1
|
Hamlin RE, Pienkos SM, Chan L, Stabile MA, Pinedo K, Rao M, Grant P, Bonilla H, Holubar M, Singh U, Jacobson KB, Jagannathan P, Maldonado Y, Holmes SP, Subramanian A, Blish CA. Sex differences and immune correlates of Long Covid development, symptom persistence, and resolution. Sci Transl Med 2024; 16:eadr1032. [PMID: 39536117 DOI: 10.1126/scitranslmed.adr1032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Sex differences have been observed in acute coronavirus disease 2019 (COVID-19) and Long Covid (LC) outcomes, with greater disease severity and mortality during acute infection in males and greater proportions of females developing LC. We hypothesized that sex-specific immune dysregulation contributes to LC pathogenesis. To investigate the immunologic underpinnings of LC development and symptom persistence, we performed multiomic analyses on blood samples obtained during acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and 3 and 12 months after infection in a cohort of 45 participants who either developed LC or recovered. Several sex-specific immune pathways were associated with LC. Males who would later develop LC exhibited increases in transforming growth factor-β (TGF-β) signaling during acute infection, whereas females who would go on to develop LC had reduced TGFB1 expression. Females who developed LC demonstrated increased expression of XIST, an RNA gene implicated in autoimmunity, during acute infection compared with females who recovered. Many immune features of LC were also conserved across sexes, such as alterations in monocyte phenotype and activation state. Nuclear factor κB (NF-κB) transcription factors were up-regulated in many cell types at acute and convalescent time points. Those with ongoing LC demonstrated reduced ETS1 expression across lymphocyte subsets and elevated intracellular IL-4 in T cell subsets, suggesting that ETS1 alterations may drive aberrantly elevated T helper cell 2-like responses in LC. Altogether, this study describes multiple innate and adaptive immune correlates of LC, some of which differ by sex, and offers insights toward the pursuit of tailored therapeutics.
Collapse
Affiliation(s)
- Rebecca E Hamlin
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shaun M Pienkos
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leslie Chan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mikayla A Stabile
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kassandra Pinedo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mallika Rao
- Stanford Center for Clinical Research, Stanford University, Stanford, CA 94305, USA
| | - Philip Grant
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hector Bonilla
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marisa Holubar
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Upinder Singh
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karen B Jacobson
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Kaiser Permanente Vaccine Study Center, Oakland, CA 94612, USA
| | - Prasanna Jagannathan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yvonne Maldonado
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Susan P Holmes
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Aruna Subramanian
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Catherine A Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
2
|
Patrick R, Naval-Sanchez M, Deshpande N, Huang Y, Zhang J, Chen X, Yang Y, Tiwari K, Esmaeili M, Tran M, Mohamed AR, Wang B, Xia D, Ma J, Bayliss J, Wong K, Hun ML, Sun X, Cao B, Cottle DL, Catterall T, Barzilai-Tutsch H, Troskie RL, Chen Z, Wise AF, Saini S, Soe YM, Kumari S, Sweet MJ, Thomas HE, Smyth IM, Fletcher AL, Knoblich K, Watt MJ, Alhomrani M, Alsanie W, Quinn KM, Merson TD, Chidgey AP, Ricardo SD, Yu D, Jardé T, Cheetham SW, Marcelle C, Nilsson SK, Nguyen Q, White MD, Nefzger CM. The activity of early-life gene regulatory elements is hijacked in aging through pervasive AP-1-linked chromatin opening. Cell Metab 2024; 36:1858-1881.e23. [PMID: 38959897 DOI: 10.1016/j.cmet.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/28/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
A mechanistic connection between aging and development is largely unexplored. Through profiling age-related chromatin and transcriptional changes across 22 murine cell types, analyzed alongside previous mouse and human organismal maturation datasets, we uncovered a transcription factor binding site (TFBS) signature common to both processes. Early-life candidate cis-regulatory elements (cCREs), progressively losing accessibility during maturation and aging, are enriched for cell-type identity TFBSs. Conversely, cCREs gaining accessibility throughout life have a lower abundance of cell identity TFBSs but elevated activator protein 1 (AP-1) levels. We implicate TF redistribution toward these AP-1 TFBS-rich cCREs, in synergy with mild downregulation of cell identity TFs, as driving early-life cCRE accessibility loss and altering developmental and metabolic gene expression. Such remodeling can be triggered by elevating AP-1 or depleting repressive H3K27me3. We propose that AP-1-linked chromatin opening drives organismal maturation by disrupting cell identity TFBS-rich cCREs, thereby reprogramming transcriptome and cell function, a mechanism hijacked in aging through ongoing chromatin opening.
Collapse
Affiliation(s)
- Ralph Patrick
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Marina Naval-Sanchez
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Nikita Deshpande
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Yifei Huang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jingyu Zhang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Xiaoli Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Ying Yang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Kanupriya Tiwari
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Mohammadhossein Esmaeili
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Minh Tran
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Amin R Mohamed
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Binxu Wang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Di Xia
- Genome Innovation Hub, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jun Ma
- Genome Innovation Hub, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jacqueline Bayliss
- Department of Anatomy and Physiology, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kahlia Wong
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Michael L Hun
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Xuan Sun
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Benjamin Cao
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Denny L Cottle
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Tara Catterall
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Hila Barzilai-Tutsch
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Institut NeuroMyoGène, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Robin-Lee Troskie
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Zhian Chen
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Andrea F Wise
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sheetal Saini
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ye Mon Soe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Snehlata Kumari
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Helen E Thomas
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Anne L Fletcher
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Konstantin Knoblich
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Majid Alhomrani
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Research Centre for Health Sciences, Taif University, Taif, Saudi Arabia
| | - Walaa Alsanie
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Research Centre for Health Sciences, Taif University, Taif, Saudi Arabia
| | - Kylie M Quinn
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Tobias D Merson
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ann P Chidgey
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sharon D Ricardo
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Di Yu
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Thierry Jardé
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Surgery, Cabrini Monash University, Malvern, VIC 3144, Australia
| | - Seth W Cheetham
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Christophe Marcelle
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Institut NeuroMyoGène, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Susan K Nilsson
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Melanie D White
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Christian M Nefzger
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
3
|
Fischer S, Weber LM, Stielow B, Frech M, Simon C, Geller M, Könnecke J, Finkernagel F, Forné I, Nist A, Bauer UM, Stiewe T, Neubauer A, Liefke R. IRF2BP2 counteracts the ATF7/JDP2 AP-1 heterodimer to prevent inflammatory overactivation in acute myeloid leukemia (AML) cells. Nucleic Acids Res 2024; 52:7590-7609. [PMID: 38801077 PMCID: PMC11260449 DOI: 10.1093/nar/gkae437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 04/16/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy characterized by abnormal proliferation and accumulation of immature myeloid cells in the bone marrow. Inflammation plays a crucial role in AML progression, but excessive activation of cell-intrinsic inflammatory pathways can also trigger cell death. IRF2BP2 is a chromatin regulator implicated in AML pathogenesis, although its precise role in this disease is not fully understood. In this study, we demonstrate that IRF2BP2 interacts with the AP-1 heterodimer ATF7/JDP2, which is involved in activating inflammatory pathways in AML cells. We show that IRF2BP2 is recruited by the ATF7/JDP2 dimer to chromatin and counteracts its gene-activating function. Loss of IRF2BP2 leads to overactivation of inflammatory pathways, resulting in strongly reduced proliferation. Our research indicates that a precise equilibrium between activating and repressive transcriptional mechanisms creates a pro-oncogenic inflammatory environment in AML cells. The ATF7/JDP2-IRF2BP2 regulatory axis is likely a key regulator of this process and may, therefore, represent a promising therapeutic vulnerability for AML. Thus, our study provides new insights into the molecular mechanisms underlying AML pathogenesis and identifies a potential therapeutic target for AML treatment.
Collapse
Affiliation(s)
- Sabrina Fischer
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Lisa Marie Weber
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Bastian Stielow
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Miriam Frech
- Department of Hematology, Oncology, and Immunology, University Hospital Giessen and Marburg, Marburg 35043, Germany
| | - Clara Simon
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Merle Geller
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Julie Könnecke
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Florian Finkernagel
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University of Marburg, Marburg 35043, Germany
| | - Ignasi Forné
- Protein Analysis Unit, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Martinsried 82152, Germany
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University of Marburg, Marburg 35043, Germany
| | - Uta-Maria Bauer
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University of Marburg, Marburg 35043, Germany
| | - Andreas Neubauer
- Department of Hematology, Oncology, and Immunology, University Hospital Giessen and Marburg, Marburg 35043, Germany
| | - Robert Liefke
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
- Department of Hematology, Oncology, and Immunology, University Hospital Giessen and Marburg, Marburg 35043, Germany
| |
Collapse
|
4
|
Hamlin RE, Pienkos SM, Chan L, Stabile MA, Pinedo K, Rao M, Grant P, Bonilla H, Holubar M, Singh U, Jacobson KB, Jagannathan P, Maldonado Y, Holmes SP, Subramanian A, Blish CA. Sex differences and immune correlates of Long COVID development, persistence, and resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599612. [PMID: 38948732 PMCID: PMC11212991 DOI: 10.1101/2024.06.18.599612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Sex differences have been observed in acute COVID-19 and Long COVID (LC) outcomes, with greater disease severity and mortality during acute infection in males and a greater proportion of females developing LC. We hypothesized that sex-specific immune dysregulation contributes to the pathogenesis of LC. To investigate the immunologic underpinnings of LC development and persistence, we used single-cell transcriptomics, single-cell proteomics, and plasma proteomics on blood samples obtained during acute SARS-CoV-2 infection and at 3 and 12 months post-infection in a cohort of 45 patients who either developed LC or recovered. Several sex-specific immune pathways were associated with LC. Specifically, males who would develop LC at 3 months had widespread increases in TGF-β signaling during acute infection in proliferating NK cells. Females who would develop LC demonstrated increased expression of XIST, an RNA gene implicated in autoimmunity, and increased IL1 signaling in monocytes at 12 months post infection. Several immune features of LC were also conserved across sexes. Both males and females with LC had reduced co-stimulatory signaling from monocytes and broad upregulation of NF-κB transcription factors. In both sexes, those with persistent LC demonstrated increased LAG3, a marker of T cell exhaustion, reduced ETS1 transcription factor expression across lymphocyte subsets, and elevated intracellular IL-4 levels in T cell subsets, suggesting that ETS1 alterations may drive an aberrantly elevated Th2-like response in LC. Altogether, this study describes multiple innate and adaptive immune correlates of LC, some of which differ by sex, and offers insights toward the pursuit of tailored therapeutics.
Collapse
Affiliation(s)
- Rebecca E. Hamlin
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Shaun M. Pienkos
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Leslie Chan
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
- Stanford Immunology Program, Stanford University School of Medicine; Stanford, CA, USA
| | - Mikayla A. Stabile
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Kassandra Pinedo
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Mallika Rao
- Stanford Center for Clinical Research, Stanford University; Stanford, CA, USA
| | - Philip Grant
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Hector Bonilla
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Marisa Holubar
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Upinder Singh
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine; Stanford, CA, USA
| | - Karen B. Jacobson
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Prasanna Jagannathan
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine; Stanford, CA, USA
| | - Yvonne Maldonado
- Department of Pediatrics, Stanford University School of Medicine; Stanford, CA, USA
| | - Susan P. Holmes
- Department of Statistics, Stanford University; Stanford, CA, USA
| | - Aruna Subramanian
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Catherine A. Blish
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine; Stanford, CA, USA
- Chan Zuckerberg Biohub; San Francisco, CA, USA
| |
Collapse
|
5
|
Pham D, Silberger DJ, Nguyen KN, Gao M, Weaver CT, Hatton RD. Batf stabilizes Th17 cell development via impaired Stat5 recruitment of Ets1-Runx1 complexes. EMBO J 2023; 42:e109803. [PMID: 36917143 PMCID: PMC10106990 DOI: 10.15252/embj.2021109803] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 03/16/2023] Open
Abstract
Although the activator protein-1 (AP-1) factor Batf is required for Th17 cell development, its mechanisms of action to underpin the Th17 program are incompletely understood. Here, we find that Batf ensures Th17 cell identity in part by restricting alternative gene programs through its actions to restrain IL-2 expression and IL-2-induced Stat5 activation. This, in turn, limits Stat5-dependent recruitment of Ets1-Runx1 factors to Th1- and Treg-cell-specific gene loci. Thus, in addition to pioneering regulatory elements in Th17-specific loci, Batf acts indirectly to inhibit the assembly of a Stat5-Ets1-Runx1 complex that enhances the transcription of Th1- and Treg-cell-specific genes. These findings unveil an important role for Stat5-Ets1-Runx1 interactions in transcriptional networks that define alternate T cell fates and indicate that Batf plays an indispensable role in both inducing and maintaining the Th17 program through its actions to regulate the competing actions of Stat5-assembled enhanceosomes that promote Th1- and Treg-cell developmental programs.
