1
|
Parikh MN, Manning ER, Niu L, Ruehlmann AK, Folger AT, Brunst KJ, Brokamp C. Increasing temporal sensitivity of omics association studies with epigenome-wide distributed lag models. Am J Epidemiol 2025; 194:1418-1425. [PMID: 39317692 PMCID: PMC12055467 DOI: 10.1093/aje/kwae375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Current methods for identifying temporal windows of effect for time-varying exposures in omics settings can control false discovery rates at the biomarker level but cannot efficiently screen for timing-specific effects in high dimensions. Current approaches leverage separate models for site screening and identification of susceptible time windows, and these can miss associations that vary over time. We introduce the epigenome-wide distributed lag model (EWDLM), a novel approach that combines traditional false discovery rate methods with the distributed lag model (DLM) to screen for timing-specific effects in high dimensional settings. This is accomplished by marginalizing DLM effect estimates over time and correcting for multiple comparisons. In a simulation investigating timing-specific effects of ambient air pollution during pregnancy on DNA methylation across the epigenome at age 12 years, the EWDLM achieved an increased sensitivity for associations limited to specific periods of time compared with traditional 2-stage approaches. In a real-world EWDLM analysis, 353 cytosine-phosphate-guanine sites were identified at which DNA methylation measured at age 12 years was significantly associated with fine particulate matter exposure during pregnancy. The EWDLM provides an efficient and sensitive way to screen epigenomic data sets for associations with exposures localized to specific time periods.
Collapse
Affiliation(s)
- Milan N Parikh
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Erika Rasnick Manning
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Liang Niu
- Department of Environmental & Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Anna Kotsakis Ruehlmann
- Department of Environmental & Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Alonzo T Folger
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Kelly J Brunst
- Department of Environmental & Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Cole Brokamp
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
2
|
Smith AK, Katrinli S, Maihofer AX, Aiello AE, Baker DG, Boks MP, Brick LA, Chen CY, Dalvie S, Fani N, Fortier CB, Gelernter J, Geuze E, Gillespie CF, Hayes JP, Hong S, Kessler RC, King AP, Koen N, Koenen KC, Liberzon I, Linnstaedt SD, McLean SA, Michopoulos V, Milberg WP, Miller MW, Mufford MS, Nugent NR, Orcutt HK, Powers A, Rauch SAM, Ressler KJ, Risbrough VB, Rutten BPF, Smoller JW, Stein DJ, Stein MB, Ursano RJ, Verfaellie MH, Vermetten E, Vinkers CH, Wani AH, WareVinkers EB, Wildman DE, Wolf EJ, Zhao Y, Logue MW, Nievergelt CM, Uddin M, Zannas AS. Cell-type-specific and inflammatory DNA methylation patterns associated with PTSD. Brain Behav Immun 2025; 128:540-548. [PMID: 40286993 DOI: 10.1016/j.bbi.2025.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/11/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Epigenetic modifications, including DNA methylation (DNAm), can change in response to traumatic stress exposure, and may help to distinguish between individuals with and without PTSD. Here, we examine the DNAm patterns specific to immune cell types and inflammation in those with PTSD. METHODS This study includes 3,277 participants from 11 cohorts participating in the Psychiatric Genomics Consortium (PGC) PTSD Epigenetics Workgroup. DNAm was assayed from blood with the MethylationEPIC BeadChip. A standardized QC pipeline was applied and used to impute cell composition. Within each cohort, we identified cell-type-specific DNAm patterns associated with PTSD, controlling for sex (if applicable), age, and ancestry. Meta-analyses were performed from summary statistics. RESULTS PTSD cases had lower proportions of B cells and NK cells as well as higher proportions of neutrophils when compared to trauma-exposed controls. Overall, we identified 96 PTSD-associated CpGs across six types of immune cells. Most of these differences were identified in B cells, with 95 % exhibiting lower methylation levels in those with PTSD. Interestingly, the PTSD-associated CpGs annotated to a gene in B cells were enriched in a recent GWAS of PTSD (p < 0.0001). CONCLUSIONS This study identifies novel PTSD-associated CpGs in individual immune cell types and supports the role of immune dysregulation and inflammation in PTSD.
Collapse
Affiliation(s)
- Alicia K Smith
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, USA; Emory University, Department of Human Genetics, Atlanta, GA, USA; Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA.
| | - Seyma Katrinli
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, USA
| | - Adam X Maihofer
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA; Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
| | - Allison E Aiello
- Columbia University, Robert N Butler Columbia Aging Center, Department of Epidemiology, New York, NY, USA
| | - Dewleen G Baker
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - Marco P Boks
- Amsterdam UMC, Department of Psychiatry, Amsterdam, NH, Netherland; Dimence Specialised Mental Health, Mood Disorders, Deventer, OV, Netherland; University Medical Center Utrecht, Department Psychiatry, Utrecht, UT, Netherland
| | - Leslie A Brick
- Alpert Medical School of Brown University, Department of Psychiatry and Human Behavior, Providence, RI, USA
| | - Chia-Yen Chen
- Biogen Inc., Translational Medicine, Cambridge, MA, USA
| | - Shareefa Dalvie
- University of Cape Town, Division of Human Genetics, Cape Town, Western Province, South Africa
| | - Negar Fani
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Catherine B Fortier
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA; VA Boston Healthcare System, Geriatric Research, Education and Clinical Center (GRECC), Boston, MA, USA; VA Boston Healthcare System, Translational Research Center for Traumatic Brain Injury and Stress Disorders (TRACTS), Boston, MA, USA
| | - Joel Gelernter
- VA Connecticut Healthcare Center, Psychiatry Service, West Haven, CT, USA; Yale University School of Medicine, Departments of Psychiatry, Genetics and Neuroscience, New Haven, CT, USA
| | - Elbert Geuze
- Netherlands Ministry of Defence, Brain Research and Innovation Centre, Utrecht, UT, Netherland; UMC Utrecht Brain Center Rudolf Magnus, Department of Psychiatry, Utrecht, UT, Netherland
| | - Charles F Gillespie
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Jasmeet P Hayes
- The Ohio State University, Department of Psychology, Columbus, OH, USA
| | - Suzi Hong
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA; University of California San Diego, Herbert Wertheim School of Public Health and Human Longevity Science, La Jolla, CA, USA
| | - Ronald C Kessler
- Harvard Medical School, Department of Health Care Policy, Boston, MA, USA
| | - Anthony P King
- The Ohio State University, College of Medicine, Institute for Behavioral Medicine Research, Columbus, OH, USA; The Ohio State University, College of Medicine, Psychiatry & Behavioral Health, Columbus, OH, USA
| | - Nastassja Koen
- University of Cape Town, Department of Psychiatry & Mental Health, Cape Town, Western Province, South Africa; University of Cape Town, Neuroscience Institute, Cape Town, Western Province, South Africa; University of Cape Town, SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, Western Province, South Africa
| | - Karestan C Koenen
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA; Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA; Massachusetts General Hospital, Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Boston, MA, USA
| | - Israel Liberzon
- Texas A&M University College of Medicine, Department of Psychiatry and Behavioral Sciences, Bryan, TX, USA
| | - Sarah D Linnstaedt
- University of North Carolina at Chapel Hill, Department of Anesthesiology, Chapel Hill, NC, USA; University of North Carolina at Chapel Hill, Institute for Trauma Recovery, Chapel Hill, NC, USA
| | - Samuel A McLean
- University of North Carolina at Chapel Hill, Institute for Trauma Recovery, Chapel Hill, NC, USA; University of North Carolina at Chapel Hill, Department of Psychiatry, Chapel Hill, NC, USA
| | - Vasiliki Michopoulos
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - William P Milberg
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA; VA Boston Healthcare System, Geriatric Research, Education and Clinical Center (GRECC), Boston, MA, USA; VA Boston Healthcare System, Translational Research Center for Traumatic Brain Injury and Stress Disorders (TRACTS), Boston, MA, USA
| | - Mark W Miller
- Boston University Chobanian & Avedisian School of Medicine, Department of Psychiatry, Boston, MA, USA; VA Boston Healthcare System, National Center for PTSD, Boston, MA, USA
| | - Mary S Mufford
- University of Cape Town, Department of Psychiatry and Mental Health, Cape Town, Western Province, South Africa
| | - Nicole R Nugent
- Alpert Brown Medical School, Department of Emergency Medicine, Providence, RI, USA; Alpert Brown Medical School, Department of Pediatrics, Providence, RI, USA; Alpert Brown Medical School, Department of Psychiatry and Human Behavior, Providence, RI, USA
| | - Holly K Orcutt
- Northern Illinois University, Department of Psychology, DeKalb, IL, USA
| | - Abigail Powers
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Sheila A M Rauch
- Emory University School of Medicine, Department of Psychiatry & Behavioral Sciences, Atlanta, GA, USA; Joseph Maxwell Cleland Atlanta Veterans Affairs Healthcare System, Mental Health Service Line, Atlanta, GA, USA
| | - Kerry J Ressler
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA; Harvard Medical School, Department of Psychiatry, Boston, MA, USA; McLean Hospital, Division of Depression and Anxiety, Belmont, MA, USA
| | - Victoria B Risbrough
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA; Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
| | - Bart P F Rutten
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA; Maastricht University, Department of Psychiatry and Neuropsychology, Maastricht, Limburg, Netherland
| | - Jordan W Smoller
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA; Massachusetts General Hospital, Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Boston, MA, USA; Massachusetts General Hospital, Department of Psychiatry, Boston, MA, USA
| | - Dan J Stein
- University of Cape Town, Department of Psychiatry & Mental Health, Cape Town, Western Province, South Africa; University of Cape Town, Neuroscience Institute, Cape Town, Western Province, South Africa; University of Cape Town, SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, Western Province, South Africa
| | - Murray B Stein
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA; University of California San Diego, School of Public Health, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System, Psychiatry Service, San Diego, CA, USA
| | - Robert J Ursano
- Uniformed Services University of Health Sciences, Center for the Study of Traumatic Stress, Department of Psychiatry, Bethesda, MD, USA
| | - Mieke H Verfaellie
- Boston University School of Medicine, Department of Psychiatry, Boston, MA, USA; VA Boston Healthcare System, Memory Disorders Research Center, Boston, MA, USA
| | - Eric Vermetten
- Leiden University Medical Center, Department of Psychiatry, Leiden, ZH, Netherland; New York University School of Medicine, Department of Psychiatry, New York, NY, USA
| | - Christiaan H Vinkers
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, NH, Netherland; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam, Holland, Netherland; Amsterdam University Medical Center, Amsterdam Neuroscience Research Institute, Mood, Anxiety, Psychosis, Stress & Sleep Program, Amsterdam, NH, Netherland
| | - Agaz H Wani
- University of South Florida College of Public Health, Genomics Program, Tampa, FL, USA
| | | | - Derek E Wildman
- Boston University Chobanian & Avedisian School of Medicine, Department of Biomedical Genetics, Boston, MA, USA
| | - Erika J Wolf
- Boston University Chobanian & Avedisian School of Medicine, Department of Psychiatry, Boston, MA, USA; VA Boston Healthcare System, National Center for PTSD, Boston, MA, USA
| | - Ying Zhao
- University of North Carolina at Chapel Hill, Department of Anesthesiology, Chapel Hill, NC, USA; University of North Carolina at Chapel Hill, Institute for Trauma Recovery, Chapel Hill, NC, USA
| | - Mark W Logue
- Boston University Chobanian & Avedisian School of Medicine, Department of Psychiatry, Boston, MA, USA; VA Boston Healthcare System, National Center for PTSD, Boston, MA, USA; Boston University School of Public Health, Department of Biostatistics, Boston, MA, USA; University of North Carolina at Chapel Hill, Carolina Stress Initiative, Chapel Hill, NC, USA
| | - Caroline M Nievergelt
- University of California San Diego, Department of Psychiatry, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA; Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
| | - Monica Uddin
- University of South Florida College of Public Health, Genomics Program, Tampa, FL, USA
| | - Anthony S Zannas
- University of North Carolina at Chapel Hill, Institute for Trauma Recovery, Chapel Hill, NC, USA; University of North Carolina at Chapel Hill, Department of Psychiatry, Chapel Hill, NC, USA; University of North Carolina at Chapel Hill, Carolina Stress Initiative, Chapel Hill, NC, USA; University of North Carolina at Chapel Hill, Department of Genetics, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Zarandooz S, Raffington L. Applying blood-derived epigenetic algorithms to saliva: cross-tissue similarity of DNA-methylation indices of aging, physiology, and cognition. Clin Epigenetics 2025; 17:61. [PMID: 40270051 PMCID: PMC12016411 DOI: 10.1186/s13148-025-01868-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 03/29/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Epigenetic algorithms of aging, health, and cognition, based on DNA-methylation (DNAm) patterns, are prominent tools for measuring biological age and have been linked to age-related diseases, cognitive decline, and mortality. While most of these methylation profile scores (MPSs) are developed in blood tissue, there is growing interest in using less invasive tissues like saliva. The aim of the current study is to probe the cross-tissue intraclass correlation coefficients (ICCs) of MPSs developed in blood applied to saliva DNAm from the same people. While our primary focus is on MPSs that were previously found to be robustly correlated with social determinants of health, including second- and third-generation clocks and MPSs of physiology and cognition, we also report ICC values for first-generation clocks to enable comparison across metrics. We pooled three publicly available datasets that had both saliva and blood DNAm from the same individuals (total n = 107, aged 5-74 years), corrected MPSs for cell composition within each tissue, and computed the cross-tissue ICCs. RESULTS We found that after correcting for cell composition, saliva-blood cross-tissue ICCs were moderate for second- and third-generation indices of aging and MPSs of physiology and cognition. Specifically, PCGrimAge had the highest ICC (0.76), followed by PCPhenoAge (0.72), a measure of cognitive performance (Epigenetic-g, 0.69), DunedinPACE (0.68), PCGrimAge Acceleration (0.67), PCPhenoAge Acceleration (0.66), an MPS of hs-CRP (0.58), and BMI (0.54). These ICCs appear lower than previous reports on within-tissue ICCs (saliva ICCs range from 0.67 to 0.85, blood ICCs range from 0.73 to 0.93). Cross-tissue ICCs values for first-generation biological age acceleration measures were poor, ranging from 0.19 to 0.25. CONCLUSIONS Our findings suggest that applying second- and third-generation MPSs of biological age acceleration and related phenotypes developed in blood to saliva DNAm results in moderate cross-tissue similarity and the precise cross-tissue correspondence differs by measure. While the degree of cross-tissue similarity of several MPSs may suffice for some research settings, it may not be suitable in clinical or commercial applications. Collection of both blood and saliva DNAm samples is necessary to validate existing algorithms and to customize MPSs in saliva DNAm.
Collapse
Affiliation(s)
- Sepideh Zarandooz
- Max Planck Research Group Biosocial - Biology, Social Disparities, and Development, Max Planck Institute for Human Development, Berlin, Germany
| | - Laurel Raffington
- Max Planck Research Group Biosocial - Biology, Social Disparities, and Development, Max Planck Institute for Human Development, Berlin, Germany.
| |
Collapse
|
4
|
Forszt D, Gerreth K, Karpienko K, Zalewska A, Hojan K, Marchewka R, Bielas M, Maciejczyk M. Salivary chemokines and growth factors in patients with ischemic stroke. Sci Rep 2025; 15:12676. [PMID: 40221607 PMCID: PMC11993640 DOI: 10.1038/s41598-025-97974-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 04/08/2025] [Indexed: 04/14/2025] Open
Abstract
Stroke is a serious health problem that affects an increasing number of people. As a result of the blockage of blood flow, tissue necrosis occurs in areas of the brain supplied by the damaged vessel, and leads to the development of inflammation. Changes that occur in the brain allow molecules to enter the blood, and it has been suggested that some can also penetrate the saliva. This study is the first to assess the profile of 25 chemokines and growth factors in the saliva of stroke survivors compared to a control group. 22 stroke survivors and 22 individuals matched by age and gender were enrolled in the study. Salivary chemokines and growth factors were assessed using the multiplex ELISA method. In the unstimulated saliva of stroke patients, we demonstrated significantly higher levels of chemotactic factors (CTACK/CCL27, IL-8/CXCL8, MIG/CXCL9, MIF) and growth factors (basic FGF, G-CSF, HGF, LIF, VEGF) compared to controls. The levels of MCP-3/CCL7, eotaxin/CCL11, IP-10/CXCL10, IL-3/MCGF, and PDGF-BB were lower in the saliva of the study group. The concentration of basic FGF negatively correlated with cognitive function as measured by the Addenbrooke's Cognitive Examination (ACE) scale (p = 0.007 r = - 0.56), while salivary IL-3 and LIF levels positively correlated with scores on the Functional Independence Measure (FIM) scale (p = 0.019 r = 0.53; p = 0.033 r = 0.47, respectively). Receiver Operating Characteristic (ROC) analysis showed that salivary basic FGF, HGF, IL-3 and LIF can distinguish ischemic stroke patients from the control group with high sensitivity and specificity. In conclusion, disruptions in chemokine and growth factor levels in saliva may suggest an inflammatory etiology of ischemic stroke. Salivary basic FGF, HGF, IL-3 and LIF could serve as potential biomarkers for stroke. Further research is needed to illuminate the differences in salivary inflammatory mediator profiles in stroke and to evaluate the diagnostic utility of chemokines and growth factors in clinical practice.
