1
|
Song S, Wang J, Ouyang X, Huang R, Wang F, Xie J, Chen Q, Hu D. Therapeutic connections between pyroptosis and paclitaxel in anti-tumor effects: an updated review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04036-8. [PMID: 40257490 DOI: 10.1007/s00210-025-04036-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/06/2025] [Indexed: 04/22/2025]
Abstract
As a form of inflammation-associated cell death, pyroptosis has gained widespread attention in recent years. Accumulating evidence indicates that pyroptosis regulates tumor growth and is associated with autoimmune disorders and inflammatory response. Paclitaxel, a traditional Chinese medicine, usually induces death of cancer cells as a chemotherapeutic agent. Previous studies have revealed that paclitaxel can exert an anti-tumor effect through a variety of cell death mechanisms, of which pyroptosis plays a pivotal role in inhibiting tumor growth and enhancing anti-tumor immunity. In this review, we summarize the current advances in therapeutic connections between pyroptosis and paclitaxel in anti-tumor effects.
Collapse
Affiliation(s)
- Shuxin Song
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingbo Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Renyin Huang
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Wang
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junke Xie
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qianyun Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- China-Russia Medical Research Center for Stress Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
2
|
Spadafora L, Quarta R, Martino G, Romano L, Greco F, Curcio A, Gori T, Spaccarotella C, Indolfi C, Polimeni A. From Mechanisms to Management: Tackling In-Stent Restenosis in the Drug-Eluting Stent Era. Curr Cardiol Rep 2025; 27:53. [PMID: 39932602 DOI: 10.1007/s11886-025-02193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2025] [Indexed: 02/14/2025]
Abstract
PURPOSE OF REVIEW Drug-eluting stent (DES) technology has greatly enhanced the safety and effectiveness of percutaneous coronary interventions (PCI). The aim of the present paper is to provide a comprehensive review of in-stent restenosis (ISR), focusing on the contemporary DES era, including its incidence, mechanisms, and imaging characterization. RECENT FINDINGS Despite the widespread use of DES and numerous improvements, recent clinical data indicate that ISR still occurs in 5-10% of PCI procedures, posing a considerable public health issue. The incidence, morphology, and clinical implications of ISR are determined by a complex interplay of several factors: the patient, stent, procedure, and vessel and lesion-related factors. Advancements in intracoronary imaging have provided greater insight into its patterns and underlying causes. Over time, treatment strategies have evolved, and current guidelines recommend an individualized approach using intracoronary imaging to characterize ISR's underlying substrate.
Collapse
Affiliation(s)
- Luigi Spadafora
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.
| | - Rossella Quarta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
- Division of Cardiology, Annunziata Hospital, 87100, Cosenza, Italy
| | - Giovanni Martino
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Letizia Romano
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
- Division of Cardiology, Annunziata Hospital, 87100, Cosenza, Italy
| | - Francesco Greco
- Division of Interventional Cardiology, Annunziata Hospital, 87100, Cosenza, Italy
| | - Antonio Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
- Division of Cardiology, Annunziata Hospital, 87100, Cosenza, Italy
| | - Tommaso Gori
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
- Zentrum Für Kardiologie, Kardiologie I, University Medical Center Mainz and DZHK Standort Rhein-Main, Mainz, Germany
| | - Carmen Spaccarotella
- Division of Cardiology, Department of Advanced Biomedical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Ciro Indolfi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Alberto Polimeni
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
- Division of Interventional Cardiology, Annunziata Hospital, 87100, Cosenza, Italy
| |
Collapse
|
3
|
Chaves SR, Rego A, Santos-Pereira C, Sousa MJ, Côrte-Real M. Current and novel approaches in yeast cell death research. Cell Death Differ 2025; 32:207-218. [PMID: 38714881 PMCID: PMC11802841 DOI: 10.1038/s41418-024-01298-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/27/2024] [Accepted: 04/16/2024] [Indexed: 02/08/2025] Open
Abstract
The study of cell death mechanisms in fungi, particularly yeasts, has gained substantial interest in recent decades driven by the potential for biotechnological advancements and therapeutic interventions. Examples include the development of robust yeast strains for industrial fermentations and high-value compound production, novel food preservation strategies against spoilage yeasts, and the identification of targets for treating fungal infections in the clinic. In this review, we discuss a wide range of methods to characterize cellular alterations associated with yeast cell death, noting the advantages and limitations. We describe assays to monitor reversible events versus those that mark a commitment to cell death (point-of-no-return), as these distinctions are important to decipher the underlying regulatory mechanisms. Several well-known challenges remain, including the varied susceptibilities to death within a cell population and the delineation of detailed cell death mechanisms. The identification and characterization of morphologically distinct subsets of dying yeast cells within dynamic yeast populations provides opportunities to reveal novel vulnerabilities and survival mechanisms. Elucidating the intricacies of yeast regulated cell death (yRCD) will contribute to the advancement of scientific knowledge and foster breakthrough discoveries with broad-ranging implications.
Collapse
Affiliation(s)
- Susana R Chaves
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal.
| | - António Rego
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| | - Cátia Santos-Pereira
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| | - Maria João Sousa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Manuela Côrte-Real
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal.
| |
Collapse
|
4
|
Bushiri Pwesombo D, Beese C, Schmied C, Sun H. Semisupervised Contrastive Learning for Bioactivity Prediction Using Cell Painting Image Data. J Chem Inf Model 2025; 65:528-543. [PMID: 39761993 PMCID: PMC11776044 DOI: 10.1021/acs.jcim.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/28/2025]
Abstract
Morphological profiling has recently demonstrated remarkable potential for identifying the biological activities of small molecules. Alongside the fully supervised and self-supervised machine learning methods recently proposed for bioactivity prediction from Cell Painting image data, we introduce here a semisupervised contrastive (SemiSupCon) learning approach. This approach combines the strengths of using biological annotations in supervised contrastive learning and leveraging large unannotated image data sets with self-supervised contrastive learning. SemiSupCon enhances downstream prediction performance of classifying MeSH pharmacological classifications from PubChem, as well as mode of action and biological target annotations from the Drug Repurposing Hub across two publicly available Cell Painting data sets. Notably, our approach has effectively predicted the biological activities of several unannotated compounds, and these findings were validated through literature searches. This demonstrates that our approach can potentially expedite the exploration of biological activity based on Cell Painting image data with minimal human intervention.
Collapse
Affiliation(s)
- David Bushiri Pwesombo
- Research
Unit Structural Chemistry and Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany
- Institute
of Chemistry, Technische Universität
Berlin, 10623 Berlin, Germany
| | - Carsten Beese
- Research
Unit Structural Chemistry and Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany
| | - Christopher Schmied
- Research
Unit Structural Chemistry and Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany
- EU-OPENSCREEN, Berlin 13125, Germany
| | - Han Sun
- Research
Unit Structural Chemistry and Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany
- Institute
of Chemistry, Technische Universität
Berlin, 10623 Berlin, Germany
| |
Collapse
|
5
|
Brooke G, Wendel S, Banerjee A, Wallace N. Opportunities to advance cervical cancer prevention and care. Tumour Virus Res 2024; 18:200292. [PMID: 39490532 PMCID: PMC11566706 DOI: 10.1016/j.tvr.2024.200292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Cervical cancer (CaCx) is a major public health issue, with over 600,000 women diagnosed annually. CaCx kills someone every 90 s, mostly in low- and middle-income countries. There are effective yet imperfect mechanisms to prevent CaCx. Since human papillomavirus (HPV) infections cause most CaCx, they can be prevented by vaccination. Screening methodologies can identify premalignant lesions and allow interventions before a CaCx develops. However, these tools are less feasible in resource-poor environments. Additionally, current screening modalities cannot triage lesions based on their relative risk of progression, which results in overtreatment. CaCx care relies heavily on genotoxic agents that cause severe side effects. This review discusses ways that recent technological advancements could be leveraged to improve CaCx care and prevention.
Collapse
Affiliation(s)
- Grant Brooke
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Sebastian Wendel
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| | - Abhineet Banerjee
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Nicholas Wallace
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
6
|
Guarnieri T, Nascimento JR, Leonan M, Brandão PR, Seabra Pereira CD, Choueri RB, Hardt E, Moraes MLL, Calixto LA, Pereira VJ, Oliveira LG, Lemos SG, Semensatto D, Labuto G. Pharmaceuticals in the environment: A strategy for prioritizing molecules of environmental concern. CHEMOSPHERE 2024; 368:143778. [PMID: 39571943 DOI: 10.1016/j.chemosphere.2024.143778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
The presence of drugs in the environment is a growing global concern, and selecting molecules for study is challenging. We propose a logical and integrative strategy to prioritize molecules of concern by predicting potential masses entering the environment, followed by a prioritization step. Our strategy was applied to antineoplastics with limited biodegradability, narrow therapeutic-to-dose margins, and significant ecotoxicological effects. As a case study, we used data from 2022 for cities in the Alto Tietê watershed (São Paulo, Brazil), which hosts ∼22 million people. The predicted mass (PM) of antineoplastics potentially introduced into water bodies (807 kg) was calculated using cities sales data (4609 kg), sanitation and pharmacokinetic data, and wastewater treatment plant (WWTP) removal rates obtained from EPISuite™. The prioritization involved molecules accounting for 99% of the PM, using ToxPi™ software to create a Prioritization Index (PI), rose plots, and dendrograms for risk profile evaluation. Without PM data, prioritization relies solely on intrinsic molecular characteristics. Prioritization parameters were categorized into four: Physicochemical Properties (water solubility, KOW, KOC), Environmental Fate (WWTP removal, half-lives), Effects (BCF, ecotoxicity, mutagenicity, chronic toxicity, carcinogenicity, endocrine disruption potential), and Exposure (PM). Different weights were applied to Exposure to ensure higher PM antineoplastics were prioritized without overshadowing other parameters. Obtaining a priority set with the contribution of all parameters was possible. The prioritized antineoplastics were Paclitaxel, Capecitabine, Pemetrexed, Gemcitabine, Cisplatin, 5-Fluorouracil, Mitotane, Imatinib, Cyclophosphamide, and Carboplatin. This strategy can be applied to different contexts to generate appropriate prioritization sets.
