1
|
McBride R, van Zyl M, Fielding BC. The coronavirus nucleocapsid is a multifunctional protein. Viruses 2014; 6:2991-3018. [PMID: 25105276 PMCID: PMC4147684 DOI: 10.3390/v6082991] [Citation(s) in RCA: 669] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 12/12/2022] Open
Abstract
The coronavirus nucleocapsid (N) is a structural protein that forms complexes with genomic RNA, interacts with the viral membrane protein during virion assembly and plays a critical role in enhancing the efficiency of virus transcription and assembly. Recent studies have confirmed that N is a multifunctional protein. The aim of this review is to highlight the properties and functions of the N protein, with specific reference to (i) the topology; (ii) the intracellular localization and (iii) the functions of the protein.
Collapse
Affiliation(s)
- Ruth McBride
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Modderdam Road, Bellville, Western Cape 7535, South Africa.
| | - Marjorie van Zyl
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Modderdam Road, Bellville, Western Cape 7535, South Africa.
| | - Burtram C Fielding
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Modderdam Road, Bellville, Western Cape 7535, South Africa.
| |
Collapse
|
2
|
Zlateva KT, Crusio KM, Leontovich AM, Lauber C, Claas E, Kravchenko AA, Spaan WJM, Gorbalenya AE. Design and validation of consensus-degenerate hybrid oligonucleotide primers for broad and sensitive detection of corona- and toroviruses. J Virol Methods 2011; 177:174-83. [PMID: 21864579 PMCID: PMC7112876 DOI: 10.1016/j.jviromet.2011.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 08/01/2011] [Accepted: 08/04/2011] [Indexed: 02/05/2023]
Abstract
The ssRNA+ family Coronaviridae includes two subfamilies prototyped by coronaviruses and toroviruses that cause respiratory and enteric infections. To facilitate the identification of new distantly related members of the family Coronaviridae, we have developed a molecular assay with broad specificity. The consensus-degenerated hybrid oligonucleotide primer (CODEHOP) strategy was modified to design primers targeting the most conserved motifs in the RNA-dependent RNA polymerase locus. They were evaluated initially on RNA templates from virus-infected cells using a two-step RT-PCR protocol that was further advanced to a one-step assay. The sensitivity of the assay ranged from 102 to 106 and from 105 to 109 RNA copy numbers for individual corona-/torovirus templates when tested, respectively, with and without an excess of RNA from human cells. This primer set compared to that designed according to the original CODEHOP rules showed 10–103 folds greater sensitivity for 5 of the 6 evaluated corona-/torovirus templates. It detected 57% (32 of 56) of the respiratory specimens positive for 4 human coronaviruses, as well as stool specimens positive for a bovine torovirus. The high sensitivity and broad virus range of this assay makes it suitable for screening biological specimens in search for new viruses of the family Coronaviridae.
Collapse
Affiliation(s)
- Kalina T Zlateva
- Department of Medical Microbiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
Virus infection in vitro can either result in a cytopathic effect (CPE) or proceed without visible changes in infected cells (noncytopathic infection). We are interested in understanding the mechanisms controlling the impact of coronavirus infection on host cells. To this end, we compared a productive, noncytopathic infection of murine hepatitis virus (MHV) strain A59 in the fibroblastlike cell line NIH 3T3 with cytopathic MHV infections. Infected NIH 3T3 cells could be cultured for up to 4 weeks without apparent CPE and yet produce virus at 10(7) to 10(8) PFU/ml. Using flow cytometry, we demonstrated that NIH 3T3 cells expressed as much MHV receptor CEACAM1 as other cell lines which die from MHV infection. In contrast, using quantitative reverse transcription-PCR and metabolic labeling of RNA, we found that the rate of viral RNA amplification in NIH 3T3 cells was lower than the rate in cells in which MHV induces a CPE. The rate of cellular RNA synthesis in contact-inhibited confluent NIH 3T3 cells was also lower than in cells permissive to cytopathic MHV infection. However, the induction of cellular RNA synthesis in growing NIH 3T3 cells did not result in an increase of either viral RNA amplification or CPE. Our results suggest that a specific, receptor CEACAM1-independent mechanism restricting coronaviral RNA synthesis and CPE is present in NIH 3T3 and, possibly, other cells with preserved contact inhibition.
Collapse
|
4
|
Liu P, Li L, Millership JJ, Kang H, Leibowitz JL, Giedroc DP. A U-turn motif-containing stem-loop in the coronavirus 5' untranslated region plays a functional role in replication. RNA (NEW YORK, N.Y.) 2007; 13:763-80. [PMID: 17353353 PMCID: PMC1852815 DOI: 10.1261/rna.261807] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 01/29/2007] [Indexed: 05/14/2023]
Abstract
The 5' untranslated region (UTR) of the mouse hepatitis virus (MHV) genome contains cis-acting sequences necessary for transcription and replication. A consensus secondary structural model of the 5' 140 nucleotides of the 5' UTRs of nine coronaviruses (CoVs) derived from all three major CoV groups is presented and characterized by three major stem-loops, SL1, SL2, and SL4. NMR spectroscopy provides structural support for SL1 and SL2 in three group 2 CoVs, including MHV, BCoV, and HCoV-OC43. SL2 is conserved in all CoVs, typically containing a pentaloop (C47-U48-U49-G50-U51 in MHV) stacked on a 5 base-pair stem, with some sequences containing an additional U 3' to U51; SL2 therefore possesses sequence features consistent with a U-turn-like conformation. The imino protons of U48 in the wild-type RNA, and G48 in the U48G SL2 mutant RNA, are significantly protected from exchange with solvent, consistent with a hydrogen bonding interaction critical to the hairpin loop architecture. SL2 is required for MHV replication; MHV genomes containing point substitutions predicted to perturb the SL2 structure (U48C, U48A) were not viable, while those that maintain the structure (U48G and U49A) were viable. The U48C MHV mutant supports both positive- and negative-sense genome-sized RNA synthesis, but fails to direct the synthesis of positive- or negative-sense subgenomic RNAs. These data support the existence of the SL2 in our models, and further suggest a critical role in coronavirus replication.
Collapse
Affiliation(s)
- Pinghua Liu
- Department of Microbial and Molecular Pathogenesis, Texas A&M University System, College of Medicine, College Station, Texas 77843-1114, USA
| | | | | | | | | | | |
Collapse
|
5
|
Versteeg GA, Slobodskaya O, Spaan WJM. Transcriptional profiling of acute cytopathic murine hepatitis virus infection in fibroblast-like cells. J Gen Virol 2006; 87:1961-1975. [PMID: 16760398 DOI: 10.1099/vir.0.81756-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Understanding the orchestrated genome-wide cellular responses is critical for comprehending the early events of coronavirus infection. Microarray analysis was applied to assess changes in cellular expression profiles during different stages of two independent, highly controlled murine hepatitis virus (MHV) infections in vitro. Fibroblast-like L cells were infected at high multiplicity in order to study the direct effects of a synchronized lytic coronavirus infection. Total RNA was harvested from MHV- or mock-infected L cells at 3, 5 and 6 h post-infection and hybridized to Affymetrix microarrays representing approximately 12,500 murine genes and expressed sequences. The expression data were compared to their respective mock-infected controls. Quantitative RT-PCR of selected transcripts was used to validate the differential expression of transcripts and inter-experiment reproducibility of microarray analysis. It was concluded that MHV-A59 infection in fibroblast-like cells triggers very few transcriptional cellular responses in the first 3 h of infection. Later, after having established a productive infection, a chemokine response is induced together with other cellular changes associated with RNA and protein metabolism, cell cycle and apoptosis. Interferon responses are not triggered during infection, although the L cells can be readily stimulated to produce interferon by dsRNA, a known potent inducer of interferon. Possibly, the interferon response is actively counteracted by a virus-encoded antagonist as has been described previously for other RNA viruses.
Collapse
Affiliation(s)
- Gijs A Versteeg
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, E4P, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Olga Slobodskaya
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, E4P, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Willy J M Spaan
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, E4P, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
6
|
Lissenberg A, Vrolijk MM, van Vliet ALW, Langereis MA, de Groot-Mijnes JDF, Rottier PJM, de Groot RJ. Luxury at a cost? Recombinant mouse hepatitis viruses expressing the accessory hemagglutinin esterase protein display reduced fitness in vitro. J Virol 2006; 79:15054-63. [PMID: 16306576 PMCID: PMC1316008 DOI: 10.1128/jvi.79.24.15054-15063.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group 2 coronaviruses encode an accessory envelope glycoprotein species, the hemagglutinin esterase (HE), which possesses sialate-O-acetylesterase activity and which, presumably, promotes virus spread and entry in vivo by facilitating reversible virion attachment to O-acetylated sialic acids. While HE may provide a strong selective advantage during natural infection, many laboratory strains of mouse hepatitis virus (MHV) fail to produce the protein. Apparently, their HE genes were inactivated during cell culture adaptation. For this report, we have studied the molecular basis of this phenomenon. By using targeted RNA recombination, we generated isogenic recombinant MHVs which differ exclusively in their expression of HE and produce either the wild-type protein (HE+), an enzymatically inactive HE protein (HE0), or no HE at all. HE expression or the lack thereof did not lead to gross differences in in vitro growth properties. Yet the expression of HE was rapidly lost during serial cell culture passaging. Competition experiments with mixed infections revealed that this was not due to the enzymatic activity: MHVs expressing HE+ or HE0 propagated with equal efficiencies. During the propagation of recombinant MHV-HE+, two types of spontaneous mutants accumulated. One produced an anchorless HE, while the other had a Gly-to-Trp substitution at the predicted C-terminal residue of the HE signal peptide. Neither mutant incorporated HE into virion particles, suggesting that wild-type HE reduces the in vitro propagation efficiency, either at the assembly stage or at a postassembly level. Our findings demonstrate that the expression of "luxury" proteins may come at a fitness penalty. Apparently, under natural conditions the costs of maintaining HE are outweighed by the benefits.
Collapse
Affiliation(s)
- A Lissenberg
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
7
|
Pereira CF, Rutten K, Stránská R, Huigen MCDG, Aerts PC, de Groot RJ, Egberink HF, Schuurman R, Nottet HSLM. Spectrum of antiviral activity of o-(acetoxyphenyl)hept-2-ynyl sulphide (APHS). Int J Antimicrob Agents 2005; 25:419-26. [PMID: 15848298 DOI: 10.1016/j.ijantimicag.2004.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Accepted: 11/30/2004] [Indexed: 11/21/2022]
Abstract
Since some antiviral drugs have a broad spectrum of action, the aim of this study was to assess whether o-(acetoxyphenyl)hept-2-ynyl sulphide (APHS), a recently described inhibitor of human immunodeficiency virus type 1 (HIV-1) replication, has an effect on the replication of other retroviruses, (-) and (+) RNA viruses and DNA viruses. APHS did not affect the replication of feline immunodeficiency virus, HIV-2 and a HIV-1 strain resistant to non-nucleoside reverse transcriptase inhibitors (NNRTI). APHS could also not inhibit the replication of the RNA viruses, respiratory syncytium virus or mouse hepatitis virus. In contrast, APHS did inhibit the replication of wild-type herpes simplex virus type 1 (HSV-1) as well as acyclovir-resistant HSV-1 and HSV-2 mutant. These results suggest that APHS is a NNRTI of HIV-1 replication, but not HIV-2 replication, and that APHS is an inhibitor of both HSV-1 and HSV-2 replication.
