1
|
Wilson I, Perry T, Eisenhofer R, Rismiller P, Shaw M, Grutzner F. Microbiota changes in lactation in the short-beaked echidna (Tachyglossus aculeatus). FEMS Microbiol Ecol 2025; 101:fiaf036. [PMID: 40194944 PMCID: PMC12001884 DOI: 10.1093/femsec/fiaf036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 02/17/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025] Open
Abstract
Monotreme and marsupial development is characterized by a short gestation, with young exposed to the environment at an early developmental stage and supported by a long lactation in the pouch, pseudo-pouch, or burrow. The lack of a functional adaptive immune system in these altricial young raises questions about how they survive in a microbe-rich environment. Previous studies on marsupial pouches have revealed changes to pouch microbe composition during lactation, but no information is available in monotremes. We investigated changes in the echidna pseudo-pouch microbiota (n = 22) during different stages of the reproductive cycle and whether this differs between wild and zoo-managed animals. Metataxonomic profiling using 16S rRNA gene sequencing revealed that pseudo-pouch microbial communities undergo dramatic changes during lactation, with significant differences in taxonomic composition compared with samples taken outside of breeding season or during courtship and mating. This suggests that the echidna pseudo-pouch environment changes during lactation to accommodate young that lack a functional adaptive immune system. Furthermore, captivity was not found to have a significant effect on pseudo-pouch microbiota. This study pioneers pouch microbiota research in monotremes, provides new biological information on echidna reproduction, and may also provide information about the effects of captive management to inform breeding programmes in the future.
Collapse
Affiliation(s)
- Isabella Wilson
- School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Tahlia Perry
- School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, The University of Adelaide, Adelaide 5005, Australia
| | - Raphael Eisenhofer
- School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
- Centre for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen 1353, Denmark
| | - Peggy Rismiller
- School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
- Pelican Lagoon Research and Wildlife Centre, Penneshaw 5222, Australia
| | - Michelle Shaw
- School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
- Taronga Wildlife Nutrition Centre, Welfare, Conservation & Science, Taronga Conservation Society Australia, Mosman 2088, Australia
| | - Frank Grutzner
- School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
2
|
Peel E, Gonsalvez A, Hogg CJ, Belov K. Marsupial cathelicidins: characterization, antimicrobial activity and evolution in this unique mammalian lineage. Front Immunol 2025; 16:1524092. [PMID: 40255401 PMCID: PMC12006171 DOI: 10.3389/fimmu.2025.1524092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/07/2025] [Indexed: 04/22/2025] Open
Abstract
Introduction Cathelicidins are a family of antimicrobial peptides well-known for their antimicrobial and immunomodulatory functions in eutherian mammals such as humans. However, cathelicidins in marsupials, the other major lineage of mammals, have received little attention despite lineage-specific gene expansions resulting in a large and diverse peptide repertoire. Methods We characterized cathelicidins across the marsupial family tree and investigated genomic organisation and evolutionary relationships amongst mammals. Ancestral sequence reconstruction was used to predict ancestral marsupial cathelicidins, which, alongside extant peptides, were synthesized and screened for antimicrobial activity. Results We identified 130 cathelicidin genes amongst 14 marsupial species representing 10 families, with gene expansions identified in all species. Cathelicidin genes were encoded in a highly syntenic region of the genome amongst all mammals, although the number of gene clusters differed amongst lineages (eutherians one, marsupials two, and monotremes three). 32 extant and ancestral marsupial cathelicidins displayed rapid, potent, and/or broad-spectrum antibacterial and antifungal activity. Phylogenetic analysis revealed that marsupial and monotreme cathelicidin repertoires may reflect both mammals and birds, as they encode non-classical cathelicidins found only in birds, as well as multiple copies of neutrophil granule protein and classic cathelicidins found only in eutherian mammals. Conclusion This study sheds light on the evolutionary history of mammalian cathelicidins and highlights the potential of wildlife for novel bioactive peptide discovery.