Collapse
Affiliation(s)
- Taciana Guarnieri
- Laboratory of Integrated Sciences, Universidade Federal de São Paulo, Diadema, SP, CEP 09972-270, Brazil
| | - Jacqueline R Nascimento
- Laboratory of Integrated Sciences, Universidade Federal de São Paulo, Diadema, SP, CEP 09972-270, Brazil
| | - Marcus Leonan
- Laboratory of Integrated Sciences, Universidade Federal de São Paulo, Diadema, SP, CEP 09972-270, Brazil
| | - Pedro R Brandão
- iBET-Instituto de Biologia Experimental e Tecnológica, Av. da República, 2780-157, Portugal
| | | | - Rodrigo Brasil Choueri
- Department of Marine Sciences, Universidade Federal de São Paulo, Santos, SP, CEP 11030-100, Brazil
| | - Elisa Hardt
- Department of Environmental Sciences, Laboratory of Ecology and Nature Conservancy (LECON), Group of Landscape Ecology and Conservation Planning (LEPLAN), Universidade Federal de São Paulo, Diadema, CEP 09972-270, Brazil
| | - Maria Lourdes L Moraes
- Laboratory of Integrated Sciences, Universidade Federal de São Paulo, Diadema, SP, CEP 09972-270, Brazil; Department of Chemistry, Universidade Federal de São Paulo, Diadema, SP, CEP 09913-030, Brazil
| | - Leandro A Calixto
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Science, Universidade Federal de São Paulo, SP, CEP 099972-270, Brazil
| | - Vanessa J Pereira
- iBET-Instituto de Biologia Experimental e Tecnológica, Av. da República, 2780-157, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Levi G Oliveira
- Advanced Study Group in Analytical Chemistry, Department of Chemistry, Universidade Federal da Paraíba, João Pessoa, PB, CEP 58051-970, Brazil
| | - Sherlan Guimarães Lemos
- Advanced Study Group in Analytical Chemistry, Department of Chemistry, Universidade Federal da Paraíba, João Pessoa, PB, CEP 58051-970, Brazil
| | - Décio Semensatto
- Laboratory of Integrated Sciences, Universidade Federal de São Paulo, Diadema, SP, CEP 09972-270, Brazil; Department of Environmental Sciences, Universidade Federal de São Paulo, Diadema, SP, CEP 09972-270, Brazil; Antimicrobial Resistance Institute of São Paulo (ARIES), São Paulo, Brazil
| | - Geórgia Labuto
- Laboratory of Integrated Sciences, Universidade Federal de São Paulo, Diadema, SP, CEP 09972-270, Brazil; Department of Environmental Sciences, Laboratory of Ecology and Nature Conservancy (LECON), Group of Landscape Ecology and Conservation Planning (LEPLAN), Universidade Federal de São Paulo, Diadema, CEP 09972-270, Brazil; Antimicrobial Resistance Institute of São Paulo (ARIES), São Paulo, Brazil.
| |
Collapse
|
7
|
Show S, Dutta D, Nongthomba U, Prasad A J M. Effective paclitaxel: β-Cyclodextrin-based formulation boosts in vitro anti-tumor potential and lowers toxicity in zebrafish. Toxicol Res (Camb) 2024; 13:tfae150. [PMID: 39319343 PMCID: PMC11417963 DOI: 10.1093/toxres/tfae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Paclitaxel (PCTX) is one of the most prevalently used chemotherapeutic agents. However, its use is currently beset with a host of problems: solubility issue, microplastic leaching, and drug resistance. Since drug discovery is challenging, we decided to focus on repurposing the drug itself by remedying its drawbacks and making it more effective. In this study, we have harnessed the aqueous solubility of sugars, and the high affinity of cancer cells for them, to entrap the hydrophobic PCTX within the hydrophilic shell of the carbohydrate β-cyclodextrin. We have characterized this novel drug formulation by testing its various physical and chemical parameters. Importantly, in all our in vitro assays, the conjugate performed better than the drug alone. We find that the conjugate is internalized by the cancer cells (A549) via caveolin 1-mediated endocytosis. Thereafter, it triggers apoptosis by inducing the formation of reactive oxygen species. Based on experiments on zebrafish larvae, the formulation displays lower toxicity compared to PCTX alone. Thus, our "Trojan Horse" approach, relying on minimal components and relatively faster formulation, enhances the anti-tumor potential of PCTX, while simultaneously making it more innocuous toward non-cancerous cells. The findings of this study have implications in the quest for the most cost-effective chemotherapeutic molecule.
Collapse
Affiliation(s)
- Sautan Show
- Department of Biochemistry, Pooja Bhagavat Memorial Mahajana Postgraduate Centre, K.R.S. Road, Metagalli, Mysore 570016, India
- Department of Developmental Biology and Genetics, Indian Institute of Science, CV Raman Rd, Bengaluru 560012, India
| | - Debanjan Dutta
- Department of Developmental Biology and Genetics, Indian Institute of Science, CV Raman Rd, Bengaluru 560012, India
- Life Science Division, AgriVet Life Science, AgriVet Research & Advisory (P) Ltd., Lake Town Rd, Block A, Lake Town, South Dumdum, West Bengal 700089, India
| | - Upendra Nongthomba
- Department of Developmental Biology and Genetics, Indian Institute of Science, CV Raman Rd, Bengaluru 560012, India
| | - Mahadesh Prasad A J
- Department of Biochemistry, Pooja Bhagavat Memorial Mahajana Postgraduate Centre, K.R.S. Road, Metagalli, Mysore 570016, India
| |
Collapse
|
8
|
Adelman JW, Sukowaty AT, Partridge KJ, Gawrys JE, Terhune SS, Ebert AD. Stabilizing microtubules aids neurite structure and disrupts syncytia formation in human cytomegalovirus-infected human forebrain neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608340. [PMID: 39229072 PMCID: PMC11370344 DOI: 10.1101/2024.08.16.608340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Human cytomegalovirus (HCMV) is a prolific human herpesvirus that infects most individuals by adulthood. While typically asymptomatic in adults, congenital infection can induce serious neurological symptoms including hearing loss, visual deficits, cognitive impairment, and microcephaly in 10-15% of cases. HCMV has been shown to infect most neural cells with our group recently demonstrating this capacity in stem cell-derived forebrain neurons. Infection of neurons induces deleterious effects on calcium dynamics and electrophysiological function paired with gross restructuring of neuronal morphology. Here, we utilize an iPSC-derived model of the human forebrain to demonstrate how HCMV infection induces syncytia, drives neurite retraction, and remodels microtubule networks to promote viral production and release. We establish that HCMV downregulates microtubule associated proteins at 14 days postinfection while simultaneously sparing other cytoskeletal elements, and this includes HCMV-driven alterations to microtubule stability. Further, we pharmacologically modulate microtubule dynamics using paclitaxel (stabilize) and colchicine (destabilize) to examine the effects on neurite structure, syncytial morphology, assembly compartment formation, and viral release. With paclitaxel, we found improvement of neurite outgrowth with a corresponding disruption to HCMV-induced syncytia formation and Golgi network disruptions but with limited impact on viral titers. Together, these data suggest that HCMV infection-induced disruption of microtubules in human cortical neurons can be partially mitigated with microtubule stabilization, suggesting a potential avenue for future neuroprotective therapeutic exploration.
Collapse
Affiliation(s)
- Jacob W Adelman
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Andrew T Sukowaty
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kaitlyn J Partridge
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jessica E. Gawrys
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Scott S. Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
- Marquette University and Medical College of Wisconsin Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
9
|
Oluwalana D, Adeleye KL, Krutilina RI, Chen H, Playa H, Deng S, Parke DN, Abernathy J, Middleton L, Cullom A, Thalluri B, Ma D, Meibohm B, Miller DD, Seagroves TN, Li W. Biological activity of a stable 6-aryl-2-benzoyl-pyridine colchicine-binding site inhibitor, 60c, in metastatic, triple-negative breast cancer. Cancer Lett 2024; 597:217011. [PMID: 38849011 PMCID: PMC11290984 DOI: 10.1016/j.canlet.2024.217011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Improving survival for patients diagnosed with metastatic disease and overcoming chemoresistance remain significant clinical challenges in treating breast cancer. Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by a lack of therapeutically targetable receptors (ER/PR/HER2). TNBC therapy includes a combination of cytotoxic chemotherapies, including microtubule-targeting agents (MTAs) like paclitaxel (taxane class) or eribulin (vinca class); however, there are currently no FDA-approved MTAs that bind to the colchicine-binding site. Approximately 70 % of patients who initially respond to paclitaxel will develop taxane resistance (TxR). We previously reported that an orally bioavailable colchicine-binding site inhibitor (CBSI), VERU-111, inhibits TNBC tumor growth and treats pre-established metastatic disease. To further improve the potency and metabolic stability of VERU-111, we created next-generation derivatives of its scaffold, including 60c. RESULTS 60c shows improved in vitro potency compared to VERU-111 for taxane-sensitive and TxR TNBC models, and suppress TxR primary tumor growth without gross toxicity. 60c also suppressed the expansion of axillary lymph node metastases existing prior to treatment. Comparative analysis of excised organs for metastasis between 60c and VERU-111 suggested that 60c has unique anti-metastatic tropism. 60c completely suppressed metastases to the spleen and was more potent to reduce metastatic burden in the leg bones and kidney. In contrast, VERU-111 preferentially inhibited liver metastases and lung metastasis repression was similar. Together, these results position 60c as an additional promising CBSI for TNBC therapy, particularly for patients with TxR disease.
Collapse
Affiliation(s)
- Damilola Oluwalana
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States; College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Kelli L Adeleye
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Raisa I Krutilina
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Hilaire Playa
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Shanshan Deng
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Deanna N Parke
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - John Abernathy
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Leona Middleton
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Alexandra Cullom
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States; College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Bhargavi Thalluri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Dejian Ma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Center for Cancer Research, Memphis, TN 38163, United States
| | - Tiffany N Seagroves
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Center for Cancer Research, Memphis, TN 38163, United States.
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Center for Cancer Research, Memphis, TN 38163, United States.
| |
Collapse
|
10
|
Ghasemizadeh A, Wan L, Hirose A, Diep J, Ewert KK, Safinya CR. A Library of Custom PEG-Lipids reveals a Double-PEG-Lipid with Drastically Enhanced Paclitaxel Solubility and Human Cancer Cell Cytotoxicity when used in Fluid Micellar Nanoparticles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606138. [PMID: 39131387 PMCID: PMC11312575 DOI: 10.1101/2024.08.01.606138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Paclitaxel (PTX) is one of the most widely utilized chemotherapeutics globally. However, the extremely poor water solubility of paclitaxel necessitates a mechanism of delivery within blood. Fluid lipid PTX nanocarriers (lipids in the chain-melted state) show promise as PTX delivery vectors, but remain limited by their solubility of PTX within the membrane. To improve pharmacokinetics, membrane surfaces are typically coated with polyethylene glycol (PEG). Recent work has demonstrated the generation of a population of micelles within fluid lipid formulations containing a 2kDa PEG-lipid at a 10 mol% ratio. Driven by the positive curvature of the PEG-lipid (i.e. area of head group > area of tails), micelle-containing formulations were found to exhibit significantly higher uptake in cancer cells, cytotoxicity, and in vivo antitumor efficacy compared to formulations containing solely liposomes. Here, we describe the custom synthesis of a library of high-curvature micelle-inducing PEG-lipids and examine the effects of PEG chain length, chain branching (single- or double-PEG-lipid), and cationic charge on PTX solubility and cytotoxicity. We examined PEG-lipids at standard (10 mol%) and high (100-x mol%, where x=PTX mol%) formulation ratios. Remarkably, all formulations containing the synthesized high-curvature PEG-lipids had improved PTX solubility over unPEGylated formulations and commercially available DOPE-5k. The highest PTX solubility was found within the 100-xPTX mol% PEG-lipid micellar formulations, with particles made from 2k2 (two PEG2k chains) encapsulating 13 mol% PTX for up to 24 h. The pancreatic cancer cell line PC3 exhibited higher sensitivity to formulations containing PEG-lipid at 100-xPTX mol%, the most potent of which being formulations made from 2k2 (IC50 = 14 nM). The work presented here suggests formulations employing high-curvature PEG-lipids, particularly the double-PEG-lipid 2k2, hold great potential as next-generation PTX delivery systems owing to their high PTX solubility, enhanced cell cytotoxicity, and ability for precision targeting by affixation of ligands to the PEG molecules.
