1
|
Sato S, Teramura Y, Ogawa Y, Shimizu E, Otake M, Hori K, Kamata T, Shu Y, Seta Y, Kuramochi A, Asai K, Shimizu S, Negishi K, Hirayama M. Conditioned media of stem cells from human exfoliated deciduous teeth contain factors related to extracellular matrix organization and promotes corneal epithelial wound healing. Regen Ther 2025; 29:148-161. [PMID: 40170802 PMCID: PMC11960544 DOI: 10.1016/j.reth.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/27/2025] [Accepted: 03/09/2025] [Indexed: 04/03/2025] Open
Abstract
This study aimed to investigate the therapeutic potential of cell-free conditioned media (CM) from human mesenchymal stem cells (hMSCs), specifically stem cells from human exfoliated deciduous teeth (SHED), for treating ocular surface diseases. The proteomes of various hMSC-CMs were compared using cytokine array and liquid chromatography-mass spectrometry (LC-MS). Bioinformatic analysis identified key biological pathways associated with SHED-CM, immortalized SHED-CM (IM-SHED-CM), and a fractionated component of IM-SHED-CM in which low weight molecules (less than 3.5kD) were depleted. Corneal epithelial wound healing models were constructed by epithelial scraping and treated with eye drops derived from SHED-CM. For the migration assay, the human corneal epithelial cells were wounded and then incubated with SHED-CM. SHED-CM, IM-SHED-CM, and >3.5 kD fractionated component eyedrops were administered to a chronic graft-versus-host disease (cGVHD) mouse model with sever corneal epithelial damages. SHED-CM, IM-SHED-CM, and >3.5 kD fractionated component of IM-SHED-CM were enriched in factors involved in epithelial wound healing, particularly extracellular matrix (ECM) organization. Both in vitro and in vivo assays demonstrated that SHED-CM significantly enhanced corneal epithelial wound healing. Furthermore, SHED-CM-derived eye drops reduced corneal epithelial damage, inflammatory cell infiltration, and oxidative stress in the corneal epithelium and maintained the expression of limbal stem cell markers in the cGVHD mouse model. These findings suggest that SHED-CM eye drops could be a novel treatment for corneal epithelial damage, highlighting the role of bioactive factors in promoting wound healing and offering an alternative to cell-based MSC therapies for corneal wound healing.
Collapse
Affiliation(s)
- Shinri Sato
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuji Teramura
- Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
- Master's/Doctoral Program in Life Science Innovation (T-LSI), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Eisuke Shimizu
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masato Otake
- U-Factor Co., Ltd., 1F ESCALIER Rokubancho, 7-11 Rokubancho, Chiyoda-ku, Tokyo 102-0085, Japan
| | - Keigo Hori
- U-Factor Co., Ltd., 1F ESCALIER Rokubancho, 7-11 Rokubancho, Chiyoda-ku, Tokyo 102-0085, Japan
| | - Takamitsu Kamata
- U-Factor Co., Ltd., 1F ESCALIER Rokubancho, 7-11 Rokubancho, Chiyoda-ku, Tokyo 102-0085, Japan
| | - Yujing Shu
- U-Factor Co., Ltd., 1F ESCALIER Rokubancho, 7-11 Rokubancho, Chiyoda-ku, Tokyo 102-0085, Japan
| | - Yasuhiro Seta
- Hitonowa Medical, K. PLAZA 2F, 1-7 Rokubancho, Chiyoda-ku, Tokyo 102-0085, Japan
| | - Akiko Kuramochi
- Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kazuki Asai
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shota Shimizu
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masatoshi Hirayama
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
2
|
Arjmand B, Mehran P, Badamchizadeh S, Alavi-Moghadam S, Arjmand R, Rezaei-Tavirani M, Aghayan HR, Larijani B, Vaezi M, Janbabaei G, Hajifathali A. The Role of Aging and Senescence in Bone Marrow Transplantation Outcome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40259169 DOI: 10.1007/5584_2025_861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Bone marrow transplantation is considered a cornerstone in the treatment of hematologic malignancies and blood disorders. While it may offer the possibility of a cure through the use of high-dose chemotherapy and radiation, outcomes are significantly impacted by biological and medical factors. Herein, aging is associated with reduced hematopoiesis, immune function, and overall regenerative capacity of tissues. Growth arrest, a crucial property of cellular senescence, inhibits bone marrow function, lowers immune surveillance in aged adults, and reduces the efficiency of bone marrow transplantation. The clinical course for older recipients is further complicated by the presence of prolonged immunosuppression, slower recovery, and higher complication rates, including life-threatening graft-versus-host disease. Accordingly, there is increasing interest in explaining how aging, cellular senescence, and transplant outcomes are interrelated. The current chapter outlines the mechanisms whereby aging and senescence contribute to the immunological dysregulation and poor bone marrow transplantation outcomes observed in elderly cancer patients. The authors' goal is to suggest therapeutic approaches that will enhance the quality of life and survival rates of elderly bone marrow transplant recipients.
Collapse
Affiliation(s)
- Babak Arjmand
- Hematology-Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Pouya Mehran
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamad Vaezi
- Hematology-Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghasem Janbabaei
- Hematologic Malignancies Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Phillips B, Morgan J, Walker R, Heggie C, Ali S. Interventions to reduce the risk of side-effects of cancer treatments in childhood. Expert Rev Anticancer Ther 2024; 24:1117-1129. [PMID: 39381913 DOI: 10.1080/14737140.2024.2411255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024]
Abstract
INTRODUCTION Childhood cancers as a group affect around 1 in 500 children but each individual diagnosis is a rare disease. While research largely focuses on improving cure rates, the management of side effects of treatment are high priority for clinicians, families and children and young people. AREAS COVERED The prevention and efficient management of infectious complications, oral mucositis, nausea and vomiting and graft-vs-host disease illustrated with examples of implementation research, translation of engineering to care, advances in statistical methodologies, and traditional bench-to-patient development. The reviews draw from existing systematic reviews and well conducted clinical practice guidelines. EXPERT OPINION The four areas are driven from patient and family priorities. Some of the problems outlined are ready for proven interventions, others require us to develop new technologies. Advancement needs us to make the best use of new methods of applied health research and clinical trial methodologies. Some of the greatest challenges may be those we're not fully aware of, as new therapies move from their use in adult oncological practice into children. This will need us to continue our collaborative, multi-professional, multi-disciplinary and eclectic approach.
Collapse
Affiliation(s)
- Bob Phillips
- Centre for Reviews and Dissemination, University of York and Hull-York Medical School, York, UK
- Regional Department of Paediatric Haematology and Oncology, Leeds Children's Hospital, Leeds, UK
| | - Jess Morgan
- Centre for Reviews and Dissemination, University of York and Hull-York Medical School, York, UK
- Regional Department of Paediatric Haematology and Oncology, Leeds Children's Hospital, Leeds, UK
| | - Ruth Walker
- Centre for Reviews and Dissemination, University of York and Hull-York Medical School, York, UK
| | | | - Salah Ali
- Department of Pediatric Haematology/Oncology, Cancer Center of Southeastern Ontario, Queens University, Kingston, Ontario, Canada
| |
Collapse
|
4
|
Simmons GL, Sabo R, Qayyum R, Aziz M, Martin E, Bernard RJ, Sriparna M, McIntire C, Krieger E, Brophy DF, Natarajan R, III AF, Roberts CH, Toor A. Feasibility of intravenous vitamin C supplementation in allogeneic hematopoietic cell transplant recipients. EJHAEM 2024; 5:1043-1047. [PMID: 39415933 PMCID: PMC11474309 DOI: 10.1002/jha2.995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/31/2024] [Indexed: 10/19/2024]
Abstract
Introduction Intravenous vitamin C was administered following hematopoietic stem cell transplant to mitigate nonrelapse mortality (NRM) in a Phase II clinical trial. Methods Patients with advanced hematologic malignancies received IV vitamin C, 50 mg/kg/day, in three divided doses on days 1-14 after HSCT, followed by 500 mg bid oral until 6 months. Results All patients enrolled (55) were deficient in vitamin C at day 0 and had restoration to normal levels. Vitamin C recipients had a trend for lower nonrelapse mortality (NRM, 11% vs. 25%, p-value = 0.07) compared with propensity score-matched historical controls. A similar trend toward improved survival was observed (82% vs. 62% p = 0.06), with no attributable grade 3 and 4 toxicities to vitamin C. Conclusion In patients undergoing allogeneic HSCT, repletion of vitamin C is feasible and may reduce NRM and improve overall survival. Randomized trials in large uniform cohorts of patients are needed to confirm the utility of this easily available and inexpensive therapy.
