantly, inhibition of the Notch1 signaling pathway led to an increased expression of the Stromal cell-derived factor-1(SDF-1)/C-X-C motif chemokine receptor (CXCR)4 chemokine axis. Consequently, the homing ability of bone marrow mesenchymal stem cells to asthma-affected lung tissue was significantly enhanced. BMSCs demonstrated heightened efficacy in regulating the cytokine/chemokine network and Th1/Th2 balance, thereby restoring a stable state during the immune response process in asthma. In conclusion, inhibiting the Notch signaling pathway enhances the expression of the SDF-1 and CXCR4 chemokine axis, facilitating the migration of allogeneic BMSCs to injured lung tissues. This, in turn, promotes immune regulation and improves the Th1/Th2 imbalance, thereby enhancing the therapeutic effect on asthmatic airway inflammation.
Collapse
Affiliation(s)
- Wang Kun
- Huixue Research Center, Anhui University of Chinese Medicine, Hefei 230038, China; College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; Key Laboratory of Xin'an Medical Science, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Cao Xiaomei
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yang Lei
- Intensive Care Department, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230061, China
| | - Zhu Huizhi
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China.
| |
Collapse
|
24
|
Ciprandi G, Miraglia del Giudice M, Drago L. Progress on probiotics as add-on therapy for allergic rhinitis. REVUE FRANÇAISE D'ALLERGOLOGIE 2024; 64:103766. [DOI: 10.1016/j.reval.2023.103766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
25
|
Ridolo E, Barone A, Ottoni M, Peveri S, Montagni M, Nicoletta F. The New Therapeutic Frontiers in the Treatment of Eosinophilic Esophagitis: Biological Drugs. Int J Mol Sci 2024; 25:1702. [PMID: 38338983 PMCID: PMC10855546 DOI: 10.3390/ijms25031702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Eosinophilic esophagitis (EoE) is a multifaceted disease characterized by a wide heterogeneity of clinical manifestations, endoscopic and histopathologic patterns, and responsiveness to therapy. From the perspective of an effective approach to the patient, the different inflammatory mechanisms involved in the pathogenesis of EoE and biologics, in particular monoclonal antibodies (mAbs), targeting these pathways are needed. Currently, the most relevant is dupilumab, which interferes with both interleukin (IL)-4 and IL-13 pathways by binding IL-4 receptor α, and is the only mAb approved by the European Medicine Agency and US Food and Drug Administration for the treatment of EoE. Other mAbs investigated include mepolizumab, reslizumab, and benralizumab (interfering with IL-5 axis), cendakimab and dectrekumab (anti-IL-13s), tezepelumab (anti-TSLP), lirentelimab (anti-SIGLEG-8), and many others. Despite the undeniable economic impact of biologic therapies, in the near future, there will be room for further reflection about the opportunity to prescribe biologic agents, not only as a last-line therapy in selected cases such as patients with comorbidities involving common pathways. Although recent findings are very encouraging, the road to permanent success in the treatment of EoE is still long, and further studies are needed to determine the long-term effects of mAbs and to discover new potential targets.