Collapse
Affiliation(s)
- Aria Ghasemizadeh
- Materials Department, University of California, Santa Barbara, California 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106, USA
| | - Lili Wan
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Aiko Hirose
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Jacqueline Diep
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Kai K Ewert
- Materials Department, University of California, Santa Barbara, California 93106, USA
| | - Cyrus R Safinya
- Materials Department, University of California, Santa Barbara, California 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106, USA
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
- Physics Department, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
11
|
Zhang W, Li C, Lv Y, Wei S, Hu Y. Synergistic antifungal mechanism of cinnamaldehyde and nonanal against Aspergillus flavus and its application in food preservation. Food Microbiol 2024; 121:104524. [PMID: 38637086 DOI: 10.1016/j.fm.2024.104524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/20/2024]
Abstract
Aspergillus flavus colonization on agricultural products during preharvest and postharvest results in tremendous economic losses. Inspired by the synergistic antifungal effects of essential oils, the aims of this study were to explore the mechanism of combined cinnamaldehyde and nonanal (SCAN) against A. flavus and to evaluate the antifungal activity of SCAN loading into diatomite (DM). Shriveled mycelia were observed by scanning electron microscopy, especially in the SCAN treatment group. Calcofluor white staining, transmission electron microscopy, dichloro-dihydro-fluorescein diacetate staining and the inhibition of key enzymes in tricarboxylic acid cycle indicated that the antifungal mechanism of SCAN against A. flavus was related to the cell wall damage, reactive oxygen species accumulation and energy metabolism interruption. RNA sequencing revealed that some genes involved in antioxidation were upregulated, whereas genes responsible for cell wall biosynthesis, oxidative stress, cell cycle and spore development were significantly downregulated, supporting the occurrence of cellular apoptosis. In addition, compared with the control group, conidia production in 1.5 mg/mL DM/cinnamaldehyde, DM/nonanal and DM/SCAN groups were decreased by 27.16%, 48.22% and 76.66%, respectively, and the aflatoxin B1 (AFB1) contents decreased by 2.00%, 73.02% and 84.15%, respectively. These finding suggest that DM/SCAN complex has potential uses in food preservation.
Collapse
Affiliation(s)
- Wei Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Cuixiang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yangyong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Shan Wei
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yuansen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China; Food Laboratory of Zhongyuan, Luohe, 462300, Henan, China.
| |
Collapse
|
12
|
Sijisha KS, Anusha R, Priya S. Synergistic effects of epoxyazadiradione (EAD) and paclitaxel against triple-negative breast cancer cells. Fundam Clin Pharmacol 2024; 38:758-766. [PMID: 38482560 DOI: 10.1111/fcp.13000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most aggressive and chemo-resistant form of breast cancer subtype, and chemotherapy is a vital treatment option for that. Paclitaxel is an effective chemo drug for TNBC. However, in clinical settings, paclitaxel has adverse side effects. The synergistic combination is the most promising method for overcoming undesirable toxicity and achieving a beneficial therapeutic outcome. Previous reports, including our study, showed certain anticancer potential of epoxyazadiradione (EAD), the neem limonoid, in different types of cancer cells, including TNBC. OBJECTIVE This study was designed to investigate the possible synergistic effects of EAD and paclitaxel against TNBC cells. METHODS We examined the effects of EAD and paclitaxel alone and in combination in MDA-MB 231 cells, and the percentage cytotoxicity was used to calculate synergism. Characteristic apoptotic changes were observed by visualizing cellular morphology, nuclear fragmentation and membrane integrity. We further estimated anti-migratory potential of experimental compounds by wound healing assay. The reduction in inflammation during combinatorial treatment was evaluated by observing NF-κB translocation. RESULTS The combined treatment with EAD (5 μM) and paclitaxel (5 nM), which were used at doses lower than their individual IC50 concentrations, showed a synergistic effect in MDA-MB-231 cells. This combination effectively induced apoptosis and antimigration and reduced the inflammatory reactions induced by the higher dose of paclitaxel. CONCLUSION To conclude, EAD could be the drug of choice for combined treatment with paclitaxel in a chemotherapy regimen.
Collapse
Affiliation(s)
- Kunnathully Sudhan Sijisha
- Biochemistry Section, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
| | - Rajitha Anusha
- Biochemistry Section, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sulochana Priya
- Biochemistry Section, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
13
|
Mustafa M, Abbas K, Alam M, Habib S, Zulfareen, Hasan GM, Islam S, Shamsi A, Hassan I. Investigating underlying molecular mechanisms, signaling pathways, emerging therapeutic approaches in pancreatic cancer. Front Oncol 2024; 14:1427802. [PMID: 39087024 PMCID: PMC11288929 DOI: 10.3389/fonc.2024.1427802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Pancreatic adenocarcinoma, a clinically challenging malignancy constitutes a significant contributor to cancer-related mortality, characterized by an inherently poor prognosis. This review aims to provide a comprehensive understanding of pancreatic adenocarcinoma by examining its multifaceted etiologies, including genetic mutations and environmental factors. The review explains the complex molecular mechanisms underlying its pathogenesis and summarizes current therapeutic strategies, including surgery, chemotherapy, and emerging modalities such as immunotherapy. Critical molecular pathways driving pancreatic cancer development, including KRAS, Notch, and Hedgehog, are discussed. Current therapeutic strategies, including surgery, chemotherapy, and radiation, are discussed, with an emphasis on their limitations, particularly in terms of postoperative relapse. Promising research areas, including liquid biopsies, personalized medicine, and gene editing, are explored, demonstrating the significant potential for enhancing diagnosis and treatment. While immunotherapy presents promising prospects, it faces challenges related to immune evasion mechanisms. Emerging research directions, encompassing liquid biopsies, personalized medicine, CRISPR/Cas9 genome editing, and computational intelligence applications, hold promise for refining diagnostic approaches and therapeutic interventions. By integrating insights from genetic, molecular, and clinical research, innovative strategies that improve patient outcomes can be developed. Ongoing research in these emerging fields holds significant promise for advancing the diagnosis and treatment of this formidable malignancy.
Collapse
Affiliation(s)
- Mohd Mustafa
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Kashif Abbas
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mudassir Alam
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Zulfareen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sidra Islam
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
14
|
Chintalapati SSVV, Iwata S, Miyahara M, Miyako E. Tumor-isolated Cutibacterium acnes as an effective tumor suppressive living drug. Biomed Pharmacother 2024; 170:116041. [PMID: 38113626 DOI: 10.1016/j.biopha.2023.116041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
The two major challenges in cancer treatment are reducing the side effects and minimizing the cost of cancer treatment. A better therapy to treat cancer remains to be developed despite the presence of many therapeutic options. Here, we present bacterial therapy for treating cancer using tumor-isolated Cutibacterium acnes, which is safe to use, has minimal side effects compared to chemotherapeutic drugs, and most importantly, targets the tumor microenvironment due to the bacterium's anaerobic nature. It activates the immune system, and the immune cells effectively penetrate through the tumor tissue and form an immunologic hub inside, explicitly targeting the tumor and destroying the cells. This bacterial therapy is a new cost-effective innovative treatment.
Collapse
Affiliation(s)
| | - Seigo Iwata
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Mikako Miyahara
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Eijiro Miyako
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| |
Collapse
|
15
|
Park KT, Jeon YJ, Kim HI, Kim W. Antinociceptive Effect of Dendrobii caulis in Paclitaxel-Induced Neuropathic Pain in Mice. Life (Basel) 2023; 13:2289. [PMID: 38137890 PMCID: PMC10744469 DOI: 10.3390/life13122289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Paclitaxel-induced neuropathic pain (PINP) is a serious adverse effect of chemotherapy. Dendrobii caulis (D. caulis) is a new food source used as herbal medicine in east Asia. We examined the antinociceptive effects of D. caulis extract on PINP and clarified the mechanism of action of transient receptor potential vanilloid 1 receptor (TRPV1) in the spinal cord. PINP was induced in male mice using multiple intraperitoneal injections of paclitaxel (total dose, 8 mg/kg). PINP was maintained from D10 to D21 when assessed for cold and mechanical allodynia. Oral administration of 300 and 500 mg/kg D. caulis relieved cold and mechanical allodynia. In addition, TRPV1 in the paclitaxel group showed increased gene and protein expression, whereas the D. caulis 300 and 500 mg/kg groups showed a significant decrease. Among various substances in D. caulis, vicenin-2 was quantified by high-performance liquid chromatography, and its administration (10 mg/kg, i.p.) showed antinociceptive effects similar to those of D. caulis 500 mg/kg. Administration of the TRPV1 antagonist capsazepine also showed antinociceptive effects similar to those of D. caulis, and D. caulis is thought to exhibit antinociceptive effects on PINP by modulating the spinal TRPV1.
Collapse
Affiliation(s)
- Keun Tae Park
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea; (K.T.P.); (Y.J.J.)
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yong Jae Jeon
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea; (K.T.P.); (Y.J.J.)
| | - Hyo In Kim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea; (K.T.P.); (Y.J.J.)
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
16
|
Park KT, Ko SG, Kim W. Phlomidis Radix Extract Alleviates Paclitaxel-Induced Neuropathic Pain by Modulating Spinal TRPV1 in Mice. PLANTS (BASEL, SWITZERLAND) 2023; 12:3819. [PMID: 38005716 PMCID: PMC10674976 DOI: 10.3390/plants12223819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
Paclitaxel is a chemotherapeutic drug reported to have excellent activity against tumors; however, various side effects, including peripheral neuropathy, limit its use in some cases. In this study, the effect of Phlomidis radix (P.Radix) extract was assessed on paclitaxel-induced cold and mechanical peripheral neuropathy in mice. Multiple paclitaxel injections (accumulative dose of 8 mg/kg, i.p.) induced increased behavioral responses to cold and mechanical stimuli in mice from D10 to D21 after the first paclitaxel injection. Cold and mechanical stimuli were performed by acetone drop and von Frey filament, respectively. Oral administrations of 25% ethanol extract of P.Radix (300 and 500 mg/kg) relieved cold and mechanical pain in a dose-dependent manner. Furthermore, among the various transient receptor potential (TRP) cation channel subfamilies, paclitaxel upregulated the spinal gene expression of transient receptor potential vanilloid 1 (TRPV1) and melastatin 4 (TRPM4), but not ankyrin 1 (TRPA1). However, 500 mg/kg but not 300 mg/kg of P.Radix extract significantly downregulated the gene expression of TRPV1 but not TRPM4. Among the components of P.Radix, sesamoside was identified and quantified by high-performance liquid chromatography (HPLC), and the administration of sesamoside (7.5 mg/kg, i.p.) showed a similar analgesic effect to 300 mg/kg P.Radix. These results suggest that P.Radix and sesamoside should be considered when treating paclitaxel-induced neuropathic pain.