Collapse
Affiliation(s)
- Emma Peel
- Australian Research Council (ARC) Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Science, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Adele Gonsalvez
- Australian Research Council (ARC) Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Science, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Carolyn J. Hogg
- Australian Research Council (ARC) Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Science, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Katherine Belov
- Australian Research Council (ARC) Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Science, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Barash I. Mammalian Species-Specific Resistance to Mammary Cancer. J Mammary Gland Biol Neoplasia 2025; 30:3. [PMID: 40048007 PMCID: PMC11885404 DOI: 10.1007/s10911-025-09578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/26/2025] [Indexed: 03/09/2025] Open
Abstract
Tumorigenesis in mammals is driven by inherited genetic variants, environmental factors and random errors during normal DNA replication that lead to cancer-causing mutations. These factors initiate uncontrolled cellular proliferation and disrupt the regulation of critical checkpoints. A few mammalian species possess unique protective mechanisms that enable them to resist widespread cancer development and achieve longevity. Tissue-specific tumor protection adds another layer of complexity to this diversity. Breast cancer is a leading cause of human mortality, particularly among females. Driven by the need for new strategies in treatment and prevention, this opinion article explores and supports the idea that herbivores are more resistant to mammary cancer than carnivores and omnivores. This diversity has occurred despite the remarkably similar basic mammary biology. Herbivores' meatless diet cannot explain the differences in cancer resistance, which have accompanied species segregation since the Jurassic era. To investigate the causes of this diversity, the characteristics of tumorigenesis in the human breast-and to a lesser extent in other carnivores-have been compared with data from retrospective analyses of bovine mammary tumor development across various locations over the past century. Well-established genomic, cellular, and systemic triggers of breast cancer exhibit different, or less pronounced tissue-specific activity in the bovine mammary gland, accompanied by novel bovine-specific protective mechanisms. Together, these factors contribute to the near absence of breast cancer in bovines and offer a basis for developing future anticancer strategies.
Collapse
Affiliation(s)
- Itamar Barash
- Institute of Animal Science, ARO, The Volcani Center, Bet Dagan, Israel.
| |
Collapse
|
4
|
Ceballos CP, Aristizábal-Parra E, Castillo-Vanegas VE. Hematology and serum biochemistry reference intervals for the common opossum Didelphis marsupialis. Vet Res Commun 2025; 49:123. [PMID: 40025378 PMCID: PMC11872772 DOI: 10.1007/s11259-025-10684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
The common opossum, Didelphis marsupialis, is a neotropical and synanthropic marsupial common and widespread in Latin America. The strong human-opossum conflict that results in high numbers of individuals with health problems demands information on physiological parameters to be used in veterinary medicine practice. The aim of this study was to estimate the reference intervals (RI) of hematology and serum biochemistry for this species which are lacking and evaluate its variability. Out of the 61 apparently healthy wild opossums evaluated, we found significant variability in the RI´s associated sex, life stage, habitat, and the reproductive stage of females. Males had higher values of RBC and hemoglobin than females, but females had higher values of MCH than males. Juveniles had higher values of MCV and MCH, but adults had higher values RBC, WBC and neutrophils. In addition, rural opossums had higher values of hemoglobin, MCHC, MCH and platelets, but urban opossums had higher values of WBC, particularly neutrophils and lymphocytes. Opossums are exposed to many different stressors in urban settings, and further research is needed to understand these physiological responses to urbanization. Finally, lactating females had higher values of monocytes and basophils compared to non-lactating females, potentially providing passive immunity through the milk to the immature neonates in the marsupium.
Collapse
Affiliation(s)
- Claudia P Ceballos
- Grupo de investigación GAMMA, Escuela de Medicina Veterinaria, Facultad de Ciencias Agrarias, Universidad de Antioquia, Medellín, Colombia.
| | - Estefanía Aristizábal-Parra
- Grupo de investigación GAMMA, Escuela de Medicina Veterinaria, Facultad de Ciencias Agrarias, Universidad de Antioquia, Medellín, Colombia
| | - Viviana E Castillo-Vanegas
- Grupo de investigación GAMMA, Escuela de Medicina Veterinaria, Facultad de Ciencias Agrarias, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
5
|
Jayamanna Mohottige MW, Gardner CE, Nye-Wood MG, Farquharson KA, Juhász A, Belov K, Hogg CJ, Peel E, Colgrave ML. Bioactive components in the marsupial pouch and milk. Nutr Res Rev 2024:1-12. [PMID: 39551618 DOI: 10.1017/s0954422424000313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Marsupials give birth to immunologically naïve young after a relatively short gestation period compared with eutherians. Consequently, the joey relies significantly on maternal protection, which is the focus of the present review. The milk and the pouch environment are essential contributors to maternal protection for the healthy development of joeys. In this review, we discuss bioactive components found in the marsupial pouch and milk that form cornerstones of maternal protection. These bioactive components include immune cells, immunoglobulins, the S100 family of calcium-binding proteins, lysozymes, whey proteins, antimicrobial peptides and other immune proteins. Furthermore, we investigated the possibility of the presence of plurifunctional components in milk and pouches that are potentially bioactive. These compounds include caseins, vitamins and minerals, oligosaccharides, lipids and microRNAs. Where applicable, this review addresses variability in bioactive components during different phases of lactation, designed to fulfil the immunological needs of the growing pouch young. Yet, there are numerous additional research opportunities to pursue, including uncovering novel bioactive components and investigating their modes of action, dynamics, stability and ability to penetrate the gut epithelium to facilitate systemic effects.
