1
|
K Amma I, Ingrole RSJ, Venkatesa Prabhu GK, Dominquez R, Kong D, Mangalara SCH, Mckenna GB, Gill HS. Di-Tyrosine Cross-Linking of Elastin-Like Polypeptides through Ruthenium Photoreaction To Form Scaffolds: Fine Tuning Mechanical Properties and Improving Cytocompatibility. Biomacromolecules 2025; 26:1580-1594. [PMID: 39968939 DOI: 10.1021/acs.biomac.4c01376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Ensuring that the mechanical properties of tissue engineering scaffolds align with those of the target tissues is crucial for their successful integration and functional performance. Tyrosine-tyrosine cross-links are found in nature in numerous proteins including resilin that exhibit enhanced toughness and energy storage capacity. Herein, we investigated the potential of tuning the mechanical properties of scaffolds made from elastin-like polypeptides (ELPs) containing tyrosine residues. Ruthenium-based photoreaction was used to form tyrosine cross-links. To enhance the cytocompatibility of the ELP scaffold, a continuous mode of washing was developed to remove residual ruthenium from the scaffolds. The continuous mode of washing was significantly superior in removing ruthenium and did so in a significantly shorter time as compared to batch washing and the conventional semibatch washing (also called dialysis washing). The range of storage moduli of the fabricated scaffolds spanned tens of Pa to hundreds of kPa. Human fibroblast cells were found to grow in the scaffolds and proliferate. Overall, this work offers a rationale for further developing tyrosine cross-linked ELPs for a broad range of tissue engineering applications.
Collapse
Affiliation(s)
- Iyeswaria K Amma
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Rohan S J Ingrole
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Ghanesh Kesav Venkatesa Prabhu
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Raul Dominquez
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Dejie Kong
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | | | - Gregory B Mckenna
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Harvinder Singh Gill
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
2
|
Sist P, Urbani R, Tramer F, Bandiera A, Passamonti S. The HELP-UnaG Fusion Protein as a Bilirubin Biosensor: From Theory to Mature Technological Development. Molecules 2025; 30:439. [PMID: 39942546 PMCID: PMC11820890 DOI: 10.3390/molecules30030439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/16/2025] Open
Abstract
HUG is the HELP-UnaG recombinant fusion protein featuring the typical functions of both HELP and UnaG. In HUG, the HELP domain is a thermoresponsive human elastin-like polypeptide. It forms a shield enwrapping the UnaG domain that emits bilirubin-dependent fluorescence. Here, we recapitulate the technological development of this bifunctional synthetic protein from the theoretical background of its distinct protein moieties to the detailed characterization of its macromolecular and functional properties. These pieces of knowledge are the foundations for HUG production and application in the fluorometric analysis of bilirubin and its congeners, biliverdin and bilirubin glucuronide. These bile pigments are metabolites that arise from the catabolism of heme, the prosthetic group of cytochromes, hemoglobin and several other intracellular enzymes engaged in electron transfer, oxygen transport and protection against oxygen free radicals. The HUG assay is a powerful, user-friendly and affordable analytical tool that alone supports research at each level of complexity or taxonomy of living entities, from enzymology, cell biology and pathophysiology to veterinary and clinical sciences.
Collapse
Affiliation(s)
- Paola Sist
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (P.S.); (F.T.); (A.B.)
| | - Ranieri Urbani
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Federica Tramer
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (P.S.); (F.T.); (A.B.)
| | - Antonella Bandiera
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (P.S.); (F.T.); (A.B.)
| | - Sabina Passamonti
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (P.S.); (F.T.); (A.B.)
| |
Collapse
|
3
|
Lowe CD, Larson HC, Cai Y, Chiang HT, Pozzo LD, Baneyx F, Cossairt BM. Induced Chirality in QDs Using Thermoresponsive Elastin-like Polypeptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1047-1056. [PMID: 39737696 DOI: 10.1021/acs.langmuir.4c04339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2025]
Abstract
Circular dichroism (CD) spectroscopy has emerged as a potent tool for probing chiral small-molecule ligand exchange on natively achiral quantum dots (QDs). In this study, we report a novel approach to identifying QD-biomolecule interactions by inducing chirality in CdS QDs using thermoresponsive elastin-like polypeptides (ELPs) engineered with C-terminal cysteine residues. Our method is based on a versatile two-step ligand exchange process starting from monodisperse oleate-capped QDs in nonpolar media and proceeding through an easily accessed achiral glycine-capped QD intermediate. Successful conjugation of the ELPs onto the QDs is confirmed by the diagnostic CD response corresponding to the QD electronic transitions in the visible range. The resulting ELP:CdS conjugates demonstrate thermally reversible coacervation, as observed through dynamic light scattering, small-angle X-ray scattering, and electron microscopy. This research provides a foundation for using induced chirality in QD electronic transitions to probe QD conjugation to complex peptides and proteins, opening pathways for designing dynamic, stimuli-responsive hybrid nanomaterials.
Collapse
Affiliation(s)
- Christopher D Lowe
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Helen C Larson
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yifeng Cai
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Huat Thart Chiang
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Lilo D Pozzo
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - François Baneyx
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
4
|
López
Barreiro D, Houben K, Schouten O, Koenderink GH, Thies JC, Sagt CMJ. Order-Disorder Balance in Silk-Elastin-like Polypeptides Determines Their Self-Assembly into Hydrogel Networks. ACS APPLIED MATERIALS & INTERFACES 2025; 17:650-662. [PMID: 39681513 PMCID: PMC11783522 DOI: 10.1021/acsami.4c17903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/18/2024]
Abstract
The biofabrication of recombinant structural proteins with a range of mechanical or structural features usually relies on the generation of protein libraries displaying variations in terms of amino acid composition, block structure, molecular weight, or physical/chemical cross-linking sites. This approach, while highly successful in generating a wealth of knowledge regarding the links between design features and material properties, has some inherent limitations related to its low throughput. This slows down the pace of the development of de novo recombinant structural proteins. Here, we propose an approach to tune the viscoelastic properties of temperature-responsive hydrogels made of silk-elastin-like polypeptides (SELPs) without modifying their sequence. To do so, we subject purified SELPs to two different postprocessing methods─water annealing or EtOH annealing─that alter the topology of highly disordered SELP networks via the formation of ordered intermolecular β-sheet physical cross-links. Combining different analytical techniques, we connect the order/disorder balance in SELPs with their gelling behavior. Furthermore, we show that introducing a functional block (in this case, a biomineralizing peptide) in the sequence of SELPs can disrupt its self-assembly and that such disruption can only be overcome by EtOH annealing. Our results suggest that postprocessing of as-purified SELPs might be a simple approach to tune the self-assembly of SELPs into biomaterials with bespoke viscoelastic properties beyond the traditional approach of developing SELP libraries via genetic engineering.
Collapse
Affiliation(s)
- Diego López
Barreiro
- Manufacturing
Futures Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
- Centre for
Nature-Inspired Engineering, Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
- dsm-firmenich
Science & Research, Biotechnology, Alexander Fleminglaan 1, Delft 2613 AX, The Netherlands
| | - Klaartje Houben
- dsm-firmenich
Science & Research, Analytical Sciences, Alexander Fleminglaan 1, Delft 2613 AX, The Netherlands
| | - Olaf Schouten
- dsm-firmenich
Science & Research, Analytical Sciences, Alexander Fleminglaan 1, Delft 2613 AX, The Netherlands
| | - Gijsje H. Koenderink
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Jens C. Thies
- DSM Biomedical, Urmonderbaan 22, Geleen 6160 BB, The Netherlands
| | - Cees M. J. Sagt
- dsm-firmenich
Science & Research, Biotechnology, Alexander Fleminglaan 1, Delft 2613 AX, The Netherlands
| |
Collapse
|
5
|
Patkar SS, Wang B, Mosquera AM, Kiick KL. Genetically Fusing Order-Promoting and Thermoresponsive Building Blocks to Design Hybrid Biomaterials. Chemistry 2024; 30:e202400582. [PMID: 38501912 PMCID: PMC11661552 DOI: 10.1002/chem.202400582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/20/2024]
Abstract
The unique biophysical and biochemical properties of intrinsically disordered proteins (IDPs) and their recombinant derivatives, intrinsically disordered protein polymers (IDPPs) offer opportunities for producing multistimuli-responsive materials; their sequence-encoded disorder and tendency for phase separation facilitate the development of multifunctional materials. This review highlights the strategies for enhancing the structural diversity of elastin-like polypeptides (ELPs) and resilin-like polypeptides (RLPs), and their self-assembled structures via genetic fusion to ordered motifs such as helical or beta sheet domains. In particular, this review describes approaches that harness the synergistic interplay between order-promoting and thermoresponsive building blocks to design hybrid biomaterials, resulting in well-structured, stimuli-responsive supramolecular materials ordered on the nanoscale.
Collapse
Affiliation(s)
- Sai S Patkar
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
- Eli Lilly and Company, 450 Kendall Street, Cambridge, MA, 02142, United States
| | - Bin Wang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Ana Maria Mosquera
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
| |
Collapse
|
6
|
Grazon C, Garanger E, Lalanne P, Ibarboure E, Galagan JE, Grinstaff MW, Lecommandoux S. Transcription-Factor-Induced Aggregation of Biomimetic Oligonucleotide- b-Protein Micelles. Biomacromolecules 2023; 24:5027-5034. [PMID: 37877162 DOI: 10.1021/acs.biomac.3c00662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Polymeric micelles and especially those based on natural diblocks are of particular interest due to their advantageous properties in terms of molecular recognition, biocompatibility, and biodegradability. We herein report a facile and straightforward synthesis of thermoresponsive elastin-like polypeptide (ELP) and oligonucleotide (ON) diblock bioconjugates, ON-b-ELP, through copper-catalyzed azide-alkyne cycloaddition. The resulting thermosensitive diblock copolymer self-assembles above its critical micelle temperature (CMT ∼30 °C) to form colloidally stable micelles of ∼50 nm diameter. The ON-b-ELP micelles hybridize with an ON complementary strand and maintain their size and stability. Next, we describe the capacity of these micelles to bind proteins, creating more complex structures using the classic biotin-streptavidin pairing and the specific recognition between a transcription factor protein and the ON strand. In both instances, the micelles are intact, form larger structures, and retain their sensitivity to temperature.
Collapse
Affiliation(s)
- Chloé Grazon
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence F-33400, France
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Elisabeth Garanger
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France
| | - Pierre Lalanne
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France
| | - Emmanuel Ibarboure
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France
| | - James E Galagan
- Department of Microbiology, Boston University, Boston, Massachusetts 02118, United States
| | - Mark W Grinstaff
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | | |
Collapse
|
7
|
Guo Y, Liu S, Jing D, Liu N, Luo X. The construction of elastin-like polypeptides and their applications in drug delivery system and tissue repair. J Nanobiotechnology 2023; 21:418. [PMID: 37951928 PMCID: PMC10638729 DOI: 10.1186/s12951-023-02184-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023] Open
Abstract
Elastin-like polypeptides (ELPs) are thermally responsive biopolymers derived from natural elastin. These peptides have a low critical solution temperature phase behavior and can be used to prepare stimuli-responsive biomaterials. Through genetic engineering, biomaterials prepared from ELPs can have unique and customizable properties. By adjusting the amino acid sequence and length of ELPs, nanostructures, such as micelles and nanofibers, can be formed. Correspondingly, ELPs have been used for improving the stability and prolonging drug-release time. Furthermore, ELPs have widespread use in tissue repair due to their biocompatibility and biodegradability. Here, this review summarizes the basic property composition of ELPs and the methods for modulating their phase transition properties, discusses the application of drug delivery system and tissue repair and clarifies the current challenges and future directions of ELPs in applications.