Collapse
Affiliation(s)
- Gary L. Simmons
- Department of Internal MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Roy Sabo
- Department of BiostatisticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Rehan Qayyum
- Department of Internal MedicineEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - May Aziz
- School of PharmacyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Erika Martin
- School of PharmacyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Robyn J. Bernard
- Department of MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Manjari Sriparna
- Department of MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Cody McIntire
- Department of MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Elizabeth Krieger
- Department of PediatricsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Donald F. Brophy
- School of PharmacyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Ramesh Natarajan
- Department of Internal MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Alpha Fowler III
- Department of Internal MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Catherine H. Roberts
- Department of Internal MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Amir Toor
- Department of Internal MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
- Topper Cancer InstituteLehigh Valley Health NetworkAllentownPennsylvaniaUSA
| |
Collapse
|
5
|
Sirpilla O, Sakemura RL, Hefazi M, Huynh TN, Can I, Girsch JH, Tapper EE, Cox MJ, Schick KJ, Manriquez-Roman C, Yun K, Stewart CM, Ogbodo EJ, Kimball BL, Mai LK, Gutierrez-Ruiz OL, Rodriguez ML, Gluscevic M, Larson DP, Abel AM, Wierson WA, Olivier G, Siegler EL, Kenderian SS. Mesenchymal stromal cells with chimaeric antigen receptors for enhanced immunosuppression. Nat Biomed Eng 2024; 8:443-460. [PMID: 38561490 DOI: 10.1038/s41551-024-01195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Allogeneic mesenchymal stromal cells (MSCs) are a safe treatment option for many disorders of the immune system. However, clinical trials using MSCs have shown inconsistent therapeutic efficacy, mostly owing to MSCs providing insufficient immunosuppression in target tissues. Here we show that antigen-specific immunosuppression can be enhanced by genetically modifying MSCs with chimaeric antigen receptors (CARs), as we show for E-cadherin-targeted CAR-MSCs for the treatment of graft-versus-host disease in mice. CAR-MSCs led to superior T-cell suppression and localization to E-cadherin+ colonic cells, ameliorating the animals' symptoms and survival rates. On antigen-specific stimulation, CAR-MSCs upregulated the expression of immunosuppressive genes and receptors for T-cell inhibition as well as the production of immunosuppressive cytokines while maintaining their stem cell phenotype and safety profile in the animal models. CAR-MSCs may represent a widely applicable therapeutic technology for enhancing immunosuppression.
Collapse
Affiliation(s)
- Olivia Sirpilla
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - R Leo Sakemura
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Mehrdad Hefazi
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Truc N Huynh
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Ismail Can
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - James H Girsch
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Erin E Tapper
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Michelle J Cox
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Kendall J Schick
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Claudia Manriquez-Roman
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kun Yun
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Carli M Stewart
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Ekene J Ogbodo
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Brooke L Kimball
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Long K Mai
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Omar L Gutierrez-Ruiz
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Makena L Rodriguez
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Martina Gluscevic
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Daniel P Larson
- Division of Hematopathology, Mayo Clinic, Rochester, MN, USA
| | - Alex M Abel
- LifEngine Animal Health Laboratories Incorporated, Rochester, MN, USA
| | - Wesley A Wierson
- LifEngine Animal Health Laboratories Incorporated, Rochester, MN, USA
| | - Gloria Olivier
- Department of Business Development, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth L Siegler
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Saad S Kenderian
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA.
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Maurer K, Antin JH. The graft versus leukemia effect: donor lymphocyte infusions and cellular therapy. Front Immunol 2024; 15:1328858. [PMID: 38558819 PMCID: PMC10978651 DOI: 10.3389/fimmu.2024.1328858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative therapy for many hematologic malignancies as well as non-malignant conditions. Part of the curative basis underlying HSCT for hematologic malignancies relies upon induction of the graft versus leukemia (GVL) effect in which donor immune cells recognize and eliminate residual malignant cells within the recipient, thereby maintaining remission. GVL is a clinically evident phenomenon; however, specific cell types responsible for inducing this effect and molecular mechanisms involved remain largely undefined. One of the best examples of GVL is observed after donor lymphocyte infusions (DLI), an established therapy for relapsed disease or incipient/anticipated relapse. DLI involves infusion of peripheral blood lymphocytes from the original HSCT donor into the recipient. Sustained remission can be observed in 20-80% of patients treated with DLI depending upon the underlying disease and the intrinsic burden of targeted cells. In this review, we will discuss current knowledge about mechanisms of GVL after DLI, experimental strategies for augmenting GVL by manipulation of DLI (e.g. neoantigen vaccination, specific cell type selection/depletion) and research outlook for improving DLI and cellular immunotherapies for hematologic malignancies through better molecular definition of the GVL effect.
Collapse
Affiliation(s)
| | - Joseph H. Antin
- Division of Hematologic Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Piekarska A, Sadowska-Klasa A, Mensah-Glanowska P, Sobczyk-Kruszelnicka M, Drozd-Sokołowska J, Waszczuk-Gajda A, Kujawska J, Wilk M, Tomaszewska A, Zaucha JM, Giebel S, Gil L. Effective treatment of Clostridioides difficile infection improves survival and affects graft-versus-host disease: a multicenter study by the Polish Adult Leukemia Group. Sci Rep 2024; 14:5947. [PMID: 38467719 PMCID: PMC10928209 DOI: 10.1038/s41598-024-56336-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/05/2024] [Indexed: 03/13/2024] Open
Abstract
Clostridioides difficile infection (CDI) is the most common cause of infectious diarrhea after allogeneic hematopoietic cell transplantation (allo-HCT). The impact of CDI and its treatment on allo-HCT outcomes and graft-versus-host disease (GVHD), including gastrointestinal GVHD (GI-GVHD) is not well established. This multicenter study assessed real-life data on the first-line treatment of CDI and its impact on allo-HCT outcomes. Retrospective and prospective data of patients with CDI after allo-HCT were assessed. We noted statistically significant increase in the incidence of acute GVHD and acute GI-GVHD after CDI (P = 0.005 and P = 0.016, respectively). The first-line treatment for CDI included metronidazole in 34 patients, vancomycin in 64, and combination therapy in 10. Treatment failure was more common with metronidazole than vancomycin (38.2% vs. 6.2%; P < 0.001). The need to administer second-line treatment was associated with the occurrence or exacerbation of GVHD (P < 0.05) and GI-GVHD (P < 0.001) and reduced overall survival (P < 0.05). In the multivariate analysis, the risk of death was associated with acute GVHD presence before CDI (hazard ratio [HR], 3.19; P = 0.009) and the need to switch to second-line treatment (HR, 4.83; P < 0.001). The efficacy of the initial CDI treatment affects survival and occurrence of immune-mediated GI-GVHD after allo-HCT. Therefore, agents with higher efficacy than metronidazole (vancomycin or fidaxomicin) should be administered as the first-line treatment.
Collapse
Affiliation(s)
- Agnieszka Piekarska
- Department of Hematology and Transplantology, Medical University of Gdańsk and University Clinical Center, ul. Smoluchowskiego 17, 80-214, Gdańsk, Poland.
| | - Alicja Sadowska-Klasa
- Department of Hematology and Transplantology, Medical University of Gdańsk and University Clinical Center, ul. Smoluchowskiego 17, 80-214, Gdańsk, Poland
| | - Patrycja Mensah-Glanowska
- Department of Hematology, Jagiellonian University Collegium Medicum, University Hospital in Cracow, Cracow, Poland
| | - Małgorzata Sobczyk-Kruszelnicka
- Department of Bone Marrow Transplantation and Onco-Hematology, Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Joanna Drozd-Sokołowska
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Anna Waszczuk-Gajda
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Kujawska
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznań, Poland
| | - Mateusz Wilk
- Department of Hematology, University Hospital in Cracow, Cracow, Poland
| | - Agnieszka Tomaszewska
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Jan M Zaucha
- Department of Hematology and Transplantology, Medical University of Gdańsk and University Clinical Center, ul. Smoluchowskiego 17, 80-214, Gdańsk, Poland
| | - Sebastian Giebel
- Department of Bone Marrow Transplantation and Onco-Hematology, Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Lidia Gil
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
8
|
Oravecz-Wilson K, Lauder E, Taylor A, Maneix L, Van Nostrand JL, Sun Y, Li L, Zhao D, Liu C, Reddy P. Autophagy differentially regulates tissue tolerance of distinct target organs in graft-versus-host disease models. J Clin Invest 2024; 134:e167369. [PMID: 38426503 PMCID: PMC10904048 DOI: 10.1172/jci167369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/11/2024] [Indexed: 03/02/2024] Open
Abstract
Tissue-intrinsic mechanisms that regulate severity of systemic pathogenic immune-mediated diseases, such as acute graft-versus-host disease (GVHD), remain poorly understood. Following allogeneic hematopoietic stem cell transplantation, autophagy, a cellular stress protective response, is induced in host nonhematopoietic cells. To systematically address the role of autophagy in various host nonhematopoietic tissues, both specific classical target organs of acute GVHD (intestines, liver, and skin) and organs conventionally not known to be targets of GVHD (kidneys and heart), we generated mice with organ-specific knockout of autophagy related 5 (ATG5) to specifically and exclusively inhibit autophagy in the specific organs. When compared with wild-type recipients, animals that lacked ATG5 in the gastrointestinal tract or liver showed significantly greater tissue injury and mortality, while autophagy deficiency in the skin, kidneys, or heart did not affect mortality. Treatment with the systemic autophagy inducer sirolimus only partially mitigated GVHD mortality in intestine-specific autophagy-deficient hosts. Deficiency of autophagy increased MHC class I on the target intestinal epithelial cells, resulting in greater susceptibility to damage by alloreactive T cells. Thus, autophagy is a critical cell-intrinsic protective response that promotes tissue tolerance and regulates GVHD severity.