Collapse
Affiliation(s)
- Manujaya W Jayamanna Mohottige
- School of Science, Edith Cowan University, Joondalup, WA, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| | - Chloe E Gardner
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | | | - Katherine A Farquharson
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Angéla Juhász
- School of Science, Edith Cowan University, Joondalup, WA, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| | - Katherine Belov
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Carolyn J Hogg
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Emma Peel
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Michelle L Colgrave
- School of Science, Edith Cowan University, Joondalup, WA, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Peel E, Hogg C, Belov K. Characterisation of defensins across the marsupial family tree. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 158:105207. [PMID: 38797458 DOI: 10.1016/j.dci.2024.105207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Defensins are antimicrobial peptides involved in innate immunity, and gene number differs amongst eutherian mammals. Few studies have investigated defensins in marsupials, despite their potential involvement in immunological protection of altricial young. Here we use recently sequenced marsupial genomes and transcriptomes to annotate defensins in nine species across the marsupial family tree. We characterised 35 alpha and 286 beta defensins; gene number differed between species, although Dasyuromorphs had the largest repertoire. Defensins were encoded in three gene clusters within the genome, syntenic to eutherians, and were expressed in the pouch and mammary gland. Marsupial beta defensins were closely related to eutherians, however marsupial alpha defensins were more divergent. We identified marsupial orthologs of human DEFB3 and 6, and several marsupial-specific beta defensin lineages which may have novel functions. Marsupial predicted mature peptides were highly variable in length and sequence composition. We propose candidate peptides for future testing to elucidate the function of marsupial defensins.
Collapse
Affiliation(s)
- Emma Peel
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia.
| | - Carolyn Hogg
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia.
| | - Katherine Belov
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia.
| |
Collapse
|
7
|
Ockert LE, McLennan EA, Fox S, Belov K, Hogg CJ. Characterising the Tasmanian devil (Sarcophilus harrisii) pouch microbiome in lactating and non-lactating females. Sci Rep 2024; 14:15188. [PMID: 38956276 PMCID: PMC11220038 DOI: 10.1038/s41598-024-66097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
Wildlife harbour a diverse range of microorganisms that affect their health and development. Marsupials are born immunologically naïve and physiologically underdeveloped, with primary development occurring inside a pouch. Secretion of immunological compounds and antimicrobial peptides in the epithelial lining of the female's pouch, pouch young skin, and through the milk, are thought to boost the neonate's immune system and potentially alter the pouch skin microbiome. Here, using 16S rRNA amplicon sequencing, we characterised the Tasmanian devil pouch skin microbiome from 25 lactating and 30 non-lactating wild females to describe and compare across these reproductive stages. We found that the lactating pouch skin microbiome had significantly lower amplicon sequence variant richness and diversity than non-lactating pouches, however there was no overall dissimilarity in community structure between lactating and non-lactating pouches. The top five phyla were found to be consistent between both reproductive stages, with over 85% of the microbiome being comprised of Firmicutes, Proteobacteria, Fusobacteriota, Actinobacteriota, and Bacteroidota. The most abundant taxa remained consistent across all taxonomic ranks between lactating and non-lactating pouch types. This suggests that any potential immunological compounds or antimicrobial peptide secretions did not significantly influence the main community members. Of the more than 16,000 total identified amplicon sequence variants, 25 were recognised as differentially abundant between lactating and non-lactating pouches. It is proposed that the secretion of antimicrobial peptides in the pouch act to modulate these microbial communities. This study identifies candidate bacterial clades on which to test the activity of Tasmanian devil antimicrobial peptides and their role in pouch young protection, which in turn may lead to future therapeutic development for human diseases.