Collapse
Affiliation(s)
- Dominika Forszt
- Department of Risk Group Dentistry, Chair of Pediatric Dentistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Karolina Gerreth
- Department of Risk Group Dentistry, Chair of Pediatric Dentistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Kamila Karpienko
- Students Scientific Club "Biochemistry of Civilization Diseases" at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| | - Anna Zalewska
- Experimental Dentistry Laboratory, Department of Conservative Dentistry, Medical University of Bialystok, Bialystok, Poland
| | - Katarzyna Hojan
- Department of Occupational Therapy, Poznan University of Medical Sciences, Poznan, Poland
- Department of Rehabilitation, Greater Poland Cancer Centre, Poznan, Poland
| | - Renata Marchewka
- Neurorehabilitation Ward, Greater Poland Provincial Hospital, 60-480, Poznan, Poland
| | - Marzena Bielas
- Department of Family Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Mickiewicza 2C Street, 15-089, Bialystok, Poland.
| |
Collapse
|
5
|
Lemmers SAM, Le Luyer M, Stoll SJ, Hoffnagle AG, Ferrell RJ, Gamble JA, Guatelli-Steinberg D, Gurian KN, McGrath K, O'Hara MC, Smith ADAC, Dunn EC. Inter-rater reliability of stress signatures in exfoliated primary dentition - Improving scientific rigor and reproducibility in histological data collection. PLoS One 2025; 20:e0318700. [PMID: 40106466 PMCID: PMC11922276 DOI: 10.1371/journal.pone.0318700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/20/2025] [Indexed: 03/22/2025] Open
Abstract
Accentuated Lines (ALs) in tooth enamel can reflect metabolic disruptions from physiological or psychological stresses during development. They can therefore serve as a retrospective biomarker of generalized stress exposure in archaeological and clinical research. However, little consensus exists on when ALs are identified and inter-rater reliability is poorly quantified across studies. Here, we sought to address this gap by examining the reliability of accentuated (AL) markings across raters, in terms of both the presence versus absence of ALs and their intensity (HAL= Highly Accentuated, MAL= Mildly Accentuated, RL= Retzius Line). Ratings were made and compared across observers (with different levels of experience) and pairs of raters (who agreed on AL coding through consensus meetings) (N = 15 teeth, eight observers). Results indicated that more experience in AL assessment does not necessarily produce higher reliability between raters. Most disagreements in intensity ratings occurred in categories other than HAL. Furthermore, when AL assessment was performed by pairs of raters, reliability was significantly higher than individual assessments (Gwet's AC1 = 0.28 to 0.56 for line presence assessment; Gwet's AC1 = 0.48 to 0.64 for line intensity assessment). Based on these results, we recommend a workflow called IRRISS (Improving Reliability and Reporting In Scoring of Stress-markers) to increase rigor and reproducibility in histological analysis of dental collections. The introduction of IRRISS is well-timed, given the surge in studies of teeth occurring across anthropological, epidemiological, medical, forensic, and climate research fields.
Collapse
Affiliation(s)
- Simone A M Lemmers
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
- Elettra Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy
| | - Mona Le Luyer
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Samantha J Stoll
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Alison G Hoffnagle
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Rebecca J Ferrell
- National Science Foundation, Alexandria, Virginia, United States of America
| | - Julia A Gamble
- Department of Anthropology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Kaita N Gurian
- Department of Anthropology, The Ohio State University, Columbus, Ohio, United States of America
| | - Kate McGrath
- Department of Anthropology, SUNY Oneonta, New York, United States of America
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington District of Columbia, United States of America
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | - Mackie C O'Hara
- School of Anthropology and Conservation, University of Kent, Canterbury, United Kingdom
- Department of Sociology, College of Liberal Arts, Purdue University, West Lafayette, Indiana, United States of America
| | - Andrew D A C Smith
- Mathematics and Statistics Research Group, University of the West of England, Bristol, United Kingdom
| | - Erin C Dunn
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Sociology, College of Liberal Arts, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
6
|
Hanson T, Spencer S, Harker SA, Barry F, Burton P, Beauchemin J, Mennenga SE, Braden BB, D'Sa V, Koinis-Mitchell D, Deoni SC, Lewis CR. Peripheral DNA Methylation of Cortisol- and Serotonin-Related Genes Predicts Hippocampal Volume in a Pediatric Population. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100421. [PMID: 39867566 PMCID: PMC11758844 DOI: 10.1016/j.bpsgos.2024.100421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 01/28/2025] Open
Abstract
Background Hippocampal volume increases throughout early development and is an important indicator of cognitive abilities and mental health. However, hippocampal development is highly vulnerable to exposures during development, as seen by smaller hippocampal volume and differential epigenetic programming in genes implicated in mental health. However, few studies have investigated hippocampal volume in relation to the peripheral epigenome across development, and even less is known about potential genetic moderators. Therefore, in this study, we explored relationships between hippocampal volume and peripheral DNA methylation of mental health-related genes, specifically NR3C1, FKBP5, and SLC6A4, throughout early development and whether these associations were moderated by age or genotype. Methods Bilateral hippocampal volume was computed from T2-weighted images through FreeSurfer, and DNA methylation was measured from saliva using the Illumina MethylationEPIC microarray in a pediatric population (N = 248, females = 112, meanage = 5.13 years, SDage = 3.60 years). Results Multiple linear regression and bootstrapping analyses revealed that DNA methylation of NR3C1, FKBP5, and SLC6A4 was associated with hippocampal volume and that these relationships were moderated by age and gene-specific variants. Conclusions These findings support the validity of peripheral DNA methylation profiles for indirectly assessing hippocampal volume and development and underscore the importance of genotype and age considerations in research. Therefore, peripheral epigenetic profiles may be a promising avenue for investigating the impacts of early-life stress on brain structure and subsequent mental health outcomes.
Collapse
Affiliation(s)
- Taena Hanson
- Department of Psychology, Arizona State University, Tempe, Arizona
| | - Sophia Spencer
- Department of Psychology, Arizona State University, Tempe, Arizona
| | | | - Fatoumata Barry
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Phoebe Burton
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | | | | | - B. Blair Braden
- College of Health Solutions, Arizona State University, Tempe, Arizona
| | - Viren D'Sa
- Maternal, Newborn, and Child Health Discovery & Tools, Bill & Melinda Gates Foundation; Seattle, Washington; Providence, Rhode Island
| | - Daphne Koinis-Mitchell
- Maternal, Newborn, and Child Health Discovery & Tools, Bill & Melinda Gates Foundation; Seattle, Washington; Providence, Rhode Island
| | - Sean C.L. Deoni
- Maternal, Newborn, and Child Health Discovery & Tools, Bill & Melinda Gates Foundation; Seattle, Washington; Providence, Rhode Island
- Advanced Baby Imaging Laboratory, Rhode Island Hospital, Providence, Rhode Island
| | - Candace R. Lewis
- Department of Psychology, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
- Neurogenomics, Translational Genomics Research Institute, Phoenix, Arizona
| |
Collapse
|
7
|
Obliosca JM, Vest O, Patel D, Ferguson T, Smith K, Christy D, Powers A, Smith AK, Xu Y, Tison CK. Surface Plasmon Resonance Imaging-Based Platform Enables Detection of Single, Site-Specific 5-Methylcytosine Associated with Post-traumatic Stress Disorder (PTSD). ACS Pharmacol Transl Sci 2025; 8:522-532. [PMID: 39974633 PMCID: PMC11833716 DOI: 10.1021/acsptsci.4c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 02/21/2025]
Abstract
While identification of epigenetic changes in individuals with psychiatric dysfunctions such as post-traumatic stress disorder (PTSD) is paramount to genomic research, there is no rapid and simplified way to detect an epigenetic marker such as DNA methylation in genes. Here, we introduce a faster, simpler method to detect methylation in the form of 5-methylcytosine (5mC, termed as PTSD-associated base) in known CpG sites using nanoenhanced surface plasmon resonance imaging-based epigenetic assay (EpiNanoSPRi). This assay platform simultaneously detects a panel of single, site-specific PTSD bases in target genes or regions using an anti-5mC antibody and a universal nanoenhancer on a gold-coated sensing chip. Not only can EpiNanoSPRi identify 5mC at the single-base level, but it also can quantify the extent of DNA methylation. Our method is superior and more practical to bisulfite-based DNA sequencing techniques as it will significantly reduce DNA methylation identification from 4 days (e.g., DNA Sequencing) to 9 h without massive analysis workflow. This platform can potentially be applied to diagnose other psychiatric disorders such as Alzheimer's, Parkinson's, dementia, schizophrenia, and Huntington's diseases.
Collapse
Affiliation(s)
- Judy M. Obliosca
- Biotech
Group, Luna Labs USA, LLC., 706 Forest Street, Suite A, Charlottesville, Virginia 22903, United States
| | - Olivia Vest
- Biotech
Group, Luna Labs USA, LLC., 706 Forest Street, Suite A, Charlottesville, Virginia 22903, United States
| | - Dimpal Patel
- Biotech
Group, Luna Labs USA, LLC., 706 Forest Street, Suite A, Charlottesville, Virginia 22903, United States
| | - Tammy Ferguson
- Biotech
Group, Luna Labs USA, LLC., 706 Forest Street, Suite A, Charlottesville, Virginia 22903, United States
| | - Kelsi Smith
- Biotech
Group, Luna Labs USA, LLC., 706 Forest Street, Suite A, Charlottesville, Virginia 22903, United States
| | - Dan Christy
- Systems
Group, Luna Labs USA, LLC., 706 Forest Street, Suite A, Charlottesville, Virginia 22903, United States
| | - Abigail Powers
- Emory
University School of Medicine, 101 Woodruff Circle WMB, Atlanta, Georgia 30322, United States
| | - Alicia K. Smith
- Emory
University School of Medicine, 101 Woodruff Circle WMB, Atlanta, Georgia 30322, United States
| | - Yang Xu
- Biotech
Group, Luna Labs USA, LLC., 706 Forest Street, Suite A, Charlottesville, Virginia 22903, United States
| | - Christopher K. Tison
- Biotech
Group, Luna Labs USA, LLC., 706 Forest Street, Suite A, Charlottesville, Virginia 22903, United States
| |
Collapse
|
8
|
Merrill SM, Konwar C, Fatima F, Dever K, MacIsaac JL, Letourneau N, Giesbrecht GF, Dewey D, England-Mason G, Lewis CR, Wang D, Teh AL, Meaney MJ, Gonzalez A, Noll JG, De Weerth C, Bush NR, O'Donnell KJ, Stewart SE, Kobor MS. Impact of age-related changes in buccal epithelial cells on pediatric epigenetic biomarker research. Nat Commun 2025; 16:609. [PMID: 39800776 PMCID: PMC11725590 DOI: 10.1038/s41467-025-55909-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Cheek swabs, heterogeneous samples consisting primarily of buccal epithelial cells, are widely used in pediatric DNA methylation studies and biomarker creation. However, the decrease in buccal proportion with age in adults remains unexamined in childhood. We analyzed cheek swabs from 4626 typically developing children 2-months to 20-years-old. Estimated buccal proportion declined throughout childhood with both increasing chronological and predicted epigenetic age. However, buccal proportion did not associate with age throughout adolescence. Variability in buccal proportion increased with age through the entire developmental range. These trends held inversely true for neutrophil proportions. Correcting for buccal proportion attenuated the weak association with PedBE age acceleration to non-significance during initial estimation. Notably, correcting for buccal proportion attenuated the association of PedBE age acceleration with obsessive-compulsive disorder and strengthened the association with diurnal cortisol slope. Thus, the age-related change in children's oral cells is a crucial consideration for cell type-sensitive research.
Collapse
Affiliation(s)
- Sarah M Merrill
- Department of Psychology, University of Massachusetts Lowell, Lowell, MA, USA
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Chaini Konwar
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Fizza Fatima
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Kristy Dever
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Julia L MacIsaac
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Nicole Letourneau
- Faculty of Nursing and Cumming School of Medicine, Departments of Pediatrics, Community Health Sciences and Psychiatry, University of Calgary, Calgary, AB, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Gerald F Giesbrecht
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Paediatrics and Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Deborah Dewey
- Faculty of Nursing and Cumming School of Medicine, Departments of Pediatrics, Community Health Sciences and Psychiatry, University of Calgary, Calgary, AB, Canada
- Department of Paediatrics and Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Gillian England-Mason
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Paediatrics and Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Candace R Lewis
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Dennis Wang
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Ai Ling Teh
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Michael J Meaney
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Program in Child and Brain Development, CIFAR, Toronto, ON, Canada
| | - Andrea Gonzalez
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Jennie G Noll
- Mount Hope Family Center and Department of Psychology, University of Rochester, Rochester, NY, USA
| | - Carolina De Weerth
- Donders Institute for Brain, Cognition and Behaviour and Radbound University, Nijmegen, The Netherlands
| | - Nicole R Bush
- Department of Psychiatry and Behavioral Sciences, Department of Pediatrics, University of California, Berkeley, CA, USA
| | - Kieran J O'Donnell
- Yale Child Study Center and Department of Obstetrics Gynaecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - S Evelyn Stewart
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- British Columbia Mental Health and Substance Use Services Research Institute and Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Michael S Kobor
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada.
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
- Program in Child and Brain Development, CIFAR, Toronto, ON, Canada.
- Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Vasileva F, Font-Lladó R, López-Ros V, Barretina J, Noguera-Castells A, Esteller M, López-Bermejo A, Prats-Puig A. An Integrated Neuromuscular Training Intervention Applied in Primary School Induces Epigenetic Modifications in Disease-Related Genes: A Genome-Wide DNA Methylation Study. Scand J Med Sci Sports 2025; 35:e70012. [PMID: 39757698 DOI: 10.1111/sms.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/14/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Physical exercise has been shown to induce epigenetic modifications with various health implications, directly affect DNA methylation (DNAm), as well as reverse the epigenetic age. Hence, we aimed to identify differential methylation changes and assess the epigenetic age in the saliva of 7-9-year-old school children following a 3-month integrated neuromuscular training (INT), as well as to explore if any of the methylation changes are in core genes. Core genes are defined as genes of high relevance and essential importance within the human genome. Forty children (17 boys and 23 girls) were recruited from schools in Girona, Spain, and allocated into control (N = 20) or INT (N = 20) group. The INT group performed a 3-month INT as a warm-up during the physical education (PE) classes, encompassing strength, coordination, dynamic stabilization, plyometrics, speed, and agility exercises, whereas the control group performed traditional warm-up activities, encompassing aerobic exercises that will prepare the cardiovascular system and increase the joint mobility for the upcoming effort during the class. Genome-wide DNAm analysis was performed with the Illumina 900 K microarray. Core genes were recognized based on the accomplishment of a rigorous and widely accepted 3-point criteria: participation in the enriched pathways, high connectivity (≥ 10), and target genes of key transcription factors. There were 1200 differentially methylated positions (DMPs) in the control group and 414 DMPs in the INT group (FDR < 0.05, p < 0.05, Aβ < |0.1|), suggesting a non-significant trend of epigenetic age acceleration in the control group (1.18 months, p > 0.05) and a non-significant 1-month decrease of the epigenetic age in the INT group (p > 0.05). The genes with DMPs in the control group showed low similarity between enriched pathways and low interconnectivity, encompassing distinct pathways, mostly development and growth-related. Additionally, no core genes were identified in the control group. Interestingly, the genes with DMPs in the INT group showed high similarity between enriched pathways and high interconnectivity, encompassing related pathways involving signaling mechanisms, as well as hormone and protein metabolism pathways. Moreover, 17 DMPs in the children from the INT group were in core genes. The main findings of the present study are suggesting an integrated response to the training stimulus in 7-9-year-old school children that performed a 3-month INT, including epigenetic modifications in 17 genes considered as core genes. Trial Registration: The study protocol was registered in the ISRCTN registry (ISRCTN16744821).
Collapse
Affiliation(s)
- Fidanka Vasileva
- Pediatric Endocrinology Research Group, Biomedical Research Institute of Girona, Girona, Spain
- University School of Health and Sport, University of Girona, Girona, Spain
| | - Raquel Font-Lladó
- University School of Health and Sport, University of Girona, Girona, Spain
- Faculty of Education and Psychology, University of Girona, Girona, Spain
- Research Group of Culture, Education and Human Development, Institute of Educational Research, University of Girona, Girona, Spain
- Chair of Sport and Physical Education - Centre of Olympic Studies, University of Girona, Girona, Spain
| | - Víctor López-Ros
- Faculty of Education and Psychology, University of Girona, Girona, Spain
- Research Group of Culture, Education and Human Development, Institute of Educational Research, University of Girona, Girona, Spain
| | | | - Aleix Noguera-Castells
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Department of Biosciences, Faculty of Science, Technology and Engineering, University of Vic-Central University of Catalonia, Barcelona, Spain
- Biomedical Research Centre in Cancer Network, Madrid, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Biomedical Research Centre in Cancer Network, Madrid, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, Biomedical Research Institute of Girona, Girona, Spain
- Department of Medical Sciences, University of Girona, Girona, Spain
- Pediatric Endocrinology, Dr. Josep Trueta Hospital, Girona, Spain
| | - Anna Prats-Puig
- University School of Health and Sport, University of Girona, Girona, Spain
- Research Group Health and Health Care, Nursing Department, University of Girona, Girona, Spain
| |
Collapse
|
10
|
Nance MG, Sullivan KM, Puglia MH. The impact of the early environment on oxytocin receptor epigenetics and potential therapeutic implications. Pediatr Res 2024:10.1038/s41390-024-03563-z. [PMID: 39548294 DOI: 10.1038/s41390-024-03563-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/26/2024] [Accepted: 08/14/2024] [Indexed: 11/17/2024]
Abstract
Oxytocin research is rapidly evolving and increasingly reveals that epigenetic modifications to the oxytocin receptor gene (OXTR) are functional, plastic, and reliable components of oxytocinergic system function. This review outlines how OXTR epigenetics are shaped by the early life environment, impact social-developmental outcomes, and have strong potential to serve as therapeutic targets. We first establish the malleability of OXTR epigenetics in infancy in both animal models and humans through research demonstrating the impact of the early life environment on OXTR DNA methylation (OXTRm) and subsequent social behavior. Next, we detail how OXTRm serves as a predictive mechanism for neurodevelopmental outcomes in animal models of social behavior such as the prairie vole, and summarize the role of OXTRm in psychiatric disorders, emotional processing, and attachment behavior in humans. We discuss the potential of further OXTRm research to improve oxytocin therapeutics by highlighting how a deeper knowledge of OXTRm could improve the therapeutic potential of exogenous oxytocin, how OXTRm may impact additional cellular mechanisms with therapeutic potential including control of the perinatal GABA switch, and how early life therapies may target the tuning of endogenous OXTRm. Finally, we review limitations of previous oxytocin research and make recommendations for future research. IMPACT: Previous research into oxytocin therapeutics has been hampered by methodological difficulties that may be improved by assay of the oxytocin receptor gene (OXTR) and its methylation (OXTRm) Key sites of OXTRm modification link early life exposures to developmental and behavioral outcomes OXTRm appears to have a critical period of development in early life Epigenetic modification of the oxytocin receptor gene could serve as a powerful target for therapeutic interventions.