Collapse
Affiliation(s)
- Erminia Ridolo
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Alessandro Barone
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Martina Ottoni
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Silvia Peveri
- Departmental Unit of Allergology, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy
| | - Marcello Montagni
- Departmental Unit of Allergology, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy
| | | |
Collapse
|
26
|
Han H, Chen G, Zhang B, Zhang X, He J, Du W, Li MD. Probiotic Lactobacillus plantarum GUANKE effectively alleviates allergic rhinitis symptoms by modulating functions of various cytokines and chemokines. Front Nutr 2024; 10:1291100. [PMID: 38288067 PMCID: PMC10822906 DOI: 10.3389/fnut.2023.1291100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Background Currently, the prevalence of allergic rhinitis (AR) remains high and there is a great need to develop better and safer ways to alleviate AR symptoms. The Lactobacillus plantarum GUANKE probiotic was reported as an immunomodulator through maintaining Th1/Th2 balance. This study aimed to determine the efficacy of GUANKE in AR subjects. Methods Adults aged from 18 to 60 years old and previously suffered from AR were recruited and received GUANKE probiotics treatment for 4 weeks. The questionnaires of Total nasal symptom scores (TNSS), total non-nasal symptom score (TNNSS), and rhinitis control assessment test (RCAT) were used to assess the effectiveness before and after treatment. The serum allergen-specific IgE and cytokines were also determined at baseline and after 4 weeks of probiotics administration. Results The results showed that TNSS and TNNSS were significantly reduced and the RCAT score was significantly increased compared to baseline. The sub-symptom score of rhinorrhea, itching, sneezing, and tearing in each questionnaire also showed significant changes, and the serum IgE level was markedly decreased. We further measured inflammatory-related proteins in serum and found that a total of 20 proteins (6 upregulated and 14 downregulated) were significantly changed compared to baseline, including IL-4, IL-7, IL-20, IL-33, CXCL1, CXCL5, CXCL6, CXCL11, CCL4, CCL23, TGF-alpha, LAP-TGF-beta-1, MMP-1, MMP-10, AXIN1, NT-3, OSM, SCF, CD6, and NRTN. Enrichment analysis showed that these significantly altered proteins were mainly enriched in cytokine and chemokine-related signaling pathways. Conclusion Taken together, this study demonstrated the Lactobacillus plantarum GUANKE can serve as an effective immunobiotic for the treatment of AR, which is realized through maintaining the Th1/Th2 balance by modulating the functions of various cytokines and chemokines.
Collapse
Affiliation(s)
- Haijun Han
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoliang Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Bin Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuewen Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingmin He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- College of Biological Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Wenjuan Du
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
27
|
Lee JW, Kim EN, Jeong GS. Anti-Inflammatory Herbal Extracts and Their Drug Discovery Perspective in Atopic Dermatitis. Biomol Ther (Seoul) 2024; 32:25-37. [PMID: 38148551 PMCID: PMC10762282 DOI: 10.4062/biomolther.2023.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 12/28/2023] Open
Abstract
Atopic dermatitis (AD) is an allergic disorder characterized by skin inflammation. It is well known that the activation of various inflammatory cells and the generation of inflammatory molecules are closely linked to the development of AD. There is accumulating evidence demonstrating the beneficial effects of herbal extracts (HEs) on the regulation of inflammatory response in both in vitro and in vivo studies of AD. This review summarizes the anti-atopic effects of HEs and its associated underlying mechanisms, with a brief introduction of in vitro and in vivo experiment models of AD based on previous and recent studies. Thus, this review confirms the utility of HEs for AD therapy.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Eun-Nam Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
28
|
