1
|
Famà V, Coscujuela Tarrero L, Albanese R, Calviello L, Biffo S, Pelizzola M, Furlan M. Coupling mechanisms coordinating mRNA translation with stages of the mRNA lifecycle. RNA Biol 2025; 22:1-12. [PMID: 40116043 PMCID: PMC11934187 DOI: 10.1080/15476286.2025.2483001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/06/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025] Open
Abstract
Gene expression involves a series of consequential processes, beginning with mRNA synthesis and culminating in translation. Traditionally studied as a linear sequence of events, recent findings challenge this perspective, revealing coupling mechanisms that coordinate key steps of gene expression, even when spatially and temporally distant. In this review, we focus on translation, the final stage of gene expression, and examine its coupling with key stages of mRNA metabolism: synthesis, processing, export, and decay. For each of these processes, we provide an overview of known instances of coupling with translation. Furthermore, we discuss the role of high-throughput technologies in uncovering these intricate interactions on a genome-wide scale. Finally, we highlight key challenges and propose future directions to advance our understanding of how coupling mechanisms orchestrate robust and adaptable gene expression programs.
Collapse
Affiliation(s)
- Valeria Famà
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
- Department of Oncology and Emato-Oncology, University of Milan, Milan, Italy
| | | | | | | | - Stefano Biffo
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, INGM, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Mattia Furlan
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| |
Collapse
|
2
|
Kumar S, Petschner P, Gecse K, Torok D, Juhasz G. Acute neuroendocrine challenge elicits enhanced cortisol response and parallel transcriptomic changes in patients with migraine. Pain Rep 2025; 10:e1254. [PMID: 40322023 PMCID: PMC12047896 DOI: 10.1097/pr9.0000000000001254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/18/2024] [Accepted: 01/10/2025] [Indexed: 05/08/2025] Open
Abstract
Introduction Migraine is a neurological disorder with recurrent attacks characterized by headaches and sensitivity to stimuli. Stress is a significant trigger for attacks; however, molecular mechanisms of the connection are poorly understood. Objectives To better characterize such mechanisms, we performed a placebo-controlled, double-blind crossover study with 51 participants (21 patients with migraine without aura and 30 healthy controls). Methods Participants received a low-dose citalopram- or placebo challenge on 2 separate days. Prechallenge and postchallenge assessment of cortisol concentrations and transcriptomic changes using RNA-seq was performed from whole blood samples. Analysis of an accidental attack following the citalopram challenge was also conducted. Results Neuroendocrine challenge elicited elevated cortisol concentrations at 30 (P-value = 0.1355) and 70 minutes (P-value = 0.07292) postchallenge in patients with migraine compared with controls. Gene expression analysis showed 10 differentially expressed genes (2 down- and 8 upregulated, P-value ≤ 0.005) and 10 dysregulated gene sets (P-value ≤ 0.005). Among them, dysregulated IKBKGP1 and NKRF genes and upregulated protein synthesis and translation, carbohydrate metabolism, and, attack-related, glycosylation can be highlighted. Conclusion Patients with migraine without aura showed an enhanced cortisol response to a neuroendocrine challenge. This was accompanied by a probable suppression of NFκB activity through dysregulation of NKRF and an altered immune function. Upregulated carbohydrate metabolism may reflect the elevated cortisol concentrations' stimulating effects on endothelial glycocalyx, playing a role in NO-induced vasodilation, a trigger for migraine attacks. The results suggest the elevated cortisol response may trigger migraine attacks through altered glycocalyx and immune functions.
Collapse
Affiliation(s)
- Sahel Kumar
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
| | - Peter Petschner
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
| | - Kinga Gecse
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Dora Torok
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
Scarborough J, Weaver D, Scott J. Gene Signatures and Oncology Treatment Implications. Hematol Oncol Clin North Am 2025; 39:295-307. [PMID: 39694780 PMCID: PMC11867875 DOI: 10.1016/j.hoc.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Gene expression signatures (GES) are a powerful tool in oncology used for classification, prognostication, and therapeutic response prediction of malignancies. In this article, we review the disease site guidelines by the National Comprehensive Cancer Network that use GES for treatment planning and clinical use. We identified 4 cancer types for which treatment decisions are frequently influenced by GES. Future developments in the field of GES are likely to include expanded data sources to personalize radiation therapy dosing and predict response to immunotherapy. Ongoing challenges in GES may be addressed to ensure that all patients with cancer benefit from precision oncology.
Collapse
Affiliation(s)
- Jessica Scarborough
- Department of Medicine, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Davis Weaver
- Department of Translational Hematology and Oncology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Systems Biology and Bioinformatics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Jacob Scott
- Department of Translational Hematology and Oncology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Department of Molecular Medicine, School of Medicine, Systems Biology and Bioinformatics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
4
|
Cope AL, Schraiber JG, Pennell M. Macroevolutionary divergence of gene expression driven by selection on protein abundance. Science 2025; 387:1063-1068. [PMID: 40048509 DOI: 10.1126/science.ads2658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/24/2025] [Indexed: 03/28/2025]
Abstract
The regulation of messenger RNA (mRNA) and protein abundances is well-studied, but less is known about the evolutionary processes shaping their relationship. To address this, we derived a new phylogenetic model and applied it to multispecies mammalian data. Our analyses reveal (i) strong stabilizing selection on protein abundances over macroevolutionary time, (ii) mutations affecting mRNA abundances minimally impact protein abundances, (iii) mRNA abundances evolve under selection to align with protein abundances, and (iv) mRNA abundances adapt faster than protein abundances owing to greater mutational opportunity. These conclusions are supported by comparisons of model parameters with independent functional genomic data. By decomposing mutational and selective influences on mRNA-protein dynamics, our approach provides a framework for discovering the evolutionary rules that drive divergence in gene expression.
Collapse
Affiliation(s)
- Alexander L Cope
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Genetics, Rutgers University, New Brunswick, NJ, USA
- Human Genetics Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Joshua G Schraiber
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Matt Pennell
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Department of Computational Biology, Cornell University, Ithaca, CA, USA
| |
Collapse
|
5
|
Zheng D, Persyn L, Wang J, Liu Y, Montoya FU, Cenik C, Agarwal V. Predicting the translation efficiency of messenger RNA in mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.11.607362. [PMID: 39149337 PMCID: PMC11326250 DOI: 10.1101/2024.08.11.607362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The degree to which translational control is specified by mRNA sequence is poorly understood in mammalian cells. Here, we constructed and leveraged a compendium of 3,819 ribosomal profiling datasets, distilling them into a transcriptome-wide atlas of translation efficiency (TE) measurements encompassing >140 human and mouse cell types. We subsequently developed RiboNN, a multitask deep convolutional neural network, and classic machine learning models to predict TEs in hundreds of cell types from sequence-encoded mRNA features, achieving state-of-the-art performance (r=0.79 in human and r=0.78 in mouse for mean TE across cell types). While the majority of earlier models solely considered 5' UTR sequence1, RiboNN integrates contributions from the full-length mRNA sequence, learning that the 5' UTR, CDS, and 3' UTR respectively possess ~67%, 31%, and 2% per-nucleotide information density in the specification of mammalian TEs. Interpretation of RiboNN revealed that the spatial positioning of low-level di- and tri-nucleotide features (i.e., including codons) largely explain model performance, capturing mechanistic principles such as how ribosomal processivity and tRNA abundance control translational output. RiboNN is predictive of the translational behavior of base-modified therapeutic RNA, and can explain evolutionary selection pressures in human 5' UTRs. Finally, it detects a common language governing mRNA regulatory control and highlights the interconnectedness of mRNA translation, stability, and localization in mammalian organisms.
Collapse
Affiliation(s)
- Dinghai Zheng
- mRNA Center of Excellence, Sanofi, Waltham, MA 02451, USA
| | - Logan Persyn
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jun Wang
- mRNA Center of Excellence, Sanofi, Waltham, MA 02451, USA
| | - Yue Liu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | | | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Vikram Agarwal
- mRNA Center of Excellence, Sanofi, Waltham, MA 02451, USA
| |
Collapse
|
6
|
Gudelska M, Dobrzyn K, Kiezun M, Rytelewska E, Zaobidna E, Kisielewska K, Kopij G, Kaminski T, Smolinska N. Role of resistin in the porcine uterus: effects on endometrial steroidogenesis. Reprod Fertil Dev 2025; 37:RD24097. [PMID: 39786988 DOI: 10.1071/rd24097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025] Open
Abstract
Context The adipose tissue produces adipokines - hormones essential to many biological functions, including reproduction. Aims We hypothesised that resistin, one of the adipokines, is present in the blood plasma, uterine luminal flushings (ULF) and uterus of pigs during the oestrous cycle and early pregnancy, and that resistin influences uterine steroidogenesis. Methods This study aimed to determine the expression of resistin in the porcine endometrium and myometrium during the cycle and pregnancy by quantitative real-time polymerase chain reaction and western blot (WB). The adipokine concentrations in blood plasma and ULF were defined by enzyme-linked immunosorbent assay. The impact of resistin on progesterone (P4 ) and oestradiol (E2 ) secretion and steroidogenic enzyme proteins' expression were determined by radioimmunoassay and WB, respectively. The effect of resistin on protein kinase B (Akt) protein phosphorylation was determined by WB. Key results The study's results identified the resistin gene and protein expression in the porcine endometrium and myometrium. Moreover, the expression of adipokine in the uterus, its concentrations in the blood plasma and ULF, and its impact on the endometrial P4 and E2 production, are dependent on the hormonal milieu related to the phase of the cycle and/or period of pregnancy. Furthermore, resistin enhances the phosphorylation of the Akt signaling pathway. Conclusions The current findings suggest that resistin may control the steroidogenesis process in the porcine endometrium and could be an important regulator of pig reproduction. Implications In the long-term perspective, the results obtained in this study may help improve farm animal breeding.
Collapse
Affiliation(s)
- Marlena Gudelska
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Edyta Rytelewska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Katarzyna Kisielewska
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
7
|
Grelewska‐Nowotko K, Elhag AE, Turowski TW. Transcription Kinetics in the Coronavirus Life Cycle. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70000. [PMID: 39757745 PMCID: PMC11701415 DOI: 10.1002/wrna.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025]
Abstract
Coronaviruses utilize a positive-sense single-strand RNA, functioning simultaneously as mRNA and the genome. An RNA-dependent RNA polymerase (RdRP) plays a dual role in transcribing genes and replicating the genome, making RdRP a critical target in therapies against coronaviruses. This review explores recent advancements in understanding the coronavirus transcription machinery, discusses it within virus infection context, and incorporates kinetic considerations on RdRP activity. We also address steric limitations in coronavirus replication, particularly during early infection phases, and outline hypothesis regarding translation-transcription conflicts, postulating the existence of mechanisms that resolve these issues. In cells infected by coronaviruses, abundant structural proteins are synthesized from subgenomic RNA fragments (sgRNAs) produced via discontinuous transcription. During elongation, RdRP can skip large sections of the viral genome, resulting in the creation of shorter sgRNAs that reflects the stoichiometry of viral structural proteins. Although the precise mechanism of discontinuous transcription remains unknown, we discuss recent hypotheses involving long-distance RNA-RNA interactions, helicase-mediated RdRP backtracking, dissociation and reassociation of RdRP, and RdRP dimerization.