Collapse
Affiliation(s)
- Katherine Oravecz-Wilson
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Emma Lauder
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, Michigan, USA
- Dan L. Duncan Comprehensive Cancer Center and
| | - Austin Taylor
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, Michigan, USA
| | | | - Jeanine L. Van Nostrand
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yaping Sun
- Dan L. Duncan Comprehensive Cancer Center and
| | - Lu Li
- Dan L. Duncan Comprehensive Cancer Center and
| | | | - Chen Liu
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Pavan Reddy
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, Michigan, USA
- Dan L. Duncan Comprehensive Cancer Center and
| |
Collapse
|
9
|
Ji H, Feng S, Liu Y, Cao Y, Lou H, Li Z. Effect of GVHD on the gut and intestinal microflora. Transpl Immunol 2024; 82:101977. [PMID: 38184214 DOI: 10.1016/j.trim.2023.101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/08/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Graft-versus-host disease (GVHD) is one of the most important cause of death in patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT). The gastrointestinal tract is one of the most common sites affected by GVHD. However, there is no gold standard clinical practice for diagnosing gastrointestinal GVHD (GI-GVHD), and it is mainly diagnosed by the patient's clinical symptoms and related histological changes. Additionally, GI-GVHD causes intestinal immune system disorders, damages intestinal epithelial tissue such as intestinal epithelial cells((IEC), goblet, Paneth, and intestinal stem cells, and disrupts the intestinal epithelium's physical and chemical mucosal barriers. The use of antibiotics and diet alterations significantly reduces intestinal microbial diversity, further reducing bacterial metabolites such as short-chain fatty acids and indole, aggravating infection, and GI-GVHD. gut microbe diversity can be restored by fecal microbiota transplantation (FMT) to treat refractory GI-GVHD. This review article focuses on the clinical diagnosis of GI-GVHD and the effect of GVHD on intestinal flora and its metabolites.
Collapse
Affiliation(s)
- Hao Ji
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Shuai Feng
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China; Yunnan Province Clinical Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China; Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China; National Key Clinical Specialty of Hematology, The First People's Hospital of Yunnan Province, Kunming, China; Yunnan Province Clinical Research Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China
| | - Yuan Liu
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yue Cao
- Emergency of Department, Yunnan Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - HuiQuan Lou
- Department of Oral and maxillofacial surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Zengzheng Li
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China; Yunnan Province Clinical Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China; Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China; National Key Clinical Specialty of Hematology, The First People's Hospital of Yunnan Province, Kunming, China; Yunnan Province Clinical Research Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China.
| |
Collapse
|
10
|
Simmons G, Sabo R, Aziz M, Martin E, Bernard RJ, Sriparna M, McIntire C, Krieger E, Brophy DF, Natarajan R, Fowler A, Roberts CH, Toor A. INTRAVENOUS VITAMIN C SUPPLEMENTATION IN ALLOGENEIC HEMATOPOIETIC CELL TRANSPLANT RECIPIENTS: SALUTARY IMPACT ON CLINICAL OUTCOMES. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.24.23297165. [PMID: 37961224 PMCID: PMC10635184 DOI: 10.1101/2023.10.24.23297165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Intravenous (IV) vitamin C improves organ function and reduces inflammation in sepsis, an inflammatory state like the post-hematopoietic stem cell transplant (SCT) milieu. The safety and efficacy of parenteral vitamin C after allogeneic hematopoietic stem cell transplant (HSCT) were evaluated in a phase I/II trial and clinical outcomes compared with a propensity score - matched historical control. Methods Patients with advanced hematologic malignancies were enrolled in a phase 2 clinical trial, receiving IV vitamin C, 50mg/kg/d, divided into 3 doses given on days 1-14 after HSCT, followed by 500 mg bid oral from day 15 until 6 months post-SCT. Results 55 patients received IV vitamin C: these include 10/10 HLA-MRD and MUD (n=48) and 9/10 HLA MUD recipients (n=7). All patients enrolled were deficient in vitamin C at day 0 and had restoration to normal levels for the remainder of the course. Vitamin C recipients had lower non-relapse mortality (11% vs. 25%, p-value = 0.07) and consequently, improved survival compared to historical controls (82% vs 62% p=0.06), with no attributable grade 3 and 4 toxicities to vitamin C. Patients with myeloid malignancies had improved survival (83% vs. 54%, p=0.02) and non-relapse mortality (NRM) (10% vs. 37%, p=0.009), as well as chronic GVHD, with similar relapse rates compared to controls. Conclusions In patients undergoing allogeneic HSCT the administration of IV vitamin C is safe and reduces non-relapse mortality improving overall survival. Randomized trials are needed to confirm the utility of this easily available and inexpensive therapy.
Collapse
Affiliation(s)
- Gary Simmons
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Roy Sabo
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
| | - May Aziz
- School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Erika Martin
- School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Robyn J Bernard
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Manjari Sriparna
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Cody McIntire
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Elizabeth Krieger
- Department of Pediatrics, Virginia Commonwealth University, Richmond, Virginia
| | - Donald F Brophy
- School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Ramesh Natarajan
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Alpha Fowler
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | | | - Amir Toor
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
- Lehigh Valley Health Network, Allentown, Pennsylvania
| |
Collapse
|
11
|
Khandelwal P, Lounder DT, Bartlett A, Haberman Y, Jegga AG, Ghandikota S, Koo J, Luebbering N, Leino D, Abdullah S, Loveless M, Minar P, Lake K, Litts B, Karns R, Nelson AS, Denson LA, Davies SM. Transcriptome analysis in acute gastrointestinal graft- versus host disease reveals a unique signature in children and shared biology with pediatric inflammatory bowel disease. Haematologica 2023; 108:1803-1816. [PMID: 36727399 PMCID: PMC10316272 DOI: 10.3324/haematol.2022.282035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
We performed transcriptomic analyses on freshly frozen (n=21) and paraffin-embedded (n=35) gastrointestinal (GI) biopsies from children with and without acute acute GI graft-versus-host disease (GvHD) to study differential gene expressions. We identified 164 significant genes, 141 upregulated and 23 downregulated, in acute GvHD from freshy frozen biopsies. CHI3L1 was the top differentially expressed gene in acute GvHD, involved in macrophage recruitment and bacterial adhesion. Mitochondrial genes were among the top downregulated genes. Immune deconvolution identified a macrophage cellular signature. Weighted gene co-expression network analysis showed enrichment of genes in the ERK1/2 cascade. Transcriptome data from 206 ulcerative colitis (UC) patients were included to uncover genes and pathways shared between GvHD and UC. Comparison with the UC transcriptome showed both shared and distinct pathways. Both UC and GvHD transcriptomes shared an innate antimicrobial signature and FCγ1RA/CD64 was upregulated in both acute GvHD (log-fold increase 1.7, P=0.001) and UC. Upregulation of the ERK1/2 cascade pathway was specific to GvHD. We performed additional experiments to confirm transcriptomics. Firstly, we examined phosphorylation of ERK (pERK) by immunohistochemistry on GI biopsies (acute GvHD n=10, no GvHD n=10). pERK staining was increased in acute GvHD biopsies compared to biopsies without acute GvHD (P=0.001). Secondly, plasma CD64, measured by enzyme-linked immunsorbant assay (n=85) was elevated in acute GI GvHD (P<0.001) compared with those without and was elevated in GVHD compared with inflammatory bowel disease (n=47) (P<0.001), confirming the upregulated expression seen in the transcriptome.
Collapse
Affiliation(s)
- Pooja Khandelwal
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229.
| | - Dana T Lounder
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Allison Bartlett
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Yael Haberman
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229; Division of Gastroenterology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Sheba Medical Center, Hashomer, affiliated with the Aviv University, Israel 52620
| | - Anil G Jegga
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Sudhir Ghandikota
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Jane Koo
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Nathan Luebbering
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Daniel Leino
- Department of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Sheyar Abdullah
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Michaela Loveless
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Phillip Minar
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229; Division of Gastroenterology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Kelly Lake
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Bridget Litts
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Rebekah Karns
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229; Division of Gastroenterology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Adam S Nelson
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Lee A Denson
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229; Division of Gastroenterology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Stella M Davies
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
| |
Collapse
|
12
|
Pereira AD, de Molla VC, Fonseca ARBM, Tucunduva L, Novis Y, Pires MS, Popi AF, Arrais-Rodrigues CA. Ikaros expression is associated with an increased risk of chronic graft-versus-host disease. Sci Rep 2023; 13:8458. [PMID: 37231055 DOI: 10.1038/s41598-023-35609-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/20/2023] [Indexed: 05/27/2023] Open
Abstract
Immune reconstitution after hematopoietic stem cell transplantation (HSCT) is a complex and extremely variable process. The Ikaros transcription factor plays an important role in hematopoiesis in several cell lines, especially in the lymphoid lineage. We hypothesized that Ikaros might influence immune reconstitution, and consequently, the risk of opportunistic infections, relapse, and graft versus host disease (GVHD). Samples were collected from the graft and from the peripheral blood (PB) of the recipients 3 weeks after neutrophil recovery. Real-time polymerase chain reaction (RT-PCR) was performed to analyze the absolute and relative Ikaros expression. Patients were divided into two groups, according to Ikaros expression in the graft and in the recipients' PB based on the ROC curves for moderate/severe cGVHD. A cutoff of 1.48 was used for Ikaros expression in the graft, and a cutoff of 0.79 was used for Ikaros expression in the recipients' PB. Sixty-six patients were included in this study. Median age of patients was 52 years (range 16-80 years), 55% of them were male, and 58% of them had acute leukemia. Median follow-up period was 18 months (range 10-43 months). There was no association between Ikaros expression and the risk of acute GVHD, relapse, or mortality. However, a significant association was observed with the risk of chronic GVHD. Higher Ikaros expression in the graft was associated with a significantly higher cumulative incidence (CI) of moderate/severe chronic GVHD according to the National Institute of Health (NIH) classification at two years (54% vs. 15% for patients with lower expression, P = 0.03). A higher Ikaros expression in the recipients' PB 3 weeks after engraftment was also associated with a significantly higher risk of moderate/severe chronic GVHD (65% vs. 11%, respectively, P = 0.005). In conclusion, Ikaros expression in the graft and in the recipients' PB after transplantation was associated with a higher risk of moderate/severe chronic GVHD. Ikaros expression should be evaluated in larger prospective trials as a potential biomarker for chronic GVHD.