Collapse
Affiliation(s)
- Madelyn G Nance
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Kelsey M Sullivan
- Department of Pediatrics, Division of Neonatology, University of Virginia, Charlottesville, VA, USA.
| | - Meghan H Puglia
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
11
|
Guan Z, Wang J, Liu Z, Yang C, Xu X, Wang X, Zhang G. Epigenetic Age Estimation by Detecting DNA Methylation Status in Buccal Swabs. Electrophoresis 2024; 45:2012-2018. [PMID: 39402823 DOI: 10.1002/elps.202400075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/31/2024] [Accepted: 09/19/2024] [Indexed: 12/22/2024]
Abstract
The analysis of DNA methylation (DNAm) levels at specific CpG sites represents one of the most promising molecular techniques for estimating an individual's age. To date, a considerable number of studies have reported the development of age prediction models on the basis of DNAm in body fluids, with only a few utilizing buccal swabs. The objective of this study was to identify age-dependent methylation CpG sites in three different genes (HOXC4, TRIM59, and ELOVL2) in buccal swab samples from the Chinese Han population. A total of 461 buccal swabs, with an age range of 0.4-80.8 years, were divided into a training set (n = 325) and a validation set (n = 136). Samples were analyzed by pyrosequencing in order to identify age-related genes with correlation coefficient. A random forest regression model was ultimately proposed, including eight CpGs in three genes, with a mean absolute error (MAE) of 2.119 years. The model performs independent validation set with an MAE of 4.391 years. Our findings illustrate that buccal swabs present a suitable alternative to biological traces for age prediction based on DNAm pattern using pyrosequencing and random forest regression, offering the additional advantage of being collected noninvasively.
Collapse
Affiliation(s)
- Zimeng Guan
- Department of Biotechnology, Biomedical Sciences College, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, P. R. China
| | - Jiaqi Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
| | - Zidong Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
| | - Chengwen Yang
- Weifang Public Security Bureau, Weifang, Shandong, P. R. China
| | - Xin Xu
- Weifang Public Security Bureau, Weifang, Shandong, P. R. China
| | - Xinjie Wang
- Weifang Public Security Bureau, Weifang, Shandong, P. R. China
| | - Gengqian Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
| |
Collapse
|
12
|
Karlbauer VN, Martins J, Rex-Haffner M, Sauer S, Roeh S, Dittrich K, Doerr P, Klawitter H, Entringer S, Buss C, Winter SM, Heim C, Czamara D, Binder EB. Prenatal exposures and cell type proportions are main drivers of FKBP5 DNA methylation in maltreated and non-maltreated children. Neurobiol Stress 2024; 33:100687. [PMID: 39640002 PMCID: PMC11617920 DOI: 10.1016/j.ynstr.2024.100687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
DNA methylation in peripheral tissues may be a relevant biomarker of risk for developing mental disorders after exposure to early life adversity. Genes involved in HPA axis regulation, such as FKBP5, might play a key role. In this study, we aimed to identify the main drivers of salivary FKBP5 methylation in a cohort of 162 maltreated and non-maltreated children aged 3-5 years at two measurement timepoints. We combined data from a targeted bisulfite sequencing approach for fine-mapping 49 CpGs in regulatory regions of FKBP5 and epigenetic scores for exposure to alcohol, cigarette smoke, and glucocorticoids derived from the EPICv1 microarray. Most variability of methylation in the FKBP5 locus was explained by estimated cell type proportions as well as epigenetic exposure scores, most prominently by the glucocorticoid exposure score. While not surviving correction for multiple testing, we replicated previously reported associations of FKBP5 methylation with CM. We also detected synergistic effects of both rs1360780 genotype and the glucocorticoid exposure score on FKBP5 hypomethylation. These effects were identified in the 3'TAD, a distal regulatory region of FKBP5 which is not extensively covered in Illumina arrays, emphasizing the need for fine mapping approaches. Additionally, the epigenetic glucocorticoid exposure score was associated with childhood maltreatment, maternal mental disorders, and pregnancy complications, thereby highlighting the role of glucocorticoid signaling in the epigenetic consequences of early adversity. These results underscore the need to assess cell type heterogeneity in targeted assessments of DNA methylation and show the impact of exposures beyond just childhood maltreatment such as glucocorticoid exposure.
Collapse
Affiliation(s)
- Vera N. Karlbauer
- Dept. Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität Munich, Germany
| | - Jade Martins
- Dept. Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Monika Rex-Haffner
- Dept. Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Susann Sauer
- Dept. Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Simone Roeh
- Dept. Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Katja Dittrich
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Child and Adolescent Psychiatry, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Peggy Doerr
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Child and Adolescent Psychiatry, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Heiko Klawitter
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Campus Charité Mitte, Luisenstraße 57, 10117 Berlin, Germany
| | - Sonja Entringer
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Campus Charité Mitte, Luisenstraße 57, 10117 Berlin, Germany
- Deutsches Zentrum für Psychische Gesundheit (DZPG), LMU Klinikum. Klinik für Psychiatrie und Psychotherapie, Nußbaumstr, 80336 München & Virchowweg 23, 10117 Berlin, Germany
- Development, Health and Disease Research Program, Department of Pediatrics, University of California Irvine, Irvine, USA
| | - Claudia Buss
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Campus Charité Mitte, Luisenstraße 57, 10117 Berlin, Germany
- Deutsches Zentrum für Psychische Gesundheit (DZPG), LMU Klinikum. Klinik für Psychiatrie und Psychotherapie, Nußbaumstr, 80336 München & Virchowweg 23, 10117 Berlin, Germany
- Development, Health and Disease Research Program, Department of Pediatrics, University of California Irvine, Irvine, USA
| | - Sibylle M. Winter
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Child and Adolescent Psychiatry, Augustenburger Platz 1, 13353 Berlin, Germany
- Deutsches Zentrum für Psychische Gesundheit (DZPG), LMU Klinikum. Klinik für Psychiatrie und Psychotherapie, Nußbaumstr, 80336 München & Virchowweg 23, 10117 Berlin, Germany
| | - Christine Heim
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Campus Charité Mitte, Luisenstraße 57, 10117 Berlin, Germany
- Deutsches Zentrum für Psychische Gesundheit (DZPG), LMU Klinikum. Klinik für Psychiatrie und Psychotherapie, Nußbaumstr, 80336 München & Virchowweg 23, 10117 Berlin, Germany
- Cluster of Excellence NeuroCure (EXC25), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30329, USA
| | - Darina Czamara
- Dept. Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Elisabeth B. Binder
- Dept. Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
- Deutsches Zentrum für Psychische Gesundheit (DZPG), LMU Klinikum. Klinik für Psychiatrie und Psychotherapie, Nußbaumstr, 80336 München & Virchowweg 23, 10117 Berlin, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30329, USA
| |
Collapse
|
13
|
Verhoeven JE, Wolkowitz OM, Satz IB, Conklin Q, Lamers F, Lavebratt C, Lin J, Lindqvist D, Mayer SE, Melas PA, Milaneschi Y, Picard M, Rampersaud R, Rasgon N, Ridout K, Veibäck GS, Trumpff C, Tyrka AR, Watson K, Wu GWY, Yang R, Zannas AS, Han LK, Månsson KNT. The researcher's guide to selecting biomarkers in mental health studies. Bioessays 2024; 46:e2300246. [PMID: 39258367 PMCID: PMC11811959 DOI: 10.1002/bies.202300246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 09/12/2024]
Abstract
Clinical mental health researchers may understandably struggle with how to incorporate biological assessments in clinical research. The options are numerous and are described in a vast and complex body of literature. Here we provide guidelines to assist mental health researchers seeking to include biological measures in their studies. Apart from a focus on behavioral outcomes as measured via interviews or questionnaires, we advocate for a focus on biological pathways in clinical trials and epidemiological studies that may help clarify pathophysiology and mechanisms of action, delineate biological subgroups of participants, mediate treatment effects, and inform personalized treatment strategies. With this paper we aim to bridge the gap between clinical and biological mental health research by (1) discussing the clinical relevance, measurement reliability, and feasibility of relevant peripheral biomarkers; (2) addressing five types of biological tissues, namely blood, saliva, urine, stool and hair; and (3) providing information on how to control sources of measurement variability.
Collapse
Affiliation(s)
- Josine E. Verhoeven
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
| | - Owen M. Wolkowitz
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, CA USA 94107
| | - Isaac Barr Satz
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Quinn Conklin
- Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA
- Center for Health and Community, University of California, San Francisco, San Francisco, CA 94107 USA
| | - Femke Lamers
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden
- Center for Molecular Medicine, L8:00, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94158, United States
| | - Daniel Lindqvist
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Office for Psychiatry and Habilitation, Psychiatry Research Skåne, Region Skåne, Lund, Sweden
| | - Stefanie E. Mayer
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, CA USA 94107
| | - Philippe A. Melas
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Complex Trait Genetics, Amsterdam, The Netherlands
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
- New York State Psychiatric Institute, New York, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Ryan Rampersaud
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, CA USA 94107
| | - Natalie Rasgon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kathryn Ridout
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
- Department of Psychiatry, Kaiser Permanente, Santa Rosa Medical Center, Santa Rosa, CA 95403, USA
| | - Gustav Söderberg Veibäck
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Office for Psychiatry and Habilitation, Psychiatry Research Skåne, Region Skåne, Lund, Sweden
| | - Caroline Trumpff
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
| | - Audrey R. Tyrka
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI 02885, USA
| | - Kathleen Watson
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Gwyneth Winnie Y Wu
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, CA USA 94107
| | - Ruoting Yang
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Anthony S. Zannas
- Department of Psychiatry, University of North Carolina at Chapel Hill, USA; 438 Taylor Hall, 109 Mason Farm Road, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill
| | - Laura K.M. Han
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Kristoffer N. T. Månsson
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Psychology and Psychotherapy, Babeș-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
14
|
Nonkovic N, Marceau K, McGeary JE, Ramos AM, Palmer RHC, Heath AC, Knopik VS. Maternal smoking during pregnancy is associated with DNA methylation in early adolescence: A sibling comparison design. Dev Psychol 2024; 60:1639-1654. [PMID: 38661663 PMCID: PMC11908678 DOI: 10.1037/dev0001747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Maternal smoking during pregnancy (MSDP) may impact offspring biological (e.g., deoxyribonucleic acid methylation [DNAm]) and behavioral (e.g., attention-deficit/hyperactivity disorder hyperactive/impulsive [ADHD-HI] symptoms) development. There has been consistency in findings of differential methylation in global DNAm, and the specific genes AHRR, CYP1A1, CNTNAP2, MYO1G, and GFI1 in relation to MSDP. The current study aims to (a) replicate the associations of MSDP and DNAm in prior literature in middle childhood-adolescence (cross-sectionally) using a sibling-comparison design where siblings were discordant for MSDP (n = 328 families; Mage Sibling 1 = 13.02; Sibling 2 = 10.20), adjusting for prenatal and postnatal covariates in order to isolate the MSDP exposure on DNAm. We also (b) cross-sectionally explored the role of DNAm in the most robust MSDP-ADHD associations (i.e., with ADHD-HI) previously found in this sample. We quantified smoking exposure severity for each sibling reflecting time and quantity of MSDP, centered relative to the sibling pair's average (i.e., within-family centered, indicating child-specific effects attributable MSDP exposure) and controlling for the sibling average MSDP (i.e., between-family component, indicating familial confounding related to MSDP). We found that child-specific MSDP was associated with global DNAm, and CNTNAP2, CYP1A1, and MYO1G methylation after covariate adjustment, corroborating emerging evidence for a potentially causal pathway between MSDP and DNAm. There was some evidence that child-specific CNTNAP2 and MYO1G methylation partially explained associations between MSDP and ADHD-HI symptoms, though only on one measure (of two). Future studies focused on replication of these findings in a longitudinal genetic design could further solidify the associations found in the current study. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
- Nikolina Nonkovic
- Department of Human Development and Family Science, Purdue University
| | - Kristine Marceau
- Department of Human Development and Family Science, Purdue University
| | - John E McGeary
- Department of Psychiatry and Human Behavior, Brown University
| | - Amanda M Ramos
- Department of Epidemiology, University of North Carolina at Chapel Hill
| | - Rohan H C Palmer
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University
| | - Andrew C Heath
- Department of Psychiatry, Washington University School of Medicine in St. Louis
| | - Valerie S Knopik
- Department of Human Development and Family Science, Purdue University
| |
Collapse
|
15
|
Vos S, Van den Bergh BRH, Martens DS, Bijnens E, Shkedy Z, Kindermans H, Platzer M, Schwab M, Nawrot TS. Maternal perceived stress and green spaces during pregnancy are associated with adult offspring gene (NR3C1 and IGF2/H19) methylation patterns in adulthood: A pilot study. Psychoneuroendocrinology 2024; 167:107088. [PMID: 38924829 DOI: 10.1016/j.psyneuen.2024.107088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 05/07/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Changes in NR3C1 and IGF2/H19 methylation patterns have been associated with behavioural and psychiatric outcomes. Maternal mental state has been associated with offspring NR3C1 promotor and IGF2/H19 imprinting control region (ICR) methylation patterns. However, there is a lack of prospective studies with long-term follow-up. METHODS 52 mother-offspring pairs were studied from 12 to 22 weeks of pregnancy and offspring was followed-up until 28-29 years-of-age. During pregnancy, mothers filled in a Life Event Scale and a Daily Hassles Scale measuring perceived stress; i.e., appraisal or subjectively experienced severity of impact of important life events and of daily hassles in several life domains during pregnancy, respectively. Green space was quantified around the residence, using high-resolution (1 m2) map data. Saliva and blood samples were obtained from the adult offspring. Absolute DNA methylation levels were determined in blood and saliva on four NR3C1 amplicons, and one IGF2/H19 ICR amplicon using a bisulfite PCR and sequencing method. Linear mixed effect models were used to test the associations between perceived stress and green spaces during pregnancy, and adult offspring methylation patterns. RESULTS We found associations between maternal perceived stress during pregnancy and methylation patterns on two out of the four NR3C1 amplicons, measured in blood, from offspring in adulthood, but not with IGF2/H19 methylation. For an interquartile-range (IQR) increase in maternal perceived life event or daily hassles stress scores, absolute methylation levels on several NR3C1 CpG sites were significantly changed (-1.62 % to +5.89 %, p<0.05). Maternal perceived stress scores were not associated with IGF2/H19 methylation, neither in blood nor in saliva. Maternal exposure to green spaces surrounding the residence during the pregnancy was associated with IGF2/H19 ICR methylation (-0.80 % to -1.04 %, p<0.05) in saliva, but not with NR3C1 promotor methylation. CONCLUSION We observed significant long-term effects of maternal perceived stress during pregnancy on the methylation patterns of the NR3C1 promotor in offspring well into adulthood. This may imply that maternal psychological distress during pregnancy may influence the regulation of the HPA-axis well into adulthood. Additionally, maternal proximity to green spaces was associated with IGF2/H19 ICR methylation patterns, which is a novel finding.
Collapse
Affiliation(s)
- Stijn Vos
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Bea R H Van den Bergh
- Health Psychology Research Group and Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Esmée Bijnens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Environmental Sciences, Open University, Heerlen, the Netherlands
| | - Ziv Shkedy
- Data Science Institute, Centre for Statistics, Hasselt University, Hasselt, Belgium
| | - Hanne Kindermans
- Research Group Healthcare & ethics, Hasselt University, Hasselt, Belgium
| | - Matthias Platzer
- Genome Analysis Group, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Matthias Schwab
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health & Primary Care, Occupational & Environmental Medicine, KU Leuven, Belgium
| |
Collapse
|
16
|
Spencer H, Parianen Lesemann FH, Buisman RSM, Kraaijenvanger EJ, Branje S, Boks MPM, Bos PA. Facing infant cuteness: How nurturing care motivation and oxytocin system gene methylation are associated with responses to baby schema features. Horm Behav 2024; 164:105595. [PMID: 38972246 DOI: 10.1016/j.yhbeh.2024.105595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024]
Abstract
Baby schema features are a specific set of physical features-including chubby cheeks, large, low-set eyes, and a large, round head-that have evolutionary adaptive value in their ability to trigger nurturant care. In this study among nulliparous women (N = 81; M age = 23.60, SD = 0.44), we examined how sensitivity to these baby schema features differs based on individual variations in nurturant care motivation and oxytocin system gene methylation. We integrated subjective ratings with measures of facial expressions and electroencephalography (EEG) in response to infant faces that were manipulated to contain more or less pronounced baby schema features. Linear mixed effects analyses demonstrated that infants with more pronounced baby schema features were rated as cuter and participants indicated greater motivation to take care of them. Furthermore, infants with more pronounced baby schema features elicited stronger smiling responses and enhanced P2 and LPP amplitudes compared to infants with less pronounced baby schema features. Importantly, individual differences significantly predicted baby schema effects. Specifically, women with low OXTR methylation and high nurturance motivation showed enhanced differentiation in automatic neurophysiological responses to infants with high and low levels of baby schema features. These findings highlight the importance of considering individual differences in continued research to further understand the complexities of sensitivity to child cues, including facial features, which will improve our understanding of the intricate neurobiological system that forms the basis of caregiving behavior.