Collapse
Affiliation(s)
- Cândida F Pereira
- Eijkman-Winkler Center, Hp G04.614, University Medical Center Utrecht, Heidelberglaan 100, NL-3584 CX Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
This chapter describes the interactions between the different structural components of the viruses and discusses their relevance for the process of virion formation. Two key factors determine the efficiency of the assembly process: intracellular transport and molecular interactions. Many viruses have evolved elaborate strategies to ensure the swift and accurate delivery of the virion components to the cellular compartment(s) where they must meet and form (sub) structures. Assembly of viruses starts in the nucleus by the encapsidation of viral DNA, using cytoplasmically synthesized capsid proteins; nucleocapsids then migrate to the cytosol, by budding at the inner nuclear membrane followed by deenvelopment, to pick up the tegument proteins.
Collapse
Affiliation(s)
- Cornelis A M de Haan
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | | |
Collapse
|
9
|
Van Den Born E, Gultyaev AP, Snijder EJ. Secondary structure and function of the 5'-proximal region of the equine arteritis virus RNA genome. RNA (NEW YORK, N.Y.) 2004; 10:424-37. [PMID: 14970388 PMCID: PMC1370938 DOI: 10.1261/rna.5174804] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Accepted: 11/20/2003] [Indexed: 05/21/2023]
Abstract
Nidoviruses produce an extensive 3'-coterminal nested set of subgenomic mRNAs, which are used to express their structural proteins. In addition, arterivirus and coronavirus mRNAs contain a common 5' leader sequence, derived from the genomic 5' end. The joining of this leader sequence to different segments (mRNA bodies) from the genomic 3'-proximal region presumably involves a unique mechanism of discontinuous minus-strand RNA synthesis. Key elements in this process are the so-called transcription-regulating sequences (TRSs), which determine a base-pairing interaction between sense and antisense viral RNA that is essential for leader-to-body joining. To identify RNA structures in the 5'-proximal region of the equine arteritis virus genome that may be involved in subgenomic mRNA synthesis, a detailed secondary RNA structure model was established using bioinformatics, phylogenetic analysis, and RNA structure probing. According to this structure model, the leader TRS is located in the loop of a prominent hairpin (leader TRS hairpin; LTH). The importance of the LTH was supported by the results of a mutagenesis study using an EAV molecular clone. Besides evidence for a direct role of the LTH in subgenomic RNA synthesis, indications for a role of the LTH region in genome replication and/or translation were obtained. Similar LTH structures could be predicted for the 5'-proximal region of all arterivirus genomes and, interestingly, also for most coronaviruses. Thus, we postulate that the LTH is a key structural element in the discontinuous subgenomic RNA synthesis and is likely critical for leader TRS function.
Collapse
Affiliation(s)
- Erwin Van Den Born
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | |
Collapse
|
10
|
van Vliet A, Smits S, Rottier P, de Groot R. Discontinuous and non-discontinuous subgenomic RNA transcription in a nidovirus. EMBO J 2002; 21:6571-80. [PMID: 12456663 PMCID: PMC136939 DOI: 10.1093/emboj/cdf635] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2002] [Revised: 09/16/2002] [Accepted: 10/09/2002] [Indexed: 12/14/2022] Open
Abstract
Arteri-, corona-, toro- and roniviruses are evolutionarily related positive-strand RNA viruses, united in the order Nidovirales. The best studied nidoviruses, the corona- and arteriviruses, employ a unique transcription mechanism, which involves discontinuous RNA synthesis, a process resembling similarity-assisted copy-choice RNA recombination. During infection, multiple subgenomic (sg) mRNAs are transcribed from a mirror set of sg negative-strand RNA templates. The sg mRNAs all possess a short 5' common leader sequence, derived from the 5' end of the genomic RNA. The joining of the non-contiguous 'leader' and 'body' sequences presumably occurs during minus-strand synthesis. To study whether toroviruses use a similar transcription mechanism, we characterized the 5' termini of the genome and the four sg mRNAs of Berne virus (BEV). We show that BEV mRNAs 3-5 lack a leader sequence. Surprisingly, however, RNA 2 does contain a leader, identical to the 5'-terminal 18 residues of the genome. Apparently, BEV combines discontinuous and non-discontinuous RNA synthesis to produce its sg mRNAs. Our findings have important implications for the understanding of the mechanism and evolution of nidovirus transcription.
Collapse
Affiliation(s)
| | | | | | - R.J. de Groot
- Institute of Virology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
Corresponding author e-mail:
| |
Collapse
|
11
|
Popova R, Zhang X. The spike but not the hemagglutinin/esterase protein of bovine coronavirus is necessary and sufficient for viral infection. Virology 2002; 294:222-36. [PMID: 11886280 PMCID: PMC7131450 DOI: 10.1006/viro.2001.1307] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spike (S) and hemagglutinin/esterase (HE) of bovine coronavirus (BCV) are the two envelope proteins that recognize the same receptor-determinant of 9-O-acetylneuraminic acid on host cells. However, the precise and relative roles of the two proteins in BCV infectivity remain elusive. To unequivocally determine their roles in viral cytopathogenicity, we developed a system in which phenotypically chimeric viruses were generated by infecting a closely related mouse hepatitis virus (MHV) in cells that stably express an individual BCV protein (S or HE). The chimeric viruses were then used to infect human rectal tumor (HRT)-18 cells that are permissive to BCV but are nonsusceptible to MHV. Using this approach, we found that the chimeric virus containing the BCV S protein on the virion surface entered and replicated in HRT-18 cells; this was specifically blocked by prior treatment of the virus with a neutralizing antibody specific to the BCV S protein, indicating that the BCV S protein is responsible for initiating chimeric virus infection. In contrast, chimeric viruses that contain biologically active and functional BCV HE protein on the surface failed to enter HRT-18 cells, indicating that the BCV HE protein alone is not sufficient for BCV infection. Taken together, these results demonstrate that the S protein but not the HE protein of BCV is necessary and sufficient for infection of the chimeric viruses in HRT-18 cells, suggesting that BCV likely uses the S protein as a primary vehicle to infect permissive cells.
Collapse
Affiliation(s)
- Rada Popova
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | | |
Collapse
|
12
|
Liu Q, Johnson RF, Leibowitz JL. Secondary structural elements within the 3' untranslated region of mouse hepatitis virus strain JHM genomic RNA. J Virol 2001; 75:12105-13. [PMID: 11711601 PMCID: PMC116106 DOI: 10.1128/jvi.75.24.12105-12113.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Previously, we characterized two host protein binding elements located within the 3'-terminal 166 nucleotides of the mouse hepatitis virus (MHV) genome and assessed their functions in defective-interfering (DI) RNA replication. To determine the role of RNA secondary structures within these two host protein binding elements in viral replication, we explored the secondary structure of the 3'-terminal 166 nucleotides of the MHV strain JHM genome using limited RNase digestion assays. Our data indicate that multiple stem-loop and hairpin-loop structures exist within this region. Mutant and wild-type DIssEs were employed to test the function of secondary structure elements in DI RNA replication. Three stem structures were chosen as targets for the introduction of transversion mutations designed to destroy base pairing structures. Mutations predicted to destroy the base pairing of nucleotides 142 to 136 with nucleotides 68 to 74 exhibited a deleterious effect on DIssE replication. Destruction of base pairing between positions 96 to 99 and 116 to 113 also decreased DI RNA replication. Mutations interfering with the pairing of nucleotides 67 to 63 with nucleotides 52 to 56 had only minor effects on DIssE replication. The introduction of second complementary mutations which restored the predicted base pairing of positions 142 to 136 with 68 to 74 and nucleotides 96 to 99 with 116 to 113 largely ameliorated defects in replication ability, restoring DI RNA replication to levels comparable to that of wild-type DIssE RNA, suggesting that these secondary structures are important for efficient MHV replication. We also identified a conserved 23-nucleotide stem-loop structure involving nucleotides 142 to 132 and nucleotides 68 to 79. The upstream side of this conserved stem-loop is contained within a host protein binding element (nucleotides 166 to 129).