Xu J, Yu Z, Liu X. Angiotensin-(1-7) suppresses airway inflammation and airway remodeling via inhibiting ATG5 in allergic asthma. BMC Pulm Med 2023; 23:422. [PMID: 37919667 PMCID: PMC10623740 DOI: 10.1186/s12890-023-02719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Angiotensin (Ang)-(1-7) can reduce airway inflammation and airway remodeling in allergic asthma. Autophagy-related 5 (ATG5) has attracted wide attentions in asthma. However, the effects of Ang-(1-7) on ATG5-mediated autophagy in allergic asthma are unclear. METHODS In this study, human bronchial epithelial cell (BEAS-2B) and human bronchial smooth muscle cell (HBSMC) were treated with different dose of Ang-(1-7) to observe changes of cell viability. Changes of ATG5 protein expression were measured in 10 ng/mL of interleukin (IL)-13-treated cells. Transfection of ATG5 small interference RNA (siRNA) or ATG5 cDNA in cells was used to analyze the effects of ATG5 on secretion of cytokines in the IL-13-treated cells. The effects of Ang-(1-7) were compared to the effects of ATG5 siRNA transfection or ATG5 cDNA transfection in the IL-13-treated cells. In wild-type (WT) mice and ATG5 knockout (ATG5-/-) mice, ovalbumin (OVA)-induced airway inflammation, fibrosis and autophagy were observed. In the OVA-induced WT mice, Ang-(1-7) treatment was performed to observe its effects on airway inflammation, fibrosis and autophagy. RESULTS The results showed that ATG5 protein level was decreased with Ang-(1-7) dose administration in the IL-13-treated BEAS-2B and IL13-treated HBSMC. Ang-(1-7) played similar results to ATG5 siRNA that it suppressed the secretion of IL-25 and IL-13 in the IL-13-treated BEAS-2B cells, and inhibited the expression of transforming growth factor (TGF)-β1 and α-smooth muscle actin (α-SMA) protein in the IL-13-treated HBSMC cells. ATG5 cDNA treatment significantly increased the secretion of IL-25 and IL-13 and expression of TGF-β1 and α-SMA protein in IL-13-treated cells. Ang-(1-7) treatment suppressed the effects of ATG5 cDNA in the IL-13-treated cells. In OVA-induced WT mice, Ang-(1-7) treatment suppressed airway inflammation, remodeling and autophagy. ATG5 knockout also suppressed the airway inflammation, remodeling and autophagy. CONCLUSIONS Ang-(1-7) treatment suppressed airway inflammation and remodeling in allergic asthma through inhibiting ATG5, providing an underlying mechanism of Ang-(1-7) for allergic asthma treatment.
Collapse
Affiliation(s)
- Jianfeng Xu
- Department of Pulmonary and Critical Care Medicine, Yantai Yuhuangding Hospital, No.20, Yuhuangding East Road, Zhifu District, Yantai, 264001, China
| | - Zhenyu Yu
- Department of Anesthesiology, Yantai Yuhuangding Hospital, Yantai, 246001, China
| | - Xueping Liu
- Department of Pulmonary and Critical Care Medicine, Yantai Yuhuangding Hospital, No.20, Yuhuangding East Road, Zhifu District, Yantai, 264001, China.
| |
Collapse
|
29
|
Hong D, Hu Z, Weng J, Yang L, Xiong Y, Liu Y. Effect of mesenchymal stem cell therapy in animal models of allergic rhinitis: A systematic review and meta-analysis. Int Immunopharmacol 2023; 124:111003. [PMID: 37806104 DOI: 10.1016/j.intimp.2023.111003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Allergic rhinitis (AR) is a worldwide problem that affects people of all ages, impairing patients' physical and mental health and causing great social expenditure. Animal studies have suggested the potential efficacy of mesenchymal stem cell (MSC) therapy in treating AR. Our meta-analysis was performed to evaluate the effect of MSC therapy in animal models of AR by pooling animal studies. METHODS The search was executed in PubMed, Embase, Web of Science, OVID, and the Cochrane Library for relevant studies up to February 2023. The applicable data were extracted from the eligible studies, and the risk of bias was assessed for each study. The meta-analysis was conducted using Review Manager (version 5.4.1) and Stata (version 15.1). RESULTS A total of 12 studies were included in the final analysis. Compared to the model control group, the MSC therapy group presented lower frequency of sneezing [(Standardized mean difference (SMD) -1.87, 95% CI -2.30 to -1.43)], nasal scratching (SMD -1.41, 95% CI -1.83 to -0.99), and overall nasal symptoms (SMD -1.88, 95% CI -3.22 to -0.54). There were also remarkable reductions after transplantation with MSCs in the levels of total immunoglobulin E (IgE) (SMD -1.25, 95% CI -1.72 to -0.79), allergen-specific IgE (SMD -1.79, 95% CI -2.25 to -1.32), and allergen-specific immunoglobulin G1 (SMD -1.29, 95% CI -2.03) in serum, as well as the count of eosinophils (EOS) in nasal mucosa (SMD -3.48, 95% CI -4.48 to -2.49). In terms of cytokines, MSC therapy significantly decreased both protein and mRNA levels of T helper cell 2 (Th2)-related cytokines, including interleukin (IL)-4, IL-5, IL-10, and IL-13. CONCLUSION MSC therapy has the potential to be an effective clinical treatment for AR patients by attenuating Th2 immune responses, reducing secretion of IgE and nasal infiltration of EOS, and consequently alleviating nasal symptoms.