Collapse
Affiliation(s)
- Hannah Spencer
- Institute of Education and Child Studies, Leiden University, Leiden, the Netherlands.
| | | | - Renate S M Buisman
- Institute of Education and Child Studies, Leiden University, Leiden, the Netherlands
| | - Eline J Kraaijenvanger
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim /Heidelberg University, Mannheim, Germany
| | - Susan Branje
- Department of Youth and Family, Utrecht University, Utrecht, the Netherlands
| | - Marco P M Boks
- Brain Centre University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Peter A Bos
- Institute of Education and Child Studies, Leiden University, Leiden, the Netherlands
| |
Collapse
|
17
|
Cuyvers B, Ein-Dor T, Houbrechts M, Freson K, Goossens L, Van Den Noortgate W, van Leeuwen K, Bijttebier P, Claes S, Turner J, Chubar V, Bakermans-Kranenburg MJ, Bosmans G. Exploring the role of OXTR gene methylation in attachment development: A longitudinal study. Dev Psychobiol 2024; 66:e22496. [PMID: 38689124 DOI: 10.1002/dev.22496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 05/02/2024]
Abstract
The current study explored longitudinally whether oxytocin receptor gene methylation (OXTRm) changes moderated the association between parental sensitivity changes and children's attachment changes over three waves. Six hundred six Flemish children (10-12 years, 42.8%-44.8% boys) completed attachment measures and provided salivary OXTRm data on seven CpG sites. Their parents reported their sensitive parenting. Results suggest that OXTRm changes hardly link to attachment (in)security changes after the age of 10. Some support was found for interaction effects between parental sensitivity changes and OXTRm changes on attachment changes over time. Effects suggest that for children with increased OXTRm in the promotor region and decreased methylation in the inhibitor region over time, increased parental sensitivity was associated with increased secure attachment and decreased insecure attachment over time.
Collapse
Affiliation(s)
- Bien Cuyvers
- Clinical Psychology, KU Leuven University, Leuven, Belgium
| | - Tsachi Ein-Dor
- Social Sciences, School of Psychology, Reichman University Herzliya, Herzliya, Israel
| | | | - Kathleen Freson
- Centre for Molecular and Vascular Biology, KU Leuven University, Leuven, Belgium
| | - Luc Goossens
- School Psychology and Development in Context, KU Leuven University, Leuven, Belgium
| | | | - Karla van Leeuwen
- Family and Educational Sciences, KU Leuven University, Leuven, Belgium
| | - Patricia Bijttebier
- School Psychology and Development in Context, KU Leuven University, Leuven, Belgium
| | - Stephan Claes
- Research Group Psychiatry, UZ Leuven-KU Leuven University, Leuven, Belgium
| | - Jonathan Turner
- Immune Endocrine Epigenetics Research Group, Luxembourg Institute of Health, Esch sur Alzette, Luxembourg, Luxembourg
| | - Viktoria Chubar
- Research Group Psychiatry, UZ Leuven-KU Leuven University, Leuven, Belgium
| | - Marian J Bakermans-Kranenburg
- William James Center for Research, ISPA University Institute of sychological, Social and Life Sciences, Lisbon, Portugal
- Centre for Attachment Research, the New School for Social Research, New York, USA
| | - Guy Bosmans
- Clinical Psychology, KU Leuven University, Leuven, Belgium
| |
Collapse
|
18
|
Solsona R, Normand‐Gravier T, Borrani F, Bernardi H, Sanchez AMJ. DNA methylation changes during a sprint interval exercise performed under normobaric hypoxia or with blood flow restriction: A pilot study in men. Physiol Rep 2024; 12:e16044. [PMID: 38849292 PMCID: PMC11161272 DOI: 10.14814/phy2.16044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 06/09/2024] Open
Abstract
This crossover study evaluated DNA methylation changes in human salivary samples following single sprint interval training sessions performed in hypoxia, with blood flow restriction (BFR), or with gravity-induced BFR. Global DNA methylation levels were evaluated with an enzyme-linked immunosorbent assay. Methylation-sensitive restriction enzymes were used to determine the percentage methylation in a part of the promoter of the gene-inducible nitric oxide synthase (p-iNOS), as well as an enhancer (e-iNOS). Global methylation increased after exercise (p < 0.001; dz = 0.50). A tendency was observed for exercise × condition interaction (p = 0.070). Post hoc analyses revealed a significant increase in global methylation between pre- (7.2 ± 2.6%) and postexercise (10.7 ± 2.1%) with BFR (p = 0.025; dz = 0.69). Methylation of p-iNOS was unchanged (p > 0.05). Conversely, the methylation of e-iNOS increased from 0.6 ± 0.4% to 0.9 ± 0.8% after exercise (p = 0.025; dz = 0.41), independently of the condition (p > 0.05). Global methylation correlated with muscle oxygenation during exercise (r = 0.37, p = 0.042), while e-iNOS methylation showed an opposite association (r = -0.60, p = 0.025). Furthermore, p-iNOS methylation was linked to heart rate (r = 0.49, p = 0.028). Hence, a single sprint interval training increases global methylation in saliva, and adding BFR tends to increase it further. Lower muscle oxygenation is associated with augmented e-iNOS methylation. Finally, increased cardiovascular strain results in increased p-iNOS methylation.
Collapse
Affiliation(s)
- Robert Solsona
- Institute of Sport SciencesUniversity of LausanneLausanneSwitzerland
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), UR 4640University of Perpignan via Domitia, Faculty of Sports SciencesFont‐RomeuFrance
| | - Tom Normand‐Gravier
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), UR 4640University of Perpignan via Domitia, Faculty of Sports SciencesFont‐RomeuFrance
- DMEM, Université de Montpellier, INRAEMontpellierFrance
| | - Fabio Borrani
- Institute of Sport SciencesUniversity of LausanneLausanneSwitzerland
| | | | - Anthony M. J. Sanchez
- Institute of Sport SciencesUniversity of LausanneLausanneSwitzerland
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), UR 4640University of Perpignan via Domitia, Faculty of Sports SciencesFont‐RomeuFrance
| |
Collapse
|
19
|
Jiang F, Li J, Yu S, Miao J, Wang W, Xi X. Body fluids biomarkers associated with prognosis of acute ischemic stroke: progress and prospects. Future Sci OA 2024; 10:FSO931. [PMID: 38817358 PMCID: PMC11137785 DOI: 10.2144/fsoa-2023-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/27/2023] [Indexed: 06/01/2024] Open
Abstract
Acute ischemic stroke (AIS) is one of the most common strokes posing a grave threat to human life and health. Predicting the prognosis of AIS allows for an understanding of disease progress, and a better quality of life by making individualized treatment scheme. In this paper, we conducted a systematic search on PubMed, focusing on the relevant literature in the last 5 years. Summarizing the candidate prognostic biomarkers of AIS in body fluids such as blood, urine, saliva and cerebrospinal fluid is often of great significance for the management of acute ischemic stroke, which has the potential to facilitate early diagnosis, treatment, prevention and long-term outcome improvement.
Collapse
Affiliation(s)
- Fengmang Jiang
- Emergency Intensive Care Unit, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, PR China
| | - Junhua Li
- Emergency Intensive Care Unit, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, PR China
| | - Simin Yu
- Emergency Intensive Care Unit, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, PR China
| | - Jinli Miao
- Biological Medicine Research & Development Center, Yangtze Delta of Zhejiang, Hangzhou, 314006, PR China
| | - Wenmin Wang
- Biological Medicine Research & Development Center, Yangtze Delta of Zhejiang, Hangzhou, 314006, PR China
| | - Xiaohong Xi
- Emergency Intensive Care Unit, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, PR China
| |
Collapse
|
20
|
Nazzari S, Grumi S, Mambretti F, Villa M, Giorda R, Bordoni M, Pansarasa O, Borgatti R, Provenzi L. Sex-dimorphic pathways in the associations between maternal trait anxiety, infant BDNF methylation, and negative emotionality. Dev Psychopathol 2024; 36:908-918. [PMID: 36855816 DOI: 10.1017/s0954579423000172] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Maternal antenatal anxiety is an emerging risk factor for child emotional development. Both sex and epigenetic mechanisms, such as DNA methylation, may contribute to the embedding of maternal distress into emotional outcomes. Here, we investigated sex-dependent patterns in the association between antenatal maternal trait anxiety, methylation of the brain-derived neurotrophic factor gene (BDNF DNAm), and infant negative emotionality (NE). Mother-infant dyads (N = 276) were recruited at delivery. Maternal trait anxiety, as a marker of antenatal chronic stress exposure, was assessed soon after delivery using the Stait-Trait Anxiety Inventory (STAI-Y). Infants' BDNF DNAm at birth was assessed in 11 CpG sites in buccal cells whereas infants' NE was assessed at 3 (N = 225) and 6 months (N = 189) using the Infant Behavior Questionnaire-Revised (IBQ-R). Hierarchical linear analyses showed that higher maternal antenatal anxiety was associated with greater 6-month-olds' NE. Furthermore, maternal antenatal anxiety predicted greater infants' BDNF DNAm in five CpG sites in males but not in females. Higher methylation at these sites was associated with greater 3-to-6-month NE increase, independently of infants' sex. Maternal antenatal anxiety emerged as a risk factor for infant's NE. BDNF DNAm might mediate this effect in males. These results may inform the development of strategies to promote mothers and infants' emotional well-being.
Collapse
Affiliation(s)
- Sarah Nazzari
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Serena Grumi
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| | - Fabiana Mambretti
- Molecular Biology Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Marco Villa
- Molecular Biology Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Roberto Giorda
- Molecular Biology Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Matteo Bordoni
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Orietta Pansarasa
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Renato Borgatti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| | - Livio Provenzi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
21
|
Creasey N, Beijers R, O'Donnell KJ, de Weerth C, Tollenaar MS. Maternal sensitivity and child internalizing and externalizing behavior: a mediating role for glucocorticoid receptor gene ( NR3C1) methylation? Dev Psychopathol 2024; 36:967-978. [PMID: 36896668 DOI: 10.1017/s0954579423000226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The early caregiving environment can have lasting effects on child mental health. Animal models suggest that glucocorticoid receptor gene (NR3C1) DNA methylation plays a mediating role in linking more responsive caregiving to improved behavioral outcomes by its impact on the stress regulatory system. In this longitudinal study, we examined whether children's NR3C1 methylation levels mediate an effect of maternal sensitivity in infancy on levels of child internalizing and externalizing behavior in a community sample. Maternal sensitivity of 145 mothers was rated at infant age 5 weeks, 12 months, and 30 months by observing mother-infant interactions. Buccal DNA methylation was assessed in the same children at age 6 years and maternal-reported internalizing and externalizing behavior was assessed at age 6 and 10 years. Higher sensitivity at age 5 weeks significantly predicted lower DNA methylation levels at two NR3C1 CpG loci, although methylation levels at these loci did not mediate an effect of maternal sensitivity on levels of child internalizing and externalizing behavior. Overall, the study provides evidence that maternal sensitivity in early infancy is associated with DNA methylation levels at loci involved in stress regulation, but the significance of this finding for child mental health remains unclear.
Collapse
Affiliation(s)
- Nicole Creasey
- Preventive Youth Care, Research Institute of Child Development and Education, University of Amsterdam, the Netherlands
| | - Roseriet Beijers
- Department of Social Development, Behavioral Science Institute, Radboud University, the Netherlands, and Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, the Netherlands
| | - Kieran J O'Donnell
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, QC, Canada; Canadian Institute for Advanced Research, Child and Brain Development Program, Canada; and Yale Child Study Center & Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, USA
| | - Carolina de Weerth
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, the Netherlands
| | - Marieke S Tollenaar
- Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, the Netherlands
| |
Collapse
|
22
|
Ingram SJ, Vazquez AY, Klump KL, Hyde LW, Burt SA, Clark SL. Associations of depression and anxiety symptoms in childhood and adolescence with epigenetic aging. J Affect Disord 2024; 352:250-258. [PMID: 38360371 PMCID: PMC11000694 DOI: 10.1016/j.jad.2024.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Childhood anxiety and depression symptoms are potential risk factors for accelerated biological aging. In child and adolescent twins, we tested whether these symptoms were associated with DNA methylation (DNAm) aging, a measure of biological aging. METHODS 276 twins (135 pairs, 6 singletons) had DNAm assayed from saliva in middle childhood (mean = 7.8 years). Residuals of five different DNAm age estimates regressed on chronological age were used to indicate accelerated aging. Anxiety and depression symptoms were assessed in middle childhood and early adolescence using the Child Behavior Checklist. Mixed effect regression was used to examine potential relationships between anxiety or depression symptoms, and accelerated DNAm age. MZ twin difference analysis was then utilized to determine if associations were environmentally-driven or due to genetic or shared-environment confounding. RESULTS Anxiety and depression symptoms were not associated with accelerated DNAm aging in middle childhood. In early adolescence, only the Wu clock was significant and indicated that each one symptom increase in anxiety symptoms had an associated age acceleration of 0.03 years (~0.4 months; p = 0.019). MZ twin difference analysis revealed non-significant within-pair effects, suggesting genetic and shared environmental influences. LIMITATIONS Sample is predominantly male and white. Generalizability to other populations may be limited. CONCLUSION Accelerated DNAm aging of the Wu clock in middle childhood is associated with anxiety, but not depression, symptoms in early adolescence. Further, this association may be the result of shared genetic and environmental influences. Accelerated DNAm aging may serve as an early risk factor or predictor of later anxiety symptoms.
Collapse
Affiliation(s)
- Sarah J Ingram
- Interdisciplinary Graduate Program in Genetics, Department of Psychiatry & Behavioral Sciences, Texas A&M University, United States of America
| | - Alexandra Y Vazquez
- Department of Psychology, Michigan State University, United States of America
| | - Kelly L Klump
- Department of Psychology, Michigan State University, United States of America
| | - Luke W Hyde
- Department of Psychology, University of Michigan, United States of America
| | - S Alexandra Burt
- Department of Psychology, Michigan State University, United States of America
| | - Shaunna L Clark
- Department of Psychiatry & Behavioral Sciences, Texas A&M University, United States of America.
| |
Collapse
|
23
|
Pantell MS, Silveira PP, de Mendonça Filho EJ, Wing H, Brown EM, Keeton VF, Pokhvisneva I, O'Donnell KJ, Neuhaus J, Hessler D, Meaney MJ, Adler NE, Gottlieb LM. Associations between Social Adversity and Biomarkers of Inflammation, Stress, and Aging in Children. Pediatr Res 2024; 95:1553-1563. [PMID: 38233512 PMCID: PMC11126389 DOI: 10.1038/s41390-023-02992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/17/2023] [Accepted: 11/11/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Prior work has found relationships between childhood social adversity and biomarkers of stress, but knowledge gaps remain. To help address these gaps, we explored associations between social adversity and biomarkers of inflammation (interleukin-1β [IL-1β], IL-6, IL-8, tumor necrosis factor-alpha [TNF-α], and salivary cytokine hierarchical "clusters" based on the three interleukins), neuroendocrine function (cortisol, cortisone, dehydroepiandrosterone, testosterone, and progesterone), neuromodulation (N-arachidonoylethanolamine, stearoylethanolamine, oleoylethanolamide, and palmitoylethanolamide), and epigenetic aging (Pediatric-Buccal-Epigenetic clock). METHODS We collected biomarker samples of children ages 0-17 recruited from an acute care pediatrics clinic and examined their associations with caregiver-endorsed education, income, social risk factors, and cumulative adversity. We calculated regression-adjusted means for each biomarker and compared associations with social factors using Wald tests. We used logistic regression to predict being in the highest cytokine cluster based on social predictors. RESULTS Our final sample included 537 children but varied based on each biomarker. Cumulative social adversity was significantly associated with having higher levels of all inflammatory markers and with cortisol, displaying a U-shaped distribution. There were no significant relationships between cumulative social adversity and cortisone, neuromodulation biomarkers or epigenetic aging. CONCLUSION Our findings support prior work suggesting that social stress exposures contribute to increased inflammation in children. IMPACT Our study is one of the largest studies examining associations between childhood social adversity and biomarkers of inflammation, neuroendocrine function, neuromodulation, and epigenetic aging. It is one of the largest studies to link childhood social adversity to biomarkers of inflammation, and the first of which we are aware to link cumulative social adversity to cytokine clusters. It is also one of the largest studies to examine associations between steroids and epigenetic aging among children, and one of the only studies of which we are aware to examine associations between social adversity and endocannabinoids among children. CLINICAL TRIAL REGISTRATION NCT02746393.
Collapse
Affiliation(s)
- Matthew S Pantell
- Division of Pediatric Hospital Medicine, Department of Pediatrics, University of California, San Francisco, CA, USA.
- Center for Health and Community, University of California, San Francisco, San Francisco, CA, USA.