Collapse
Affiliation(s)
- Yingshu Guo
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Shiwei Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Dan Jing
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Nianzu Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
8
|
Garcia Garcia C, Patkar SS, Wang B, Abouomar R, Kiick KL. Recombinant protein-based injectable materials for biomedical applications. Adv Drug Deliv Rev 2023; 193:114673. [PMID: 36574920 DOI: 10.1016/j.addr.2022.114673] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Injectable nanocarriers and hydrogels have found widespread use in a variety of biomedical applications such as local and sustained biotherapeutic cargo delivery, and as cell-instructive matrices for tissue engineering. Recent advances in the development and application of recombinant protein-based materials as injectable platforms under physiological conditions have made them useful platforms for the development of nanoparticles and tissue engineering matrices, which are reviewed in this work. Protein-engineered biomaterials are highly customizable, and they provide distinctly tunable rheological properties, encapsulation efficiencies, and delivery profiles. In particular, the key advantages of emerging technologies which harness the stimuli-responsive properties of recombinant polypeptide-based materials are highlighted in this review.
Collapse
Affiliation(s)
- Cristobal Garcia Garcia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Sai S Patkar
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Bin Wang
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Ramadan Abouomar
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE 19176, USA.
| |
Collapse
|
9
|
López
Barreiro D, Folch-Fortuny A, Muntz I, Thies JC, Sagt CM, Koenderink GH. Sequence Control of the Self-Assembly of Elastin-Like Polypeptides into Hydrogels with Bespoke Viscoelastic and Structural Properties. Biomacromolecules 2023; 24:489-501. [PMID: 36516874 PMCID: PMC9832484 DOI: 10.1021/acs.biomac.2c01405] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The biofabrication of structural proteins with controllable properties via amino acid sequence design is interesting for biomedicine and biotechnology, yet a complete framework that connects amino acid sequence to material properties is unavailable, despite great progress to establish design rules for synthesizing peptides and proteins with specific conformations (e.g., unfolded, helical, β-sheets, or β-turns) and intermolecular interactions (e.g., amphipathic peptides or hydrophobic domains). Molecular dynamics (MD) simulations can help in developing such a framework, but the lack of a standardized way of interpreting the outcome of these simulations hinders their predictive value for the design of de novo structural proteins. To address this, we developed a model that unambiguously classifies a library of de novo elastin-like polypeptides (ELPs) with varying numbers and locations of hydrophobic/hydrophilic and physical/chemical-cross-linking blocks according to their thermoresponsiveness at physiological temperature. Our approach does not require long simulation times or advanced sampling methods. Instead, we apply (un)supervised data analysis methods to a data set of molecular properties from relatively short MD simulations (150 ns). We also experimentally investigate hydrogels of those ELPs from the library predicted to be thermoresponsive, revealing several handles to tune their mechanical and structural properties: chain hydrophilicity/hydrophobicity or block distribution control the viscoelasticity and thermoresponsiveness, whereas ELP concentration defines the network permeability. Our findings provide an avenue to accelerate the design of de novo ELPs with bespoke phase behavior and material properties.
Collapse
Affiliation(s)
- Diego López
Barreiro
- DSM
Biosciences and Process Innovation, DSM, Alexander Fleminglaan 1, 2613 AXDelft, The Netherlands
| | - Abel Folch-Fortuny
- DSM
Biodata and Translation, DSM, Alexander Fleminglaan 1, 2613 AXDelft, The Netherlands
| | - Iain Muntz
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZDelft, The Netherlands
| | - Jens C. Thies
- DSM
Biomedical, DSM, Urmonderbaan
22, 6160 BB, Geleen, The Netherlands,E-mail:
| | - Cees M.J. Sagt
- DSM
Biosciences and Process Innovation, DSM, Alexander Fleminglaan 1, 2613 AXDelft, The Netherlands,E-mail:
| | - Gijsje H. Koenderink
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZDelft, The Netherlands,E-mail:
| |
Collapse
|
10
|
Garanger E, Lecommandoux S. Emerging opportunities in bioconjugates of Elastin-like polypeptides with synthetic or natural polymers. Adv Drug Deliv Rev 2022; 191:114589. [PMID: 36323382 DOI: 10.1016/j.addr.2022.114589] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 01/24/2023]
Abstract
Nature is an everlasting source of inspiration for chemical and polymer scientists seeking to develop ever more innovative materials with greater performances. Natural structural proteins are particularly scrutinized to design biomimetic materials. Often characterized by repeat peptide sequences, that together interact by inter- and intramolecular interactions and form a 3D skeleton, they contribute to the mechanical properties of individual cells, tissues, organs, and whole organisms. (Numata, K. Polymer Journal 2020, 52, 1043-1056) Among them elastin, and its main repeat sequences, have been a source of intense studies for more than 50 years resulting in the specific research field dedicated to elastin-like polypeptides (ELPs). These are currently widely investigated in different applications, namely protein purification, tissue engineering, and drug delivery, and some technologies based on ELPs are currently explored by several start-up companies. In the present review, we have summarized pioneering contributions on ELPs, progress made in their genetic engineering, and understanding of their thermal behavior and self-assembly properties. Considered as intrinsically disordered protein polymers, we have finally focused on the works where ELPs have been conjugated to other synthetic macromolecules as covalent hybrid, statistical, graft, or block copolymers, highlighting the huge opportunities that have still not been explored so far.
Collapse
Affiliation(s)
- Elisabeth Garanger
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, ENSCBP, 16 Avenue Pey-Berland, Pessac F-33600, France.
| | - Sébastien Lecommandoux
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, ENSCBP, 16 Avenue Pey-Berland, Pessac F-33600, France.
| |
Collapse
|
11
|
Development of truncated elastin-like peptide analogues with improved temperature-response and self-assembling properties. Sci Rep 2022; 12:19414. [PMID: 36371418 PMCID: PMC9653453 DOI: 10.1038/s41598-022-23940-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
Functional peptides, which are composed of proteinogenic natural amino acids, are expected to be used as biomaterials with minimal environmental impact. Synthesizing a functional peptide with a shorter amino acid sequence while retaining its function is a easy and economical strategy. Furthermore, shortening functional peptides helps to elucidate the mechanism of their functional core region. Truncated elastin-like peptides (ELPs) are peptides consisting of repetitive sequences, derived from the elastic protein tropoelastin, that show the thermosensitive formation of coacervates. In this study, to obtain shortened ELP analogues, we synthesized several (Phe-Pro-Gly-Val-Gly)n (FPGVG)n analogues with one or two amino acid residues deleted from each repeat sequence, such as the peptide analogues consisting of FPGV and/or FPG sequences. Among the novel truncated ELP analogues, the 16-mer (FPGV)4 exhibited a stronger coacervation ability than the 25-mer (FPGVG)5. These results indicated that the coacervation ability of truncated ELPs was affected by the amino acid sequence and not by the peptide chain length. Based on this finding, we prepared Cd2+-binding sequence-conjugated ELP analogue, AADAAC-(FPGV)4, and found that it could capture Cd2+. These results indicated that the 16-mer (FPGV)4 only composed of proteinogenic amino acids could be a new biomaterial with low environmental impact.
Collapse
|
12
|
Levêque M, Xiao Y, Durand L, Massé L, Garanger E, Lecommandoux S. Aqueous synthesis and self-assembly of bioactive and thermo-responsive HA- b-ELP bioconjugates. Biomater Sci 2022; 10:6365-6376. [PMID: 36168976 DOI: 10.1039/d2bm01149b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The design of synthetic (bio)macromolecules that combine biocompatibility, self-assembly and bioactivity properties at the molecular level is an intense field of research for biomedical applications such as (nano)medicine. In this contribution, we have designed and synthesized a library of bioactive and thermo-responsive bioconjugates from elastin-like polypeptides (ELPs) and hyaluronic acid (HA) in order to access bioactive self-assembled nanoparticles. These were prepared by a simple synthetic and purification strategy, compatible with the requirements for biological applications and industrial scale-up. A series of 9 HA-b-ELP bioconjugates with different compositions and block lengths was synthesized under aqueous conditions by strain-promoted azide-alkyne cycloaddition (SPAAC), avoiding the use of catalysts, co-reactants and organic solvents, and isolated by a simple centrifugation step. An extensive physico-chemical study was then performed on the whole library of bioconjugates in an attempt to establish structure-property relationships. In particular, the determination of the critical conditions for thermally driven self-assembly was carried out upon temperature (CMT) and concentration (CMC) gradients, leading to a phase diagram for each of these bioconjugates. These parameters and the size of nanoparticles were found to depend on the chemical composition of the bioconjugates, namely on the respective size of individual blocks. Understanding the mechanism underlying this dependency is a real asset for designing more effective experiments: with key criteria defined (e.g. concentration, temperature, salinity, and biological target), the composition of the best candidates can be rationalized. In particular, four of the bioconjugates (HA4.6k-ELPn80 or n100 and HA24k-ELPn80 or n100) were found to self-assemble into well-defined spherical core-shell nanoparticles, with a negative surface charge due to the HA block exposed at the surface, a hydrodynamic diameter between 40 and 200 nm under physiological conditions and a good stability over time at 37 °C. We therefore propose here a versatile and simple design of smart, controllable, and bioactive nanoparticles that present different behaviors depending on the diblocks' composition.
Collapse
Affiliation(s)
- Manon Levêque
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France.
| | - Ye Xiao
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France.
| | - Laura Durand
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France.
| | - Louise Massé
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France.
| | - Elisabeth Garanger
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France.
| | | |
Collapse
|
13
|
Lee B, Jaberi-Lashkari N, Calo E. A unified view of low complexity regions (LCRs) across species. eLife 2022; 11:e77058. [PMID: 36098382 PMCID: PMC9470157 DOI: 10.7554/elife.77058] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Low complexity regions (LCRs) play a role in a variety of important biological processes, yet we lack a unified view of their sequences, features, relationships, and functions. Here, we use dotplots and dimensionality reduction to systematically define LCR type/copy relationships and create a map of LCR sequence space capable of integrating LCR features and functions. By defining LCR relationships across the proteome, we provide insight into how LCR type and copy number contribute to higher order assemblies, such as the importance of K-rich LCR copy number for assembly of the nucleolar protein RPA43 in vivo and in vitro. With LCR maps, we reveal the underlying structure of LCR sequence space, and relate differential occupancy in this space to the conservation and emergence of higher order assemblies, including the metazoan extracellular matrix and plant cell wall. Together, LCR relationships and maps uncover and identify scaffold-client relationships among E-rich LCR-containing proteins in the nucleolus, and revealed previously undescribed regions of LCR sequence space with signatures of higher order assemblies, including a teleost-specific T/H-rich sequence space. Thus, this unified view of LCRs enables discovery of how LCRs encode higher order assemblies of organisms.