Collapse
Affiliation(s)
- Q Liu
- Department of Pathology and Laboratory Medicine, Texas A&M University System Health Science Center, College Station, Texas 77843-1114, USA
| | | | | |
Collapse
|
13
|
Gélinas AM, Boutin M, Sasseville AM, Dea S. Bovine coronaviruses associated with enteric and respiratory diseases in Canadian dairy cattle display different reactivities to anti-HE monoclonal antibodies and distinct amino acid changes in their HE, S and ns4.9 protein. Virus Res 2001; 76:43-57. [PMID: 11376845 PMCID: PMC7127236 DOI: 10.1016/s0168-1702(01)00243-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Bovine coronavirus isolates associated with recent outbreaks of respiratory disease in Ontario and Quebec dairy farms were compared to reference strains known to be responsible for neonatal calf diarrhea (NCD) or winter dysentery (WD) of adult cattle. In respect to their hemagglutinating properties and their higher RDE activities with rat erythrocytes, WDBCoV strains differed from NCDBCoV strains and respiratory bovine coronaviruses RBCoV strains. Serologically, three MAbs directed to the HE glycoprotein of the WDBCoV strain BCQ.2590 recognized two serogroups amongst NCDBCoV strains by hemagglutination inhibition, whereas only one of the MAbs failed to react toward three of the four RBCoV isolates tested. Sequencing analysis of the S (S1 portion), HE, ORF4 and ORF5 genes of BCoV isolates associated with different clinical syndromes indicated that neither insertions or deletions could explain their distinct tropism. For the HE glycoprotein, a total of 15 amino acids (aa) substitutions were identified by comparing field isolates to the prototype Mebus strain. Two specific proline substitutions were identified for virulent strains being located in the signal peptides (aa 5) and aa position 367; one specific aa change was revealed at position 66 for RBCoV field isolates. Analysis of the S1 portion of the S glycoprotein revealed a total of eight aa changes specific to enteropathogenic (EBCoV) strains and eight aa changes specific to RBCoV strains. For all BCoV isolates studied, the region located between the S and M genes (ORF4) apparently encodes for two non-structural (ns) proteins of 4.9 and 4.8 kDa. A specific non-sense mutation was identified for the nucleotide at position 88 of the putative 4.9 kDa protein gene of RBCoV isolates resulting in 29 rather that 43 aa residues. The ORF5, which encodes a 12.7 ns protein and the 9.5 kDa E protein, was highly conserved amongst the BCoV field isolates.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Viral/immunology
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Canada
- Cattle
- Cattle Diseases/immunology
- Cattle Diseases/virology
- Coronavirus Infections/immunology
- Coronavirus Infections/veterinary
- Coronavirus Infections/virology
- Coronavirus, Bovine/chemistry
- Coronavirus, Bovine/genetics
- Coronavirus, Bovine/immunology
- Coronavirus, Bovine/isolation & purification
- Cross Reactions/immunology
- Diarrhea/immunology
- Diarrhea/veterinary
- Diarrhea/virology
- Dysentery/immunology
- Dysentery/veterinary
- Dysentery/virology
- Hemagglutinins, Viral/chemistry
- Hemagglutinins, Viral/genetics
- Hemagglutinins, Viral/immunology
- Mice
- Milk
- Molecular Sequence Data
- Mutation, Missense/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/immunology
Collapse
Affiliation(s)
- A M Gélinas
- Centre de Microbiologie and Biotechnologie, INRS-Institut Armand Frappier, Université du Québec, 531 boulevard des Prairies, Québec, H7V 1B7, Laval, Canada
| | | | | | | |
Collapse
|
14
|
van Dinten LC, van Tol H, Gorbalenya AE, Snijder EJ. The predicted metal-binding region of the arterivirus helicase protein is involved in subgenomic mRNA synthesis, genome replication, and virion biogenesis. J Virol 2000; 74:5213-23. [PMID: 10799597 PMCID: PMC110875 DOI: 10.1128/jvi.74.11.5213-5223.2000] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2000] [Accepted: 03/09/2000] [Indexed: 12/22/2022] Open
Abstract
Equine arteritis virus (EAV), the prototype Arterivirus, is a positive-stranded RNA virus that expresses its replicase in the form of two large polyproteins of 1,727 and 3,175 amino acids. The functional replicase subunits (nonstructural proteins), which drive EAV genome replication and subgenomic mRNA transcription, are generated by extensive proteolytic processing. Subgenomic mRNA transcription involves an unusual discontinuous step and generates the mRNAs for structural protein expression. Previously, the phenotype of mutant EAV030F, which carries a single replicase point mutation (Ser-2429-->Pro), had implicated the nsp10 replicase subunit (51 kDa) in viral RNA synthesis, and in particular in subgenomic mRNA transcription. nsp10 contains an N-terminal (putative) metal-binding domain (MBD), located just upstream of the Ser-2429-->Pro mutation, and a helicase activity in its C-terminal part. We have now analyzed the N-terminal domain of nsp10 in considerable detail. A total of 38 mutants, most of them carrying specific single point mutations, were tested in the context of an EAV infectious cDNA clone. Variable effects on viral genome replication and subgenomic mRNA transcription were observed. In general, our results indicated that the MBD region, and in particular a set of 13 conserved Cys and His residues that are assumed to be involved in zinc binding, is essential for viral RNA synthesis. On the basis of these data and comparative sequence analyses, we postulate that the MBD may employ a rather unusual mode of zinc binding that could result in the association of up to four zinc cations with this domain. The region containing residue Ser-2429 may play the role of "hinge spacer," which connects the MBD to the rest of nsp10. Several mutations in this region specifically affected subgenomic mRNA synthesis. Furthermore, one of the MBD mutants was replication and transcription competent but did not produce infectious progeny virus. This suggests that nsp10 is involved in an as yet unidentified step of virion biogenesis.
Collapse
Affiliation(s)
- L C van Dinten
- Department of Virology, Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | |
Collapse
|
15
|
de Vries AA, Glaser AL, Raamsman MJ, de Haan CA, Sarnataro S, Godeke GJ, Rottier PJ. Genetic manipulation of equine arteritis virus using full-length cDNA clones: separation of overlapping genes and expression of a foreign epitope. Virology 2000; 270:84-97. [PMID: 10772982 DOI: 10.1006/viro.2000.0245] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Equine arteritis virus (EAV) is an enveloped, positive-stranded RNA virus belonging to the family Arteriviridae of the order Nidovirales. The unsegmented, infectious genome of EAV is 12,704 nt in length [exclusive of the poly(A) tail] and contains eight overlapping genes that are expressed from a 3'-coterminal nested set of seven leader-containing mRNAs. To investigate the importance of the overlapping gene arrangement in the viral life-cycle and to facilitate the genetic manipulation of the viral genome, a series of mutant full-length cDNA clones was constructed in which either EAV open reading frames (ORFs) 4 and 5 or ORFs 5 and 6 or ORFs 4, 5, and 6 were separated by newly introduced AflII restriction endonuclease cleavage sites. RNA transcribed from each of these plasmids was infectious, demonstrating that the overlapping gene organization is not essential for EAV viability. Moreover, the recombinant viruses replicated with almost the same efficiency, i.e., reached nearly the same infectious titers as the wildtype virus, and stably maintained the mutations that were introduced. The AflII site engineered between ORFs 5 and 6 was subsequently used to generate a virus in which the ectodomain of the ORF 6-encoded M protein was extended with nine amino acids derived from the extreme N-terminus of the homologous protein of mouse hepatitis virus (MHV; family Coronaviridae, order Nidovirales). This nonapeptide contains a functional O-glycosylation signal as well as an epitope recognized by an MHV-specific monoclonal antibody, both of which were expressed by the recombinant virus. Although the hybrid virus had a clear growth disadvantage in comparison to the parental virus, three serial passages did not result in the loss of the foreign genetic material.
Collapse
Affiliation(s)
- A A de Vries
- Virology Unit, Department of Infectious Diseases and Immunology, Veterinary Faculty, Utrecht University, Yalelaan 1, Utrecht, 3584 CL, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
16
|
Molenkamp R, Rozier BC, Greve S, Spaan WJ, Snijder EJ. Isolation and characterization of an arterivirus defective interfering RNA genome. J Virol 2000; 74:3156-65. [PMID: 10708432 PMCID: PMC111816 DOI: 10.1128/jvi.74.7.3156-3165.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/1999] [Accepted: 01/05/2000] [Indexed: 11/20/2022] Open
Abstract
Equine arteritis virus (EAV), the type member of the family Arteriviridae, is a single-stranded RNA virus with a positive-stranded genome of approximately 13 kb. EAV uses a discontinuous transcription mechanism to produce a nested set of six subgenomic mRNAs from which its structural genes are expressed. We have generated the first documented arterivirus defective interfering (DI) RNAs by serial undiluted passaging of a wild-type EAV stock in BHK-21 cells. A cDNA copy of the smallest DI RNA (5.6 kb) was cloned. Upon transfection into EAV-infected BHK-21 cells, transcripts derived from this clone (pEDI) were replicated and packaged. Sequencing of pEDI revealed that the DI RNA was composed of three segments of the EAV genome (nucleotides 1 to 1057, 1388 to 1684, and 8530 to 12704) which were fused in frame with respect to the replicase reading frame. Remarkably, this DI RNA has retained all of the sequences encoding the structural proteins. By insertion of the chloramphenicol acetyltransferase reporter gene in the DI RNA genome, we were able to delimitate the sequences required for replication/DI-based transcription and packaging of EAV DI RNAs and to reduce the maximal size of a replication-competent EAV DI RNA to approximately 3 kb.
Collapse
Affiliation(s)
- R Molenkamp
- Department of Virology, Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Raamsman MJ, Locker JK, de Hooge A, de Vries AA, Griffiths G, Vennema H, Rottier PJ. Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein E. J Virol 2000; 74:2333-42. [PMID: 10666264 PMCID: PMC111715 DOI: 10.1128/jvi.74.5.2333-2342.2000] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/1999] [Accepted: 12/02/1999] [Indexed: 02/07/2023] Open
Abstract
The small envelope (E) protein has recently been shown to play an essential role in the assembly of coronaviruses. Expression studies revealed that for formation of the viral envelope, actually only the E protein and the membrane (M) protein are required. Since little is known about this generally low-abundance virion component, we have characterized the E protein of mouse hepatitis virus strain A59 (MHV-A59), an 83-residue polypeptide. Using an antiserum to the hydrophilic carboxy terminus of this otherwise hydrophobic protein, we found that the E protein was synthesized in infected cells with similar kinetics as the other viral structural proteins. The protein appeared to be quite stable both during infection and when expressed individually using a vaccinia virus expression system. Consistent with the lack of a predicted cleavage site, the protein was found to become integrated in membranes without involvement of a cleaved signal peptide, nor were any other modifications of the polypeptide observed. Immunofluorescence analysis of cells expressing the E protein demonstrated that the hydrophilic tail is exposed on the cytoplasmic side. Accordingly, this domain of the protein could not be detected on the outside of virions but appeared to be inside, where it was protected from proteolytic degradation. The results lead to a topological model in which the polypeptide is buried within the membrane, spanning the lipid bilayer once, possibly twice, and exposing only its carboxy-terminal domain. Finally, electron microscopic studies demonstrated that expression of the E protein in cells induced the formation of characteristic membrane structures also observed in MHV-A59-infected cells, apparently consisting of masses of tubular, smooth, convoluted membranes. As judged by their colabeling with antibodies to E and to Rab-1, a marker for the intermediate compartment and endoplasmic reticulum, the E protein accumulates in and induces curvature into these pre-Golgi membranes where coronaviruses have been shown earlier to assemble by budding.
Collapse
Affiliation(s)
- M J Raamsman
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Institute of Virology, and Institute of Biomembranes, Utrecht University, 3584 CL Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
18
|
van der Meer Y, Snijder EJ, Dobbe JC, Schleich S, Denison MR, Spaan WJ, Locker JK. Localization of mouse hepatitis virus nonstructural proteins and RNA synthesis indicates a role for late endosomes in viral replication. J Virol 1999; 73:7641-57. [PMID: 10438855 PMCID: PMC104292 DOI: 10.1128/jvi.73.9.7641-7657.1999] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/1999] [Accepted: 06/08/1999] [Indexed: 11/20/2022] Open
Abstract
The aim of the present study was to define the site of replication of the coronavirus mouse hepatitis virus (MHV). Antibodies directed against several proteins derived from the gene 1 polyprotein, including the 3C-like protease (3CLpro), the putative polymerase (POL), helicase, and a recently described protein (p22) derived from the C terminus of the open reading frame 1a protein (CT1a), were used to probe MHV-infected cells by indirect immunofluorescence (IF) and electron microscopy (EM). At early times of infection, all of these proteins showed a distinct punctate labeling by IF. Antibodies to the nucleocapsid protein also displayed a punctate labeling that largely colocalized with the replicase proteins. When infected cells were metabolically labeled with 5-bromouridine 5'-triphosphate (BrUTP), the site of viral RNA synthesis was shown by IF to colocalize with CT1a and the 3CLpro. As shown by EM, CT1a localized to LAMP-1 positive late endosomes/lysosomes while POL accumulated predominantly in multilayered structures with the appearance of endocytic carrier vesicles. These latter structures were also labeled to some extent with both anti-CT1a and LAMP-1 antibodies and could be filled with fluid phase endocytic tracers. When EM was used to determine sites of BrUTP incorporation into viral RNA at early times of infection, the viral RNA localized to late endosomal membranes as well. These results demonstrate that MHV replication occurs on late endosomal membranes and that several nonstructural proteins derived from the gene 1 polyprotein may participate in the formation and function of the viral replication complexes.