Collapse
Affiliation(s)
| | - Ahmed Eisa Elhag
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
- Department of Preventive Medicine and Clinical Studies, Faculty of Veterinary SciencesUniversity of GadarifAl QadarifSudan
| | | |
Collapse
|
8
|
Chen M, Wang Q, Wang Y, Xuan Y, Shen M, Hu X, Li Y, Guo Y, Wang J, Tan F. Thiostrepton induces oxidative stress, mitochondrial dysfunction and ferroptosis in HaCaT cells. Cell Signal 2024; 121:111285. [PMID: 38969192 DOI: 10.1016/j.cellsig.2024.111285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/15/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
TST has been mainly studied for its anti-tumor proliferation and antimicrobial effects, but not widely used in dermatological diseases. The mechanism of cellular damage by TST in response to H2O2-mediated oxidative stress was investigated in human skin immortalized keratinocytes (HaCaT) as an in vitro model. The findings reveal that TST treatment leads to increased oxidative stress in the cells by reducing levels of superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT). This effect is further supported by an upsurge in the expression of malondialdehyde (MDA, a pivotal marker of lipid peroxidation). Additionally, dysregulation of FoxM1 at both gene and protein levels corroborates its involvement TST associated effects. Analysis of ferroptosis-related genes confirms dysregulation following TST treatment in HaCaT cells. Furthermore, TST treatment exhibits effects on mitochondrial morphology and function, affirming its induction of apoptosis in the cells through heightened oxidative stress due to mitochondrial damage and dysregulation of mitochondrial membrane potential.
Collapse
Affiliation(s)
- MeiYu Chen
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai 200443, People's Republic of China
| | - QiXia Wang
- Department of General Practice, Xi'an Central Hospital, Xi'an, Shaanxi 710000, China
| | - YaoQun Wang
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai 200443, People's Republic of China
| | - Yuan Xuan
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai 200443, People's Republic of China
| | - MengYuan Shen
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai 200443, People's Republic of China
| | - XiaoPing Hu
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai 200443, People's Republic of China
| | - YunJin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Yi Guo
- SICU, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, Kunming, Yunnan 650102, China
| | - Juan Wang
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China; Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, China.
| | - Fei Tan
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai 200443, People's Republic of China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China.
| |
Collapse
|
9
|
Teyssonnière EM, Trébulle P, Muenzner J, Loegler V, Ludwig D, Amari F, Mülleder M, Friedrich A, Hou J, Ralser M, Schacherer J. Species-wide quantitative transcriptomes and proteomes reveal distinct genetic control of gene expression variation in yeast. Proc Natl Acad Sci U S A 2024; 121:e2319211121. [PMID: 38696467 PMCID: PMC11087752 DOI: 10.1073/pnas.2319211121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
Gene expression varies between individuals and corresponds to a key step linking genotypes to phenotypes. However, our knowledge regarding the species-wide genetic control of protein abundance, including its dependency on transcript levels, is very limited. Here, we have determined quantitative proteomes of a large population of 942 diverse natural Saccharomyces cerevisiae yeast isolates. We found that mRNA and protein abundances are weakly correlated at the population gene level. While the protein coexpression network recapitulates major biological functions, differential expression patterns reveal proteomic signatures related to specific populations. Comprehensive genetic association analyses highlight that genetic variants associated with variation in protein (pQTL) and transcript (eQTL) levels poorly overlap (3%). Our results demonstrate that transcriptome and proteome are governed by distinct genetic bases, likely explained by protein turnover. It also highlights the importance of integrating these different levels of gene expression to better understand the genotype-phenotype relationship.
Collapse
Affiliation(s)
- Elie Marcel Teyssonnière
- UMR 7156 Génétique Moléculaire, Génomique et Microbiologie, Université de Strasbourg, CNRS, Strasbourg67000, France
| | - Pauline Trébulle
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7BN, United Kingdom
| | - Julia Muenzner
- Department of Biochemistry, Charitéplatz 1, Charité – Universitätsmedizin Berlin, Berlin10117, Germany
| | - Victor Loegler
- UMR 7156 Génétique Moléculaire, Génomique et Microbiologie, Université de Strasbourg, CNRS, Strasbourg67000, France
| | - Daniela Ludwig
- Department of Biochemistry, Charitéplatz 1, Charité – Universitätsmedizin Berlin, Berlin10117, Germany
- Core Facility High-Throughput Mass Spectrometry, Charitéplatz 1, Charité – Universitätsmedizin Berlin, Berlin10117, Germany
| | - Fatma Amari
- Department of Biochemistry, Charitéplatz 1, Charité – Universitätsmedizin Berlin, Berlin10117, Germany
- Core Facility High-Throughput Mass Spectrometry, Charitéplatz 1, Charité – Universitätsmedizin Berlin, Berlin10117, Germany
| | - Michael Mülleder
- Core Facility High-Throughput Mass Spectrometry, Charitéplatz 1, Charité – Universitätsmedizin Berlin, Berlin10117, Germany
| | - Anne Friedrich
- UMR 7156 Génétique Moléculaire, Génomique et Microbiologie, Université de Strasbourg, CNRS, Strasbourg67000, France
| | - Jing Hou
- UMR 7156 Génétique Moléculaire, Génomique et Microbiologie, Université de Strasbourg, CNRS, Strasbourg67000, France
| | - Markus Ralser
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7BN, United Kingdom
- Department of Biochemistry, Charitéplatz 1, Charité – Universitätsmedizin Berlin, Berlin10117, Germany
- Max Planck Institute for Molecular Genetics, Berlin14195, Germany
| | - Joseph Schacherer
- UMR 7156 Génétique Moléculaire, Génomique et Microbiologie, Université de Strasbourg, CNRS, Strasbourg67000, France
- Institut Universitaire de France, Paris75000, France
| |
Collapse
|
10
|
Teshigawara T, Meguro A, Takeuchi M, Ishido M, Soejima Y, Hirahara L, Kirino Y, Ohno S, Mizuki N. Replication Study of the Association of GAS6 and PROS1 Polymorphisms with Behçet's Disease in a Japanese Population. Ocul Immunol Inflamm 2024; 32:447-453. [PMID: 37133403 DOI: 10.1080/09273948.2023.2173239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 01/22/2023] [Indexed: 02/24/2023]
Abstract
PURPOSE To investigate whether polymorphisms of GAS6 and PROS1, which each encode protein ligands for a family of tyrosine kinase receptors, are associated with Behçet's disease (BD) in a Japanese population. METHODS We recruited 734 Japanese patients with BD and 1789 Japanese healthy controls. In all participants, we genotyped two single-nucleotide polymorphisms (SNPs) reportedly associated with BD: rs9577873 in GAS6 and rs4857037 in PROS1. RESULTS We found that GAS6 rs9577873 was not significantly associated with BD. In contrast, PROS1 rs4857037, specifically the A allele, was associated with increased risk for BD. The A allele was also significantly associated with BD under additive and recessive genetic models. Expression analysis revealed that this allele was significantly associated with increased PROS1 expression. CONCLUSIONS Our findings suggest that increased PROS1 expression related to the A risk allele of rs4857037 affects tyrosine kinase receptor signaling, contributing to the development of BD.
Collapse
Affiliation(s)
- Takeshi Teshigawara
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Advanced Medicine for Ocular Diseases, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Ophthalmology, Yokosuka Chuoh Eye Clinic, Yokosuka, Japan
- Department of Ophthalmology, Tsurumi Chuoh Eye Clinic, Yokohama, Japan
| | - Akira Meguro
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Advanced Medicine for Ocular Diseases, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masaki Takeuchi
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Advanced Medicine for Ocular Diseases, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mizuho Ishido
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Advanced Medicine for Ocular Diseases, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yutaro Soejima
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Lisa Hirahara
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yohei Kirino
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shigeaki Ohno
- Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Advanced Medicine for Ocular Diseases, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
11
|
Baghdassarian HM, Lewis NE. Resource allocation in mammalian systems. Biotechnol Adv 2024; 71:108305. [PMID: 38215956 PMCID: PMC11182366 DOI: 10.1016/j.biotechadv.2023.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
Cells execute biological functions to support phenotypes such as growth, migration, and secretion. Complementarily, each function of a cell has resource costs that constrain phenotype. Resource allocation by a cell allows it to manage these costs and optimize their phenotypes. In fact, the management of resource constraints (e.g., nutrient availability, bioenergetic capacity, and macromolecular machinery production) shape activity and ultimately impact phenotype. In mammalian systems, quantification of resource allocation provides important insights into higher-order multicellular functions; it shapes intercellular interactions and relays environmental cues for tissues to coordinate individual cells to overcome resource constraints and achieve population-level behavior. Furthermore, these constraints, objectives, and phenotypes are context-dependent, with cells adapting their behavior according to their microenvironment, resulting in distinct steady-states. This review will highlight the biological insights gained from probing resource allocation in mammalian cells and tissues.
Collapse
Affiliation(s)
- Hratch M Baghdassarian
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
12
|
Viner C, Ishak CA, Johnson J, Walker NJ, Shi H, Sjöberg-Herrera MK, Shen SY, Lardo SM, Adams DJ, Ferguson-Smith AC, De Carvalho DD, Hainer SJ, Bailey TL, Hoffman MM. Modeling methyl-sensitive transcription factor motifs with an expanded epigenetic alphabet. Genome Biol 2024; 25:11. [PMID: 38191487 PMCID: PMC10773111 DOI: 10.1186/s13059-023-03070-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/21/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Transcription factors bind DNA in specific sequence contexts. In addition to distinguishing one nucleobase from another, some transcription factors can distinguish between unmodified and modified bases. Current models of transcription factor binding tend not to take DNA modifications into account, while the recent few that do often have limitations. This makes a comprehensive and accurate profiling of transcription factor affinities difficult. RESULTS Here, we develop methods to identify transcription factor binding sites in modified DNA. Our models expand the standard A/C/G/T DNA alphabet to include cytosine modifications. We develop Cytomod to create modified genomic sequences and we also enhance the MEME Suite, adding the capacity to handle custom alphabets. We adapt the well-established position weight matrix (PWM) model of transcription factor binding affinity to this expanded DNA alphabet. Using these methods, we identify modification-sensitive transcription factor binding motifs. We confirm established binding preferences, such as the preference of ZFP57 and C/EBPβ for methylated motifs and the preference of c-Myc for unmethylated E-box motifs. CONCLUSIONS Using known binding preferences to tune model parameters, we discover novel modified motifs for a wide array of transcription factors. Finally, we validate our binding preference predictions for OCT4 using cleavage under targets and release using nuclease (CUT&RUN) experiments across conventional, methylation-, and hydroxymethylation-enriched sequences. Our approach readily extends to other DNA modifications. As more genome-wide single-base resolution modification data becomes available, we expect that our method will yield insights into altered transcription factor binding affinities across many different modifications.