Collapse
Affiliation(s)
- Byron Lee
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Nima Jaberi-Lashkari
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Eliezer Calo
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
14
|
Dautel DR, Heller WT, Champion JA. Protein Vesicles with pH-Responsive Disassembly. Biomacromolecules 2022; 23:3678-3687. [PMID: 35943848 DOI: 10.1021/acs.biomac.2c00562] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein biomaterials offer several advantages over those made from other components because their amino acid sequence can be precisely controlled with genetic engineering to produce a diverse set of material building blocks. In this work, three different elastin-like polypeptide (ELP) sequences were designed to synthesize pH-responsive protein vesicles. ELPs undergo a thermally induced hydrophobic transition that enables self-assembly of different kinds of protein biomaterials. The transition can be tuned by the composition of the guest residue, X, within the ELP pentapeptide repeat unit, VPGXG. When the guest residue is substituted with an ionizable amino acid, such as histidine, the ELP undergoes a pH-dependent hydrophobic phase transition. We used pH-responsive ELPs with different levels of histidine substitution, in combination with leucine zippers and globular, functional proteins, to fabricate protein vesicles. We demonstrate pH-dependent self-assembly, diameter, and disassembly of the vesicles using a combination of turbidimetry, dynamic light scattering, microscopy, and small angle X-ray scattering. As the ELP transition is dependent on the sequence, the vesicle properties also depend on the histidine content in the ELP building blocks. These results demonstrate the tunability of protein vesicles endowed with pH responsiveness, which expands their potential in drug-delivery applications.
Collapse
Affiliation(s)
- Dylan R Dautel
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - William T Heller
- Neutron Scattering, Oak Ridge National Laboratory, PO Box 2008, MS 6473, Oak Ridge, Tennessee 37831, United States
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
15
|
Sist P, Bandiera A, Urbani R, Passamonti S. Macromolecular and Solution Properties of the Recombinant Fusion Protein HUG. Biomacromolecules 2022; 23:3336-3348. [PMID: 35876275 PMCID: PMC9364316 DOI: 10.1021/acs.biomac.2c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The recombinant fusion protein HELP-UnaG (HUG) is a bifunctional
product that exhibits human elastin-like polypeptide (HELP)-specific
thermal behavior, defined as a reverse phase transition, and UnaG-specific
bilirubin-dependent fluorescence emission. HUG provides an interesting
model to understand how its two domains influence each other’s
properties. Turbidimetric, calorimetric, and light scattering measurements
were used to determine different parameters for the reverse temperature
transition and coacervation behavior. This shows that the UnaG domain
has a measurable but limited effect on the thermal properties of HELP.
Although the HELP domain decreased the affinity of UnaG for bilirubin,
HUG retained the property of displacing bilirubin from bovine serum
albumin and thus remains one of the strongest bilirubin-binding proteins
known to date. These data demonstrate that HELP can be used to create
new bifunctional fusion products that pave the way for expanded technological
applications.
Collapse
Affiliation(s)
- Paola Sist
- Department of Life Sciences, University of Trieste, Via Giorgieri 1, Trieste I-34127, Italy
| | - Antonella Bandiera
- Department of Life Sciences, University of Trieste, Via Giorgieri 1, Trieste I-34127, Italy
| | - Ranieri Urbani
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, Trieste I-34127, Italy
| | - Sabina Passamonti
- Department of Life Sciences, University of Trieste, Via Giorgieri 1, Trieste I-34127, Italy
| |
Collapse
|
16
|
Bharadwaj S, Niebuur BJ, Nothdurft K, Richtering W, van der Vegt NFA, Papadakis CM. Cononsolvency of thermoresponsive polymers: where we are now and where we are going. SOFT MATTER 2022; 18:2884-2909. [PMID: 35311857 DOI: 10.1039/d2sm00146b] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cononsolvency is an intriguing phenomenon where a polymer collapses in a mixture of good solvents. This cosolvent-induced modulation of the polymer solubility has been observed in solutions of several polymers and biomacromolecules, and finds application in areas such as hydrogel actuators, drug delivery, compound detection and catalysis. In the past decade, there has been a renewed interest in understanding the molecular mechanisms which drive cononsolvency with a predominant emphasis on its connection to the preferential adsorption of the cosolvent. Significant efforts have also been made to understand cononsolvency in complex systems such as micelles, block copolymers and thin films. In this review, we will discuss some of the recent developments from the experimental, simulation and theoretical fronts, and provide an outlook on the problems and challenges which are yet to be addressed.
Collapse
Affiliation(s)
- Swaminath Bharadwaj
- Technical University of Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Computational Physical Chemistry Group, 64287 Darmstadt, Germany.
| | - Bart-Jan Niebuur
- Technical University of Munich, Physics Department, Soft Matter Physics Group, James-Franck-Str. 1, 85748 Garching, Germany
| | - Katja Nothdurft
- RWTH Aachen University, Institut für Physikalische Chemie, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Walter Richtering
- RWTH Aachen University, Institut für Physikalische Chemie, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Nico F A van der Vegt
- Technical University of Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Computational Physical Chemistry Group, 64287 Darmstadt, Germany.
| | - Christine M Papadakis
- Technical University of Munich, Physics Department, Soft Matter Physics Group, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
17
|
Passaretti P. Graphene Oxide and Biomolecules for the Production of Functional 3D Graphene-Based Materials. Front Mol Biosci 2022; 9:774097. [PMID: 35372519 PMCID: PMC8965154 DOI: 10.3389/fmolb.2022.774097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/14/2022] [Indexed: 12/30/2022] Open
Abstract
Graphene and its derivatives have been widely employed in the manufacturing of novel composite nanomaterials which find applications across the fields of physics, chemistry, engineering and medicine. There are many techniques and strategies employed for the production, functionalization, and assembly of graphene with other organic and inorganic components. These are characterized by advantages and disadvantages related to the nature of the specific components involved. Among many, biomolecules and biopolymers have been extensively studied and employed during the last decade as building blocks, leading to the realization of graphene-based biomaterials owning unique properties and functionalities. In particular, biomolecules like nucleic acids, proteins and enzymes, as well as viruses, are of particular interest due to their natural ability to self-assemble via non-covalent interactions forming extremely complex and dynamic functional structures. The capability of proteins and nucleic acids to bind specific targets with very high selectivity or the ability of enzymes to catalyse specific reactions, make these biomolecules the perfect candidates to be combined with graphenes, and in particular graphene oxide, to create novel 3D nanostructured functional biomaterials. Furthermore, besides the ease of interaction between graphene oxide and biomolecules, the latter can be produced in bulk, favouring the scalability of the resulting nanostructured composite materials. Moreover, due to the presence of biological components, graphene oxide-based biomaterials are more environmentally friendly and can be manufactured more sustainably compared to other graphene-based materials assembled with synthetic and inorganic components. This review aims to provide an overview of the state of the art of 3D graphene-based materials assembled using graphene oxide and biomolecules, for the fabrication of novel functional and scalable materials and devices.
Collapse
Affiliation(s)
- Paolo Passaretti
- Institute of Cancer and Genomic Sciences, School of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
18
|
Sumiyoshi S, Suyama K, Tatsubo D, Tanaka N, Tomohara K, Taniguchi S, Maeda I, Nose T. Metal ion scavenging activity of elastin-like peptide analogues containing a cadmium ion binding sequence. Sci Rep 2022; 12:1861. [PMID: 35115613 PMCID: PMC8814041 DOI: 10.1038/s41598-022-05695-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The development of simple and safe methods for recovering environmental pollutants, such as heavy metals, is needed for sustainable environmental management. Short elastin-like peptide (ELP) analogues conjugated with metal chelating agents are considered to be useful as metal sequestering agents as they are readily produced, environment friendly, and the metal binding domain can be selected based on any target metal of interest. Due to the temperature dependent self-assembly of ELP, the peptide-based sequestering agents can be transformed from the solution state into the particles that chelate metal ions, which can then be collected as precipitates. In this study, we developed a peptide-based sequestering agent, AADAAC-(FPGVG)4, by introducing the metal-binding sequence AADAAC on the N-terminus of a short ELP, (FPGVG)4. In turbidity measurements, AADAAC-(FPGVG)4 revealed strong self-assembling ability in the presence of metal ions such as Cd2+ and Zn2+. The results from colorimetric analysis indicated that AADAAC-(FPGVG)4 could capture Cd2+ and Zn2+. Furthermore, AADAAC-(FPGVG)4 that bound to metal ions could be readily recycled by treatment with acidic solution without compromising its metal binding affinity. The present study indicates that the fusion of the metal-binding sequence and ELP is a useful and powerful strategy to develop cost-effective heavy metal scavenging agents with low environmental impacts.
Collapse
Affiliation(s)
- Shogo Sumiyoshi
- Laboratory of Biomolecular Chemistry, Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Keitaro Suyama
- Laboratory of Biomolecular Chemistry, Faculty of Arts and Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Daiki Tatsubo
- Laboratory of Biomolecular Chemistry, Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Naoki Tanaka
- Laboratory of Biomolecular Chemistry, Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Keisuke Tomohara
- Laboratory of Biomolecular Chemistry, Faculty of Arts and Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Suguru Taniguchi
- Department of Physics and Information Technology, Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan
| | - Iori Maeda
- Department of Physics and Information Technology, Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan
| | - Takeru Nose
- Laboratory of Biomolecular Chemistry, Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka, 819-0395, Japan.
- Laboratory of Biomolecular Chemistry, Faculty of Arts and Science, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
19
|
Cracking the Skin Barrier: Liquid-Liquid Phase Separation Shines under the Skin. JID INNOVATIONS 2021; 1:100036. [PMID: 34909733 PMCID: PMC8659386 DOI: 10.1016/j.xjidi.2021.100036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 12/25/2022] Open
Abstract
Central to forming and sustaining the skin’s barrier, epidermal keratinocytes (KCs) fluxing to the skin surface undergo a rapid and enigmatic transformation into flat, enucleated squames. At the crux of this transformation are intracellular keratohyalin granules (KGs) that suddenly disappear as terminally differentiating KCs transition to the cornified skin surface. Defects in KGs have long been linked to skin barrier disorders. Through the biophysical lens of liquid-liquid phase separation (LLPS), these enigmatic KGs recently emerged as liquid-like membraneless organelles whose assembly and subsequent pH-triggered disassembly drive squame formation. To stimulate future efforts toward cracking the complex process of skin barrier formation, in this review, we integrate the key concepts and foundational work spanning the fields of LLPS and epidermal biology. We review the current progress in the skin and discuss implications in the broader context of membraneless organelles across stratifying epithelia. The discovery of environmentally sensitive LLPS dynamics in the skin points to new avenues for dissecting the skin barrier and for addressing skin barrier disorders. We argue that skin and its appendages offer outstanding models to uncover LLPS-driven mechanisms in tissue biology.
Collapse
Key Words
- 3D, three-dimensional
- AD, atopic dermatitis
- CE, cornified envelope
- EDC, epidermal differentiation complex
- ER, endoplasmic reticulum
- IDP, intrinsically-disordered protein
- KC, keratinocyte
- KG, keratohyalin granule
- LCST, lower critical solution temperature
- LLPS, liquid-liquid phase separation
- PTM, post-translational modification
- TG, trichohyalin granule
- UCST, upper critical solution temperature
Collapse
|
20
|
Dai M, Belaïdi JP, Fleury G, Garanger E, Rielland M, Schultze X, Lecommandoux S. Elastin-like Polypeptide-Based Bioink: A Promising Alternative for 3D Bioprinting. Biomacromolecules 2021; 22:4956-4966. [PMID: 34751573 DOI: 10.1021/acs.biomac.1c00861] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Three-dimensional (3D) bioprinting offers a great alternative to traditional techniques in tissue reconstruction, based on seeding cells manually into a scaffold, to better reproduce organs' complexity. When a suitable bioink is engineered with appropriate physicochemical properties, such a process can advantageously provide a spatial control of the patterning that improves tissue reconstruction. The design of an adequate bioink must fulfill a long list of criteria including biocompatibility, printability, and stability. In this context, we have developed a bioink containing a precisely controlled recombinant biopolymer, namely, elastin-like polypeptide (ELP). This material was further chemoselectively modified with cross-linkable moieties to provide a 3D network through photopolymerization. ELP chains were additionally either functionalized with a peptide sequence Gly-Arg-Gly-Asp-Ser (GRGDS) or combined with collagen I to enable cell adhesion. Our ELP-based bioinks were found to be printable, while providing excellent mechanical properties such as stiffness and elasticity in their cross-linked form. Besides, they were demonstrated to be biocompatible, showing viability and adhesion of dermal normal human fibroblasts (NHF). Expressions of specific extracellular matrix (ECM) protein markers as pro-collagen I, elastin, fibrillin, and fibronectin were revealed within the 3D network containing cells after only 18 days of culture, showing the great potential of ELP-based bioinks for tissue engineering.
