1
|
Soto A, Devlies AS, Wauters L, Ferreira Pinto AP, Delang L. The artificial meal SkitoSnack does not support reproduction in Culex pipiens (Diptera: Culicidae) mosquitoes. JOURNAL OF INSECT SCIENCE (ONLINE) 2025; 25:17. [PMID: 40278044 PMCID: PMC12023163 DOI: 10.1093/jisesa/ieaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/23/2024] [Accepted: 02/10/2025] [Indexed: 04/26/2025]
Abstract
Mosquitoes are hematophagous insects. Obtaining fresh animal blood to maintain laboratory colonies, rear high numbers of mosquitoes, or blood-feed mosquitoes for experimental purposes, can be costly and imposes ethical concerns. Recently, the artificial meal SkitoSnack was developed to rear Aedes aegypti L. mosquitoes. This artificial diet is low-cost, can be easily prepared in the laboratory, and results in comparable life history traits to Ae. aegypti raised with animal blood. Here, we investigated if the SkitoSnack can be used to produce the next generation of Culex pipiens L. as a substitute for animal blood and assessed the effects on mosquito fitness. Female Cx. pipiens fed with SkitoSnack demonstrated high post-feeding mortality and lower fecundity, fertility, egg-laying rates, egg-hatching rates, and offspring emergence rates compared to those fed with vertebrate animal blood. In contrast, the longevity and body sizes of the offspring were not significantly different between the 2 feeding groups, suggesting that the first generation of SkitoSnack-reared mosquitoes had similar fitness to those raised from animal blood. Feeding a different generation of Cx. pipiens resulted in a similar loss of fitness in the SkitoSnack-fed females; however, these females were unable to produce viable offspring. In addition, we fed the SkitoSnack to Ae. aegypti, which also resulted in a significant reduction in fecundity and fertility. A significant loss of life and reproductive capacity was observed in SkitoSnack-fed Cx. pipiens, but more research is required to determine whether optimizing the current SkitoSnack formula can improve the fitness outcomes of fed females.
Collapse
Affiliation(s)
- Alina Soto
- Virus-Host Interactions & Therapeutic Approaches (VITA) Research Group, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Ann-Sophie Devlies
- Virus-Host Interactions & Therapeutic Approaches (VITA) Research Group, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Lotte Wauters
- Virus-Host Interactions & Therapeutic Approaches (VITA) Research Group, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Ana Paula Ferreira Pinto
- Virus-Host Interactions & Therapeutic Approaches (VITA) Research Group, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Leen Delang
- Virus-Host Interactions & Therapeutic Approaches (VITA) Research Group, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Isoe J, Miesfeld RL, Riehle MA. Visualization of Apoptotic Ovarian Follicles during Aedes aegypti Mosquito Egg Maturation by Fluorescent Imaging Studies. Cold Spring Harb Protoc 2024; 2024:pdb.prot108226. [PMID: 38190631 DOI: 10.1101/pdb.prot108226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
In insects, oocyte resorption (oosorption) or follicular atresia is one of the key physiological processes and evolutionary strategies used to optimize reproductive fitness. Mosquitoes are ideal model organisms for studying egg maturation in arthropods, as their follicle development is initiated only following the ingestion of a blood meal, followed by a carefully orchestrated series of hormonally regulated events leading to egg maturation. A cohort of approximately 100 follicles per mosquito ovary begin developing synchronously. However, a significant fraction of follicles ultimately undergo apoptosis and oosorption, especially when available resources from the blood meal are limited. Therefore, simple, rapid, and reliable techniques to accurately evaluate follicular atresia are necessary to understand mechanisms underlying follicle development in insects. This protocol describes how to detect apoptotic follicle cells within the Aedes aegypti mosquito ovaries using a commercially available fluorescent-labeled inhibitor of caspases (FLICA). Caspases are key players in animal apoptosis. In this assay, the FLICA reagent enters the intracellular compartment of follicles in dissected mosquito ovaries and covalently binds to active caspases. The bound reagent remains within the cell and its fluorescent signal can be observed by confocal microscopy. Although this method was specifically developed for visualizing apoptotic ovarian follicles during Ae. aegypti mosquito egg development, it should be applicable to other mosquito tissues that undergo caspase-mediated program cell death in a time-dependent manner.
Collapse
Affiliation(s)
- Jun Isoe
- Department of Entomology, The University of Arizona, Tucson, Arizona 85721, USA
| | - Roger L Miesfeld
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, USA
| | - Michael A Riehle
- Department of Entomology, The University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
3
|
Isoe J, Riehle MA, Miesfeld RL. Mosquito Egg Development and Eggshell Formation. Cold Spring Harb Protoc 2024; 2024:pdb.top107669. [PMID: 38190637 DOI: 10.1101/pdb.top107669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Anautogenous female mosquitoes, which ingest a blood meal from warm-blooded vertebrates to produce eggs, have become a valuable model organism for investigating signaling pathways and physiological processes that occur during egg development. Different molecular pathways tightly regulate the initiation of egg development and are governed by a balance among different insect hormones. Gravid (mature egg-carrying) females deposit fully developed eggs at the end of each gonotrophic cycle, which is defined as the time interval between the ingestion of a blood meal to oviposition. An intact eggshell protects the oocyte and embryo inside from external factors such as desiccation, physical damage, etc., and the various eggshell proteins are spatially and temporary deposited during oogenesis. Additionally, follicle resorption (oosorption) during blood meal-induced mosquito ovarian follicle development is an adapted physiological process that optimizes reproductive fitness. Mosquito oocytes grow and mature synchronously throughout oogenesis; however, during the later stages of oogenesis, some oocytes may undergo oosorption if sufficient nutrients are unavailable. This introduction highlights how mosquito egg development can be used to investigate follicular resorption and identify proteins involved in eggshell formation in Aedes aegypti mosquitoes.
Collapse
Affiliation(s)
- Jun Isoe
- Department of Entomology, The University of Arizona, Tucson, Arizona 85721, USA
| | - Michael A Riehle
- Department of Entomology, The University of Arizona, Tucson, Arizona 85721, USA
| | - Roger L Miesfeld
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
4
|
Bursali F. Evaluation of the Blood Feeding Preference of Aedes aegypti (Diptera: Culicidae) when Offered Diabetic and Non-Diabetic Blood. Acta Parasitol 2024; 69:1630-1639. [PMID: 39164552 DOI: 10.1007/s11686-024-00867-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/09/2024] [Indexed: 08/22/2024]
Abstract
PURPOSE Aedes aegypti (L.,1762) is a primary vector of arboviral infections like dengue, yellow fever, Zika. Female mosquitoes are influenced by various physical and chemical cues from host when blood feeding, e.g., they find some individuals with certain blood types or certain conditions more attractive than others. This study determined whether Ae. aegypti shows a preference when offered blood from a patient with diabetes mellitus (DM), an endocrine disorder associated with abnormal glucose metabolism, compared to healthy blood from non-DMs. METHODS In the dual feeding experiments, forty newly emerged female mosquitoes were provided with two blood feeding systems with blood from a non-diabetic (healthy) and diabetic patient using artificial feeders. Blood from 12 diabetic and 12 non-diabetic patients was matched by ABO blood type (e.g., diabetic type O blood was compared with non-diabetic type O blood). The number of mosquitoes that landed and fed from each membrane was counted every 2 min for thirty minutes. RESULTS Ae. aegypti species significantly preferred for blood from non-diabetic individuals (50-65% among the different blood type groups) compared to blood from diabetic individuals. Using multiplex allele-specific PCR it was also determined that, Ae. aegypti significantly preferred the O blood group regardless of blood sugar level compared to others. CONCLUSION Ae. aegypti has less preference for diabetic blood to non-diabetics. Regardless people affected with this condition need to take preventive measures to reduce mosquito bites as they tend to have weaker immune systems and can experience more severe cases of dengue.