Collapse
Affiliation(s)
- Duy Pham
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Daniel J Silberger
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Kim N Nguyen
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Min Gao
- Informatics InstituteUniversity of Alabama at BirminghamBirminghamALUSA
| | - Casey T Weaver
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Robin D Hatton
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| |
Collapse
|
6
|
Ji L, Shi Y, Bian Q. Comparative genomics analyses reveal sequence determinants underlying interspecies variations in injury-responsive enhancers. BMC Genomics 2023; 24:177. [PMID: 37020217 PMCID: PMC10077677 DOI: 10.1186/s12864-023-09283-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Injury induces profound transcriptional remodeling events, which could lead to only wound healing, partial tissue repair, or perfect regeneration in different species. Injury-responsive enhancers (IREs) are cis-regulatory elements activated in response to injury signals, and have been demonstrated to promote tissue regeneration in some organisms such as zebrafish and flies. However, the functional significances of IREs in mammals remain elusive. Moreover, whether the transcriptional responses elicited by IREs upon injury are conserved or specialized in different species, and what sequence features may underlie the functional variations of IREs have not been elucidated. RESULTS We identified a set of IREs that are activated in both regenerative and non-regenerative neonatal mouse hearts upon myocardial ischemia-induced damage by integrative epigenomic and transcriptomic analyses. Motif enrichment analysis showed that AP-1 and ETS transcription factor binding motifs are significantly enriched in both zebrafish and mouse IREs. However, the IRE-associated genes vary considerably between the two species. We further found that the IRE-related sequences in zebrafish and mice diverge greatly, with the loss of IRE inducibility accompanied by a reduction in AP-1 and ETS motif frequencies. The functional turnover of IREs between zebrafish and mice is correlated with changes in transcriptional responses of the IRE-associated genes upon injury. Using mouse cardiomyocytes as a model, we demonstrated that the reduction in AP-1 or ETS motif frequency attenuates the activation of IREs in response to hypoxia-induced damage. CONCLUSIONS By performing comparative genomics analyses on IREs, we demonstrated that inter-species variations in AP-1 and ETS motifs may play an important role in defining the functions of enhancers during injury response. Our findings provide important insights for understanding the molecular mechanisms of transcriptional remodeling in response to injury across species.
Collapse
Affiliation(s)
- Luzhang Ji
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Yuanyuan Shi
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Qian Bian
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.
| |
Collapse
|
7
|
Zhao Y, Vartak SV, Conte A, Wang X, Garcia DA, Stevens E, Kyoung Jung S, Kieffer-Kwon KR, Vian L, Stodola T, Moris F, Chopp L, Preite S, Schwartzberg PL, Kulinski JM, Olivera A, Harly C, Bhandoola A, Heuston EF, Bodine DM, Urrutia R, Upadhyaya A, Weirauch MT, Hager G, Casellas R. "Stripe" transcription factors provide accessibility to co-binding partners in mammalian genomes. Mol Cell 2022; 82:3398-3411.e11. [PMID: 35863348 PMCID: PMC9481673 DOI: 10.1016/j.molcel.2022.06.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/06/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
Regulatory elements activate promoters by recruiting transcription factors (TFs) to specific motifs. Notably, TF-DNA interactions often depend on cooperativity with colocalized partners, suggesting an underlying cis-regulatory syntax. To explore TF cooperativity in mammals, we analyze ∼500 mouse and human primary cells by combining an atlas of TF motifs, footprints, ChIP-seq, transcriptomes, and accessibility. We uncover two TF groups that colocalize with most expressed factors, forming stripes in hierarchical clustering maps. The first group includes lineage-determining factors that occupy DNA elements broadly, consistent with their key role in tissue-specific transcription. The second one, dubbed universal stripe factors (USFs), comprises ∼30 SP, KLF, EGR, and ZBTB family members that recognize overlapping GC-rich sequences in all tissues analyzed. Knockouts and single-molecule tracking reveal that USFs impart accessibility to colocalized partners and increase their residence time. Mammalian cells have thus evolved a TF superfamily with overlapping DNA binding that facilitate chromatin accessibility.
Collapse
Affiliation(s)
- Yongbing Zhao
- The NIH Regulome Project, National Institutes of Health, Bethesda, MD 20892, USA; Lymphocyte Nuclear Biology, NIAMS-NCI, NIH, Bethesda, MD 20892, USA.
| | - Supriya V Vartak
- The NIH Regulome Project, National Institutes of Health, Bethesda, MD 20892, USA; Lymphocyte Nuclear Biology, NIAMS-NCI, NIH, Bethesda, MD 20892, USA
| | - Andrea Conte
- The NIH Regulome Project, National Institutes of Health, Bethesda, MD 20892, USA; Lymphocyte Nuclear Biology, NIAMS-NCI, NIH, Bethesda, MD 20892, USA
| | - Xiang Wang
- The NIH Regulome Project, National Institutes of Health, Bethesda, MD 20892, USA; Lymphocyte Nuclear Biology, NIAMS-NCI, NIH, Bethesda, MD 20892, USA
| | - David A Garcia
- Laboratory of Receptor Biology and Gene Expression, NCI, NIH, Bethesda, MD 20893, USA; Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Evan Stevens
- Lymphocyte Nuclear Biology, NIAMS-NCI, NIH, Bethesda, MD 20892, USA
| | - Seol Kyoung Jung
- The NIH Regulome Project, National Institutes of Health, Bethesda, MD 20892, USA; Lymphocyte Nuclear Biology, NIAMS-NCI, NIH, Bethesda, MD 20892, USA
| | | | - Laura Vian
- Lymphocyte Nuclear Biology, NIAMS-NCI, NIH, Bethesda, MD 20892, USA
| | - Timothy Stodola
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Francisco Moris
- EntreChem S.L., Vivero Ciencias de la Salud, 33011 Oviedo, Spain
| | - Laura Chopp
- Laboratory of Immune Cell Biology, NCI, NIH, Bethesda, MD 20892, USA
| | - Silvia Preite
- Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA
| | | | - Joseph M Kulinski
- Mast cell Biology Section, Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Ana Olivera
- Mast cell Biology Section, Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Christelle Harly
- Laboratory of Genome Integrity, NCI, NIH, Bethesda, MD 20892, USA
| | | | | | - David M Bodine
- Genetics and Molecular Biology Branch, NHGRI, NIH, Bethesda, MD 20892, USA
| | - Raul Urrutia
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Matthew T Weirauch
- Divisions of Biomedical Informatics and Developmental Biology, Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Gordon Hager
- Laboratory of Receptor Biology and Gene Expression, NCI, NIH, Bethesda, MD 20893, USA
| | - Rafael Casellas
- The NIH Regulome Project, National Institutes of Health, Bethesda, MD 20892, USA; Lymphocyte Nuclear Biology, NIAMS-NCI, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Zhao X, Bartholdy B, Yamamoto Y, Evans EK, Alberich-Jordà M, Staber PB, Benoukraf T, Zhang P, Zhang J, Trinh BQ, Crispino JD, Hoang T, Bassal MA, Tenen DG. PU.1-c-Jun interaction is crucial for PU.1 function in myeloid development. Commun Biol 2022; 5:961. [PMID: 36104445 PMCID: PMC9474506 DOI: 10.1038/s42003-022-03888-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
The Ets transcription factor PU.1 is essential for inducing the differentiation of monocytes, macrophages, and B cells in fetal liver and adult bone marrow. PU.1 controls hematopoietic differentiation through physical interactions with other transcription factors, such as C/EBPα and the AP-1 family member c-Jun. We found that PU.1 recruits c-Jun to promoters without the AP-1 binding sites. To address the functional importance of this interaction, we generated PU.1 point mutants that do not bind c-Jun while maintaining normal DNA binding affinity. These mutants lost the ability to transactivate a target reporter that requires a physical PU.1-c-Jun interaction, and did not induce monocyte/macrophage differentiation of PU.1-deficient cells. Knock-in mice carrying these point mutations displayed an almost complete block in hematopoiesis and perinatal lethality. While the PU.1 mutants were expressed in hematopoietic stem and early progenitor cells, myeloid differentiation was severely blocked, leading to an almost complete loss of mature hematopoietic cells. Differentiation into mature macrophages could be restored by expressing PU.1 mutant fused to c-Jun, demonstrating that a physical PU.1-c-Jun interaction is crucial for the transactivation of PU.1 target genes required for myeloid commitment and normal PU.1 function in vivo during macrophage differentiation.
Collapse
Affiliation(s)
- Xinhui Zhao
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Boris Bartholdy
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Albert Einstein College of Medicine, New York, NY, USA
| | - Yukiya Yamamoto
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
| | - Erica K Evans
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- MOMA Therapeutics, Cambridge, MA, USA
| | - Meritxell Alberich-Jordà
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Hematology-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská, Prague, Czech Republic
- Childhood Leukemia Investigation Prague, Department of Pediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, University Hospital Motol, Videnska, Czech Republic
| | - Philipp B Staber
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Touati Benoukraf
- Cancer Science Institute of Singapore, Singapore, Singapore
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Pu Zhang
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Junyan Zhang
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Bon Q Trinh
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - John D Crispino
- Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Trang Hoang
- Institute for Research in Immunology and Cancer (IRIC), Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Mahmoud A Bassal
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Cancer Science Institute of Singapore, Singapore, Singapore.
| | - Daniel G Tenen
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Cancer Science Institute of Singapore, Singapore, Singapore.