Collapse
Affiliation(s)
- Coby Viner
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Charles A Ishak
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James Johnson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Nicolas J Walker
- Department of Genetics, University of Cambridge, Cambridge, England
| | - Hui Shi
- Department of Genetics, University of Cambridge, Cambridge, England
| | - Marcela K Sjöberg-Herrera
- Wellcome Sanger Institute, Cambridge, England
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Shu Yi Shen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Santana M Lardo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy L Bailey
- Department of Pharmacology, University of Nevada, Reno, Reno, NV, USA
| | - Michael M Hoffman
- Department of Computer Science, University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada.
| |
Collapse
|
13
|
Pianfetti E, Lovino M, Ficarra E, Martignetti L. MiREx: mRNA levels prediction from gene sequence and miRNA target knowledge. BMC Bioinformatics 2023; 24:443. [PMID: 37993778 PMCID: PMC10666312 DOI: 10.1186/s12859-023-05560-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Messenger RNA (mRNA) has an essential role in the protein production process. Predicting mRNA expression levels accurately is crucial for understanding gene regulation, and various models (statistical and neural network-based) have been developed for this purpose. A few models predict mRNA expression levels from the DNA sequence, exploiting the DNA sequence and gene features (e.g., number of exons/introns, gene length). Other models include information about long-range interaction molecules (i.e., enhancers/silencers) and transcriptional regulators as predictive features, such as transcription factors (TFs) and small RNAs (e.g., microRNAs - miRNAs). Recently, a convolutional neural network (CNN) model, called Xpresso, has been proposed for mRNA expression level prediction leveraging the promoter sequence and mRNAs' half-life features (gene features). To push forward the mRNA level prediction, we present miREx, a CNN-based tool that includes information about miRNA targets and expression levels in the model. Indeed, each miRNA can target specific genes, and the model exploits this information to guide the learning process. In detail, not all miRNAs are included, only a selected subset with the highest impact on the model. MiREx has been evaluated on four cancer primary sites from the genomics data commons (GDC) database: lung, kidney, breast, and corpus uteri. Results show that mRNA level prediction benefits from selected miRNA targets and expression information. Future model developments could include other transcriptional regulators or be trained with proteomics data to infer protein levels.
Collapse
Affiliation(s)
- Elena Pianfetti
- Department of Engineering, University of Modena and Reggio Emilia, Via Vivarelli 10/1, Modena, 41225, Italy
| | - Marta Lovino
- Department of Engineering, University of Modena and Reggio Emilia, Via Vivarelli 10/1, Modena, 41225, Italy.
| | - Elisa Ficarra
- Department of Engineering, University of Modena and Reggio Emilia, Via Vivarelli 10/1, Modena, 41225, Italy
| | - Loredana Martignetti
- Institut Curie, Rue d'Ulm 26, Paris, 75005, France.
- Inserm U900, Paris, France.
- CBIO-Centre for Computational Biology, Paris, France.
- PSL Research University, Paris, France.
| |
Collapse
|
14
|
Bishop DJ, Hoffman NJ, Taylor DF, Saner NJ, Lee MJC, Hawley JA. Discordant skeletal muscle gene and protein responses to exercise. Trends Biochem Sci 2023; 48:927-936. [PMID: 37709636 DOI: 10.1016/j.tibs.2023.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023]
Abstract
The ability of skeletal muscle to adapt to repeated contractile stimuli is one of the most intriguing aspects of physiology. The molecular bases underpinning these adaptations involve increased protein activity and/or expression, mediated by an array of pre- and post-transcriptional processes, as well as translational and post-translational control. A longstanding dogma assumes a direct relationship between exercise-induced increases in mRNA levels and subsequent changes in the abundance of the proteins they encode. Drawing on the results of recent studies, we dissect and question the common assumption of a direct relationship between changes in the skeletal muscle transcriptome and proteome induced by repeated muscle contractions (e.g., exercise).
Collapse
Affiliation(s)
- David J Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.
| | - Nolan J Hoffman
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Dale F Taylor
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Nicholas J Saner
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Matthew J-C Lee
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
15
|
Martin B, Suter DM. Gene expression flux analysis reveals specific regulatory modalities of gene expression. iScience 2023; 26:107758. [PMID: 37701574 PMCID: PMC10493597 DOI: 10.1016/j.isci.2023.107758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/02/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023] Open
Abstract
The level of a given protein is determined by the synthesis and degradation rates of its mRNA and protein. While several studies have quantified the contribution of different gene expression steps in regulating protein levels, these are limited by using equilibrium approximations in out-of-equilibrium biological systems. Here, we introduce gene expression flux analysis to quantitatively dissect the dynamics of the expression level for specific proteins and use it to analyze published transcriptomics and proteomics datasets. Our analysis reveals distinct regulatory modalities shared by sets of genes with clear functional signatures. We also find that protein degradation plays a stronger role than expected in the adaptation of protein levels. These findings suggest that shared regulatory strategies can lead to versatile responses at the protein level and highlight the importance of going beyond equilibrium approximations to dissect the quantitative contribution of different steps of gene expression to protein dynamics.
Collapse
Affiliation(s)
- Benjamin Martin
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - David M. Suter
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Teyssonnière E, Trébulle P, Muenzner J, Loegler V, Ludwig D, Amari F, Mülleder M, Friedrich A, Hou J, Ralser M, Schacherer J. Species-wide quantitative transcriptomes and proteomes reveal distinct genetic control of gene expression variation in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558197. [PMID: 37781592 PMCID: PMC10541136 DOI: 10.1101/2023.09.18.558197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Gene expression varies between individuals and corresponds to a key step linking genotypes to phenotypes. However, our knowledge regarding the species-wide genetic control of protein abundance, including its dependency on transcript levels, is very limited. Here, we have determined quantitative proteomes of a large population of 942 diverse natural Saccharomyces cerevisiae yeast isolates. We found that mRNA and protein abundances are weakly correlated at the population gene level. While the protein co-expression network recapitulates major biological functions, differential expression patterns reveal proteomic signatures related to specific populations. Comprehensive genetic association analyses highlight that genetic variants associated with variation in protein (pQTL) and transcript (eQTL) levels poorly overlap (3.6%). Our results demonstrate that transcriptome and proteome are governed by distinct genetic bases, likely explained by protein turnover. It also highlights the importance of integrating these different levels of gene expression to better understand the genotype-phenotype relationship. Highlights At the level of individual genes, the abundance of transcripts and proteins is weakly correlated within a species ( ρ = 0.165). While the proteome is not imprinted by population structure, co-expression patterns recapitulate the cellular functional landscapeWild populations exhibit a higher abundance of respiration-related proteins compared to domesticated populationsLoci that influence protein abundance differ from those that impact transcript levels, likely because of protein turnover.
Collapse
|
17
|
Salerno F, Howden AJM, Matheson LS, Gizlenci Ö, Screen M, Lingel H, Brunner-Weinzierl MC, Turner M. An integrated proteome and transcriptome of B cell maturation defines poised activation states of transitional and mature B cells. Nat Commun 2023; 14:5116. [PMID: 37612319 PMCID: PMC10447577 DOI: 10.1038/s41467-023-40621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/03/2023] [Indexed: 08/25/2023] Open
Abstract
During B cell maturation, transitional and mature B cells acquire cell-intrinsic features that determine their ability to exit quiescence and mount effective immune responses. Here we use label-free proteomics to quantify the proteome of B cell subsets from the mouse spleen and map the differential expression of environmental sensing, transcription, and translation initiation factors that define cellular identity and function. Cross-examination of the full-length transcriptome and proteome identifies mRNAs related to B cell activation and antibody secretion that are not accompanied by detection of the encoded proteins. In addition, proteomic data further suggests that the translational repressor PDCD4 restrains B cell responses, in particular those from marginal zone B cells, to a T-cell independent antigen. In summary, our molecular characterization of B cell maturation presents a valuable resource to further explore the mechanisms underpinning the specialized functions of B cell subsets, and suggest the presence of 'poised' mRNAs that enable expedited B cell responses.
Collapse
Affiliation(s)
- Fiamma Salerno
- Immunology programme, The Babraham Institute, Cambridge, UK.
| | | | | | - Özge Gizlenci
- Immunology programme, The Babraham Institute, Cambridge, UK
| | - Michael Screen
- Immunology programme, The Babraham Institute, Cambridge, UK
| | - Holger Lingel
- Department of Experimental Pediatrics, Otto-von-Guericke-University, Magdeburg, Germany
| | | | - Martin Turner
- Immunology programme, The Babraham Institute, Cambridge, UK.
| |
Collapse
|
18
|
Costa GA, de Gusmão Taveiros Silva NK, Marianno P, Chivers P, Bailey A, Camarini R. Environmental Enrichment Increased Bdnf Transcripts in the Prefrontal Cortex: Implications for an Epigenetically Controlled Mechanism. Neuroscience 2023; 526:277-289. [PMID: 37419403 DOI: 10.1016/j.neuroscience.2023.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Environmental enrichment (EE) is a condition characterized by its complexity regarding social contact, exposure to novelty, tactile stimuli and voluntary exercise, also is considered as a eustress model. The impact of EE on brain physiology and behavioral outcomes may be at least partly underpinned by mechanisms involving the modulation of the brain-derived neurotrophic factor (BDNF), but the connection between specific Bdnf exon expression and their epigenetic regulation remain poorly understood. This study aimed to dissect the transcriptional and epigenetic regulatory effect of 54-day exposure to EE on BDNF by analysing individual BDNF exons mRNA expression and the DNA methylation profile of a key transcriptional regulator of the Bdnf gene, exon IV, in the prefrontal cortex (PFC) of C57BL/6 male mice (sample size = 33). Bdnf exons II, IV, VI and IX mRNA expression were upregulated and methylation levels at two CpG sites of exon IV were reduced in the PFC of EE mice. As deficit in exon IV expression has also been causally implicated in stress-related psychopathologies, we also assessed anxiety-like behavior and plasma corticosterone levels in these mice to determine any potential correlation. However, no changes were observed in EE mice. The findings may suggest an EE-induced epigenetic control of BDNF exon expression via a mechanism involving exon IV methylation. The findings of this study contribute to the current literature by dissecting the Bdnf gene topology in the PFC where transcriptional and epigenetic regulatory effect of EE takes place.