Collapse
Affiliation(s)
- Fatma Bursali
- Department of Biology, Faculty of Science, Aydın Adnan Menderes University, Aydın, 09100, Türkiye.
| |
Collapse
|
5
|
Lau MJ, Nie S, Ross PA, Endersby-Harshman NM, Hoffmann AA. Long-term impacts of egg quiescence and Wolbachia infection on lipid profiles in Aedes aegypti: Ovarian roles in lipid synthesis during reproduction. JOURNAL OF INSECT PHYSIOLOGY 2024; 157:104674. [PMID: 38997103 DOI: 10.1016/j.jinsphys.2024.104674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Wolbachia, an endosymbiotic bacterium, relies on nutrients from its host to complete its life cycle. The presence of Wolbachia strain wAlbB in the mosquito Aedes aegypti during egg or larval stages affects the host's development, leading to the absence of developed and visible ovaries in adult mosquito females. In this study, we investigated the impacts of egg quiescence and Wolbachia infection on lipid profiles of adult Ae. aegypti females, and discerned the role of ovaries in lipid synthesis in the reproductive process. The lipidomes of Wolbachia infected and uninfected female individuals at various developmental stages were quantitatively analyzed by LC-MS/MS. Lipidomic change patterns were systematically further investigated in wAlbB-infected fertile females and infertile females following blood feeding. Prolonged egg quiescence induced a shortage of acyl-carnitine (CAR) and potentially impacted some molecules of diacyl-phospholipid (diacyl-PL) and sphingolipid (SL) in young adult mosquitoes. After the first gonotrophic cycle, infertile females accumulated more CAR and lyso-phospholipid (lyso-PL) than fertile females. Then in the second gonotrophic cycle, the patterns of different lipid groups remained similar between fertile and infertile females. Only a small proportion of molecules of triglyceride (TG), phospholipid (lyso-PL and diacyl-PL) and ceramide (Cer) increased exclusively in fertile females from 0 h to 16 h post blood meal, suggesting that the generation or prescence of these lipids rely on ovaries. In addition, we found cardiolipins (CL) might be impacted by Wolbachia infection at the egg stage, and infected mosquitoes also showed distinct patterns between fertile and infertile females at their second gonotrophic cycle. Our study provides new insights into the long-term influence of Wolbachia on lipid profiles throughout various life stages of mosquitoes. Additionally, it suggests a role played by ovaries in lipid synthesis during mosquito reproduction.
Collapse
Affiliation(s)
- Meng-Jia Lau
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.
| | - Shuai Nie
- Mass Spectrometry and Proteomics Facility, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Perran A Ross
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Nancy M Endersby-Harshman
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
6
|
Mosi FA, Rutha I, Velez R, Swai JK, Mlacha YP, Marques J, Silveira H, Tarimo BB. Effects of a blood-free mosquito diet on fitness and gonotrophic cycle parameters of laboratory reared Anopheles gambiae sensu stricto. Parasit Vectors 2024; 17:289. [PMID: 38971773 PMCID: PMC11227146 DOI: 10.1186/s13071-024-06345-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/05/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND The current rise of new innovative tools for mosquito control, such as the release of transgenic mosquitoes carrying a dominant lethal gene and Wolbachia-based strategies, necessitates a massive production of mosquitoes in the insectary. However, currently laboratory rearing depends on vertebrate blood for egg production and maintenance. This practice raises ethical concerns, incurs logistical and cost limitations, and entails potential risk associated with pathogen transmission and blood storage. Consequently, an artificial blood-free diet emerges as a desirable alternative to address these challenges. This study aims to evaluate the effects of a previously formulated artificial blood-free diet (herein referred to as BLOODless) on Anopheles gambiae (An. gambiae s.s.; IFAKARA) gonotrophic parameters and fitness compared with bovine blood. METHODS The study was a laboratory-based comparative evaluation of the fitness, fecundity and fertility of An. gambiae s.s. (IFAKARA) reared on BLOODless versus vertebrate blood from founder generation (F0) to eighth generation (F8). A total of 1000 female mosquitoes were randomly selected from F0, of which 500 mosquitoes were fed with bovine blood (control group) and the other 500 mosquitoes were fed with BLOODless diet (experimental group). The feeding success, number of eggs per female, hatching rate and pupation rate were examined post-feeding. Longevity and wing length were determined as fitness parameters for adult male and female mosquitoes for both populations. RESULTS While blood-fed and BLOODless-fed mosquitoes showed similar feeding success, 92.3% [95% confidence interval (CI) 89.7-94.9] versus 93.6% (95% CI 90.6-96.6), respectively, significant differences emerged in their reproductive parameters. The mean number of eggs laid per female was significantly higher for blood-fed mosquitoes (P < 0.001) whereas BLOODless-fed mosquitoes had significantly lower hatching rates [odds ratio (OR) 0.17, 95% CI 0.14-0.22, P < 0.001]. Wing length and longevity were similar between both groups. CONCLUSIONS This study demonstrates the potential of the BLOODless diet as a viable and ethical alternative to vertebrate blood feeding for rearing An. gambiae s.s. This breakthrough paves the way for more efficient and ethical studies aimed at combating malaria and other mosquito-borne diseases.
Collapse
Affiliation(s)
- Faith Allan Mosi
- Environmental Health and Ecological Science Department, Ifakara Health Institute-Bagamoyo Office, P.O. Box 74, Bagamoyo, Tanzania.
- School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania.
| | - Isaack Rutha
- Environmental Health and Ecological Science Department, Ifakara Health Institute-Bagamoyo Office, P.O. Box 74, Bagamoyo, Tanzania
| | - Rita Velez
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, IHMT-NOVA, Rua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - Johnson Kyeba Swai
- Environmental Health and Ecological Science Department, Ifakara Health Institute-Bagamoyo Office, P.O. Box 74, Bagamoyo, Tanzania
- Vector Biology Unit, Epidemiology and Public Health Department, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, 4123, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Yeromin P Mlacha
- Environmental Health and Ecological Science Department, Ifakara Health Institute-Bagamoyo Office, P.O. Box 74, Bagamoyo, Tanzania
| | - Joana Marques
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, IHMT-NOVA, Rua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - Henrique Silveira
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, IHMT-NOVA, Rua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - Brian B Tarimo
- Environmental Health and Ecological Science Department, Ifakara Health Institute-Bagamoyo Office, P.O. Box 74, Bagamoyo, Tanzania
| |
Collapse
|
7
|
Suresh Y, Azil AH, Abdullah SR. A scoping review on the use of different blood sources and components in the artificial membrane feeding system and its effects on blood-feeding and fecundity rate of Aedes aegypti. PLoS One 2024; 19:e0295961. [PMID: 38252615 PMCID: PMC10802938 DOI: 10.1371/journal.pone.0295961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/02/2023] [Indexed: 01/24/2024] Open
Abstract
In some laboratories, mosquitoes' direct blood-feeding on live animals has been replaced with various membrane blood-feeding systems. The selection of blood meal sources used in membrane feeding is crucial in vector mass rearing as it influences the mosquitoes' development and reproductive fitness. Therefore, this scoping review aimed to evaluate the existing literature on the use of different blood sources and components in artificial membrane feeding systems and their effects on blood-feeding and the fecundity rate of Ae. aegypti. A literature review search was conducted by using PubMed, Scopus, and Web of Science databases according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA-ScR). The EndNote version 20 software was used to import all searched articles. Relevant information was retrieved for analysis into a Microsoft Excel Spreadsheet. A total of 104 full-text articles were assessed for eligibility criteria, whereby the articles should include the comparison between different types of blood source by using the membrane feeding systems. Only 16 articles were finally included in the analysis. Several studies had reported that human blood was superior in blood-feeding Ae. aegypti as compared to sheep blood which resulted in lower fecundity due to accumulation of free fatty acids (FFA) in the cuticles. In contrast, cattle whole blood and pig whole blood showed no significant differences in the blood-feeding and fecundity rate as compared to human blood. This review also indicated that bovine whole blood and pig whole blood enhanced Ae. aegypti's vitellogenesis and egg production as compared to plasma and blood cells. In addition, human blood of up to 10 days after the expiration date could still be used to establish Ae. aegypti colonies with good blood-feeding rates and number of eggs produced. Thus, future studies must consider the importance of selecting suitable blood sources and components for membrane blood feeding especially in mosquito colonisation and control measure studies.
Collapse
Affiliation(s)
- Yuvaraahnee Suresh
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Aishah Hani Azil
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Syamsa Rizal Abdullah
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Chuang YM, Stone H, Abouneameh S, Tang X, Fikrig E. Signaling between mammalian adiponectin and a mosquito adiponectin receptor reduces Plasmodium transmission. mBio 2024; 15:e0225723. [PMID: 38078744 PMCID: PMC10790699 DOI: 10.1128/mbio.02257-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/27/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE When a female mosquito takes a blood meal from a mammalian host, components of the blood meal can affect mosquito fitness and indirectly influence pathogen infectivity. We identified a pathway involving an Anopheles gambiae adiponectin receptor, which, triggered by adiponectin from an incoming blood meal, decreases Plasmodium infection in the mosquito. Activation of this pathway negatively regulates lipophorin expression, an important lipid transporter that both enhances egg development and Plasmodium infection. This is an unrecognized cross-phyla interaction between a mosquito and its vertebrate host. These processes are critical to understanding the complex life cycle of mosquitoes and Plasmodium following a blood meal and may be applicable to other hematophagous arthropods and vector-borne infectious agents.