Collapse
Affiliation(s)
- A D Pereira
- Universidade Federal de São Paulo, São Paulo, SP, Brazil.
- Centro de Oncologia, Hospital Sírio Libanês, Rua Dona Adma Jafet, 91, São Paulo, SP, 01308-050, Brazil.
| | - V C de Molla
- Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Centro de Oncologia, Hospital Sírio Libanês, Rua Dona Adma Jafet, 91, São Paulo, SP, 01308-050, Brazil
| | - A R B M Fonseca
- Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Centro de Oncologia, Hospital Sírio Libanês, Rua Dona Adma Jafet, 91, São Paulo, SP, 01308-050, Brazil
| | - L Tucunduva
- Centro de Oncologia, Hospital Sírio Libanês, Rua Dona Adma Jafet, 91, São Paulo, SP, 01308-050, Brazil
| | - Y Novis
- Centro de Oncologia, Hospital Sírio Libanês, Rua Dona Adma Jafet, 91, São Paulo, SP, 01308-050, Brazil
| | - M S Pires
- Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - A F Popi
- Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - C A Arrais-Rodrigues
- Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Centro de Oncologia, Hospital Sírio Libanês, Rua Dona Adma Jafet, 91, São Paulo, SP, 01308-050, Brazil
| |
Collapse
|
13
|
Wang L, Dai B, Gao W, Wang J, Wan M, Wang R, Wang L, Jiang J, Blaise D, Hu J. Clinical Significance of Haplo-Fever and Cytokine Profiling After Graft Infusion in Allogeneic Stem Cell Transplantation From Haplo-Identical Donors. Front Med (Lausanne) 2022; 9:820591. [PMID: 35463028 PMCID: PMC9021571 DOI: 10.3389/fmed.2022.820591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Allogeneic stem cell transplantation from haplo-identical donors (haplo-HSCT) has become a well-established therapeutic option for hematological malignancies. The fever of unknown origin (haplo-fever) early after the infusion of T cell repleted graft, which returned to normal right after post-transplantation cyclophosphamide (PTCy), is a unique clinical feature in patients undergoing haplo-HSCT. In the current study, the characteristics of haplo-fever and cytokine profiles during haplo-fever were retrospectively analyzed in a cohort of 37 patients undergoing T cell repleted haplo-HSCT with PTCy as graft versus host disease (GvHD) prophylaxis. In total, 33 patients (89.2%) developed haplo-fever from day 0 to day +7. Patients with high peak temperatures tended to have a lower incidence of chronic GvHD (cGvHD) (p = 0.07), moderate to severe cGvHD (p = 0.08), and superior GvHD and relapse-free survival (GRFS, p = 0.04). During the haplo-fever, there were significant increases in multiple cytokines, such as interferon gamma, interleukin (IL) 6, IL2, IL2 receptor, IL8, IL10, IL17, and tumor necrosis factor (TNF). The increases in IL2 receptor (p = 0.037) and TNF (p < 0.001) on day +4 were correlated with the lower risk of cGvHD. Increased TNF > 1.8055-fold on day +4 was the best predictive threshold for cGvHD, and was correlated with a lower incidence of cGvHD (p < 0.001), moderate to severe cGvHD (p = 0.003), and superior GRFS (p < 0.001). These observations may reflect the early reactivation of donor T cells after haplo graft infusion, which would potentially be eliminated by PTCy. Further studies with larger independent cohorts of patients are warranted, to clarify the clinical significance of haplo-fever, and day +4 TNF as a potential biomarker to predict GvHD and GRFS.
Collapse
Affiliation(s)
- Lining Wang
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Dai
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhui Gao
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Wan
- Shanghai Clinical Research Center, Fenglin International Centre, Shanghai, China
| | - Runshu Wang
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Ling Wang
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieling Jiang
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Didier Blaise
- Transplantation and Cell Therapy Program, Leukemia Program, Centre de Recherche en Cancérologie de Marseille, Department of Hematology, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
- Didier Blaise,
| | - Jiong Hu
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jiong Hu,
| |
Collapse
|
14
|
Ma L, Yu J, Zhang H, Zhao B, Zhang J, Yang D, Luo F, Wang B, Jin B, Liu J. Effects of Immune Cells on Intestinal Stem Cells: Prospects for Therapeutic Targets. Stem Cell Rev Rep 2022; 18:2296-2314. [DOI: 10.1007/s12015-022-10347-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 11/29/2022]
|
15
|
Resolution of Inflammation in Acute Graft-Versus-Host-Disease: Advances and Perspectives. Biomolecules 2022; 12:biom12010075. [PMID: 35053223 PMCID: PMC8773806 DOI: 10.3390/biom12010075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023] Open
Abstract
Inflammation is an essential reaction of the immune system to infections and sterile tissue injury. However, uncontrolled or unresolved inflammation can cause tissue damage and contribute to the pathogenesis of various inflammatory diseases. Resolution of inflammation is driven by endogenous molecules, known as pro-resolving mediators, that contribute to dampening inflammatory responses, promoting the resolution of inflammation and the recovery of tissue homeostasis. These mediators have been shown to be useful to decrease inflammatory responses and tissue damage in various models of inflammatory diseases. Graft-versus-host disease (GVHD) is a major unwanted reaction following allogeneic hematopoietic stem cell transplantation (allo-HSCT) and is characterized by an exacerbated inflammatory response provoked by antigen disparities between transplant recipient and donor. There is no fully effective treatment or prophylaxis for GVHD. This review explores the effects of several pro-resolving mediators and discusses their potential use as novel therapies in the context of GVHD.
Collapse
|
16
|
Miyao K, Kuwatsuka Y, Murata M, Nagafuji K, Teshima T, Takeuchi Y, Shiratori S, Najima Y, Uchida N, Tanaka M, Sawa M, Ota S, Fukuda T, Ozawa Y, Kako S, Kawakita T, Ara T, Tanaka J, Kanda Y, Atsuta Y, Kanda J, Terakura S. Anti-thymocyte globulin could potentially overcome an adverse effect of acute GVHD in matched-related PBSCT. Transplant Cell Ther 2021; 28:153.e1-153.e11. [PMID: 34954151 DOI: 10.1016/j.jtct.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Previous Japanese studies have shown that bone marrow transplantation (BMT) is associated with a better survival compared with peripheral blood stem cell transplantation (PBSCT) from matched related donors (MRDs). PBSCT recipients showed a higher incidence of severe graft-versus-host disease (GVHD) and non-relapse mortality (NRM) than BMT recipients. In recent years, the efficacy and safety of anti-thymocyte globulin (ATG) for PBSCT recipients has been reported from around the world. OBJECTIVE We aimed to compare BMT and PBSCT to identify current improvements and unmet needs among PBSCT recipients from MRDs. Moreover, we evaluated the impact of ATG administration on the outcomes for PBSCT recipients. STUDY DESIGN We retrospectively analyzed patients aged 16 years or older with acute leukemia, myelodysplastic syndrome, or chronic myeloid leukemia who received their first BMT or PBSCT from MRDs between 2009 and 2018 in Japan. RESULTS In total, 3599 transplantations were performed (BMT, 1218; PBSCT without ATG [PBSCT-ATG(-)], 2288; and PBSCT with ATG [PBSCT-ATG(+)], 93). The PBSCT-ATG(-) group had a higher NRM rate (hazard ratio [HR], 1.30; 95% confidence interval [CI], 1.08-1.57; p = 0.005) and lower overall survival (OS) rate (HR, 1.16; 95% CI, 1.04-1.30; p = 0.011) than the BMT group. Furthermore, the PBSCT-ATG(-) group had a higher incidence of grade III-IV, stage 2-4 gut, high-risk, and steroid-refractory acute GVHD than the BMT group. Acute GVHDs had a negative impact on NRM and OS rates. PBSCT-ATG(-) was also associated with a higher risk of chronic GVHD (HR: 1.89; 95% CI: 1.24-1.57; p < 0.001) and extensive chronic GVHD (HR: 1.44; 95% CI: 1.23-1.68; p < 0.001). The incidence of acute GVHD, chronic GVHD, and NRM and chronic GVHD-free relapse-free survival rates were comparable between the PBSCT-ATG(+) and BMT groups. The OS rate of patients with acute GVHD in the three donor groups was similar. Patients treated with reduced-intensity conditioning in the PBSCT-ATG(+) group had a higher relapse rate and lower OS rate than those in the BMT group. CONCLUSIONS In this Japanese cohort, standard calcineurin inhibitor-based GVHD prophylaxis was not sufficient for PBSCT recipients from MRDs because of the high incidence of severe acute GVHD. Moreover, prophylactic ATG was found to be a promising strategy against GVHD.