Collapse
Affiliation(s)
- Dongdong Hong
- Department of Otorhinolaryngology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Zhen Hu
- Department of Otorhinolaryngology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Juanling Weng
- Department of Otorhinolaryngology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Long Yang
- Department of Otorhinolaryngology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Yalan Xiong
- Department of Otorhinolaryngology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Yuanxian Liu
- Department of Otorhinolaryngology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China.
| |
Collapse
|
30
|
Kawashima R, Tamaki S, Hara Y, Maekawa T, Kawakami F, Ichikawa T. Interleukin-13 Mediates Non-Steroidal Anti-Inflammatory-Drug-Induced Small Intestinal Mucosal Injury with Ulceration. Int J Mol Sci 2023; 24:14971. [PMID: 37834420 PMCID: PMC10573871 DOI: 10.3390/ijms241914971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs), which are antipyretics and analgesics, cause gastrointestinal disorders, such as inflammation and ulcers. To prescribe NSAIDs more safely, it is important to clarify the mechanism of NSAID-induced gastrointestinal mucosal injury. However, there is a paucity of studies on small intestinal mucosal damage by NSAIDs, and it is currently unknown whether inflammation and ulceration also occur in the small intestine, and whether mediators are involved in the mechanism of injury. Therefore, in this study, we created an animal model in which small intestinal mucosal injury was induced using NSAIDs (indomethacin; IDM). Focusing on the dynamics of immune regulatory factors related to the injury, we aimed to elucidate the pathophysiological mechanism involved. We analyzed the pathological changes in the small intestine, the expression of immunoregulatory factors (cytokines), and identified cytokine secretion and expression cells from isolated lamina propria mononuclear cells (LPMCs). Ulcers were formed in the small intestine by administering IDM. Although the mRNA expression levels of IL-1β, IL-6, and TNFα were decreased on day 7 after IDM administration, IL-13 mRNA levels increased from day 3 after IDM administration and remained high even on day 7. The IL-13 mRNA expression and the secretion of IL-13 were increased in small intestinal LPMCs isolated from the IDM-treated group. In addition, we confirmed that IL-13 was expressed in CD4-positive T cells. These results provided new evidence that IL-13 production from CD4-positive T cells in the lamina propria of the small intestine contributes to NSAID-induced mucosal injury.
Collapse
Affiliation(s)
- Rei Kawashima
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara 252-0374, Japan; (S.T.); (Y.H.); (T.M.); (F.K.); (T.I.)
- Department of Biochemistry, Kitasato University School of Allied Health Sciences, Sagamihara 252-0373, Japan
- Regenerative Medicine and Cell Design Research Facility, Kitasato University School of Allied Health Sciences, Sagamihara 252-0373, Japan
| | - Shun Tamaki
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara 252-0374, Japan; (S.T.); (Y.H.); (T.M.); (F.K.); (T.I.)
- Department of Biochemistry, Kitasato University School of Allied Health Sciences, Sagamihara 252-0373, Japan
- Regenerative Medicine and Cell Design Research Facility, Kitasato University School of Allied Health Sciences, Sagamihara 252-0373, Japan
| | - Yusuke Hara
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara 252-0374, Japan; (S.T.); (Y.H.); (T.M.); (F.K.); (T.I.)