Collapse
Affiliation(s)
- Michèle Dai
- L'Oréal Recherche Avancée, 1 avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France.,Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Jean-Philippe Belaïdi
- L'Oréal Recherche Avancée, 1 avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France
| | - Guillaume Fleury
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Elisabeth Garanger
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Maïté Rielland
- L'Oréal Recherche Avancée, 1 avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France
| | - Xavier Schultze
- L'Oréal Recherche Avancée, 1 avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France
| | | |
Collapse
|
21
|
Bidwell GL. Novel Protein Therapeutics Created Using the Elastin-Like Polypeptide Platform. Physiology (Bethesda) 2021; 36:367-381. [PMID: 34486397 DOI: 10.1152/physiol.00026.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Elastin-like polypeptides (ELPs) are bioengineered proteins that have a unique physical property, a thermally triggered inverse phase transition, that can be exploited for drug delivery. ELP-fusion proteins can be used as soluble biologics, thermally targeted drug carriers, self-assembling nanoparticles, and slow-release drug depots. Because of their unique physical characteristics and versatility for delivery of nearly any type of therapeutic, ELP-based drug delivery systems represent a promising platform for biologics development.
Collapse
Affiliation(s)
- Gene L Bidwell
- Departments of Neurology, Cell and Molecular Biology, and Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
22
|
Wang B, Patkar SS, Kiick KL. Application of Thermoresponsive Intrinsically Disordered Protein Polymers in Nanostructured and Microstructured Materials. Macromol Biosci 2021; 21:e2100129. [PMID: 34145967 PMCID: PMC8449816 DOI: 10.1002/mabi.202100129] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Indexed: 01/15/2023]
Abstract
Modulation of inter- and intramolecular interactions between bioinspired designer molecules can be harnessed for developing functional structures that mimic the complex hierarchical organization of multicomponent assemblies observed in nature. Furthermore, such multistimuli-responsive molecules offer orthogonal tunability for generating versatile multifunctional platforms via independent biochemical and biophysical cues. In this review, the remarkable physicochemical and mechanical properties of genetically engineered protein polymers derived from intrinsically disordered proteins, specifically elastin and resilin, are discussed. This review highlights emerging technologies which use them as building blocks in the fabrication of highly programmable structured biomaterials for applications in delivery of biotherapeutic cargo and regenerative medicine.
Collapse
Affiliation(s)
- Bin Wang
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA
| | - Sai S Patkar
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Laboratory, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, Ammon Pinizzotto Biopharmaceutical Innovation Center, 590 Avenue 1743, Newark, DE, 19713, USA
| |
Collapse
|
23
|
Bahniuk MS, Ortega VA, Alshememry AK, Stafford JL, Goss GG, Unsworth LD. Effect of amino acid composition of elastin-like polypeptide nanoparticles on nonspecific protein adsorption, macrophage cell viability and phagocytosis. Biopolymers 2021; 112:e23468. [PMID: 34363693 DOI: 10.1002/bip.23468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 02/05/2023]
Abstract
Development of elastin-like polypeptide (ELP) biomaterials is widespread, but information critical for clinical deployment is limited, with biocompatibility studies focused on a narrow cross-section of ELP sequences. Macrophages can impair biomaterial systems by degrading or isolating the biomaterial and by activating additional immune functions. Their phagocytic response will reveal early immune biocompatibility of ELP nanoparticles (NPs). This study examines that response, induced by the adsorbed protein corona, as a function of ELP guest amino acid, chain length and NP diameter. The breadth of proteins adsorbed to ELP NPs varied, with valine-containing ELP NPs adsorbing fewer types of proteins than leucine-containing constructs. Particle diameter was also a factor, with smaller leucine-containing ELP NPs adsorbing the broadest range of proteins. Macrophage viability was unaffected by the ELP NPs, and their phagocytic capabilities were unimpeded except when incubated with a 500 nm valine-containing 40-mer. This NP significantly decreased the phagocytic capacity of macrophages relative to the control and to a corresponding 500 nm leucine-containing 40-mer. NP size and the proportion of opsonin to dysopsonin proteins likely influenced this outcome. These results suggest that certain combinations of ELP sequence and particle size can result in an adsorbed protein corona, which may hinder macrophage function.
Collapse
Affiliation(s)
- Markian S Bahniuk
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Van A Ortega
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Abdullah K Alshememry
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
24
|
Firipis K, Nisbet DR, Franks SJ, Kapsa RMI, Pirogova E, Williams RJ, Quigley A. Enhancing Peptide Biomaterials for Biofabrication. Polymers (Basel) 2021; 13:polym13162590. [PMID: 34451130 PMCID: PMC8400132 DOI: 10.3390/polym13162590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022] Open
Abstract
Biofabrication using well-matched cell/materials systems provides unprecedented opportunities for dealing with human health issues where disease or injury overtake the body’s native regenerative abilities. Such opportunities can be enhanced through the development of biomaterials with cues that appropriately influence embedded cells into forming functional tissues and organs. In this context, biomaterials’ reliance on rigid biofabrication techniques needs to support the incorporation of a hierarchical mimicry of local and bulk biological cues that mimic the key functional components of native extracellular matrix. Advances in synthetic self-assembling peptide biomaterials promise to produce reproducible mimics of tissue-specific structures and may go some way in overcoming batch inconsistency issues of naturally sourced materials. Recent work in this area has demonstrated biofabrication with self-assembling peptide biomaterials with unique biofabrication technologies to support structural fidelity upon 3D patterning. The use of synthetic self-assembling peptide biomaterials is a growing field that has demonstrated applicability in dermal, intestinal, muscle, cancer and stem cell tissue engineering.
Collapse
Affiliation(s)
- Kate Firipis
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - David R. Nisbet
- Laboratory of Advanced Biomaterials, The Australian National University, Acton, Canberra, ACT 2601, Australia; (D.R.N.); (S.J.F.)
- The Graeme Clark Institute, Faculty of Engineering and Information Technology, Melbourne, VIC 3000, Australia
- Faculty of Medicine, Dentistry and Health Services, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Stephanie J. Franks
- Laboratory of Advanced Biomaterials, The Australian National University, Acton, Canberra, ACT 2601, Australia; (D.R.N.); (S.J.F.)
| | - Robert M. I. Kapsa
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Department of Medicine, Melbourne University, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3064, Australia
| | - Elena Pirogova
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Richard J. Williams
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
- Correspondence: (R.J.W.); (A.Q.)
| | - Anita Quigley
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Department of Medicine, Melbourne University, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3064, Australia
- Correspondence: (R.J.W.); (A.Q.)
| |
Collapse
|
25
|
Advances in the synthesis and application of self-assembling biomaterials. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 167:46-62. [PMID: 34329646 DOI: 10.1016/j.pbiomolbio.2021.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 02/08/2023]
Abstract
The present study scrutinized some of the crucial advancements in the synthesis and functionalisation of self-assembling biomaterials for application in biomedicine. The basic concept of self-organization was discussed along with the mechanisms and methods involved in its implementation with biomaterials. Further, several recent applications of this technology in the biological and medical domain, and the avenues for future research and development were presented. This study brought to focus the vast potential of basic and applied research involved, especially in the context of hybrids and composites, as well as the difference in pace of new developments for different types of biomolecular materials. As nanobiotechnology matures, the tools and techniques available for developing and controlling self-assembled biomaterials as well as studying their interaction with biological tissue, will grow exponentially. Presently, self-assembly remains a potent tool for the synthesis of functional biomaterials.
Collapse
|
26
|
López Barreiro D, Minten IJ, Thies JC, Sagt CMJ. Structure-Property Relationships of Elastin-like Polypeptides: A Review of Experimental and Computational Studies. ACS Biomater Sci Eng 2021. [PMID: 34251181 DOI: 10.1021/acsbiomaterials.1c00145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Elastin is a structural protein with outstanding mechanical properties (e.g., elasticity and resilience) and biologically relevant functions (e.g., triggering responses like cell adhesion or chemotaxis). It is formed from its precursor tropoelastin, a 60-72 kDa water-soluble and temperature-responsive protein that coacervates at physiological temperature, undergoing a phenomenon termed lower critical solution temperature (LCST). Inspired by this behavior, many scientists and engineers are developing recombinantly produced elastin-inspired biopolymers, usually termed elastin-like polypeptides (ELPs). These ELPs are generally comprised of repetitive motifs with the sequence VPGXG, which corresponds to repeats of a small part of the tropoelastin sequence, X being any amino acid except proline. ELPs display LCST and mechanical properties similar to tropoelastin, which renders them promising candidates for the development of elastic and stimuli-responsive protein-based materials. Unveiling the structure-property relationships of ELPs can aid in the development of these materials by establishing the connections between the ELP amino acid sequence and the macroscopic properties of the materials. Here we present a review of the structure-property relationships of ELPs and ELP-based materials, with a focus on LCST and mechanical properties and how experimental and computational studies have aided in their understanding.
Collapse
Affiliation(s)
- Diego López Barreiro
- DSM Biotechnology Center, DSM, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Inge J Minten
- DSM Materials Science Center - Applied Science Center, DSM, Urmonderbaan 22, 6160 BB, Geleen, The Netherlands
| | - Jens C Thies
- DSM Biomedical, DSM, Koestraat 1, 6167 RA, Geleen, The Netherlands
| | - Cees M J Sagt
- DSM Biotechnology Center, DSM, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| |
Collapse
|
27
|
Dai M, Georgilis E, Goudounet G, Garbay B, Pille J, van Hest JCM, Schultze X, Garanger E, Lecommandoux S. Refining the Design of Diblock Elastin-Like Polypeptides for Self-Assembly into Nanoparticles. Polymers (Basel) 2021; 13:1470. [PMID: 34062852 PMCID: PMC8125372 DOI: 10.3390/polym13091470] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Diblock copolymers based-on elastin-like polypeptide (ELP) have the potential to undergo specific phase transitions when thermally stimulated. This ability is especially suitable to form carriers, micellar structures for instance, for delivering active cargo molecules. Here, we report the design and study of an ELP diblock library based on ELP-[M1V3-i]-[I-j]. First, ELP-[M1V3-i]-[I-j] (i = 20, 40, 60; j = 20, 90) that showed a similar self-assembly propensity (unimer-to-aggregate transition) as their related monoblocks ELP-[M1V3-i] and ELP-[I-j]. By selectively oxidizing methionines of ELP-[M1V3-i] within the different diblocks structures, we have been able to access a thermal phase transition with three distinct regimes (unimers, micelles, aggregates) characteristic of well-defined ELP diblocks.
Collapse
Affiliation(s)
- Michèle Dai
- University Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600 Pessac, France; (M.D.); (E.G.); (G.G.); (B.G.)
- L’Oréal Recherche Avancée, 1 Avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France;
| | - Evangelos Georgilis
- University Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600 Pessac, France; (M.D.); (E.G.); (G.G.); (B.G.)