Collapse
Affiliation(s)
- Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Helen Stone
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Selma Abouneameh
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Shafiq M, Abubakar M, Riaz M, Shad SA. Development of alpha-cypermethrin resistance and its effect on biological parameters of yellow fever mosquito, Aedes aegypti (L.) (Diptera: Culicidae). Parasitol Res 2023; 123:14. [PMID: 38060021 DOI: 10.1007/s00436-023-08051-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
Alpha-cypermethrin interacts with the sodium channel and causes nerve blockage in insects. It is used to manage Aedes aegypti (Linnaeus) (Diptera: Culicidae), a primary vector of dengue worldwide. It not only affects both target and non-target organisms, but overuse of this insecticide increases the chances of resistance development in insect pests. In this study, resistance development, biological parameters, and stability of alpha-cypermethrin resistance were studied in a laboratory-selected strain of Ae. aegypti. The alpha-cypermethrin selected strain (Alpha Sel) developed an 11.86-fold resistance level after 12 rounds of alpha-cypermethrin selection compared to the unselected strain (Unsel). In biological parameters, Alpha Sel and Cross1 (Unsel ♂ and Alpha Sel♀) had shorter larval durations compared to Unsel and Cross2 (Unsel ♀ and Alpha Sel ♂) populations. The pupal duration of Alpha Sel and both crosses was shorter than that in the Unsel strain. The relative fitness of Alpha Sel, Cross1, and Cross2 was significantly less than that of the Unsel strain. These results indicate that alpha-cypermethrin resistance comes with fitness costs. Moreover, the frequency of alpha-cypermethrin resistance decreased when the Alpha Sel population was reared without further selection pressure for four generations. So, resistance was unstable and reversed when insecticide pressure ceased. We concluded that the judicious and rotational use of different insecticides with different modes of action and the adoption of other IPM-recommended practices would suppress resistance development for more extended periods in Ae. aegypti.
Collapse
Affiliation(s)
- Maryam Shafiq
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Muhammad Abubakar
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Muhammad Riaz
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Sarfraz Ali Shad
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| |
Collapse
|
10
|
de Swart MM, Balvers C, Verhulst NO, Koenraadt CJM. Effects of host blood on mosquito reproduction. Trends Parasitol 2023; 39:575-587. [PMID: 37230833 DOI: 10.1016/j.pt.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/14/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023]
Abstract
Female mosquitoes require blood from their host for egg development. However, the relationship between the composition of host blood and mosquito reproduction, and whether and how this is linked to host selection, remain unclear. A better understanding of these issues is beneficial for mass-rearing of mosquitoes for vector control. This review provides an overview of the currently known effects of blood constituents on mosquito reproduction. Furthermore, it highlights knowledge gaps and proposes new avenues for investigation. We recommend that research efforts be focused on physiological differences between generalist and specialist mosquito species as models to investigate if and how host preference correlates with reproductive output.
Collapse
Affiliation(s)
- Marieke M de Swart
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands.
| | - Carlijn Balvers
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Niels O Verhulst
- Institute of Parasitology, National Centre for Vector Entomology, Vetsuisse and Medical Faculty, University of Zürich, Zürich, Switzerland
| | | |
Collapse
|
11
|
Harrison RE, Chen K, South L, Lorenzi A, Brown MR, Strand MR. Ad libitum consumption of protein- or peptide-sucrose solutions stimulates egg formation by prolonging the vitellogenic phase of oogenesis in anautogenous mosquitoes. Parasit Vectors 2022; 15:127. [PMID: 35413939 PMCID: PMC9004051 DOI: 10.1186/s13071-022-05252-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/22/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Anautogenous mosquitoes commonly consume nectars and other solutions containing sugar but are thought to only produce eggs in discrete gonadotrophic cycles after blood-feeding on a vertebrate host. However, some anautogenous species are known to produce eggs if amino acids in the form of protein are added to a sugar solution. Unclear is how different sources of amino acids in sugar solutions affect the processes that regulate egg formation and whether responses vary among species. In this study, we addressed these questions by focusing on Aedes aegypti and conducting some comparative assays with Aedes albopictus, Anopheles gambiae, Anopheles stephensi and Culex quinquefasciatus. METHODS Adult female mosquitoes were fed sugar solutions containing amino acids, peptides or protein. Markers for activation of a gonadotrophic cycle including yolk deposition into oocytes, oviposition, ovary ecdysteroidogenesis, expression of juvenile hormone and 20-hydroxyecdysone-responsive genes, and adult blood-feeding behavior were then measured. RESULTS The five anautogenous species we studied produced eggs when fed two proteins (bovine serum albumin, hemoglobin) or a mixture of peptides (tryptone) in 10% sucrose but deposited only small amounts of yolk into oocytes when fed amino acids in 10% sucrose. Focusing on Ae. aegypti, cultures were maintained for multiple generations by feeding adult females protein- or tryptone-sugar meals. Ad libitum access to protein- or tryptone-sugar solutions protracted production of ecdysteroids by the ovaries, vitellogenin by the fat body and protease activity by the midgut albeit at levels that were lower than in blood-fed females. Females also exhibited semi-continual oogenesis and repressed host-seeking behavior. CONCLUSIONS Several anautogenous mosquitoes produce eggs when provided ad libitum access to protein- or peptide-sugar meals, but several aspects of oogenesis also differ from females that blood-feed.
Collapse
Affiliation(s)
- Ruby E Harrison
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA
| | - Kangkang Chen
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Lilith South
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA
| | - Ange Lorenzi
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA
| | - Mark R Brown
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA
| | - Michael R Strand
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA.
| |
Collapse
|
12
|
Perdomo HD, Hussain M, Parry R, Etebari K, Hedges LM, Zhang G, Schulz BL, Asgari S. Human blood microRNA hsa-miR-21-5p induces vitellogenin in the mosquito Aedes aegypti. Commun Biol 2021; 4:856. [PMID: 34244602 PMCID: PMC8270986 DOI: 10.1038/s42003-021-02385-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Mosquito vectors transmit various diseases through blood feeding, required for their egg development. Hence, blood feeding is a major physiological event in their life cycle, during which hundreds of genes are tightly regulated. Blood is a rich source of proteins for mosquitoes, but also contains many other molecules including microRNAs (miRNAs). Here, we found that human blood miRNAs are transported abundantly into the fat body tissue of Aedes aegypti, a key metabolic center in post-blood feeding reproductive events, where they target and regulate mosquito genes. Using an artificial diet spiked with the mimic of an abundant and stable human blood miRNA, hsa-miR-21-5p, and proteomics analysis, we found over 40 proteins showing differential expression in female Ae. aegypti mosquitoes after feeding. Of interest, we found that the miRNA positively regulates the vitellogenin gene, coding for a yolk protein produced in the mosquito fat body and then transported to the ovaries as a protein source for egg production. Inhibition of hsa-miR-21-5p followed by human blood feeding led to a statistically insignificant reduction in progeny production. The results provide another example of the involvement of small regulatory molecules in the interaction of taxonomically vastly different taxa.
Collapse
Affiliation(s)
- Hugo D. Perdomo
- grid.1003.20000 0000 9320 7537Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD Australia
| | - Mazhar Hussain
- grid.1003.20000 0000 9320 7537Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD Australia
| | - Rhys Parry
- grid.1003.20000 0000 9320 7537Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| | - Kayvan Etebari
- grid.1003.20000 0000 9320 7537Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD Australia
| | - Lauren M. Hedges
- grid.1003.20000 0000 9320 7537Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD Australia
| | - Guangmei Zhang
- grid.1003.20000 0000 9320 7537Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD Australia
| | - Benjamin L. Schulz
- grid.1003.20000 0000 9320 7537School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| | - Sassan Asgari
- grid.1003.20000 0000 9320 7537Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD Australia
| |
Collapse
|
13
|
Tyler-Julian K, Darrisaw C, Lloyd A, Hoel D. The Use of Frozen, Food-Grade Blood to Successfully Maintain Colonies of Four Species of Mosquitoes (Diptera: Culicidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6262227. [PMID: 33940606 PMCID: PMC8091034 DOI: 10.1093/jisesa/ieab026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 06/12/2023]
Abstract
An essential component of all mosquito-rearing activities is the act of blood-feeding the mosquitoes (Diptera: Culicidae). Many options exist for this purpose including live host animals and a diverse array of artificial-feeding methods. Most of the published artificial-feeding methods involve expensive materials, custom-built devices, or are labor-intensive. All of the previously published methods utilize blood sources, which are either expensive, or difficult to obtain. Additionally, much of the research into artificial blood-feeding methods for mosquitoes has focused on two species: Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse). This article presents a modified artificial blood-feeding method that uses affordable and easily sourced materials, does not require any technical knowledge to assemble, and requires minimal time and effort. The combination of inexpensive aluminum plates, Parafilm and polytetrafluoroethylene tape membranes, an electric germination mat, and frozen, food-grade blood produces exceptional feeding rates and abundant egg production. The method has been used for 2 yr at the Lee County Mosquito Control District to successfully maintain laboratory colonies of four species of mosquito: Ae. aegypti, Ae. albopictus, Aedes taeniorhynchus (Wiedemann), and Culex quinquefasciatus (Say). Variations of this method are reported, which can be used for wild and laboratory colonies of multiple species. This modified method is highly accessible for any small-scale mosquito rearing facility with labor or budgetary constraints.