- Social Interventions Research and Evaluation Network, University of California, San Francisco, CA, USA.
| | - Patricia P Silveira
- Douglas Mental Health University Institute, Douglas Research Center, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health and Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Euclides José de Mendonça Filho
- Douglas Mental Health University Institute, Douglas Research Center, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health and Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Holly Wing
- Center for Health and Community, University of California, San Francisco, San Francisco, CA, USA
- Social Interventions Research and Evaluation Network, University of California, San Francisco, CA, USA
| | | | - Victoria F Keeton
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, 490 Illinois St, Box 2930, 94143, San Francisco, CA, USA
| | - Irina Pokhvisneva
- Douglas Mental Health University Institute, Douglas Research Center, McGill University, Montreal, QC, Canada
| | - Kieran J O'Donnell
- Douglas Mental Health University Institute, Douglas Research Center, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health and Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Yale Child Study Center & Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - John Neuhaus
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Danielle Hessler
- Social Interventions Research and Evaluation Network, University of California, San Francisco, CA, USA
- Department of Family and Community Medicine, University of California, San Francisco, CA, USA
| | - Michael J Meaney
- Douglas Mental Health University Institute, Douglas Research Center, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health and Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Nancy E Adler
- Center for Health and Community, University of California, San Francisco, San Francisco, CA, USA
| | - Laura M Gottlieb
- Center for Health and Community, University of California, San Francisco, San Francisco, CA, USA
- Social Interventions Research and Evaluation Network, University of California, San Francisco, CA, USA
- Department of Family and Community Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
24
|
Marra PS, Seki T, Nishizawa Y, Chang G, Yamanishi K, Nishiguchi T, Shibata K, Braun P, Shinozaki G. Genome-wide DNA methylation analysis in female veterans with military sexual trauma and comorbid PTSD/MDD. J Affect Disord 2024; 351:624-630. [PMID: 38309478 PMCID: PMC11107447 DOI: 10.1016/j.jad.2024.01.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Military sexual trauma (MST) is a prevalent issue within the U.S. military. Victims are more likely to develop comorbid diseases such as posttraumatic stress disorder (PTSD) and major depressive disorder (MDD). Nonetheless, not everyone who suffers from MST develops PTSD and/or MDD. DNA methylation, which can regulate gene expression, might give us insight into the molecular mechanisms behind this discrepancy. Therefore, we sought to identify genomic loci and enriched biological pathways that differ between patients with and without MST, PTSD, and MDD. METHODS Saliva samples were collected from 113 female veterans. Following DNA extraction and processing, DNA methylation levels were measured through the Infinium HumanMethylationEPIC BeadChip array. We used limma and bump hunting methods to generate the differentially methylated positions and differentially methylated regions (DMRs), respectively. Concurrently, we used Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome to find enriched pathways. RESULTS A DMR close to the transcription start site of ZFP57 was differentially methylated between subjects with and without PTSD, replicating previous findings and emphasizing the potential role of ZFP57 in PTSD susceptibility. In the pathway analyses, none survived multiple correction, although top GO terms included some potentially relevant to MST, PTSD, and MDD etiology. CONCLUSION We conducted one of the first DNA methylation analyses investigating MST along with PTSD and MDD. In addition, we found one DMR near ZFP57 to be associated with PTSD. The replication of this finding indicates further investigation of ZFP57 in PTSD may be warranted.
Collapse
Affiliation(s)
- Pedro S Marra
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA; Department of Psychiatry, University of Iowa Hospitals and Clinics, Iowa City, IA, USA; University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Tomoteru Seki
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA; Department of Psychiatry, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Yoshitaka Nishizawa
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA; Department of Neuropsychiatry, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Gloria Chang
- Department of Psychiatry, University of Iowa Hospitals and Clinics, Iowa City, IA, USA; Developmental Psychology Graduate Program, Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Kyosuke Yamanishi
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA; Department of Neuropsychiatry, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Tsuyoshi Nishiguchi
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA; Department of Neuropsychiatry, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Kazuki Shibata
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA; Sumitomo Pharma Co. Ltd, Osaka, Osaka, Japan
| | - Patricia Braun
- Department of Biology, Clarke University, Dubuque, IA, USA
| | - Gen Shinozaki
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA; Department of Psychiatry, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
| |
Collapse
|
25
|
Taylor JY, Jones-Patten A, Prescott L, Potts-Thompson S, Joyce C, Tayo B, Saban K. The race-based stress reduction intervention (RiSE) study on African American women in NYC and Chicago: Design and methods for complex genomic analysis. PLoS One 2024; 19:e0295293. [PMID: 38598554 PMCID: PMC11006145 DOI: 10.1371/journal.pone.0295293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/19/2023] [Indexed: 04/12/2024] Open
Abstract
RiSE study aims to evaluate a race-based stress-reduction intervention as an effective strategy to improve coping and decrease stress-related symptoms, inflammatory burden, and modify DNA methylation of stress response-related genes in older AA women. This article will describe genomic analytic methods to be utilized in this longitudinal, randomized clinical trial of older adult AA women in Chicago and NYC that examines the effect of the RiSE intervention on DNAm pre- and post-intervention, and its overall influence on inflammatory burden. Salivary DNAm will be measured at baseline and 6 months following the intervention, using the Oragene-DNA kit. Measures of perceived stress, depressive symptoms, fatigue, sleep, inflammatory burden, and coping strategies will be assessed at 4 time points including at baseline, 4 weeks, 8 weeks, and 6 months. Genomic data analysis will include the use of pre-processed and quality-controlled methylation data expressed as beta (β) values. Association analyses will be performed to detect differentially methylated sites on the targeted candidate genes between the intervention and non-intervention groups using the Δβ (changes in methylation) with adjustment for age, health behaviors, early life adversity, hybridization batch, and top principal components of the probes as covariates. To account for multiple testing, we will use FDR adjustment with a corrected p-value of <0.05 regarded as statistically significant. To assess the relationship between inflammatory burden and Δβ among the study samples, we will repeat association analyses with the inclusion of individual inflammation protein measures. ANCOVA will be used because it is more statistically powerful to detect differences.
Collapse
Affiliation(s)
- Jacquelyn Y. Taylor
- Center for Research on People of Color, Columbia University School of Nursing, New York, New York, United States of America
| | - Alexandria Jones-Patten
- Center for Research on People of Color, Columbia University School of Nursing, New York, New York, United States of America
| | - Laura Prescott
- Center for Research on People of Color, Columbia University School of Nursing, New York, New York, United States of America
| | - Stephanie Potts-Thompson
- Center for Research on People of Color, Columbia University School of Nursing, New York, New York, United States of America
| | - Cara Joyce
- Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Bamidele Tayo
- Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Karen Saban
- Marcella Niehoff School of Nursing, Center for Translational Research and Education, Loyola University Chicago, Maywood, Illinois, United States of America
| |
Collapse
|
26
|
Zhang S, Ma B, Liu Y, Shen Y, Li D, Liu S, Song F. Predicting locus-specific DNA methylation levels in cancer and paracancer tissues. Epigenomics 2024; 16:549-570. [PMID: 38477028 PMCID: PMC11158003 DOI: 10.2217/epi-2023-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Aim: To predict base-resolution DNA methylation in cancerous and paracancerous tissues. Material & methods: We collected six cancer DNA methylation datasets from The Cancer Genome Atlas and five cancer datasets from Gene Expression Omnibus and established machine learning models using paired cancerous and paracancerous tissues. Tenfold cross-validation and independent validation were performed to demonstrate the effectiveness of the proposed method. Results: The developed cross-tissue prediction models can substantially increase the accuracy at more than 68% of CpG sites and contribute to enhancing the statistical power of differential methylation analyses. An XGBoost model leveraging multiple correlating CpGs may elevate the prediction accuracy. Conclusion: This study provides a powerful tool for DNA methylation analysis and has the potential to gain new insights into cancer research from epigenetics.
Collapse
Affiliation(s)
- Shuzheng Zhang
- School of Information Science & Technology, Dalian Maritime University, Dalian, 116026, China
| | - Baoshan Ma
- School of Information Science & Technology, Dalian Maritime University, Dalian, 116026, China
| | - Yu Liu
- School of Information Science & Technology, Dalian Maritime University, Dalian, 116026, China
| | - Yiwen Shen
- School of Information Science & Technology, Dalian Maritime University, Dalian, 116026, China
| | - Di Li
- Department of Neuro Intervention, Dalian Medical University affiliated Dalian Municipal Central Hospital, Dalian, 116033, China
| | - Shuxin Liu
- Department of Nephrology, Dalian Medical University affiliated Dalian Municipal Central Hospital, Dalian, 116033, China
| | - Fengju Song
- Department of Epidemiology & Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China
| |
Collapse
|
27
|
Ding W, Xu Y, Kondracki AJ, Sun Y. Childhood adversity and accelerated reproductive events: a systematic review and meta-analysis. Am J Obstet Gynecol 2024; 230:315-329.e31. [PMID: 37820985 DOI: 10.1016/j.ajog.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
OBJECTIVE Accelerated female reproductive events represent the early onset of reproductive events involving puberty, menarche, pregnancy loss, first sexual intercourse, first birth, parity, and menopause. This study aimed to explore the association between childhood adversity and accelerated female reproductive events. DATA SOURCES PubMed, Web of Science, and Embase were systematically searched from September 22, 2022 to September 23, 2022. STUDY ELIGIBILITY CRITERIA Observational cohort, cross-sectional, and case-control studies in human populations were included if they reported the time of reproductive events for female individuals with experience of childhood adversity and were published in English. METHODS Two reviewers independently screened studies, obtained data, and assessed study quality, and conflicts were resolved by a third reviewer. Dichotomous outcomes were evaluated using meta-analysis, and pooled odds ratios and 95% confidence intervals were generated using random-effects models. Moderation analysis and meta-regression were used to investigate heterogeneity. RESULTS In total, 21 cohort studies, 9 cross-sectional studies, and 3 case-control studies were identified. Overall, female individuals with childhood adversity were nearly 2 times more likely to report accelerated reproductive events than those with no adversity exposure (odds ratio, 1.91; 95% confidence interval, 1.33-2.76; I2=99.6%; P<.001). Moderation analysis indicated that effect sizes for the types of childhood adversity ranged from an odds ratio of 1.61 (95% confidence interval, 1.23-2.09) for low socioeconomic status to 2.13 (95% confidence interval, 1.14-3.99) for dysfunctional family dynamics. Among the 7 groups based on different reproductive events, including early onset of puberty, early menarche, early sexual initiation, teenage childbirth, preterm birth, pregnancy loss, and early menopause, early sexual initiation had a nonsignificant correlation with childhood adversity (odds ratio, 2.70; 95% confidence interval, 0.88-8.30; I2=99.9%; P<.001). Considerable heterogeneity (I2>75%) between estimates was observed for over half of the outcomes. Age, study type, and method of data collection could explain 35.9% of the variance. CONCLUSION The literature tentatively corroborates that female individuals who reported adverse events in childhood are more likely to experience accelerated reproductive events. This association is especially strong for exposure to abuse and dysfunctional family dynamics. However, the heterogeneity among studies was high, requiring caution in interpreting the findings and highlighting the need for further evaluation of the types and timing of childhood events that influence accelerated female reproductive events.
Collapse
Affiliation(s)
- Wenqin Ding
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Yuxiang Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Anthony J Kondracki
- Department of Community Medicine, Mercer University School of Medicine, Macon, GA
| | - Ying Sun
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China.
| |
Collapse
|
28
|
Donmez HG, Celik HT, Kayki G, Tanacan A, Cagan M, Yigit S, Yurdakok M, Cakar AN, Beksac MS. Impact of Prematurity on the Buccal Epithelial Cells of the Neonates via Wnt/Beta-Catenin Signaling Pathway and Apoptosis. Am J Perinatol 2024; 41:445-451. [PMID: 34891194 DOI: 10.1055/s-0041-1740348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Understanding the reflections of prematurity is necessary for the management of neonatal complications. We focused on the impact of prematurity and related "maternal risk factors/obstetric complications" on buccal cells of the neonates via evaluation of the Wnt/β-catenin signaling pathway and apoptosis. STUDY DESIGN This study consisted of "early preterm neonates (EPN) (≤34th gestational week [gw]) (n = 36)," "late preterm neonates (LPN) (34th- < 37th gw) (n = 46)," and "term neonates (control) (≥37th gw) (n = 56)." Cohort was also subclassified according to the presence of maternal risk factors, obstetric complications, and neonatal complications. Wnt/β-catenin signaling and caspase-3 activation pathways were studied immunocytochemically. RESULTS Wnt/β-catenin signaling positivity was statistically more frequent at buccal smears of the EPN and LPN groups compared with controls (p < 0.001). The cutoff for gestational age at delivery in receiver operating characteristic curve with the best balance of sensitivity (67.4%) and specificity (67.3%) was 35.8th gw for determining the reduction of Wnt/β-catenin signaling positivity (p < 0.001). The study demonstrated that obstetric complications significantly affected the activity of signaling, while maternal risk factors do not have any effect on Wnt/β-catenin signaling pathway (p = 0.003 and p = 0.828, respectively). This study also demonstrated a significant relationship between Wnt/β-catenin signaling pathway and the presence of neonatal complications (p = 0.015). CONCLUSION Dynamic characteristics of buccal cells are influenced by prematurity and related obstetric and neonatal problems. Buccal smear is a good tool to investigate the impact of prematurity and obstetric problems on perinatal outcome. KEY POINTS · Neonatal buccal cells are affected by prematurity and related obstetric/neonatal problems.. · 35.8th gw is critical for determining the reduction of Wnt/β-catenin signaling positivity.. · Obstetric and neonatal complications significantly related to Wnt/β-catenin signaling activity..
Collapse
Affiliation(s)
- Hanife Guler Donmez
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Hasan Tolga Celik
- Division of Neonatology, Department of Pediatrics, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Gozdem Kayki
- Division of Neonatology, Department of Pediatrics, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Atakan Tanacan
- Division of Perinatology, Department of Obstetrics and Gynecology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Department of Obstetrics and Gynecology, Turkish Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Murat Cagan
- Division of Perinatology, Department of Obstetrics and Gynecology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Sule Yigit
- Division of Neonatology, Department of Pediatrics, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Murat Yurdakok
- Division of Neonatology, Department of Pediatrics, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Ayse Nur Cakar
- Department of Histology, Faculty of Medicine, TOBB University, Ankara, Turkey
| | - Mehmet Sinan Beksac
- Division of Perinatology, Department of Obstetrics and Gynecology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
29
|
Marson F, Zampieri M, Verdone L, Bacalini MG, Ravaioli F, Morandi L, Chiarella SG, Vetriani V, Venditti S, Caserta M, Raffone A, Dotan Ben-Soussan T, Reale A. Quadrato Motor Training (QMT) is associated with DNA methylation changes at DNA repeats: A pilot study. PLoS One 2023; 18:e0293199. [PMID: 37878626 PMCID: PMC10599555 DOI: 10.1371/journal.pone.0293199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023] Open
Abstract
The control of non-coding repeated DNA by DNA methylation plays an important role in genomic stability, contributing to health and healthy aging. Mind-body practices can elicit psychophysical wellbeing via epigenetic mechanisms, including DNA methylation. However, in this context the effects of movement meditations have rarely been examined. Consequently, the current study investigates the effects of a specifically structured movement meditation, called the Quadrato Motor Training (QMT) on psychophysical wellbeing and on the methylation level of repeated sequences. An 8-week daily QMT program was administered to healthy women aged 40-60 years and compared with a passive control group matched for gender and age. Psychological well-being was assessed within both groups by using self-reporting scales, including the Meaning in Life Questionnaire [MLQ] and Psychological Wellbeing Scale [PWB]). DNA methylation profiles of repeated sequences (ribosomal DNA, LINE-1 and Alu) were determined in saliva samples by deep-sequencing. In contrast to controls, the QMT group exhibited increased Search for Meaning, decreased Presence of Meaning and increased Positive Relations, suggesting that QMT may lessen the automatic patterns of thinking. In the QMT group, we also found site-specific significant methylation variations in ribosomal DNA and LINE-1 repeats, consistent with increased genome stability. Finally, the correlations found between changes in methylation and psychometric indices (MLQ and PWB) suggest that the observed epigenetic and psychological changes are interrelated. Collectively, the current results indicate that QMT may improve psychophysical health trajectories by influencing the DNA methylation of specific repetitive sequences.
Collapse
Affiliation(s)
- Fabio Marson
- Research Institute for Neuroscience, Education and Didactics, Fondazione Patrizio Paoletti, Assisi, Italy
- Neuroimaging Laboratory, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Michele Zampieri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Loredana Verdone
- CNR Institute of Molecular Biology and Pathology, National Council of Research (CNR), Rome, Italy
| | - Maria Giulia Bacalini
- Brain Aging Laboratory, IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Francesco Ravaioli
- Dep. of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Luca Morandi
- Dep. of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Salvatore Gaetano Chiarella
- Institute of Sciences and Technologies of Cognition (ISTC), National Council of Research (CNR), Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Valerio Vetriani
- Dept. of Biology and biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Sabrina Venditti
- Dept. of Biology and biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Micaela Caserta
- CNR Institute of Molecular Biology and Pathology, National Council of Research (CNR), Rome, Italy
| | - Antonino Raffone
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Tal Dotan Ben-Soussan
- Research Institute for Neuroscience, Education and Didactics, Fondazione Patrizio Paoletti, Assisi, Italy
| | - Anna Reale
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
30
|
Mastrotheodoros S, Boks MP, Rousseau C, Meeus W, Branje S. Negative parenting, epigenetic age, and psychological problems: prospective associations from adolescence to young adulthood. J Child Psychol Psychiatry 2023; 64:1446-1461. [PMID: 37203368 DOI: 10.1111/jcpp.13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Epigenetic clocks are based on DNA methylation levels of several genomic loci and have been developed as indices of biological aging. Studies examining the effects of stressful environmental exposures have shown that stress is associated with differences between epigenetic age and chronological age (i.e., Epigenetic Age acceleration, EA). This pre-registered longitudinal study examined the long-term effects of negative parenting and psychological problems throughout adolescence (ages 13-17 years) on EA in late adolescence (age 17 years) and EA changes from late adolescence to young adulthood (age 25 years). Further, it examined how (change in) EA is related to changes in psychological problems from adolescence to young adulthood. METHODS We used data from a sample of 434 participants followed from age 13 to age 25, with saliva collected at ages 17 and 25. We estimated EA using four commonly used epigenetic clocks and analyzed the data using Structural Equation Modeling. RESULTS While negative parenting was not related to EA nor change in EA, (change in) EA was related to developmental indices such as externalizing problems and self-concept clarity. CONCLUSIONS Declining psychological well-being during young adulthood was preceded by EA.