Collapse
Affiliation(s)
- Gabriel Araújo Costa
- Pharmacology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Priscila Marianno
- Pharmacology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Priti Chivers
- School of Biosciences & Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Alexis Bailey
- Pharmacology Section, Institute of Medical and Biomedical Education, St George's University of London, London, UK.
| | - Rosana Camarini
- Pharmacology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
19
|
Burkhart JG, Wu G, Song X, Raimondi F, McWeeney S, Wong MH, Deng Y. Biology-inspired graph neural network encodes reactome and reveals biochemical reactions of disease. PATTERNS (NEW YORK, N.Y.) 2023; 4:100758. [PMID: 37521042 PMCID: PMC10382942 DOI: 10.1016/j.patter.2023.100758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/20/2022] [Accepted: 05/01/2023] [Indexed: 08/01/2023]
Abstract
Functional heterogeneity of healthy human tissues complicates interpretation of molecular studies, impeding precision therapeutic target identification and treatment. Considering this, we generated a graph neural network with Reactome-based architecture and trained it using 9,115 samples from Genotype-Tissue Expression (GTEx). Our graph neural network (GNN) achieves adjusted Rand index (ARI) = 0.7909, while a Resnet18 control model achieves ARI = 0.7781, on 370 held-out healthy human tissue samples from The Cancer Genome Atlas (TCGA), despite the Resnet18 using over 600 times the parameters. Our GNN also succeeds in separating 83 healthy skin samples from 95 lesional psoriasis samples, revealing that upregulation of 26S- and NUB1-mediated degradation of NEDD8, UBD, and their conjugates is central to the largest perturbed reaction network component in psoriasis. We show that our results are not discoverable using traditional differential expression and hypergeometric pathway enrichment analyses yet are supported by separate human multi-omics and small-molecule mouse studies, suggesting future molecular disease studies may benefit from similar GNN analytical approaches.
Collapse
Affiliation(s)
- Joshua G. Burkhart
- Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Guanming Wu
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Xubo Song
- Department of Computer Science and Electrical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Shannon McWeeney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Melissa H. Wong
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| |
Collapse
|
20
|
Javaid A, Frost HR. SPECK: an unsupervised learning approach for cell surface receptor abundance estimation for single-cell RNA-sequencing data. BIOINFORMATICS ADVANCES 2023; 3:vbad073. [PMID: 37359727 PMCID: PMC10290233 DOI: 10.1093/bioadv/vbad073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 05/23/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Summary The rapid development of single-cell transcriptomics has revolutionized the study of complex tissues. Single-cell RNA-sequencing (scRNA-seq) can profile tens-of-thousands of dissociated cells from a tissue sample, enabling researchers to identify cell types, phenotypes and interactions that control tissue structure and function. A key requirement of these applications is the accurate estimation of cell surface protein abundance. Although technologies to directly quantify surface proteins are available, these data are uncommon and limited to proteins with available antibodies. While supervised methods that are trained on Cellular Indexing of Transcriptomes and Epitopes by Sequencing data can provide the best performance, these training data are limited by available antibodies and may not exist for the tissue under investigation. In the absence of protein measurements, researchers must estimate receptor abundance from scRNA-seq data. Therefore, we developed a new unsupervised method for receptor abundance estimation using scRNA-seq data called SPECK (Surface Protein abundance Estimation using CKmeans-based clustered thresholding) and primarily evaluated its performance against unsupervised approaches for at least 25 human receptors and multiple tissue types. This analysis reveals that techniques based on a thresholded reduced rank reconstruction of scRNA-seq data are effective for receptor abundance estimation, with SPECK providing the best overall performance. Availability and implementation SPECK is freely available at https://CRAN.R-project.org/package=SPECK. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Azka Javaid
- Department of Biomedical Data Science, Dartmouth College, Hanover, NH 03755, USA
| | - H Robert Frost
- Department of Biomedical Data Science, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
21
|
Stokes T, Cen HH, Kapranov P, Gallagher IJ, Pitsillides AA, Volmar C, Kraus WE, Johnson JD, Phillips SM, Wahlestedt C, Timmons JA. Transcriptomics for Clinical and Experimental Biology Research: Hang on a Seq. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2200024. [PMID: 37288167 PMCID: PMC10242409 DOI: 10.1002/ggn2.202200024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Indexed: 06/09/2023]
Abstract
Sequencing the human genome empowers translational medicine, facilitating transcriptome-wide molecular diagnosis, pathway biology, and drug repositioning. Initially, microarrays are used to study the bulk transcriptome; but now short-read RNA sequencing (RNA-seq) predominates. Positioned as a superior technology, that makes the discovery of novel transcripts routine, most RNA-seq analyses are in fact modeled on the known transcriptome. Limitations of the RNA-seq methodology have emerged, while the design of, and the analysis strategies applied to, arrays have matured. An equitable comparison between these technologies is provided, highlighting advantages that modern arrays hold over RNA-seq. Array protocols more accurately quantify constitutively expressed protein coding genes across tissue replicates, and are more reliable for studying lower expressed genes. Arrays reveal long noncoding RNAs (lncRNA) are neither sparsely nor lower expressed than protein coding genes. Heterogeneous coverage of constitutively expressed genes observed with RNA-seq, undermines the validity and reproducibility of pathway analyses. The factors driving these observations, many of which are relevant to long-read or single-cell sequencing are discussed. As proposed herein, a reappreciation of bulk transcriptomic methods is required, including wider use of the modern high-density array data-to urgently revise existing anatomical RNA reference atlases and assist with more accurate study of lncRNAs.
Collapse
Affiliation(s)
- Tanner Stokes
- Faculty of ScienceMcMaster UniversityHamiltonL8S 4L8Canada
| | - Haoning Howard Cen
- Life Sciences InstituteUniversity of British ColumbiaVancouverV6T 1Z3Canada
| | | | - Iain J Gallagher
- School of Applied SciencesEdinburgh Napier UniversityEdinburghEH11 4BNUK
| | | | | | | | - James D. Johnson
- Life Sciences InstituteUniversity of British ColumbiaVancouverV6T 1Z3Canada
| | | | | | - James A. Timmons
- Miller School of MedicineUniversity of MiamiMiamiFL33136USA
- William Harvey Research InstituteQueen Mary University LondonLondonEC1M 6BQUK
- Augur Precision Medicine LTDStirlingFK9 5NFUK
| |
Collapse
|
22
|
Mansuri MS, Williams K, Nairn AC. Uncovering biology by single-cell proteomics. Commun Biol 2023; 6:381. [PMID: 37031277 PMCID: PMC10082756 DOI: 10.1038/s42003-023-04635-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/25/2023] [Indexed: 04/10/2023] Open
Abstract
Recent technological advances have opened the door to single-cell proteomics that can answer key biological questions regarding how protein expression, post-translational modifications, and protein interactions dictate cell state in health and disease.
Collapse
Affiliation(s)
- M Shahid Mansuri
- Yale/NIDA Neuroproteomics Center and Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kenneth Williams
- Yale/NIDA Neuroproteomics Center and Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Angus C Nairn
- Yale/NIDA Neuroproteomics Center and Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
23
|
Smith EG, Surm JM, Macrander J, Simhi A, Amir G, Sachkova MY, Lewandowska M, Reitzel AM, Moran Y. Micro and macroevolution of sea anemone venom phenotype. Nat Commun 2023; 14:249. [PMID: 36646703 PMCID: PMC9842752 DOI: 10.1038/s41467-023-35794-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Venom is a complex trait with substantial inter- and intraspecific variability resulting from strong selective pressures acting on the expression of many toxic proteins. However, understanding the processes underlying toxin expression dynamics that determine the venom phenotype remains unresolved. By interspecific comparisons we reveal that toxin expression in sea anemones evolves rapidly and that in each species different toxin family dictates the venom phenotype by massive gene duplication events. In-depth analysis of the sea anemone, Nematostella vectensis, revealed striking variation of the dominant toxin (Nv1) diploid copy number across populations (1-24 copies) resulting from independent expansion/contraction events, which generate distinct haplotypes. Nv1 copy number correlates with expression at both the transcript and protein levels with one population having a near-complete loss of Nv1 production. Finally, we establish the dominant toxin hypothesis which incorporates observations in other venomous lineages that animals have convergently evolved a similar strategy in shaping their venom.
Collapse
Affiliation(s)
- Edward G Smith
- University of North Carolina at Charlotte, Department of Biological Sciences, Charlotte, NC, USA. .,School of Life Sciences, University of Warwick, Coventry, United Kingdom.
| | - Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Jason Macrander
- University of North Carolina at Charlotte, Department of Biological Sciences, Charlotte, NC, USA.,Florida Southern College, Biology Department, Lakeland, FL, USA
| | - Adi Simhi
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Hebrew University of Jerusalem, The School of Computer Science & Engineering, Jerusalem, Israel
| | - Guy Amir
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Hebrew University of Jerusalem, The School of Computer Science & Engineering, Jerusalem, Israel
| | - Maria Y Sachkova
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Magda Lewandowska
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adam M Reitzel
- University of North Carolina at Charlotte, Department of Biological Sciences, Charlotte, NC, USA
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
24
|
Hedayioglu F, Mead EJ, O'Connor PBF, Skiotys M, Sansom OJ, Mallucci GR, Willis AE, Baranov PV, Smales CM, von der Haar T. Evaluating data integrity in ribosome footprinting datasets through modelled polysome profiles. Nucleic Acids Res 2022; 50:e112. [PMID: 35979952 PMCID: PMC9638929 DOI: 10.1093/nar/gkac705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/23/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022] Open
Abstract
The assessment of transcriptome-wide ribosome binding to mRNAs is useful for studying the dynamic regulation of protein synthesis. Two methods frequently applied in eukaryotic cells that operate at different levels of resolution are polysome profiling, which reveals the distribution of ribosome loads across the transcriptome, and ribosome footprinting (also termed ribosome profiling or Ribo-Seq), which when combined with appropriate data on mRNA expression can reveal ribosome densities on individual transcripts. In this study we develop methods for relating the information content of these two methods to one another, by reconstructing theoretical polysome profiles from ribosome footprinting data. Our results validate both approaches as experimental tools. Although we show that both methods can yield highly consistent data, some published ribosome footprinting datasets give rise to reconstructed polysome profiles with non-physiological features. We trace these aberrant features to inconsistencies in RNA and Ribo-Seq data when compared to datasets yielding physiological polysome profiles, thereby demonstrating that modelled polysomes are useful for assessing global dataset properties such as its quality in a simple, visual approach. Aside from using polysome profile reconstructions on published datasets, we propose that this also provides a useful tool for validating new ribosome footprinting datasets in early stages of analyses.
Collapse
Affiliation(s)
- Fabio Hedayioglu
- Kent Fungal Group, School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Emma J Mead
- Industrial Biotechnology Centre, School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury CT2 7NJ, UK
| | | | - Matas Skiotys
- Kent Fungal Group, School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Giovanna R Mallucci
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, Island Research Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Anne E Willis
- MRC Toxciology Unit, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - C Mark Smales
- Industrial Biotechnology Centre, School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Tobias von der Haar
- Kent Fungal Group, School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury CT2 7NJ, UK
| |
Collapse
|
25
|
Upadhya SR, Ryan CJ. Experimental reproducibility limits the correlation between mRNA and protein abundances in tumor proteomic profiles. CELL REPORTS METHODS 2022; 2:100288. [PMID: 36160043 PMCID: PMC9499981 DOI: 10.1016/j.crmeth.2022.100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/14/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022]
Abstract
Large-scale studies of human proteomes have revealed only a moderate correlation between mRNA and protein abundances. It is unclear to what extent this moderate correlation reflects post-transcriptional regulation and to what extent it reflects measurement error. Here, by analyzing replicate profiles of tumors and cell lines, we show that there is considerable variation in the reproducibility of measurements of transcripts and proteins from individual genes. Proteins with more reproducible measurements tend to have a higher mRNA-protein correlation, suggesting that measurement reproducibility accounts for a substantial fraction of the unexplained variation between mRNA and protein abundances. The reproducibility of individual proteins is somewhat consistent across studies, and we exploit this to develop an aggregate reproducibility score that explains a substantial amount of the variation in mRNA-protein correlations across multiple studies. Finally, we show that pathways previously reported to have a higher-than-average mRNA-protein correlation may simply contain members that can be more reproducibly quantified.