Collapse
Affiliation(s)
- Kotaro Miyao
- Department of Hematology and Oncology, Anjo Kosei Hospital, Anjo, Japan.
| | - Yachiyo Kuwatsuka
- Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Nagafuji
- Division of Hematology and Oncology, Kurume University School of Medicine, Kurume, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Yuki Takeuchi
- Department of Hematology and Oncology, Anjo Kosei Hospital, Anjo, Japan
| | - Souichi Shiratori
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Yuho Najima
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Naoyuki Uchida
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Masatsugu Tanaka
- Department of Hematology, Kanagawa Cancer Center, Yokohama, Japan
| | - Masashi Sawa
- Department of Hematology and Oncology, Anjo Kosei Hospital, Anjo, Japan
| | - Shuichi Ota
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Takahiro Fukuda
- Division of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Yukiyasu Ozawa
- Department of Hematology, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, Japan
| | - Shinichi Kako
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Toshiro Kawakita
- Department of Hematology, National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Takahide Ara
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Junji Tanaka
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoshinobu Kanda
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagoya, Japan; Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Junya Kanda
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seitaro Terakura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
17
|
Changing Epidemiology of Invasive Fungal Disease in Allogeneic Hematopoietic Stem Cell Transplantation. J Fungi (Basel) 2021; 7:jof7100848. [PMID: 34682269 PMCID: PMC8539090 DOI: 10.3390/jof7100848] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/23/2022] Open
Abstract
Invasive fungal disease (IFD) is a common cause of morbidity and mortality in patients with hematologic malignancies, especially among those undergoing allogeneic hematopoietic stem cell transplantation (HSCT). The epidemiology of IFD in HSCT patients has been evolving over the last decades, mainly in relation to changes in HSCT therapies such as antifungal prophylaxis. A progressive decrease in Candida albicans infection has been documented, alongside a progressive increase in infections caused by non-albicans Candida species, filamentous fungi, and/or multidrug-resistant fungi. Currently, the most frequent IFD is invasive aspergillosis. In some parts of the world, especially in north Central Europe, a high percentage of Aspergillus fumigatus isolates are azole-resistant. New diagnostic techniques have documented the existence of cryptic Aspergillus species with specific characteristics. An increase in mucormycosis and fusariosis diagnoses, as well as diagnoses of other rare fungi, have also been described. IFD epidemiology is likely to continue changing further due to both an increased use of mold-active antifungals and a lengthened survival of patients with HSCT that may result in hosts with weaker immune systems. Improvements in microbiology laboratories and the widespread use of molecular diagnostic tools will facilitate more precise descriptions of current IFD epidemiology. Additionally, rising resistance to antifungal drugs poses a major threat. In this scenario, knowledge of current epidemiology and accurate IFD diagnoses are mandatory in order to establish correct prophylaxis guidelines and appropriate early treatments.
Collapse
|
18
|
Delayed administration of ixazomib modifies the immune response and prevents chronic graft-versus-host disease. Bone Marrow Transplant 2021; 56:3049-3058. [PMID: 34556806 PMCID: PMC8636253 DOI: 10.1038/s41409-021-01452-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 11/08/2022]
Abstract
In this study, we aimed to modify the immune response in the long term after allogeneic bone marrow transplantation (allo-BMT) by using the proteasome inhibitor ixazomib (IXZ) at the late stages of the post-transplant period. This approach facilitated the immune reconstitution after transplantation. IXZ significantly prolonged survival and decreased the risk of chronic graft-versus-host disease (cGvHD) in two different murine models without hampering the graft-versus-leukemia (GvL) effect, as confirmed by bioluminescence assays. Remarkably, the use of IXZ was related to an increase of regulatory T cells both in peripheral blood and in the GvHD target organs and a decrease of effector donor T cells. Regarding B cells, IXZ treated mice had faster recovery of B cells in PB and of pre-pro-B cells in the bone marrow. Mice receiving ixazomib had a lower number of neutrophils in the GvHD target organs as compared to the vehicle group. In summary, delayed administration of IXZ ameliorated cGvHD while preserving GvL and promoted a pro-tolerogenic immune response after allo-BMT.
Collapse
|
19
|
Kaźmierczak-Siedlecka K, Skonieczna-Żydecka K, Biliński J, Roviello G, Iannone LF, Atzeni A, Sobocki BK, Połom K. Gut Microbiome Modulation and Faecal Microbiota Transplantation Following Allogenic Hematopoietic Stem Cell Transplantation. Cancers (Basel) 2021; 13:4665. [PMID: 34572894 PMCID: PMC8464896 DOI: 10.3390/cancers13184665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Nowadays, allogenic hematopoietic stem cell transplantation (allo-HSCT) is a curative therapy that is mainly recommended for hematologic malignancies. However, complications (such as graft-versus-host disease, mucositis, disease relapse, and infections) associated with the HSCT procedure contribute to the development of gut microbiota imbalance, gut-barrier disruption, and increased intestinal permeability. In the present narrative review, the crosstalk between gut microbiota products and intestinal homeostasis is discussed. Notably, gut-microbiota-related aspects have an impact on patients' clinical outcomes and overall survival. In accordance with the most recent published data, gut microbiota is crucial for the treatment effectiveness of many diseases, not only gastrointestinal cancers but also hematologic malignancies. Therefore, it is necessary to indicate a therapeutic method allowing to modulate gut microbiota in HSCT recipients. Currently, fecal microbiota transplantation (FMT) is the most innovative method used to alter/restore gut microbiota composition, as well as modulate its activity. Despite the fact that some previous data have shown promising results, the knowledge regarding FMT in HSCT is still strongly limited, except for the treatment of Clostridium difficile infection. Additionally, administration of prebiotics, probiotics, synbiotics, and postbiotics can also modify gut microbiota; however, this strategy should be considered carefully due to the high risk of fungemia/septicemia (especially in case of fungal probiotics).
Collapse
Affiliation(s)
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Sciences, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland;
| | - Jarosław Biliński
- Department of Hematology, Transplantology and Internal Medicine, Medical University of Warsaw, 02-097 Warszawa, Poland;
| | - Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy;
| | - Luigi Francesco Iannone
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Alessandro Atzeni
- Human Nutrition Unit, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Faculty of Medicine and Health Sciences, Campus Vapor Vell, 43210 Reus, Spain;
| | - Bartosz Kamil Sobocki
- International Research Agenda 3P—Medicine Laboratory, Medical University of Gdansk, 80-214 Gdańsk, Poland;
| | - Karol Połom
- Department of Surgical Oncology, Medical University of Gdansk, 80-214 Gdańsk, Poland;
| |
Collapse
|
20
|
Murata M, Teshima T. Treatment of Steroid-Refractory Acute Graft- Versus-Host Disease Using Commercial Mesenchymal Stem Cell Products. Front Immunol 2021; 12:724380. [PMID: 34489977 PMCID: PMC8417106 DOI: 10.3389/fimmu.2021.724380] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/29/2021] [Indexed: 01/09/2023] Open
Abstract
Acute graft-versus-host disease (GVHD) is a life-threatening complication that can develop after allogeneic hematopoietic stem cell transplantation. In particular, the prognosis of patients with steroid-refractory acute GVHD is extremely poor. Ryoncil™ (remestemcel-L), a human bone marrow-derived mesenchymal stem cell (MSC) product, failed to show superiority over placebo in patients with steroid-refractory acute GVHD, but it was approved for use in pediatric patients in Canada and New Zealand based on the results of a subgroup analysis. Temcell®, an equivalent manufactured MSC product to remestemcel-L, was approved in Japan based on small single-arm studies by using a regulation for regenerative medicine in 2016. The efficacy of Temcell was evaluated in 381 consecutive patients treated with Temcell during the initial 3 years after its approval. Interestingly, its real-world efficacy was found to be equivalent to that observed in a prospective study of remestemcel-L with strict eligibility criteria. In this article, the potential of MSC therapy in the treatment of acute GVHD is discussed. A meticulous comparison of studies of remestemcel-L and Temcell, remestemcel-L/Temcell and ruxolitinib, and remestemcel-L/Temcell and thymoglobulin showed that the precise position of remestemcel-L/Temcell therapy in the treatment of acute GVHD remains to be determined.