Collapse
Affiliation(s)
- Y van der Meer
- Department of Virology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
19
|
Regl G, Kaser A, Iwersen M, Schmid H, Kohla G, Strobl B, Vilas U, Schauer R, Vlasak R. The hemagglutinin-esterase of mouse hepatitis virus strain S is a sialate-4-O-acetylesterase. J Virol 1999; 73:4721-7. [PMID: 10233932 PMCID: PMC112514 DOI: 10.1128/jvi.73.6.4721-4727.1999] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/1998] [Accepted: 03/05/1999] [Indexed: 11/20/2022] Open
Abstract
By comparative analysis of the hemagglutinin-esterase (HE) protein of mouse hepatitis virus strain S (MHV-S) and the HE protein of influenza C virus, we found major differences in substrate specificities. In striking contrast to the influenza C virus enzyme, the MHV-S esterase was unable to release acetate from bovine submandibulary gland mucin. Furthermore, MHV-S could not remove influenza C virus receptors from erythrocytes. Analysis with free sialic acid derivatives revealed that the MHV-S HE protein specifically de-O-acetylates 5-N-acetyl-4-O-acetyl sialic acid (Neu4, 5Ac2) but not 5-N-acetyl-9-O-acetyl sialic acid (Neu5,9Ac2), which is the major substrate for esterases of influenza C virus and bovine coronaviruses. In addition, the MHV-S esterase converted glycosidically bound Neu4,5Ac2 of guinea pig serum glycoproteins to Neu5Ac. By expression of the MHV esterase with recombinant vaccinia virus and incubation with guinea pig serum, we demonstrated that the viral HE possesses sialate-4-O-acetylesterase activity. In addition to observed enzymatic activity, MHV-S exhibited affinity to guinea pig and horse serum glycoproteins. Binding required sialate-4-O-acetyl groups and was abolished by chemical de-O-acetylation. Since Neu4,5Ac2 has not been identified in mice, the nature of potential substrates and/or secondary receptors for MHV-S in the natural host remains to be determined. The esterase of MHV-S is the first example of a viral enzyme with high specificity and affinity toward 4-O-acetylated sialic acids.
Collapse
Affiliation(s)
- G Regl
- Austrian Academy of Sciences, Institute of Molecular Biology, A-5020 Salzburg, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Klausegger A, Strobl B, Regl G, Kaser A, Luytjes W, Vlasak R. Identification of a coronavirus hemagglutinin-esterase with a substrate specificity different from those of influenza C virus and bovine coronavirus. J Virol 1999; 73:3737-43. [PMID: 10196267 PMCID: PMC104150 DOI: 10.1128/jvi.73.5.3737-3743.1999] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/1998] [Accepted: 01/26/1999] [Indexed: 11/20/2022] Open
Abstract
We have characterized the hemagglutinin-esterase (HE) of puffinosis virus (PV), a coronavirus closely related to mouse hepatitis virus (MHV). Analysis of the cloned gene revealed approximately 85% sequence identity to HE proteins of MHV and approximately 60% identity to the corresponding esterase of bovine coronavirus. The HE protein exhibited acetylesterase activity with synthetic substrates p-nitrophenyl acetate, alpha-naphthyl acetate, and 4-methylumbelliferyl acetate. In contrast to other viral esterases, no activity was detectable with natural substrates containing 9-O-acetylated sialic acids. Furthermore, PV esterase was unable to remove influenza C virus receptors from human erythrocytes, indicating a substrate specificity different from HEs of influenza C virus and bovine coronavirus. Solid-phase binding assays revealed that purified PV was unable to bind to sialic acid-containing glycoconjugates like bovine submaxillary mucin, mouse alpha1 macroglobulin or bovine brain extract. Because of the close relationship to MHV, possible implications on the substrate specificity of MHV esterases are suggested.
Collapse
Affiliation(s)
- A Klausegger
- Institute of Molecular Biology, Austrian Academy of Sciences, A-5020 Salzburg, Austria
| | | | | | | | | | | |
Collapse
|
21
|
Risco C, Muntión M, Enjuanes L, Carrascosa JL. Two types of virus-related particles are found during transmissible gastroenteritis virus morphogenesis. J Virol 1998; 72:4022-31. [PMID: 9557690 PMCID: PMC109630 DOI: 10.1128/jvi.72.5.4022-4031.1998] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The intracellular assembly of the transmissible gastroenteritis coronavirus (TGEV) was studied in infected swine testis (ST) cells at different postinfection times by using ultrathin sections of conventionally embedded infected cells, freeze-substitution, and methods for detecting viral proteins and RNA at the electron microscopy level. This ultrastructural analysis was focused on the identification of the different viral components that assemble in infected cells, in particular the spherical, potentially icosahedral internal core, a new structural element of the extracellular infectious coronavirus recently characterized by our group. Typical budding profiles and two types of virion-related particles were detected in TGEV-infected cells. While large virions with an electron-dense internal periphery and a clear central area are abundant at perinuclear regions, smaller viral particles, with the characteristic morphology of extracellular virions (exhibiting compact internal cores with polygonal contours) accumulate inside secretory vesicles that reach the plasma membrane. The two types of virions coexist in the Golgi complex of infected ST cells. In nocodazole-treated infected cells, the two types of virions coexist in altered Golgi stacks, while the large secretory vesicles filled with virions found in normal infections are not detected in this case. Treatment of infected cells with the Golgi complex-disrupting agent brefeldin A induced the accumulation of large virions in the cisternae that form by fusion of different membranous compartments. These data, together with the distribution of both types of virions in different cellular compartments, strongly suggest that the large virions are the precursors of the small viral particles and that their transport through a functional Golgi complex is necessary for viral maturation.
Collapse
Affiliation(s)
- C Risco
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma, Madrid, Spain
| | | | | | | |
Collapse
|
22
|
Molenkamp R, Spaan WJ. Identification of a specific interaction between the coronavirus mouse hepatitis virus A59 nucleocapsid protein and packaging signal. Virology 1997; 239:78-86. [PMID: 9426448 PMCID: PMC7130520 DOI: 10.1006/viro.1997.8867] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The coronavirus mouse hepatitis virus (MHV) is an enveloped positive stranded RNA virus. In infected cells MHV produces a 3' coterminal nested set of subgenomic messenger RNAs. Only the genomic RNA, however, is encapsidated by the nucleocapsid protein and incorporated in infectious MHV virions. It is believed that an RNA packaging signal (Ps), present only in the genomic RNA, is responsible for this selectivity. Earlier studies mapped this signal to a 69-nt stem-loop structure positioned in the 3' end of ORF1b. The selective encapsidation mechanism probably initiates by specific interaction of the packaging signal with the nucleocapsid protein. In this study we demonstrate the in vitro interaction of the MHV-A59 nucleocapsid protein with the packaging signal of MHV using gel retardation and UV cross-linking assays. This interaction was observed not only with the nucleocapsid protein from infected cells but also with that from purified virions and from cells expressing a recombinant nucleocapsid protein. The specificity of the interaction was demonstrated by competition experiments with nonlabeled Ps containing RNAs, tRNA, and total cytoplasmic RNA. The results indicated that no virus specific modification of the N-protein or the presence of other viral proteins are required for this in vitro intervention. The assays described in this report provide us with a powerful tool for studying encapsidation (initiation) in more detail.
Collapse
Affiliation(s)
- R Molenkamp
- Department of Virology, Institute of Medical Microbiology, Leiden University, The Netherlands
| | | |
Collapse
|
23
|
Bos EC, Luytjes W, Spaan WJ. The function of the spike protein of mouse hepatitis virus strain A59 can be studied on virus-like particles: cleavage is not required for infectivity. J Virol 1997; 71:9427-33. [PMID: 9371603 PMCID: PMC230247 DOI: 10.1128/jvi.71.12.9427-9433.1997] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The spike protein (S) of the murine coronavirus mouse hepatitis virus strain A59 (MHV-A59) induces both virus-to-cell fusion during infection and syncytium formation. Thus far, only syncytium formation could be studied after transient expression of S. We have recently described a system in which viral infectivity is mimicked by using virus-like particles (VLPs) and reporter defective-interfering (DI) RNAs (E. C. W. Bos, W. Luytjes, H. Van der Meulen, H. K. Koerten, and W. J. M. Spaan, Virology 218:52-60, 1996). Production of VLPs of MHV-A59 was shown to be dependent on the expression of M and E. We now show in several ways that the infectivity of VLPs is dependent on S. Infectivity was lost when spikeless VLPs were produced. Infectivity was blocked upon treatment of the VLPs with MHV-A59-neutralizing anti-S monoclonal antibody (MAb) A2.3 but not with nonneutralizing anti-S MAb A1.4. When the target cells were incubated with antireceptor MAb CC1, which blocks MHV-A59 infection, VLPs did not infect the target cells. Thus, S-mediated VLP infectivity resembles MHV-A59 infectivity. The system can be used to identify domains in S that are essential for infectivity. As a first application, we investigated the requirements of cleavage of S for the infectivity of MHV-A59. We inserted three mutant S proteins that were previously shown to be uncleaved (E. C. W. Bos, L. Heijnen, W. Luytjes, and W. J. M. Spaan, Virology 214:453-463, 1995) into the VLPs. Here we show that cleavage of the spike protein of MHV-A59 is not required for infectivity.
Collapse
Affiliation(s)
- E C Bos
- Department of Virology, Leiden University, The Netherlands
| | | | | |
Collapse
|
24
|
Wijburg OL, Heemskerk MH, Boog CJ, Van Rooijen N. Role of spleen macrophages in innate and acquired immune responses against mouse hepatitis virus strain A59. Immunology 1997; 92:252-8. [PMID: 9415034 PMCID: PMC1364066 DOI: 10.1046/j.1365-2567.1997.00340.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Owing to their scavenging and phagocytic functions, spleen macrophages are regarded to be important in the induction and maintenance of both innate and acquired immune defence mechanisms. In this study, we investigated the role of spleen macrophages in immunity against mouse hepatitis virus strain A59 (MHV-A59). Previous studies showed that spleen and liver macrophages are the first target cells for infection by MHV-A59 in vivo, suggesting that they could be involved in the induction of immune responses against MHV-A59. We used a macrophage depletion technique to deplete macrophages in vivo and studied the induction of virus-specific antibody and cytotoxic T-cell (CTL) responses and non-immune resistance against MHV-A59 in normal and macrophage-depleted mice. Virus titres in spleen and liver increased rapidly in macrophage-depleted mice, resulting in death of mice within 4 days after infection. Elimination of macrophages before immunization with MHV-A59 resulted in increased virus-specific humoral and T-cell proliferative responses. However, virus-specific CTL responses were not altered in macrophage-depleted mice. Our results show that spleen macrophages are of major importance as scavenger cells during MHV-A59 infection and are involved in clearance of virus from the host. In addition, macrophages may be involved in the regulation of acquired immune responses. In the absence of macrophages, increased virus-specific T-cell and antibody responses are detectable, suggesting that macrophages suppress MHV-A59-specific T- and B-cell responses and that other cells serve as antigen-presenting cells.