Collapse
Affiliation(s)
- Stefanos Mastrotheodoros
- Department of Youth and Family, Utrecht University, Utrecht, The Netherlands
- Department of Psychology, University of Crete, Rethymno, Greece
| | - Marco P Boks
- Department of Psychiatry, Brain Center University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Céline Rousseau
- Department of Psychiatry, Brain Center University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Wim Meeus
- Department of Youth and Family, Utrecht University, Utrecht, The Netherlands
| | - Susan Branje
- Department of Youth and Family, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
31
|
Sullivan ADW, Bozack AK, Cardenas A, Comer JS, Bagner DM, Forehand R, Parent J. Parenting Practices May Buffer the Impact of Adversity on Epigenetic Age Acceleration Among Young Children With Developmental Delays. Psychol Sci 2023; 34:1173-1185. [PMID: 37733001 PMCID: PMC10626625 DOI: 10.1177/09567976231194221] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/26/2023] [Indexed: 09/22/2023] Open
Abstract
This study examined whether children exposed to adversity would exhibit lower epigenetic age acceleration in the context of improved parenting. Children with developmental delays and externalizing behavior problems (N = 62; Mage = 36.26 months; 70.97% boys, 29.03% girls; 71% Latinx, 22.6% Black) were drawn from a larger randomized controlled trial (RCT), which randomized them to receive Internet-delivered parent-child interaction therapy (iPCIT; n = 30) or community referrals as usual (RAU; n = 32). Epigenetic age acceleration was estimated with the pediatric buccal epigenetic clock, using saliva. Adversity was assessed using parent, family, and neighborhood-level cumulative-risk indicators. Adversity interacted with Time 2 (T2) observations of positive and negative-parenting practices to predict epigenetic age acceleration 1.5 years later, regardless of treatment assignment. Children exposed to more adversity displayed lower epigenetic age acceleration when parents evidenced increased positive (b = -0.15, p = .001) and decreased negative (b = -0.12, p = .01) parenting practices.
Collapse
Affiliation(s)
- Alexandra D. W. Sullivan
- Department of Psychological Science, University of Vermont
- Department of Psychiatry, Center for Health and Community, University of California, San Francisco
| | - Anne K. Bozack
- Department of Epidemiology and Population Health, School of Medicine, Stanford University
| | - Andres Cardenas
- Department of Epidemiology and Population Health, School of Medicine, Stanford University
- Department of Pediatrics, School of Medicine, Stanford University
| | - Jonathan S. Comer
- Department of Psychology and Center for Children and Families, Florida International University
| | - Daniel M. Bagner
- Department of Psychology and Center for Children and Families, Florida International University
| | - Rex Forehand
- Department of Psychological Science, University of Vermont
| | - Justin Parent
- Bradley-Hasbro Children’s Research Center, E. P. Bradley Hospital, Providence, RI
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University
| |
Collapse
|
32
|
Sumalde AAM, Yang IV, Yarza TKL, Tobias-Grasso CAM, Tantoco MLC, Davidson E, Chan AL, Azamian MS, Cruz TLG, Lalani SR, Reyes-Quintos MRT, Cutiongco-de la Paz EM, Santos-Cortez RLP, Chiong CM. Lack of Methylation Changes in GJB2 and RB1 Non-coding Regions of Cochlear Implant Patients with Sensorineural Hearing Loss. ACTA MEDICA PHILIPPINA 2023; 57:116-120. [PMID: 37990697 PMCID: PMC10662870 DOI: 10.47895/amp.v57i9.5200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Objective Recent advances in epigenetic studies continue to reveal novel mechanisms of gene regulation and control, however little is known on the role of epigenetics in sensorineural hearing loss (SNHL) in humans. We aimed to investigate the methylation patterns of two regions, one in RB1 and another in GJB2 in Filipino patients with SNHL compared to hearing control individuals. Methods We investigated an RB1 promoter region that was previously identified as differentially methylated in children with SNHL and lead exposure. Additionally, we investigated a sequence in an enhancer-like region within GJB2 that contains four CpGs in close proximity. Bisulfite conversion was performed on salivary DNA samples from 15 children with SNHL and 45 unrelated ethnically-matched individuals. We then performed methylation-specific real-time PCR analysis (qMSP) using TaqMan® probes to determine percentage methylation of the two regions. Results Using qMSP, both our cases and controls had zero methylation at the targeted GJB2 and RB1 regions. Conclusion Our study showed no changes in methylation at the selected CpG regions in RB1 and GJB2 in the two comparison groups with or without SNHL. This may be due to a lack of environmental exposures to these target regions. Other epigenetic marks may be present around these regions as well as those of other HL-associated genes.
Collapse
Affiliation(s)
- Angelo Augusto M. Sumalde
- College of Medicine, University of the Philippines Manila, Manila, Philippines
- Department of Otolaryngology – Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus (CU-AMC), Aurora, Colorado, USA
- Department of Otolaryngology-Head and Neck Surgery, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Ivana V. Yang
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus (CU-AMC), Aurora, Colorado, USA
| | - Talitha Karisse L. Yarza
- Philippine National Ear Institute, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
- Newborn Hearing Screening Reference Center, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | | | - Ma. Leah C. Tantoco
- Department of Otolaryngology-Head and Neck Surgery, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
- Philippine National Ear Institute, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
- Newborn Hearing Screening Reference Center, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | - Elizabeth Davidson
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus (CU-AMC), Aurora, Colorado, USA
| | - Abner L. Chan
- College of Medicine, University of the Philippines Manila, Manila, Philippines
- Department of Otolaryngology-Head and Neck Surgery, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Mahshid S. Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Teresa Luisa G. Cruz
- College of Medicine, University of the Philippines Manila, Manila, Philippines
- Department of Otolaryngology-Head and Neck Surgery, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Seema R. Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Maria Rina T. Reyes-Quintos
- Department of Otolaryngology-Head and Neck Surgery, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
- Philippine National Ear Institute, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
- Newborn Hearing Screening Reference Center, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | - Eva Maria Cutiongco-de la Paz
- National Institutes of Health, University of the Philippines Manila, Manila, Philippines
- Philippine Genome Center, UP Diliman Campus, Quezon City, Philippines
| | - Regie Lyn P. Santos-Cortez
- Department of Otolaryngology – Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus (CU-AMC), Aurora, Colorado, USA
| | - Charlotte M. Chiong
- College of Medicine, University of the Philippines Manila, Manila, Philippines
- Department of Otolaryngology-Head and Neck Surgery, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
- Philippine National Ear Institute, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
- Newborn Hearing Screening Reference Center, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| |
Collapse
|
33
|
Eichenauer H, Ehlert U. The association between prenatal famine, DNA methylation and mental disorders: a systematic review and meta-analysis. Clin Epigenetics 2023; 15:152. [PMID: 37716973 PMCID: PMC10505322 DOI: 10.1186/s13148-023-01557-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/14/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Undernutrition in pregnant women is an unfavorable environmental condition that can affect the intrauterine development via epigenetic mechanisms and thus have long-lasting detrimental consequences for the mental health of the offspring later in life. One epigenetic mechanism that has been associated with mental disorders and undernutrition is alterations in DNA methylation. The effect of prenatal undernutrition on the mental health of adult offspring can be analyzed through quasi-experimental studies such as famine studies. The present systematic review and meta-analysis aims to analyze the association between prenatal famine exposure, DNA methylation, and mental disorders in adult offspring. We further investigate whether altered DNA methylation as a result of prenatal famine exposure is prospectively linked to mental disorders. METHODS We conducted a systematic search of the databases PubMed and PsycINFO to identify relevant records up to September 2022 on offspring whose mothers experienced famine directly before and/or during pregnancy, examining the impact of prenatal famine exposure on the offspring's DNA methylation and/or mental disorders or symptoms. RESULTS The systematic review showed that adults who were prenatally exposed to famine had an increased risk of schizophrenia and depression. Several studies reported an association between prenatal famine exposure and hyper- or hypomethylation of specific genes. The largest number of studies reported differences in DNA methylation of the IGF2 gene. Altered DNA methylation of the DUSP22 gene mediated the association between prenatal famine exposure and schizophrenia in adult offspring. Meta-analysis confirmed the increased risk of schizophrenia following prenatal famine exposure. For DNA methylation, meta-analysis was not suitable due to different microarrays/data processing approaches and/or unavailable data. CONCLUSION Prenatal famine exposure is associated with an increased risk of mental disorders and DNA methylation changes. The findings suggest that changes in DNA methylation of genes involved in neuronal, neuroendocrine, and immune processes may be a mechanism that promotes the development of mental disorders such as schizophrenia and depression in adult offspring. Such findings are crucial given that undernutrition has risen worldwide, increasing the risk of famine and thus also of negative effects on mental health.
Collapse
Affiliation(s)
- Heike Eichenauer
- Clinical Psychology and Psychotherapy, University of Zurich, Binzmühlestrasse 14, 8050, Zurich, Switzerland
| | - Ulrike Ehlert
- Clinical Psychology and Psychotherapy, University of Zurich, Binzmühlestrasse 14, 8050, Zurich, Switzerland.
| |
Collapse
|
34
|
Zhang ZZ, Moeckel C, Mustafa M, Pham H, Olson AE, Mehta D, Dorn LD, Engeland CG, Shenk CE. The association of epigenetic age acceleration and depressive and anxiety symptom severity among children recently exposed to substantiated maltreatment. J Psychiatr Res 2023; 165:7-13. [PMID: 37441927 PMCID: PMC10529086 DOI: 10.1016/j.jpsychires.2023.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
Child maltreatment is a major risk factor for both depressive and anxiety disorders. However, many children exposed to maltreatment never meet diagnostic threshold for either disorder while experiencing only transitory symptoms post-exposure. Recent research suggests DNA methylation adds predictive value in explaining variation in the onset and course of multiple psychiatric disorders following exposure to child maltreatment. Epigenetic age acceleration (EAA), the biological aging of cells not attributable to chronological aging, is a stress-sensitive biomarker capturing genome-wide variation in DNA methylation with the potential to identify children who have been maltreated at greatest risk for depressive and anxiety disorders. The current study examined two EAA clocks appropriate for the pediatric population, the Horvath and Pediatric Buccal Epigenetic (PedBE) clocks, and their associations with depressive and anxiety symptom severity following child maltreatment. Children (N = 71) 8-15 years of age, all of whom were exposed to substantiated child maltreatment in the 12 months prior to study entry, were enrolled. Risk modeling adjusting for several confounders revealed that EAA estimated via the Horvath clock was significantly associated with more severe depressive and anxiety symptoms. The PedBE clock was not associated with either depressive or anxiety symptom severity. Sensitivity analyses demonstrated that EAA via the Horvath clock robustly predicted depressive and anxiety symptom severity across multiple modeling scenarios. Our findings advance existing research suggesting EAA, as estimated with the Horvath clock, may be a promising biomarker for identifying children at greatest risk for more severe depressive and anxiety symptoms following maltreatment.
Collapse
Affiliation(s)
- Zhenyu Z Zhang
- Department of Psychology, The Pennsylvania State University, University Park, PA, USA.
| | - Camille Moeckel
- The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Manal Mustafa
- The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Hung Pham
- The Child Study Center, Yale University, New Haven, CT, USA.
| | - Anneke E Olson
- Department of Human Development and Family Studies, The Pennsylvania State University, University Park, PA, USA.
| | - Divya Mehta
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia; School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Lorah D Dorn
- Ross and Carol Nese College of Nursing, The Pennsylvania State University, University Park, PA, USA.
| | - Christopher G Engeland
- Ross and Carol Nese College of Nursing, The Pennsylvania State University, University Park, PA, USA; Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA.
| | - Chad E Shenk
- The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Human Development and Family Studies, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
35
|
Theron D, Hopkins LN, Sutherland HG, Griffiths LR, Fernandez F. Can Genetic Markers Predict the Sporadic Form of Alzheimer's Disease? An Updated Review on Genetic Peripheral Markers. Int J Mol Sci 2023; 24:13480. [PMID: 37686283 PMCID: PMC10488021 DOI: 10.3390/ijms241713480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia that affects millions of individuals worldwide. Although the research over the last decades has provided new insight into AD pathophysiology, there is currently no cure for the disease. AD is often only diagnosed once the symptoms have become prominent, particularly in the late-onset (sporadic) form of AD. Consequently, it is essential to further new avenues for early diagnosis. With recent advances in genomic analysis and a lower cost of use, the exploration of genetic markers alongside RNA molecules can offer a key avenue for early diagnosis. We have here provided a brief overview of potential genetic markers differentially expressed in peripheral tissues in AD cases compared to controls, as well as considering the changes to the dynamics of RNA molecules. By integrating both genotype and RNA changes reported in AD, biomarker profiling can be key for developing reliable AD diagnostic tools.
Collapse
Affiliation(s)
- Danelda Theron
- School of Behavioural and Health Sciences, Faculty of Heath Sciences, Australian Catholic University, Banyo, QLD 4014, Australia;
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Lloyd N. Hopkins
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Heidi G. Sutherland
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Lyn R. Griffiths
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Francesca Fernandez
- School of Behavioural and Health Sciences, Faculty of Heath Sciences, Australian Catholic University, Banyo, QLD 4014, Australia;
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| |
Collapse
|
36
|
Yuan M, Yang B, Rothschild G, Mann JJ, Sanford LD, Tang X, Huang C, Wang C, Zhang W. Epigenetic regulation in major depression and other stress-related disorders: molecular mechanisms, clinical relevance and therapeutic potential. Signal Transduct Target Ther 2023; 8:309. [PMID: 37644009 PMCID: PMC10465587 DOI: 10.1038/s41392-023-01519-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/14/2023] [Accepted: 05/31/2023] [Indexed: 08/31/2023] Open
Abstract
Major depressive disorder (MDD) is a chronic, generally episodic and debilitating disease that affects an estimated 300 million people worldwide, but its pathogenesis is poorly understood. The heritability estimate of MDD is 30-40%, suggesting that genetics alone do not account for most of the risk of major depression. Another factor known to associate with MDD involves environmental stressors such as childhood adversity and recent life stress. Recent studies have emerged to show that the biological impact of environmental factors in MDD and other stress-related disorders is mediated by a variety of epigenetic modifications. These epigenetic modification alterations contribute to abnormal neuroendocrine responses, neuroplasticity impairment, neurotransmission and neuroglia dysfunction, which are involved in the pathophysiology of MDD. Furthermore, epigenetic marks have been associated with the diagnosis and treatment of MDD. The evaluation of epigenetic modifications holds promise for further understanding of the heterogeneous etiology and complex phenotypes of MDD, and may identify new therapeutic targets. Here, we review preclinical and clinical epigenetic findings, including DNA methylation, histone modification, noncoding RNA, RNA modification, and chromatin remodeling factor in MDD. In addition, we elaborate on the contribution of these epigenetic mechanisms to the pathological trait variability in depression and discuss how such mechanisms can be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Biao Yang
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gerson Rothschild
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - J John Mann
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Radiology, Columbia University, New York, NY, 10032, USA
| | - Larry D Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuang Wang
- Department of Pharmacology, and Provincial Key Laboratory of Pathophysiology in School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Medical Big Data Center, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
37
|
Fang F, Andersen AM, Philibert R, Hancock DB. Epigenetic biomarkers for smoking cessation. ADDICTION NEUROSCIENCE 2023; 6:100079. [PMID: 37123087 PMCID: PMC10136056 DOI: 10.1016/j.addicn.2023.100079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cigarette smoking has been associated with epigenetic alterations that may be reversible upon cessation. As the most-studied epigenetic modification, DNA methylation is strongly associated with smoking exposure, providing a potential mechanism that links smoking to adverse health outcomes. Here, we reviewed the reversibility of DNA methylation in accessible peripheral tissues, mainly blood, in relation to cigarette smoking cessation and the utility of DNA methylation as a biomarker signature to differentiate current, former, and never smokers and to quantify time since cessation. We summarized thousands of differentially methylated Cytosine-Guanine (CpG) dinucleotides and regions associated with smoking cessation from candidate gene and epigenome-wide association studies, as well as the prediction accuracy of the multi-CpG predictors for smoking status. Overall, there is robust evidence for DNA methylation signature of cigarette smoking cessation. However, there are still gaps to fill, including (1) cell-type heterogeneity in measuring blood DNA methylation; (2) underrepresentation of non-European ancestry populations; (3) limited longitudinal data to quantitatively measure DNA methylation after smoking cessation over time; and (4) limited data to study the impact of smoking cessation on other epigenetic features, noncoding RNAs, and histone modifications. Epigenetic machinery provides promising biomarkers that can improve success in smoking cessation in the clinical setting. To achieve this goal, larger and more-diverse samples with longitudinal measures of a broader spectrum of epigenetic marks will be essential to developing a robust DNA methylation biomarker assay, followed by meeting validation requirements for the assay before being implemented as a clinically useful tool.