Collapse
Affiliation(s)
- Kara Tyler-Julian
- Lee County Mosquito Control District, 15191 Homestead Road, Lehigh Acres, FL 33971, USA
| | - Constance Darrisaw
- Lee County Mosquito Control District, 15191 Homestead Road, Lehigh Acres, FL 33971, USA
| | - Aaron Lloyd
- Lee County Mosquito Control District, 15191 Homestead Road, Lehigh Acres, FL 33971, USA
| | - David Hoel
- Lee County Mosquito Control District, 15191 Homestead Road, Lehigh Acres, FL 33971, USA
| |
Collapse
|
14
|
Tsujimoto H, Anderson MAE, Eggleston H, Myles KM, Adelman ZN. Aedes aegypti dyspepsia encodes a novel member of the SLC16 family of transporters and is critical for reproductive fitness. PLoS Negl Trop Dis 2021; 15:e0009334. [PMID: 33826624 PMCID: PMC8055033 DOI: 10.1371/journal.pntd.0009334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/19/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
As a key vector for major arthropod-borne viruses (arboviruses) such as dengue, Zika and chikungunya, control of Aedes aegypti represents a major challenge in public health. Bloodmeal acquisition is necessary for the reproduction of vector mosquitoes and pathogen transmission. Blood contains potentially toxic amounts of iron while it provides nutrients for mosquito offspring; disruption of iron homeostasis in the mosquito may therefore lead to novel control strategies. We previously described a potential iron exporter in Ae. aegypti after a targeted functional screen of ZIP (zinc-regulated transporter/Iron-regulated transporter-like) and ZnT (zinc transporter) family genes. In this study, we performed an RNAseq-based screen in an Ae. aegypti cell line cultured under iron-deficient and iron-excess conditions. A subset of differentially expressed genes were analyzed via a cytosolic iron-sensitive dual-luciferase reporter assay with several gene candidates potentially involved in iron transport. In vivo gene silencing resulted in significant reduction of fecundity (egg number) and fertility (hatch rate) for one gene, termed dyspepsia. Silencing of dyspepsia reduced the induction of ferritin expression in the midgut and also resulted in delayed/impaired excretion and digestion. Further characterization of this gene, including a more direct confirmation of its substrate (iron or otherwise), could inform vector control strategies as well as to contribute to the field of metal biology.
Collapse
Affiliation(s)
- Hitoshi Tsujimoto
- Department of Entomology, Texas A&M Agrilife Research, College Station, Texas, United States of America
| | | | - Heather Eggleston
- Department of Entomology, Texas A&M Agrilife Research, College Station, Texas, United States of America
| | - Kevin M. Myles
- Department of Entomology, Texas A&M Agrilife Research, College Station, Texas, United States of America
| | - Zach N. Adelman
- Department of Entomology, Texas A&M Agrilife Research, College Station, Texas, United States of America
| |
Collapse
|
15
|
Harrison RE, Brown MR, Strand MR. Whole blood and blood components from vertebrates differentially affect egg formation in three species of anautogenous mosquitoes. Parasit Vectors 2021; 14:119. [PMID: 33627180 PMCID: PMC7905675 DOI: 10.1186/s13071-021-04594-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
Background Most female mosquitoes are anautogenous and must blood feed on a vertebrate host to produce eggs. Prior studies show that the number of eggs females lay per clutch correlates with the volume of blood ingested and that protein is the most important macronutrient for egg formation. In contrast, how whole blood, blood fractions and specific blood proteins from different vertebrates affect egg formation is less clear. Since egg formation is best understood in Aedes aegypti, we examined how blood and blood components from different vertebrates affect this species and two others: the malaria vector Anopheles gambiae and arbovirus vector Culex quinquefasciatus. Methods Adult female mosquitoes were fed blood, blood fractions and purified major blood proteins from different vertebrate hosts. Markers of reproductive response including ovary ecdysteroidogenesis, yolk deposition into oocytes and number of mature eggs produced were measured. Results Ae. aegypti, An. gambiae and C. quinquefasciatus responded differently to meals of whole blood, plasma or blood cells from human, rat, chicken and turkey hosts. We observed more similarities between the anthropophiles Ae. aegypti and An. gambiae than the ornithophile C. quinquefasciatus. Focusing on Ae. aegypti, the major plasma-derived proteins (serum albumin, fibrinogen and globulins) differentially stimulated egg formation as a function of vertebrate host source. The major blood cell protein, hemoglobin, stimulated yolk deposition when from pigs but not humans, cows or sheep. Serum albumins from different vertebrates also variably affected egg formation. Bovine serum albumin (BSA) stimulated ovary ecdysteroidogenesis, but more weakly induced digestive enzyme activities than whole blood. In contrast, BSA-derived peptides and free amino acids had no stimulatory effects on ecdysteroidogenesis or yolk deposition into oocytes. Conclusions Whole blood, blood fractions and specific blood proteins supported egg formation in three species of anautogenous mosquitoes but specific responses varied with the vertebrate source of the blood components tested.![]()
Collapse
Affiliation(s)
- Ruby E Harrison
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA
| | - Mark R Brown
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA
| | - Michael R Strand
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA.
| |
Collapse
|
16
|
Alvarado WA, Agudelo SO, Velez ID, Vivero RJ. Description of the ovarian microbiota of Aedes aegypti (L) Rockefeller strain. Acta Trop 2021; 214:105765. [PMID: 33245909 DOI: 10.1016/j.actatropica.2020.105765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 01/26/2023]
Abstract
Aedes aegypti is one of the vectors responsible for transmitting the viruses that cause dengue, Zika and chikungunya in the human population. Mosquitoes have bacterial communities in different organs, mainly in the midgut, but to a lesser extent in their reproductive organs, such as the ovaries, where replication and vertical transmission is decisive for dengue virus. These bacteria also influence metabolic and physiological processes such as ingestion and digestion of blood. In this study, aerobic bacterial communities associated with ovaries of A. aegypti Rockefeller strain were determined, describing their potential function during ovocitary development. The groups of mosquitoes were separated into three treatments: diet with 10% sugar solution, diet with blood supply, and blood feeding combined with tetracycline. The ovaries were extracted from the mosquitoes, and then put in enriched culture media (blood and nutritive agar) by direct inoculation, for subsequent isolation and macroscopic and microscopic characterization of the colonies. The taxonomic determination of bacterial isolates was achieved by sequence analysis of the 16S rRNA gene. A higher bacterial load was observed in the sugar feeding group (6 × 10³ CFU/ml) in contrast to the group fed only with blood, with and without an antibiotic (4.03-4.04 × 10³CFU/ml; 4.85-5.04 × 10³CFU/ml). As a result, a total of 35 colonies were isolated, of which 80% were gram-negative and 20% gram-positive; 72% were lactose negative and 8% lactose positive. Of the total bacteria, 83% had gamma hemolysis, 17% alpha hemolysis, and none presented beta hemolysis. After phenotypic and biochemical characterization, 17 isolates were selected for molecular identification. Only phyla Actinobacteria and Proteobacteria were found. Bacteria associated with ovaries of A. aegypti were mainly identified as belonging to the Serratia and Klebsiella genera. Some bacteria (Serratia marcescens, Pantoea dispersa and Klebsiella oxytoca) have wide biotechnological potential due to their entomopathogenic power and their bioactivity against different pathogens.