Collapse
Affiliation(s)
- Lucy E Ockert
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Elspeth A McLennan
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Samantha Fox
- Save the Tasmanian Devil Program, NRE Tasmania, Hobart, TAS, 7001, Australia
- Toledo Zoo, 2605 Broadway, Toledo, OH, 43609, USA
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia.
- San Diego Zoo Wildlife Alliance, PO BOX 120551, San Diego, CA, 92112, USA.
| |
Collapse
|
8
|
Romano J. Macropod Pediatrics. Vet Clin North Am Exot Anim Pract 2024; 27:245-261. [PMID: 38097494 DOI: 10.1016/j.cvex.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Macropods belong to the marsupial family Macropodidae, which includes animals such as kangaroos and wallabies. Macropod offspring are highly altricial at birth and require specialized care and environmental conditions for healthy development. The care and management of pediatric macropods poses a challenge due to the unique physiology and reproductive strategy of macropods. In order to successfully work with pediatric macropods, clinical veterinarians should have knowledge of species-specific husbandry, normal postnatal development, and common medical conditions/treatments. With limited information available on macropod pediatric medicine, further research is warranted to improve the care and management of these animals in human care.
Collapse
Affiliation(s)
- Jon Romano
- Department of Veterinary Clinical Sciences, Exotics and Lab Animal Medicine, Long Island University College of Veterinary Medicine, 720 Northern Boulevard, Brookville, NY 11548, USA.
| |
Collapse
|
9
|
Huijsmans TERG, Courtiol A, Van Soom A, Smits K, Rousset F, Wauters J, Hildebrandt TB. Quantifying maternal investment in mammals using allometry. Commun Biol 2024; 7:475. [PMID: 38637653 PMCID: PMC11026411 DOI: 10.1038/s42003-024-06165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
Maternal investment influences the survival and reproduction of both mothers and their progeny and plays a crucial role in understanding individuals' life-history and population ecology. To reveal the complex mechanisms associated with reproduction and investment, it is necessary to examine variations in maternal investment across species. Comparisons across species call for a standardised method to quantify maternal investment, which remained to be developed. This paper addresses this limitation by introducing the maternal investment metric - MI - for mammalian species, established through the allometric scaling of the litter mass at weaning age by the adult mass and investment duration (i.e. gestation + lactation duration) of a species. Using a database encompassing hundreds of mammalian species, we show that the metric is not highly sensitive to the regression method used to fit the allometric relationship or to the proxy used for adult body mass. The comparison of the maternal investment metric between mammalian subclasses and orders reveals strong differences across taxa. For example, our metric confirms that Eutheria have a higher maternal investment than Metatheria. We discuss how further research could use the maternal investment metric as a valuable tool to understand variation in reproductive strategies.
Collapse
Affiliation(s)
- Tim E R G Huijsmans
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Alexandre Courtiol
- Department of Evolutionary Genetics, Leibniz Institute for Zoo & Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Katrien Smits
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - François Rousset
- Institute of Evolutionary Science of Montpellier, University of Montpellier, CNRS, IRD, campus Triolet, 34095, Montpellier cedex 05, France
| | - Jella Wauters
- Department of Reproduction Biology, Leibniz Institute for Zoo & Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany
- Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Thomas B Hildebrandt
- Department of Reproduction Management, Leibniz Institute for Zoo & Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany
- Freie Universität Berlin, Kaiserswerther Str. 16-18, 14195, Berlin, Germany
| |
Collapse
|
10
|
Mayerl CJ, German RZ. Evolution, diversification and function of the maternal-infant dyad in mammalian feeding. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220554. [PMID: 37839443 PMCID: PMC10577036 DOI: 10.1098/rstb.2022.0554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/17/2023] [Indexed: 10/17/2023] Open
Abstract
The evolution of the mother/infant dyad providing a source of nutrition for infants is essential for the origin and subsequent diversification of mammals. Despite the importance of this dyad, research on maternal and infant function is often treated independently. Our goal is to synthesize the work on maternal and infant function, discuss our own studies of suckling, and compare the origins of lactation and suckling with their ensuing diversification. Our central premise is that while extensive work has demonstrated variation across mammals in the maternal aspect of this system, very little has been done to address how this relates to infant function. We start with a discussion of the fundamental anatomy and physiology of both mother and infant. We next discuss the origin of mammary glands and milk, and infant suckling, which is distinct from their subsequent diversification. We then discuss the diversification of maternal and infant function, highlighting the evolutionary diversity present in maternal function (both anatomically and physiologically), before arguing that the diversity of infant function is unexplored, and needs to be better studied in the future. We end by discussing some of the holes in our understanding, and suggestions for future work that can address these lacunae. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- Christopher J. Mayerl