Collapse
Affiliation(s)
- O L Wijburg
- Department of Cell Biology and Immunology, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
25
|
Abstract
This chapter discusses the manipulation of clones of coronavirus and of complementary DNAs (cDNAs) of defective-interfering (DI) RNAs to study coronavirus RNA replication, transcription, recombination, processing and transport of proteins, virion assembly, identification of cell receptors for coronaviruses, and processing of the polymerase. The nature of the coronavirus genome is nonsegmented, single-stranded, and positive-sense RNA. Its size ranges from 27 to 32 kb, which is significantly larger when compared with other RNA viruses. The gene encoding the large surface glycoprotein is up to 4.4 kb, encoding an imposing trimeric, highly glycosylated protein. This soars some 20 nm above the virion envelope, giving the virus the appearance-with a little imagination-of a crown or coronet. Coronavirus research has contributed to the understanding of many aspects of molecular biology in general, such as the mechanism of RNA synthesis, translational control, and protein transport and processing. It remains a treasure capable of generating unexpected insights.
Collapse
Affiliation(s)
- M M Lai
- Department of Molecular Microbiology and Immunology, Howard Hughes Medical Institute, University of Southern California School of Medicine, Los Angeles 90033-1054, USA
| | | |
Collapse
|
26
|
Bos EC, Dobbe JC, Luytjes W, Spaan WJ. A subgenomic mRNA transcript of the coronavirus mouse hepatitis virus strain A59 defective interfering (DI) RNA is packaged when it contains the DI packaging signal. J Virol 1997; 71:5684-7. [PMID: 9188649 PMCID: PMC191817 DOI: 10.1128/jvi.71.7.5684-5687.1997] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In infected cells, only the genomic RNA of the coronavirus mouse hepatitis virus strain A59 (MHV-A59) is packaged into the virions. In this study, we show that a subgenomic (sg) defective interfering (DI) RNA can be packaged into virions when it contains the DI RNA packaging signal (DI RNA-Ps). However, the sg DI RNA is packaged less efficiently than the DI genomic RNA. Thus, while specificity of packaging of RNAs into MHV-A59 virions is determined by the DI RNA-Ps, efficiency of packaging is determined by additional factors.
Collapse
Affiliation(s)
- E C Bos
- Department of Virology, Leiden University, The Netherlands
| | | | | | | |
Collapse
|
27
|
Liu Q, Yu W, Leibowitz JL. A specific host cellular protein binding element near the 3' end of mouse hepatitis virus genomic RNA. Virology 1997; 232:74-85. [PMID: 9185590 DOI: 10.1006/viro.1997.8553] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A distinct host cellular protein binding element was mapped within a 38-nucleotide (nt) sequence 166-129 nucleotides upstream of the 3' end of the MHV-JHM genome using a RNase T1 protection/gel mobility shift electrophoresis assay. The resultant RNA-protein complex contains six host cellular proteins, one protein of 120-kDa molecular mass, two poorly resolved species approximately 55 kDa in size, a second pair of poorly resolved 40-kDa proteins, and a minor component of 25 kDa. A series of RNA probes containing deletions or clustered transversion mutations were tested for their ability to form complexes with mock- and MHV-JHM-infected cytoplasmic extracts. Three mutant RNA probes (mA, mB, and mC) with deletions at 154-140, 139-129, and 128-118, respectively, expressed 4, 37, and 94% of the host protein binding activity exhibited by the wild-type RNA. Defective interfering (DI) RNAs (DImA, DImB, and DImC) containing corresponding deletions at 154-140, 139-129, 128-118, and another DI RNA (DImD) with a deletion at nucleotides (nts) 112-102, a region which did not affect RNA-protein interactions, were transfected into MHV-JHM-infected 17CL-1 cells to assay the effects of these mutations on DI RNA replication. All of these mutations had an adverse effect on DI RNA replication. However, analysis of negative strand mutant DI RNAs revealed that two mutants (DImC and DImD) carrying deletions having little or no effect on RNA-protein interaction in our RNA-protein binding assays maintained their mutant sequences. In contrast, the other two mutants (DImA and DImB) containing deletions that dramatically decreased RNA-protein binding activity did not maintain their mutations; wild-type sequences were restored in the majority of the progeny negative strand molecules. These data indicate that the 26-nucleotide sequence at positions 154-129 from the 3' end of viral genome is important to both RNA-protein binding and viral replication. This protein binding element contains an 11-nt sequence (UGAGAGAAGUU, positions 139-129) very similar to a more 3' sequence (UGAAUGAAGUU) previously implicated in host protein binding and viral RNA replication (Yu and Leibowitz, 1995a and 1995b).
Collapse
Affiliation(s)
- Q Liu
- Department of Pathology and Laboratory Medicine, Texas A&M University College of Medicine, College Station 77843-1114, USA
| | | | | |
Collapse
|
28
|
Zhang L, Homberger F, Spaan W, Luytjes W. Recombinant genomic RNA of coronavirus MHV-A59 after coreplication with a DI RNA containing the MHV-RI spike gene. Virology 1997; 230:93-102. [PMID: 9126265 PMCID: PMC7130785 DOI: 10.1006/viro.1997.8460] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/1996] [Revised: 01/06/1997] [Accepted: 01/23/1997] [Indexed: 02/04/2023]
Abstract
A strategy for targeted RNA recombination between the spike gene on the genomic RNA of MHV-A59 and a synthetic DI RNA containing the MHV-RI spike gene is described. The MHV-RI spike gene contains several nucleotide differences from the MHV-A59 spike gene that could be used as genetic markers, including a stretch of 156 additional nucleotides starting at nucleotide 1497. The MHV-RI S gene cDNA (from nucleotide 277-termination codon) was inserted in frame into pMIDI, a full-length cDNA clone of an MHV-A59 DI, yielding pDPRIS. Using the vaccinia vTF7.3 system, RNA was transcribed from pDPRIS upon transfection into MHV-A59-infected L cells. DPRIS RNA was shown to be replicated and passaged efficiently. MHV-A59 and the DPRIS DI particle were copassaged several times. Using a highly specific and sensitive RT-PCR, recombinant genomic RNA was detected in intracellular RNA from total lysates of pDPRIS-transfected and MHV-A59-infected cells and among genomic RNA that was agarose gel-purified from these lysates. More significantly, specific PCR products were found in virion RNA from progeny virus. PCR products were absent in control mixes of intracellular RNA from MHV-A59-infected cells and in vitro-transcribed DPRIS RNA. PCR products from intracellular RNA and virion RNA were cloned and 11 independent clones were sequenced. Crossovers between A59 and RI RNA were found upstream of nucleotide 1497 and had occurred between 106 nucleotides from the 5'-border and 73 nucleotides from the 3'-border of sequence homologous between A59 and RI S genes. We conclude that homologous RNA recombination took place between the genomic RNA template and the synthetic DI RNA template at different locations, generating a series of MHV recombinant genomes with chimeric S genes.
Collapse
Affiliation(s)
- L Zhang
- Department of Virology, Leiden University, The Netherlands
| | | | | | | |
Collapse
|
29
|
Luytjes W, Gerritsma H, Bos E, Spaan W. Characterization of two temperature-sensitive mutants of coronavirus mouse hepatitis virus strain A59 with maturation defects in the spike protein. J Virol 1997; 71:949-55. [PMID: 8995612 PMCID: PMC191143 DOI: 10.1128/jvi.71.2.949-955.1997] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Two temperature-sensitive (ts) mutants of mouse hepatitis virus strain A59, ts43 and ts379, have been described previously to be ts in infectivity but unaffected in RNA synthesis (M. J. M. Koolen, A. D. M. E. Osterhaus, G. van Steenis, M. C. Horzinek, and B. A. M. van der Zeijst, Virology 125:393-402, 1983). We present a detailed analysis of the protein synthesis of the mutant viruses at the permissive (31 degrees C) and nonpermissive (39.5 degrees C) temperatures. It was found that synthesis of the nucleocapsid protein N and the membrane protein M of both viruses was insensitive to temperature. However, the surface protein S of both viruses was retained in the endoplasmic reticulum at the nonpermissive temperature. This was shown first by analysis of endoglycosidase H-treated and immunoprecipitated labeled S proteins. The mature Golgi form of S was not present at the nonpermissive temperature for the ts viruses, in contrast to wild-type (wt) virus. Second, gradient purification of immunoprecipitated S after pulse-chase labeling showed that only wt virus S was oligomerized. We conclude that the lack of oligomerization causes the retention of the ts S proteins in the endoplasmic reticulum. As a result, ts virus particles that were devoid of S were produced at the nonpermissive temperature. This result could be confirmed by biochemical analysis of purified virus particles and by electron microscopy.
Collapse
Affiliation(s)
- W Luytjes
- Department of Virology, Leiden University, The Netherlands.
| | | | | | | |
Collapse
|
30
|
Lai MM, Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res 1997; 48:1-100. [PMID: 9233431 PMCID: PMC7130985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This chapter discusses the manipulation of clones of coronavirus and of complementary DNAs (cDNAs) of defective-interfering (DI) RNAs to study coronavirus RNA replication, transcription, recombination, processing and transport of proteins, virion assembly, identification of cell receptors for coronaviruses, and processing of the polymerase. The nature of the coronavirus genome is nonsegmented, single-stranded, and positive-sense RNA. Its size ranges from 27 to 32 kb, which is significantly larger when compared with other RNA viruses. The gene encoding the large surface glycoprotein is up to 4.4 kb, encoding an imposing trimeric, highly glycosylated protein. This soars some 20 nm above the virion envelope, giving the virus the appearance-with a little imagination-of a crown or coronet. Coronavirus research has contributed to the understanding of many aspects of molecular biology in general, such as the mechanism of RNA synthesis, translational control, and protein transport and processing. It remains a treasure capable of generating unexpected insights.
Collapse
Affiliation(s)
- M M Lai
- Department of Molecular Microbiology and Immunology, Howard Hughes Medical Institute, University of Southern California School of Medicine, Los Angeles 90033-1054, USA
| | | |
Collapse
|
31
|
den Boon JA, Kleijnen MF, Spaan WJ, Snijder EJ. Equine arteritis virus subgenomic mRNA synthesis: analysis of leader-body junctions and replicative-form RNAs. J Virol 1996; 70:4291-8. [PMID: 8676451 PMCID: PMC190361 DOI: 10.1128/jvi.70.7.4291-4298.1996] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In addition to the genomic RNA, a 3' coterminal nested set of six subgenomic mRNAs is produced in equine arteritis virus (EAV)-infected cells. The seven viral RNAs are also 5' coterminal, since they all contain a 206-nucleotide common leader sequence which is identical to the 5' end of the genome. A conserved penta-nucleotide sequence motif, 5' UCAAC 3', was shown to be present at the junctions between the leader and body sequences in each of the mRNAs. In addition, two alternative junction sites were detected for mRNA 3. Seven replicative-form (RF) RNAs (RFs I to VII), corresponding to the genomic RNA and each of the subgenomic EAV mRNAs, could be prepared from lysates of infected cells. The minus-strand RNA contents of these RF RNAs were analyzed by using an RNase protection assay with an RNA probe containing the mRNA 2 leader-body junction. It was established that RF II contained a negative-stranded copy of mRNA 2, including a complementary leader sequence. The presence of subgenomic minus-strand RNA in RFs is indicative of a function as a transcription template during the production of EAV subgenomic mRNAs.