Collapse
Affiliation(s)
- Wilber A Alvarado
- Programa de Estudio y Control de Enfermedades Tropicales, Sede de Investigación Universitaria, Universidad de Antioquia. Laboratory 632, Medellín Postal Code 050003, Colombia.
| | - Susana Ochoa Agudelo
- Research Group BIOCIENCIAS, Institución Universitaria Colegio Mayor. Tv. 78 #65 - 46, Medellín, Antioquia, Colombia.
| | - Iván Darío Velez
- Programa de Estudio y Control de Enfermedades Tropicales, Sede de Investigación Universitaria, Universidad de Antioquia. Laboratory 632, Medellín Postal Code 050003, Colombia.
| | - Rafael José Vivero
- Programa de Estudio y Control de Enfermedades Tropicales, Sede de Investigación Universitaria, Universidad de Antioquia. Laboratory 632, Medellín Postal Code 050003, Colombia; Microbiodiversity and Bioprospecting Group, Universidad Nacional de Colombia, Medellín. Street 59 A # 63-20, Medellín Postal Code 050003, Colombia.
| |
Collapse
|
17
|
Wolbachia's Deleterious Impact on Aedes aegypti Egg Development: The Potential Role of Nutritional Parasitism. INSECTS 2020; 11:insects11110735. [PMID: 33120915 PMCID: PMC7692218 DOI: 10.3390/insects11110735] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022]
Abstract
Simple Summary Mosquito-borne viral diseases such as dengue, Zika and chikungunya cause a significant global health burden and are currently increasing in outbreak frequency and geographical reach. Wolbachia pipientis, an endosymbiotic bacterium, offers a solution to this. When Wolbachia is introduced into the main mosquito vector of these viruses, Aedes aegypti, it alters the mosquito’s reproductive biology, as well as reducing the ability of the mosquitoes to transmit viruses. These traits can be leveraged to reduce virus transmission within a community by mass releasing Wolbachia-infected mosquitoes. However, Wolbachia has some negative effects on Aedes aegypti fitness, particularly egg longevity, and the reason behind this remains ambiguous. Insect fitness is very important for the success for Wolbachia-biocontrol strategies as they rely on the released insects being competitive with the wild mosquito population. This review summarises the fitness effects of Wolbachia on Aedes aegypti and investigates the possible contribution of Wolbachia as a nutritional parasite in lowering host fitness. It proposes the next stages of research that can be conducted to address nutritional parasitism to aid in the expansion of Wolbachia-based disease management programs worldwide. Abstract The artificial introduction of the endosymbiotic bacterium, Wolbachia pipientis, into Aedes (Ae.) aegypti mosquitoes reduces the ability of mosquitoes to transmit human pathogenic viruses and is now being developed as a biocontrol tool. Successful introgression of Wolbachia-carrying Ae. aegypti into native mosquito populations at field sites in Australia, Indonesia and Malaysia has been associated with reduced disease prevalence in the treated community. In separate field programs, Wolbachia is also being used as a mosquito population suppression tool, where the release of male only Wolbachia-infected Ae. aegypti prevents the native mosquito population from producing viable eggs, subsequently suppressing the wild population. While these technologies show great promise, they require mass rearing of mosquitoes for implementation on a scale that has not previously been done. In addition, Wolbachia induces some negative fitness effects on Ae. aegypti. While these fitness effects differ depending on the Wolbachia strain present, one of the most consistent and significant impacts is the shortened longevity and viability of eggs. This review examines the body of evidence behind Wolbachia’s negative effect on eggs, assesses nutritional parasitism as a key cause and considers how these impacts could be overcome to achieve efficient large-scale rearing of these mosquitoes.
Collapse
|
18
|
Long-Term Mosquito culture with SkitoSnack, an artificial blood meal replacement. PLoS Negl Trop Dis 2020; 14:e0008591. [PMID: 32941432 PMCID: PMC7523998 DOI: 10.1371/journal.pntd.0008591] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/29/2020] [Accepted: 07/13/2020] [Indexed: 11/19/2022] Open
Abstract
The reliance on blood is a limiting factor for mass rearing of mosquitoes for Sterile-Insect-Technique (SIT) and other mosquito-based control strategies. To solve this problem, we have developed SkitoSnack, a formulated diet for Aedes aegypti (L) mosquitoes, as an alternative for vertebrate blood. Here we addressed the question if long-term yellow fever mosquito culture with SkitoSnack resulted in changed life history traits and fitness of the offspring compared to blood-raised mosquitoes. We also explored if SkitoSnack is suitable to raise Asian tiger mosquitos, Aedes albopictus (L.), and the human bed bug, Cimex lectularius (L). We measured life history traits for 30th generation SkitoSnack-raised Ae. aegypti and 11th generation SkitoSnack-raised Ae. albopictus, and compared them with control mosquitoes raised on blood only. We compared meal preference, flight performance, and reproductive fitness in Ae. aegypti raised on SkitoSnack or blood. We also offered SkitoSnack to bed bug nymphs. We found that long-term culture with SkitoSnack resulted in mosquitoes with similar life history traits compared to bovine blood-raised mosquitoes in both species we studied. Also, Ae. aegypti mosquitoes raised on SkitoSnack had similar flight performance compared to blood raised mosquitoes, were still strongly attracted by human smell and had equal mating success. Minimal feeding occurred in bed bugs. Our results suggest that long-term culture with the blood-meal replacement SkitoSnack results in healthy, fit mosquitoes. Therefore, artificial diets like SkitoSnack can be considered as a viable alternative for vertebrate blood in laboratory mosquito culture as well as for mosquito mass production for Sterile-Insect-Technique mosquito control interventions. SkitoSnack was not suitable to induce engorgement of bed bugs.
Collapse
|
19
|
da Silva Costa G, Rodrigues MMS, Silva ADAE. Toward a blood-free diet for Anopheles darlingi (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:947-951. [PMID: 31790134 DOI: 10.1093/jme/tjz217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Indexed: 06/10/2023]
Abstract
Due to ethical issues associated with the use of blood for mosquito laboratory experiments, an artificial diet that supports the production of eggs and larvae is highly desirable. We report the development of an artificial diet using direct feeding on protein-rich sugar solution (PRSS) as an alternative to whole blood and evaluated its effects on several biologic parameters of Anopheles darlingi (Root). Field-collected females were fed with different PRSSs containing bovine serum albumin (BSA) at 200 and 400 mg/ml with or without supplemental salts. Engorged mosquitoes were monitored for survival to oviposition, before being forced to oviposit. The proportion ovipositing, number of eggs, and number of larvae were recorded for each treatment. Mosquitoes promptly engorged on PRSSs. The mean proportion of mosquitoes fed with PRSS that survived to oviposition did not differ statistically from that of blood-fed ones. The oviposition proportion of females fed with PRSS at 200 mg/ml was similar to that of blood-fed mosquitoes, whereas mean egg production was lower for most PRSS-fed females, except for those fed with BSA at 400 mg/ml. However, the mean larval production of PRSS-fed mosquitoes was significantly lower than that of blood-fed females. Although feeding An. darlingi on simple PRSS triggered oogenesis and embryogenesis, our results highlight the need for additional nutrients to increase the number of larvae to improve overall reproduction potential.
Collapse
Affiliation(s)
- Glaucilene da Silva Costa
- Programa de Pós-Graduação em Biologia Experimental, Universidade Federal de Rondônia, Porto Velho, RO, Brazil
| | | | - Alexandre de Almeida E Silva
- Programa de Pós-Graduação em Biologia Experimental, Universidade Federal de Rondônia, Porto Velho, RO, Brazil
- Laboratório de Bioecologia de Insetos, Universidade Federal de Rondônia, Porto Velho, RO, CEP, Brazil
| |
Collapse
|
20
|
Mitra S, Rodriguez SD, Vulcan J, Cordova J, Chung HN, Moore E, Kandel Y, Hansen IA. Efficacy of Active Ingredients From the EPA 25(B) List in Reducing Attraction of Aedes aegypti (Diptera: Culicidae) to Humans. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:477-484. [PMID: 31612914 DOI: 10.1093/jme/tjz178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Indexed: 06/10/2023]
Abstract
Mosquitoes of the Aedes genus are vectors for dengue, chikungunya, Zika, and yellow fever viruses. Mosquito repellents are an effective way to prevent mosquito bites and reduce the spread of mosquito-borne diseases. In the early 90s, the U.S. Environmental Protection Agency (EPA) published a list of active ingredients that pose minimum risk to human health that can be used as pesticides or repellents without passing the EPA registration process. The present study examined the efficacy of 21 of the active ingredients listed by the EPA 25 (B) exempt list and five commercially available sprays that only contained active ingredients from the EPA 25(B) list in repelling female Aedes aegypti (L.) females. We performed choice bioassays in a controlled laboratory environment, using a Y-tube olfactometer to determine attraction rates of humans to female Ae. aegypti in the presence of one of the 21 active ingredients and five commercially available repellent sprays. We found that cinnamon oil, peppermint oil, spearmint oil, lemongrass oil, and garlic oil reduced mosquito attraction to human odor. Of the five commercial repellent sprays, only one reduced mosquito attraction for up to 30 min in our assay. The EPA 25 (B) list contains active ingredients that under the conditions of our assay repel Ae. aegypti.