- Department of Anatomy & Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86001-5766, USA
| | - Rebecca Z. German
- Department of Anatomy & Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| |
Collapse
|
11
|
Jin C, Lundstrøm J, Korhonen E, Luis AS, Bojar D. Breast Milk Oligosaccharides Contain Immunomodulatory Glucuronic Acid and LacdiNAc. Mol Cell Proteomics 2023; 22:100635. [PMID: 37597722 PMCID: PMC10509713 DOI: 10.1016/j.mcpro.2023.100635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
Breast milk is abundant with functionalized milk oligosaccharides (MOs) to nourish and protect the neonate. Yet we lack a comprehensive understanding of the repertoire and evolution of MOs across Mammalia. We report ∼400 MO-species associations (>100 novel structures) from milk glycomics of nine mostly understudied species: alpaca, beluga whale, black rhinoceros, bottlenose dolphin, impala, L'Hoest's monkey, pygmy hippopotamus, domestic sheep, and striped dolphin. This revealed the hitherto unknown existence of the LacdiNAc motif (GalNAcβ1-4GlcNAc) in MOs of all species except alpaca, sheep, and striped dolphin, indicating the widespread occurrence of this potentially antimicrobial motif in MOs. We also characterize glucuronic acid-containing MOs in the milk of impala, dolphins, sheep, and rhinoceros, previously only reported in cows. We demonstrate that these GlcA-MOs exhibit potent immunomodulatory effects. Our study extends the number of known MOs by >15%. Combined with >1900 curated MO-species associations, we characterize MO motif distributions, presenting an exhaustive overview of MO biodiversity.
Collapse
Affiliation(s)
- Chunsheng Jin
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jon Lundstrøm
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Emma Korhonen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Ana S Luis
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Bojar
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
12
|
Maidment TI, Bryan ER, Pyne M, Barnes M, Eccleston S, Cunningham S, Whitlock E, Redman K, Nicolson V, Beagley KW, Pelzer E. Characterisation of the koala (Phascolarctos cinereus) pouch microbiota in a captive population reveals a dysbiotic compositional profile associated with neonatal mortality. MICROBIOME 2023; 11:75. [PMID: 37060097 PMCID: PMC10105441 DOI: 10.1186/s40168-023-01527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/20/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Captive koala breeding programmes are essential for long-term species management. However, breeding efficacy is frequently impacted by high neonatal mortality rates in otherwise healthy females. Loss of pouch young typically occurs during early lactation without prior complications during parturition and is often attributed to bacterial infection. While these infections are thought to originate from the maternal pouch, little is known about the microbial composition of koala pouches. As such, we characterised the koala pouch microbiome across the reproductive cycle and identified bacteria associated with mortality in a cohort of 39 captive animals housed at two facilities. RESULTS Using 16S rRNA gene amplicon sequencing, we observed significant changes in pouch bacterial composition and diversity between reproductive time points, with the lowest diversity observed following parturition (Shannon entropy - 2.46). Of the 39 koalas initially sampled, 17 were successfully bred, after which seven animals lost pouch young (overall mortality rate - 41.18%). Compared to successful breeder pouches, which were largely dominated by Muribaculaceae (phylum - Bacteroidetes), unsuccessful breeder pouches exhibited persistent Enterobacteriaceae (phylum - Proteobacteria) dominance from early lactation until mortality occurred. We identified two species, Pluralibacter gergoviae and Klebsiella pneumoniae, which were associated with poor reproductive outcomes. In vitro antibiotic susceptibility testing identified resistance in both isolates to several antibiotics commonly used in koalas, with the former being multidrug resistant. CONCLUSIONS This study represents the first cultivation-independent characterisation of the koala pouch microbiota, and the first such investigation in marsupials associated with reproductive outcomes. Overall, our findings provide evidence that overgrowth of pathogenic organisms in the pouch during early development is associated with neonatal mortality in captive koalas. Our identification of previously unreported, multidrug resistant P. gergoviae strains linked to mortality also underscores the need for improved screening and monitoring procedures aimed at minimising neonatal mortality in future. Video Abstract.