| |
Collapse
|
9
|
Neveu B, Richer C, Cassart P, Caron M, Jimenez-Cortes C, St-Onge P, Fuchs C, Garnier N, Gobeil S, Sinnett D. Identification of new ETV6 modulators through a high-throughput functional screening. iScience 2022; 25:103858. [PMID: 35198911 PMCID: PMC8851229 DOI: 10.1016/j.isci.2022.103858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/01/2022] [Accepted: 01/28/2022] [Indexed: 12/02/2022] Open
Abstract
ETV6 transcriptional activity is critical for proper blood cell development in the bone marrow. Despite the accumulating body of evidence linking ETV6 malfunction to hematological malignancies, its regulatory network remains unclear. To uncover genes that modulate ETV6 repressive transcriptional activity, we performed a specifically designed, unbiased genome-wide shRNA screen in pre-B acute lymphoblastic leukemia cells. Following an extensive validation process, we identified 13 shRNAs inducing overexpression of ETV6 transcriptional target genes. We showed that the silencing of AKIRIN1, COMMD9, DYRK4, JUNB, and SRP72 led to an abrogation of ETV6 repressive activity. We identified critical modulators of the ETV6 function which could participate in cellular transformation through the ETV6 transcriptional network. We develop a genome-wide shRNAs screen for ETV6 modulators The screen uncovered 13 novel putative ETV6 modulator genes The modulators demonstrated a broad impact on the ETV6 transcriptional network T-ALL cells results suggest modulators are conserved in other cellular contexts
Collapse
Affiliation(s)
- Benjamin Neveu
- Sainte-Justine University Health Center Research Center, Montreal, QC H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Chantal Richer
- Sainte-Justine University Health Center Research Center, Montreal, QC H3T 1C5, Canada
| | - Pauline Cassart
- Sainte-Justine University Health Center Research Center, Montreal, QC H3T 1C5, Canada
| | - Maxime Caron
- Sainte-Justine University Health Center Research Center, Montreal, QC H3T 1C5, Canada
- Department of Human Genetics, McGill University, Montréal, QC H3A 0C7, Canada
| | - Camille Jimenez-Cortes
- Sainte-Justine University Health Center Research Center, Montreal, QC H3T 1C5, Canada
- Molecular Biology Program, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Pascal St-Onge
- Sainte-Justine University Health Center Research Center, Montreal, QC H3T 1C5, Canada
| | - Claire Fuchs
- Sainte-Justine University Health Center Research Center, Montreal, QC H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Nicolas Garnier
- Sainte-Justine University Health Center Research Center, Montreal, QC H3T 1C5, Canada
| | - Stéphane Gobeil
- CHU de Québec-Université Laval Research Center, Quebec City, QC G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Corresponding author
| | - Daniel Sinnett
- Sainte-Justine University Health Center Research Center, Montreal, QC H3T 1C5, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
- Corresponding author
| |
Collapse
|
10
|
Zhong Y, Walker SK, Pritykin Y, Leslie CS, Rudensky AY, van der Veeken J. Hierarchical regulation of the resting and activated T cell epigenome by major transcription factor families. Nat Immunol 2021; 23:122-134. [PMID: 34937932 PMCID: PMC8712421 DOI: 10.1038/s41590-021-01086-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022]
Abstract
T cell activation, a key early event in the adaptive immune response, is subject to elaborate transcriptional control. Here, we examined how the activities of eight major transcription factor (TF) families are integrated to shape the epigenome of naïve and activated CD4 and CD8 T cells. By leveraging extensive polymorphisms in evolutionarily divergent mice, we identified the “heavy lifters” positively influencing chromatin accessibility. Members of Ets, Runx, and TCF/Lef TF families occupied the vast majority of accessible chromatin regions, acting as “housekeepers”, “universal amplifiers”, and “placeholders”, respectively, at sites that maintained or gained accessibility upon T cell activation. Additionally, a small subset of strongly induced immune response genes displayed a non-canonical TF recruitment pattern. Our study provides a key resource and foundation for the understanding of transcriptional and epigenetic regulation in T cells and offers a new perspective on the hierarchical interactions between critical TFs.
Collapse
|
11
|
Pham D, Moseley CE, Gao M, Savic D, Winstead CJ, Sun M, Kee BL, Myers RM, Weaver CT, Hatton RD. Batf Pioneers the Reorganization of Chromatin in Developing Effector T Cells via Ets1-Dependent Recruitment of Ctcf. Cell Rep 2020; 29:1203-1220.e7. [PMID: 31665634 PMCID: PMC7182170 DOI: 10.1016/j.celrep.2019.09.064] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/28/2019] [Accepted: 09/20/2019] [Indexed: 11/28/2022] Open
Abstract
The basic leucine zipper transcription factor activating transcription factor-like (Batf) contributes to transcriptional programming of multiple effector T cells and is required for T helper 17 (Th17) and T follicular helper (Tfh) cell development. Here, we examine mechanisms by which Batf initiates gene transcription in developing effector CD4 T cells. We find that, in addition to its pioneering function, Batf controls developmentally regulated recruitment of the architectural factor Ctcf to promote chromatin looping that is associated with lineage-specific gene transcription. The chromatin-organizing actions of Batf are largely dependent on Ets1, which appears to be indispensable for the Batf-dependent recruitment of Ctcf. Moreover, most of the Batf-dependent sites to which Ctcf is recruited lie outside of activating protein-1-interferon regulatory factor (Ap-1-Irf) composite elements (AICEs), indicating that direct involvement of Batf-Irf complexes is not required. These results identify a cooperative role for Batf, Ets1, and Ctcf in chromatin reorganization that underpins the transcriptional programming of effector T cells.
Collapse
Affiliation(s)
- Duy Pham
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Carson E Moseley
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Min Gao
- Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel Savic
- Human Genomics and Genetics, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Colleen J Winstead
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mengxi Sun
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Barbara L Kee
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Richard M Myers
- Human Genomics and Genetics, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Casey T Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Robin D Hatton
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
12
|
Prier JE, Li J, Gearing LJ, Olshansky M, Sng XYX, Hertzog PJ, Turner SJ. Early T-BET Expression Ensures an Appropriate CD8 + Lineage-Specific Transcriptional Landscape after Influenza A Virus Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:1044-1054. [PMID: 31227580 DOI: 10.4049/jimmunol.1801431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/31/2019] [Indexed: 01/12/2023]
Abstract
Virus infection triggers large-scale changes in the phenotype and function of naive CD8+ T cells, resulting in the generation of effector and memory T cells that are then critical for immune clearance. The T-BOX family of transcription factors (TFs) are known to play a key role in T cell differentiation, with mice deficient for the TF T-BET (encoded by Tbx21) unable to generate optimal virus-specific effector responses. Although the importance of T-BET in directing optimal virus-specific T cell responses is accepted, the precise timing and molecular mechanism of action remains unclear. Using a mouse model of influenza A virus infection, we demonstrate that although T-BET is not required for early CD8+ T cell activation and cellular division, it is essential for early acquisition of virus-specific CD8+ T cell function and sustained differentiation and expansion. Whole transcriptome analysis at this early time point showed that Tbx21 deficiency resulted in global dysregulation in early programming events with inappropriate lineage-specific signatures apparent with alterations in the potential TF binding landscape. Assessment of histone posttranslational modifications within the Ifng locus demonstrated that Tbx21 -/- CD8+ T cells were unable to activate "poised" enhancer elements compared with wild-type CD8+ T cells, correlating with diminished Ifng transcription. In all, these data support a model whereby T-BET serves to promote appropriate chromatin remodeling at specific gene loci that underpins appropriate CD8+ T cell lineage-specific commitment and differentiation.
Collapse
Affiliation(s)
- Julia E Prier
- Department of Microbiology and Immunology, the Doherty Institute at the University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jasmine Li
- Department of Microbiology and Immunology, the Doherty Institute at the University of Melbourne, Parkville, Victoria 3010, Australia.,Department of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Linden J Gearing
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia; and
| | - Moshe Olshansky
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Xavier Y X Sng
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Paul J Hertzog
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia; and
| | - Stephen J Turner
- Department of Microbiology and Immunology, the Doherty Institute at the University of Melbourne, Parkville, Victoria 3010, Australia; .,Department of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
13
|
Nagai N, Ohguchi H, Nakaki R, Matsumura Y, Kanki Y, Sakai J, Aburatani H, Minami T. Downregulation of ERG and FLI1 expression in endothelial cells triggers endothelial-to-mesenchymal transition. PLoS Genet 2018; 14:e1007826. [PMID: 30500808 PMCID: PMC6291168 DOI: 10.1371/journal.pgen.1007826] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 12/12/2018] [Accepted: 11/12/2018] [Indexed: 12/18/2022] Open
Abstract
Endothelial cell (EC) plasticity in pathological settings has recently been recognized as a driver of disease progression. Endothelial-to-mesenchymal transition (EndMT), in which ECs acquire mesenchymal properties, has been described for a wide range of pathologies, including cancer. However, the mechanism regulating EndMT in the tumor microenvironment and the contribution of EndMT in tumor progression are not fully understood. Here, we found that combined knockdown of two ETS family transcription factors, ERG and FLI1, induces EndMT coupled with dynamic epigenetic changes in ECs. Genome-wide analyses revealed that ERG and FLI1 are critical transcriptional activators for EC-specific genes, among which microRNA-126 partially contributes to blocking the induction of EndMT. Moreover, we demonstrated that ERG and FLI1 expression is downregulated in ECs within tumors by soluble factors enriched in the tumor microenvironment. These data provide new insight into the mechanism of EndMT, functions of ERG and FLI1 in ECs, and EC behavior in pathological conditions. Differentiated cells possess unique characteristics to maintain vital activities. However, cells occasionally show abnormal behavior in pathological settings due to dysregulated gene expression. Endothelial-to-mesenchymal transition (EndMT) is a phenomenon in which endothelial cells lose their characteristics and acquire mesenchymal-like properties. Although EndMT is observed in various diseases including cancer, and augments fibrosis and vascular defects, the mechanism of EndMT induction is not fully understood. Here, we show that EndMT is triggered via reduced expression of ERG and FLI1, which have recently been recognized as pivotal transcription factors in endothelial cells (ECs). Mechanistically, ERG and FLI1 activate EC-specific genes and repress mesenchymal-like genes via epigenetic regulation to prevent EndMT. Furthermore, we demonstrate that microRNA-126, which is specifically expressed in ECs, is the key downstream target of ERG/FLI1 for regulating EndMT. Finally, we show that ERG and FLI1 expression is decreased in ECs within tumors, suggesting that EndMT is induced in the tumor microenvironment. Collectively, these findings indicate that loss of ERG and FLI1 leads to the aberrant behavior of ECs in pathological conditions.