- Current affiliation E.G. (Evangelos Georgilis): CIC nanoGUNE (BRTA), Tolosa Hiribidea 76, 20018 Donostia-San Sebastián, Spain
| | - Guillaume Goudounet
- University Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600 Pessac, France; (M.D.); (E.G.); (G.G.); (B.G.)
| | - Bertrand Garbay
- University Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600 Pessac, France; (M.D.); (E.G.); (G.G.); (B.G.)
| | - Jan Pille
- Bio-organic Chemistry Lab, Eindhoven University of Technology, P.O. Box 513 (STO 3.31), 5600 MB Eindhoven, The Netherlands; (J.P.); (J.C.M.v.H.)
| | - Jan C. M. van Hest
- Bio-organic Chemistry Lab, Eindhoven University of Technology, P.O. Box 513 (STO 3.31), 5600 MB Eindhoven, The Netherlands; (J.P.); (J.C.M.v.H.)
| | - Xavier Schultze
- L’Oréal Recherche Avancée, 1 Avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France;
| | - Elisabeth Garanger
- University Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600 Pessac, France; (M.D.); (E.G.); (G.G.); (B.G.)
| | - Sébastien Lecommandoux
- University Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600 Pessac, France; (M.D.); (E.G.); (G.G.); (B.G.)
| |
Collapse
|
28
|
A dose-escalating toxicology study of the candidate biologic ELP-VEGF. Sci Rep 2021; 11:6216. [PMID: 33737643 PMCID: PMC7973730 DOI: 10.1038/s41598-021-85693-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/04/2021] [Indexed: 01/31/2023] Open
Abstract
Vascular Endothelial Growth Factor (VEGF), a key mediator of angiogenesis and vascular repair, is reduced in chronic ischemic renal diseases, leading to microvascular rarefaction and deterioration of renal function. We developed a chimeric fusion of human VEGF-A121 with the carrier protein Elastin-like Polypeptide (ELP-VEGF) to induce therapeutic angiogenesis via targeted renal VEGF therapy. We previously showed that ELP-VEGF improves renal vascular density, renal fibrosis, and renal function in swine models of chronic renal diseases. However, VEGF is a potent cytokine that induces angiogenesis and increases vascular permeability, which could cause undesired off-target effects or be deleterious in a patient with a solid tumor. Therefore, the current study aims to define the toxicological profile of ELP-VEGF and assess its risk for exacerbating tumor progression and vascularity using rodent models. A dose escalating toxicology assessment of ELP-VEGF was performed by administering a bolus intravenous injection at doses ranging from 0.1 to 200 mg/kg in Sprague Dawley (SD) rats. Blood pressure, body weight, and glomerular filtration rate (GFR) were quantified longitudinally, and terminal blood sampling and renal vascular density measurements were made 14 days after treatment. Additionally, the effects of a single administration of ELP-VEGF (0.1-10 mg/kg) on tumor growth rate, mass, and vascular density were examined in a mouse model of breast cancer. At doses up to 200 mg/kg, ELP-VEGF had no effect on body weight, caused no changes in plasma or urinary markers of renal injury, and did not induce renal fibrosis or other histopathological findings in SD rats. At the highest doses (100-200 mg/kg), ELP-VEGF caused an acute, transient hypotension (30 min), increased GFR, and reduced renal microvascular density 14 days after injection. In a mouse tumor model, ELP-VEGF did not affect tumor growth rate or tumor mass, but analysis of tumor vascular density by micro-computed tomography (μCT) revealed significant, dose dependent increases in tumor vascularity after ELP-VEGF administration. ELP-VEGF did not induce toxicity in the therapeutic dosing range, and doses one hundred times higher than the expected maximum therapeutic dose were needed to observe any adverse signs in rats. In breast tumor-bearing mice, ELP-VEGF therapy induced a dose-dependent increase in tumor vascularity, demanding caution for potential use in a patient suffering from kidney disease but with known or suspected malignancy.
Collapse
|
29
|
Suyama K, Mawatari M, Tatsubo D, Maeda I, Nose T. Simple Regulation of the Self-Assembling Ability by Multimerization of Elastin-Derived Peptide (FPGVG) n Using Nitrilotriacetic Acid as a Building Block. ACS OMEGA 2021; 6:5705-5716. [PMID: 33681610 PMCID: PMC7931394 DOI: 10.1021/acsomega.0c06140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Elastin comprises hydrophobic repetitive sequences, such as Val-Pro-Gly-Val-Gly, which are thought to be important for the temperature-dependent reversible self-association (coacervation). Elastin and elastin-like peptides (ELPs), owing to their characteristics, are expected to be applied as base materials for the development of new molecular tools, such as drug-delivery system carrier and metal-scavenging agents. Recently, several studies have been reported on the dendritic or branching ELP analogues. Although the topological difference of the branched ELPs compared to their linear counterparts may lead to useful properties in biomaterials, the available information regarding the effect of branching on molecular architecture and thermoresponsive behavior of ELPs is scarce. To obtain further insight into the thermoresponsive behavior of branched ELPs, novel ELPs, such as nitrilotriacetic acid (NTA)-(FPGVG) n conjugates, that is, (NTA)-Fn analogues possessing 1-3 (FPGVG) n (n = 3, 5) molecule(s), were synthesized and investigated for their coacervation ability. Turbidity measurement of the synthesized peptide analogues revealed that (NTA)-Fn analogues showed strong coacervation ability with various strengths. The transition temperature of NTA-Fn analogues exponentially decreased with increasing number of residues. In the circular dichroism measurements, trimerization did not alter the secondary structure of each peptide chain of the NTA-Fn analogue. In addition, it was also revealed that the NTA-Fn analogue possesses one peptide chain that could be utilized as metal-scavenging agents. The study findings indicated that multimerization of short ELPs via NTA is a useful and powerful strategy to obtain thermoresponsive molecules.
Collapse
Affiliation(s)
- Keitaro Suyama
- Laboratory
of Biomolecular Chemistry, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Mika Mawatari
- Department
of Chemistry, Faculty and Graduate School
of Science, Fukuoka 819-0395, Japan
| | - Daiki Tatsubo
- Department
of Chemistry, Faculty and Graduate School
of Science, Fukuoka 819-0395, Japan
| | - Iori Maeda
- Department
of Physics and Information Technology, Kyushu
Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Takeru Nose
- Laboratory
of Biomolecular Chemistry, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
- Department
of Chemistry, Faculty and Graduate School
of Science, Fukuoka 819-0395, Japan
| |
Collapse
|
30
|
Bravo-Anaya LM, Rosselgong J, Fernández-Solís KG, Xiao Y, Vax A, Ibarboure E, Ruban A, Lebleu C, Joucla G, Garbay B, Garanger E, Lecommandoux S. Coupling of RAFT polymerization and chemoselective post-modifications of elastin-like polypeptides for the synthesis of gene delivery hybrid vectors. Polym Chem 2021. [DOI: 10.1039/d0py01293a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hybrid cationic ELPs for nucleic acids transport and delivery were synthetized through the coupling of RAFT polymerization and biorthogonal chemistry of ELPs, introducing a specific number of positive charges to the ELP backbone.
Collapse
Affiliation(s)
| | | | | | - Ye Xiao
- University of Bordeaux
- CNRS
- Bordeaux INP
- Pessac
- France
| | - Amélie Vax
- University of Bordeaux
- CNRS
- Bordeaux INP
- Pessac
- France
| | | | - Anna Ruban
- University of Bordeaux
- CNRS
- Bordeaux INP
- Pessac
- France
| | | | | | | | | | | |
Collapse
|
31
|
Djajamuliadi J, Ohgo K, Kumashiro KK. A Two-State Model Describes the Temperature-Dependent Conformational Equilibrium in the Alanine-Rich Domains in Elastin. J Phys Chem B 2020; 124:9017-9028. [PMID: 32936634 DOI: 10.1021/acs.jpcb.0c06811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Elastin is the insoluble elastomeric protein that provides extensibility and resilience to vertebrate tissues. Limited high-resolution structural data for elastin are notably complex. To access this information, this protein is considered in the simplified context of its two general domain types, that is, hydrophobic (HP) and crosslinking (CL). The question of elastin's structure-function has directed the focus of nearly all previous studies in the literature to the unique repeating sequences characteristic of this protein, found primarily in the HP domains. The CL domains were assumed to play a very limited role in biological elasticity due in part to the significant α-helical character that was (incorrectly) predicted for these regions. In this study, the conformational heterogeneity of alanines in native elastin's CL domains is examined in the context of helix-coil transition theory (HCTT) using solid-state nuclear magnetic resonance (SSNMR) spectroscopy in tandem with strategic isotopic labeling. Helix and coil populations are observed at all temperatures, but the former increases significantly at lower temperatures. Below the glass transition temperature (Tg), two major populations of alanines in the CL regions are resolved by two-dimensional SSNMR; one-dimensional methods are used for characterization in nativelike conditions. The spectra of 13CO-Ala in the CL regions are simulated using an HCTT-based statistical mechanical representation. Below Tg, longer segments with significant helical probabilities are consistent with the experimental data. At higher temperatures, the SSNMR lineshapes are best fit with a distribution of shorter (Ala)n segments, most in random coil. These results are used to refine a structure-function model for elastin in the context of HCTT, redirecting attention to the CL domains and their role in elasticity.
Collapse
Affiliation(s)
- Jhonsen Djajamuliadi
- Department of Chemistry, University of Hawaii, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Kosuke Ohgo
- Department of Chemistry, University of Hawaii, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Kristin K Kumashiro
- Department of Chemistry, University of Hawaii, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| |
Collapse
|
32
|
Dautel DR, Champion JA. Protein Vesicles Self-Assembled from Functional Globular Proteins with Different Charge and Size. Biomacromolecules 2020; 22:116-125. [PMID: 32886493 DOI: 10.1021/acs.biomac.0c00671] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein vesicles can be synthesized by mixing two fusion proteins: an elastin-like polypeptide (ELP) fused to an arginine-rich leucine zipper (ZR) with a globular, soluble protein fused to a glutamate-rich leucine zipper (ZE). Currently, only fluorescent proteins have been incorporated into vesicles; however, for protein vesicles to be useful for biocatalysis, drug delivery, or biosensing, vesicles must assemble from functional proteins that span an array of properties and functionalities. In this work, the globular protein was systematically changed to determine the effects of the surface charge and size on the self-assembly of protein vesicles. The formation of microphases, which included vesicles, coacervates, and hybrid structures, was monitored at different assembly conditions to determine the phase space for each globular protein. The results show that the protein surface charge has a small effect on vesicle self-assembly. However, increasing the size of the globular protein decreases the vesicle size and increases the stability at lower ZE/ZR molar ratios. The phase diagrams created can be used as guidelines to incorporate new functional proteins into vesicles. Furthermore, this work reports catalytically active enzyme vesicles, demonstrating the potential for the application of vesicles as biocatalysts or biosensors.