Collapse
Affiliation(s)
- Soumi Mitra
- Department of Biology, New Mexico State University, Las Cruces, NM
| | | | - Julia Vulcan
- Department of Biology, New Mexico State University, Las Cruces, NM
| | - Joel Cordova
- Department of Biology, New Mexico State University, Las Cruces, NM
| | - Hae-Na Chung
- Department of Biology, New Mexico State University, Las Cruces, NM
| | - Emily Moore
- Department of Biology, New Mexico State University, Las Cruces, NM
| | - Yashoda Kandel
- Department of Biology, New Mexico State University, Las Cruces, NM
| | - Immo A Hansen
- Department of Biology, New Mexico State University, Las Cruces, NM
| |
Collapse
|
21
|
Zhu Y, Tong L, Nie K, Wiwatanaratanabutr I, Sun P, Li Q, Yu X, Wu P, Wu T, Yu C, Liu Q, Bian Z, Wang P, Cheng G. Host serum iron modulates dengue virus acquisition by mosquitoes. Nat Microbiol 2019; 4:2405-2415. [DOI: 10.1038/s41564-019-0555-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022]
|
22
|
Haem Biology in Metazoan Parasites - 'The Bright Side of Haem'. Trends Parasitol 2019; 35:213-225. [PMID: 30686614 DOI: 10.1016/j.pt.2019.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/12/2022]
Abstract
Traditionally, host haem has been recognized as a cytotoxic molecule that parasites need to eliminate or detoxify in order to survive. However, recent evidence indicates that some lineages of parasites have lost genes that encode enzymes involved specifically in endogenous haem biosynthesis. Such lineages thus need to acquire and utilize haem originating from their host animal, making it an indispensable molecule for their survival and reproduction. In multicellular parasites, host haem needs to be systemically distributed throughout their bodies to meet the haem demands in all cell and tissue types. Host haem also gets deposited in parasite eggs, enabling embryogenesis and reproduction. Clearly, a better understanding of haem biology in multicellular parasites should elucidate organismal adaptations to obligatory blood-feeding.
Collapse
|
23
|
Abstract
Mosquito breeding depends on the supply of fresh vertebrate blood, a major bottleneck for large-scale production of Anopheles spp. Feeding alternatives to fresh blood are thus a priority for research, outdoor large-cage trials and control interventions. Several artificial meal compositions were tested and Anopheles oogenesis, egg laying and development into the next generation of adult mosquitoes were followed. We identified blood-substitute-diets that supported ovarian development, egg maturation and fertility as well as, low progeny larval mortality, and normal development of offspring into adult mosquitoes. The formulated diet is an effective artificial meal, free of fresh blood that mimics a vertebrate blood meal and represents an important advance for the sustainability of Anopheles mosquito rearing in captivity.
Collapse
|
24
|
Gonzales KK, Rodriguez SD, Chung HN, Kowalski M, Vulcan J, Moore EL, Li Y, Willette SM, Kandel Y, Van Voorhies WA, Holguin FO, Hanley KA, Hansen IA. The Effect of SkitoSnack, an Artificial Blood Meal Replacement, on Aedes aegypti Life History Traits and Gut Microbiota. Sci Rep 2018; 8:11023. [PMID: 30038361 PMCID: PMC6056539 DOI: 10.1038/s41598-018-29415-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022] Open
Abstract
Public health research and vector control frequently require the rearing of large numbers of vector mosquitoes. All target vector mosquito species are anautogenous, meaning that females require vertebrate blood for egg production. Vertebrate blood, however, is costly, with a short shelf life. To overcome these constraints, we have developed SkitoSnack, an artificial blood meal replacement for the mosquito Aedes aegypti, the vector of dengue, Zika and chikungunya virus. SkitoSnack contains bovine serum albumin and hemoglobin as protein source as well as egg yolk and a bicarbonate buffer. SkitoSnack-raised females had comparable life history traits as blood-raised females. Mosquitoes reared from SkitoSnack-fed females had similar levels of infection and dissemination when orally challenged with dengue virus type 2 (DENV-2) and significantly lower infection with DENV-4. When SkitoSnack was used as a vehicle for DENV-2 delivery, blood-raised and SkitoSnack-raised females were equally susceptible. The midgut microbiota differed significantly between mosquitoes fed on SkitoSnack and mosquitoes fed on blood. By rearing 20 generations of Aedes exclusively on SkitoSnack, we have proven that this artificial diet can replace blood in mosquito mass rearing.
Collapse
Affiliation(s)
- Kristina K Gonzales
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Stacy D Rodriguez
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Hae-Na Chung
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Margaret Kowalski
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Julia Vulcan
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Emily L Moore
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Yiyi Li
- Department of Computer Science, New Mexico State University, Las Cruces, NM, USA
| | - Stephanie M Willette
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, USA
| | - Yashoda Kandel
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | | | - F Omar Holguin
- Molecular Biology Program, New Mexico State University, Las Cruces, NM, USA
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, USA
| | - Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
- Molecular Biology Program, New Mexico State University, Las Cruces, NM, USA
| | - Immo A Hansen
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA.
- Institute of Applied Biosciences, New Mexico State University, Las Cruces, NM, USA.
- Molecular Biology Program, New Mexico State University, Las Cruces, NM, USA.
| |
Collapse
|
25
|
Zhang D, Li Y, Sun Q, Zheng X, Gilles JRL, Yamada H, Wu Z, Xi Z, Wu Y. Establishment of a medium-scale mosquito facility: tests on mass production cages for Aedes albopictus (Diptera: Culicidae). Parasit Vectors 2018; 11:189. [PMID: 29554945 PMCID: PMC5859650 DOI: 10.1186/s13071-018-2750-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/26/2018] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Mass egg production is an important component of Aedes albopictus mosquito control programs, such as the sterile insect technique and incompatible insect technique, which requires the releases of large number of sterile males. Developing standard operating procedures and optimized cages for adult maintenance of Ae. albopictus can improve the mass rearing efficiency. METHODS Three different sex ratios of females to males with a total number of 4,000 mosquitoes were tested by evaluating the insemination rate, egg production (total number of eggs per cage), female fecundity and egg hatch rate in small cage (30 × 30 × 30 cm). Blood meals with adenosine triphosphate (ATP, 0.05 g/ml), cage structures (Big cage A: 90 × 30 × 30 cm; Big cage B: 90 × 30 × 50 cm or 90 × 50 × 30 cm) and rearing densities (12,000, 16,000 and 20,000 mosquitoes, corresponding to 0.9 cm2/mosquito, 0.675 cm2/mosquito and 0.54 cm2/mosquito, respectively) were also tested and evaluated on the basis of egg production, female fecundity and egg hatch rate. An adult rearing unit holding 15 of Big cage A with optimal egg production was designed to produce 10 million eggs per rearing cycle in a 1.8 m2 space. RESULTS Female to male ratios at 3:1 in small cages resulted in higher egg production but did not affect insemination rate, female fecundity and egg hatch rate. A concentration of 0.05 g/ml of ATP added to blood meals improved the blood-feeding frequency and thus increased the overall egg production per cage. Cage structures affected the egg production per cage, but not egg hatch rate. A medium rearing density at 0.675 cm2/mosquito (16,000 mosquitoes) resulted in higher egg production compared to both low and high densities. An adult rearing unit for Ae. albopictus on the basis of Big cage A has been developed with the capacity of producing 10 million eggs within 15 days. CONCLUSIONS Our results have indicated that the adult rearing methods and adult maintenance unit are recommended for Ae. albopictus mass rearing in support of the establishment of a medium-sized mosquito factory.