Collapse
Affiliation(s)
- Fang Fang
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, 3040 East Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC 27709, USA
| | - Allan M. Andersen
- Department of Psychiatry, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Robert Philibert
- Department of Psychiatry, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
- Behavioral Diagnostics LLC, 2500 Crosspark Rd, Coralville, IA 52241, USA
- Department of Biomedical Engineering, 5601 Seamans Center for the Engineering Arts and Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Dana B. Hancock
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, 3040 East Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC 27709, USA
| |
Collapse
|
38
|
Holdsworth EA, Schell LM, Appleton AA. Maternal-infant interaction quality is associated with child NR3C1 CpG site methylation at 7 years of age. Am J Hum Biol 2023; 35:e23876. [PMID: 36779373 PMCID: PMC10909417 DOI: 10.1002/ajhb.23876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 02/14/2023] Open
Abstract
OBJECTIVE Infancy is both a critical window for hypothalamic-pituitary-adrenal (HPA) axis development, and a sensitive period for social-emotional influences. We hypothesized that the social-emotional quality of maternal-infant interactions are associated with methylation of HPA-axis gene NR3C1 later in childhood. METHODS Using a subsample of 114 mother-infant pairs from the Avon Longitudinal Study of Parents and Children (ALSPAC), linear regression models were created to predict variance in methylation of seven selected CpG sites from NR3C1 in whole blood at age 7 years, including the main predictor variable of the first principal component score of observed maternal-infant interaction quality (derived from the Thorpe Interaction Measure at 12 months of age) and covariates of cell-type proportion, maternal financial difficulties and marital status at 8 months postnatal, child birthweight, and sex. RESULTS CpG site cg27122725 methylation was negatively associated with warmer, more positive maternal interaction with her infant (β = 0.19, p = .02, q = 0.13). In sensitivity analyses, the second highest quartile of maternal behavior (neutral, hesitant behavior) was positively associated with cg12466613 methylation. The other five CpG sites were not significantly associated with maternal-infant interaction quality. CONCLUSIONS Narrow individual variation of maternal interaction with her infant is associated with childhood methylation of two CpG sites on NR3C1 that may be particularly sensitive to environmental influences. Infancy may be a sensitive period for even small influences from the social-emotional environment on the epigenetic determinants of HPA-axis function.
Collapse
Affiliation(s)
- Elizabeth A. Holdsworth
- Department of AnthropologyWashington State UniversityPullmanWashingtonUSA
- Department of AnthropologyUniversity at Albany State University of New YorkAlbanyNew YorkUSA
| | - Lawrence M. Schell
- Department of AnthropologyUniversity at Albany State University of New YorkAlbanyNew YorkUSA
- Department of Epidemiology & BiostatisticsUniversity at Albany State University of New YorkRensselaerNew YorkUSA
| | - Allison A. Appleton
- Department of Epidemiology & BiostatisticsUniversity at Albany State University of New YorkRensselaerNew YorkUSA
| |
Collapse
|
39
|
Sumner JA, Gao X, Gambazza S, Dye CK, Colich NL, Baccarelli AA, Uddin M, McLaughlin KA. Stressful life events and accelerated biological aging over time in youths. Psychoneuroendocrinology 2023; 151:106058. [PMID: 36827906 PMCID: PMC10364461 DOI: 10.1016/j.psyneuen.2023.106058] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/20/2023]
Abstract
Experiencing adversity in childhood and adolescence, including stressful life events (SLEs), may accelerate the pace of development, leading to adverse mental and physical health. However, most research on adverse early experiences and biological aging (BA) in youths relies on cross-sectional designs. In 171 youths followed for approximately 2 years, we examined if SLEs over follow-up predicted rate of change in two BA metrics: epigenetic age and Tanner stage. We also investigated if rate of change in BA was associated with changes in depressive symptoms over time. Youths aged 8-16 years at baseline self-reported Tanner stage and depressive symptoms at baseline and follow-up and provided saliva samples for DNA at both assessments. Horvath epigenetic age estimates were derived from DNA methylation data measured with the Illumina EPIC array. At follow-up, contextual threat interviews were administered to youths and caregivers to assess youths' experiences of past-year SLEs. Interviews were objectively coded by an independent rating team to generate a SLE impact score, reflecting the severity of all SLEs occurring over the prior year. Rate of change in BA metrics was operationalized as change in epigenetic age or Tanner stage as a function of time between assessments. Higher objective SLE impact scores over follow-up were related to a greater rate of change in epigenetic age (β = 0.21, p = .043). Additionally, among youths with lower-but not higher-Tanner stage at baseline, there was a positive association of SLE impact scores with rate of change in Tanner stage (Baseline Tanner Stage × SLE Impact Score interaction: β = - 0.21, p = .011). A greater rate of change in epigenetic age was also associated with higher depressive symptom levels at follow-up, adjusting for baseline symptoms (β = 0.15, p = .043). Associations with epigenetic age were similar, although slightly attenuated, when adjusting for epithelial (buccal) cell proportions. Whereas much research in youths has focused on severe experiences of early adversity, we demonstrate that more commonly experienced SLEs during adolescence may also contribute to accelerated BA. Further research is needed to understand the long-term consequences of changes in BA metrics for health.
Collapse
Affiliation(s)
- Jennifer A Sumner
- Department of Psychology, University of California, Los Angeles, Psychology Building 1285, Box 951563, Los Angeles, CA 90095, USA.
| | - Xu Gao
- Department of Occupational and Environmental Health Sciences, Peking University, Xueyuan Rd. 38, Haidian District, Beijing, China; Department of Environmental Health Sciences, Columbia Mailman School of Public Health, 722 W. 168th Street, New York, NY 10032, USA
| | - Simone Gambazza
- Department of Clinical Sciences and Community Health, University of Milan, via Celoria 22, 20133 Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Healthcare Professions Department, via Francesco Sforza, 35, 20122 Milan, Italy
| | - Christian K Dye
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, 722 W. 168th Street, New York, NY 10032, USA
| | - Natalie L Colich
- Department of Psychology, Harvard University, William James Hall, 1270, 33 Kirkland Street, Cambridge, MA 02138, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, 722 W. 168th Street, New York, NY 10032, USA
| | - Monica Uddin
- Genomics Program, University of South Florida, College of Public Health, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA
| | - Katie A McLaughlin
- Department of Psychology, Harvard University, William James Hall, 1270, 33 Kirkland Street, Cambridge, MA 02138, USA
| |
Collapse
|
40
|
Carpentieri V, Lambacher G, Troianiello M, Pucci M, Di Pietro D, Laviola G, D'Addario C, Pascale E, Adriani W. Methylation Dynamics on 5'-UTR of DAT1 Gene as a Bio-Marker to Recognize Therapy Success in ADHD Children. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10030584. [PMID: 36980142 PMCID: PMC10046904 DOI: 10.3390/children10030584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD), a neuropsychiatric condition characterized by inattention, hyperactivity, and impulsivity, afflicts 5% of children worldwide. Each ADHD patient presents with individual cognitive and motivational peculiarities. Furthermore, choice of appropriate therapy is still up to clinicians, who express somewhat qualitative advice on whether a child is being successfully cured or not: it would be more appropriate to use an objective biomarker to indicate whether a treatment led to benefits or not. The aim of our work is to search for such clinical biomarkers. We recruited 60 ADHD kids; psychopathological scales were administered at recruitment and after six weeks of therapy. Out of such a cohort of ADHD children, we rigorously extracted two specific subgroups; regardless of the initial severity of their disease, we compared those who obtained the largest improvement (ΔCGAS > 5) vs. those who were still characterized by a severe condition (CGAS < 40). After such a therapy, methylation levels of DNA extracted from buccal swabs were measured in the 5'-UTR of the DAT1 gene. CpGs 3 and 5 displayed, in relation to the other CpGs, a particular symmetrical pattern; for "improving" ADHD children, they were methylated together with CpG 2 and CpG 6; instead, for "severe" ADHD children, they accompanied a methylated CpG 1. These specific patterns of methylation could be used as objective molecular biomarkers of successful cures, establishing if a certain therapy is akin to a given patient (personalized medicine). Present data support the use of post-therapy molecular data obtained with non-invasive techniques.
Collapse
Affiliation(s)
- Valentina Carpentieri
- Center for Behavioral Science and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | - Miriam Troianiello
- Servizio Tutela Salute Mentale e Riabilitazione in Età Evolutiva, A.S.L. Roma 6, 00044 Frascati, Italy
| | - Mariangela Pucci
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Diana Di Pietro
- Servizio Tutela Salute Mentale e Riabilitazione in Età Evolutiva, A.S.L. Roma 6, 00044 Frascati, Italy
| | - Giovanni Laviola
- Center for Behavioral Science and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Esterina Pascale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Walter Adriani
- Center for Behavioral Science and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
- Faculty of Psychology, Uninettuno University, 00186 Rome, Italy
| |
Collapse
|
41
|
Mendonça MS, Mangiavacchi PM, Mendes AV, Loureiro SR, Martín-Santos R, Glória LS, Marques W, De Marco SPG, Kanashiro MM, Hallak JEC, Crippa JAS, Rios ÁFL. DNA methylation in regulatory elements of the FKBP5 and NR3C1 gene in mother-child binomials with depression. J Affect Disord 2023; 331:287-299. [PMID: 36933666 DOI: 10.1016/j.jad.2023.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/24/2023] [Accepted: 03/11/2023] [Indexed: 03/20/2023]
Abstract
BACKGROUND The FKBP5 and NR3C1 genes play an important role in stress response, thus impacting mental health. Stress factor exposure in early life, such as maternal depression, may contribute to epigenetic modifications in stress response genes, increasing the susceptibility to different psychopathologies. The present study aimed to evaluate the DNA methylation profile in maternal-infant depression in regulatory regions of the FKBP5 gene and the alternative promoter of the NR3C1 gene. METHODS We evaluated 60 mother-infant pairs. The levels of DNA methylation were analyzed by the MSRED-qPCR technique. RESULTS We observed an increased DNA methylation profile in the NR3C1 gene promoter in children with depression and children exposed to maternal depression (p < 0.05). In addition, we observed a correlation of DNA methylation between mothers and offspring exposed to maternal depression. This correlation shows a possible intergenerational effect of maternal MDD exposure on the offspring. For FKBP5, we found a decrease in DNA methylation at intron 7 in children exposed to maternal MDD during pregnancy and a correlation of DNA methylation between mothers and children exposed to maternal MDD (p < 0.05). LIMITATIONS Although the individuals of this study are a rare group, the sample size of the study was small, and we evaluated the DNA methylation of only one CpG site for each region. CONCLUSION These results indicate changes in DNA methylation levels in regulatory regions of FKBP5 and NR3C1 in the mother-child MDD context and represent a potential target of studies to understand the depression etiology and how it occurs between generations.
Collapse
Affiliation(s)
- Mariana S Mendonça
- Laboratory of Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil
| | - Paula M Mangiavacchi
- Laboratory of Reproduction and Animal Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil
| | - Ana V Mendes
- Department of Neurosciences and Behavioral Sciences, USP, Ribeirão Preto, São Paulo 14051-140, Brazil
| | - Sonia R Loureiro
- Department of Neurosciences and Behavioral Sciences, USP, Ribeirão Preto, São Paulo 14051-140, Brazil
| | - Rocio Martín-Santos
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina Translational Medicine (INCT-TM), National Council for Scientific and Technological Development, São Paulo, Brazil; Department of Psychiatry and Psychology, Hospital Clínic, Institut d' Investigacions Biomedicas August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Instituto de Neurociencias, University of Barcelona, Barcelona 08036, Spain
| | - Leonardo S Glória
- Laboratory of Animal Science, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil
| | - Wilson Marques
- Department of Neurosciences and Behavioral Sciences, USP, Ribeirão Preto, São Paulo 14051-140, Brazil
| | - Silmara P G De Marco
- Department of Neurosciences and Behavioral Sciences, USP, Ribeirão Preto, São Paulo 14051-140, Brazil
| | - Milton M Kanashiro
- Laboratory of Recognition Biology, North Fluminense State University (UENF), Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil
| | - Jaime E C Hallak
- Department of Neurosciences and Behavioral Sciences, USP, Ribeirão Preto, São Paulo 14051-140, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina Translational Medicine (INCT-TM), National Council for Scientific and Technological Development, São Paulo, Brazil
| | - José A S Crippa
- Department of Neurosciences and Behavioral Sciences, USP, Ribeirão Preto, São Paulo 14051-140, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina Translational Medicine (INCT-TM), National Council for Scientific and Technological Development, São Paulo, Brazil
| | - Álvaro F L Rios
- Laboratory of Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil.
| |
Collapse
|
42
|
Nishitani S, Isozaki M, Yao A, Higashino Y, Yamauchi T, Kidoguchi M, Kawajiri S, Tsunetoshi K, Neish H, Imoto H, Arishima H, Kodera T, Fujisawa TX, Nomura S, Kikuta K, Shinozaki G, Tomoda A. Cross-tissue correlations of genome-wide DNA methylation in Japanese live human brain and blood, saliva, and buccal epithelial tissues. Transl Psychiatry 2023; 13:72. [PMID: 36843037 PMCID: PMC9968710 DOI: 10.1038/s41398-023-02370-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/28/2023] Open
Abstract
Neuroepigenetics considers genetic sequences and the interplay with environmental influences to elucidate vulnerability risk for various neurological and psychiatric disorders. However, evaluating DNA methylation of brain tissue is challenging owing to the issue of tissue specificity. Consequently, peripheral surrogate tissues were used, resulting in limited progress compared with other epigenetic studies, such as cancer research. Therefore, we developed databases to establish correlations between the brain and peripheral tissues in the same individuals. Four tissues, resected brain tissue, blood, saliva, and buccal mucosa (buccal), were collected from 19 patients (aged 13-73 years) who underwent neurosurgery. Moreover, their genome-wide DNA methylation was assessed using the Infinium HumanMethylationEPIC BeadChip arrays to determine the cross-tissue correlation of each combination. These correlation analyses were conducted with all methylation sites and with variable CpGs, and with when these were adjusted for cellular proportions. For the averaged data for each CpG across individuals, the saliva-brain correlation (r = 0.90) was higher than that for blood-brain (r = 0.87) and buccal-brain (r = 0.88) comparisons. Among individual CpGs, blood had the highest proportion of CpGs correlated to the brain at nominally significant levels (19.0%), followed by saliva (14.4%) and buccal (9.8%). These results were similar to the previous IMAGE-CpG results; however, cross-database correlations of the correlation coefficients revealed a relatively low (brain vs. blood: r = 0.27, saliva: r = 0.18, and buccal: r = 0.24). To the best of our knowledge, this is the fifth study in the literature initiating the development of databases for correlations between the brain and peripheral tissues in the same individuals. We present the first database developed from an Asian population, specifically Japanese samples (AMAZE-CpG), which would contribute to interpreting individual epigenetic study results from various Asian populations.
Collapse
Affiliation(s)
- Shota Nishitani
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan.
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan.
- Life Science Innovation Center, School of Medical Sciences, University of Fukui, Fukui, Japan.
| | - Makoto Isozaki
- Department of Neurosurgery, University of Fukui, Fukui, Japan
| | - Akiko Yao
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan
| | | | | | | | | | | | - Hiroyuki Neish
- Department of Neurosurgery, University of Fukui, Fukui, Japan
- Department of Neurosurgery, Sugita Genpaku Memorial Obama Municipal Hospital, Obama, Japan
| | - Hirochika Imoto
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | | | - Toshiaki Kodera
- Department of Neurosurgery, University of Fukui, Fukui, Japan
| | - Takashi X Fujisawa
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan
- Life Science Innovation Center, School of Medical Sciences, University of Fukui, Fukui, Japan
| | - Sadahiro Nomura
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | | | - Gen Shinozaki
- Stanford University School of Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, USA
| | - Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan.
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan.
- Life Science Innovation Center, School of Medical Sciences, University of Fukui, Fukui, Japan.
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan.
| |
Collapse
|
43
|
Sathyanarayanan A, Mueller TT, Ali Moni M, Schueler K, Baune BT, Lio P, Mehta D, Baune BT, Dierssen M, Ebert B, Fabbri C, Fusar-Poli P, Gennarelli M, Harmer C, Howes OD, Janzing JGE, Lio P, Maron E, Mehta D, Minelli A, Nonell L, Pisanu C, Potier MC, Rybakowski F, Serretti A, Squassina A, Stacey D, van Westrhenen R, Xicota L. Multi-omics data integration methods and their applications in psychiatric disorders. Eur Neuropsychopharmacol 2023; 69:26-46. [PMID: 36706689 DOI: 10.1016/j.euroneuro.2023.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/22/2022] [Accepted: 01/02/2023] [Indexed: 01/27/2023]
Abstract
To study mental illness and health, in the past researchers have often broken down their complexity into individual subsystems (e.g., genomics, transcriptomics, proteomics, clinical data) and explored the components independently. Technological advancements and decreasing costs of high throughput sequencing has led to an unprecedented increase in data generation. Furthermore, over the years it has become increasingly clear that these subsystems do not act in isolation but instead interact with each other to drive mental illness and health. Consequently, individual subsystems are now analysed jointly to promote a holistic understanding of the underlying biological complexity of health and disease. Complementing the increasing data availability, current research is geared towards developing novel methods that can efficiently combine the information rich multi-omics data to discover biologically meaningful biomarkers for diagnosis, treatment, and prognosis. However, clinical translation of the research is still challenging. In this review, we summarise conventional and state-of-the-art statistical and machine learning approaches for discovery of biomarker, diagnosis, as well as outcome and treatment response prediction through integrating multi-omics and clinical data. In addition, we describe the role of biological model systems and in silico multi-omics model designs in clinical translation of psychiatric research from bench to bedside. Finally, we discuss the current challenges and explore the application of multi-omics integration in future psychiatric research. The review provides a structured overview and latest updates in the field of multi-omics in psychiatry.