Collapse
Affiliation(s)
- Dylan R Dautel
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
33
|
Anaya LMB, Petitdemange R, Rosselin M, Ibarboure E, Garbay B, Garanger E, Deming TJ, Lecommandoux S. Design of Thermoresponsive Elastin-Like Glycopolypeptides for Selective Lectin Binding and Sorting. Biomacromolecules 2020; 22:76-85. [PMID: 32379435 DOI: 10.1021/acs.biomac.0c00374] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Selective lectin binding and sorting was achieved using thermosensitive glycoconjugates derived from recombinant elastin-like polypeptides (ELPs) in simple centrifugation-precipitation assays. A recombinant ELP, (VPGXG)40, containing periodically spaced methionine residues was used to enable chemoselective postsynthetic modification via thioether alkylation using alkyne functional epoxide derivatives. The resulting sulfonium groups were selectively demethylated to give alkyne functionalized homocysteine residues, which were then reacted with azido-functionalized monosaccharides to obtain ELP glycoconjugates with periodic saccharide functionality. These modifications were also found to allow modulation of ELP temperature dependent water solubility. The multivalent ELP glycoconjugates were evaluated for specific recognition, binding and separation of the lectin Ricinus communis agglutinin (RCA120) from a complex protein mixture. RCA120 and ELP glycoconjugate interactions were evaluated using laser scanning confocal microscopy and dynamic light scattering. Due to the thermoresponsive nature of the ELP glycoconjugates, it was found that heating a mixture of galactose-functionalized ELP and RCA120 in complex media selectively yielded a phase separated pellet of ELP-RCA120 complexes. Based on these results, ELP glycoconjugates show promise as designer biopolymers for selective protein binding and sorting.
Collapse
Affiliation(s)
| | - Rosine Petitdemange
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France.,Departments of Chemistry and Biochemistry and Bioengineering, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Marie Rosselin
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Emmanuel Ibarboure
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Bertrand Garbay
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Elisabeth Garanger
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Timothy J Deming
- Departments of Chemistry and Biochemistry and Bioengineering, University of California-Los Angeles, Los Angeles, California 90095, United States
| | | |
Collapse
|
34
|
Duan T, Li H. In Situ Phase Transition of Elastin-Like Polypeptide Chains Regulates Thermoresponsive Properties of Elastomeric Protein-Based Hydrogels. Biomacromolecules 2020; 21:2258-2267. [DOI: 10.1021/acs.biomac.0c00206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Tianyu Duan
- Department of Chemistry University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Hongbin Li
- Department of Chemistry University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
35
|
Wu Y, Okesola BO, Xu J, Korotkin I, Berardo A, Corridori I, di Brocchetti FLP, Kanczler J, Feng J, Li W, Shi Y, Farafonov V, Wang Y, Thompson RF, Titirici MM, Nerukh D, Karabasov S, Oreffo ROC, Carlos Rodriguez-Cabello J, Vozzi G, Azevedo HS, Pugno NM, Wang W, Mata A. Disordered protein-graphene oxide co-assembly and supramolecular biofabrication of functional fluidic devices. Nat Commun 2020; 11:1182. [PMID: 32132534 PMCID: PMC7055247 DOI: 10.1038/s41467-020-14716-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
Supramolecular chemistry offers an exciting opportunity to assemble materials with molecular precision. However, there remains an unmet need to turn molecular self-assembly into functional materials and devices. Harnessing the inherent properties of both disordered proteins and graphene oxide (GO), we report a disordered protein-GO co-assembling system that through a diffusion-reaction process and disorder-to-order transitions generates hierarchically organized materials that exhibit high stability and access to non-equilibrium on demand. We use experimental approaches and molecular dynamics simulations to describe the underlying molecular mechanism of formation and establish key rules for its design and regulation. Through rapid prototyping techniques, we demonstrate the system's capacity to be controlled with spatio-temporal precision into well-defined capillary-like fluidic microstructures with a high level of biocompatibility and, importantly, the capacity to withstand flow. Our study presents an innovative approach to transform rational supramolecular design into functional engineering with potential widespread use in microfluidic systems and organ-on-a-chip platforms.
Collapse
Affiliation(s)
- Yuanhao Wu
- Institute of Bioengineering, Queen Mary University of London, London, E1 4NS, UK
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
- School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK
- Department of Chemical and Environmental Engineering, University of Nottingham, NG7 2RD, Nottingham, UK
- Biodiscovery Institute, University of Nottingham, NG7 2RD, Nottingham, UK
| | - Babatunde O Okesola
- Institute of Bioengineering, Queen Mary University of London, London, E1 4NS, UK
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Jing Xu
- Institute of Bioengineering, Queen Mary University of London, London, E1 4NS, UK
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Ivan Korotkin
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
- Mathematical Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Alice Berardo
- Laboratory of Bio-inspired, Bionic, Nano, Meta Materials & Mechanics, Università di Trento, via Mesiano, 77, I-38123, Trento, Italy
- C3A - Center Agriculture Food Environment, University of Trento/Fondazione Edmund Mach, Via Edmund Mach, 1 - 38010, San Michele all'Adige (TN), Italy
| | - Ilaria Corridori
- Laboratory of Bio-inspired, Bionic, Nano, Meta Materials & Mechanics, Università di Trento, via Mesiano, 77, I-38123, Trento, Italy
| | | | - Janos Kanczler
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - Jingyu Feng
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Weiqi Li
- Institute of Bioengineering, Queen Mary University of London, London, E1 4NS, UK
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Yejiao Shi
- Institute of Bioengineering, Queen Mary University of London, London, E1 4NS, UK
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Vladimir Farafonov
- Department of Physical Chemistry, V. N. Karazin Kharkiv National University, Svobody Sq. 4, Kharkiv, 61022, Ukraine
| | - Yiqiang Wang
- United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon, OX14 3DB, UK
| | - Rebecca F Thompson
- The Astbury Biostructure Laboratory, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Maria-Magdalena Titirici
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Dmitry Nerukh
- Systems Analytics Research Institute, Department of Mathematics, Aston University, Birmingham, B4 7ET, UK
| | - Sergey Karabasov
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | | | - Giovanni Vozzi
- Research Center'E. Piaggio' & Dipartimento di Ingegneria dell'Informazione, University of Pisa, Largo Lucio Lazzarino, 256126, Pisa, Italy
| | - Helena S Azevedo
- Institute of Bioengineering, Queen Mary University of London, London, E1 4NS, UK
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Nicola M Pugno
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
- Laboratory of Bio-inspired, Bionic, Nano, Meta Materials & Mechanics, Università di Trento, via Mesiano, 77, I-38123, Trento, Italy
- KET Labs, Edoardo Amaldi Foundation, Via del Politecnico snc, 00133, Rome, Italy
| | - Wen Wang
- Institute of Bioengineering, Queen Mary University of London, London, E1 4NS, UK
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Alvaro Mata
- Institute of Bioengineering, Queen Mary University of London, London, E1 4NS, UK.
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK.
- School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
- Department of Chemical and Environmental Engineering, University of Nottingham, NG7 2RD, Nottingham, UK.
- Biodiscovery Institute, University of Nottingham, NG7 2RD, Nottingham, UK.
| |
Collapse
|
36
|
Saha S, Banskota S, Roberts S, Kirmani N, Chilkoti A. Engineering the Architecture of Elastin-Like Polypeptides: From Unimers to Hierarchical Self-Assembly. ADVANCED THERAPEUTICS 2020; 3:1900164. [PMID: 34307837 PMCID: PMC8297442 DOI: 10.1002/adtp.201900164] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Indexed: 12/12/2022]
Abstract
Well-defined tunable nanostructures formed through the hierarchical self-assembly of peptide building blocks have drawn significant attention due to their potential applications in biomedical science. Artificial protein polymers derived from elastin-like polypeptides (ELPs), which are based on the repeating sequence of tropoelastin (the water-soluble precursor to elastin), provide a promising platform for creating nanostructures due to their biocompatibility, ease of synthesis, and customizable architecture. By designing the sequence and composition of ELPs at the gene level, their physicochemical properties can be controlled to a degree that is unmatched by synthetic polymers. A variety of ELP-based nanostructures are designed, inspired by the self-assembly of elastin and other proteins in biological systems. The choice of building blocks determines not only the physical properties of the nanostructures, but also their self-assembly into architectures ranging from spherical micelles to elongated nanofibers. This review focuses on the molecular determinants of ELP and ELP-hybrid self-assembly and formation of spherical, rod-like, worm-like, fibrillar, and vesicle architectures. A brief discussion of the potential biomedical applications of these supramolecular assemblies is also included.
Collapse
Affiliation(s)
- Soumen Saha
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Samagya Banskota
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Stefan Roberts
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Nadia Kirmani
- Department of Biology, Trinity College of Arts and Sciences, Duke University, Durham, NC 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
37
|
Hollingshead S, Liu JC. pH-Sensitive Mechanical Properties of Elastin-Based Hydrogels. Macromol Biosci 2020; 20:e1900369. [PMID: 32090483 DOI: 10.1002/mabi.201900369] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/23/2020] [Indexed: 01/23/2023]
Abstract
Ionizable amino acids in protein-based hydrogels can confer pH-responsive behavior. Because elastin-like polypeptides (ELPs) have an established sequence and can crosslink to form hydrogels, they are an ideal system for creating pH-sensitive materials. This study examines different parameters that might affect pH-sensitive behavior and characterizes the mechanical and physical properties between pH 3 and 11 of three ELP-based crosslinked hydrogels. The first finding is that varying the amount of crosslinker affects the overall stiffness and resilience of the hydrogels but does not strongly affect water content, swelling ratio, or pH sensitivity. Second, the choice of two popular tag sequences, which vary in histidine and aspartic acid content, does not have a strong effect on pH-sensitive properties. Last, selectively blocking lysine and tyrosine residues through acetylation significantly decreases the pH-sensitive zeta potential. Acetylated hydrogels also demonstrate different behavior at low pH values with reduced swelling, reduced water content, and higher stiffness. Overall, this work demonstrates that ELP hydrogels with ionizable groups are promising materials for environmentally-responsive applications such as drug delivery, tissue engineering, and microfluidics.
Collapse
Affiliation(s)
- Sydney Hollingshead
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907-2100, USA
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907-2100, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907-2032, USA
| |
Collapse
|
38
|
Rosselin M, Xiao Y, Belhomme L, Lecommandoux S, Garanger E. Expanding the Toolbox of Chemoselective Modifications of Protein-Like Polymers at Methionine Residues. ACS Macro Lett 2019; 8:1648-1653. [PMID: 35619386 DOI: 10.1021/acsmacrolett.9b00862] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Selective modifications at methionyl residues in proteins have attracted particular attention in recent years. Previously described methods to chemoselectively modify the methionine side chain in elastin-like polypeptides (ELPs) involved nucleophilic addition using alkyl halides or epoxides yielding a sulfonium group with a positive charge strongly affecting ELPs' physicochemical properties, in particular their thermal responsiveness. We herein explored the recently reported ReACT method (Redox-Activated Chemical Tagging) based on the use of oxaziridine derivatives, yielding an uncharged sulfimide as an alternative route for chemoselective modifications of methionine-containing ELPs in aqueous medium. The different synthetic strategies are herein compared in order to provide a furnished toolbox for further biorthogonal postmodifications of any protein polymers.
Collapse
Affiliation(s)
- Marie Rosselin
- Universite Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Ye Xiao
- Universite Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Ludovic Belhomme
- Universite Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | | | - Elisabeth Garanger
- Universite Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| |
Collapse
|
39
|
Werten MWT, Eggink G, Cohen Stuart MA, de Wolf FA. Production of protein-based polymers in Pichia pastoris. Biotechnol Adv 2019; 37:642-666. [PMID: 30902728 PMCID: PMC6624476 DOI: 10.1016/j.biotechadv.2019.03.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/03/2019] [Accepted: 03/17/2019] [Indexed: 01/09/2023]
Abstract
Materials science and genetic engineering have joined forces over the last three decades in the development of so-called protein-based polymers. These are proteins, typically with repetitive amino acid sequences, that have such physical properties that they can be used as functional materials. Well-known natural examples are collagen, silk, and elastin, but also artificial sequences have been devised. These proteins can be produced in a suitable host via recombinant DNA technology, and it is this inherent control over monomer sequence and molecular size that renders this class of polymers of particular interest to the fields of nanomaterials and biomedical research. Traditionally, Escherichia coli has been the main workhorse for the production of these polymers, but the methylotrophic yeast Pichia pastoris is finding increased use in view of the often high yields and potential bioprocessing benefits. We here provide an overview of protein-based polymers produced in P. pastoris. We summarize their physicochemical properties, briefly note possible applications, and detail their biosynthesis. Some challenges that may be faced when using P. pastoris for polymer production are identified: (i) low yields and poor process control in shake flask cultures; i.e., the need for bioreactors, (ii) proteolytic degradation, and (iii) self-assembly in vivo. Strategies to overcome these challenges are discussed, which we anticipate will be of interest also to readers involved in protein expression in P. pastoris in general.