Collapse
Affiliation(s)
- J A den Boon
- Department of Virology, Institute of Medical Microbiology, Leiden University, Leiden, The Netherlands
| | | | | | | |
Collapse
|
32
|
Wijburg OL, Heemskerk MH, Sanders A, Boog CJ, Van Rooijen N. Role of virus-specific CD4+ cytotoxic T cells in recovery from mouse hepatitis virus infection. Immunol Suppl 1996; 87:34-41. [PMID: 8666433 PMCID: PMC1383965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Macrophages and T lymphocytes play an important role in recovery from viral infections. During mouse hepatitis virus (MHV-A59) infection, a clear virus-specific class II-restricted cytotoxic T-cell response is generated. Transfer of these CD4+ cytotoxic T cells (CTL) into naive mice protects against a lethal challenge with MHV. However, their in vivo antiviral effector mechanism is not yet clear. To further investigate a possible effector mechanism, we studied the effect of adoptive transfer of CD4+ CTL on virus localization in spleen and liver. We showed that adoptive transfer of virus-specific T cells does not affect localization of MHV-A59 in different macrophage subsets. Interestingly, a rapid and large infiltrate of CD4+ T cells in and around MHV-A59-infected foci in the liver was observed early in infection, whereas no CD8+ T cells were detectable. Moreover, transfer of virus-specific T cells resulted in significantly decreased viral titres in the liver and spleen and a marginally increased anti-MHV-A59 IgM production. These results imply an important role for virus-specific CD4+ CTL in elimination of infectious MHV-A59 and induction of an effective immune response in the absence of CD8+ CTL.
Collapse
Affiliation(s)
- O L Wijburg
- Department of Cell Biology and Immunology, Vrije Universiteit, Amsterdam
| | | | | | | | | |
Collapse
|
33
|
van Marle G, Luytjes W, van der Most RG, van der Straaten T, Spaan WJ. Regulation of coronavirus mRNA transcription. J Virol 1995; 69:7851-6. [PMID: 7494297 PMCID: PMC189729 DOI: 10.1128/jvi.69.12.7851-7856.1995] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Coronaviruses synthesize a nested set of six to eight subgenomic (sg) mRNAs in infected cells. These mRNAs are produced in different, but constant, molar ratios. It is unclear which factors control the different levels of sg mRNAs. To determine whether the intergenic sequence (IS) involved in sg mRNA synthesis could affect the transcription efficiencies of other ISs and in this way regulate transcription levels, we inserted multiple ISs at different positions into a mouse hepatitis virus defective interfering RNA. Quantitation of the sg RNAs produced by identical ISs in different sequence contexts led to the following conclusions: (i) transcription efficiency depends on the location of the IS in the defective interfering virus genome, (ii) downstream ISs have a negative effect on transcription levels from upstream ISs, and (iii) upstream ISs have little or no effect on downstream ISs. The observation that a downstream IS downregulates the amounts of sg RNA produced by an upstream IS explains why the smaller sg RNAs are, in general, produced in larger quantities than the larger sg RNAs. Our data are consistent with coronavirus transcription models in which ISs attenuate transcription. In these models, larger sg RNAs are synthesized in smaller amounts because they encounter more attenuating ISs during their synthesis.
Collapse
Affiliation(s)
- G van Marle
- Department of Virology, Faculty of Medicine, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
34
|
Opstelten DJ, Raamsman MJ, Wolfs K, Horzinek MC, Rottier PJ. Envelope glycoprotein interactions in coronavirus assembly. J Biophys Biochem Cytol 1995; 131:339-49. [PMID: 7593163 PMCID: PMC2199982 DOI: 10.1083/jcb.131.2.339] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Coronaviruses are assembled by budding into smooth membranes of the intermediate ER-to-Golgi compartment. We have studied the association of the viral membrane glycoproteins M and S in the formation of the virion envelope. Using coimmunoprecipitation analysis we demonstrated that the M and S proteins of mouse hepatitis virus (MHV) interact specifically forming heteromultimeric complexes in infected cells. These could be detected only when the detergents used for their solubilization from cells or virions were carefully chosen: a combination of nonionic (NP-40) and ionic (deoxycholic acid) detergents proved to be optimal. Pulse-chase experiments revealed that newly made M and S proteins engaged in complex formation with different kinetics. Whereas the M protein appeared in complexes immediately after its synthesis, newly synthesized S protein did so only after a lag phase of > 20 min. Newly made M was incorporated into virus particles faster than S, which suggests that it associates with preexisting S molecules. Using the vaccinia virus T7-driven coexpression of M and S we also demonstrate formation of M/S complexes in the absence of other coronaviral proteins. Pulse-chase labelings and coimmunoprecipitation analyses revealed that M and S associate in pre-Golgi membranes because the unglycosylated form of M appeared in M/S complexes rapidly. Since no association of M and S was detected when protein export from the ER was blocked by brefeldin A, stable complexes most likely arise in the ER-to-Golgi intermediate compartment. Sucrose velocity gradient analysis showed the M/S complexes to be heterogeneous and of higher order, suggesting that they are maintained by homo- and heterotypic interactions. M/S complexes colocalized with alpha-mannosidase II, a resident Golgi protein. They acquired Golgi-specific oligosaccharide modifications but were not detected at the cell surface. Thus, the S protein, which on itself was transported to the plasma membrane, was retained in the Golgi complex by its association with the M protein. Because coronaviruses bud at pre-Golgi membranes, this result implies that the envelope glycoprotein complexes do not determine the site of budding. Yet, the self-association of the MHV envelope glycoproteins into higher order complexes is indicative of its role in the sorting of the viral membrane proteins and in driving the formation of the viral lipoprotein coat in virus assembly.
Collapse
Affiliation(s)
- D J Opstelten
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | | | | | | | | |
Collapse
|
35
|
Heemskerk MH, Schoemaker HM, De Jong I, Schijns VE, Spaan WJ, Boog CJ. Differential activation of mouse hepatitis virus-specific CD4+ cytotoxic T cells is defined by peptide length. Immunol Suppl 1995; 85:517-22. [PMID: 7558143 PMCID: PMC1383777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this study we have characterized the core epitope recognized by the MHV-A59-specific CD4+ cytotoxic T lymphocyte (CTL) clones HS1 and B6.1, derived from BALB/c and C57/BL6 mice, respectively. These CD4+ clones respond to the promiscuous peptide fragment S-329-343 of the glycoprotein S of MHV-A59. The results indicate that the core peptides of both clones overlap but are not identical. The core region of the HS1 clone is an 8-mer, and comprises the amino acid residues S-332-339, whereas the minimal epitope for clone B6.1 is a 9-mer and comprises the amino acid residues S-334-342. The peptide fragment S-329-343 activates all T-cell effector functions, including proliferation, cytokine secretion and cytolysis. However, in the present study we show that T-cell activation is not an all-or-none phenomenon, in which T-cell stimulation leads to activation of all T-cell effector functions. It appears that changes in the length of a peptide ligand can differentially activate the cytolytic machinery from proliferation and cytokine secretion. Furthermore, the results indicate that, in our case, modulation of the flanking residues of the core epitopes did not convert the cytokine profile of polarized T-helper type-1 (Th1) clones into a Th2-type pattern.
Collapse
Affiliation(s)
- M H Heemskerk
- Department of Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
36
|
van der Most RG, Luytjes W, Rutjes S, Spaan WJ. Translation but not the encoded sequence is essential for the efficient propagation of the defective interfering RNAs of the coronavirus mouse hepatitis virus. J Virol 1995; 69:3744-51. [PMID: 7745722 PMCID: PMC189091 DOI: 10.1128/jvi.69.6.3744-3751.1995] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The defective interfering (DI) RNA MIDI of mouse hepatitis virus strain A59 (MHV-A59) contains a large open reading frame (ORF) spanning almost its entire genome. This ORF consists of sequences derived from ORF1a, ORF1b, and the nucleocapsid gene. We have previously demonstrated that mutations that disrupt the ORF decrease the fitness of MIDI and its derivatives (R. J. de Groot, R. G. van der Most, and W. J. M. Spaan, J. Virol. 66:5898-5905, 1992). To determine whether translation of the ORF per se is required or whether the encoded polypeptide or a specific sequence is involved, we analyzed sets of related DI RNAs containing different ORFs. After partial deletion of ORF1b and nucleocapsid gene sequences, disruption of the remaining ORF is still lethal; translation of the entire ORF is not essential, however. When a large fragment of the MHV-A59 spike gene, which is not present in any of the MHV-A59 DI RNAs identified so far, was inserted in-frame into a MIDI derivative, translation across this sequence was vital to DI RNA survival. Thus, the translated sequence is irrelevant, indicating that translation per se plays a crucial role in DI virus propagation. Next, it was examined during which step of the viral life cycle translation plays its role. Since the requirement for translation also exists in DI RNA-transfected and MHV-infected cells, it follows that either the synthesis or degradation of DI RNAs is affected by translation.
Collapse
Affiliation(s)
- R G van der Most
- Department of Virology, Faculty of Medicine, Leiden University, The Netherlands
| | | | | | | |
Collapse
|
37
|
Heemskerk MH, Schilham MW, Schoemaker HM, Spierenburg G, Spaan WJ, Boog CJ. Activation of virus-specific major histocompatibility complex class II-restricted CD8+ cytotoxic T cells in CD4-deficient mice. Eur J Immunol 1995; 25:1109-12. [PMID: 7737281 PMCID: PMC7163489 DOI: 10.1002/eji.1830250438] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/1994] [Revised: 02/06/1995] [Accepted: 02/08/1995] [Indexed: 01/26/2023]
Abstract
Acute enteritic or respiratory disease is a consequence of coronavirus infection in man and rodents. Mouse hepatitis virus, stain A59 (MHV-A59) causes acute hepatitis in mice and rats and induces a response of major histocompatibility complex (MHC) class II-restricted CD4+ cytotoxic T cells, protecting mice against acute infection. In the present study we show that MHV-A59 infection of mice that lack a functional CD4 gene activates effector cells of the CD8+ phenotype. These cytotoxic T cells lyse virus-infected target cells in a MHC class II-restricted fashion. The results indicate that CD8+ T cells have the potential to utilize MHC class II as restriction element, illustrating that the immune system can effectively deal with evading microorganisms, such as viruses which down-regulate MHC class I.