Collapse
Affiliation(s)
- Keun-Tae Park
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea;
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| |
Collapse
|
17
|
Bunning AR, Anderson SJ, Gupta ML. Using Taxol-sensitized budding yeast to investigate the effect of microtubule stabilization on anaphase onset. STAR Protoc 2023; 4:102522. [PMID: 37597189 PMCID: PMC10469069 DOI: 10.1016/j.xpro.2023.102522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/28/2023] [Accepted: 07/28/2023] [Indexed: 08/21/2023] Open
Abstract
The microtubule (MT)-stabilizing drug Taxol (paclitaxel) is a commonly used tool to investigate MT dynamics and MT-dependent processes. Here, we present a protocol for using Taxol-sensitized budding yeast to investigate the effect of microtubule stabilization on anaphase onset. We describe steps for establishing a log phase culture, synchronizing cells in G1, arresting in metaphase, and releasing cells into Taxol. We then detail procedures for imaging and scoring anaphase onset. This protocol facilitates maintenance and reproducibility in testing drug-sensitized and Taxol-sensitized yeast strains. For complete details on the use and execution of this protocol, please refer to Proudfoot et al.1.
Collapse
Affiliation(s)
- Angela R Bunning
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50010, USA
| | - Samuel J Anderson
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50010, USA
| | - Mohan L Gupta
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50010, USA.
| |
Collapse
|
18
|
D'Iglio C, Famulari S, Capparucci F, Gervasi C, Cuzzocrea S, Spanò N, Di Paola D. Toxic Effects of Gemcitabine and Paclitaxel Combination: Chemotherapy Drugs Exposure in Zebrafish. TOXICS 2023; 11:544. [PMID: 37368644 DOI: 10.3390/toxics11060544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
Pharmaceuticals are widely recognized as potentially hazardous to aquatic ecosystems. In the last two decades, the constant intake of biologically active chemicals used in human healthcare has been related to the growing release of these agents into natural environments. As reported by several studies, various pharmaceuticals have been detected, mainly in surface water (seas, lakes, and rivers), but also in groundwater and drinking water. Moreover, these contaminants and their metabolites can show biological activity even at very low concentrations. This study aimed to evaluate the developmental toxicity of exposure to the chemotherapy drugs gemcitabine and paclitaxel in aquatic environments. Zebrafish (Danio rerio) embryos were exposed to doses of gemcitabine 15 μM in combination with paclitaxel 1 μM from 0 to 96 h post-fertilization (hpf) using a fish embryo toxicity test (FET). This study highlights that both gemcitabine and paclitaxel exposure at single non-toxic concentrations affected survival and hatching rate, morphology score, and body length after exposure in combination. Additionally, exposure significantly disturbed the antioxidant defense system and increased ROS in zebrafish larvae. Gemcitabine and paclitaxel exposure caused changes in the expression of inflammation-related, endoplasmic reticulum stress-related (ERS), and autophagy-related genes. Taken together, our findings underline that gemcitabine and paclitaxel increase developmental toxicity in zebrafish embryos in a time-dependent manner.
Collapse
Affiliation(s)
- Claudio D'Iglio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Sergio Famulari
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Fabiano Capparucci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Claudio Gervasi
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Blvd., St. Louis, MO 63104, USA
| | - Nunziacarla Spanò
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy
| |
Collapse
|
19
|
Pushpa Ragini S, White J, Kirby N, Banerjee R, Reddy Bathula S, Drummond CJ, Conn CE. Novel bioactive cationic cubosomes enhance the cytotoxic effect of paclitaxel against a paclitaxel resistant prostate cancer cell-line. J Colloid Interface Sci 2023; 649:966-976. [PMID: 37392686 DOI: 10.1016/j.jcis.2023.06.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/05/2023] [Accepted: 06/17/2023] [Indexed: 07/03/2023]
Abstract
Hypothesis The study aimed to use molecular hybridization of a cationic lipid with a known pharmacophore to produce a bifunctional lipid having a cationic charge to enhance fusion with the cancer cell surface and biological activity via the pharmacophoric head group. Experiments The novel cationic lipid DMP12 [N-(2-(3-(3,4-dimethoxyphenyl) propanamido) ethyl)-N-dodecyl-N-methyldodecan-1-aminium iodide] was synthesised by conjugating 3-(3,4-dimethoxyphenyl) propanoic acid (or 3,4-dimethoxyhydrocinnamic acid) to twin 12 carbon chains bearing a quaternary ammonium group [N-(2-aminoethyl)-N-dodecyl-N-methyldodecan-1-aminium iodide]. The physicochemical and biological properties of DMP12 were investigated. Cubosome particles consisting of monoolein (MO) doped with DMP12 and paclitaxel were characterized using Small-angle X-ray Scattering (SAXS), Dynamic Light Scattering (DLS), and Cryo-Transmission Electron Microscopy (Cryo-TEM). Combination therapy using these cubosomes was assessed in vitro against the gastric (AGS) and prostate (DU-145 and PC-3) cancer cell lines using cytotoxicity assay. Findings Monoolein (MO) cubosomes doped with DMP12 were observed to be toxic against the AGS and DU-145 cell-lines at higher cubosome concentrations (≥100 µg/ml) but had limited activity against the PC-3 cell-line. However, combination therapy consisting of 5 mol% DMP12 and 0.5 mol% paclitaxel (PTX) significantly increased the cytotoxicity against the PC-3 cell-line which was resistant to either DMP12 or PTX individually. The results demonstrate that DMP12 has a prospective role as a bioactive excipient in cancer therapy.
Collapse
Affiliation(s)
- S Pushpa Ragini
- Department of Oils, lipids science and technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India; Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India; School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, Victoria, Australia
| | - Jacinta White
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Nigel Kirby
- Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC 3168, Australia
| | - Rajkumar Banerjee
- Department of Oils, lipids science and technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Surendar Reddy Bathula
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India; Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India
| | - Calum J Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, Victoria, Australia
| | - Charlotte E Conn
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, Victoria, Australia.
| |
Collapse
|
20
|
Shahina Z, Yennamalli RM, Dahms TE. Key essential oil components delocalize Candida albicans Kar3p and impact microtubule structure. Microbiol Res 2023; 272:127373. [PMID: 37058783 DOI: 10.1016/j.micres.2023.127373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Treatment of Candida albicans associated infections is often ineffective in the light of resistance, with an urgent need to discover novel antimicrobials. Fungicides require high specificity and can contribute to antifungal resistance, so inhibition of fungal virulence factors is a good strategy for developing new antifungals. OBJECTIVES Examine the impact of four plant-derived essential oil components (1,8-cineole, α-pinene, eugenol, and citral) on C. albicans microtubules, kinesin motor protein Kar3 and morphology. METHODS Microdilution assays were used to determine minimal inhibitory concentrations, microbiological assays assessed germ tube, hyphal and biofilm formation, confocal microscopy probed morphological changes and localization of tubulin and Kar3p, and computational modelling was used to examine the theoretical binding of essential oil components to tubulin and Kar3p. RESULTS We show for the first time that essential oil components delocalize the Kar3p, ablate microtubules, and induce psuedohyphal formation with reduced biofilm formation. Single and double deletion mutants of kar3 were resistant to 1,8-cineole, sensitive to α-pinene and eugenol, but unimpacted by citral. Strains with homozygous and heterozygous Kar3p disruption had a gene-dosage effect for all essential oil components, resulting in enhanced resistance or susceptibility patterns that were identical to that of cik1 mutants. The link between microtubule (αβ-tubulin) and Kar3p defects was further supported by computational modeling, showing preferential binding to αβ-tubulin and Kar3p adjacent to their Mg2+-binding sites. CONCLUSION This study highlights how essential oil components interfere with the localization of the kinesin motor protein complex Kar3/Cik1 and disrupt microtubules, leading to their destabilization which results in hyphal and biofilm defects.
Collapse
|
21
|
Lee T, Kim KS, Na K. Nanocracker capable of simultaneously reversing both P-glycoprotein and tumor microenvironment. J Control Release 2023; 354:268-278. [PMID: 36634708 DOI: 10.1016/j.jconrel.2022.12.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023]
Abstract
Here, we describe a multidrug-resistant nanocracker (MDRC) that can treat multi-drug resistant (MDR) cancer by recognizing the acidic microenvironment and inhibiting two mechanisms of MDR such as P-glycoprotein (P-gp) and vacuolar-type ATPase (V-ATPase). MDRC is a liposome formulation co-loading pantoprazole (PZ) and paclitaxel (PTX). PZ acts as a chemosensitizer that enhances the MDR cancer treatment effect of PTX by disrupting the pH gradient and inhibiting P-gp. MDRC-encapsulated PZ and PTX have different release rates, with PZ released within 12 h and PTX sustained release for 48 h in the plasma. MDRC could increase cell uptake by inhibiting the P-gp overexpressed MCF-7/mdr cells and UV-2237M cells, which are human breast MDR cancer cells and murine fibrosarcoma cells, respectively. MDRC can also increase the cytotoxic efficacy of PTX by increasing intracellular pH. MDRC has a 10.5-fold reduced IC50 value in the P-gp overexpressed human breast adenocarcinoma and a 6.3- to 9.5-fold reduced IC50 value in the P-gp non-expressed human breast adenocarcinoma compared to the mixture of PZ and PTX, respectively. Intravenous injection of MDRC did not cause weight loss, liver dysfunction, or major organ toxicity. MDRC exhibited 80% complete remission of murine fibrosarcoma. The excellent therapeutic effect of MDRC on MDR tumors was accompanied by an increase in dendritic cell maturation and cytotoxic T cells. In other words, MDRC has the potential to terminate MDR therapy through the complete remission of MDR tumors.
Collapse
Affiliation(s)
- Taebum Lee
- Department of BioMedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kyoung Sub Kim
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kun Na
- Department of BioMedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
22
|
Vélëz H, Gauchan DP, García-Gil MDR. Taxol and β-tubulins from endophytic fungi isolated from the Himalayan Yew, Taxus wallichiana Zucc. Front Microbiol 2022; 13:956855. [PMID: 36246258 PMCID: PMC9557061 DOI: 10.3389/fmicb.2022.956855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Paclitaxel, better known as the anticancer drug Taxol®, has been isolated from several plant species and has been shown to be produced by fungi, actinomycetes, and even bacteria isolated from marine macroalgae. Given its cytostatic effect, studies conducted in the 1990's showed that paclitaxel was toxic to many pathogenic fungi and oomycetes. Further studies led to the idea that the differences in paclitaxel sensitivity exhibited by different fungi were due to differences in the β-tubulin protein sequence. With the recent isolation of endophytic fungi from the leaves and bark of the Himalayan Yew, Taxus wallichiana Zucc., and the availability of genomes from paclitaxel-producing fungi, we decided to further explore the idea that endophytic fungi isolated from Yews should be well-adapted to their environment by encoding β-tubulin proteins that are insensitive to paclitaxel. Our results found evidence of episodic positive/diversifying selection at 10 sites (default p-value threshold of 0.1) in the β-tubulin sequences, corresponding to codon positions 33, 55, 172, 218, 279, 335, 359, 362, 379, and 406. Four of these positions (i.e., 172, 279, 359, and 362) have been implicated in the binding of paclitaxel by β-tubulin or formed part of the binding pocket. As expected, all the fungal endophytes grew in different media regardless of the paclitaxel concentration tested. Furthermore, our results also showed that Taxomyces andreanae CBS 279.92, the first fungus shown to produce paclitaxel, is a Basidiomycete fungus as the two beta tubulins encoded by the fungus clustered together with other Basidiomycete fungi.