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
- Department of Gastroenterology, Kitasato University Graduate School of Medical Sciences, Sagamihara 252-0374, Japan
| | - Tatsunori Maekawa
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara 252-0374, Japan; (S.T.); (Y.H.); (T.M.); (F.K.); (T.I.)
- Department of Biochemistry, Kitasato University School of Allied Health Sciences, Sagamihara 252-0373, Japan
- Regenerative Medicine and Cell Design Research Facility, Kitasato University School of Allied Health Sciences, Sagamihara 252-0373, Japan
| | - Fumitaka Kawakami
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara 252-0374, Japan; (S.T.); (Y.H.); (T.M.); (F.K.); (T.I.)
- Regenerative Medicine and Cell Design Research Facility, Kitasato University School of Allied Health Sciences, Sagamihara 252-0373, Japan
- Department of Health Science, Kitasato University School of Allied Health Sciences, Sagamihara 252-0373, Japan
| | - Takafumi Ichikawa
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara 252-0374, Japan; (S.T.); (Y.H.); (T.M.); (F.K.); (T.I.)
- Department of Biochemistry, Kitasato University School of Allied Health Sciences, Sagamihara 252-0373, Japan
- Regenerative Medicine and Cell Design Research Facility, Kitasato University School of Allied Health Sciences, Sagamihara 252-0373, Japan
| |
Collapse
|
31
|
Shilovskiy IP, Kovchina VI, Timotievich ED, Nikolskii AA, Khaitov MR. Role and Molecular Mechanisms of Alternative Splicing of Th2-Cytokines IL-4 and IL-5 in Atopic Bronchial Asthma. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1608-1621. [PMID: 38105028 DOI: 10.1134/s0006297923100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 12/19/2023]
Abstract
Bronchial asthma (BA) is a heterogeneous chronic inflammatory disease of the respiratory tract. Allergic (atopic) asthma is the most common (up to 80% of cases) phenotype developing through the Th2-dependent mechanisms involving cytokines: IL-4, IL-5, IL-9, and IL-13. The genes encoding Th2-cytokines have a mosaic structure (encode exons and introns). Therefore, several mature mRNA transcripts and protein isoforms can be derived from a single mRNA precursor through alternative splicing, and they may contribute to BA pathogenesis. Analysis of the published studies and databases revealed existence of the alternative mRNA transcripts for IL-4, IL-5, and IL-13. The alternative transcripts of IL-4 and IL-5 carry open reading frames and therefore can encode functional proteins. It was shown that not only alternative mRNA transcripts exist for IL-4, but alternative protein isoforms, as well. Natural protein isoform (IL-4δ2) lacking the part encoded by exon-2 was identified. Similarly, alternative mRNA transcript with deleted exon-2 (IL-5δ2) was also identified for IL-5. In this review, we summarize current knowledge about the identified alternative mRNA transcripts and protein isoforms of Th2-cytokinins, first of all IL-4 and IL-5. We have analyzed biological properties of the alternative variants of these cytokines, their possible role in the allergic asthma pathogenesis, and considered their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Igor P Shilovskiy
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522, Russia.