Collapse
Affiliation(s)
- Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| |
Collapse
|
21
|
Henden AS, Koyama M, Robb RJ, Forero A, Kuns RD, Chang K, Ensbey KS, Varelias A, Kazakoff SH, Waddell N, Clouston AD, Giri R, Begun J, Blazar BR, Degli-Esposti MA, Kotenko SV, Lane SW, Bowerman KL, Savan R, Hugenholtz P, Gartlan KH, Hill GR. IFN-λ therapy prevents severe gastrointestinal graft-versus-host disease. Blood 2021; 138:722-737. [PMID: 34436524 PMCID: PMC8667051 DOI: 10.1182/blood.2020006375] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Immunopathology and intestinal stem cell (ISC) loss in the gastrointestinal (GI) tract is the prima facie manifestation of graft-versus-host disease (GVHD) and is responsible for significant mortality after allogeneic bone marrow transplantation (BMT). Approaches to prevent GVHD to date focus on immune suppression. Here, we identify interferon-λ (IFN-λ; interleukin-28 [IL-28]/IL-29) as a key protector of GI GVHD immunopathology, notably within the ISC compartment. Ifnlr1-/- mice displayed exaggerated GI GVHD and mortality independent of Paneth cells and alterations to the microbiome. Ifnlr1-/- intestinal organoid growth was significantly impaired, and targeted Ifnlr1 deficiency exhibited effects intrinsic to recipient Lgr5+ ISCs and natural killer cells. PEGylated recombinant IL-29 (PEG-rIL-29) treatment of naive mice enhanced Lgr5+ ISC numbers and organoid growth independent of both IL-22 and type I IFN and modulated proliferative and apoptosis gene sets in Lgr5+ ISCs. PEG-rIL-29 treatment improved survival, reduced GVHD severity, and enhanced epithelial proliferation and ISC-derived organoid growth after BMT. The preservation of ISC numbers in response to PEG-rIL-29 after BMT occurred both in the presence and absence of IFN-λ-signaling in recipient natural killer cells. IFN-λ is therefore an attractive and rapidly testable approach to prevent ISC loss and immunopathology during GVHD.
Collapse
Affiliation(s)
- Andrea S Henden
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Department of Haematology and Bone Marrow Transplantation, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Motoko Koyama
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Renee J Robb
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Adriana Forero
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA
| | - Rachel D Kuns
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Karshing Chang
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kathleen S Ensbey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Antiopi Varelias
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Stephen H Kazakoff
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Nicole Waddell
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Rabina Giri
- Mater Research Institute, The University of Queensland-Translational Research Institute, Brisbane, QLD, Australia
| | - Jakob Begun
- Mater Research Institute, The University of Queensland-Translational Research Institute, Brisbane, QLD, Australia
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Mariapia A Degli-Esposti
- Centre for Experimental Immunology, Lions Eye Institute, Perth, WA, Australia
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sergei V Kotenko
- Center for Immunity and Inflammation, New Jersey Medical School, and
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences (RBHS), Newark, NJ
| | - Steven W Lane
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kate L Bowerman
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia; and
| | - Ram Savan
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia; and
| | - Kate H Gartlan
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Geoffrey R Hill
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Division of Medical Oncology, The University of Washington, Seattle, WA
| |
Collapse
|
22
|
Liu L, Jia S, Jin X, Zhu S, Zhang S. HOXC11 Expression Is Associated with the Progression of Colon Adenocarcinoma and Is a Prognostic Biomarker. DNA Cell Biol 2021; 40:1158-1166. [PMID: 34415792 DOI: 10.1089/dna.2021.0368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This study aimed to evaluate the role of HOXC11 in progression and prognosis in colon adenocarcinoma (COAD) patients. The COAD patient data were downloaded from "The Cancer Genome Atlas (TCGA)" database. The Wilcoxon rank-sum test or Kruskal-Wallis test was used to analyze the correlation between HOXC11 expression and clinicopathologic characteristics. The significance of difference in overall survival between different groups was determined by log-rank test. The HOXC11 expression was verified from mRNA and protein level by conducting real-time quantitative PCR, Western blot, and immunohistochemistry analysis. Significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were screened after gene set enrichment analysis. As a result, high HOXC11 expression was closely related to the occurrence of COAD based on the data in TCGA, which was then successfully validated in cell lines and clinical tissues. Enhanced HOXC11 expression was significantly associated with tumor-node-metastasis (TNM) and M stage. Prognosis of highly expressed HOXC11 COAD patients was significantly worse than those with low HOXC11 expression. GRAFT_VERSUS_HOST_DISEASE and other signaling pathways were significantly activated in high HOXC11 expression COAD patients. In conclusion, high expression of HOXC11 was closely associated with the progression of COAD, and HOXC11 was a promising prognostic biomarker in COAD patients.
Collapse
Affiliation(s)
- Linna Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P.R. China
| | - Shujuan Jia
- Department of Gastroenterology, Peking University Shougang Hospital, Beijing, P.R. China
| | - Xiaowei Jin
- Department of Gastroenterology, Peking University Shougang Hospital, Beijing, P.R. China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P.R. China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P.R. China
| |
Collapse
|
23
|
Hess NJ, Brown ME, Capitini CM. GVHD Pathogenesis, Prevention and Treatment: Lessons From Humanized Mouse Transplant Models. Front Immunol 2021; 12:723544. [PMID: 34394131 PMCID: PMC8358790 DOI: 10.3389/fimmu.2021.723544] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/15/2021] [Indexed: 01/14/2023] Open
Abstract
Graft-vs-host disease (GVHD) is the most common cause of non-relapse mortality following allogeneic hematopoietic stem cell transplantation (HSCT) despite advances in conditioning regimens, HLA genotyping and immune suppression. While murine studies have yielded important insights into the cellular responses of GVHD, differences between murine and human biology has hindered the translation of novel therapies into the clinic. Recently, the field has expanded the ability to investigate primary human T cell responses through the transplantation of human T cells into immunodeficient mice. These xenogeneic HSCT models benefit from the human T cell receptors, CD4 and CD8 proteins having cross-reactivity to murine MHC in addition to several cytokines and co-stimulatory proteins. This has allowed for the direct assessment of key factors in GVHD pathogenesis to be investigated prior to entering clinical trials. In this review, we will summarize the current state of clinical GVHD research and discuss how xenogeneic HSCT models will aid in advancing the current pipeline of novel GVHD prophylaxis therapies into the clinic.
Collapse
Affiliation(s)
- Nicholas J. Hess
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Matthew E. Brown
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Christian M. Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| |
Collapse
|
24
|
Wang Q, Su X, He Y, Wang M, Yang D, Zhang R, Wei J, Ma Q, Zhai W, Pang A, Huang Y, Feng S, Ballantyne CM, Wu H, Pei X, Feng X, Han M, Jiang E. CD11c participates in triggering acute graft-versus-host disease during bone marrow transplantation. Immunology 2021; 164:148-160. [PMID: 33934334 PMCID: PMC8358721 DOI: 10.1111/imm.13350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/22/2022] Open
Abstract
CD11c is a canonical dendritic cell (DC) marker with poorly defined functions in the immune system. Here, we found that blocking CD11c on human peripheral blood mononuclear cell‐derived DCs (MoDCs) inhibited the proliferation of CD4+ T cells and the differentiation into IFN‐γ‐producing T helper 1 (Th1) cells, which were critical in acute graft‐versus‐host disease (aGVHD) pathogenesis. Using allogeneic bone marrow transplantation (allo‐BMT) murine models, we consistently found that CD11c‐deficient recipient mice had alleviated aGVHD symptoms for the decreased IFN‐γ‐expressing CD4+ Th1 cells and CD8+ T cells. Transcriptional analysis showed that CD11c participated in several immune regulation functions including maintaining antigen presentation of APCs. CD11c‐deficient bone marrow‐derived DCs (BMDCs) impaired the antigen presentation function in coculture assay. Mechanistically, CD11c interacted with MHCII and Hsp90 and participated in the phosphorylation of Akt and Erk1/2 in DCs after multiple inflammatory stimulations. Therefore, CD11c played crucial roles in triggering aGVHD and might serve as a potential target for the prevention and treatment of aGVHD.
Collapse
Affiliation(s)
- Qianqian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiuhua Su
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Mei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Donglin Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Rongli Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jialin Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qiaoling Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Weihua Zhai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Aiming Pang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yong Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | | | - Huaizhu Wu
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Xiaolei Pei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
25
|
Abstract
The Janus kinase (JAK), signal transducer of activation (STAT) pathway, discovered by investigating interferon gene induction, is now recognized as an evolutionary conserved signaling pathway employed by diverse cytokines, interferons, growth factors, and related molecules. Since its discovery, this pathway has become a paradigm for membrane-to-nucleus signaling and explains how a broad range of soluble factors such as cytokines and hormones, mediate their diverse functions. The understanding of JAK-STAT signaling in the intestine has not only impacted basic science research, particularly in the understanding of intercellular communication and cell-extrinsic control of gene expression, but it has also become a prototype for transition of bench to bedside research, culminating in the clinical implementation of pathway-specific therapeutics.
Collapse
|
26
|
Biomarker-guided preemption of steroid-refractory graft-versus-host disease with α-1-antitrypsin. Blood Adv 2021; 4:6098-6105. [PMID: 33351103 DOI: 10.1182/bloodadvances.2020003336] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Steroid-refractory (SR) acute graft-versus-host disease (GVHD) remains a major cause of nonrelapse mortality (NRM) after allogeneic hematopoietic cell transplantation (HCT), but its occurrence is not accurately predicted by pre-HCT clinical risk factors. The Mount Sinai Acute GVHD International Consortium (MAGIC) algorithm probability (MAP) identifies patients who are at high risk for developing SR GVHD as early as 7 days after HCT based on the extent of intestinal crypt damage as measured by the concentrations of 2 serum biomarkers, suppressor of tumorigenesis 2 and regenerating islet-derived 3α. We conducted a multicenter proof-of-concept "preemptive" treatment trial of α-1-antitrypsin (AAT), a serine protease inhibitor with demonstrated activity against GVHD, in patients at high risk for developing SR GVHD. Patients were eligible if they possessed a high-risk MAP on day 7 after HCT or, if initially low risk, became high risk on repeat testing at day 14. Thirty high-risk patients were treated with twice-weekly infusions of AAT for a total of 16 doses, and their outcomes were compared with 90 high-risk near-contemporaneous MAGIC control patients. AAT treatment was well tolerated with few toxicities, but it did not lower the incidence of SR GVHD compared with controls (20% vs 14%, P = .56). We conclude that real-time biomarker-based risk assignment is feasible early after allogeneic HCT but that this dose and schedule of AAT did not change the incidence of SR acute GVHD. This trial was registered at www.clinicaltrials.gov as #NCT03459040.