Collapse
Affiliation(s)
- Nao Nagai
- Division of Molecular and Vascular Biology, IRDA, Kumamoto University, Kumamoto, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroto Ohguchi
- Division of Disease Epigenetics, IRDA, Kumamoto University, Kumamoto, Japan
| | - Ryo Nakaki
- Division of Genome Sciences, RCAST, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Matsumura
- Division of Metabolic Medicine, RCAST, The University of Tokyo, Tokyo, Japan
| | - Yasuharu Kanki
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Juro Sakai
- Division of Metabolic Medicine, RCAST, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Division of Genome Sciences, RCAST, The University of Tokyo, Tokyo, Japan
| | - Takashi Minami
- Division of Molecular and Vascular Biology, IRDA, Kumamoto University, Kumamoto, Japan
- * E-mail:
| |
Collapse
|
14
|
de Boer CG, Regev A. BROCKMAN: deciphering variance in epigenomic regulators by k-mer factorization. BMC Bioinformatics 2018; 19:253. [PMID: 29970004 PMCID: PMC6029352 DOI: 10.1186/s12859-018-2255-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 06/20/2018] [Indexed: 12/31/2022] Open
Abstract
Background Variation in chromatin organization across single cells can help shed important light on the mechanisms controlling gene expression, but scale, noise, and sparsity pose significant challenges for interpretation of single cell chromatin data. Here, we develop BROCKMAN (Brockman Representation Of Chromatin by K-mers in Mark-Associated Nucleotides), an approach to infer variation in transcription factor (TF) activity across samples through unsupervised analysis of the variation in DNA sequences associated with an epigenomic mark. Results BROCKMAN represents each sample as a vector of epigenomic-mark-associated DNA word frequencies, and decomposes the resulting matrix to find hidden structure in the data, followed by unsupervised grouping of samples and identification of the TFs that distinguish groups. Applied to single cell ATAC-seq, BROCKMAN readily distinguished cell types, treatments, batch effects, experimental artifacts, and cycling cells. We show that each variable component in the k-mer landscape reflects a set of co-varying TFs, which are often known to physically interact. For example, in K562 cells, AP-1 TFs were central determinant of variability in chromatin accessibility through their variable expression levels and diverse interactions with other TFs. We provide a theoretical basis for why cooperative TF binding – and any associated epigenomic mark – is inherently more variable than non-cooperative binding. Conclusions BROCKMAN and related approaches will help gain a mechanistic understanding of the trans determinants of chromatin variability between cells, treatments, and individuals. Electronic supplementary material The online version of this article (10.1186/s12859-018-2255-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carl G de Boer
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. .,Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02140, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
15
|
Hogan NT, Whalen MB, Stolze LK, Hadeli NK, Lam MT, Springstead JR, Glass CK, Romanoski CE. Transcriptional networks specifying homeostatic and inflammatory programs of gene expression in human aortic endothelial cells. eLife 2017; 6. [PMID: 28585919 PMCID: PMC5461113 DOI: 10.7554/elife.22536] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 05/22/2017] [Indexed: 12/30/2022] Open
Abstract
Endothelial cells (ECs) are critical determinants of vascular homeostasis and inflammation, but transcriptional mechanisms specifying their identities and functional states remain poorly understood. Here, we report a genome-wide assessment of regulatory landscapes of primary human aortic endothelial cells (HAECs) under basal and activated conditions, enabling inference of transcription factor networks that direct homeostatic and pro-inflammatory programs. We demonstrate that 43% of detected enhancers are EC-specific and contain SNPs associated to cardiovascular disease and hypertension. We provide evidence that AP1, ETS, and GATA transcription factors play key roles in HAEC transcription by co-binding enhancers associated with EC-specific genes. We further demonstrate that exposure of HAECs to oxidized phospholipids or pro-inflammatory cytokines results in signal-specific alterations in enhancer landscapes and associate with coordinated binding of CEBPD, IRF1, and NFκB. Collectively, these findings identify cis-regulatory elements and corresponding trans-acting factors that contribute to EC identity and their specific responses to pro-inflammatory stimuli. DOI:http://dx.doi.org/10.7554/eLife.22536.001
Collapse
Affiliation(s)
- Nicholas T Hogan
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Michael B Whalen
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
| | - Lindsey K Stolze
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
| | - Nizar K Hadeli
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
| | - Michael T Lam
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - James R Springstead
- Department of Chemical and Paper Engineering, University of Western Michigan, Kalamazoo, United States
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Casey E Romanoski
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
| |
Collapse
|
16
|
Inoue F, Kircher M, Martin B, Cooper GM, Witten DM, McManus MT, Ahituv N, Shendure J. A systematic comparison reveals substantial differences in chromosomal versus episomal encoding of enhancer activity. Genome Res 2016; 27:38-52. [PMID: 27831498 PMCID: PMC5204343 DOI: 10.1101/gr.212092.116] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/08/2016] [Indexed: 11/24/2022]
Abstract
Candidate enhancers can be identified on the basis of chromatin modifications, the binding of chromatin modifiers and transcription factors and cofactors, or chromatin accessibility. However, validating such candidates as bona fide enhancers requires functional characterization, typically achieved through reporter assays that test whether a sequence can increase expression of a transcriptional reporter via a minimal promoter. A longstanding concern is that reporter assays are mainly implemented on episomes, which are thought to lack physiological chromatin. However, the magnitude and determinants of differences in cis-regulation for regulatory sequences residing in episomes versus chromosomes remain almost completely unknown. To address this systematically, we developed and applied a novel lentivirus-based massively parallel reporter assay (lentiMPRA) to directly compare the functional activities of 2236 candidate liver enhancers in an episomal versus a chromosomally integrated context. We find that the activities of chromosomally integrated sequences are substantially different from the activities of the identical sequences assayed on episomes, and furthermore are correlated with different subsets of ENCODE annotations. The results of chromosomally based reporter assays are also more reproducible and more strongly predictable by both ENCODE annotations and sequence-based models. With a linear model that combines chromatin annotations and sequence information, we achieve a Pearson's R2 of 0.362 for predicting the results of chromosomally integrated reporter assays. This level of prediction is better than with either chromatin annotations or sequence information alone and also outperforms predictive models of episomal assays. Our results have broad implications for how cis-regulatory elements are identified, prioritized and functionally validated.
Collapse
Affiliation(s)
- Fumitaka Inoue
- Department of Bioengineering and Therapeutic Sciences, Institute for Human Genetics, University of California San Francisco, San Francisco, California 94158, USA
| | - Martin Kircher
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Beth Martin
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Daniela M Witten
- Departments of Statistics and Biostatistics, University of Washington, Seattle, Washington 98195, USA
| | - Michael T McManus
- Department of Microbiology and Immunology, UCSF Diabetes Center, Keck Center for Noncoding RNA, University of California, San Francisco, San Francisco, California 94143, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, Institute for Human Genetics, University of California San Francisco, San Francisco, California 94158, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.,Howard Hughes Medical Institute, Seattle, Washington 98195, USA
| |
Collapse
|
17
|
The transcription factor Ets21C drives tumor growth by cooperating with AP-1. Sci Rep 2016; 6:34725. [PMID: 27713480 PMCID: PMC5054425 DOI: 10.1038/srep34725] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/08/2016] [Indexed: 01/25/2023] Open
Abstract
Tumorigenesis is driven by genetic alterations that perturb the signaling networks regulating proliferation or cell death. In order to block tumor growth, one has to precisely know how these signaling pathways function and interplay. Here, we identified the transcription factor Ets21C as a pivotal regulator of tumor growth and propose a new model of how Ets21C could affect this process. We demonstrate that a depletion of Ets21C strongly suppressed tumor growth while ectopic expression of Ets21C further increased tumor size. We confirm that Ets21C expression is regulated by the JNK pathway and show that Ets21C acts via a positive feed-forward mechanism to induce a specific set of target genes that is critical for tumor growth. These genes are known downstream targets of the JNK pathway and we demonstrate that their expression not only depends on the transcription factor AP-1, but also on Ets21C suggesting a cooperative transcriptional activation mechanism. Taken together we show that Ets21C is a crucial player in regulating the transcriptional program of the JNK pathway and enhances our understanding of the mechanisms that govern neoplastic growth.
Collapse
|
18
|
Sancisi V, Gandolfi G, Ambrosetti DC, Ciarrocchi A. Histone Deacetylase Inhibitors Repress Tumoral Expression of the Proinvasive Factor RUNX2. Cancer Res 2015; 75:1868-82. [PMID: 25769725 DOI: 10.1158/0008-5472.can-14-2087] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 01/20/2015] [Indexed: 11/16/2022]
Abstract
Aberrant reactivation of embryonic pathways occurs commonly in cancer. The transcription factor RUNX2 plays a fundamental role during embryogenesis and is aberrantly reactivated during progression and metastasization of different types of human tumors. In this study, we attempted to dissect the molecular mechanisms governing RUNX2 expression and its aberrant reactivation. We identified a new regulatory enhancer element, located within the RUNX2 gene, which is responsible for the activation of the RUNX2 promoter and for the regulation of its expression in cancer cells. Furthermore, we have shown that treatment with the anticancer compounds histone deacetylase inhibitor (HDACi) results in a profound inhibition of RUNX2 expression, which is determined by the disruption of the transcription-activating complex on the identified enhancer. These data envisage a possible targeting strategy to counteract the oncongenic function of RUNX2 in cancer cells and provide evidence that the cytotoxic activity of HDACi in cancer is not only dependent on the reactivation of silenced oncosuppressors but also on the repression of oncogenic factors that are necessary for survival and progression.
Collapse
Affiliation(s)
- Valentina Sancisi
- Laboratory of Translational Research, Research and Statistic Infrastructure, Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy.
| | - Greta Gandolfi
- Laboratory of Translational Research, Research and Statistic Infrastructure, Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Davide Carlo Ambrosetti
- Laboratory of Molecular Biology, Department of Pharmacology and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Research and Statistic Infrastructure, Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy.
| |
Collapse
|
19
|
Fossum SL, Mutolo MJ, Yang R, Dang H, O'Neal WK, Knowles MR, Leir SH, Harris A. Ets homologous factor regulates pathways controlling response to injury in airway epithelial cells. Nucleic Acids Res 2014; 42:13588-98. [PMID: 25414352 PMCID: PMC4267623 DOI: 10.1093/nar/gku1146] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Ets homologous factor (EHF) is an Ets family transcription factor expressed in many epithelial cell types including those lining the respiratory system. Disruption of the airway epithelium is central to many lung diseases, and a network of transcription factors coordinates its normal function. EHF can act as a transcriptional activator or a repressor, though its targets in lung epithelial cells are largely uncharacterized. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq), showed that the majority of EHF binding sites in lung epithelial cells are intergenic or intronic and coincide with putative enhancers, marked by specific histone modifications. EHF occupies many genomic sites that are close to genes involved in intercellular and cell–matrix adhesion. RNA-seq after EHF depletion or overexpression showed significant alterations in the expression of genes involved in response to wounding. EHF knockdown also targeted genes in pathways of epithelial development and differentiation and locomotory behavior. These changes in gene expression coincided with alterations in cellular phenotype including slowed wound closure and increased transepithelial resistance. Our data suggest that EHF regulates gene pathways critical for epithelial response to injury, including those involved in maintenance of barrier function, inflammation and efficient wound repair.
Collapse
Affiliation(s)
- Sara L Fossum
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Michael J Mutolo
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA
| | - Rui Yang
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wanda K O'Neal
- Marsico Lung Institute, University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael R Knowles
- Marsico Lung Institute, University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shih-Hsing Leir
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ann Harris
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
20
|
Extracellular signal-regulated kinase signaling regulates the opposing roles of JUN family transcription factors at ETS/AP-1 sites and in cell migration. Mol Cell Biol 2014; 35:88-100. [PMID: 25332240 DOI: 10.1128/mcb.00982-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
JUN transcription factors bind DNA as part of the AP-1 complex, regulate many cellular processes, and play a key role in oncogenesis. The three JUN proteins (c-JUN, JUNB, and JUND) can have both redundant and unique functions depending on the biological phenotype and cell type assayed. Mechanisms that allow this dynamic switching between overlapping and distinct functions are unclear. Here we demonstrate that JUND has a role in prostate cell migration that is the opposite of c-JUN's and JUNB's. RNA sequencing reveals that opposing regulation by c-JUN and JUND defines a subset of AP-1 target genes with cell migration roles. cis-regulatory elements for only this subset of targets were enriched for ETS factor binding, indicating a specificity mechanism. Interestingly, the function of c-JUN and JUND in prostate cell migration switched when we compared cells with an inactive versus an active RAS/extracellular signal-regulated kinase (ERK) signaling pathway. We show that this switch is due to phosphorylation and activation of JUND by ERK. Thus, the ETS/AP-1 sequence defines a unique gene expression program regulated by the relative levels of JUN proteins and RAS/ERK signaling. This work provides a rationale for how transcription factors can have distinct roles depending on the signaling status and the biological function in question.
Collapse
|
21
|
Recent advances in the structural molecular biology of Ets transcription factors: interactions, interfaces and inhibition. Biochem Soc Trans 2014; 42:130-8. [PMID: 24450640 PMCID: PMC3901394 DOI: 10.1042/bst20130227] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The Ets family of eukaryotic transcription factors is based around the conserved Ets DNA-binding domain. Although their DNA-binding selectivity is biochemically and structurally well characterized, structures of homodimeric and ternary complexes point to Ets domains functioning as versatile protein-interaction modules. In the present paper, we review the progress made over the last decade to elucidate the structural mechanisms involved in modulation of DNA binding and protein partner selection during dimerization. We see that Ets domains, although conserved around a core architecture, have evolved to utilize a variety of interaction surfaces and binding mechanisms, reflecting Ets domains as dynamic interfaces for both DNA and protein interaction. Furthermore, we discuss recent advances in drug development for inhibition of Ets factors, and the roles structural biology can play in their future.