| | - Valeriya I Kovchina
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522, Russia
| | - Ekaterina D Timotievich
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522, Russia
| | - Alexander A Nikolskii
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522, Russia
| | - Musa R Khaitov
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, 117997, Russia
| |
Collapse
|
32
|
Yue L, Jia Q, Dong J, Wang J, Ren X, Xu O. TRIM24-Mediated Acetylation of STAT6 Suppresses Th2-Induced Allergic Rhinitis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:603-613. [PMID: 37827979 PMCID: PMC10570786 DOI: 10.4168/aair.2023.15.5.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE Allergic rhinitis (AR) is a T helper type 2 (Th2)-mediated inflammatory disease. The E3 ligase tripartite motif-containing 24 (TRIM24) regulates the recruitment of acetyltransferase CREB-binding protein (CBP) to signal transducer and activator of transcription 6 (STAT6). CBP mediates the acetylation of STAT6 and decreases its activity. To date, the precise role of TRIM24 in AR has not been fully interpreted. Herein, our study aimed to explore the functions of TRIM24 in AR. METHODS The expression of TRIM24 in peripheral blood mononuclear cells (PBMCs) and CD4+ T cells from patients with AR was measured. TRIM24-conditional knockout mice with TRIM24 deficiency in CD4+ T cells were generated. Wide-type (WT) AR mice and TRIM24-conditional knockout AR mice were established. Then, AR symptoms and interleukin (IL)-4 levels were compared. Further, the proliferation, activation and polarization of CD4+ T cells from WT mice and TRIM24 knockout mice after stimulation were determined. The effects of TRIM24 deficiency on STAT6 activities were also evaluated. RESULTS Downregulated TRIM24 expression was detected in PBMCs and CD4+ T cells from patients with AR. TRIM24 conditional knockout mice had more sever AR symptoms with elevated IL-4 production. TRIM24-knockout CD4+ T cells had similar proliferation and activation when compared to WT CD4+ T cells, while they had enhanced Th2 polarization. TRIM24-knockout CD4+ T cells had decreased acetylation of STAT6 and enhanced STAT6 activities after IL-4 stimulation. The regulation of STAT6 activities by TRIM24 depended on TRIM24 N terminal RIGN domain and Lys383 acetylation site of STAT6. CONCLUSIONS TRIM24 suppresses Th2-mediated AR by regulating the acetylation of STAT6.
Collapse
Affiliation(s)
- Liyan Yue
- ENT Department 1, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qiaojing Jia
- ENT Department 1, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jinhui Dong
- ENT Department 1, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Jianxing Wang
- ENT Department 1, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiumin Ren
- ENT Department 1, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ou Xu
- ENT Department 1, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
33
|
De Carli M, Capezzali E, Tonon S, Frossi B. Mechanism and clinical evidence of immunotherapy in allergic rhinitis. FRONTIERS IN ALLERGY 2023; 4:1217388. [PMID: 37601646 PMCID: PMC10434251 DOI: 10.3389/falgy.2023.1217388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Allergic rhinitis is a common upper airway disease caused by hypersensitivity to various aeroallergens. It causes increased inflammation throughout the body and may be complicated by other otolaryngological pathologies such as chronic hyperplastic eosinophilic sinusitis, nasal polyposis, and serous otitis media. Allergic rhinitis is an IgE-mediated disease and immunotherapy can be a possible approach for patients to limit the use of antihistamines and corticosteroids. There is evidence that allergen immunotherapy can prevent the development of new sensitizations and reduce the risk of later development of asthma in patients with allergic rhinitis. However, some patients do not benefit from this approach and the efficacy of immunotherapy in reducing the severity and relapse of symptoms is still a matter of debate. This review highlights new aspects of allergic rhinitis with a particular focus on the impact of sexual dimorphism on the disease manifestation and efficacy to the allergen specific immunotherapy.