Collapse
Affiliation(s)
- Heriberto Vélëz
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- *Correspondence: Heriberto Vélëz
| | - Dhurva Prasad Gauchan
- Department of Biotechnology, School of Science, Kathmandu University, Dhulikhel, Nepal
| | - María del Rosario García-Gil
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
23
|
Pratelli A, Corbo D, Lupetti P, Mencarelli C. The distal central pair segment is structurally specialised and contributes to IFT turnaround and assembly of the tip capping structures in Chlamydomonas flagella. Biol Cell 2022; 114:349-364. [PMID: 36101924 DOI: 10.1111/boc.202200038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND INFORMATION Cilia and flagella are dynamic organelles whose assembly and maintenance depend on an activetrafficking process known as the IntraFlagellar Transport (IFT), during which trains of IFT protein particles are moved by specific motors and carry flagellar precursors and turnover products along the axoneme. IFT consists of an anterograde (from base to tip) and a retrograde (from tip to base) phase. During IFT turnaround at the flagellar tip, anterograde trains release their cargoes and remodel to form the retrograde trains. Thus, turnaround is crucial for correct IFT. However, current knowledge of its mechanisms is limited. RESULTS We show here that in Chlamydomonas flagella the distal ∼200 nm central pair (CP) segment is structurally differentiated for the presence of a ladder-like structure (LLS). During IFT turnaround, the IFT172 subunit dissociates from the IFT- B protein complex and binds to the LLS-containing CP segment, while the IFT-B complex participates in the assembly of the CP capping structures. The IFT scaffolding function played by the LLS-containing CP segment relies on anchoring components other than the CP microtubules, since IFT turnaround occurs also in the CP-devoid pf18 mutant flagella. CONCLUSIONS During IFT turnaround in Chlamydomonas flagella, i) the LLS and the CP terminal plates act as anchoring platforms for IFT172 and the IFT-B complex, respectively, and ii) during its remodeling, the IFT-B complex contributes to the assembly of the CP capping structures. SIGNIFICANCE Our results indicate that in full length Chlamydomonas flagella IFT remodeling occurs by a specialized mechanism that involves flagellar tip structures and is distinct from the previously proposed model in which the capability to reverse motility would be intrinsic of IFT train and independent by any other flagellar structure.
Collapse
Affiliation(s)
- Ambra Pratelli
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Dalia Corbo
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Pietro Lupetti
- Department of Life Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
24
|
Zhao S, Tang Y, Wang R, Najafi M. Mechanisms of cancer cell death induction by paclitaxel: an updated review. Apoptosis 2022; 27:647-667. [PMID: 35849264 DOI: 10.1007/s10495-022-01750-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 02/07/2023]
Abstract
Chemoresistance of cancer cells is a major problem in treating cancer. Knowledge of how cancer cells may die or resist cancer drugs is critical to providing certain strategies to overcome tumour resistance to treatment. Paclitaxel is known as a chemotherapy drug that can suppress the proliferation of cancer cells by inducing cell cycle arrest and induction of mitotic catastrophe. However, today, it is well known that paclitaxel can induce multiple kinds of cell death in cancers. Besides the induction of mitotic catastrophe that occurs during mitosis, paclitaxel has been shown to induce the expression of several pro-apoptosis mediators. It also can modulate the activity of anti-apoptosis mediators. However, certain cell-killing mechanisms such as senescence and autophagy can increase resistance to paclitaxel. This review focuses on the mechanisms of cell death, including apoptosis, mitotic catastrophe, senescence, autophagic cell death, pyroptosis, etc., following paclitaxel treatment. In addition, mechanisms of resistance to cell death due to exposure to paclitaxel and the use of combinations to overcome drug resistance will be discussed.
Collapse
Affiliation(s)
- Shuang Zhao
- School of Basic Medicine, Shaoyang University, Shaoyang, 422000, Hunan, China.
| | - Yufei Tang
- College of Medical Technology, Shaoyang University, Shaoyang, 422000, Hunan, China
| | - Ruohan Wang
- School of Nursing, Shaoyang University, Shaoyang, 422000, Hunan, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
25
|
CSA Antisense Targeting Enhances Anticancer Drug Sensitivity in Breast Cancer Cells, including the Triple-Negative Subtype. Cancers (Basel) 2022; 14:cancers14071687. [PMID: 35406459 PMCID: PMC8997023 DOI: 10.3390/cancers14071687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Breast cancer (BC), the most frequent malignancy in woman, shows a high rate of cancer recurrence and resistance to treatment, particularly in Triple-Negative Breast Cancer (TNBC) subtype. Starting from the observation that different subtypes of BC cells, including the TNBC one, display an increased expression of Cockayne Syndrome group A (CSA) protein, which is involved in multiple functions such as DNA repair, transcription and in conferring cell robustness when it is up-regulated, we demonstrated that CSA ablation by AntiSense Oligonucleotides (ASOs) drastically impairs tumorigenicity of BC cells by hampering their survival and proliferative capabilities without affecting normal breast cells. Suppression of CSA does result in lowering the IC50 value of Oxaliplatin and Paclitaxel, two commonly used chemotherapeutic agents in breast cancer treatment, allowing the use of a very low dose of chemotherapeutic that is non-toxic to the normal breast cell line. Finally, CSA ablation restores drug sensitivity in oxaliplatin-resistant cells. Based on these findings, we can conclude that CSA may be a very attractive target for the development of new specific anticancer therapies. Abstract Breast cancer (BC) is the most common cancer with the highest frequency of death among women. BC is highly heterogenic at the genetic, biological, and clinical level. Despite the significant improvements in diagnosis and treatments of BC, the high rate of cancer recurrence and resistance to treatment remains a major challenge in clinical practice. This issue is particularly relevant in Triple-Negative Breast Cancer (TNBC) subtype, for which chemotherapy remains the main standard therapeutic approach. Here, we observed that BC cells, belonging to different subtypes, including the TNBC, display an increased expression of Cockayne Syndrome group A (CSA) protein, which is involved in multiple functions such as DNA repair, transcription, mitochondrial homeostasis, and cell division and that recently was found to confer cell robustness when it is up-regulated. We demonstrated that CSA ablation by AntiSense Oligonucleotides (ASOs) drastically impairs tumorigenicity of BC cells by hampering their survival and proliferative capabilities without damaging normal cells. Moreover, suppression of CSA dramatically sensitizes BC cells to platinum and taxane derivatives, which are commonly used for BC first-line therapy, even at very low doses not harmful to normal cells. Finally, CSA ablation restores drug sensitivity in oxaliplatin-resistant cells. Based on these results, we conclude that CSA might be a very attractive target for the development of more effective anticancer therapies.
Collapse
|
26
|
7-Epitaxol Induces Apoptosis and Autophagy in Head and Neck Squamous Cell Carcinoma through Inhibition of the ERK Pathway. Cells 2021; 10:cells10102633. [PMID: 34685613 PMCID: PMC8534141 DOI: 10.3390/cells10102633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 01/10/2023] Open
Abstract
As the main derivative of paclitaxel, 7-Epitaxol is known to a have higher stability and cytotoxicity. However, the anticancer effect of 7-Epitaxol is still unclear. The purpose of this study was to explore the anticancer effects of 7-Epitaxol in squamous cell carcinoma of the head and neck (HNSCC). Our study findings revealed that 7-Epitaxol potently suppressed cell viability in SCC-9 and SCC-47 cells by inducing cell cycle arrest. Flow cytometry and DAPI staining demonstrated that 7-Epitaxol treatment induced cell death, mitochondrial membrane potential and chromatin condensation in OSCC cell lines. The compound regulated the proteins of extrinsic and intrinsic pathways at the highest concentration, and also increased the activation of caspases 3, 8, 9, and PARP in OSCC cell lines. Interestingly, a 7-Epitaxol-mediated induction of LC3-I/II expression and suppression of p62 expression were observed in OSCC cells lines. Furthermore, the MAPK inhibitors indicated that 7-Epitaxol induces apoptosis and autophagy marker proteins (cleaved-PARP and LC3-I/II) by reducing the phosphorylation of ERK1/2. In conclusion, these findings indicate the involvement of 7-Epitaxol in inducing apoptosis and autophagy through ERK1/2 signaling pathway, which identify 7-Epitaxol as a potent cytotoxic agent in HNSCC.
Collapse
|
27
|
Proudfoot KG, Anderson SJ, Dave S, Bunning AR, Sinha Roy P, Bera A, Gupta ML. Checkpoint Proteins Bub1 and Bub3 Delay Anaphase Onset in Response to Low Tension Independent of Microtubule-Kinetochore Detachment. Cell Rep 2020; 27:416-428.e4. [PMID: 30970246 PMCID: PMC6485967 DOI: 10.1016/j.celrep.2019.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 05/18/2018] [Accepted: 03/08/2019] [Indexed: 11/23/2022] Open
Abstract
The spindle assembly checkpoint (SAC) delays anaphase onset until sister chromosomes are bound to microtubules from opposite spindle poles. Only then can dynamic microtubules produce tension across sister kinetochores. The interdependence of kinetochore attachment and tension has proved challenging to understanding SAC mechanisms. Whether the SAC responds simply to kinetochore attachment or to tension status remains obscure. Unlike higher eukaryotes, budding yeast kinetochores bind only one microtubule, simplifying the relation between attachment and tension. We developed a Taxol-sensitive yeast model to reduce tension in fully assembled spindles. Our results show that low tension on bipolar-attached kinetochores delays anaphase onset, independent of detachment. The delay is transient relative to that imposed by unattached kinetochores. Furthermore, it is mediated by Bub1 and Bub3, but not Mad1, Mad2, and Mad3 (BubR1). Our results demonstrate that reduced tension delays anaphase onset via a signal that is temporally and mechanistically distinct from that produced by unattached kinetochores. Kinetochore attachment and tension are critical for proper chromosome segregation, but isolating the contribution of either stimulus has been challenging. Using a Taxol-sensitive yeast model, Proudfoot et al. show that reducing tension specifically produces a delay in mitotic progression that is temporally and mechanistically distinct from that produced by unattached kinetochores.