Collapse
Affiliation(s)
- M H Heemskerk
- Institute of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University of Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
38
|
Heemskerk MH, Schoemaker HM, Spaan WJ, Boog CJ. Predominance of MHC class II-restricted CD4+ cytotoxic T cells against mouse hepatitis virus A59. Immunol Suppl 1995; 84:521-7. [PMID: 7790024 PMCID: PMC1415158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Coronavirus-induced acute hepatitis is a complex event and the role of different components of the immune system with regard to defined viral proteins and the course of the infection is not yet clear. We have analysed the cytotoxic T-lymphocyte (CTL) response in mouse hepatitis virus (MHV-A59) infection. Surprisingly, we detected only a very clear virus-specific major histocompatibility complex (MHC) class II-restricted cytotoxicity in mice infected with MHV-A59. We found no evidence of activation of the classical CD8+ MHC class I-restricted CTL. The virus-specific CD4+ CTL derived from two different mouse strains having different MHC haplotypes recognized the same immunodominant epitope. This epitope, comprising the amino acid residues 329-343 of the viral S-glycoprotein, was recognized both at the polyclonal level and by virus-specific CTL clones. Transfer studies using a MHV-A59-specific CD4+ CTL clone showed significant protection against a lethal challenge with MHV-A59, implicating that these CD4+ CTL play a pivotal role in the protection against MHV-A59 infections.
Collapse
Affiliation(s)
- M H Heemskerk
- Institute of Infectious Diseases, Faculty of Veterinary Medicine, University of Utrecht, The Netherlands
| | | | | | | |
Collapse
|
39
|
Thieringer HA, Takayama KM, Kang C, Inouye M. Antisense RNA-mediated inhibition of mouse hepatitis virus replication in L2 cells. ANTISENSE RESEARCH AND DEVELOPMENT 1995; 5:289-94. [PMID: 8746778 DOI: 10.1089/ard.1995.5.289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have successfully used antisense RNA to inhibit replication of the mouse hepatitis virus (MHV) in a cell culture system. MHV is a single-stranded RNA virus of positive polarity. Mouse L2 cells were stably transfected with an antisense construct that targets regions of genes 5 and 6 of the virus. High levels of expression from this construct, which is under control of the human elongation factor 1 alpha promoter, were found. After infection of the antisense cell lines with MHV, replication of the virus was significantly reduced compared with control cells. In a viral plaque assay, smaller plaques were found in the antisense cell lines. In addition, up to a 92% inhibition in the number of viral particles produced in one antisense cell line could be seen. This inhibitory effect decreased at longer (> 16 hour) infection times. It was possible to both increase the amount of inhibition and prolong the inhibitory effect by reducing the multiplicity of infection. Our results suggest that antisense RNA may be an effective tool to slow down progression of MHV infection in mice.
Collapse
Affiliation(s)
- H A Thieringer
- Department of Biochemistry, University of Medicine and Dentistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
40
|
Klumperman J, Locker JK, Meijer A, Horzinek MC, Geuze HJ, Rottier PJ. Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding. J Virol 1994; 68:6523-34. [PMID: 8083990 PMCID: PMC237073 DOI: 10.1128/jvi.68.10.6523-6534.1994] [Citation(s) in RCA: 233] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The prevailing hypothesis is that the intracellular site of budding of coronaviruses is determined by the localization of its membrane protein M (previously called E1). We tested this by analyzing the site of budding of four different coronaviruses in relation to the intracellular localization of their M proteins. Mouse hepatitis virus (MHV) and infectious bronchitis virus (IBV) grown in Sac(-) cells, and feline infectious peritonitis virus (FIPV) and transmissible gastroenteritis virus (TGEV) grown in CrFK cells, all budded exclusively into smooth-walled, tubulovesicular membranes located intermediately between the rough endoplasmic reticulum and Golgi complex, identical to the so-called budding compartment previously identified for MHV. Indirect immunofluorescence staining of the infected cells showed that all four M proteins accumulated in a perinuclear region. Immunogold microscopy localized MHV M and IBV M in the budding compartment; in addition, a dense labeling in the Golgi complex occurred, MHV M predominantly in trans-Golgi cisternae and trans-Golgi reticulum and IBV M mainly in the cis and medial Golgi cisternae. The corresponding M proteins of the four viruses, when independently expressed in a recombinant vaccinia virus system, also accumulated in the perinuclear area. Quantitative pulse-chase analysis of metabolically labeled cells showed that in each case the majority of the M glycoproteins carried oligosaccharide side chains with Golgi-specific modifications within 4 h after synthesis. Immunoelectron microscopy localized recombinant MHV M and IBV M to the same membranes as the respective proteins in coronavirus-infected cells, with the same cis-trans distribution over the Golgi complex. Our results demonstrate that some of the M proteins of the four viruses are transported beyond the budding compartment and are differentially retained by intrinsic retention signals; in addition to M, other viral and/or cellular factors are probably required to determine the site of budding.
Collapse
Affiliation(s)
- J Klumperman
- Department of Cell Biology, Utrecht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
41
|
Nédellec P, Dveksler GS, Daniels E, Turbide C, Chow B, Basile AA, Holmes KV, Beauchemin N. Bgp2, a new member of the carcinoembryonic antigen-related gene family, encodes an alternative receptor for mouse hepatitis viruses. J Virol 1994; 68:4525-37. [PMID: 8207827 PMCID: PMC236379 DOI: 10.1128/jvi.68.7.4525-4537.1994] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Murine coronaviruses such as mouse hepatitis virus (MHV) infect mouse cells via cellular receptors that are isoforms of biliary glycoprotein (Bgp) of the carcinoembryonic antigen gene family (G. S. Dveksler, C. W. Dieffenbach, C. B. Cardellichio, K. McCuaig, M. N. Pensiero, G.-S. Jiang, N. Beauchemin, and K. V. Holmes, J. Virol. 67:1-8, 1993). The Bgp isoforms are generated through alternative splicing of the mouse Bgp1 gene that has two allelic forms called MHVR (or mmCGM1), expressed in MHV-susceptible mouse strains, and mmCGM2, expressed in SJL/J mice, which are resistant to MHV. We here report the cloning and characterization of a new Bgp-related gene designated Bgp2. The Bgp2 cDNA allowed the prediction of a 271-amino-acid glycoprotein with two immunoglobulin domains, a transmembrane, and a putative cytoplasmic tail. There is considerable divergence in the amino acid sequences of the N-terminal domains of the proteins coded by the Bgp1 gene from that of the Bgp2-encoded protein. RNase protection assays and RNA PCR showed that Bgp2 was expressed in BALB/c kidney, colon, and brain tissue, in SJL/J colon and liver tissue, in BALB/c and CD1 spleen tissue, in C3H macrophages, and in mouse rectal carcinoma CMT-93 cells. When Bgp2-transfected hamster cells were challenged with MHV-A59, MHV-JHM, or MHV-3, the Bgp2-encoded protein served as a functional MHV receptor, although with a lower efficiency than that of the MHVR glycoprotein. The Bgp2-mediated virus infection could not be inhibited by monoclonal antibody CC1 that is specific for the N-terminal domain of MHVR. Although CMT-93 cells express both MHVR and Bgp2, infection with the three strains of MHV was blocked by pretreatment with monoclonal antibody CC1, suggesting that MHVR was the only functional receptor in these cells. Thus, a novel murine Bgp gene has been identified that can be coexpressed in inbred mice with the Bgp1 glycoproteins and that can serve as a receptor for MHV strains when expressed in transfected hamster cells.
Collapse
Affiliation(s)
- P Nédellec
- McGill Cancer Centre, McGill University, Montreal, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
42
|
van der Most RG, de Groot RJ, Spaan WJ. Subgenomic RNA synthesis directed by a synthetic defective interfering RNA of mouse hepatitis virus: a study of coronavirus transcription initiation. J Virol 1994; 68:3656-66. [PMID: 8189503 PMCID: PMC236870 DOI: 10.1128/jvi.68.6.3656-3666.1994] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have used a full-length cDNA clone of a mouse hepatitis virus strain A59 defective interfering (DI) RNA, pMIDI-C, and cassette mutagenesis to study the mechanism of coronavirus subgenomic mRNA synthesis. Promoter sequences closely resembling those of subgenomic mRNAs 3 and 7 were inserted into MIDI-C. Both subgenomic RNA promoters gave rise to the synthesis of a subgenomic DI RNA in virus-infected and DI RNA-transfected cells. From a mutagenic analysis of the promoters we concluded the following. (i) The extent of base pairing between the leader RNA and the intergenic promoter sequence does not control subgenomic RNA abundance. (ii) Promoter recognition does not rely on base pairing only. Presumably, transcription initiation requires recognition of the promoter sequence by the transcriptase. (iii) Fusion of leader and body sequences takes place at multiple--possibly random--sites within the intergenic promoter sequence. A model is presented in which, prior to elongation, the leader RNA is trimmed by a processive 3'-->5' nuclease.
Collapse
MESH Headings
- Animals
- Base Composition
- Base Sequence
- DNA, Complementary/genetics
- DNA, Viral/genetics
- Defective Viruses/genetics
- Defective Viruses/metabolism
- Mice
- Models, Genetic
- Molecular Sequence Data
- Murine hepatitis virus/genetics
- Murine hepatitis virus/metabolism
- Mutagenesis, Insertional
- Promoter Regions, Genetic
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- R G van der Most
- Department of Virology, Faculty of Medicine, Lieden University, The Netherlands
| | | | | |
Collapse
|
43
|
Opstelten DJ, Horzinek MC, Rottier PJ. Complex formation between the spike protein and the membrane protein during mouse hepatitis virus assembly. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 342:189-95. [PMID: 8209729 DOI: 10.1007/978-1-4615-2996-5_30] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Using different approaches we have demonstrated the formation of a complex between the S protein and the M protein in the process of mouse hepatitis virus (MHV) assembly. Preservation of the M/S heterocomplexes was critically dependent on the solubilization conditions. Pulse-chase labeling of MHV-infected cells followed by a co-immunoprecipitation assay revealed that newly synthesized S and M engage in complex formation with different kinetics, the S protein reacting much slower. Sedimentation experiments showed the M/S heteromultimer complexes to be very large. A model for the role of the complex formation in MHV assembly is presented.