Collapse
Affiliation(s)
- Marco De Carli
- Second Unit of Internal Medicine, University Hospital of Udine, Udine, Italy
| | | | - Silvia Tonon
- Department of Medicine, University of Udine, Udine, Italy
| | - Barbara Frossi
- Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
34
|
Wang B, Zhang D, Zhang T, Sutcharitchan C, Hua J, Hua D, Zhang B, Li S. Uncovering the mechanisms of Yi Qi Tong Qiao Pill in the treatment of allergic rhinitis based on Network target analysis. Chin Med 2023; 18:88. [PMID: 37488546 PMCID: PMC10364407 DOI: 10.1186/s13020-023-00781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/07/2023] [Indexed: 07/26/2023] Open
Abstract
OBJECTIVE The purpose of this study is to reveal the mechanism of action of Yi Qi Tong Qiao Pill (YQTQP) in the treatment of allergic rhinitis (AR), as well as establish a paradigm for the researches on traditional Chinese medicine (TCM) from systematic perspective. METHODS Based on the data collected from TCM-related and disease-related databases, target profiles of compounds in YQTQP were calculated through network-based algorithms and holistic targets of TQTQP was constructed. Network target analysis was performed to explore the potential mechanisms of YQTQP in the treatment of AR and the mechanisms were classified into different modules according to their biological functions. Besides, animal and clinical experiments were conducted to validate our findings inferred from Network target analysis. RESULTS Network target analysis showed that YQTQP targeted 12 main pathways or biological processes related to AR, represented by those related to IL-4, IFN-γ, TNF-α and IL-13. These results could be classified into 3 biological modules, including regulation of immune and inflammation, epithelial barrier disorder and cell adhesion. Finally, a series of experiments composed of animal and clinical experiments, proved our findings and confirmed that YQTQP could improve related symptoms of AR, like permeability of nasal mucosa epithelium. CONCLUSION A combination of Network target analysis and the experimental validation indicated that YQTQP was effective in the treatment of AR and might provide a new insight on revealing the mechanism of TCM against diseases. Trial registration Name of the registry: Chinese Clinical Trial Registry: Trial registration number: ChiCTR-TRC-13,003,137: Date of registration: Registered 29 March 2013 - Retrospectively registered: URL of trial registry record: https://www.chictr.org.cn/showproj.html?proj=6422 .
Collapse
Affiliation(s)
- Boyang Wang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, FIT 1-115, Beijing, 100084, China
| | - Dingfan Zhang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, FIT 1-115, Beijing, 100084, China
| | - Tingyu Zhang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, FIT 1-115, Beijing, 100084, China
| | - Chayanis Sutcharitchan
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, FIT 1-115, Beijing, 100084, China
| | - Jianlin Hua
- Tianjin Oriental HuaKang Pharmaceutical Technology Development Co., Ltd, Tianjin, 300457, China
| | - Dongfang Hua
- Tianjin Oriental HuaKang Pharmaceutical Technology Development Co., Ltd, Tianjin, 300457, China.
| | - Bo Zhang
- TCM Network Pharmacology Department, Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China.
| | - Shao Li
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, FIT 1-115, Beijing, 100084, China.
| |
Collapse
|
35
|
Raby KL, Michaeloudes C, Tonkin J, Chung KF, Bhavsar PK. Mechanisms of airway epithelial injury and abnormal repair in asthma and COPD. Front Immunol 2023; 14:1201658. [PMID: 37520564 PMCID: PMC10374037 DOI: 10.3389/fimmu.2023.1201658] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
The airway epithelium comprises of different cell types and acts as a physical barrier preventing pathogens, including inhaled particles and microbes, from entering the lungs. Goblet cells and submucosal glands produce mucus that traps pathogens, which are expelled from the respiratory tract by ciliated cells. Basal cells act as progenitor cells, differentiating into different epithelial cell types, to maintain homeostasis following injury. Adherens and tight junctions between cells maintain the epithelial barrier function and regulate the movement of molecules across it. In this review we discuss how abnormal epithelial structure and function, caused by chronic injury and abnormal repair, drives airway disease and specifically asthma and chronic obstructive pulmonary disease (COPD). In both diseases, inhaled allergens, pollutants and microbes disrupt junctional complexes and promote cell death, impairing the barrier function and leading to increased penetration of pathogens and a constant airway immune response. In asthma, the inflammatory response precipitates the epithelial injury and drives abnormal basal cell differentiation. This leads to reduced ciliated cells, goblet cell hyperplasia and increased epithelial mesenchymal transition, which contribute to impaired mucociliary clearance and airway remodelling. In COPD, chronic oxidative stress and inflammation trigger premature epithelial cell senescence, which contributes to loss of epithelial integrity and airway inflammation and remodelling. Increased numbers of basal cells showing deregulated differentiation, contributes to ciliary dysfunction and mucous hyperproduction in COPD airways. Defective antioxidant, antiviral and damage repair mechanisms, possibly due to genetic or epigenetic factors, may confer susceptibility to airway epithelial dysfunction in these diseases. The current evidence suggests that a constant cycle of injury and abnormal repair of the epithelium drives chronic airway inflammation and remodelling in asthma and COPD. Mechanistic understanding of injury susceptibility and damage response may lead to improved therapies for these diseases.