Collapse
Affiliation(s)
- Anita Sathyanarayanan
- Queensland University of Technology, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Kelvin Grove, Queensland 4059, Australia
| | - Tamara T Mueller
- Institute for Artificial Intelligence and Informatics in Medicine, TU Munich, 80333 Munich, Germany
| | - Mohammad Ali Moni
- Artificial Intelligence and Digital Health Data Science, School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Katja Schueler
- Clinic for Psychosomatics, Hospital zum Heiligen Geist, Frankfurt am Main, Germany; Frankfurt Psychoanalytic Institute, Frankfurt am Main, Germany
| | - Bernhard T Baune
- Department of Psychiatry and Psychotherapy, University of Münster, Germany; Department of Psychiatry, Melbourne Medical School, University of Melbourne, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Australia
| | - Pietro Lio
- Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom
| | - Divya Mehta
- Queensland University of Technology, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Kelvin Grove, Queensland 4059, Australia.
| | | | - Bernhard T Baune
- Department of Psychiatry and Psychotherapy, University of Münster, Germany; Department of Psychiatry, Melbourne Medical School, University of Melbourne, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Australia
| | - Mara Dierssen
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Bjarke Ebert
- Medical Strategy & Communication, H. Lundbeck A/S, Valby, Denmark
| | - Chiara Fabbri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Paolo Fusar-Poli
- Early Psychosis: Intervention and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, King's College London, United Kingdom; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia; Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Psychiatric Imaging, Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | | | - Pietro Lio
- Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom
| | - Eduard Maron
- Department of Psychiatry, University of Tartu, Tartu, Estonia; Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, London, United Kingdom; Documental Ltd, Tallin, Estonia; West Tallinn Central Hospital, Tallinn, Estonia
| | - Divya Mehta
- Queensland University of Technology, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Kelvin Grove, Queensland 4059, Australia
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, University of Brescia; Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Lara Nonell
- MARGenomics, IMIM (Hospital del Mar Research Institute), Barcelona, Spain
| | - Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | | | - Filip Rybakowski
- Department of Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - David Stacey
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Roos van Westrhenen
- Parnassia Psychiatric Institute, Amsterdam, the Netherlands; Department of Psychiatry and Neuropsychology, Faculty of Health and Sciences, Maastricht University, Maastricht, the Netherlands; Institute of Psychiatry, Psychology & Neuroscience (IoPPN) King's College London, United Kingdom
| | - Laura Xicota
- Paris Brain Institute ICM, Salpetriere Hospital, Paris, France
| |
Collapse
|
44
|
Epigenetic differences in stress response gene FKBP5 among children with abusive vs accidental injuries. Pediatr Res 2023:10.1038/s41390-022-02441-w. [PMID: 36624283 DOI: 10.1038/s41390-022-02441-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/08/2022] [Accepted: 12/01/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Survivors of child abuse experience high rates of adverse physical and mental health outcomes. Epigenetic alterations in the stress response system, the FKBP5 gene specifically, have been implicated as one mechanism that may link abuse to lifelong health issues. Prior studies primarily included older individuals with a remote history of maltreatment; our objective was to test for differential methylation of FKBP5 in children with abusive vs accidental injuries at the time of diagnosis. METHODS We conducted a cross-sectional pilot study of acutely injured children <4 years old at two children's hospitals (n = 82). Research personnel collected injury histories, buccal swabs (n = 65), and blood samples (n = 25) to measure DNA methylation. An expert panel classified the injuries as abusive, accidental, or indeterminate. RESULTS Children with abusive as compared to accidental injuries had lower methylation of the FKBP5 promoter in buccal and blood cells, even after controlling for injury severity, socioeconomic status, and psychosocial risk factors. CONCLUSION These findings suggest that epigenetic variation in FKBP5 may occur at the earliest indication of abuse and may be associated with delayed resolution of the HPA axis stress response. Additional testing for epigenetic differences in larger sample sizes is needed to further verify these findings. IMPACT Children (<4 years old) with abusive compared to accidental injuries showed lower methylation of the FKBP5 promoter in buccal and blood cells at the time of initial diagnosis even after controlling for injury severity, socioeconomic status, and psychosocial risk factors. Early childhood physical abuse may impact the epigenetic regulation of the stress response system, including demethylation within promoters and enhancers of the FKBP5 gene, even at the earliest indication of abuse. The findings are important because unmitigated stress is associated with adverse health outcomes throughout the life-course.
Collapse
|
45
|
Wiley KS, Camilo C, Gouveia G, Euclydes V, Panter-Brick C, Matijasevich A, Ferraro AA, Fracolli LA, Chiesa AM, Miguel EC, Polanczyk GV, Brentani H. Maternal distress, DNA methylation, and fetal programing of stress physiology in Brazilian mother-infant pairs. Dev Psychobiol 2023; 65:e22352. [PMID: 36567654 PMCID: PMC9792831 DOI: 10.1002/dev.22352] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/12/2022] [Accepted: 10/31/2022] [Indexed: 12/14/2022]
Abstract
Maternal prenatal psychosocial stress is associated with adverse hypothalamic-pituitary-adrenal axis (HPAA) function among infants. Although the biological mechanisms influencing this process remain unknown, altered DNA methylation is considered to be one potential mechanism. We investigated associations between maternal prenatal psychological distress, infant salivary DNA methylation, and stress physiology at 12 months. Mother's distress was measured via depression and anxiety in early and late pregnancy in a cohort of 80 pregnant adolescents. Maternal hair cortisol was collected during pregnancy. Saliva samples were collected from infants at 12 months to quantify DNA methylation of three stress-related genes (FKBP5, NR3C1, OXTR) (n = 62) and diurnal cortisol (n = 29). Multivariable linear regression was used to test for associations between prenatal psychological distress, and infant DNA methylation and cortisol. Hair cortisol concentrations in late pregnancy were negatively associated with two sites of FKBP5 (site 1: B = -22.33, p = .003; site 2: B = -15.60, p = .012). Infants of mothers with elevated anxiety symptoms in late pregnancy had lower levels of OXTR2 CpG2 methylation (B = -2.17, p = .03) and higher evening salivary cortisol (B = 0.41, p = .03). Furthermore, OXTR2 methylation was inversely associated with evening cortisol (B = -0.14, p-value ≤ .001). Our results are, to our knowledge, the first evidence that the methylation of the oxytocin receptor may contribute to the regulation of HPAA during infancy.
Collapse
Affiliation(s)
- Kyle S. Wiley
- Department of Anthropology, University of California, Los Angeles, Los Angeles, California, USA
| | - Caroline Camilo
- Departamento de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Gisele Gouveia
- Departamento de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Verônica Euclydes
- Departamento de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Alicia Matijasevich
- Departamento de Medicina Preventiva, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Alexandre Archanjo Ferraro
- Departamento de Pediatria, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Lislaine Aparecida Fracolli
- Departamento de Enfermagem Em Saúde Coletiva da Escola de Enfermagem, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Anna Maria Chiesa
- Departamento de Enfermagem Em Saúde Coletiva da Escola de Enfermagem, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Euripedes Constantino Miguel
- Departamento de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Guilherme V. Polanczyk
- Departamento de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Helena Brentani
- Departamento de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
46
|
Odintsova VV, Hagenbeek FA, van der Laan CM, van de Weijer S, Boomsma DI. Genetics and epigenetics of human aggression. HANDBOOK OF CLINICAL NEUROLOGY 2023; 197:13-44. [PMID: 37633706 DOI: 10.1016/b978-0-12-821375-9.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
There is substantial variation between humans in aggressive behavior, with its biological etiology and molecular genetic basis mostly unknown. This review chapter offers an overview of genomic and omics studies revealing the genetic contribution to aggression and first insights into associations with epigenetic and other omics (e.g., metabolomics) profiles. We allowed for a broad phenotype definition including studies on "aggression," "aggressive behavior," or "aggression-related traits," "antisocial behavior," "conduct disorder," and "oppositional defiant disorder." Heritability estimates based on family and twin studies in children and adults of this broadly defined phenotype of aggression are around 50%, with relatively small fluctuations around this estimate. Next, we review the genome-wide association studies (GWAS) which search for associations with alleles and also allow for gene-based tests and epigenome-wide association studies (EWAS) which seek to identify associations with differently methylated regions across the genome. Both GWAS and EWAS allow for construction of Polygenic and DNA methylation scores at an individual level. Currently, these predict a small percentage of variance in aggression. We expect that increases in sample size will lead to additional discoveries in GWAS and EWAS, and that multiomics approaches will lead to a more comprehensive understanding of the molecular underpinnings of aggression.
Collapse
Affiliation(s)
- Veronika V Odintsova
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Amsterdam Reproduction and Development (AR&D) Research Institute, Amsterdam, The Netherlands; Mental Health Division, Amsterdam Public Health (APH) Research Institute, Amsterdam, The Netherlands
| | - Fiona A Hagenbeek
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Mental Health Division, Amsterdam Public Health (APH) Research Institute, Amsterdam, The Netherlands
| | - Camiel M van der Laan
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Netherlands Institute for the Study of Crime and Law Enforcement (NSCR), Amsterdam, The Netherlands
| | - Steve van de Weijer
- Netherlands Institute for the Study of Crime and Law Enforcement (NSCR), Amsterdam, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Amsterdam Reproduction and Development (AR&D) Research Institute, Amsterdam, The Netherlands.
| |
Collapse
|
47
|
Chalfun G, Araújo Brasil AD, Paravidino VB, Soares-Lima SC, Souza Almeida Lopes MD, Santos Salú MD, Barbosa E Dos Santos PV, P da Cunha Trompiere AC, Vieira Milone LT, Rodrigues-Santos G, Genuíno de Oliveira MB, Robaina JR, Lima-Setta F, Reis MM, Ledo Alves da Cunha AJ, Prata-Barbosa A, de Magalhães-Barbosa MC. NR3C1 gene methylation and cortisol levels in preterm and healthy full-term infants in the first 3 months of life. Epigenomics 2022; 14:1545-1561. [PMID: 36861354 DOI: 10.2217/epi-2022-0444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Aim: To describe NR3C1 exon-1F methylation and cortisol levels in newborns. Materials & methods: Preterm ≤1500 g and full-term infants were included. Samples were collected at birth and at days 5, 30 and 90 (or at discharge). Results: 46 preterm and 49 full-term infants were included. Methylation was stable over time in full-term infants (p = 0.3116) but decreased in preterm infants (p = 0.0241). Preterm infants had higher cortisol levels on the fifth day, while full-term infants showed increasing levels (p = 0.0177) over time. Conclusion: Hypermethylated sites in NR3C1 at birth and higher cortisol levels on day 5 suggest that prematurity, reflecting prenatal stress, affects the epigenome. Methylation decrease over time in preterm infants suggests that postnatal factors may modify the epigenome, but their role needs to be clarified.
Collapse
Affiliation(s)
- Georgia Chalfun
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, 22281-100, Brazil
- Department of Neonatology, Maternity School, Federal University of Rio de Janeiro (UFRJ), RJ, 22240-000, Brazil
| | - Aline de Araújo Brasil
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, 22281-100, Brazil
| | - Vitor Barreto Paravidino
- Department of Epidemiology, Institute of Social Medicine, University of the State of Rio de Janeiro (UERJ), 20550-013, Brazil
- Department of Physical Education & Sports, Naval Academy, Brazilian Navy, Rio de Janeiro, RJ, 20021-010, Brazil
| | - Sheila Coelho Soares-Lima
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rio de Janeiro, RJ, 20230-130, Brazil
| | | | - Margarida Dos Santos Salú
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, 22281-100, Brazil
| | | | | | - Leo Travassos Vieira Milone
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, 22281-100, Brazil
| | - Gustavo Rodrigues-Santos
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, 22281-100, Brazil
| | | | - Jaqueline Rodrigues Robaina
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, 22281-100, Brazil
| | - Fernanda Lima-Setta
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, 22281-100, Brazil
| | - Marcelo Martins Reis
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, 22281-100, Brazil
| | - Antônio José Ledo Alves da Cunha
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, 22281-100, Brazil
- Postgraduate Program in Perinatal Health, Maternity School, Federal University of Rio de Janeiro (UFRJ), RJ, 22240-000, Brazil
| | - Arnaldo Prata-Barbosa
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, 22281-100, Brazil
- Postgraduate Program in Perinatal Health, Maternity School, Federal University of Rio de Janeiro (UFRJ), RJ, 22240-000, Brazil
| | | |
Collapse
|
48
|
Cecil CAM, Nigg JT. Epigenetics and ADHD: Reflections on Current Knowledge, Research Priorities and Translational Potential. Mol Diagn Ther 2022; 26:581-606. [PMID: 35933504 PMCID: PMC7613776 DOI: 10.1007/s40291-022-00609-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 12/30/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common and debilitating neurodevelopmental disorder influenced by both genetic and environmental factors, typically identified in the school-age years but hypothesized to have developmental origins beginning in utero. To improve current strategies for prediction, prevention and treatment, a central challenge is to delineate how, at a molecular level, genetic and environmental influences jointly shape ADHD risk, phenotypic presentation, and developmental course. Epigenetic processes that regulate gene expression, such as DNA methylation, have emerged as a promising molecular system in the search for both biomarkers and mechanisms to address this challenge. In this Current Opinion, we discuss the relevance of epigenetics (specifically DNA methylation) for ADHD research and clinical practice, starting with the current state of knowledge, what challenges we have yet to overcome, and what the future may hold in terms of methylation-based applications for personalized medicine in ADHD. We conclude that the field of epigenetics and ADHD is promising but is still in its infancy, and the potential for transformative translational applications remains a distant goal. Nevertheless, rapid methodological advances, together with the rise of collaborative science and increased availability of high-quality, longitudinal data make this a thriving research area that in future may contribute to the development of new tools for improved prediction, management, and treatment of ADHD.
Collapse
Affiliation(s)
- Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia, Rotterdam, The Netherlands.
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands.
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.
| | - Joel T Nigg
- Division of Psychology, Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
49
|
Lussier AA, Zhu Y, Smith BJ, Simpkin AJ, Smith AD, Suderman MJ, Walton E, Ressler KJ, Dunn EC. Updates to data versions and analytic methods influence the reproducibility of results from epigenome-wide association studies. Epigenetics 2022; 17:1373-1388. [PMID: 35156895 PMCID: PMC9601563 DOI: 10.1080/15592294.2022.2028072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/02/2021] [Accepted: 01/04/2022] [Indexed: 11/03/2022] Open
Abstract
Biomedical research has grown increasingly cooperative through the sharing of consortia-level epigenetic data. Since consortia preprocess data prior to distribution, new processing pipelines can lead to different versions of the same dataset. Similarly, analytic frameworks evolve to incorporate cutting-edge methods and best practices. However, it remains unknown how different data and analytic versions alter the results of epigenome-wide analyses, which could influence the replicability of epigenetic associations. Thus, we assessed the impact of these changes using data from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. We analysed DNA methylation from two data versions, processed using separate preprocessing and analytic pipelines, examining associations between seven childhood adversities or prenatal smoking exposure and DNA methylation at age 7. We performed two sets of analyses: (1) epigenome-wide association studies (EWAS); (2) Structured Life Course Modelling Approach (SLCMA), a two-stage method that models time-dependent effects. SLCMA results were also compared across two analytic versions. Data version changes impacted both EWAS and SLCMA analyses, yielding different associations at conventional p-value thresholds. However, the magnitude and direction of associations was generally consistent between data versions, regardless of p-values. Differences were especially apparent in analyses of childhood adversity, while smoking associations were more consistent using significance thresholds. SLCMA analytic versions similarly altered top associations, but time-dependent effects remained concordant. Alterations to data and analytic versions influenced the results of epigenome-wide analyses. Our findings highlight that magnitude and direction are better measures for replication and stability than p-value thresholds.
Collapse
Affiliation(s)
- Alexandre A. Lussier
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Yiwen Zhu
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brooke J. Smith
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew J. Simpkin
- School of Mathematics,Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
| | - Andrew D.A.C. Smith
- Mathematics and Statistics Research Group, University of the West of England, Bristol, UK
| | - Matthew J. Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, UK
| | - Kerry J. Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Erin C. Dunn
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center on the Developing Child, Harvard University, Cambridge, MA, USA
| |
Collapse
|
50
|
Sommerer Y, Ohlei O, Dobricic V, Oakley DH, Wesse T, Sedghpour Sabet S, Demuth I, Franke A, Hyman BT, Lill CM, Bertram L. A correlation map of genome-wide DNA methylation patterns between paired human brain and buccal samples. Clin Epigenetics 2022; 14:139. [PMID: 36320053 PMCID: PMC9628033 DOI: 10.1186/s13148-022-01357-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Epigenome-wide association studies (EWAS) assessing the link between DNA methylation (DNAm) and phenotypes related to structural brain measures, cognitive function, and neurodegenerative diseases are becoming increasingly more popular. Due to the inaccessibility of brain tissue in humans, several studies use peripheral tissues such as blood, buccal swabs, and saliva as surrogates. To aid the functional interpretation of EWAS findings in such settings, there is a need to assess the correlation of DNAm variability across tissues in the same individuals. In this study, we performed a correlation analysis between DNAm data of a total of n = 120 matched post-mortem buccal and prefrontal cortex samples. We identified nearly 25,000 (3% of approximately 730,000) cytosine-phosphate-guanine (CpG) sites showing significant (false discovery rate q < 0.05) correlations between buccal and PFC samples. Correlated CpG sites showed a preponderance to being located in promoter regions and showed a significant enrichment of being determined by genetic factors, i.e. methylation quantitative trait loci (mQTL), based on buccal and dorsolateral prefrontal cortex mQTL databases. Our novel buccal-brain DNAm correlation map will provide a valuable resource for future EWAS using buccal samples for studying DNAm effects on phenotypes relating to the brain. All correlation results are made freely available to the public online.
Collapse
Affiliation(s)
- Yasmine Sommerer
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, Haus V50, 1St Floor, Room 319, 23562, Lübeck, Germany
| | - Olena Ohlei
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, Haus V50, 1St Floor, Room 319, 23562, Lübeck, Germany
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, Haus V50, 1St Floor, Room 319, 23562, Lübeck, Germany
| | - Derek H Oakley
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Tanja Wesse
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sanaz Sedghpour Sabet
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Ilja Demuth
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Division of Lipid Metabolism, Department of Endocrinology and Metabolic Diseases, Berlin Institute of Health, Berlin, Germany
- BCRT - Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Christina M Lill
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, Haus V50, 1St Floor, Room 319, 23562, Lübeck, Germany
- Ageing Epidemiology Unit (AGE), School of Public Health, Imperial College London, London, UK
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, Haus V50, 1St Floor, Room 319, 23562, Lübeck, Germany.
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition (LCBC), University of Oslo, Oslo, Norway.
| |
Collapse
|