Collapse
|
27
|
Johncilla M, Elsoukkary S, Jessurun J. The significance of focally enhanced gastritis in haematopoietic stem cell transplant recipients. Histopathology 2021; 79:599-606. [PMID: 33866587 DOI: 10.1111/his.14389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/22/2021] [Accepted: 04/13/2021] [Indexed: 11/29/2022]
Abstract
AIMS The histological diagnosis of acute gastric graft-versus-host-disease (aGVHD) in patients with a history of haematopoietic stem cell transplant (HSCT) is based on the presence of epithelial cell apoptosis and karyorrhectic debris. There is, however, limited information on the histological findings in patients who develop symptoms several months after transplant. Focally enhanced gastritis (FEG), defined by the presence of focal periglandular lymphohistiocytic inflammation with neutrophilic or lymphocytic intra-epithelial infiltration of gastric glands, has been described in patients with inflammatory bowel disease and in HSCT patients. The pattern closely resembles the focal periductal inflammation and lymphocytic exocytosis seen in chronic GVHD of the salivary gland. We sought to evaluate the significance of FEG in HSCT patients. METHODS AND RESULTS Gastric biopsies from 151 HSCT patients who underwent endoscopies for GVHD-like symptoms were identified. Time from transplant to biopsy, presence of extra-gastric GVHD, medications and outcome were noted. Thirty-five biopsies showed FEG and 21 showed aGVHD; the remainder were either normal or showed non-specific changes. Twenty-one (60%) FEG patients had concurrent histologically proven extra-gastric GVHD. The time to biopsy in FEG patients was significantly longer than in aGVHD patients (162 versus 57 days, P < 0.01). Prior or subsequent gastric biopsies of 14 patients in the FEG cohort were also evaluated and, of these, six showed aGVHD while one showed persistent FEG. CONCLUSIONS These findings suggest that FEG probably represents a form of late-occurring GVHD. This histological pattern should not be overlooked when identified in gastric biopsies from HSCT patients.
Collapse
Affiliation(s)
- Melanie Johncilla
- Department of Pathology, Weill Cornell College of Medicine, New York, NY, USA
| | - Sarah Elsoukkary
- Department of Pathology, Weill Cornell College of Medicine, New York, NY, USA
| | - Jose Jessurun
- Department of Pathology, Weill Cornell College of Medicine, New York, NY, USA
| |
Collapse
|
28
|
How I perform hematopoietic stem cell transplantation on patients with a history of invasive fungal disease. Blood 2021; 136:2741-2753. [PMID: 33301030 DOI: 10.1182/blood.2020005884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/13/2020] [Indexed: 02/08/2023] Open
Abstract
Hematopoietic transplantation is the preferred treatment for many patients with hematologic malignancies. Some patients may develop invasive fungal diseases (IFDs) during initial chemotherapy, which need to be considered when assessing patients for transplantation and treatment posttransplantation. Given the associated high risk of relapse and mortality in the post-hematopoietic stem cell transplantation (HSCT) period, IFDs, especially invasive mold diseases, were historically considered a contraindication for HSCT. Over the last 3 decades, advances in antifungal drugs and early diagnosis have improved IFD outcomes, and HSCT in patients with a recent IFD has become increasingly common. However, an organized approach for performing transplantation in patients with a prior IFD is scarce, and decisions are highly individualized. Patient-, malignancy-, transplantation procedure-, antifungal treatment-, and fungus-specific issues affect the risk of IFD relapse. Effective surveillance to detect IFD relapse post-HSCT and careful drug selection for antifungal prophylaxis are of paramount importance. Antifungal drugs have their own toxicities and interact with immunosuppressive drugs such as calcineurin inhibitors. Immune adjunct cytokine or cellular therapy and surgery can be considered in selected cases. In this review, we critically evaluate these factors and provide guidance for the complex decision making involved in the peri-HSCT management of these patients.
Collapse
|
29
|
Biernat MM, Urbaniak-Kujda D, Dybko J, Kapelko-Słowik K, Prajs I, Wróbel T. Fecal microbiota transplantation in the treatment of intestinal steroid-resistant graft-versus-host disease: two case reports and a review of the literature. J Int Med Res 2021; 48:300060520925693. [PMID: 32527171 PMCID: PMC7294377 DOI: 10.1177/0300060520925693] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Acute graft-versus-host disease (aGvHD) reduces the efficiency and safety of allogeneic hematopoietic stem cell transplantation (allo-HSCT). In recent years, attempts have been made to transplant fecal microbiota from healthy donors to treat intestinal GvHD. This study presented two cases of patients undergoing allo-HSCT who were later selected for fecal microbiota transplantation (FMT). In the first patient, FMT resulted in the complete resolution of symptoms, whereas therapeutic efficacy was not achieved in the second patient. FMT eliminated drug-resistant pathogens, namely very drug-resistant Enterococcus spp., but not multidrug-resistant Acinetobacter baumannii or Candida spp. Further research is needed, particularly on the safety of FMT in patients with intestinal steroid-resistant GvHD and on the distant impact of transplanted microflora on the outcomes of allo-HSCT. FMT appears promising for the treatment of patients with steroid-resistant GvHD.
Collapse
Affiliation(s)
- Monika Maria Biernat
- Department and Clinic of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Donata Urbaniak-Kujda
- Department and Clinic of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Jarosław Dybko
- Department and Clinic of Internal and Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Kapelko-Słowik
- Department and Clinic of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Iwona Prajs
- Department and Clinic of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Tomasz Wróbel
- Department and Clinic of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
30
|
Hong T, Wang R, Wang X, Yang S, Wang W, Gao Q, Zhang X. Interplay Between the Intestinal Microbiota and Acute Graft-Versus-Host Disease: Experimental Evidence and Clinical Significance. Front Immunol 2021; 12:644982. [PMID: 33815399 PMCID: PMC8010685 DOI: 10.3389/fimmu.2021.644982] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/26/2021] [Indexed: 12/23/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapy for many hematological disorders and autoimmune diseases, but acute graft-versus-host disease (aGVHD) has remained a major obstacle that limits allo-HSCT and exhibits a daunting mortality rate. The gastrointestinal system is among the most common sites affected by aGVHD. Experimental advances in the field of intestinal microbiota research enhanced our understanding - not only of the quantity and diversity of intestinal microbiota - but also their association with homeostasis of the immune system and disease pathogenesis, including that of aGVHD. Meanwhile, ever-growing clinical evidence suggest that the intestinal microbiota is dysregulated in patients who develop aGVHD and that the imbalance may affect clinical outcomes, indicating a potential predictive role for microbiota dysregulation in aGVHD severity and prognosis. The current animal and human studies investigating the intestinal microbiota in aGVHD and the understanding of the influence and management of the microbiota in the clinic are reviewed herein. Taken together, monitoring and remodeling the intestinal microecology following allo-HSCT may provide us with promising avenues for diagnosing, preventing or treating aGVHD in the clinic.
Collapse
Affiliation(s)
- Tao Hong
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rui Wang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shijie Yang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Weihao Wang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiangguo Gao
- Department of Cell Biology, College of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
31
|
Ritacco C, Ehx G, Grégoire C, Daulne C, Willems E, Servais S, Beguin Y, Baron F. High proportion of terminally differentiated regulatory T cells after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2021; 56:1828-1841. [PMID: 33664462 DOI: 10.1038/s41409-021-01221-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/25/2020] [Accepted: 01/08/2021] [Indexed: 11/09/2022]
Abstract
It is now well-established that regulatory T cells (Treg) represent a heterogeneous group of CD4+ T cells. Previous studies have demonstrated that Treg homeostasis was impacted by allogeneic hematopoietic cell transplantation (allo-HCT) and particularly so in patients with chronic graft-versus-host disease (GVHD). Here, we first assessed the ability of various Treg subsets to phosphorylate STAT5 in response to IL-2 or IL-7 stimulation in vitro. We then compared the frequencies of different Treg subtypes in healthy controls as well as in allo-HCT patients with or without chronic GVHD. The highest phosphorylated STAT5 (pSTAT5) signal in response to IL-2 was observed in the CD45RO+CD26-CD39+HLA-DR+ Treg fraction. In contrast, naive Treg were mostly less susceptible to IL-2 stimulation in vitro. Following IL-7 stimulation, most Treg subpopulations upregulated pSTAT5 expression but to a lesser extent than conventional T cells. Compared to healthy controls, allo-HCT patients had lower frequencies of the naive CD45RAbrightCD26+ Treg subpopulation but higher frequencies of the most differentiated memory CD45RO+CD26-CD39+ Treg subpopulations. Further, unbiased analysis revealed that six Treg clusters characterized by high expression of CD25, HLA-DR, and ICOS were significantly more frequent in patients with no or with limited chronic GVHD than in those with moderate/severe chronic GVHD.