Collapse
Affiliation(s)
- Dongjing Zhang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080 China
- Key Laboratory for Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080 China
- Guangdong Provincial Engineering Technology Research Center for Diseases-vectors Control, Sun Yat-sen University, Guangzhou, Guangdong 510080 China
- Zhongshan School of Medicine, Sun Yat-sen University - Michigan State University Joint Center of Vector Control for Tropical Diseases, Guangzhou, Guangdong 510080 China
| | - Yongjun Li
- Zhongshan School of Medicine, Sun Yat-sen University - Michigan State University Joint Center of Vector Control for Tropical Diseases, Guangzhou, Guangdong 510080 China
| | - Qiang Sun
- Zhongshan School of Medicine, Sun Yat-sen University - Michigan State University Joint Center of Vector Control for Tropical Diseases, Guangzhou, Guangdong 510080 China
| | - Xiaoying Zheng
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080 China
- Key Laboratory for Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080 China
- Guangdong Provincial Engineering Technology Research Center for Diseases-vectors Control, Sun Yat-sen University, Guangzhou, Guangdong 510080 China
- Zhongshan School of Medicine, Sun Yat-sen University - Michigan State University Joint Center of Vector Control for Tropical Diseases, Guangzhou, Guangdong 510080 China
| | - Jeremie R. L. Gilles
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, A1130 Vienna, Austria
| | - Hanano Yamada
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, A1130 Vienna, Austria
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080 China
- Key Laboratory for Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080 China
- Guangdong Provincial Engineering Technology Research Center for Diseases-vectors Control, Sun Yat-sen University, Guangzhou, Guangdong 510080 China
| | - Zhiyong Xi
- Zhongshan School of Medicine, Sun Yat-sen University - Michigan State University Joint Center of Vector Control for Tropical Diseases, Guangzhou, Guangdong 510080 China
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 USA
| | - Yu Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080 China
- Key Laboratory for Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080 China
- Guangdong Provincial Engineering Technology Research Center for Diseases-vectors Control, Sun Yat-sen University, Guangzhou, Guangdong 510080 China
- Zhongshan School of Medicine, Sun Yat-sen University - Michigan State University Joint Center of Vector Control for Tropical Diseases, Guangzhou, Guangdong 510080 China
| |
Collapse
|
26
|
Geiser DL, Patel N, Patel P, Bhakta J, Velasquez LS, Winzerling JJ. Description of a Second Ferritin Light Chain Homologue From the Yellow Fever Mosquito (Diptera: Culicidae). JOURNAL OF INSECT SCIENCE 2017. [PMCID: PMC5751084 DOI: 10.1093/jisesa/iex096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Ferritin is required for iron storage in vertebrates and for iron transport and storage in invertebrates, specifically insects. Classical ferritins consist of 24 subunits configured as a polyhedron wherein iron is held. The 24 subunits include light and heavy chains, each with specific functions. Several homologues of the light and heavy chains have been sequenced and studied in insects. In addition to iron transport and storage, ferritin has a role in dietary iron absorption, and functions as a protective agent preventing iron overload, decreasing oxidative stress, and reducing infection in these animals. The expression profile and regulation of a second ferritin light chain homologue (LCH2) in Aedes aegypti [Linnaeus (Diptera: Culicidae), yellow fever mosquito] was characterized in cells, animal developmental stages, and tissues post bloodmeal (PBM) by real-time PCR and immunoblot. Two previously studied ferritin subunits from Ae. aegypti, HCH and LCH1, along with LCH2 were immunoprecipitated and analyzed by mass spectrometry. The three Ae. aegypti ferritin subunits, HCH, LCH1, and LCH2, have different expression profiles and regulation with iron exposure, developmental stage, and tissue response PBM. Ae. aegypti expresses multiple and unique ferritin light chain subunits. Ae. aegypti, the vector for Zika, Dengue, and yellow fever, requires iron for oogenesis that is transported and stored in ferritin; this vector expresses a second light chain ferritin subunit homologue unlike any other species in which ferritin has been studied to date.
Collapse
Affiliation(s)
- Dawn L Geiser
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
- Corresponding author, e-mail:
| | - Naren Patel
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
| | - Pritesh Patel
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
| | - Janki Bhakta
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
| | - Lissette S Velasquez
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
| | - Joy J Winzerling
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
| |
Collapse
|
27
|
Dutra HLC, Rodrigues SL, Mansur SB, de Oliveira SP, Caragata EP, Moreira LA. Development and physiological effects of an artificial diet for Wolbachia-infected Aedes aegypti. Sci Rep 2017; 7:15687. [PMID: 29146940 PMCID: PMC5691197 DOI: 10.1038/s41598-017-16045-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/07/2017] [Indexed: 12/12/2022] Open
Abstract
The endosymbiotic bacterium Wolbachia spreads rapidly through populations of Aedes aegypti mosquitoes, and strongly inhibits infection with key human pathogens including the dengue and Zika viruses. Mosquito control programs aimed at limiting transmission of these viruses are ongoing in multiple countries, yet there is a dearth of mass rearing infrastructure specific to Wolbachia-infected mosquitoes. One example is the lack of a blood meal substitute, which accounts for the Wolbachia-specific physiological changes in infected mosquitoes, that allows the bacterium to spread, and block viral infections. To that end, we have developed a blood meal substitute specifically for mosquitoes infected with the wMel Wolbachia strain. This diet, ADM, contains milk protein, and infant formula, dissolved in a mixture of bovine red blood cells and Aedes physiological saline, with ATP as a phagostimulant. Feeding with ADM leads to high levels of viable egg production, but also does not affect key Wolbachia parameters including, bacterial density, cytoplasmic incompatibility, or resistance to infection with Zika virus. ADM represents an effective substitute for human blood, which could potentially be used for the mass rearing of wMel-infected A. aegypti, and could easily be optimized in the future to improve performance.
Collapse
Affiliation(s)
- Heverton Leandro Carneiro Dutra
- Endossimbiontes e Interação Patógeno-Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, MG, 30190-002, Brazil.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Silvia Lomeu Rodrigues
- Endossimbiontes e Interação Patógeno-Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, MG, 30190-002, Brazil
| | - Simone Brutman Mansur
- Endossimbiontes e Interação Patógeno-Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, MG, 30190-002, Brazil
| | - Sofia Pimenta de Oliveira
- Endossimbiontes e Interação Patógeno-Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, MG, 30190-002, Brazil
| | - Eric Pearce Caragata
- Endossimbiontes e Interação Patógeno-Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, MG, 30190-002, Brazil.,W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Luciano Andrade Moreira
- Endossimbiontes e Interação Patógeno-Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, MG, 30190-002, Brazil.
| |
Collapse
|
28
|
Differential outcomes of Zika virus infection in Aedes aegypti orally challenged with infectious blood meals and infectious protein meals. PLoS One 2017; 12:e0182386. [PMID: 28796799 PMCID: PMC5552158 DOI: 10.1371/journal.pone.0182386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/17/2017] [Indexed: 11/19/2022] Open
Abstract
Background Infection of mosquitoes is an essential step for the transmission of mosquito-borne arboviruses in nature. Engorgement of infectious blood meals from viremic infected vertebrate hosts allows the entry of viruses and initiates infection of midgut epithelial cells. Historically, the infection process of arboviruses in mosquitoes has been studied through the engorgement of mosquitoes from viremic laboratory animals or from artificial feeders containing blood mixed with viruses harvested from cell cultures. The latter approach using so-called artificial blood meals is more frequently used since it is readily optimized to maximize viral titer, negates the use of animals and can be used with viruses for which there are no small animal models. Use of artificial blood meals has enabled numerous studies on mosquito infections with a wide variety of viruses; however, as described here, with suitable modification it can also be used to study the interplay between infection, specific blood components, and physiological consequences associated with blood engorgement. For hematophagous female mosquitoes, blood is the primary nutritional source supporting all physiological process including egg development, and also influences neurological processes and behaviors such as host-seeking. Interactions between these blood-driven vector biological processes and arbovirus infection that is mediated via blood engorgement have not yet been specifically studied. This is in part because presentation of virus in whole blood inevitably induces enzymatic digestion processes, hormone driven oogenesis, and other biological changes. In this study, the infection process of Zika virus (ZIKV) in Aedes aegypti was characterized by oral exposure via viral suspension meals within minimally bovine serum albumin complemented medium or within whole blood. The use of bovine serum albumin in infectious meals provides an opportunity to evaluate the role of serum albumin during the process of flavivirus infection in mosquitoes. Methods Infectious whole blood meals and infectious bovine serum albumin meals containing ZIKV were orally presented to two different groups of Ae. aegypti through membrane feeding. At 7 and 14 days post infection, infectious viruses were detected and viral dissemination from gut to other mosquito tissues was analyzed in orally challenged mosquitoes with 50% tissue culture infectious dose method on Vero76 cells. Results/Conclusions Zika virus infection was significantly impaired among mosquitoes orally challenged with infectious protein meals as compared to infectious whole blood meals. These results indicate the importance of the blood meal in the infection process of arboviruses in mosquitoes. It provides the basis for future studies to identify critical components in the blood of vertebrate hosts that facilitate arbovirus infection in mosquitoes.