Collapse
Affiliation(s)
- Toby I Maidment
- Centre for Immunology and Infection Control, Queensland University of Technology, 300 Herston Rd, Brisbane, QLD, 4001, Australia.
| | - Emily R Bryan
- Centre for Immunology and Infection Control, Queensland University of Technology, 300 Herston Rd, Brisbane, QLD, 4001, Australia
| | - Michael Pyne
- Currumbin Wildlife Hospital, 27 Millers Dr, Currumbin, QLD, 4223, Australia
| | - Michele Barnes
- Dreamworld Wildlife Foundation, Dreamworld Parkway, Coomera, QLD, 4209, Australia
| | - Sarah Eccleston
- Currumbin Wildlife Hospital, 27 Millers Dr, Currumbin, QLD, 4223, Australia
| | - Samantha Cunningham
- Dreamworld Wildlife Foundation, Dreamworld Parkway, Coomera, QLD, 4209, Australia
| | - Emma Whitlock
- Currumbin Wildlife Hospital, 27 Millers Dr, Currumbin, QLD, 4223, Australia
| | - Kelsie Redman
- Billabong Zoo Koala and Wildlife Park, 61 Billabong Drive, Port Macquarie, NSW, 2444, Australia
| | - Vere Nicolson
- Paradise Country, Production Drive, Oxenford, QLD, 4210, Australia
| | - Kenneth W Beagley
- Centre for Immunology and Infection Control, Queensland University of Technology, 300 Herston Rd, Brisbane, QLD, 4001, Australia
| | - Elise Pelzer
- Centre for Immunology and Infection Control, Queensland University of Technology, 300 Herston Rd, Brisbane, QLD, 4001, Australia
| |
Collapse
|
13
|
Hakala SM, Fujioka H, Gapp K, De Gasperin O, Genzoni E, Kilner RM, Koene JM, König B, Linksvayer TA, Meurville MP, Negroni MA, Palejowski H, Wigby S, LeBoeuf AC. Socially transferred materials: why and how to study them. Trends Ecol Evol 2022; 38:446-458. [PMID: 36543692 DOI: 10.1016/j.tree.2022.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
When biological material is transferred from one individual's body to another, as in ejaculate, eggs, and milk, secondary donor-produced molecules are often transferred along with the main cargo, and influence the physiology and fitness of the receiver. Both social and solitary animals exhibit such social transfers at certain life stages. The secondary, bioactive, and transfer-supporting components in socially transferred materials have evolved convergently to the point where they are used in applications across taxa and type of transfer. The composition of these materials is typically highly dynamic and context dependent, and their components drive the physiological and behavioral evolution of many taxa. Our establishment of the concept of socially transferred materials unifies this multidisciplinary topic and will benefit both theory and applications.
Collapse
|
14
|
Eisha S, Joarder I, Wijenayake S, McGowan PO. Non-nutritive bioactive components in maternal milk and offspring development: a scoping review. J Dev Orig Health Dis 2022; 13:665-673. [PMID: 35387707 DOI: 10.1017/s2040174422000149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Lactation is a critical time in mammalian development, where maternal factors shape offspring outcomes. In this scoping review, we discuss current literature concerning maternal factors that influence lactation biology and highlight important associations between changes in milk composition and offspring outcomes. Specifically, we explore maternal nutritional, psychosocial, and environmental exposures that influence non-nutritive bioactive components in milk and their links to offspring growth, development, metabolic, and behavioral outcomes. A comprehensive literature search was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews (PRISMA-ScR) guidelines. Predetermined eligibility criteria were used to analyze 3,275 papers, and the final review included 40 primary research articles. Outcomes of this review identify maternal obesity to be a leading maternal factor influencing the non-nutritive bioactive composition of milk with notable links to offspring outcomes. Offspring growth and development are the most common modes of programming associated with changes in non-nutritive milk composition due to maternal factors in early life. In addition to discussing studies investigating these key associations, we also identify knowledge gaps in the current literature and suggest opportunities and considerations for future studies.