Collapse
|
22
|
Munteanu A, Ohler U, Gordân R. COUGER--co-factors associated with uniquely-bound genomic regions. Nucleic Acids Res 2014; 42:W461-7. [PMID: 24861628 PMCID: PMC4086139 DOI: 10.1093/nar/gku435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Most transcription factors (TFs) belong to protein families that share a common DNA binding domain and have very similar DNA binding preferences. However, many paralogous TFs (i.e. members of the same TF family) perform different regulatory functions and interact with different genomic regions in the cell. A potential mechanism for achieving this differential in vivo specificity is through interactions with protein co-factors. Computational tools for studying the genomic binding profiles of paralogous TFs and identifying their putative co-factors are currently lacking. Here, we present an interactive web implementation of COUGER, a classification-based framework for identifying protein co-factors that might provide specificity to paralogous TFs. COUGER takes as input two sets of genomic regions bound by paralogous TFs, and it identifies a small set of putative co-factors that best distinguish the two sets of sequences. To achieve this task, COUGER uses a classification approach, with features that reflect the DNA-binding specificities of the putative co-factors. The identified co-factors are presented in a user-friendly output page, together with information that allows the user to understand and to explore the contributions of individual co-factor features. COUGER can be run as a stand-alone tool or through a web interface: http://couger.oit.duke.edu.
Collapse
Affiliation(s)
- Alina Munteanu
- Faculty of Computer Science, Alexandru I. Cuza University, Iasi 700483, Romania Berlin Institute for Medical Systems Biology, Max Delbruck Center, 13125 Berlin, Germany
| | - Uwe Ohler
- Berlin Institute for Medical Systems Biology, Max Delbruck Center, 13125 Berlin, Germany Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Raluca Gordân
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
| |
Collapse
|
23
|
Nahar MS, Kim JH, Sartor MA, Dolinoy DC. Bisphenol A-associated alterations in the expression and epigenetic regulation of genes encoding xenobiotic metabolizing enzymes in human fetal liver. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:184-95. [PMID: 24214726 PMCID: PMC3999958 DOI: 10.1002/em.21823] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/19/2013] [Accepted: 09/30/2013] [Indexed: 05/20/2023]
Abstract
Alterations in xenobiotic metabolizing enzyme (XME) expression across the life course, along with genetic, nutritional, and environmental regulation, can influence how organisms respond to toxic insults. In this study, we investigated the hypothesis that in utero exposure to the endocrine active compound, bisphenol A (BPA), influences expression and epigenetic regulation of phase I and II XME genes during development. Using healthy 1st to 2nd trimester human fetal liver specimens quantified for internal BPA levels, we examined XME gene expression using PCR Array (n = 8) and RNA-sequencing (n = 12) platforms. Of the greater than 160 XME genes assayed, 2 phase I and 12 phase II genes exhibited significantly reduced expression with higher BPA levels, including isoforms from the carboxylesterase, catechol O-methyltransferase, glutathione S-transferase, sulfotransferase, and UDP-glucuronosyltransferase families. When the promoters of these candidate genes were evaluated in silico, putative binding sites for the E-twenty-six (ETS) and activator protein1 (AP1) related transcription factor families were identified and unique to 97% of all candidate transcripts. Interestingly, many ETS binding sites contain cytosine-guanine dinucleotides (CpGs) within their consensus sequences. Thus, quantitative analysis of CpG methylation of three candidate genes was conducted across n = 50 samples. Higher BPA levels were associated with increased site-specific methylation at COMT (P < 0.005) and increased average methylation at SULT2A1 (P < 0.020) promoters. While toxicological studies have traditionally focused on high-dose effects and hormonal receptor mediated regulation, our findings suggest the importance of low-dose effects and nonclassical mechanisms of endocrine disruption during development.
Collapse
Affiliation(s)
- Muna S. Nahar
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan
| | - Jung H. Kim
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan
| | - Maureen A. Sartor
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan
- Correspondence to: Dana C. Dolinoy, 6638 SPH Tower, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA.
| |
Collapse
|
24
|
Hollenhorst PC. RAS/ERK pathway transcriptional regulation through ETS/AP-1 binding sites. Small GTPases 2012; 3:154-8. [PMID: 22653334 DOI: 10.4161/sgtp.19630] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The RAS/RAF/MEK/ERK signaling pathway is activated by mutation in many cancers. Neighboring ETS and AP-1 DNA binding sequences can act as response elements for transcriptional activation by this pathway. ERK phosphorylation of an ETS transcription factor is one mechanism of activating the RAS/ERK gene expression program that can promote cancer cell phenotypes such as proliferation, invasion, and metastasis. Recent genome-wide mapping of ETS proteins over-expressed by chromosomal rearrangement in prostate cancer reveals a second mechanism for activation of this gene expression program. An oncogenic subset of ETS transcription factors can activate RAS/ERK target genes even in the absence of RAS/ERK pathway activation by binding ETS/AP-1 sequences. Thus, regulation of cancer cell invasion and metastasis via ETS/AP-1 sequence elements depends on which ETS protein is bound, and the status of the RAS/ERK pathway. This commentary will focus on what is known about the selectivity of ETS/AP-1 sequences for different ETS transcription factors and the transcriptional consequences of ETS protein selection.
Collapse
Affiliation(s)
- Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA.
| |
Collapse
|
25
|
Watanabe M, Itoh K, Togano T, Kadin ME, Watanabe T, Higashihara M, Horie R. Ets-1 activates overexpression of JunB and CD30 in Hodgkin's lymphoma and anaplastic large-cell lymphoma. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:831-8. [PMID: 22107829 DOI: 10.1016/j.ajpath.2011.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 09/23/2011] [Accepted: 10/13/2011] [Indexed: 01/20/2023]
Abstract
Overexpression of CD30 and JunB is a hallmark of tumor cells in Hodgkin's lymphoma (HL) and anaplastic large-cell lymphoma (ALCL). We reported that CD30-extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) signaling induces JunB, which maintains constitutive activation of the CD30 promoter. Herein, we localize a cis-acting enhancer in the JunB promoter that is regulated by Ets-1. We show that E26 transformation-specific-1 (Ets-1) (-146 to -137) enhances JunB promoter activation in a manner that is dependent on CD30 or the nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)-ERK1/2 MAPK pathway. Ets-1 knockdown reduces the expression of both JunB and CD30, and CD30 knockdown significantly reduces JunB expression in HL and ALCL cell lines. NPM-ALK knockdown also reduces JunB expression in ALCL cell lines expressing NPM-ALK. Collectively, these results indicate that CD30 and NPM-ALK cooperate to activate the ERK1/2 MAPK-Ets-1 pathway. Ets-1, constitutively activated by ERK1/2-MAPK, plays a central role in the overexpression of JunB and CD30, which are both involved in the pathogenesis of HL and ALCL.
Collapse
Affiliation(s)
- Mariko Watanabe
- Department of Hematology, School of Medicine, Kitasato University, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Patel M, Simon JM, Iglesia MD, Wu SB, McFadden AW, Lieb JD, Davis IJ. Tumor-specific retargeting of an oncogenic transcription factor chimera results in dysregulation of chromatin and transcription. Genome Res 2011; 22:259-70. [PMID: 22086061 DOI: 10.1101/gr.125666.111] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chromosomal translocations involving transcription factor genes have been identified in an increasingly wide range of cancers. Some translocations can create a protein "chimera" that is composed of parts from different proteins. How such chimeras cause cancer, and why they cause cancer in some cell types but not others, is not understood. One such chimera is EWS-FLI, the most frequently occurring translocation in Ewing Sarcoma, a malignant bone and soft tissue tumor of children and young adults. Using EWS-FLI and its parental transcription factor, FLI1, we created a unique experimental system to address questions regarding the genomic mechanisms by which chimeric transcription factors cause cancer. We found that in tumor cells, EWS-FLI targets regions of the genome distinct from FLI1, despite identical DNA-binding domains. In primary endothelial cells, however, EWS-FLI and FLI1 demonstrate similar targeting. To understand this mistargeting, we examined chromatin organization. Regions targeted by EWS-FLI are normally repressed and nucleosomal in primary endothelial cells. In tumor cells, however, bound regions are nucleosome depleted and harbor the chromatin signature of enhancers. We next demonstrated that through chimerism, EWS-FLI acquired the ability to alter chromatin. Expression of EWS-FLI results in nucleosome depletion at targeted sites, whereas silencing of EWS-FLI in tumor cells restored nucleosome occupancy. Thus, the EWS-FLI chimera acquired chromatin-altering activity, leading to mistargeting, chromatin disruption, and ultimately, transcriptional dysregulation.
Collapse
Affiliation(s)
- Mukund Patel
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Meadows SM, Myers CT, Krieg PA. Regulation of endothelial cell development by ETS transcription factors. Semin Cell Dev Biol 2011; 22:976-84. [PMID: 21945894 DOI: 10.1016/j.semcdb.2011.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 09/14/2011] [Indexed: 10/17/2022]
Abstract
The ETS family of transcription factors plays an essential role in controlling endothelial gene expression. Multiple members of the ETS family are expressed in the developing endothelium and evidence suggests that the proteins function, to some extent, redundantly. However, recent studies have demonstrated a crucial non-redundant role for ETV2, as a primary player in specification and differentiation of the endothelial lineage. Here, we review the contribution of ETS factors, and their partner proteins, to the regulation of embryonic vascular development.
Collapse
Affiliation(s)
- Stryder M Meadows
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States
| | | | | |
Collapse
|
28
|
Amino acid residues in the β3 strand and subsequent loop of the conserved ETS domain that mediate basic leucine zipper (bZIP) recruitment and potentially distinguish functional attributes of Ets proteins. Biochem J 2010; 430:129-39. [DOI: 10.1042/bj20091742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ets family members share a conserved DNA-binding ETS domain, and serve a variety of roles in development, differentiation and oncogenesis. Besides DNA binding, the ETS domain also participates in protein–protein interactions with other structurally unrelated transcription factors. Although this mechanism appears to confer tissue- or development stage-specific functions on individual Ets proteins, the biological significance of many of these interactions remains to be evaluated, because their molecular basis has been elusive. We previously demonstrated a direct interaction between the ETS domain of the widely expressed GABPα (GA-binding protein α) and the granulocyte inducer C/EBPα (CCAAT/enhancer-binding protein α), and suggested its involvement in co-operative transcriptional activation of myeloid-specific genes, such as human FCAR encoding FcαR [Fc receptor for IgA (CD89)]. By deletion analysis, we identified helix α3 and the β3/β4 region as the C/EBPα-interacting region. Domain-swapping of individual sub-domains with those of other Ets proteins allowed us to highlight β-strand 3 and the subsequent loop, which when exchanged by those of Elf-1 (E74-like factor 1) reduced the ability to recruit C/EBPα. Further analysis identified a four-amino acid swap mutation of this region (I387L/C388A/K393Q/F395L) that reduces both physical interaction and co-operative transcriptional activation with C/EBPα without affecting its transactivation capacity by itself. Moreover, re-ChIP (re-chromatin immunoprecipitation) analysis demonstrated that GABPα recruits C/EBPα to the FCAR promoter, depending on these residues. The identified amino acid residues could confer the specificity of the action on the Ets proteins in diverse biological processes through mediating the recruitment of its partner factor.