Collapse
Affiliation(s)
- Kathleen G Proudfoot
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA; Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Samuel J Anderson
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Sandeep Dave
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Angela R Bunning
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Pallavi Sinha Roy
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Abesh Bera
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Mohan L Gupta
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
28
|
Wang X, Li H, Li W, Xie J, Wang F, Peng X, Song Y, Tan G. The role of Caspase-1/GSDMD-mediated pyroptosis in Taxol-induced cell death and a Taxol-resistant phenotype in nasopharyngeal carcinoma regulated by autophagy. Cell Biol Toxicol 2020; 36:437-457. [PMID: 31993881 DOI: 10.1007/s10565-020-09514-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/24/2020] [Indexed: 10/25/2022]
Abstract
Taxol has been widely used as a first-line chemotherapeutic agent for the treatment of advanced nasopharyngeal carcinoma (NPC). However, acquired drug resistance has caused great difficulties in clinical treatment. Pyroptosis is a newly discovered programmed cell death pathway, and Caspase-1 and gasdermin D (GSDMD) play key roles in driving canonical pyroptosis. Increasing evidence suggests that pyroptosis is associated with the development of cancer; however, the function and mechanism of pyroptosis in NPC remain obscure. In this study, we observed that Taxol treatment caused pyroptotic cell death, along with activation of Caspase-1 and maturation of IL-1β, as well as cleavage of GSDMD, which is the canonical pyroptosis executor. Furthermore, Taxol-induced pyroptotic cell death could be suppressed by Caspase-1 inhibitor (Z-YVAD-FMK) and GSDMD knockout. Moreover, NPC parental cells demonstrated higher levels of pyroptosis than Taxol-resistant cells, and pyroptosis mediated by Caspase-1/GSDMD suppression induced by a Caspase-1 inhibitor and GSDMD knockout could induce a Taxol-resistant phenotype in vitro and in vivo. By transfecting an siRNA targeting Beclin-1 into NPC Taxol-resistant cells, we discovered that autophagy could negatively regulate pyroptosis by inhibiting Caspase-1/GSDMD activation. Taken together, our results indicated that Caspase-1/GSDMD mediated Taxol-induced pyroptosis and a Taxol-resistant phenotype in NPC cell lines, which may be regulated by autophagy. Thus, we provide novel insight into the mechanisms of Taxol-induced cell death and a promising approach to improve the therapeutic outcomes of patients with advanced NPC.
Collapse
Affiliation(s)
- Xianyao Wang
- Department of Otolaryngology-Head Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan Province, China
| | - Heqing Li
- Department of Otolaryngology-Head Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan Province, China
| | - Wei Li
- Department of Otolaryngology-Head Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan Province, China.,Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan Province, China
| | - Jun Xie
- Department of Otolaryngology-Head Neck Surgery, The Hunan Children's Hospital, Changsha, 410013, Hunan Province, China
| | - Fengjun Wang
- Department of Otolaryngology-Head Neck Surgery, The Xiangya Hospital of Central South University, Changsha, 410013, Hunan Province, China
| | - Xiaowei Peng
- Department of Oncology Plastic Surgery, Hunan Province Cancer Hospital, Changsha, 410007, Hunan Province, China
| | - Yexun Song
- Department of Otolaryngology-Head Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan Province, China. .,Department of Otolaryngology-Head Neck Surgery, The Xiangya Hospital of Central South University, Changsha, 410013, Hunan Province, China.
| | - Guolin Tan
- Department of Otolaryngology-Head Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan Province, China.
| |
Collapse
|
29
|
Lu H, Shu Q, Lou H, Chen Q. Mitochondria-Mediated Programmed Cell Death in Saccharomyces cerevisiae Induced by Betulinic Acid Is Accelerated by the Deletion of PEP4 Gene. Microorganisms 2019; 7:microorganisms7110538. [PMID: 31703462 PMCID: PMC6920885 DOI: 10.3390/microorganisms7110538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/27/2019] [Accepted: 11/05/2019] [Indexed: 11/22/2022] Open
Abstract
In this work, using Saccharomyces cerevisiae as a model, we showed that BetA could inhibit cell proliferation and lead to lethal cytotoxicity accompanying programmed cell death (PCD). Interestingly, it was found that vacuolar protease Pep4p played a pivotal role in BetA-induced S. cerevisiae PCD. The presence of Pep4p reduced the damage of BetA-induced cells. This work implied that BetA may induce cell death of S. cerevisiae through mitochondria-mediated PCD, and the deletion of Pep4 gene possibly accelerated the effect of PCD. The present investigation provided the preliminary research for the complicated mechanism of BetA-induced cell PCD regulated by vacular protease Pep4p and lay the foundation for understanding of the Pep4p protein in an animal model.
Collapse
Affiliation(s)
| | | | | | - Qihe Chen
- Correspondence: ; Tel.: +86-0571-8698-4316
| |
Collapse
|
30
|
Laera L, Guaragnella N, Giannattasio S, Moro L. 6-Thioguanine and Its Analogs Promote Apoptosis of Castration-Resistant Prostate Cancer Cells in a BRCA2-Dependent Manner. Cancers (Basel) 2019; 11:E945. [PMID: 31284411 PMCID: PMC6678799 DOI: 10.3390/cancers11070945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/03/2019] [Indexed: 12/27/2022] Open
Abstract
Background: Mutations in the oncosuppressor gene BReast CAncer susceptibility gene 2 (BRCA2) predispose to aggressive forms of prostate cancer which show poor response to taxane-based therapy, the standard treatment for castration-resistant, aggressive prostate cancer. Herein, we addressed the question whether changes in BRCA2 expression, a potential surrogate marker for BRCA2 activity, may affect the response of castration-resistant prostate cancer cells to 6-thioguanine (6-TG), a thiopurine used in the treatment of haematological malignancies. Methods: Yeast, normal prostate cells and castration-resistant prostate cancer cells were treated with 6-TG or its analogues, in presence or absence of paclitaxel, or with olaparib, a poly-(ADP-ribose) polymerase (PARP) inhibitor currently in clinical trials for treatment of metastatic castration-resistant prostate cancer, and cell proliferation, apoptosis and androgen receptor (AR) levels were measured. Results: 6-TG inhibited cell proliferation in yeast, normal and castration-resistant prostate cancer cells but promoted apoptosis only in cancer cells. Suppression of BRCA2 expression by siRNA or shRNA increased the sensitivity to 6-TG- and olaparib-induced apoptosis but did not affect cancer cell response to taxane. Intriguingly, 6-TG reduced AR expression levels independently on BRCA2 expression. Instead, olaparib decreased AR levels only in BRCA2-knockdown prostate cancer cells. Notably, overexpression of BRCA2 resulted in resistance of castration-resistant prostate cancer cells to 6-TG-, taxane- and olaparib-based treatment but promoted sensitivity to apoptosis induced by 2-amino-6-bromopurine and 2,6-dithiopurine, two 6-TG analogues. Conclusions: Our results provide a pre-clinical rationale for the use of 6-TG in the treatment of BRCA2-deficient castration-resistant prostate cancers, and of certain 6-TG analogues for treatment of BRCA2-proficient prostate cancers.
Collapse
Affiliation(s)
- Luna Laera
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Nicoletta Guaragnella
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Sergio Giannattasio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
| | - Loredana Moro
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola 122/O, 70126 Bari, Italy.
| |
Collapse
|
31
|
Jiang X, McKinley ET, Xie J, Li H, Xu J, Gore JC. In vivo magnetic resonance imaging of treatment-induced apoptosis. Sci Rep 2019; 9:9540. [PMID: 31266982 PMCID: PMC6606573 DOI: 10.1038/s41598-019-45864-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 06/03/2019] [Indexed: 01/06/2023] Open
Abstract
Imaging apoptosis could provide an early and specific means to monitor tumor responses to treatment. To date, despite numerous attempts to develop molecular imaging approaches, there is still no widely-accepted and reliable method for in vivo imaging of apoptosis. We hypothesized that the distinct cellular morphologic changes associated with treatment-induced apoptosis, such as cell shrinkage, cytoplasm condensation, and DNA fragmentation, can be detected by temporal diffusion spectroscopy imaging (TDSI). Cetuximab-induced apoptosis was assessed in vitro and in vivo with cetuximab-sensitive (DiFi) and insensitive (HCT-116) human colorectal cancer cell lines by TDSI. TDSI findings were complemented by flow cytometry and immunohistochemistry. Cell cycle analysis and flow cytometry detected apoptotic cell shrinkage in cetuximab-treated DiFi cells, and significant apoptosis was confirmed by histology. TDSI-derived parameters quantified key morphological changes including cell size decreases during apoptosis in responsive tumors that occurred earlier than gross tumor volume regression. TDSI provides a unique measurement of apoptosis by identifying cellular characteristics, particularly cell shrinkage. The method will assist in understanding the underlying biology of solid tumors and predict tumor response to therapies. TDSI is free of any exogenous agent or radiation, and hence is very suitable to be incorporated into clinical applications.
Collapse
Affiliation(s)
- Xiaoyu Jiang
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Eliot T McKinley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jingping Xie
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Hua Li
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Junzhong Xu
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA.
| | - John C Gore
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
32
|
Sarin H. Conserved molecular mechanisms underlying the effects of small molecule xenobiotic chemotherapeutics on cells. Mol Clin Oncol 2015; 4:326-368. [PMID: 26998284 DOI: 10.3892/mco.2015.714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/08/2015] [Indexed: 12/14/2022] Open
Abstract
For proper determination of the apoptotic potential of chemoxenobiotics in synergism, it is important to understand the modes, levels and character of interactions of chemoxenobiotics with cells in the context of predicted conserved biophysical properties. Chemoxenobiotic structures are studied with respect to atom distribution over molecular space, the predicted overall octanol-to-water partition coefficient (Log OWPC; unitless) and molecular size viz a viz van der Waals diameter (vdWD). The Log OWPC-to-vdWD (nm-1 ) parameter is determined, and where applicable, hydrophilic interacting moiety/core-to-vdWD (nm-1 ) and lipophilic incorporating hydrophobic moiety/core-to-vdWD (nm-1 ) parameters of their part-structures are determined. The cellular and sub-cellular level interactions of the spectrum of xenobiotic chemotherapies have been characterized, for which a classification system has been developed based on predicted conserved biophysical properties with respect to the mode of chemotherapeutic effect. The findings of this study are applicable towards improving the effectiveness of existing combination chemotherapy regimens and the predictive accuracy of personalized cancer treatment algorithms as well as towards the selection of appropriate novel xenobiotics with the potential to be potent chemotherapeutics for dendrimer nanoparticle-based effective transvascular delivery.
Collapse
Affiliation(s)
- Hemant Sarin
- Freelance Investigator in Translational Science and Medicine, Charleston, WV 25314, USA
| |
Collapse
|
33
|
Sarin H. Pressuromodulation at the cell membrane as the basis for small molecule hormone and peptide regulation of cellular and nuclear function. J Transl Med 2015; 13:372. [PMID: 26610602 PMCID: PMC4660824 DOI: 10.1186/s12967-015-0707-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 10/21/2015] [Indexed: 12/15/2022] Open
Abstract
Building on recent knowledge that the specificity of the biological interactions of small molecule hydrophiles and lipophiles across microvascular and epithelial barriers, and with cells, can be predicted on the basis of their conserved biophysical properties, and the knowledge that biological peptides are cell membrane impermeant, it has been further discussed herein that cellular, and thus, nuclear function, are primarily regulated by small molecule hormone and peptide/factor interactions at the cell membrane (CM) receptors. The means of regulating cellular, and thus, nuclear function, are the various forms of CM Pressuromodulation that exist, which include Direct CM Receptor-Mediated Stabilizing Pressuromodulation, sub-classified as Direct CM Receptor-Mediated Stabilizing Shift Pressuromodulation (Single, Dual or Tri) or Direct CM Receptor-Mediated Stabilizing Shift Pressuromodulation (Single, Dual or Tri) cum External Cationomodulation (≥3+ → 1+); which are with respect to acute CM receptor-stabilizing effects of small biomolecule hormones, growth factors or cytokines, and also include Indirect CM- or CM Receptor-Mediated Pressuromodulation, sub-classified as Indirect 1ary CM-Mediated Shift Pressuromodulation (Perturbomodulation), Indirect 2ary CM Receptor-Mediated Shift Pressuromodulation (Tri or Quad Receptor Internal Pseudo-Cationomodulation: SS 1+), Indirect 3ary CM Receptor-Mediated Shift Pressuromodulation (Single or Dual Receptor Endocytic External Cationomodulation: 2+) or Indirect (Pseudo) 3ary CM Receptor-Mediated Shift Pressuromodulation (Receptor Endocytic Hydroxylocarbonyloetheroylomodulation: 0), which are with respect to sub-acute CM receptor-stabilizing effects of small biomolecules, growth factors or cytokines. As a generalization, all forms of CM pressuromodulation decrease CM and nuclear membrane (NM) compliance (whole cell compliance), due to pressuromodulation of the intracellular microtubule network and increases the exocytosis of pre-synthesized vesicular endogolgi peptides and small molecules as well as nuclear-to-rough endoplasmic reticulum membrane proteins to the CM, with the potential to simultaneously increase the NM-associated chromatin DNA transcription of higher molecular weight protein forms, secretory and CM-destined, mitochondrial and nuclear, including the highest molecular weight nuclear proteins, Ki67 (359 kDa) and Separase (230 kDa), with the latter leading to mitogenesis and cell division; while, in the case of growth factors or cytokines with external cationomodulation capability, CM Receptor External Cationomodulation of CM receptors (≥3+ → 1+) results in cationic extracellular interaction (≥3+) with extracellular matrix heparan sulfates (≥3+ → 1+) concomitant with lamellopodesis and cell migration. It can be surmised that the modulation of cellular, and nuclear, function is mostly a reactive process, governed, primarily, by small molecule hormone and peptide interactions at the cell membrane, with CM receptors and the CM itself. These insights taken together, provide valuable translationally applicable knowledge.