Collapse
Affiliation(s)
- Shafinaz Eisha
- Department of Biological Sciences, Center for Environmental Epigenetics and Development, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Ishraq Joarder
- Department of Biological Sciences, Center for Environmental Epigenetics and Development, University of Toronto Scarborough, Toronto, ON, Canada
| | - Sanoji Wijenayake
- Department of Biological Sciences, Center for Environmental Epigenetics and Development, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Biology, Richardson College for the Environment and Science Complex, The University of Winnipeg, Winnipeg, MB, Canada
| | - Patrick O McGowan
- Department of Biological Sciences, Center for Environmental Epigenetics and Development, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Peel E, Silver L, Brandies P, Hogg CJ, Belov K. A reference genome for the critically endangered woylie, Bettongia penicillata ogilbyi. GIGABYTE 2021; 2021:gigabyte35. [PMID: 36824341 PMCID: PMC9650285 DOI: 10.46471/gigabyte.35] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/08/2021] [Indexed: 11/09/2022] Open
Abstract
Biodiversity is declining globally, and Australia has one of the worst extinction records for mammals. The development of sequencing technologies means that genomic approaches are now available as important tools for wildlife conservation and management. Despite this, genome sequences are available for only 5% of threatened Australian species. Here we report the first reference genome for the woylie (Bettongia penicillata ogilbyi), a critically endangered marsupial from Western Australia, and the first genome within the Potoroidae family. The woylie reference genome was generated using Pacific Biosciences HiFi long-reads, resulting in a 3.39 Gbp assembly with a scaffold N50 of 6.49 Mbp and 86.5% complete mammalian BUSCOs. Assembly of a global transcriptome from pouch skin, tongue, heart and blood RNA-seq reads was used to guide annotation with Fgenesh++, resulting in the annotation of 24,655 genes. The woylie reference genome is a valuable resource for conservation, management and investigations into disease-induced decline of this critically endangered marsupial.
Collapse
Affiliation(s)
- Emma Peel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Luke Silver
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Parice Brandies
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Carolyn J. Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Röszer T. Co-Evolution of Breast Milk Lipid Signaling and Thermogenic Adipose Tissue. Biomolecules 2021; 11:1705. [PMID: 34827703 PMCID: PMC8615456 DOI: 10.3390/biom11111705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022] Open
Abstract
Breastfeeding is a unique and defining behavior of mammals and has a fundamental role in nourishing offspring by supplying a lipid-rich product that is utilized to generate heat and metabolic fuel. Heat generation from lipids is a feature of newborn mammals and is mediated by the uncoupling of mitochondrial respiration in specific fat depots. Breastfeeding and thermogenic adipose tissue have a shared evolutionary history: both have evolved in the course of homeothermy evolution; breastfeeding mammals are termed "thermolipials", meaning "animals with warm fat". Beyond its heat-producing capacity, thermogenic adipose tissue is also necessary for proper lipid metabolism and determines adiposity in offspring. Recent advances have demonstrated that lipid metabolism in infants is orchestrated by breast milk lipid signals, which establish mother-to-child signaling and control metabolic development in the infant. Breastfeeding rates are declining worldwide, and are paralleled by an alarming increase in childhood obesity, which at least in part may have its roots in the impaired metabolic control by breast milk lipid signals.