Collapse
Affiliation(s)
- Marc W T Werten
- Wageningen Food & Biobased Research, NL-6708 WG Wageningen, The Netherlands.
| | - Gerrit Eggink
- Wageningen Food & Biobased Research, NL-6708 WG Wageningen, The Netherlands; Bioprocess Engineering, Wageningen University & Research, NL-6708 PB Wageningen, The Netherlands
| | - Martien A Cohen Stuart
- Physical Chemistry and Soft Matter, Wageningen University & Research, NL-6708 WE Wageningen, The Netherlands
| | - Frits A de Wolf
- Wageningen Food & Biobased Research, NL-6708 WG Wageningen, The Netherlands
| |
Collapse
|
40
|
Cinar H, Fetahaj Z, Cinar S, Vernon RM, Chan HS, Winter RHA. Temperature, Hydrostatic Pressure, and Osmolyte Effects on Liquid-Liquid Phase Separation in Protein Condensates: Physical Chemistry and Biological Implications. Chemistry 2019; 25:13049-13069. [PMID: 31237369 DOI: 10.1002/chem.201902210] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/23/2019] [Indexed: 01/04/2023]
Abstract
Liquid-liquid phase separation (LLPS) of proteins and other biomolecules play a critical role in the organization of extracellular materials and membrane-less compartmentalization of intra-organismal spaces through the formation of condensates. Structural properties of such mesoscopic droplet-like states were studied by spectroscopy, microscopy, and other biophysical techniques. The temperature dependence of biomolecular LLPS has been studied extensively, indicating that phase-separated condensed states of proteins can be stabilized or destabilized by increasing temperature. In contrast, the physical and biological significance of hydrostatic pressure on LLPS is less appreciated. Summarized here are recent investigations of protein LLPS under pressures up to the kbar-regime. Strikingly, for the cases studied thus far, LLPSs of both globular proteins and intrinsically disordered proteins/regions are typically more sensitive to pressure than the folding of proteins, suggesting that organisms inhabiting the deep sea and sub-seafloor sediments, under pressures up to 1 kbar and beyond, have to mitigate this pressure-sensitivity to avoid unwanted destabilization of their functional biomolecular condensates. Interestingly, we found that trimethylamine-N-oxide (TMAO), an osmolyte upregulated in deep-sea fish, can significantly stabilize protein droplets under pressure, pointing to another adaptive advantage for increased TMAO concentrations in deep-sea organisms besides the osmolyte's stabilizing effect against protein unfolding. As life on Earth might have originated in the deep sea, pressure-dependent LLPS is pertinent to questions regarding prebiotic proto-cells. Herein, we offer a conceptual framework for rationalizing the recent experimental findings and present an outline of the basic thermodynamics of temperature-, pressure-, and osmolyte-dependent LLPS as well as a molecular-level statistical mechanics picture in terms of solvent-mediated interactions and void volumes.
Collapse
Affiliation(s)
- Hasan Cinar
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| | - Zamira Fetahaj
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| | - Süleyman Cinar
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| | - Robert M Vernon
- Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Hue Sun Chan
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Ontario, M5S 1A8, Canada.,Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Ontario, M5S 1A8, Canada
| | - Roland H A Winter
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| |
Collapse
|
41
|
Gourgas O, Muiznieks LD, Bello DG, Nanci A, Sharpe S, Cerruti M. Cross-Linked Elastin-like Polypeptide Membranes as a Model for Medial Arterial Calcification. Biomacromolecules 2019; 20:2625-2636. [DOI: 10.1021/acs.biomac.9b00417] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Ophélie Gourgas
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - Lisa D. Muiznieks
- Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Dainelys Guadarrama Bello
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Antonio Nanci
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Simon Sharpe
- Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|
42
|
Mills CE, Ding E, Olsen BD. Cononsolvency of Elastin-like Polypeptides in Water/Alcohol Solutions. Biomacromolecules 2019; 20:2167-2173. [DOI: 10.1021/acs.biomac.8b01644] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Carolyn E. Mills
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Erika Ding
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bradley D. Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
43
|
Scelsi A, Bochicchio B, Smith A, Workman VL, Castillo Diaz LA, Saiani A, Pepe A. Tuning of hydrogel stiffness using a two-component peptide system for mammalian cell culture. J Biomed Mater Res A 2019; 107:535-544. [PMID: 30456777 PMCID: PMC6587839 DOI: 10.1002/jbm.a.36568] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/19/2018] [Accepted: 09/28/2018] [Indexed: 01/18/2023]
Abstract
Self-assembling peptide hydrogels (SAPHs) represent emerging cell cultures systems in several biomedical applications. The advantages of SAPHs are mainly ascribed to the absence of toxic chemical cross-linkers, the presence of ECM-like fibrillar structures and the possibility to produce hydrogels with a large range of different mechanical properties. We will present a two-component peptide system with tuneable mechanical properties, consisting of a small pentapeptide (SFFSF-NH2 , SA5N) that acts as a gelator and a larger 21-mer peptide (SFFSF-GVPGVGVPGVG-SFFSF, SA21) designed as a physical cross-linker. The hydrogels formed by different mixtures of the two peptides are made up mainly of antiparallel β-sheet nanofibers entangling in an intricate network. The effect of the addition of SA21 on the morphology of the hydrogels was investigated by atomic force microscopy and transmission electron microscopy and correlated to the mechanical properties of the hydrogel. Finally, the biocompatibility of the hydrogels using 2D cell cultures was tested. © 2018 The Authors. journal Of Biomedical Materials Research Part A Published By Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 535-544, 2019.
Collapse
Affiliation(s)
- Alessandra Scelsi
- Laboratory of Bioinspired Materials, Department of ScienceUniversity of BasilicataPotenzaItaly
- PhD School of Science, University of BasilicataPotenzaItaly
| | - Brigida Bochicchio
- Laboratory of Bioinspired Materials, Department of ScienceUniversity of BasilicataPotenzaItaly
| | - Andrew Smith
- School of Materials and Manchester Institute of Biotechnology, The University of ManchesterManchesterUnited Kingdom
| | - Victoria L. Workman
- School of Materials and Manchester Institute of Biotechnology, The University of ManchesterManchesterUnited Kingdom
| | - Luis A. Castillo Diaz
- School of Materials and Manchester Institute of Biotechnology, The University of ManchesterManchesterUnited Kingdom
- Biotecnología Médica y Farmacéutica. Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ)GuadalajaraMexico
| | - Alberto Saiani
- School of Materials and Manchester Institute of Biotechnology, The University of ManchesterManchesterUnited Kingdom
| | - Antonietta Pepe
- Laboratory of Bioinspired Materials, Department of ScienceUniversity of BasilicataPotenzaItaly
| |
Collapse
|
44
|
van Oppen LMPE, Pille J, Stuut C, van Stevendaal M, van der Vorm LN, Smeitink JAM, Koopman WJH, Willems PHGM, van Hest JCM, Brock R. Octa-arginine boosts the penetration of elastin-like polypeptide nanoparticles in 3D cancer models. Eur J Pharm Biopharm 2019; 137:175-184. [PMID: 30776413 DOI: 10.1016/j.ejpb.2019.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/22/2018] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Abstract
Elastin-like polypeptide (ELP) nanoparticles are a versatile platform for targeted drug delivery. As for any type of nanocarrier system, an important challenge remains the ability of deep (tumor) tissue penetration. In this study, ELP particles with controlled surface density of the cell-penetrating peptide (CPP) octa-arginine (R8) were created by temperature-induced co-assembly. ELPs formed micellar nanoparticles with a diameter of around 60 nm. Cellular uptake in human skin fibroblasts was directly dependent on the surface density of R8 as confirmed by flow cytometry and confocal laser scanning microscopy. Remarkably, next to promoting cellular uptake, the presence of the CPP also enhanced penetration into spheroids generated from human glioblastoma U-87 cells. After 24 h, uptake into cells was observed in multiple layers towards the spheroid core. ELP particles not carrying any CPP did not penetrate. Clearly, a high CPP density exerted a dual benefit on cellular uptake and tissue penetration. At low nanoparticle concentration, there was evidence of a binding site barrier as observed for the penetration of molecules binding with high affinity to cell surface receptors. In conclusion, R8-functionalized ELP nanoparticles form an excellent delivery vehicle that combines tunability of surface characteristics with small and well-defined size.
Collapse
Affiliation(s)
- Lisanne M P E van Oppen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Jan Pille
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands; Department of Bio-Organic Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, PO Box 9010, 6525 AJ Nijmegen, the Netherlands
| | - Christiaan Stuut
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Marleen van Stevendaal
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands
| | - Lisa N van der Vorm
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Jan A M Smeitink
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Werner J H Koopman
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Peter H G M Willems
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Jan C M van Hest
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands; Department of Bio-Organic Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, PO Box 9010, 6525 AJ Nijmegen, the Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
45
|
Wilson CJ, Bommarius AS, Champion JA, Chernoff YO, Lynn DG, Paravastu AK, Liang C, Hsieh MC, Heemstra JM. Biomolecular Assemblies: Moving from Observation to Predictive Design. Chem Rev 2018; 118:11519-11574. [PMID: 30281290 PMCID: PMC6650774 DOI: 10.1021/acs.chemrev.8b00038] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biomolecular assembly is a key driving force in nearly all life processes, providing structure, information storage, and communication within cells and at the whole organism level. These assembly processes rely on precise interactions between functional groups on nucleic acids, proteins, carbohydrates, and small molecules, and can be fine-tuned to span a range of time, length, and complexity scales. Recognizing the power of these motifs, researchers have sought to emulate and engineer biomolecular assemblies in the laboratory, with goals ranging from modulating cellular function to the creation of new polymeric materials. In most cases, engineering efforts are inspired or informed by understanding the structure and properties of naturally occurring assemblies, which has in turn fueled the development of predictive models that enable computational design of novel assemblies. This Review will focus on selected examples of protein assemblies, highlighting the story arc from initial discovery of an assembly, through initial engineering attempts, toward the ultimate goal of predictive design. The aim of this Review is to highlight areas where significant progress has been made, as well as to outline remaining challenges, as solving these challenges will be the key that unlocks the full power of biomolecules for advances in technology and medicine.