Collapse
Affiliation(s)
- Swathi Ramachandra Upadhya
- School of Computer Science, University College Dublin, Dublin, Ireland
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Colm J. Ryan
- School of Computer Science, University College Dublin, Dublin, Ireland
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| |
Collapse
|
26
|
False-positive IRESes from Hoxa9 and other genes resulting from errors in mammalian 5' UTR annotations. Proc Natl Acad Sci U S A 2022; 119:e2122170119. [PMID: 36037358 PMCID: PMC9456764 DOI: 10.1073/pnas.2122170119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hyperconserved genomic sequences have great promise for understanding core biological processes. It has been recently proposed that scores of hyperconserved 5' untranslated regions (UTRs), also known as transcript leaders (hTLs), encode internal ribosome entry sites (IRESes) that drive cap-independent translation, in part, via interactions with ribosome expansion segments. However, the direct functional significance of such interactions has not yet been definitively demonstrated. We provide evidence that the putative IRESes previously reported in Hox gene hTLs are rarely included in transcript leaders. Instead, these regions function independently as transcriptional promoters. In addition, we find the proposed RNA structure of the putative Hoxa9 IRES is not conserved. Instead, sequences previously shown to be essential for putative IRES activity encode a hyperconserved transcription factor binding site (E-box) that contributes to its promoter activity and is bound by several transcription factors, including USF1 and USF2. Similar E-box sequences enhance the promoter activities of other putative Hoxa gene IRESes. Moreover, we provide evidence that the vast majority of hTLs with putative IRES activity overlap transcriptional promoters, enhancers, and 3' splice sites that are most likely responsible for their reported IRES activities. These results argue strongly against recently reported widespread IRES-like activities from hTLs and contradict proposed interactions between ribosomal expansion segment ES9S and putative IRESes. Furthermore, our work underscores the importance of accurate transcript annotations, controls in bicistronic reporter assays, and the power of synthesizing publicly available data from multiple sources.
Collapse
|
27
|
Fernandez GJ, Ramírez-Mejia JM, Urcuqui-Inchima S. Vitamin D boosts immune response of macrophages through a regulatory network of microRNAs and mRNAs. J Nutr Biochem 2022; 109:109105. [PMID: 35858666 DOI: 10.1016/j.jnutbio.2022.109105] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 10/31/2022]
Abstract
Vitamin D is associated with the stimulation of innate immunity, inflammation, and host defense against pathogens. Macrophages express receptors of Vitamin D, regulating transcription of genes related to immune processes. However, the transcriptional and post-transcriptional strategies controlling gene expression in differentiated macrophages, and how they are influenced by Vitamin D are not well understood. We studied whether Vitamin D enhances immune response by regulating the expression of microRNAs and mRNAs. Analysis of the transcriptome showed differences in expression of 199 genes, of which 68% were up-regulated, revealing the cell state of monocyte-derived macrophages differentiated with Vitamin D (D3-MDMs) as compared to monocyte-derived macrophages (MDMs). The differentially expressed genes appear to be associated with pathophysiological processes, including inflammatory responses, and cellular stress. Transcriptional motifs in promoter regions of up- or down-regulated genes showed enrichment of VDR motifs, suggesting possible roles of transcriptional activator or repressor in gene expression. Further, microRNA-Seq analysis indicated that there were 17 differentially expressed miRNAs, of which, 7 were up-regulated and 10 down-regulated, suggesting that Vitamin D plays a critical role in the regulation of miRNA expression during macrophages differentiation. The miR-6501-3p, miR-1273h-5p, miR-665, miR-1972, miR-1183, miR-619-5p were down-regulated in D3-MDMs compared to MDMs. The integrative analysis of miRNA and mRNA expression profiles predict that miR-1972, miR-1273h-5p, and miR-665 regulate genes PDCD1LG2, IL-1B, and CD274, which are related to the inflammatory response. Results suggest an essential role of Vitamin D in macrophage differentiation that modulates host response against pathogens, inflammation, and cellular stress.
Collapse
Affiliation(s)
- Geysson Javier Fernandez
- Grupo Inmunovirología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Julieta M Ramírez-Mejia
- Research group CIBIOP, Department of Biological Sciences, Universidad EAFIT, Medellín, Antioquia, Colombia
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia.
| |
Collapse
|
28
|
Liu W, Zhang R, Huang S, Li X, Liu W, Zhou J, Zhu L, Song Y, Yang C. Quantification of Intracellular Proteins in Single Cells Based on Engineered Picoliter Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7929-7937. [PMID: 35748862 DOI: 10.1021/acs.langmuir.2c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Unlike conventional bulk measurements, single-cell protein analysis permits quantification of protein expression in individual cells. This has shed light on the cell-to-cell variation in heterogeneous biological systems, such as solid tumors, brain tissues, and developing embryos. Herein, a microfluidic method is developed to profile protein expression in individual cells by performing single-cell intracellular protein immunoassay in picoliter paired droplets. The high sensitivity of single-cell protein analysis on a chip is achieved by the confined reaction volume of picoliter droplets, efficient kinetic characteristics of the immunoassay through active mixing, and minimum single-cell protein loss by integrated operations. The abundance of an intracellular prostate specific antigen at the single-cell level is measured, and then the platform is applied to identify cell types and investigate heterogeneity within cell populations. Overall, a paired chip for single-cell immunoassay establishes a foundation for parallel, sensitive, and integrated protein quantification at the single-cell level and will find wide applications in the field of single-cell proteomics.
Collapse
Affiliation(s)
- Weizhi Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ruihua Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shanqing Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xingrui Li
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wanling Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jianhui Zhou
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lin Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
29
|
Eisen TJ, Li JJ, Bartel DP. The interplay between translational efficiency, poly(A) tails, microRNAs, and neuronal activation. RNA (NEW YORK, N.Y.) 2022; 28:808-831. [PMID: 35273099 PMCID: PMC9074895 DOI: 10.1261/rna.079046.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Neurons provide a rich setting for studying post-transcriptional control. Here, we investigate the landscape of translational control in neurons and search for mRNA features that explain differences in translational efficiency (TE), considering the interplay between TE, mRNA poly(A)-tail lengths, microRNAs, and neuronal activation. In neurons and brain tissues, TE correlates with tail length, and a few dozen mRNAs appear to undergo cytoplasmic polyadenylation upon light or chemical stimulation. However, the correlation between TE and tail length is modest, explaining <5% of TE variance, and even this modest relationship diminishes when accounting for other mRNA features. Thus, tail length appears to affect TE only minimally. Accordingly, miRNAs, which accelerate deadenylation of their mRNA targets, primarily influence target mRNA levels, with no detectable effect on either steady-state tail lengths or TE. Larger correlates with TE include codon composition and predicted mRNA folding energy. When combined in a model, the identified correlates explain 38%-45% of TE variance. These results provide a framework for considering the relative impact of factors that contribute to translational control in neurons. They indicate that when examined in bulk, translational control in neurons largely resembles that of other types of post-embryonic cells. Thus, detection of more specialized control might require analyses that can distinguish translation occurring in neuronal processes from that occurring in cell bodies.
Collapse
Affiliation(s)
- Timothy J Eisen
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Jingyi Jessica Li
- Department of Statistics, Department of Biostatistics, Department of Computational Medicine, and Department of Human Genetics, University of California, Los Angeles, California 90095, USA
| | - David P Bartel
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
30
|
Lipshutz SE, Howell CR, Buechlein AM, Rusch DB, Rosvall KA, Derryberry EP. How thermal challenges change gene regulation in the songbird brain and gonad: implications for sexual selection in our changing world. Mol Ecol 2022; 31:3613-3626. [PMID: 35567363 DOI: 10.1111/mec.16506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022]
Abstract
In a rapidly warming world, exposure to high temperatures may impact fitness, but the gene regulatory mechanisms that link sublethal heat to sexually selected traits are not well understood, particularly in endothermic animals. Our experiment used zebra finches (Taeniopygia guttata), songbirds that experience extreme temperature fluctuations in their native Australia. We exposed captive males to an acute thermal challenge (43°C) compared with thermoneutral (35°C) and lower (27°C) temperatures. We found significantly more heat dissipation behaviors at 43°C, a temperature previously shown to reduce song production and fertility, and more heat retention behaviors at 27°C. Next, we characterized transcriptomic responses in tissues important for mating effort - the posterior telencephalon, for its role in song production, and the testis, for its role in fertility and hormone production. Differential expression of hundreds of genes in the testes, but few in the brain, suggest the brain is less responsive to extreme temperatures. Nevertheless, gene network analyses revealed that expression related to dopaminergic signaling in the brain co-varied with heat dissipation behaviors, providing a mechanism by which temporary thermal challenges may alter motivational circuits for song production. In both brain and testis, we observed correlations between thermally sensitive gene networks and individual differences in thermoregulatory behavior. Although we cannot directly relate these gene regulatory changes to mating success, our results suggest that individual variation in response to thermal challenges could impact sexually selected traits in a warming world.
Collapse
Affiliation(s)
- Sara E Lipshutz
- Department of Biology, Indiana University, Bloomington, IN, USA.,Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Clara R Howell
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA.,Department of Biology, Duke University, Durham, NC, USA
| | - Aaron M Buechlein
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | | | - Elizabeth P Derryberry
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
31
|
Chunduri NK, Barthel K, Storchova Z. Consequences of Chromosome Loss: Why Do Cells Need Each Chromosome Twice? Cells 2022; 11:1530. [PMID: 35563836 PMCID: PMC9101035 DOI: 10.3390/cells11091530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/26/2022] Open
Abstract
Aneuploidy is a cellular state with an unbalanced chromosome number that deviates from the usual euploid status. During evolution, elaborate cellular mechanisms have evolved to maintain the correct chromosome content over generations. The rare errors often lead to cell death, cell cycle arrest, or impaired proliferation. At the same time, aneuploidy can provide a growth advantage under selective conditions in a stressful, frequently changing environment. This is likely why aneuploidy is commonly found in cancer cells, where it correlates with malignancy, drug resistance, and poor prognosis. To understand this "aneuploidy paradox", model systems have been established and analyzed to investigate the consequences of aneuploidy. Most of the evidence to date has been based on models with chromosomes gains, but chromosome losses and recurrent monosomies can also be found in cancer. We summarize the current models of chromosome loss and our understanding of its consequences, particularly in comparison to chromosome gains.