Collapse
Affiliation(s)
- Tamás Röszer
- Institute of Neurobiology, Faculty of Science, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
17
|
Lamb J, Doyle E, Barwick J, Chambers M, Kahn L. Prevalence and gross pathology of liver fluke in macropods cohabiting livestock farms in north eastern NSW, Australia, and diagnosis using cELISA. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 16:199-207. [PMID: 34703759 PMCID: PMC8523826 DOI: 10.1016/j.ijppaw.2021.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 12/03/2022]
Abstract
Liver fluke (Fasciola hepatica) is a parasite of herbivores including wildlife. Macropods, such as Eastern grey kangaroo (Macropus giganteus) and Common wallaroo (Osphranter robustus), are frequently observed sharing grazing sites with domestic livestock. The impact of Macropods, as reservoirs of infection, on livestock production and risks to cross-species transmission are largely unknown. In Phase 1 of this study, liver and faecal samples were collected from 245 Macropods (181 Eastern grey kangaroos, 64 Common wallaroos) cohabiting livestock farms (n = 7) in the Northern Tablelands regions of New South Wales. Total fluke (TFC) and fluke eggs (FEC) were counted in the liver and faeces, respectively, to assess prevalence. Faecal antigens were also measured using the commercial Bio-X Diagnostic Monoscreen AgELISA Fasciola hepatica kit (cELISA) to assess suitability as a diagnostic tool. In Phase 2, Macropod faecal samples were collected from 60 livestock farms to conduct FEC and assess prevalence by region. Liver fluke was prevalent in 22% of Eastern grey kangaroo and 20% of Common wallaroos with prevalence as high as 45% in the Eastern grey kangaroo. Fluke burdens ranged from 1 to 122 flukes (mean = 9 flukes) with a FEC range of 0–195 eggs per gram (epg) of faeces (mean = 18 epg). Evidence of dead and live flukes trapped within fibrotic capsules confirms the ability of Macropods to resolve infections. cELISA proved highly specific (100%) and sensitive (98%) in liver fluke detection however fibrotic capsules observed in the liver may reduce the correlation of coproantigens with fluke burden. Phase 2 revealed that 27% of livestock farms had Macropods infected with liver fluke. Overall, this study confirmed Eastern grey kangaroo and Common wallaroo are susceptible hosts and potential reservoirs for liver fluke and, monitoring infections in Macropods would assist in livestock disease management. Eastern grey kangaroo and Common wallaroo harbouring liver fluke in north eastern Australia. Macropods with liver fluke may limit effectiveness of integrated parasite management strategies for liver fluke control. Monitoring Macropod populations within liver fluke endemic regions may assist livestock disease management.
Collapse
Affiliation(s)
- Jane Lamb
- University of New England, Armidale, NSW, 2351, Australia
| | - Emma Doyle
- University of New England, Armidale, NSW, 2351, Australia
| | - Jamie Barwick
- University of New England, Armidale, NSW, 2351, Australia.,Precision Agricultural Research Group, University of New England, Armidale, NSW, 2351, Australia
| | - Michael Chambers
- Invetus Pty Ltd, Locked Bag 6865, West Armidale, NSW, 2350, Australia
| | - Lewis Kahn
- University of New England, Armidale, NSW, 2351, Australia
| |
Collapse
|
18
|
Stead SM, Bădescu I, Boonstra R. Of mammals and milk: how maternal stress affects nursing offspring. Mamm Rev 2021. [DOI: 10.1111/mam.12267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Samantha M. Stead
- Department of Anthropology University of Toronto Scarborough 1265 Military Trail Scarborough ONM1C 1A4Canada
| | - Iulia Bădescu
- Département d’Anthropologie Université de Montréal 3150 Rue Jean‐Brillant Montréal QCH3T 1N8Canada
| | - Rudy Boonstra
- Department of Biological Sciences University of Toronto Scarborough 1265 Military Trail Scarborough ONM1C 1A4Canada
| |
Collapse
|
19
|
Old JM, Ong OTW, Stannard HJ. Red-tailed phascogales: A review of their biology and importance as model marsupial species. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:217-227. [PMID: 33382214 DOI: 10.1002/jez.2438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/09/2022]
Abstract
There are many limitations when using traditional laboratory species. Limits on variation, may result in limited outcomes, at both the species and individual level, due to different individuals/species having diverse physiological processes, or differing molecular and genetic mechanisms. By using a variety of model species, we will be able to develop creative solutions to biological problems and identify differences of which we were not previously aware. The laboratory mouse has been a suitable model species for various mammalian studies, however most are bred specifically for laboratory research with limited variability due to selective breeding. Marsupial models offer unique research opportunities compared to eutherian models. We believe that there should be an expansion in marsupial model species, and the introduction of the red-tailed phascogale (Phascogale calura), a dasyurid marsupial, should be one of them. Phascogales are easily managed in captivity, and there are now multiple studies involving their development, reproduction, nutrition, behavior and immune system, which can serve as a baseline for future studies. The addition of the phascogale as a model species will improve future mammalian studies by introducing variability and offer alternate solutions to biological problems, particularly in the areas of genetics, nutrition, immunology, the neuro-endocrine system, and ageing, due to their semelparous reproductive strategy and hence, subsequent predictive physiology. In this review, we provide information based on existing research on red-tailed phascogales to support their inclusion as a model species.
Collapse
Affiliation(s)
- Julie M Old
- School of Science, Hawkesbury Campus, Western Sydney University, Penrith, New South Wales, Australia
| | - Oselyne T W Ong
- Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Hayley J Stannard
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| |
Collapse
|