Collapse
Affiliation(s)
- Corey J. Wilson
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Andreas S. Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Julie A. Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yury O. Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Laboratory of Amyloid Biology & Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - David G. Lynn
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Anant K. Paravastu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chen Liang
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Chien Hsieh
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M. Heemstra
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
46
|
Correia CR, Reis RL, Mano JF. Design Principles and Multifunctionality in Cell Encapsulation Systems for Tissue Regeneration. Adv Healthc Mater 2018; 7:e1701444. [PMID: 30102458 DOI: 10.1002/adhm.201701444] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 07/16/2018] [Indexed: 12/12/2022]
Abstract
Cell encapsulation systems are being increasingly applied as multifunctional strategies to regenerate tissues. Lessons afforded with encapsulation systems aiming to treat endocrine diseases seem to be highly valuable for the tissue engineering and regenerative medicine (TERM) systems of today, in which tissue regeneration and biomaterial integration are key components. Innumerous multifunctional systems for cell compartmentalization are being proposed to meet the specific needs required in the TERM field. Herein is reviewed the variable geometries proposed to produce cell encapsulation strategies toward tissue regeneration, including spherical and fiber-shaped systems, and other complex shapes and arrangements that better mimic the highly hierarchical organization of native tissues. The application of such principles in the TERM field brings new possibilities for the development of highly complex systems, which holds tremendous promise for tissue regeneration. The complex systems aim to recreate adequate environmental signals found in native tissue (in particular during the regenerative process) to control the cellular outcome, and conferring multifunctional properties, namely the incorporation of bioactive molecules and the ability to create smart and adaptative systems in response to different stimuli. The new multifunctional properties of such systems that are being employed to fulfill the requirements of the TERM field are also discussed.
Collapse
Affiliation(s)
- Clara R. Correia
- 3B's Research Group – Biomaterials, Biodegradables, and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark 4805‐017 Barco Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group – Biomaterials, Biodegradables, and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark 4805‐017 Barco Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - João F. Mano
- 3B's Research Group – Biomaterials, Biodegradables, and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark 4805‐017 Barco Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| |
Collapse
|
47
|
Coenen AMJ, Bernaerts KV, Harings JAW, Jockenhoevel S, Ghazanfari S. Elastic materials for tissue engineering applications: Natural, synthetic, and hybrid polymers. Acta Biomater 2018; 79:60-82. [PMID: 30165203 DOI: 10.1016/j.actbio.2018.08.027] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/03/2018] [Accepted: 08/21/2018] [Indexed: 02/08/2023]
Abstract
Elastin and collagen are the two main components of elastic tissues and provide the tissue with elasticity and mechanical strength, respectively. Whereas collagen is adequately produced in vitro, production of elastin in tissue-engineered constructs is often inadequate when engineering elastic tissues. Therefore, elasticity has to be artificially introduced into tissue-engineered scaffolds. The elasticity of scaffold materials can be attributed to either natural sources, when native elastin or recombinant techniques are used to provide natural polymers, or synthetic sources, when polymers are synthesized. While synthetic elastomers often lack the biocompatibility needed for tissue engineering applications, the production of natural materials in adequate amounts or with proper mechanical strength remains a challenge. However, combining natural and synthetic materials to create hybrid components could overcome these issues. This review explains the synthesis, mechanical properties, and structure of native elastin as well as the theories on how this extracellular matrix component provides elasticity in vivo. Furthermore, current methods, ranging from proteins and synthetic polymers to hybrid structures that are being investigated for providing elasticity to tissue engineering constructs, are comprehensively discussed. STATEMENT OF SIGNIFICANCE Tissue engineered scaffolds are being developed as treatment options for malfunctioning tissues throughout the body. It is essential that the scaffold is a close mimic of the native tissue with regards to both mechanical and biological functionalities. Therefore, the production of elastic scaffolds is of key importance to fabricate tissue engineered scaffolds of the elastic tissues such as heart valves and blood vessels. Combining naturally derived and synthetic materials to reach this goal proves to be an interesting area where a highly tunable material that unites mechanical and biological functionalities can be obtained.
Collapse
Affiliation(s)
- Anna M J Coenen
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Katrien V Bernaerts
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Jules A W Harings
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Stefan Jockenhoevel
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands; Department of Biohybrid & Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Forckenbeckstraβe 55, 52072 Aachen, Germany
| | - Samaneh Ghazanfari
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
| |
Collapse
|
48
|
Zai-Rose V, West SJ, Kramer WH, Bishop GR, Lewis EA, Correia JJ. Effects of Doxorubicin on the Liquid-Liquid Phase Change Properties of Elastin-Like Polypeptides. Biophys J 2018; 115:1431-1444. [PMID: 30292393 DOI: 10.1016/j.bpj.2018.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/23/2018] [Accepted: 09/05/2018] [Indexed: 01/03/2023] Open
Abstract
The lower critical solution temperature (LCST) of the thermo-responsive engineered elastin-like polypeptide (ELP) biopolymer is being exploited for the thermal targeted delivery of doxorubicin (Dox) to solid tumors. We examine the impact of Dox labeling on the thermodynamic and hydrodynamic behavior of an ELP drug carrier and how Dox influences the liquid-liquid phase separation (LLPS). Turbidity, dynamic light scattering (DLS), and differential scanning calorimetry measurements show that ELP undergoes a cooperative liquid-liquid phase separation from a soluble to insoluble coacervated state that is enhanced by Dox labeling. Circular dichroism measurements show that below the LCST ELP consists of both random coils and temperature-dependent β-turn structures. Labeling with Dox further enhances β-turn formation. DLS measurements reveal a significant increase in the hydrodynamic radius of ELP below the LCST consistent with weak self-association. Dox-labeled SynB1-ELP1 (Dox-ELP) has a significant increase in the hydrodynamic radius by DLS measurements that is consistent with stable oligomers and, at high Dox-ELP concentrations, micelle structures. Enhanced association by Dox-ELP is confirmed by sedimentation velocity analytical ultracentrifugation measurements. Both ELP self-association and the ELP inverse phase transition are entropically driven with positive changes in enthalpy and entropy. We show by turbidity and DLS that the ELP phase transition is monophasic, whereas mixtures of ELP and Dox-ELP are biphasic, with Dox-labeled ELP phase changing first and unlabeled ELP partitioning into the coacervate as the temperature is raised. DLS reveals a complex growth in droplet sizes consistent with coalescence and fusion of liquid droplets. Differential scanning calorimetry measurements show a -11 kcal/mol change in enthalpy for Dox-ELP coacervation relative to the unlabeled ELP, consistent with droplet formation being stabilized by favorable enthalpic interactions. We propose that the ELP phase change is initiated by ELP self-association, enhanced by increased Dox-ELP oligomer and micelle formation and stabilized by favorable enthalpic interactions in the liquid droplets.
Collapse
Affiliation(s)
- Valeria Zai-Rose
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Savannah J West
- Department of Chemistry, Mississippi State University, Starkville, Mississippi
| | - Wolfgang H Kramer
- Department of Chemistry and Biochemistry, Millsaps College, Jackson, Mississippi
| | - G Reid Bishop
- Department of Chemistry, Belhaven University, Jackson, Mississippi
| | - Edwin A Lewis
- Department of Chemistry, Mississippi State University, Starkville, Mississippi
| | - John J Correia
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi.
| |
Collapse
|
49
|
Selig O, Cunha AV, van Eldijk MB, van Hest JCM, Jansen TLC, Bakker HJ, Rezus YLA. Temperature-Induced Collapse of Elastin-like Peptides Studied by 2DIR Spectroscopy. J Phys Chem B 2018; 122:8243-8254. [PMID: 30067028 PMCID: PMC6143280 DOI: 10.1021/acs.jpcb.8b05221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/31/2018] [Indexed: 12/21/2022]
Abstract
Elastin-like peptides are hydrophobic biopolymers that exhibit a reversible coacervation transition when the temperature is raised above a critical point. Here, we use a combination of linear infrared spectroscopy, two-dimensional infrared spectroscopy, and molecular dynamics simulations to study the structural dynamics of two elastin-like peptides. Specifically, we investigate the effect of the solvent environment and temperature on the structural dynamics of a short (5-residue) elastin-like peptide and of a long (450-residue) elastin-like peptide. We identify two vibrational energy transfer processes that take place within the amide I' band of both peptides. We observe that the rate constant of one of the exchange processes is strongly dependent on the solvent environment and argue that the coacervation transition is accompanied by a desolvation of the peptide backbone where up to 75% of the water molecules are displaced. We also study the spectral diffusion dynamics of the valine(1) residue that is present in both peptides. We find that these dynamics are relatively slow and indicative of an amide group that is shielded from the solvent. We conclude that the coacervation transition of elastin-like peptides is probably not associated with a conformational change involving this residue.
Collapse
Affiliation(s)
- Oleg Selig
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Ana V. Cunha
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Mark B. van Eldijk
- Institute
for Molecules and Materials, Radboud University
Nijmegen, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Jan C. M. van Hest
- Department
of Chemical Engineering and Chemistry Kranenveld, Eindhoven University of Technology, Building 14, 5600 MB Eindhoven, The Netherlands
| | - Thomas L. C. Jansen
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Huib J. Bakker
- FOM
institute AMOLF, Science
Park 104, 1098 XG Amsterdam, The Netherlands
| | | |
Collapse
|
50
|
Suyama K, Tatsubo D, Iwasaki W, Miyazaki M, Kiyota Y, Takahashi I, Maeda I, Nose T. Enhancement of Self-Aggregation Properties of Linear Elastin-Derived Short Peptides by Simple Cyclization: Strong Self-Aggregation Properties of Cyclo[FPGVG] n, Consisting Only of Natural Amino Acids. Biomacromolecules 2018; 19:3201-3211. [PMID: 29932654 DOI: 10.1021/acs.biomac.8b00353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Elastin-like peptides (ELPs) consist of distinctive repetitive sequences, such as (VPGVG) n, exhibit temperature-dependent reversible self-assembly (coacervation), and have been considered to be useful for the development of thermoresponsive materials. Further fundamental studies evaluating coacervative properties of novel nonlinear ELPs could present design concepts for new thermoresponsive materials. In this study, we prepared novel ELPs, cyclic (FPGVG) n (cyclo[FPGVG] n, n = 1-5), and analyzed their self-assembly properties and structural characteristics. Cyclo[FPGVG] n ( n = 3-5) demonstrated stronger coacervation capacity than the corresponding linear peptides. The coacervate of cyclo[FPGVG]5 was able to retain water-soluble dye molecules at 40 °C, which implied that cyclo[FPGVG]5 could be employed as a base material of DDS (drug delivery system) matrices and other biomaterials. The results of molecular dynamics simulations and circular dichroism measurements suggested that a certain chain length was required for cyclo[FPGVG] n to demonstrate alterations in molecular structure that were critical to the exhibition of coacervation.
Collapse
Affiliation(s)
- Keitaro Suyama
- Faculty of Arts and Science , Kyushu University , Fukuoka 819-0395 , Japan
| | - Daiki Tatsubo
- Department of Chemistry, Faculty and Graduate School of Science , Kyushu University , Fukuoka 819-0395 , Japan
| | - Wataru Iwasaki
- Advanced Manufacturing Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Tosu, Saga 841-0052 , Japan
| | - Masaya Miyazaki
- Department of Bioscience and Bioinformatics , Kyushu Institute of Technology , Iizuka, Fukuoka 820-8502 , Japan
| | - Yuhei Kiyota
- Division of Applied Chemistry , Faculty of Engineering, Hokkaido University , Sapporo 060-0810 , Japan
| | - Ichiro Takahashi
- Division of Oral Health, Growth and Development, Faculty of Dental Science , Kyushu University , Fukuoka 812-8582 , Japan
| | - Iori Maeda
- Department of Bioscience and Bioinformatics , Kyushu Institute of Technology , Iizuka, Fukuoka 820-8502 , Japan
| | - Takeru Nose
- Faculty of Arts and Science , Kyushu University , Fukuoka 819-0395 , Japan.,Department of Chemistry, Faculty and Graduate School of Science , Kyushu University , Fukuoka 819-0395 , Japan
| |
Collapse
|