Collapse
|
29
|
Khalaf H, Jass J, Olsson PE. Differential cytokine regulation by NF-kappaB and AP-1 in Jurkat T-cells. BMC Immunol 2010; 11:26. [PMID: 20507572 PMCID: PMC2889865 DOI: 10.1186/1471-2172-11-26] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 05/27/2010] [Indexed: 12/03/2022] Open
Abstract
Background Activator protein (AP)-1 and nuclear factor (NF)-κB largely control T-cell activation, following binding of foreign antigens to the T-cell receptor leading to cytokine secretion. Elevated levels of pro-inflammatory cytokines and chemokines such as TNF, IL-6 and CXCL8 are associated with several human diseases including cystic fibrosis, pulmonary fibrosis and AIDS. The aim of this study was to investigate the role of the transcription factors, AP-1 and NF-κB, in IL-6 and CXCL8 regulation in Jurkat T-cells. Results Phorbol myristate acetate (PMA) exposure resulted in an up-regulation of AP-1 and down-regulation of NF-κB activity, however, exposure to heat killed (HK) Escherichia. coli MG1655 resulted in a dose-dependent increase in NF-κB activity without affecting AP-1. The cytokine profile revealed an up-regulation of the chemokine CXCL8 and the pro-inflammatory cytokines TNF, IL-2 and IL-6 following treatment with both PMA and HK E. coli, while the levels of the anti-inflammatory cytokine IL-10 were not affected by PMA but were significantly down-regulated by HK E. coli. AP-1 activation was significantly increased 2 h after PMA exposure and continued to increase thereafter. In contrast, NF-κB responded to PMA exposure by a rapid up-regulation followed by a subsequent down-regulation. Increased intracellular Ca2+ concentrations countered the down-regulation of NF-κB by PMA, while similar treatment with calcium ionophore resulted in a reduced NF-κB activity following induction with HK E. coli. In order to further study NF-κB activation, we considered two up-stream signalling proteins, PKC and Bcl10. Phosphorylated-PKC levels increased in response to PMA and HK E. coli, while Bcl10 levels significantly decreased following PMA treatment. Using an NF-κB activation inhibitor, we observed complete inhibition of IL-6 expression while CXCL8 levels only decreased by 40% at the highest concentration. Treatment of Jurkat T-cells with PMA in the presence of JNK-inhibitor suppressed both CXCL8 and IL-6 while PKC-inhibitor primarily decreased CXCL8 expression. Conclusion The present study shows that NF-κB regulated IL-6 but not CXCL8. This complex regulation of CXCL8 suggests that there is a need to further evaluate the signalling pathways in order to develop new treatment for diseases with elevated CXCL8 levels, such as AIDS and autoimmune diseases.
Collapse
Affiliation(s)
- Hazem Khalaf
- Biology, Orebro Life Science Center, School of Science and Technology, Orebro University, SE-701 82 Orebro, Sweden
| | | | | |
Collapse
|
30
|
Ras signaling requires dynamic properties of Ets1 for phosphorylation-enhanced binding to coactivator CBP. Proc Natl Acad Sci U S A 2010; 107:10026-31. [PMID: 20534573 DOI: 10.1073/pnas.0915137107] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ras/MAPK signaling is often aberrantly activated in human cancers. The downstream effectors are transcription factors, including those encoded by the ETS gene family. Using cell-based assays and biophysical measurements, we have determined the mechanism by which Ras/MAPK signaling affects the function of Ets1 via phosphorylation of Thr38 and Ser41. These ERK2 phosphoacceptors lie within the unstructured N-terminal region of Ets1, immediately adjacent to the PNT domain. NMR spectroscopic analyses demonstrated that the PNT domain is a four-helix bundle (H2-H5), resembling the SAM domain, appended with two additional helices (H0-H1). Phosphorylation shifted a conformational equilibrium, displacing the dynamic helix H0 from the core bundle. The affinity of Ets1 for the TAZ1 (or CH1) domain of the coactivator CBP was enhanced 34-fold by phosphorylation, and this binding was sensitive to ionic strength. NMR-monitored titration experiments mapped the interaction surfaces of the TAZ1 domain and Ets1, the latter encompassing both the phosphoacceptors and PNT domain. Charge complementarity of these surfaces indicate that electrostatic forces act in concert with a conformational equilibrium to mediate phosphorylation effects. We conclude that the dynamic helical elements of Ets1, appended to a conserved structural core, constitute a phospho-switch that directs Ras/MAPK signaling to downstream changes in gene expression. This detailed structural and mechanistic information will guide strategies for targeting ETS proteins in human disease.
Collapse
|
31
|
Hung CC, Liu X, Kwon MY, Kang YH, Chung SW, Perrella MA. Regulation of heme oxygenase-1 gene by peptidoglycan involves the interaction of Elk-1 and C/EBPalpha to increase expression. Am J Physiol Lung Cell Mol Physiol 2010; 298:L870-9. [PMID: 20348279 DOI: 10.1152/ajplung.00382.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heme oxygenase (HO)-1 is a cytoprotective enzyme with anti-inflammatory properties. HO-1 is induced during a systemic inflammatory response, and expression of HO-1 is beneficial during sepsis of a Gram-positive source. Systemic infection from Gram-positive organisms has emerged as an important cause of sepsis, with Staphylococcus aureus as a common etiology. An important mediator of Gram-positive infections is peptidoglycan (PGN), a cell wall component of these organisms. Here, we demonstrate that HO-1 played an important, protective role in vivo, as mice deficient in HO-1 were very sensitive to the lethal effects of PGN derived from S. aureus. PGN induced HO-1 protein and mRNA levels, and this regulation occurred at the level of gene transcription. The PGN-responsive region of the HO-1 promoter (from -117 to -66 bp) contains a functional EBS, and Ets proteins are known to be involved in the regulation of inflammatory responses. We showed previously that Ets factors (activators Ets-2 and Ets-1 and repressor Elk-3) regulate HO-1 expression by Gram-negative endotoxin. However, during exposure to a Gram-positive stimulus in the present study, Elk-1 was a potent activator of HO-1 in conjunction with PGN. The ability of Elk-1 to induce HO-1 promoter activity was independent of direct DNA binding, but rather occurred by interacting with the CCAAT/enhancer-binding protein-alpha (C/EBPalpha), which binds to DNA. Moreover, silencing of C/EBPalpha in macrophages prevented induction of HO-1 promoter activity by either Elk-1 or PGN. These data provide further insight into the regulation and function of HO-1 by a mediator of Gram-positive bacteria.
Collapse
Affiliation(s)
- Chi-Chih Hung
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
32
|
Yockell-Lelièvre J, Spriet C, Cantin P, Malenfant P, Heliot L, de Launoit Y, Audette M. Functional cooperation between Stat-1 and ets-1 to optimize icam-1 gene transcription. Biochem Cell Biol 2010; 87:905-18. [PMID: 19935876 DOI: 10.1139/o09-055] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Intercellular adhesion molecule-1 (ICAM-1) plays an important role in the immune system, enabling the interactions between effector cells and target cells. It is also known to be involved in tumor growth and metastasis. Its expression is transcriptionally regulated by several proinflammatory cytokines including IFN-gamma, which induces ICAM-1 transcription via the JAK-STAT signaling pathway in a Stat1-dependent fashion. The ICAM-1 promoter contains several cis-active regulatory elements including 2 Ets binding sites (EBSs) located at positions -158 and -138 relatively to the AUG, which were previously shown to play a role in the constitutive activity of the ICAM-1 promoter. In the present study, we have determined whether the EBSs are also involved in the regulation of ICAM-1 gene transcription by pro-inflammatory cytokines. Transient transfection assays were performed with reporter genes containing ICAM-1 promoter constructions cloned upstream from the firefly luciferase gene. Site-specific mutations of the EBS diminished the promoter activity stimulated by IFN-gamma, although the IFN-gamma responsive element (pIgammaRE), which binds Stat1, was intact. Stimulation of the transcriptional activity following IFN-gamma treatment was significantly reduced when both EBSs were inactivated. Co-immunoprecipitation experiments provided evidence of a physical interaction involving Ets1 and Stat1. In COS-1 and HEK 293 cells cotransfected with CFP-Stat1 and YFP-Ets fusion protein, fluorescence resonance energy transfer experiments confirmed the close proximity of these 2 proteins in living cells following treatment with IFN-gamma.
Collapse
Affiliation(s)
- Julien Yockell-Lelièvre
- Centre de recherche en endocrinologie moléculaire et oncologique, Centre de recherche du CHUQ, Pavillon CHUL, 2705 boulevard Laurier, QC G1V 4G2, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Lopez-Bergami P, Kim H, Dewing A, Goydos J, Aaronson S, Ronai Z. c-Jun regulates phosphoinositide-dependent kinase 1 transcription: implication for Akt and protein kinase C activities and melanoma tumorigenesis. J Biol Chem 2009; 285:903-13. [PMID: 19910471 DOI: 10.1074/jbc.m109.075630] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mutations in N-RAS and B-RAF, which commonly occur in melanomas, result in constitutive activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated protein kinase (ERK) signaling. Active ERK increases expression and activity of the c-Jun transcription factor, linking ERK and Jun N-terminal kinase (JNK) cascades. Here, we show that c-Jun regulates transcription of phosphoinositide-dependent kinase 1 (PDK1) with a concomitant impact on Akt and protein kinase C (PKC) activity and related substrates. Inhibition of c-Jun reduces PDK1 expression and attenuates Akt and PKC activity, which can be restored by exogenous PDK1. c-Jun regulation of PDK1 in melanoma contributes to growth rate and the ability to form tumors in mice. Correspondingly, increased levels of c-Jun in melanoma cell lines coincide with up-regulation of PDK1 and phosphorylation of PKC and Akt. The identification of c-Jun as a transcriptional regulator of PDK1 expression highlights key mechanisms underlying c-Jun oncogenic activity, and provides new insight into the nature of up-regulated Akt and PKC in melanoma.
Collapse
Affiliation(s)
- Pablo Lopez-Bergami
- Signal Transduction Program, The Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
34
|
Blahnik KR, Dou L, O'Geen H, McPhillips T, Xu X, Cao AR, Iyengar S, Nicolet CM, Ludäscher B, Korf I, Farnham PJ. Sole-Search: an integrated analysis program for peak detection and functional annotation using ChIP-seq data. Nucleic Acids Res 2009; 38:e13. [PMID: 19906703 PMCID: PMC2817454 DOI: 10.1093/nar/gkp1012] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Next-generation sequencing is revolutionizing the identification of transcription factor binding sites throughout the human genome. However, the bioinformatics analysis of large datasets collected using chromatin immunoprecipitation and high-throughput sequencing is often a roadblock that impedes researchers in their attempts to gain biological insights from their experiments. We have developed integrated peak-calling and analysis software (Sole-Search) which is available through a user-friendly interface and (i) converts raw data into a format for visualization on a genome browser, (ii) outputs ranked peak locations using a statistically based method that overcomes the significant problem of false positives, (iii) identifies the gene nearest to each peak, (iv) classifies the location of each peak relative to gene structure, (v) provides information such as the number of binding sites per chromosome and per gene and (vi) allows the user to determine overlap between two different experiments. In addition, the program performs an analysis of amplified and deleted regions of the input genome. This software is web-based and automated, allowing easy and immediate access to all investigators. We demonstrate the utility of our software by collecting, analyzing and comparing ChIP-seq data for six different human transcription factors/cell line combinations.
Collapse
Affiliation(s)
- Kimberly R Blahnik
- Department of Computer Science, University of California-Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Grishin AV, Alexeevsky AV, Spirin SA, Karyagina AS. Conserved structural features of ETS domain-DNA complexes. Mol Biol 2009. [DOI: 10.1134/s002689330904013x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Fitzsimmons D, Lukin K, Lutz R, Garvie CW, Wolberger C, Hagman J. Highly cooperative recruitment of Ets-1 and release of autoinhibition by Pax5. J Mol Biol 2009; 392:452-64. [PMID: 19616560 DOI: 10.1016/j.jmb.2009.07.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 07/07/2009] [Accepted: 07/08/2009] [Indexed: 01/21/2023]
Abstract
Pax5 (paired box binding factor 5) is a critical regulator of transcription and lineage commitment in B lymphocytes. In B cells, mb-1 (Ig-alpha/immunoglobulin-associated alpha) promoter transcription is activated by Pax5 through its recruitment of E74-like transforming sequence (Ets) family proteins to a composite site, the P5-EBS (Pax5-Ets binding site). Previously, X-ray crystallographic analysis revealed a network of contacts between the DNA-binding domains of Pax5 and Ets-1 while bound to the P5-EBS. Here, we report that Pax5 assembles these ternary complexes via highly cooperative interactions that overcome the autoinhibition of Ets-1. Using recombinant proteins, we calculated K(d(app)) values for the binding of Pax5, Ets-1, and GA-binding proteins, separately or together, to the P5-EBS. By itself, Pax5 binds the P5-EBS with high affinity (K(d) approximately equal 2 nM). Ets-1(331-440) bound the P5-EBS by itself with low affinity (K(d)=136 nM). However, autoinhibited Ets-1(280-440) alone does not bind detectably to the suboptimal sequences of the P5-EBS. Recruitment of Ets-1(331-440) or Ets-1(280-440) resulted in highly efficient ternary complex assembly with Pax5. Pax5 counteracts autoinhibition and increases binding of Ets-1 of the mb-1 promoter by >1000-fold. Mutation of Pax5 Gln22 to alanine (Q22A) enhances promoter binding by Pax5; however, Q22A greatly reduces recruitment of Ets-1(331-440) and Ets-1(280-440) by Pax5 (8.9- or >300-fold, respectively). Thus, Gln22 of Pax5 is essential for overcoming Ets-1 autoinhibition. Pax5 wild type and Q22A each recruited GA-binding protein alpha/beta1 to the mb-1 promoter with similar affinities, but recruitment was less efficient than that of Ets-1 (reduced by approximately 8-fold). Our results suggest a mechanism that allows Pax5 to overcome autoinhibition of Ets-1 DNA binding. In summary, these data illustrate requirements for partnerships between Ets proteins and Pax5.