Collapse
Affiliation(s)
- Narendra Kumar Chunduri
- University Medical Center Groningen, European Research Institute for the Biology of Ageing, University of Groningen, 9713 AV Groningen, The Netherlands;
| | - Karen Barthel
- Department of molecular genetics, University of Kaiserslautern, 67663 Kaiserslautern, Germany;
| | - Zuzana Storchova
- Department of molecular genetics, University of Kaiserslautern, 67663 Kaiserslautern, Germany;
| |
Collapse
|
32
|
Makowczenko KG, Jastrzebski JP, Paukszto L, Dobrzyn K, Kiezun M, Smolinska N, Kaminski T. Chemerin Impact on Alternative mRNA Transcription in the Porcine Luteal Cells. Cells 2022; 11:715. [PMID: 35203364 PMCID: PMC8870241 DOI: 10.3390/cells11040715] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
Chemerin participates in the regulation of processes related to physiological and disorder mechanisms in mammals, including metabolism, obesity, inflammation, and reproduction. In this study, we have investigated chemerin influence on alternative mRNA transcription within the porcine luteal cell transcriptome, such as differential expression of long non-coding RNAs (DELs) and their interactions with differentially expressed genes (DEGs), differences in alternative splicing of transcripts (DASs), and allele-specific expression (ASEs) related to the single nucleotide variants (SNVs) frequency. Luteal cells were collected from gilts during the mid-luteal phase of the oestrous cycle. After in vitro culture of cells un-/treated with chemerin, the total RNA was isolated and sequenced using the high-throughput method. The in silico analyses revealed 24 DELs cis interacting with 6 DEGs and trans-correlated with 300 DEGs, 137 DASs events, and 18 ASEs. The results enabled us to analyse metabolic and signalling pathways in detail, providing new insights into the effects of chemerin on the corpus luteum functions related to inflammatory response, leukocyte infiltration, the occurrence of luteotropic and luteolytic signals (leading to apoptosis and/or necroptosis). Validation of the results using qPCR confirmed the predicted expression changes. Chemerin at physiological concentrations significantly modifies the transcription processes in the porcine luteal cells.
Collapse
Affiliation(s)
- Karol G. Makowczenko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.G.M.); (M.K.); (N.S.)
| | - Jan P. Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland;
| | - Lukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Lodzki 1, 10-719 Olsztyn, Poland;
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland;
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.G.M.); (M.K.); (N.S.)
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.G.M.); (M.K.); (N.S.)
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (K.G.M.); (M.K.); (N.S.)
| |
Collapse
|
33
|
Nowicka N, Szymańska K, Juranek J, Zglejc-Waszak K, Korytko A, Załęcki M, Chmielewska-Krzesińska M, Wąsowicz K, Wojtkiewicz J. The Involvement of RAGE and Its Ligands during Progression of ALS in SOD1 G93A Transgenic Mice. Int J Mol Sci 2022; 23:ijms23042184. [PMID: 35216298 PMCID: PMC8880540 DOI: 10.3390/ijms23042184] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 02/05/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a progressive degeneration of upper and lower motor neurons that causes paralysis and muscle atrophy. The pathogenesis of the disease is still not elucidated. Receptor for Advanced Glycation End Product (RAGE) is a major component of the innate immune system and has implications in ALS pathogenesis. Multiple studies suggest the role of RAGE and its ligands in ALS. RAGE and its ligands are overexpressed in human and murine ALS motor neurons, astrocytes, and microglia. Here, we demonstrated the expression of RAGE and its ligands during the progression of the disease in the transgenic SOD1 G93A mouse lumbar spinal cord. We observed the highest expression of HMGB1 and S100b proteins at ALS onset. Our results highlight the potential role of RAGE and its ligands in ALS pathogenesis and suggest that some of the RAGE ligands might be used as biomarkers in early ALS diagnosis and potentially be useful in targeted therapeutic interventions at the early stage of this devastating disease.
Collapse
Affiliation(s)
- Natalia Nowicka
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (K.S.); (K.Z.-W.); (A.K.); (J.W.)
- Correspondence: (N.N.); (J.J.)
| | - Kamila Szymańska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (K.S.); (K.Z.-W.); (A.K.); (J.W.)
| | - Judyta Juranek
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (K.S.); (K.Z.-W.); (A.K.); (J.W.)
- Correspondence: (N.N.); (J.J.)
| | - Kamila Zglejc-Waszak
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (K.S.); (K.Z.-W.); (A.K.); (J.W.)
| | - Agnieszka Korytko
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (K.S.); (K.Z.-W.); (A.K.); (J.W.)
| | - Michał Załęcki
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Małgorzata Chmielewska-Krzesińska
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.C.-K.); (K.W.)
| | - Krzysztof Wąsowicz
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.C.-K.); (K.W.)
| | - Joanna Wojtkiewicz
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (K.S.); (K.Z.-W.); (A.K.); (J.W.)
| |
Collapse
|
34
|
Kuang J, McGinley C, Lee MJC, Saner NJ, Garnham A, Bishop DJ. Interpretation of exercise-induced changes in human skeletal muscle mRNA expression depends on the timing of the post-exercise biopsies. PeerJ 2022; 10:e12856. [PMID: 35186464 PMCID: PMC8820226 DOI: 10.7717/peerj.12856] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/09/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Exercise elicits a range of adaptive responses in skeletal muscle, which include changes in mRNA expression. To better understand the health benefits of exercise training, it is important to investigate the underlying molecular mechanisms of skeletal muscle adaptation to exercise. However, most studies have assessed the molecular events at only a few time-points within a short time frame post-exercise, and the variations of gene expression kinetics have not been addressed systematically. METHODS We assessed the mRNA expression of 23 gene isoforms implicated in the adaptive response to exercise at six time-points (0, 3, 9, 24, 48, and 72 h post exercise) over a 3-day period following a single session of high-intensity interval exercise. RESULTS The temporal patterns of target gene expression were highly variable and the expression of mRNA transcripts detected was largely dependent on the timing of muscle sampling. The largest fold change in mRNA expression of each tested target gene was observed between 3 and 72 h post-exercise. DISCUSSION AND CONCLUSIONS Our findings highlight an important gap in knowledge regarding the molecular response to exercise, where the use of limited time-points within a short period post-exercise has led to an incomplete understanding of the molecular response to exercise. Muscle sampling timing for individual studies needs to be carefully chosen based on existing literature and preliminary analysis of the molecular targets of interest. We propose that a comprehensive time-course analysis on the exercise-induced transcriptional response in humans will significantly benefit the field of exercise molecular biology.
Collapse
Affiliation(s)
- Jujiao Kuang
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia,Australia Institute for Musculoskeletal Sciences, Melbourne, Victoria, Australia
| | - Cian McGinley
- Sportscotland Institute of Sport, Stirling, United Kingdom
| | - Matthew J-C Lee
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Nicholas J. Saner
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia,Human Integrative Physiology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Andrew Garnham
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - David J. Bishop
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
35
|
Duncan O, Millar AH. Day and night isotope labelling reveal metabolic pathway specific regulation of protein synthesis rates in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:745-763. [PMID: 34997626 DOI: 10.1111/tpj.15661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Plants have a diurnal separation of metabolic fluxes and a need for differential maintenance of protein machinery in the day and night. To directly assess the output of the translation process and to estimate the ATP investment involved, the individual rates of protein synthesis and degradation of hundreds of different proteins need to be measured simultaneously. We quantified protein synthesis and degradation through pulse labelling with heavy hydrogen in Arabidopsis thaliana rosettes to allow such an assessment of ATP investment in leaf proteome homeostasis on a gene-by-gene basis. Light-harvesting complex proteins were synthesised and degraded much faster in the day (approximately 10:1), while carbon metabolism and vesicle trafficking components were translated at similar rates day or night. Few leaf proteins changed in abundance between the day and the night despite reduced protein synthesis rates at night, indicating that protein degradation rates are tightly coordinated. The data reveal how the pausing of photosystem synthesis and degradation at night allows the redirection of a decreased energy budget to a selective night-time maintenance schedule.
Collapse
Affiliation(s)
- Owen Duncan
- ARC Centre of Excellence in Plant Energy Biology, Perth, WA, Australia
- Western Australian Proteomics, The University Western Australia, Perth, WA, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, Perth, WA, Australia
- Western Australian Proteomics, The University Western Australia, Perth, WA, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
36
|
Sex differences in immune gene expression in the brain of a small shorebird. Immunogenetics 2022; 74:487-496. [PMID: 35084547 PMCID: PMC8792134 DOI: 10.1007/s00251-022-01253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022]
Abstract
Males and females often exhibit differences in behaviour, life histories, and ecology, many of which are typically reflected in their brains. Neuronal protection and maintenance include complex processes led by the microglia, which also interacts with metabolites such as hormones or immune components. Despite increasing interest in sex-specific brain function in laboratory animals, the significance of sex-specific immune activation in the brain of wild animals along with the variables that could affect it is widely lacking. Here, we use the Kentish plover (Charadrius alexandrinus) to study sex differences in expression of immune genes in the brain of adult males and females, in two wild populations breeding in contrasting habitats: a coastal sea-level population and a high-altitude inland population in China. Our analysis yielded 379 genes associated with immune function. We show a significant male-biased immune gene upregulation. Immune gene expression in the brain did not differ in upregulation between the coastal and inland populations. We discuss the role of dosage compensation in our findings and their evolutionary significance mediated by sex-specific survival and neuronal deterioration. Similar expression profiles in the coastal and inland populations suggest comparable genetic control by the microglia and possible similarities in pathogen pressures between habitats. We call for further studies on gene expression of males and females in wild population to understand the implications of immune function for life-histories and demography in natural systems.
Collapse
|
37
|
A critical period of translational control during brain development at codon resolution. Nat Struct Mol Biol 2022; 29:1277-1290. [PMID: 36482253 PMCID: PMC9758057 DOI: 10.1038/s41594-022-00882-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 10/19/2022] [Indexed: 12/13/2022]
Abstract
Translation modulates the timing and amplification of gene expression after transcription. Brain development requires uniquely complex gene expression patterns, but large-scale measurements of translation directly in the prenatal brain are lacking. We measure the reactants, synthesis and products of mRNA translation spanning mouse neocortex neurogenesis, and discover a transient window of dynamic regulation at mid-gestation. Timed translation upregulation of chromatin-binding proteins like Satb2, which is essential for neuronal subtype differentiation, restricts protein expression in neuronal lineages despite broad transcriptional priming in progenitors. In contrast, translation downregulation of ribosomal proteins sharply decreases ribosome biogenesis, coinciding with a major shift in protein synthesis dynamics at mid-gestation. Changing activity of eIF4EBP1, a direct inhibitor of ribosome biogenesis, is concurrent with ribosome downregulation and affects neurogenesis of the Satb2 lineage. Thus, the molecular logic of brain development includes the refinement of transcriptional programs by translation. Modeling of the developmental neocortex translatome is provided as an open-source searchable resource at https://shiny.mdc-berlin.de/cortexomics .