Collapse
Affiliation(s)
- Katie Louise Raby
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - James Tonkin
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospital, London, United Kingdom
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospital, London, United Kingdom
| | - Pankaj Kumar Bhavsar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospital, London, United Kingdom
| |
Collapse
|
36
|
Trincianti C, Tosca MA, Ciprandi G. Updates in the diagnosis and practical management of allergic rhinitis. Expert Rev Clin Pharmacol 2023; 16:669-676. [PMID: 37314373 DOI: 10.1080/17512433.2023.2225770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/12/2023] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Allergic rhinitis (AR) is a widespread disease that can be associated with other conditions, including conjunctivitis, rhinosinusitis, asthma, food allergy, and atopic dermatitis. Diagnosis is based on the history and documentation of sensitization, such as the production of allergen-specific IgE, preferably using molecular diagnostics. Treatments are based on patient education, non-pharmacological and pharmacological remedies, allergen-specific immunotherapy (AIT), and surgery. Symptomatic treatments mainly concern intranasal/oral antihistamines and/or nasal corticosteroids. AREAS COVERED This review discusses current and emerging management strategies for AR, covering pharmacological and non-pharmacological remedies, AIT, and biologics in selected cases with associated severe asthma. However, AIT presently remains the unique causal treatment for AR. EXPERT OPINION The management of allergic rhinitis could include new strategies. In this regard, particular interest should be considered in the fixed association between intranasal antihistamines and corticosteroids, probiotics and other natural substances, and new formulations (tablets) of AIT.
Collapse
|
37
|
Cevikbas F, Ward A, Firth C, Veverka K. Eblasakimab, a novel IL-13 receptor alpha 1 monoclonal antibody, blocks STAT6 phosphorylation with low dose in human volunteers. Clin Immunol 2023:109677. [PMID: 37315681 DOI: 10.1016/j.clim.2023.109677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/21/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Eblasakimab is a first-in-class monoclonal antibody under investigation for the treatment of atopic dermatitis (AD) which targets IL-13Rα1, a subunit of the Type 2 receptor complex. IL-13Rα1 stimulates phosphorylation of signal transducer and activator of transcription 6 (STAT6) to drive inflammation. This brief report investigates the mechanistic basis of eblasakimab and its effects on IL-13Rα1 signaling as part of a phase 1a, open-label, single ascending dose study. Single ascending doses of eblasakimab were administered by intravenous or subcutaneous injection to healthy male volunteers. The impact of eblasakimab on IL-13Rα1 receptor occupancy and STAT6 phosphorylation was assessed in participant blood monocytes. No serious treatment emergent adverse events were reported. Eblasakimab effectively blocked the IL-13Rα1 receptor and inhibited STAT6 phosphorylation with single doses of 3 mg/kg intravenously and 300 mg subcutaneously. Results support further clinical development of eblasakimab as a novel biologic for AD, with potential for 2- to 4-week dosing regimens.
Collapse
Affiliation(s)
- Ferda Cevikbas
- ASLAN Pharmaceuticals, 400 Concar Drive, San Mateo, CA, USA.
| | - Alison Ward
- ASLAN Pharmaceuticals, 400 Concar Drive, San Mateo, CA, USA
| | - Carl Firth
- ASLAN Pharmaceuticals, 400 Concar Drive, San Mateo, CA, USA
| | - Karen Veverka
- ASLAN Pharmaceuticals, 400 Concar Drive, San Mateo, CA, USA
| |
Collapse
|