Collapse
Affiliation(s)
- Daniel Fitzsimmons
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
37
|
Increased c-Jun expression and reduced GATA2 expression promote aberrant monocytic differentiation induced by activating PTPN11 mutants. Mol Cell Biol 2009; 29:4376-93. [PMID: 19528235 DOI: 10.1128/mcb.01330-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is characterized by myelomonocytic cell overproduction and commonly bears activating mutations in PTPN11. Murine hematopoietic progenitors expressing activating Shp2 undergo myelomonocytic differentiation, despite being subjected to conditions that normally support only mast cells. Evaluation of hematopoietic-specific transcription factor expression indicates reduced GATA2 and elevated c-Jun in mutant Shp2-expressing progenitors. We hypothesized that mutant Shp2-induced Ras hyperactivation promotes c-Jun phosphorylation and constitutive c-Jun expression, permitting, as a coactivator of PU.1, excessive monocytic differentiation and reduced GATA2. Hematopoietic progenitors expressing activating Shp2 demonstrate enhanced macrophage CFU (CFU-M) compared to that of wild-type Shp2-expressing cells. Treatment with the JNK inhibitor SP600125 or cotransduction with GATA2 normalizes activating Shp2-generated CFU-M. However, cotransduction of DeltaGATA2 (lacking the C-terminal zinc finger, needed to bind PU.1) fails to normalize CFU-M. NIH 3T3 cells expressing Shp2E76K produce higher levels of luciferase expression directed by the macrophage colony-stimulating factor receptor (MCSFR) promoter, which utilizes c-Jun as a coactivator of PU.1. Coimmunoprecipitation demonstrates increased c-Jun-PU.1 complexes in mutant Shp2-expressing hematopoietic progenitors, while chromatin immunoprecipitation demonstrates increased c-Jun binding to the c-Jun promoter and an increased c-Jun-PU.1 complex at the Mcsfr promoter. Furthermore, JMML progenitors express higher levels of c-JUN than healthy controls, substantiating the disease relevance of these mechanistic findings.
Collapse
|
38
|
Hanington PC, Tam J, Katzenback BA, Hitchen SJ, Barreda DR, Belosevic M. Development of macrophages of cyprinid fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:411-429. [PMID: 19063916 DOI: 10.1016/j.dci.2008.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/11/2008] [Accepted: 11/14/2008] [Indexed: 05/27/2023]
Abstract
The innate immune responses of early vertebrates, such as bony fishes, play a central role in host defence against infectious diseases and one of the most important effector cells of innate immunity are macrophages. In order for macrophages to be effective in host defence they must be present at all times in the tissues of their host and importantly, the host must be capable of rapidly increasing macrophage numbers during times of need. Hematopoiesis is a process of formation and development of mature blood cells, including macrophages. Hematopoiesis is controlled by soluble factors known as cytokines, that influence changes in transcription factors within the target cells, resulting in cell fate changes and the final development of specific effector cells. The processes involved in macrophage development have been largely derived from mammalian model organisms. However, recent advancements have been made in the understanding of macrophage development in bony fish, a group of organisms that rely heavily on their innate immune defences. Our understanding of the growth factors involved in teleost macrophage development, as well as the receptors and regulatory mechanisms in place to control them has increased substantially. Furthermore, model organisms such as the zebrafish have emerged as important instruments in furthering our understanding of the transcriptional control of cell development in fish as well as in mammals. This review highlights the recent advancements in our understanding of teleost macrophage development. We focused on the growth factors identified to be important in the regulation of macrophage development from a progenitor cell into a functional macrophage and discuss the important transcription factors that have been identified to function in teleost hematopoiesis. We also describe the findings of in vivo studies that have reinforced observations made in vitro and have greatly improved the relevance and importance of using teleost fish as model organisms for studying developmental processes.
Collapse
|
39
|
Kumar D, Ray A, Ray BK. Transcriptional Synergy Mediated by SAF-1 and AP-1. J Biol Chem 2009; 284:1853-62. [DOI: 10.1074/jbc.m806289200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
40
|
Pattarini R, Rong Y, Qu C, Morgan JI. Distinct mechanisms of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrimidine resistance revealed by transcriptome mapping in mouse striatum. Neuroscience 2008; 155:1174-94. [PMID: 18675323 PMCID: PMC2632608 DOI: 10.1016/j.neuroscience.2008.06.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/10/2008] [Accepted: 06/20/2008] [Indexed: 12/20/2022]
Abstract
The etiology of idiopathic Parkinson's disease is thought to involve interplay between environmental factors and predisposing genetic traits, although the identification of genetic risk factors remain elusive. The neurotoxicant, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrimidine (MPTP) produces parkinsonian-like symptoms and pathology in mice and humans. As sensitivity to MPTP is genetically determined in mice this provides an opportunity to identify genes and biological mechanisms that modify the response to an exogenous agent that produces a Parkinson's disease-like condition. MPTP primarily targets dopaminergic nerve terminals in the striatum and elicits changes in striatal gene expression. Therefore, we used Affymetrix and qRT-PCR technology to characterize temporal mRNA changes in striatum in response to MPTP in genetically MPTP-sensitive, C57BL/6J, and MPTP-resistant Swiss Webster and BCL2-associated X protein (Bax)-/- mice. We identified three phases of mRNA expression changes composed of largely distinct gene sets. An early response (5 h) occurred in all strains of mice and multiple brain regions. In contrast, intermediate (24 h) and late (72 h) phases were striatum specific and much reduced in Swiss Webster, indicating these genes contribute and/or are responsive to MPTP-induced pathology. However, Bax-/- mice have robust intermediate responses. We propose a model in which the acute entry of MPP+ into dopaminergic nerve terminals damages them but is insufficient per se to kill the neurons. Rather, we suggest that the compromised nerve terminals elicit longer lasting transcriptional responses in surrounding cells involving production of molecules that feedback on the terminals to cause additional damage that results in cell death. In Swiss Webster, resistance lies upstream in the cascade of events triggered by MPTP and uncouples the acute events elicited by MPTP from the damaging secondary responses. In contrast, in Bax-/- mice resistance lies downstream in the cascade and suggests enhanced tolerance to the secondary insult rather than its attenuation.
Collapse
Affiliation(s)
- Roberto Pattarini
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Yongqi Rong
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Chunxu Qu
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - James I. Morgan
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| |
Collapse
|
41
|
Lamber EP, Vanhille L, Textor LC, Kachalova GS, Sieweke MH, Wilmanns M. Regulation of the transcription factor Ets-1 by DNA-mediated homo-dimerization. EMBO J 2008; 27:2006-17. [PMID: 18566588 PMCID: PMC2486274 DOI: 10.1038/emboj.2008.117] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 05/23/2008] [Indexed: 01/07/2023] Open
Abstract
The function of the Ets-1 transcription factor is regulated by two regions that flank its DNA-binding domain. A previously established mechanism for auto-inhibition of monomeric Ets-1 on DNA response elements with a single ETS-binding site, however, has not been observed for the stromelysin-1 promoter containing two palindromic ETS-binding sites. We present the structure of Ets-1 on this promoter element, revealing a ternary complex in which protein homo-dimerization is mediated by the specific arrangement of the two ETS-binding sites. In this complex, the N-terminal-flanking region is required for ternary protein-DNA assembly. Ets-1 variants, in which residues from this region are mutated, loose the ability for DNA-mediated dimerization and stromelysin-1 promoter transactivation. Thus, our data unravel the molecular basis for relief of auto-inhibition and the ability of Ets-1 to function as a facultative dimeric transcription factor on this site. Our findings may also explain previous data of Ets-1 function in the context of heterologous transcription factors, thus providing a molecular model that could also be valid for Ets-1 regulation by hetero-oligomeric assembly.
Collapse
Affiliation(s)
| | - Laurent Vanhille
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France,Institut National de la Santé et de la Recherche Médicale, Marseille, France,Centre National de la Recherche Scientifique, Parc scientifique de Luminy, Marseille, France
| | | | - Galina S Kachalova
- Max-Planck Unit for Structural Molecular Biology, c/o DESY, Hamburg, Germany
| | - Michael H Sieweke
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France,Institut National de la Santé et de la Recherche Médicale, Marseille, France,Centre National de la Recherche Scientifique, Parc scientifique de Luminy, Marseille, France
| | - Matthias Wilmanns
- EMBL-Hamburg, c/o DESY, Hamburg, Germany,EMBL Hamburg Outstation, EMBL c/o DESY, Notkestrasse 85, Building 25A, Hamburg D-22603, Germany. Tel.: +49 40 899 021 26; Fax: +49 40 899 021 49; E-mail:
| |
Collapse
|
42
|
Zhao J, Lu B, Xu H, Tong X, Wu G, Zhang X, Liang A, Cong W, Dai J, Wang H, Wu M, Guo Y. Thirty-kilodalton Tat-interacting protein suppresses tumor metastasis by inhibition of osteopontin transcription in human hepatocellular carcinoma. Hepatology 2008; 48:265-75. [PMID: 18537194 DOI: 10.1002/hep.22280] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
UNLABELLED It has been previously demonstrated that the 30-kDa Tat-interacting protein (TIP30) plays an important role in the suppression of hepatocarcinogenesis by acting as a tumor suppressor. Here we report that TIP30 suppresses metastasis of hepatocellular carcinoma (HCC) through inhibiting the transcription of osteopontin (OPN), a key molecule in the development of tumor metastasis. The expression of TIP30 messenger RNA was reverse to that of OPN messenger RNA in HCC cell lines. Ectopic expression of TIP30 greatly suppressed OPN expression, inhibited invasion of HCC cells through extracellular matrix (ECM) and adhesion with fibronectin in vitro, whereas down-regulation of TIP30 by RNA-mediated interference enhanced OPN expression and promoted metastatic abilities of HCC cells in vitro. Moreover, overexpression of TIP30 significantly inhibited the growth and lung metastases of HCC cells in nude mice. In contrast, down-regulation of TIP30 greatly promoted tumor cell growth and metastases in vivo. TIP30 repressed OPN transcription through interaction with Ets-1 and suppressed the transcriptional activity of Ets-1 and synergistic actions of Ets-1 and alkaline phosphatase-1. Thus, TIP30 may act as an Ets-1 modulator and inhibit tumor metastasis through abrogating Ets-1-dependent transcription. Moreover, expression of TIP30 was inversely associated with OPN expression in HCC tissue samples as detected by immunohistochemistry assay. CONCLUSION Our results reveal a novel pathway by which OPN and possibly other Ets-1 target genes involved in tumor metastasis are regulated by TIP30 and elucidate a mechanism for metastasis promoted by TIP30 deficiency.