Collapse
Affiliation(s)
- D J Opstelten
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University of Utrecht, The Netherlands
| | | | | |
Collapse
|
44
|
Krijnse-Locker J, Ericsson M, Rottier PJ, Griffiths G. Characterization of the budding compartment of mouse hepatitis virus: evidence that transport from the RER to the Golgi complex requires only one vesicular transport step. J Biophys Biochem Cytol 1994; 124:55-70. [PMID: 8294506 PMCID: PMC2119890 DOI: 10.1083/jcb.124.1.55] [Citation(s) in RCA: 264] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mouse hepatitis coronavirus (MHV) buds into pleomorphic membrane structures with features expected of the intermediate compartment between the ER and the Golgi complex. Here, we characterize the MHV budding compartment in more detail in mouse L cells using streptolysin O (SLO) permeabilization which allowed us to better visualize the membrane structures at the ER-Golgi boundary. The MHV budding compartment shares membrane continuities with the rough ER as well as with cisternal elements on one side of the Golgi stack. It also labeled with p58 and rab2, two markers of the intermediate compartment, and with PDI, usually considered to be a marker of the rough ER. The membranes of the budding compartment, as well as the budding virions themselves, but not the rough ER, labeled with the N-acetyl-galactosamine (GalNAc)-specific lectin Helix pomatia. When the SLO-permeabilized cells were treated with guanosine 5'-(3-O-thio)triphosphate (GTP gamma S), the budding compartment accumulated a large number of beta-cop-containing buds and vesicular profiles. Complementary biochemical experiments were carried out to determine whether vesicular transport was required for the newly synthesized M protein, that contains only O-linked oligosaccharides, to acquire first, GalNAc and second, the Golgi modifications galactose and sialic acid. The results from both in vivo studies and from the use of SLO-permeabilized cells showed that, while GalNAc addition occurred under conditions which block vesicular transport, both cytosol and ATP were prerequisites for the M protein oligosaccharides to acquire Golgi modifications. Collectively, our data argue that transport from the rough ER to the Golgi complex requires only one vesicular transport step and that the intermediate compartment is a specialized domain of the endoplasmatic reticulum that extends to the first cisterna on the cis side of the Golgi stack.
Collapse
Affiliation(s)
- J Krijnse-Locker
- Institute of Virology, Faculty of Veterinary Medicine, University of Utrecht, The Netherlands
| | | | | | | |
Collapse
|
45
|
Abstract
Toroviruses are a group of enveloped positive-stranded RNA viruses that cause enteric, respiratory, and perhaps generalized infections in animals and humans. Their name refers to their unique morphological features: an elongated bacilliform core with two rounded ends is surrounded by a membrane that may either tightly adhere to or “shrink-wrap” it, without respecting the capsid's rod shape; in the first instance, straight or curved rhabdovirus-like particles are formed, whereas in the latter a biconcave disk results. Torovirus history is brief: the first representative, Berne virus (BEV), was isolated in Berne, Switzerland, in 1972 from a rectal swab taken from a horse with diarrhea 1 week before it died. BEV is the only equine torovirus isolate that replicates in cell culture; since most molecular data have been obtained with this isolate, BEV has been acknowledged as the torovirus prototype. Recognition of toroviruses as a new group of potentially pathogenic viruses came seven years after the discovery of BEV, when morphologically similar particles were discovered by electron microscopy (EM) in stool specimens from calves with severe diarrhea in a dairy herd in Breda, Iowa. Despite repeated attempts, BRV has not been adapted to the growth in cell or tissue culture, a problem which has hampered its biochemical, bio-physical, and molecular characterization. However, its pathogenesis and pathology have been studied in the experimentally infected gnotobiotic calves, showing that BRV infections may cause gastroenteritis. Recently, Vanopdenbosch et al. reported the isolation of a torovirus-like virus from the respiratory tract of calves with pneumonia, suggesting that both enterotropic and pneumotropic bovine toroviruses exist. Besides the established toroviruses of horses and cattle, torovirus-like particles (TVLPs) have been found by EM in different animal species; torovirus antibodies appear to be widespread in higher vertebrates, indicating that these viruses infect a broad range of animal hosts. The possibility of a torovirus infecting humans was first reported in 1984 and has become more likely in view of the recent data. This chapter is intended to update the information about toroviruses, and to describe the similarities and differences with the related coronaviruses.
Collapse
Affiliation(s)
- M Koopmans
- Viral Exanthems and Herpesvirus Branch, Centers for Disease Control and Prevention, Atlanta, Georgia 30333
| | | |
Collapse
|
46
|
Opstelten DJ, de Groote P, Horzinek MC, Vennema H, Rottier PJ. Disulfide bonds in folding and transport of mouse hepatitis coronavirus glycoproteins. J Virol 1993; 67:7394-401. [PMID: 8230460 PMCID: PMC238203 DOI: 10.1128/jvi.67.12.7394-7401.1993] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have analyzed the effects of reducing conditions on the folding of the spike (S) protein and on the intracellular transport of the membrane (M) protein of the mouse hepatitis coronavirus. These proteins differ in their potential to form disulfide bonds in the lumen of the endoplasmic reticulum (ER). Intrachain disulfide bonds are formed in the S protein but not in M, which was demonstrated in a pulse-chase experiment by analyzing the viral proteins under nonreducing conditions. To reduce disulfide bonds in vivo, we added dithiothreitol (DTT) to the culture medium of mouse hepatitis coronavirus-infected cells following a procedure recently described by Braakman et al. (I. Braakman, J. Helenius, and A. Helenius, EMBO J. 11:1717-1722, 1992). Short exposure to DTT resulted in the complete reduction of newly synthesized S protein and affected its conformation as judged by the change in mobility in nonreducing gels and by the loss of recognition by a conformation-specific monoclonal antibody. Using this antibody in an immunofluorescence assay, we monitored the reducing effect of DTT in situ. DTT was found to initially affect only the S protein present in the ER; also, after longer treatment, the remaining signal also gradually disappeared. In contrast, folding and transport of the M protein were not inhibited by DTT. Under reducing conditions, M was transported efficiently to the trans side of the Golgi complex, indicating that cellular processes such as ER-to-Golgi transport, O-glycosylation, and Golgi retention were unaffected. In the presence of DTT, the M protein even moved at an increased rate to the Golgi complex, which is probably because of its failure to interact with unfolded S protein. The effects of in vivo reduction were reversible. When DTT was removed from pulse-labeled cells, the S protein folded posttranslationally and aberrantly; during its oxidation, most of S now transiently aggregated into large disulfide-linked complexes from which subsequently folded S molecules dissociated.
Collapse
Affiliation(s)
- D J Opstelten
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | | | | | | | | |
Collapse
|
47
|
de Groot RJ, van der Most RG, Spaan WJ. The fitness of defective interfering murine coronavirus DI-a and its derivatives is decreased by nonsense and frameshift mutations. J Virol 1992; 66:5898-905. [PMID: 1326650 PMCID: PMC241466 DOI: 10.1128/jvi.66.10.5898-5905.1992] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The genome of the defective interfering (DI) mouse hepatitis virus DI-a carries a large open reading frame (ORF) consisting of ORF1a, ORF1b, and nucleocapsid sequences. To test whether this fusion ORF is important for DI virus replication, we constructed derivatives of the DI-a genome in which the reading frame was truncated by a nonsense codon or a frameshift mutation. In vitro-transcribed DI RNAs were transfected into mouse hepatitis virus-infected cells followed by undiluted passage of the resulting virus-DI virus stocks. The following observations were made. (i) Truncation of the fusion ORF was not lethal but led to reduced accumulation of DI RNA. (ii) When pairs of nearly identical in-frame and out-of-frame DI RNAs were directly compared by cotransfection, DI viruses containing in-frame genomic RNAs prevailed within three successive passage even when the out-of-frame RNAs were transfected in 10-fold molar excess. (iii) When DI viruses containing out-of-frame genomic RNAs were passaged, mutants emerged and were selected for that had restored the reading frame. We conclude that translation of the fusion ORF is indeed required for efficient propagation of DI-a and its derivatives.
Collapse
Affiliation(s)
- R J de Groot
- Department of Virology, Institute of Medical Microbiology, Faculty of Medicine, Leiden University, The Netherlands
| | | | | |
Collapse
|
48
|
Locker JK, Griffiths G, Horzinek MC, Rottier PJ. O-glycosylation of the coronavirus M protein. Differential localization of sialyltransferases in N- and O-linked glycosylation. J Biol Chem 1992; 267:14094-101. [PMID: 1629209 PMCID: PMC8545364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
It has previously been shown that the M (E1) glycoprotein of mouse hepatitis virus strain A59 (MHV-A59) contains only O-linked oligosaccharides and localizes to the Golgi region when expressed independently. A detailed pulse-chase analysis was made of the addition of O-linked sugars to the M protein; upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, three different electrophoretic forms could be distinguished that corresponded to the sequential acquisition of N-acetylgalactosamine (GalNAc), galactose (Gal), and sialic acid (SA). A fourth and fifth form could also be detected which we were unable to identify. Following Brefeldin A treatment, the M protein still acquired GalNAc, Gal, and SA, but the fourth and fifth forms were absent, suggesting that these modifications occur in the trans-Golgi network (TGN). In contrast, in the presence of BFA, the G protein of vesicular stomatitis virus (VSV), which contains N-linked oligosaccharides, acquired Gal and fucose but not SA. These results are consistent with earlier published data showing that Golgi compartments proximal to the TGN, but not the TGN itself, relocate to the endoplasmatic reticulum/intermediate compartment. More importantly, our data argue that, whereas addition of SA to N-linked sugars occurs in the TGN the acquisition of both SA on O-linked sugars and the addition of fucose to N-linked oligosaccharides must occur in Golgi compartments proximal to the TGN. The glycosylation of the M protein moreover indicates that it is transported to trans-Golgi and TGN. This was confirmed by electron microscopy immunocytochemistry, showing that the protein is targeted to cisternae on the trans side of the Golgi and co-localizes, at least in part, with TGN 38, a marker of the TGN, as well as with a lectin specific for sialic acid.
Collapse
Affiliation(s)
- J K Locker
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | |
Collapse
|
49
|
van der Most RG, Heijnen L, Spaan WJ, de Groot RJ. Homologous RNA recombination allows efficient introduction of site-specific mutations into the genome of coronavirus MHV-A59 via synthetic co-replicating RNAs. Nucleic Acids Res 1992; 20:3375-81. [PMID: 1630909 PMCID: PMC312492 DOI: 10.1093/nar/20.13.3375] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We describe a novel strategy to site-specifically mutagenize the genome of an RNA virus by exploiting homologous RNA recombination between synthetic defective interfering (DI) RNA and the viral RNA. The construction of a full-length cDNA clone, pMIDI, of a DI RNA of coronavirus MHV strain A59 was reported previously (R.G. Van der Most, P.J. Bredenbeek, and W.J.M. Spaan (1991). J. Virol. 65, 3219-3226). RNA transcribed from this construct, is replicated efficiently in MHV-infected cells. Marker mutations introduced in MIDI RNA were replaced by the wild-type residues during replication. More importantly, however, these genetic markers were introduced into viral genome: even in the absence of positive selection MHV recombinants could be isolated. This finding provides new prospects for the study of coronavirus replication using recombinant DNA techniques. As a first application, we describe the rescue of the temperature sensitive mutant MHV Albany-4 using DI-directed mutagenesis. Possibilities and limitations of this strategy are discussed.
Collapse
Affiliation(s)
- R G van der Most
- Department of Virology, Academic Hospital Leiden, The Netherlands
| | | | | | | |
Collapse
|
50
|
Locker J, Griffiths G, Horzinek M, Rottier P. O-glycosylation of the coronavirus M protein. Differential localization of sialyltransferases in N- and O-linked glycosylation. J Biol Chem 1992. [PMID: 1629209 PMCID: PMC8545364 DOI: 10.1016/s0021-9258(19)49683-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|