Collapse
|
38
|
Duk MA, Gursky VV, Samsonova MG, Surkova SY. Application of Domain- and Genotype-Specific Models to Infer Post-Transcriptional Regulation of Segmentation Gene Expression in Drosophila. Life (Basel) 2021; 11:life11111232. [PMID: 34833107 PMCID: PMC8618293 DOI: 10.3390/life11111232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Unlike transcriptional regulation, the post-transcriptional mechanisms underlying zygotic segmentation gene expression in early Drosophila embryo have been insufficiently investigated. Condition-specific post-transcriptional regulation plays an important role in the development of many organisms. Our recent study revealed the domain- and genotype-specific differences between mRNA and the protein expression of Drosophila hb, gt, and eve genes in cleavage cycle 14A. Here, we use this dataset and the dynamic mathematical model to recapitulate protein expression from the corresponding mRNA patterns. The condition-specific nonuniformity in parameter values is further interpreted in terms of possible post-transcriptional modifications. For hb expression in wild-type embryos, our results predict the position-specific differences in protein production. The protein synthesis rate parameter is significantly higher in hb anterior domain compared to the posterior domain. The parameter sets describing Gt protein dynamics in wild-type embryos and Kr mutants are genotype-specific. The spatial discrepancy between gt mRNA and protein posterior expression in Kr mutants is well reproduced by the whole axis model, thus rejecting the involvement of post-transcriptional mechanisms. Our models fail to describe the full dynamics of eve expression, presumably due to its complex shape and the variable time delays between mRNA and protein patterns, which likely require a more complex model. Overall, our modeling approach enables the prediction of regulatory scenarios underlying the condition-specific differences between mRNA and protein expression in early embryo.
Collapse
Affiliation(s)
- Maria A. Duk
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (M.A.D.); (M.G.S.)
- Theoretical Department, Ioffe Institute, 194021 St. Petersburg, Russia;
| | - Vitaly V. Gursky
- Theoretical Department, Ioffe Institute, 194021 St. Petersburg, Russia;
| | - Maria G. Samsonova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (M.A.D.); (M.G.S.)
| | - Svetlana Yu. Surkova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (M.A.D.); (M.G.S.)
- Correspondence:
| |
Collapse
|
39
|
Occhipinti A, Hamadi Y, Kugler H, Wintersteiger CM, Yordanov B, Angione C. Discovering Essential Multiple Gene Effects Through Large Scale Optimization: An Application to Human Cancer Metabolism. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2339-2352. [PMID: 32248120 DOI: 10.1109/tcbb.2020.2973386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Computational modelling of metabolic processes has proven to be a useful approach to formulate our knowledge and improve our understanding of core biochemical systems that are crucial to maintaining cellular functions. Towards understanding the broader role of metabolism on cellular decision-making in health and disease conditions, it is important to integrate the study of metabolism with other core regulatory systems and omics within the cell, including gene expression patterns. After quantitatively integrating gene expression profiles with a genome-scale reconstruction of human metabolism, we propose a set of combinatorial methods to reverse engineer gene expression profiles and to find pairs and higher-order combinations of genetic modifications that simultaneously optimize multi-objective cellular goals. This enables us to suggest classes of transcriptomic profiles that are most suitable to achieve given metabolic phenotypes. We demonstrate how our techniques are able to compute beneficial, neutral or "toxic" combinations of gene expression levels. We test our methods on nine tissue-specific cancer models, comparing our outcomes with the corresponding normal cells, identifying genes as targets for potential therapies. Our methods open the way to a broad class of applications that require an understanding of the interplay among genotype, metabolism, and cellular behaviour, at scale.
Collapse
|
40
|
Wen Y, Zhao J, He H, Zhao Q, Liu Z. Multiplexed Single-Cell Plasmonic Immunoassay of Intracellular Signaling Proteins Enables Non-Destructive Monitoring of Cell Fate. Anal Chem 2021; 93:14204-14213. [PMID: 34648273 DOI: 10.1021/acs.analchem.1c03062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
It is of significant importance in cancer biology to identify signaling pathways that play key roles in cell fate determination. Dissecting cellular signaling pathways requires the measurement of a large number of signaling proteins. However, tools for simultaneously monitoring multiple signaling pathway components in single living cells remain limited at present. Herein, we describe an approach, termed multiplexed single-cell plasmonic immunosandwich assay (mxscPISA), for simultaneous detection of multiple signaling proteins in individual living cells. This approach enabled simultaneous non-destructive monitoring of multiple (up to five, currently the highest multiplexing capacity in living cells) cytoplasmic and nucleus signaling proteins in individual cells with ultrahigh detection sensitivity. As a proof of principle, the epidermal growth factor receptor (EGFR) pathway, which plays a central role in cell fate determination, was investigated using this approach in this study. We found that there were differential attenuation rate of pro-survival and accumulation rate of pro-death signaling protein of the EGFR pathway in response to EGFR inactivation. These findings implicate that, after EGFR inactivation, a transient imbalance between survival and apoptotic signaling outputs contributed to the final cell fate of death. The mxscPISA approach can be a promising tool to reveal a signaling dynamic pattern at the single-cell level and to identify key components of signaling pathways that contribute to the final cell fate using only a limited number of cells.
Collapse
Affiliation(s)
- Yanrong Wen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jialing Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hui He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Quan Zhao
- School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
41
|
Weaver DT, Pishas KI, Williamson D, Scarborough J, Lessnick SL, Dhawan A, Scott JG. Network potential identifies therapeutic miRNA cocktails in Ewing sarcoma. PLoS Comput Biol 2021; 17:e1008755. [PMID: 34662337 PMCID: PMC8601628 DOI: 10.1371/journal.pcbi.1008755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 11/18/2021] [Accepted: 09/20/2021] [Indexed: 12/16/2022] Open
Abstract
MicroRNA (miRNA)-based therapies are an emerging class of targeted therapeutics with many potential applications. Ewing Sarcoma patients could benefit dramatically from personalized miRNA therapy due to inter-patient heterogeneity and a lack of druggable (to this point) targets. However, because of the broad effects miRNAs may have on different cells and tissues, trials of miRNA therapies have struggled due to severe toxicity and unanticipated immune response. In order to overcome this hurdle, a network science-based approach is well-equipped to evaluate and identify miRNA candidates and combinations of candidates for the repression of key oncogenic targets while avoiding repression of essential housekeeping genes. We first characterized 6 Ewing sarcoma cell lines using mRNA sequencing. We then estimated a measure of tumor state, which we term network potential, based on both the mRNA gene expression and the underlying protein-protein interaction network in the tumor. Next, we ranked mRNA targets based on their contribution to network potential. We then identified miRNAs and combinations of miRNAs that preferentially act to repress mRNA targets with the greatest influence on network potential. Our analysis identified TRIM25, APP, ELAV1, RNF4, and HNRNPL as ideal mRNA targets for Ewing sarcoma therapy. Using predicted miRNA-mRNA target mappings, we identified miR-3613-3p, let-7a-3p, miR-300, miR-424-5p, and let-7b-3p as candidate optimal miRNAs for preferential repression of these targets. Ultimately, our work, as exemplified in the case of Ewing sarcoma, describes a novel pipeline by which personalized miRNA cocktails can be designed to maximally perturb gene networks contributing to cancer progression.
Collapse
Affiliation(s)
- Davis T. Weaver
- Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Translational Hematology Oncology Research, Cleveland Clinic, Cleveland, Ohio, United States of America
| | | | - Drew Williamson
- Department of Pathology, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
| | - Jessica Scarborough
- Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Translational Hematology Oncology Research, Cleveland Clinic, Cleveland, Ohio, United States of America
| | | | - Andrew Dhawan
- Translational Hematology Oncology Research, Cleveland Clinic, Cleveland, Ohio, United States of America
- Division of Neurology, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail: (AD); (JGS)
| | - Jacob G. Scott
- Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Translational Hematology Oncology Research, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Physics, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: (AD); (JGS)
| |
Collapse
|
42
|
Regulation of mRNA translation in stem cells; links to brain disorders. Cell Signal 2021; 88:110166. [PMID: 34624487 DOI: 10.1016/j.cellsig.2021.110166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/09/2021] [Accepted: 09/29/2021] [Indexed: 11/22/2022]
Abstract
Translational control of gene expression is emerging as a cardinal step in the regulation of protein abundance. Especially for embryonic (ESC) and neuronal stem cells (NSC), regulation of mRNA translation is involved in the maintenance of pluripotency but also differentiation. For neuronal stem cells this regulation is linked to the various neuronal subtypes that arise in the developing brain and is linked to numerous brain disorders. Herein, we review translational control mechanisms in ESCs and NSCs during development and differentiation, and briefly discuss their link to brain disorders.
Collapse
|
43
|
Kusnadi EP, Timpone C, Topisirovic I, Larsson O, Furic L. Regulation of gene expression via translational buffering. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119140. [PMID: 34599983 DOI: 10.1016/j.bbamcr.2021.119140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 12/28/2022]
Abstract
Translation of an mRNA represents a critical step during the expression of protein-coding genes. As mechanisms governing post-transcriptional regulation of gene expression are progressively unveiled, it is becoming apparent that transcriptional programs are not fully reflected in the proteome. Herein, we highlight a previously underappreciated post-transcriptional mode of regulation of gene expression termed translational buffering. In principle, translational buffering opposes the impact of alterations in mRNA levels on the proteome. We further describe three types of translational buffering: compensation, which maintains protein levels e.g. across species or individuals; equilibration, which retains pathway stoichiometry; and offsetting, which acts as a reversible mechanism that maintains the levels of selected subsets of proteins constant despite genetic alteration and/or stress-induced changes in corresponding mRNA levels. While mechanisms underlying compensation and equilibration have been reviewed elsewhere, the principal focus of this review is on the less-well understood mechanism of translational offsetting. Finally, we discuss potential roles of translational buffering in homeostasis and disease.
Collapse
Affiliation(s)
- Eric P Kusnadi
- Translational Prostate Cancer Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia; Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Clelia Timpone
- Translational Prostate Cancer Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Ivan Topisirovic
- Lady Davis Institute, Gerald Bronfman Department of Oncology and Departments of Biochemistry and Experimental Medicine, McGill University, Montreal, QC, Canada.
| | - Ola Larsson
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
| | - Luc Furic
- Translational Prostate Cancer Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia; Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
44
|
Boschetti E, Zilberstein G, Righetti PG. Combinatorial peptides: A library that continuously probes low-abundance proteins. Electrophoresis 2021; 43:355-369. [PMID: 34498305 DOI: 10.1002/elps.202100131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/31/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
After a decade of experimental applications, it is the objective of this review to make a point on combinatorial peptide ligand libraries dedicated to low-abundance proteins from animals to plants and to microorganism proteomics. It is, thus, at the light of the recent technical developments and applications that we will examine the state of the art, its usage within the scientific community, and its openness to unexplored fields. The improvements of the methodology and its implementation in connection with analytical determinations of combinatorial peptide ligand library (CPLL)-treated samples are extensively reviewed and commented upon. Relevant examples covering few critical aspects describe the performance of the technology. Finally, a reflection on the technological future is attempted in particular by involving new concepts adapted to the limited availability of certain biological samples.