Collapse
Affiliation(s)
- Jian Zhao
- International Joint Cancer Institute and Eastern Hospital of Hepatobiliary Surgery, Second Military Medical University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Efficient system for biotinylated recombinant Ets-1 production in Escherichia coli: a useful tool for studying interactions between Ets-1 and its partners. Protein Expr Purif 2008; 62:53-63. [PMID: 18639639 DOI: 10.1016/j.pep.2008.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 06/19/2008] [Accepted: 06/19/2008] [Indexed: 11/24/2022]
Abstract
Identification of Ets-1 interaction partners is critical for understanding its properties. Ets-1 DNA-binding is governed by an intramolecular mechanism called autoinhibition. Ets-1 increases its DNA-binding affinity by counteracting autoinhibition through binding either to a particular organization of Ets binding sites (EBS) in palindrome, as in the Stromelysin-1 promoter, or to EBS adjacent to DNA-binding sites of its partners by combinatorial interactions, as in the Collagenase-1 promoter. Identification of new Ets-1 interaction partners should allow the identification of new functions for this transcription factor. To this end, we fused a biotin tag to Ets-1 protein in order to copurify it and its partners by affinity. For the first time, we cloned, produced in Escherichia coli and purified a biotinylated recombinant Ets-1 protein using the T7-Impact system (New England Biolabs), adapted to induce biotinylation. Nearly 100% biotinylation was attained without altering Ets-1 properties. Biotinylated Ets-1 bound to and transactivated the Stromelysin-1 promoter the same way as native Ets-1 did. It also conserved interactions with known Ets-1 partners such as c-Jun, Erk-2 and Runx-1. In addition, streptavidin pull-down and surface plasmon resonance assays demonstrated that biotinylated Ets-1 is a useful tool for qualitative and quantitative studies of Ets-1 interaction with its partners.
Collapse
|
44
|
Weber U, Pataki C, Mihaly J, Mlodzik M. Combinatorial signaling by the Frizzled/PCP and Egfr pathways during planar cell polarity establishment in the Drosophila eye. Dev Biol 2008; 316:110-23. [PMID: 18291359 DOI: 10.1016/j.ydbio.2008.01.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 01/09/2008] [Accepted: 01/10/2008] [Indexed: 12/23/2022]
Abstract
Frizzled (Fz)/PCP signaling regulates planar, vectorial orientation of cells or groups of cells within whole tissues. Although Fz/PCP signaling has been analyzed in several contexts, little is known about nuclear events acting downstream of Fz/PCP signaling in the R3/R4 cell fate decision in the Drosophila eye or in other contexts. Here we demonstrate a specific requirement for Egfr-signaling and the transcription factors Fos (AP-1), Yan and Pnt in PCP dependent R3/R4 specification. Loss and gain-of-function assays suggest that the transcription factors integrate input from Fz/PCP and Egfr-signaling and that the ETS factors Pnt and Yan cooperate with Fos (and Jun) in the PCP-specific R3/R4 determination. Our data indicate that Fos (either downstream of Fz/PCP signaling or parallel to it) and Yan are required in R3 to specify its fate (Fos) or inhibit R4 fate (Yan) and that Egfr-signaling is required in R4 via Pnt for its fate specification. Taken together with previous work establishing a Notch-dependent Su(H) function in R4, we conclude that Fos, Yan, Pnt, and Su(H) integrate Egfr, Fz, and Notch signaling input in R3 or R4 to establish cell fate and ommatidial polarity.
Collapse
Affiliation(s)
- Ursula Weber
- Department of Developmental and Regenerative Biology, Mt. Sinai School of Medicine, Annenberg Bldg. 18-92, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | |
Collapse
|
45
|
|
46
|
Abstract
BACKGROUND Interleukin (IL)-5 is a key regulator of eosinophilia in allergic inflammation and parasite infections but the mechanisms regulating IL-5 expression in activated human T lymphocytes are poorly understood. From studies on mouse cells, the activation protein (AP)-1 and GATA-3 sites in the proximal promoter region appear to be important in IL-5 regulation but the significance of an adjacent Ets/nuclear factor of activated T cell (NFAT) site has been less clear. METHODS Interleukin-5 transcriptional activity was measured by transfection of reporter genes into the human HSB-2 cells and normal T lymphocytes. Expression vectors encoding transcription factors were used for transactivation studies and IL-5 expression measured using reporter genes and mRNA levels. Transcription factor binding was shown with chromatin immunoprecipitation (ChIP). RESULTS HSB-2 cells showed high inducible expression of IL-5 mRNA. Mutation of reporter gene plasmids showed the Ets/NFAT site was of equal importance to the AP-1 and GATA-3 sites in regulating IL-5 transcription. Transactivation by Ets1 increased luciferase expression 15-fold, in the absence of stimulation, and AP-1 (c-Fos/c-Jun) and GATA-3 gave transactivations of 85-fold, and 100-fold, respectively. Synergistic interactions were demonstrated between Ets1, GATA-3 and AP-1. Dominant-negative AP-1 inhibited IL-5 transcription. Transactivation by GATA-3 and synergy between GATA-3, Ets1 and AP-1 were verified measuring IL-5 mRNA levels. Chromatin immunoprecipitation showed increased binding of Ets1 and GATA-3 to the IL-5 promoter after stimulation. The importance of the Ets1 site and of synergistic interactions between the three transcription factors were verified with primary human T cells. CONCLUSION Ets1, GATA-3 and AP-1 synergize to regulate IL-5 transcription in human T cells.
Collapse
Affiliation(s)
- J Wang
- Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | |
Collapse
|
47
|
Hamzaoui H, Rizk-Rabin M, Gordon J, Offutt C, Bertherat J, Bouizar Z. PTHrP P3 promoter activity in breast cancer cell lines: role of Ets1 and CBP (CREB binding protein). Mol Cell Endocrinol 2007; 268:75-84. [PMID: 17321669 DOI: 10.1016/j.mce.2007.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Accepted: 01/25/2007] [Indexed: 01/15/2023]
Abstract
Parathyroid hormone-related protein (PTHrP) is produced by many tumors including breast cancer. We have reported that Ets1 factor activates P3 PTHrP promoter in our model of tumorigenic breast cancer cell and not in pre- or non-tumorigenic cell lines, thus contributing to an increased PTHrP production. In this study, gel retardation assays revealed that Etsl and its promoter binding site (EBS) specifically formed complexes whose abundance correlates with Ets1 levels in the three cell lines. Coexpression of Etsl and CBP induced a synergistic activation of the P3 promoter only in the tumorigenic cell line. This synergism required the integrity of the EBS and was abrogated by E1A. All breast cancer cell lines showed high basal concentrations of phosphorylated CREB. Moreover a CRE-like sequence was also required for Ets1/CBP synergy and, finally, CREB expression was found to enhance the PTHrP P3 promoter activity. Thus a multipartite complex of transcription factors and coactivators seems to regulate PTHrP transcription and contribute to the alterations that promote tumorigenic behavior in breast epithelial cells.
Collapse
Affiliation(s)
- Hinda Hamzaoui
- Institut Cochin, Université Paris Descartes, CNRS, (UMR 8104), France
| | | | | | | | | | | |
Collapse
|
48
|
Grondin B, Lefrancois M, Tremblay M, Saint-Denis M, Haman A, Waga K, Bédard A, Tenen DG, Hoang T. c-Jun homodimers can function as a context-specific coactivator. Mol Cell Biol 2007; 27:2919-33. [PMID: 17283046 PMCID: PMC1899927 DOI: 10.1128/mcb.00936-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transcription factors can function as DNA-binding-specific activators or as coactivators. c-Jun drives gene expression via binding to AP-1 sequences or as a cofactor for PU.1 in macrophages. c-Jun heterodimers bind AP-1 sequences with higher affinity than homodimers, but how c-Jun works as a coactivator is unknown. Here, we provide in vitro and in vivo evidence that c-Jun homodimers are recruited to the interleukin-1beta (IL-1beta) promoter in the absence of direct DNA binding via protein-protein interactions with DNA-anchored PU.1 and CCAAT/enhancer-binding protein beta (C/EBPbeta). Unexpectedly, the interaction interface with PU.1 and C/EBPbeta involves four of the residues within the basic domain of c-Jun that contact DNA, indicating that the capacities of c-Jun to function as a coactivator or as a DNA-bound transcription factor are mutually exclusive. Our observations indicate that the IL-1beta locus is occupied by PU.1 and C/EBPbeta and poised for expression and that c-Jun enhances transcription by facilitating a rate-limiting step, the assembly of the RNA polymerase II preinitiation complex, with minimal effect on the local chromatin status. We propose that the basic domain of other transcription factors may also be redirected from a DNA interaction mode to a protein-protein interaction mode and that this switch represents a novel mechanism regulating gene expression profiles.
Collapse
Affiliation(s)
- Benoit Grondin
- Institute of Research in Immunology and Cancer, University of Montreal, P.O. Box 6128, Downtown station, Montréal, Québec
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Murumägi A, Silvennoinen O, Peterson P. Ets transcription factors regulate AIRE gene promoter. Biochem Biophys Res Commun 2006; 348:768-74. [PMID: 16890195 DOI: 10.1016/j.bbrc.2006.07.135] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 07/24/2006] [Indexed: 11/21/2022]
Abstract
Autoimmune regulator (AIRE) directs the expression of self-antigens in thymus. Defects in AIRE gene cause an organ-specific autoimmune disease called autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED). AIRE protein is mainly expressed in thymic medullary epithelial cells, thus implying a strict control over its expression pattern. To date, only limited information is available on mechanisms responsible for the regulation of AIRE gene. Here, we show that Ets transcription factor family members Ets-1, Ets-2, and ESE-1 have positive effect on AIRE transcription. Site-directed mutagenesis and transfection studies revealed that two of the three Ets binding sites in AIRE promoter are functional and this finding has been confirmed by the electrophoretic mobility shift assay. The AIRE promoter activity could be stimulated by phorbol myristate acetate (PMA) and this activation was further enhanced by Ets transcription factors. Our results demonstrate for the first time that AIRE gene is a downstream target for the Ets family of transcription factors.
Collapse
Affiliation(s)
- Astrid Murumägi
- Institute of Medical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland.
| | | | | |
Collapse
|
50
|
Liew CW, Rand KD, Simpson RJY, Yung WW, Mansfield RE, Crossley M, Proetorius-Ibba M, Nerlov C, Poulsen FM, Mackay JP. Molecular Analysis of the Interaction between the Hematopoietic Master Transcription Factors GATA-1 and PU.1. J Biol Chem 2006; 281:28296-306. [PMID: 16861236 DOI: 10.1074/jbc.m602830200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GATA-1 and PU.1 are transcription factors that control erythroid and myeloid development, respectively. The two proteins have been shown to function in an antagonistic fashion, with GATA-1 repressing PU.1 activity during erythropoiesis and PU.1 repressing GATA-1 function during myelopoiesis. It has also become clear that this functional antagonism involves direct interactions between the two proteins. However, the molecular basis for these interactions is not known, and a number of inconsistencies exist in the literature. We have used a range of biophysical methods to define the molecular details of the GATA-1-PU.1 interaction. A combination of NMR titration data and extensive mutagenesis revealed that the PU.1-Ets domain and the GATA-1 C-terminal zinc finger (CF) form a low affinity interaction in which specific regions of each protein are implicated. Surprisingly, the interaction cannot be disrupted by single alanine substitution mutations, suggesting that binding is distributed over an extended interface. The C-terminal basic tail region of CF appears to be sufficient to mediate an interaction with PU.1-Ets, and neither acetylation nor phosphorylation of a peptide corresponding to this region disrupts binding, indicating that the interaction is not dominated by electrostatic interactions. The CF basic tail shares significant sequence homology with the PU.1 interacting motif from c-Jun, suggesting that GATA-1 and c-Jun might compete to bind PU.1. Taken together, our data provide a molecular perspective on the GATA-1-PU.1 interaction, resolving several issues in the existing data and providing insight into the mechanisms through which these two proteins combine to regulate blood development.
Collapse
Affiliation(s)
- Chu Wai Liew
- School of Molecular and Microbial Biosciences, G08, University of Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|