Collapse
Affiliation(s)
- Hemant Sarin
- Freelance Investigator in Translational Science and Medicine, Charleston, WV, USA.
| |
Collapse
|
34
|
Liu W, Gu J, Qi J, Zeng XN, Ji J, Chen ZZ, Sun XL. Lentinan exerts synergistic apoptotic effects with paclitaxel in A549 cells via activating ROS-TXNIP-NLRP3 inflammasome. J Cell Mol Med 2015; 19:1949-55. [PMID: 25858687 PMCID: PMC4549045 DOI: 10.1111/jcmm.12570] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/29/2015] [Indexed: 12/18/2022] Open
Abstract
Paclitaxel is generally used to treat cancers in clinic as an inhibitor of cell division. However, the acquired resistance in tumours limits its clinical efficacy. Therefore, the aim of this study was to detect whether co-treatment with lentinan enhanced the anti-cancer effects of paclitaxel in A549 cells. We found that the combination of paclitaxel and lentinan resulted in a significantly stronger inhibition on A549 cell proliferation than paclitaxel treatment alone. Co-treatment with paclitaxel and lentinan enhanced cell apoptosis rate by inducing caspase-3 activation. Furthermore, co-treatment with paclitaxel and lentinan significantly triggered reactive oxygen species (ROS) production, and increased thioredoxin-interacting protein (TXNIP) expression. Moreover, co-treatment with paclitaxel and lentinan enhanced TXNIP-NLRP3 interaction, and activated NLRP3 inflammasome whereat interleukin-1β levels were increased and cell apoptosis was induced. In addition, combination of paclitaxel and lentinan could activate apoptosis signal regulating kinase-1 (ASK1)/p38 mitogen-activated protein kinase (MAPK) signal which also contributed to cell apoptosis. Taken together, co-treatment with paclitaxel and lentinan exerts synergistic apoptotic effects in A549 cells through inducing ROS production, and activating NLRP3 inflammasome and ASK1/p38 MAPK signal pathway.
Collapse
Affiliation(s)
- Wei Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Gu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Qi
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao-Ning Zeng
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Juan Ji
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zheng-Zhen Chen
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiu-Lan Sun
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
35
|
Zhu Z, Mu Y, Qi C, Wang J, Xi G, Guo J, Mi R, Zhao F. CYP1B1 enhances the resistance of epithelial ovarian cancer cells to paclitaxel in vivo and in vitro. Int J Mol Med 2014; 35:340-8. [PMID: 25516145 PMCID: PMC4292762 DOI: 10.3892/ijmm.2014.2041] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 11/11/2014] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer (OC) is the most frequent cause of mortality among gynecological malignancies, with a 5-year survival rate of approximately 30%. The standard regimen for OC therapy includes a platinum agent combined with a taxane, to which the patients frequently acquire resistance. Resistance arises from the oxidation of anticancer drugs by CYP1B1, a cytochrome P450 enzyme overexpressed in malignant OC. The aim of the present study was to determine the role of CYP1B1 expression in the drug resistance of OC to the taxane, paclitaxel (PTX). Immunohistochemical staining was used to assess CYP1B1 expression in a panel of ovarian samples (53 primary cancer samples, 14 samples of metastastic cancer, 30 benign tumor samples and 19 normal tissue samples). Semi-quantitative RT-PCR was also performed to determine CYP1B1 expression in several OC cell lines. Finally, we used proliferation and toxicity assays, as well as a mouse xenograft model using nude mice to determine whether α-naphthoflavone (ANF), a CYP1B1 specific inhibitor, reduces resistance to PTX. CYP1B1 was overexpressed in the samples from primary and metastatic loci of epithelial ovarian cancers. In some cell lines, PTX induced CYP1B1 expression, which resulted in drug resistance. Exposure to ANF reduced drug resistance and enhanced the sensitivity of OC cells to PTX in vitro and in vivo. The expression profile of CYP1B1 suggests that it has the potential to be a useful diagnostic marker and prognostic factor for malignant OC. The inhibition of CYP1B1 expression by specific agents may provide a novel therapeutic strategy for the treatment of patients resistant to PTX and may improve the prognosis of these patients.
Collapse
Affiliation(s)
- Zhuangyan Zhu
- Department of Obstetrics and Gynecology, Shanxi Datong University School of Medicine, Datong, Shanxi 037009, P.R. China
| | - Yaqin Mu
- Institute of Immunology, Shanxi Datong University School of Medicine, Datong, Shanxi 037009, P.R. China
| | - Caixia Qi
- Institute of Immunology, Shanxi Datong University School of Medicine, Datong, Shanxi 037009, P.R. China
| | - Jian Wang
- Institute of Immunology, Shanxi Datong University School of Medicine, Datong, Shanxi 037009, P.R. China
| | - Guoping Xi
- Institute of Immunology, Shanxi Datong University School of Medicine, Datong, Shanxi 037009, P.R. China
| | - Juncheng Guo
- Institute of Immunology, Shanxi Datong University School of Medicine, Datong, Shanxi 037009, P.R. China
| | - Ruoran Mi
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Fuxi Zhao
- Institute of Immunology, Shanxi Datong University School of Medicine, Datong, Shanxi 037009, P.R. China
| |
Collapse
|
36
|
Dong Y, Ding D, Jiang H, Shi JR, Salvi R, Roth JA. Ototoxicity of paclitaxel in rat cochlear organotypic cultures. Toxicol Appl Pharmacol 2014; 280:526-33. [DOI: 10.1016/j.taap.2014.08.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/13/2014] [Accepted: 08/21/2014] [Indexed: 01/21/2023]
|
37
|
Dostál V, Libusová L. Microtubule drugs: action, selectivity, and resistance across the kingdoms of life. PROTOPLASMA 2014; 251:991-1005. [PMID: 24652407 DOI: 10.1007/s00709-014-0633-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/06/2014] [Indexed: 05/23/2023]
Abstract
Microtubule drugs such as paclitaxel, colchicine, vinblastine, trifluralin, or oryzalin form a chemically diverse group that has been reinforced by a large number of novel compounds over time. They all share the ability to change microtubule properties. The profound effects of disrupted microtubule systems on cell physiology can be used in research as well as anticancer treatment and agricultural weed control. The activity of microtubule drugs generally depends on their binding to α- and β-tubulin subunits. The microtubule drugs are often effective only in certain taxonomic groups, while other organisms remain resistant. Available information on the molecular basis of this selectivity is summarized. In addition to reviewing published data, we performed sequence data mining, searching for kingdom-specific signatures in plant, animal, fungal, and protozoan tubulin sequences. Our findings clearly correlate with known microtubule drug resistance determinants and add more amino acid positions with a putative effect on drug-tubulin interaction. The issue of microtubule network properties in plant cells producing microtubule drugs is also addressed.
Collapse
Affiliation(s)
- V Dostál
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Viničná 7, 128 43, Prague 2, Czech Republic
| | | |
Collapse
|
38
|
Gao Y, Li H, Liu S, Zhang X, Sun S. Synergistic effect of fluconazole and doxycycline against Candida albicans biofilms resulting from calcium fluctuation and downregulation of fluconazole-inducible efflux pump gene overexpression. J Med Microbiol 2014; 63:956-961. [PMID: 24809386 DOI: 10.1099/jmm.0.072421-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Candida albicans biofilms are intrinsically resistant to antimicrobial agents. Previous work demonstrated that the antifungal activity of fluconazole against C. albicans biofilms is notably enhanced by doxycycline. In order to explore the synergistic mechanism of fluconazole and doxycycline, we investigated the changes of efflux pump gene expression, intracellular calcium concentration and cell cycle distribution after drug intervention in this study. The expression levels of CDR1, CDR2 and MDR1 were determined by real-time PCR, and the results showed that fluconazole alone could stimulate the high expression of CDR1, CDR2 and MDR1, and the combination of doxycycline and fluconazole downregulated the gene overexpression induced by fluconazole. Intracellular calcium concentration was determined using Fluo-3/AM by observing the fluorescence with flow cytometry. A calcium fluctuation, which started 4 h and peaked 8 h after the treatment with fluconazole, was observed. The combined drugs also initiated a calcium fluctuation after 4 h treatment and showed a peak at 16 h, and the peak was higher than that stimulated by fluconazole alone. The cell cycle was measured using flow cytometry. Fluconazole alone and the combined drugs both induced a reduction in the percentages of S-phase cells and an elevation in the percentages of cells in the G2/M phase. The results of this research showed that the synergism of fluconazole and doxycycline against C. albicans biofilms is associated with blockade of the efflux pump genes CDR1, CDR2 and MDR1, and stimulation of high intracellular calcium concentration. The findings of this study are of great significance in the search for new antifungal mechanisms.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Pharmacy, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, PR China
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, PR China
| | - Hui Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, PR China
| | - Shuyuan Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, PR China
| | - Xiang Zhang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, PR China
| | - Shujuan Sun
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Province, PR China
| |
Collapse
|
39
|
Construction of Multidrug-Sensitive Yeast with High Sporulation Efficiency. Biosci Biotechnol Biochem 2014; 75:1588-93. [DOI: 10.1271/bbb.110311] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
40
|
Dodecyl and octyl esters of fluorescein as protonophores and uncouplers of oxidative phosphorylation in mitochondria at submicromolar concentrations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:149-58. [DOI: 10.1016/j.bbabio.2013.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/12/2013] [Accepted: 09/18/2013] [Indexed: 11/18/2022]
|
41
|
Hanna R, Maass DR, Atkinson PH, Northcote PT, Teesdale-Spittle PH, Bellows DS, Miller JH. Characterizing the laulimalide-peloruside binding site using site-directed mutagenesis of TUB2 in S. cerevisiae. MOLECULAR BIOSYSTEMS 2013; 10:110-6. [PMID: 24161989 DOI: 10.1039/c3mb70380k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Baker's yeast, Saccharomyces cerevisiae, has significant sequence conservation with a core subset of mammalian proteins and can serve as a model for disease processes. The aim of this study was to determine whether yeast could be used as a model system to identify new agents that interact with the laulimalide-peloruside binding site on β-tubulin. Agents that bind to this site cause stabilization of microtubules and interfere with cell division. Based on the location of the proposed laulimalide-peloruside binding site and of previously identified mutations shown to cause resistance in mammalian cells, we made the corresponding mutations in yeast and tested whether they conferred resistance to laulimalide and peloruside. Mutations A296T and R306H, which cause 6-fold and 40-fold increased resistance in human 1A9 ovarian carcinoma cells, respectively, also led to resistance in yeast to these compounds. Similarly, other mutations led to resistance or, in one case, increased sensitivity. Thus, we conclude that yeast is an appropriate model to screen for small molecule drugs that may be efficacious in cancer therapy in humans through the newly characterised laulimalide-peloruside binding site.