Collapse
Affiliation(s)
| | | | - Pier Giorgio Righetti
- Department of Chemistry Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
45
|
Vlassakis J, Hansen LL, Higuchi-Sanabria R, Zhou Y, Tsui CK, Dillin A, Huang H, Herr AE. Measuring expression heterogeneity of single-cell cytoskeletal protein complexes. Nat Commun 2021; 12:4969. [PMID: 34404787 PMCID: PMC8371148 DOI: 10.1038/s41467-021-25212-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Multimeric cytoskeletal protein complexes orchestrate normal cellular function. However, protein-complex distributions in stressed, heterogeneous cell populations remain unknown. Cell staining and proximity-based methods have limited selectivity and/or sensitivity for endogenous multimeric protein-complex quantification from single cells. We introduce micro-arrayed, differential detergent fractionation to simultaneously detect protein complexes in hundreds of individual cells. Fractionation occurs by 60 s size-exclusion electrophoresis with protein complex-stabilizing buffer that minimizes depolymerization. Proteins are measured with a ~5-hour immunoassay. Co-detection of cytoskeletal protein complexes in U2OS cells treated with filamentous actin (F-actin) destabilizing Latrunculin A detects a unique subpopulation (~2%) exhibiting downregulated F-actin, but upregulated microtubules. Thus, some cells may upregulate other cytoskeletal complexes to counteract the stress of Latrunculin A treatment. We also sought to understand the effect of non-chemical stress on cellular heterogeneity of F-actin. We find heat shock may dysregulate filamentous and globular actin correlation. In this work, our assay overcomes selectivity limitations to biochemically quantify single-cell protein complexes perturbed with diverse stimuli.
Collapse
Affiliation(s)
- Julea Vlassakis
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Louise L Hansen
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Ryo Higuchi-Sanabria
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Yun Zhou
- Division of Biostatistics, University of California Berkeley, Berkeley, CA, USA
| | - C Kimberly Tsui
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Andrew Dillin
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA
| | - Haiyan Huang
- Department of Statistics, University of California Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA
| | - Amy E Herr
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
46
|
Weidemüller P, Kholmatov M, Petsalaki E, Zaugg JB. Transcription factors: Bridge between cell signaling and gene regulation. Proteomics 2021; 21:e2000034. [PMID: 34314098 DOI: 10.1002/pmic.202000034] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/05/2021] [Accepted: 07/16/2021] [Indexed: 01/17/2023]
Abstract
Transcription factors (TFs) are key regulators of intrinsic cellular processes, such as differentiation and development, and of the cellular response to external perturbation through signaling pathways. In this review we focus on the role of TFs as a link between signaling pathways and gene regulation. Cell signaling tends to result in the modulation of a set of TFs that then lead to changes in the cell's transcriptional program. We highlight the molecular layers at which TF activity can be measured and the associated technical and conceptual challenges. These layers include post-translational modifications (PTMs) of the TF, regulation of TF binding to DNA through chromatin accessibility and epigenetics, and expression of target genes. We highlight that a large number of TFs are understudied in both signaling and gene regulation studies, and that our knowledge about known TF targets has a strong literature bias. We argue that TFs serve as a perfect bridge between the fields of gene regulation and signaling, and that separating these fields hinders our understanding of cell functions. Multi-omics approaches that measure multiple dimensions of TF activity are ideally suited to study the interplay of cell signaling and gene regulation using TFs as the anchor to link the two fields.
Collapse
Affiliation(s)
- Paula Weidemüller
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Maksim Kholmatov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg, 69117, Germany
| | - Evangelia Petsalaki
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Judith B Zaugg
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg, 69117, Germany
| |
Collapse
|
47
|
Kammers K, Taub MA, Mathias RA, Yanek LR, Kanchan K, Venkatraman V, Sundararaman N, Martin J, Liu S, Hoyle D, Raedschelders K, Holewinski R, Parker S, Dardov V, Faraday N, Becker DM, Cheng L, Wang ZZ, Leek JT, Van Eyk JE, Becker LC. Gene and protein expression in human megakaryocytes derived from induced pluripotent stem cells. J Thromb Haemost 2021; 19:1783-1799. [PMID: 33829634 DOI: 10.1111/jth.15334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/25/2021] [Accepted: 02/19/2021] [Indexed: 01/26/2023]
Abstract
BACKGROUND There is interest in deriving megakaryocytes (MKs) from pluripotent stem cells (iPSC) for biological studies. We previously found that genomic structural integrity and genotype concordance is maintained in iPSC-derived MKs. OBJECTIVE To establish a comprehensive dataset of genes and proteins expressed in iPSC-derived MKs. METHODS iPSCs were reprogrammed from peripheral blood mononuclear cells (MNCs) and MKs were derived from the iPSCs in 194 healthy European American and African American subjects. mRNA was isolated and gene expression measured by RNA sequencing. Protein expression was measured in 62 of the subjects using mass spectrometry. RESULTS AND CONCLUSIONS MKs expressed genes and proteins known to be important in MK and platelet function and demonstrated good agreement with previous studies in human MKs derived from CD34+ progenitor cells. The percent of cells expressing the MK markers CD41 and CD42a was consistent in biological replicates, but variable across subjects, suggesting that unidentified subject-specific factors determine differentiation of MKs from iPSCs. Gene and protein sets important in platelet function were associated with increasing expression of CD41/42a, while those related to more basic cellular functions were associated with lower CD41/42a expression. There was differential gene expression by the sex and race (but not age) of the subject. Numerous genes and proteins were highly expressed in MKs but not known to play a role in MK or platelet function; these represent excellent candidates for future study of hematopoiesis, platelet formation, and/or platelet function.
Collapse
Affiliation(s)
- Kai Kammers
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Margaret A Taub
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Rasika A Mathias
- The GeneSTAR Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lisa R Yanek
- The GeneSTAR Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kanika Kanchan
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vidya Venkatraman
- Advanced Clinical Biosystems Research Institute, Barbra Streisand Woman's Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Niveda Sundararaman
- Advanced Clinical Biosystems Research Institute, Barbra Streisand Woman's Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Joshua Martin
- The GeneSTAR Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Senquan Liu
- Division of Hematology and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dixie Hoyle
- Division of Hematology and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Koen Raedschelders
- Advanced Clinical Biosystems Research Institute, Barbra Streisand Woman's Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ronald Holewinski
- Advanced Clinical Biosystems Research Institute, Barbra Streisand Woman's Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sarah Parker
- Advanced Clinical Biosystems Research Institute, Barbra Streisand Woman's Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Victoria Dardov
- Advanced Clinical Biosystems Research Institute, Barbra Streisand Woman's Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Nauder Faraday
- The GeneSTAR Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Diane M Becker
- The GeneSTAR Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Linzhao Cheng
- Division of Hematology and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zack Z Wang
- Division of Hematology and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey T Leek
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, Barbra Streisand Woman's Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Lewis C Becker
- The GeneSTAR Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
48
|
McKendry J, Stokes T, Mcleod JC, Phillips SM. Resistance Exercise, Aging, Disuse, and Muscle Protein Metabolism. Compr Physiol 2021; 11:2249-2278. [PMID: 34190341 DOI: 10.1002/cphy.c200029] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skeletal muscle is the organ of locomotion, its optimal function is critical for athletic performance, and is also important for health due to its contribution to resting metabolic rate and as a site for glucose uptake and storage. Numerous endogenous and exogenous factors influence muscle mass. Much of what is currently known regarding muscle protein turnover is owed to the development and use of stable isotope tracers. Skeletal muscle mass is determined by the meal- and contraction-induced alterations of muscle protein synthesis and muscle protein breakdown. Increased loading as resistance training is the most potent nonpharmacological strategy by which skeletal muscle mass can be increased. Conversely, aging (sarcopenia) and muscle disuse lead to the development of anabolic resistance and contribute to the loss of skeletal muscle mass. Nascent omics-based technologies have significantly improved our understanding surrounding the regulation of skeletal muscle mass at the gene, transcript, and protein levels. Despite significant advances surrounding the mechanistic intricacies that underpin changes in skeletal muscle mass, these processes are complex, and more work is certainly needed. In this article, we provide an overview of the importance of skeletal muscle, describe the influence that resistance training, aging, and disuse exert on muscle protein turnover and the molecular regulatory processes that contribute to changes in muscle protein abundance. © 2021 American Physiological Society. Compr Physiol 11:2249-2278, 2021.
Collapse
Affiliation(s)
- James McKendry
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Tanner Stokes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan C Mcleod
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
49
|
Agarwal V, Shendure J. Predicting mRNA Abundance Directly from Genomic Sequence Using Deep Convolutional Neural Networks. Cell Rep 2021; 31:107663. [PMID: 32433972 DOI: 10.1016/j.celrep.2020.107663] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 06/11/2019] [Accepted: 04/28/2020] [Indexed: 01/06/2023] Open
Abstract
Algorithms that accurately predict gene structure from primary sequence alone were transformative for annotating the human genome. Can we also predict the expression levels of genes based solely on genome sequence? Here, we sought to apply deep convolutional neural networks toward that goal. Surprisingly, a model that includes only promoter sequences and features associated with mRNA stability explains 59% and 71% of variation in steady-state mRNA levels in human and mouse, respectively. This model, termed Xpresso, more than doubles the accuracy of alternative sequence-based models and isolates rules as predictive as models relying on chromatic immunoprecipitation sequencing (ChIP-seq) data. Xpresso recapitulates genome-wide patterns of transcriptional activity, and its residuals can be used to quantify the influence of enhancers, heterochromatic domains, and microRNAs. Model interpretation reveals that promoter-proximal CpG dinucleotides strongly predict transcriptional activity. Looking forward, we propose cell-type-specific gene-expression predictions based solely on primary sequences as a grand challenge for the field.
Collapse
Affiliation(s)
- Vikram Agarwal
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Calico Life Sciences LLC, South San Francisco, CA 94080, USA.
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Erythropoiesis is a hierarchical process by which hematopoietic stem cells give rise to red blood cells through gradual cell fate restriction and maturation. Deciphering this process requires the establishment of dynamic gene regulatory networks (GRNs) that predict the response of hematopoietic cells to signals from the environment. Although GRNs have historically been derived from transcriptomic data, recent proteomic studies have revealed a major role for posttranscriptional mechanisms in regulating gene expression during erythropoiesis. These new findings highlight the need to integrate proteomic data into GRNs for a refined understanding of erythropoiesis. RECENT FINDINGS Here, we review recent proteomic studies that have furthered our understanding of erythropoiesis with a focus on quantitative mass spectrometry approaches to measure the abundance of transcription factors and cofactors during differentiation. Furthermore, we highlight challenges that remain in integrating transcriptomic, proteomic, and other omics data into a predictive model of erythropoiesis, and discuss the future prospect of single-cell proteomics. SUMMARY Recent proteomic studies have considerably expanded our knowledge of erythropoiesis beyond the traditional transcriptomic-centric perspective. These findings have both opened up new avenues of research to increase our understanding of erythroid differentiation, while at the same time presenting new challenges in integrating multiple layers of information into a comprehensive gene regulatory model.
Collapse
Affiliation(s)
- Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8L6, Canada
| | | |
Collapse
|