Collapse
|
29
|
Dong S, Behura SK, Franz AWE. The midgut transcriptome of Aedes aegypti fed with saline or protein meals containing chikungunya virus reveals genes potentially involved in viral midgut escape. BMC Genomics 2017; 18:382. [PMID: 28506207 PMCID: PMC5433025 DOI: 10.1186/s12864-017-3775-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/09/2017] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The mosquito Aedes aegypti is the primary vector for medically important arthropod-borne viruses, including chikungunya virus (CHIKV). Following oral acquisition, an arbovirus has to persistently infect several organs in the mosquito before becoming transmissible to another vertebrate host. A major obstacle an arbovirus has to overcome during its infection cycle inside the mosquito is the midgut escape barrier, representing the exit mechanism arboviruses utilize when disseminating from the midgut. To understand the transcriptomic basis of midgut escape and to reveal genes involved in the process, we conducted a comparative transcriptomic analysis of midgut samples from mosquitoes which had received a saline meal (SM) or a protein meal (PM) (not) containing CHIKV. RESULTS CHIKV which was orally acquired by a mosquito along with a SM or PM productively infected the midgut epithelium and disseminated to secondary tissues. A total of 27 RNA-Seq libraries from midguts of mosquitoes that had received PM or SM (not) containing CHIKV at 1 and 2 days post-feeding were generated and sequenced. Fewer than 80 genes responded differentially to the presence of CHIKV in midguts of mosquitoes that had acquired the virus along with SM or PM. SM feeding induced differential expression (DE) of 479 genes at day 1 and 314 genes at day 2 when compared to midguts of sugarfed mosquitoes. By comparison, PM feeding induced 6029 DE genes at day 1 and 7368 genes at day 2. Twenty-three DE genes encoding trypsins, metalloproteinases, and serine-type endopeptidases were significantly upregulated in midguts of mosquitoes at day 1 following SM or PM ingestion. Two of these genes were Ae. aegypti late trypsin (AeLT) and serine collagenase 1 precursor (AeSP1). In vitro, recombinant AeLT showed strong matrix metalloproteinase activity whereas recombinant AeSP1 did not. CONCLUSIONS By substituting a bloodmeal for SM, we identified midgut-expressed genes not involved in blood or protein digestion. These included genes coding for trypsins, metalloproteinases, and serine-type endopeptidases, which could be involved in facilitating midgut escape for arboviruses in Ae. aegypti. The presence of CHIKV in any of the ingested meals had relatively minor effects on the overall gene expression profiles in midguts.
Collapse
Affiliation(s)
- Shengzhang Dong
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Susanta K Behura
- Department of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Alexander W E Franz
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
30
|
Misyura L, Yerushalmi GY, Donini A. A mosquito entomoglyceroporin, Aedes aegypti AQP5 participates in water transport across the Malpighian tubules of larvae. J Exp Biol 2017; 220:3536-3544. [DOI: 10.1242/jeb.158352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/26/2017] [Indexed: 01/09/2023]
Abstract
The mosquito, Aedes aegypti, is the primary vector for arboviral diseases such as Zika fever, dengue fever, chikungunya, and yellow fever. The larvae reside in hypo-osmotic freshwater habitats, where they face dilution of their body fluids from osmotic influx of water. The Malpighian tubules help maintain ionic and osmotic homeostasis by removing excess water from the hemolymph, but the transcellular pathway for this movement remains unresolved. Aquaporins are transmembrane channels thought to permit transcellular transport of water from the hemolymph into the Malpighian tubule lumen. Immunolocalization of Aedes aegypti aquaporin 5 (AaAQP5) revealed expression by Malpighian tubule principal cells of the larvae, with localization to both the apical and basolateral membranes. Knockdown of AaAQP5 with double stranded RNA decreased larval survival, reduced rates of fluid, K+, and Na+ secretion by the Malpighian tubules and reduced Cl− concentrations in the hemolymph. These findings indicate that AaAQP5 participates in transcellular water transport across the Malpighian tubules of larval Aedes aegypti where global AaAQP5 expression is important for larval survival.
Collapse
Affiliation(s)
- Lidiya Misyura
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, Canada, M3J 1P3
| | - Gil Y. Yerushalmi
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, Canada, M3J 1P3
| | - Andrew Donini
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, Canada, M3J 1P3
| |
Collapse
|
31
|
Gonzales KK, Hansen IA. Artificial Diets for Mosquitoes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13121267. [PMID: 28009851 PMCID: PMC5201408 DOI: 10.3390/ijerph13121267] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 12/22/2022]
Abstract
Mosquito-borne diseases are responsible for more than a million human deaths every year. Modern mosquito control strategies such as sterile insect technique (SIT), release of insects carrying a dominant lethal (RIDL), population replacement strategies (PR), and Wolbachia-based strategies require the rearing of large numbers of mosquitoes in culture for continuous release over an extended period of time. Anautogenous mosquitoes require essential nutrients for egg production, which they obtain through the acquisition and digestion of a protein-rich blood meal. Therefore, mosquito mass production in laboratories and other facilities relies on vertebrate blood from live animal hosts. However, vertebrate blood is expensive to acquire and hard to store for longer times especially under field conditions. This review discusses older and recent studies that were aimed at the development of artificial diets for mosquitoes in order to replace vertebrate blood.
Collapse
Affiliation(s)
- Kristina K Gonzales
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.
| | - Immo A Hansen
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.
- Institute of Applied Biosciences, New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|
32
|
Talyuli OAC, Bottino-Rojas V, Taracena ML, Soares ALM, Oliveira JHM, Oliveira PL. The use of a chemically defined artificial diet as a tool to study Aedes aegypti physiology. JOURNAL OF INSECT PHYSIOLOGY 2015; 83:1-7. [PMID: 26578294 DOI: 10.1016/j.jinsphys.2015.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 06/05/2023]
Abstract
Aedes aegypti mosquitoes obtain from vertebrate blood nutrients that are essential to oogenesis, such as proteins and lipids. As with all insects, mosquitoes do not synthesize cholesterol but take it from the diet. Here, we used a chemically defined artificial diet, hereafter referred to as Substitute Blood Meal (SBM), that was supplemented with cholesterol to test the nutritional role of cholesterol. SBM-fed and blood-fed mosquitoes were compared regarding several aspects of the insect physiology that are influenced by a blood meal, including egg laying, peritrophic matrix formation, gut microbiota proliferation, generation of reactive oxygen species (ROS) and expression of antioxidant genes, such as catalase and ferritin. Our results show that SBM induced a physiological response that was very similar to a regular blood meal. Depending on the nutritional life history of the mosquito since the larval stage, the presence of cholesterol in the diet increased egg development, suggesting that the teneral reserves of cholesterol in the newly hatched female are determinant of reproductive performance. We propose here the use of SBM as a tool to study other aspects of the physiology of mosquitoes, including their interaction with microbiota and pathogens.
Collapse
Affiliation(s)
- Octávio A C Talyuli
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Brazil
| | - Vanessa Bottino-Rojas
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Mabel L Taracena
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Ana Luiza Macedo Soares
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Brazil
| | - José Henrique M Oliveira
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Pedro L Oliveira
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Brazil.
| |
Collapse
|
33
|
Finlayson C, Saingamsook J, Somboon P. A simple and affordable membrane-feeding method for Aedes aegpyti and Anopheles minimus (Diptera: Culicidae). Acta Trop 2015; 152:245-251. [PMID: 26440474 DOI: 10.1016/j.actatropica.2015.09.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/22/2015] [Accepted: 09/27/2015] [Indexed: 02/08/2023]
Abstract
This study developed an artificial feeding (AF) method to replace direct host feeding (DHF) for the maintenance of Aedes aegypti and Anopheles minimus mosquito colonies. The procedure can be adopted by all laboratories due to its simple and affordable materials and design. The apparatus consists of heparinized cow blood contained in a 5cm diameter glass petri dish with 5cm(2) Parafilm M (Bemis(®)) stretched thinly over the top, with a pre-heated bag of vegetable oil placed underneath to keep the blood warm. Both parts are contained within an insulated Styrofoam™ box with a hole in the lid for mosquitoes to access the membrane. Mosquitoes are fed by AF for 15min at a time. Feeding rate and fecundity of Ae. aegypti mosquitoes feeding on the AF device were compared to those feeding on a live rat (DHF(r)), and of Anopheles minimus mosquitoes feeding on the AF device compared to those feeding on a human arm (DHF(h)). Aedes aegypti mosquitoes fed by AF or DHF(r) had similar feeding rates (38.2±21.5% and 35.7±18.2%, respectively) and overall egg production (1.5% difference). Anopheles minimus mosquitoes fed by the AF method had a lower feeding rate (52.0±1.0% for AF compared to 70.7±20.2% for DHF(h)) and overall egg production (40% reduction compared to DHF(h)). However, the number of eggs produced by AF-fed mosquitoes (1808 eggs per 100 mosquitoes) was still sufficient for colony maintenance, and with increased feeding time both parameters are expected to increase. Reduced feeding rate and overall egg production was observed when Ae. aegypti mosquitoes were fed on blood refrigerated for over two weeks. In conclusion, an AF device has been developed which can replace DHF for Ae. aegypti and An. minimus colony maintenance when using blood refrigerated for a maximum of two weeks.
Collapse
|