Collapse
Affiliation(s)
- Reem Hanna
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Kelburn, Wellington, 6012, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
42
|
Entwistle RA, Rizk RS, Cheng DM, Lushington GH, Himes RH, Gupta ML. Differentiating between models of epothilone binding to microtubules using tubulin mutagenesis, cytotoxicity, and molecular modeling. ChemMedChem 2012; 7:1580-6. [PMID: 22807375 DOI: 10.1002/cmdc.201200286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Indexed: 11/08/2022]
Abstract
Microtubule stabilizers are powerful antimitotic compounds and represent a proven cancer treatment strategy. Several classes of compounds in clinical use or trials, such as the taxanes and epothilones, bind to the same region of β-tubulin. Determining how these molecules interact with tubulin and stabilize microtubules is important both for understanding the mechanism of action and enhancing chemotherapeutic potential, for example, minimizing side effects, increasing solubility, and overcoming resistance. Structural studies using non-polymerized tubulin or stabilized polymers have produced different models of epothilone binding. In this study we used directed mutagenesis of the binding site on Saccharomyces cerevisiae β-tubulin to analyze interactions between epothilone B and its biologically relevant substrate, dynamic microtubules. Five engineered amino acid changes contributed to a 125-fold increase in epothilone B cytotoxicity independent of inherent microtubule stability. The mutagenesis of endogenous β-tubulin was done in otherwise isogenic strains. This facilitated the correlation of amino acid substitutions with altered cytotoxicity using molecular mechanics simulations. The results, which are based on the interaction between epothilone B and dynamic microtubules, most strongly support the binding mode determined by NMR spectroscopy-based studies. This work establishes a system for discriminating between potential binding modes and among various compounds and/or analogues using a sensitive biological activity-based readout.
Collapse
Affiliation(s)
- Ruth A Entwistle
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045-7534, USA
| | | | | | | | | | | |
Collapse
|
43
|
Farrugia G, Balzan R. Oxidative stress and programmed cell death in yeast. Front Oncol 2012; 2:64. [PMID: 22737670 PMCID: PMC3380282 DOI: 10.3389/fonc.2012.00064] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/02/2012] [Indexed: 12/11/2022] Open
Abstract
Yeasts, such as Saccharomyces cerevisiae, have long served as useful models for the study of oxidative stress, an event associated with cell death and severe human pathologies. This review will discuss oxidative stress in yeast, in terms of sources of reactive oxygen species (ROS), their molecular targets, and the metabolic responses elicited by cellular ROS accumulation. Responses of yeast to accumulated ROS include upregulation of antioxidants mediated by complex transcriptional changes, activation of pro-survival pathways such as mitophagy, and programmed cell death (PCD) which, apart from apoptosis, includes pathways such as autophagy and necrosis, a form of cell death long considered accidental and uncoordinated. The role of ROS in yeast aging will also be discussed.
Collapse
Affiliation(s)
- Gianluca Farrugia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of MaltaMsida, Malta
| | - Rena Balzan
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of MaltaMsida, Malta
| |
Collapse
|
44
|
Wilmes A, Hanna R, Heathcott RW, Northcote PT, Atkinson PH, Bellows DS, Miller JH. Chemical genetic profiling of the microtubule-targeting agent peloruside A in budding yeast Saccharomyces cerevisiae. Gene 2012; 497:140-6. [DOI: 10.1016/j.gene.2012.01.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 01/19/2012] [Accepted: 01/25/2012] [Indexed: 11/28/2022]
|
45
|
Chen SCA, Lewis RE, Kontoyiannis DP. Direct effects of non-antifungal agents used in cancer chemotherapy and organ transplantation on the development and virulence of Candida and Aspergillus species. Virulence 2011; 2:280-95. [PMID: 21701255 PMCID: PMC3173675 DOI: 10.4161/viru.2.4.16764] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/01/2011] [Accepted: 06/03/2011] [Indexed: 11/19/2022] Open
Abstract
Conventional antineoplastic, novel immunosuppressive agents and antibiotics used in cancer treatment can directly affect the growth, development and virulence of Candida and Aspergillus species. Cytotoxic and cisplatin compounds have anti-Candida activity and may be synergistic with antifungal drugs; they also inhibit Candida and Aspergillus filamentation/conidation and effect increased virulence in vitro. Glucocorticoids enhance Candida adherence to epithelial cells, germination in serum and in vitro secretion of phospholipases and proteases, as well as growth of A. fumigatus. Calcineurin and target of rapamycin inhibitors perturb Candida and Aspergillus morphogenesis, stress responses and survival in serum, reduce azole tolerance in Candida, but yield conflicting in vivo data. Inhibition of candidal heat shock protein 90 and candidal-specific histone deacetylase represent feasible therapeutic approaches for candidiasis. Tyrosine kinase inhibitors inhibit fungal cell entry into epithelial cells and phagocytosis. Quinolone and other antibiotics may augment activity of azole and polyene agents. The correlation of in vitro effects with clinically meaningful in vivo systems is warranted.
Collapse
Affiliation(s)
- Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, University of Sydney, Westmead, NSW Australia
| | | | | |
Collapse
|
46
|
Park JE, Woo SR, Kang CM, Juhn KM, Ju YJ, Shin HJ, Joo HY, Park ER, Park IC, Hong SH, Hwang SG, Lee JK, Kim HK, Cho MH, Park GH, Lee KH. Paclitaxel stimulates chromosomal fusion and instability in cells with dysfunctional telomeres: implication in multinucleation and chemosensitization. Biochem Biophys Res Commun 2010; 404:615-21. [PMID: 21144828 DOI: 10.1016/j.bbrc.2010.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 12/02/2010] [Indexed: 01/16/2023]
Abstract
The anticancer effect of paclitaxel is attributable principally to irreversible promotion of microtubule stabilization and is hampered upon development of chemoresistance by tumor cells. Telomere shortening, and eventual telomere erosion, evoke chromosomal instability, resulting in particular cellular responses. Using telomerase-deficient cells derived from mTREC-/-p53-/- mice, here we show that, upon telomere erosion, paclitaxel propagates chromosomal instability by stimulating chromosomal end-to-end fusions and delaying the development of multinucleation. The end-to-end fusions involve both the p- and q-arms in cells in which telomeres are dysfunctional. Paclitaxel-induced chromosomal fusions were accompanied by prolonged G2/M cell cycle arrest, delayed multinucleation, and apoptosis. Telomere dysfunctional cells with mutlinucleation eventually underwent apoptosis. Thus, as telomere erosion proceeds, paclitaxel stimulates chromosomal fusion and instability, and both apoptosis and chemosensitization eventually develop.
Collapse
Affiliation(s)
- Jeong-Eun Park
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
α-Tubulin mutations alter oryzalin affinity and microtubule assembly properties to confer dinitroaniline resistance. EUKARYOTIC CELL 2010; 9:1825-34. [PMID: 20870876 DOI: 10.1128/ec.00140-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Plant and protozoan microtubules are selectively sensitive to dinitroanilines, which do not disrupt vertebrate or fungal microtubules. Tetrahymena thermophila is an abundant source of dinitroaniline-sensitive tubulin, and we have modified the single T. thermophila α-tubulin gene to create strains that solely express mutant α-tubulin in functional dimers. Previous research identified multiple α-tubulin mutations that confer dinitroaniline resistance in the human parasite Toxoplasma gondii, and when two of these mutations (L136F and I252L) were introduced into T. thermophila, they conferred resistance in these free-living ciliates. Purified tubulin heterodimers composed of L136F or I252L α-tubulin display decreased affinity for the dinitroaniline oryzalin relative to wild-type T. thermophila tubulin. Moreover, the L136F substitution dramatically reduces the critical concentration for microtubule assembly relative to the properties of wild-type T. thermophila tubulin. Our data provide additional support for the proposed dinitroaniline binding site on α-tubulin and validate the use of T. thermophila for expression of genetically homogeneous populations of mutant tubulins for biochemical characterization.
Collapse
|
48
|
Endo K, Mizuguchi M, Harata A, Itoh G, Tanaka K. Nocodazole induces mitotic cell death with apoptotic-like features inSaccharomyces cerevisiae. FEBS Lett 2010; 584:2387-92. [DOI: 10.1016/j.febslet.2010.04.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 03/10/2010] [Accepted: 04/07/2010] [Indexed: 11/25/2022]
|
49
|
Wang M, Liu S, Li Y, Xu R, Lu C, Shen Y. Protoplast Mutation and Genome Shuffling Induce the Endophytic Fungus Tubercularia sp. TF5 to Produce New Compounds. Curr Microbiol 2010; 61:254-60. [DOI: 10.1007/s00284-010-9604-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 02/01/2010] [Indexed: 10/19/2022]
|
50
|
Xu C, Wang J, Gao Y, Lin H, Du L, Yang S, Long S, She Z, Cai X, Zhou S, Lu Y. The anthracenedione compound bostrycin induces mitochondria-mediated apoptosis in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 2010; 10:297-308. [PMID: 20345898 DOI: 10.1111/j.1567-1364.2010.00615.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Bostrycin is an anthracenedione with phytotoxic and antibacterial activity that belongs to the large family of quinones. We have isolated bostrycin from the secondary metabolites of a mangrove endophytic fungus, no. 1403, collected from the South China Sea. Using the yeast Saccharomyces cerevisiae as a model, we show that bostrycin inhibits cell proliferation by blocking the cell cycle at G1 phase and ultimately leads to cell death in a time- and dose-dependent manner. Bostrycin-induced lethal cytotoxicity is accompanied with increased levels of intracellular reactive oxygen species and hallmarks of apoptosis such as chromatin condensation, DNA fragmentation and externalization of phosphatidylserine. We further show that bostrycin decreases mitochondrial membrane electric potential and causes mitochondrial destruction during the progression of cell death. Bostrycin-induced cell death was promoted in YCA1 null yeast strain but was partially rescued in AIF1 null mutant both in fermentative and respiratory media, strongly indicating that bostrycin induces apoptosis in yeast cells through a mitochondria-mediated but caspase-independent pathway.
Collapse
Affiliation(s)
- Chunling Xu
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|