Collapse
Affiliation(s)
- Caroline Ritacco
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I³, University of Liège, Liège, Belgium
| | - Grégory Ehx
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I³, University of Liège, Liège, Belgium
| | - Céline Grégoire
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I³, University of Liège, Liège, Belgium.,Division of Hematology, Department of Medicine, CHU of Liège, Liège, Belgium
| | - Coline Daulne
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I³, University of Liège, Liège, Belgium
| | - Evelyne Willems
- Division of Hematology, Department of Medicine, CHU of Liège, Liège, Belgium
| | - Sophie Servais
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I³, University of Liège, Liège, Belgium.,Division of Hematology, Department of Medicine, CHU of Liège, Liège, Belgium
| | - Yves Beguin
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I³, University of Liège, Liège, Belgium.,Division of Hematology, Department of Medicine, CHU of Liège, Liège, Belgium
| | - Frédéric Baron
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I³, University of Liège, Liège, Belgium. .,Division of Hematology, Department of Medicine, CHU of Liège, Liège, Belgium.
| |
Collapse
|
32
|
Use of ruxolitinib to control graft-versus-host-like disease in Omenn syndrome and successfully bridging to HSCT. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:2531-2533.e1. [PMID: 33631407 DOI: 10.1016/j.jaip.2021.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 11/23/2022]
|
33
|
Efficiency and Toxicity of Ruxolitinib as the Salvage Treatment in Steroid-Refractory Acute Graft-Versus-Host Disease after Haplo-Identical Stem Cell Transplantation. Transplant Cell Ther 2021; 27:332.e1-332.e8. [PMID: 33836880 DOI: 10.1016/j.jtct.2021.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/23/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022]
Abstract
Haplo-identical stem cell transplantation (haplo-SCT) for hematological malignancies has ushered in a new era in which everyone has a potential donor. However, the occurrence of steroid-refractory acute graft-versus-host disease (SR-aGVHD), with no priority among second-line therapies, leads to late mortality after haplo-SCT. Ruxolitinib is the first drug recommended for SR-aGVHD. Here, we report the outcome data from 40 patients after haplo-SCT following the Beijing Protocol who had received ruxolitinib as a salvage therapy for grades II to IV SR-aGVHD in our center between November 2017 and May 2019. The overall response rate was 85% (34/40; 95% confidence interval [CI], 73.4% to 96.6%), including 25 patients with complete response. The median time to first response was 10 days. The levels of inflammatory cytokines and T cell activation declined, and the percentage of regulatory T cells increased. The rate of GVHD relapse was 26.5% (9/34; 95% CI, 10.8% to 42.1%) in responders. Cytomegalovirus reactivation and cytopenia were the major adverse events after ruxolitinib was begun (57.5% and 60%, respectively). The 6-month overall survival estimate was 56.8% (95% CI, 41.5% to 72.1%), and the event-free survival was 45% (95% CI, 29.7% to 60.3%). Liver GVHD was associated with a worse response rate and poor survival. Collectively, ruxolitinib could be an effective treatment for SR-aGVHD patients after haplo-SCT.
Collapse
|
34
|
Pucci Molineris M, González Polo V, Rumbo C, Fuxman C, Lowestein C, Nachman F, Rumbo M, Gondolesi G, Meier D. Acute cellular rejection in small-bowel transplantation impairs NCR + innate lymphoid cell subpopulation 3/interleukin 22 axis. Transpl Immunol 2020; 60:101288. [PMID: 32209429 DOI: 10.1016/j.trim.2020.101288] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
Abstract
Acute cellular rejection (ACR) remains as one of the main causes of graft loss and death in intestinal transplant (ITx) patients. ACR promotes intestinal injury, disruption of the mucosal barrier, bacterial translocation, and organ dysfunction. As epithelial regeneration is critical in reversing these consequences, the functional axis between the innate lymphoid cell subpopulation 3 (ILC3) and interleukin 22 plays an essential role in that process. Natural-cytotoxic-receptor-positive (NCR+) ILC3 cells have been demonstrated to induce intestinal-stem-cell proliferation along with an IL-22-dependent expansion of that population in several intestinal pathologies, though thus far not after ITx. Therefore, we intended to determine the impact of chronic immunosuppression and ACR on ILC3 cells and interleukin-22 (IL-22) production in the lamina propria after that intervention. MATERIALS AND METHODS We compared biopsies from healthy volunteers with biopsies from ITx recipients without or with mild-to-moderate ACR, using flow cytometry and the quantitative-PCR. RESULTS NCR+ ILC3 cells were found to be unaffected by immunosuppression at different time points posttransplant when patients did not experience ACR, but were diminished upon the occurrence of ACR independently of the post-ITx time. Moreover, IL-22-expression levels were notably reduced in ACR. CONCLUSION The NCR+-ILC3/IL-22 axis is impaired during ACR contributing to a delay in or lack of a complete and efficient epithelial regeneration. Thus, our findings reveal that IL-22 analogues could potentially be used as a new complementary therapeutic approach, in conjunction with immunosuppressant drugs, in order to promote mucosal regeneration upon ACR.
Collapse
Affiliation(s)
- Melisa Pucci Molineris
- Laboratorio de Investigación Traslacional e Inmunología Asociada al Trasplante, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina; Unidad de Insuficiencia, Rehabilitación y Trasplante Intestinal, Hospital Universitario Fundación Favaloro, Buenos Aires, Argentina.
| | - Virginia González Polo
- Laboratorio de Investigación Traslacional e Inmunología Asociada al Trasplante, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina; Unidad de Insuficiencia, Rehabilitación y Trasplante Intestinal, Hospital Universitario Fundación Favaloro, Buenos Aires, Argentina.
| | - Carolina Rumbo
- Unidad de Insuficiencia, Rehabilitación y Trasplante Intestinal, Hospital Universitario Fundación Favaloro, Buenos Aires, Argentina.
| | - Claudia Fuxman
- Servicio de Gastroenterología, Hospital Universitario Fundación Favaloro, Buenos Aires, Argentina.
| | - Carlos Lowestein
- Servicio de Gastroenterología, Hospital Universitario Fundación Favaloro, Buenos Aires, Argentina.
| | - Fabio Nachman
- Servicio de Gastroenterología, Hospital Universitario Fundación Favaloro, Buenos Aires, Argentina.
| | - Martín Rumbo
- Instituto de Estudios Inmunológicos y Fisiopatológicos, UNLP-CONICET, La Plata, Argentina.
| | - Gabriel Gondolesi
- Laboratorio de Investigación Traslacional e Inmunología Asociada al Trasplante, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina; Unidad de Insuficiencia, Rehabilitación y Trasplante Intestinal, Hospital Universitario Fundación Favaloro, Buenos Aires, Argentina.
| | - Dominik Meier
- Laboratorio de Investigación Traslacional e Inmunología Asociada al Trasplante, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina; Unidad de Insuficiencia, Rehabilitación y Trasplante Intestinal, Hospital Universitario Fundación Favaloro, Buenos Aires, Argentina.
| |
Collapse
|
35
|
Morozova EV, Barabanshikova MV, Moiseev IS, Shakirova AI, Barhatov IM, Ushal IE, Rodionov GG, Moiseev SI, Surkova EA, Lapin SV, Vlasova JJ, Rudakova TA, Darskaya EI, Baykov VV, Alyanski AL, Bondarenko SN, Afanasyev BV. A Prospective Pilot Study of Graft-versus-Host Disease Prophylaxis with Post-Transplantation Cyclophosphamide and Ruxolitinib in Patients with Myelofibrosis. Acta Haematol 2020; 144:158-165. [PMID: 32325461 DOI: 10.1159/000506758] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/24/2020] [Indexed: 12/25/2022]
Abstract
INTRODUCTION This prospective study evaluated a calcineurin inhibitor-free graft-versus-host disease (GVHD) prophylaxis regimen of ruxolitinib in combination with post-transplant cyclophosphamide (PTCy). Patents and Methods: Twenty patients with primary or secondary myelofibrosis were prospectively enrolled. Reduced intensity conditioning was performed, followed by allogeneic stem cell transplantation from related (n = 7) or unrelated (n = 13) donors. GVHD prophylaxis included only PTCy and ruxolitinib (45 mg) from day-7 to day-2, and 15 mg from day+5 to day+100. This trial was registered at www.clinicaltrials.gov as #NCT02806375. RESULTS Primary engraftment was documented in 17 patients. One patient experienced primary graft failure and 2 died before engraftment. Eleven patients demonstrated severe poor graft function (SPGF), which required ruxolitinib dose reduction. The regimen was well tolerated, with grade 3-4 non-haematological toxicity in 30%, viral reactivation in 45%, and severe sepsis in 15% of patients. The incidence of acute GVHD grade II-IV was 25%, grade III-IV GVHD was 15%, and moderate chronic GVHD was 20%, with no severe cases. Only 2 patients required systemic steroids. Haematological relapse was documented in 1 patient. Two-year non-relapse mortality was 15%, 2-year overall survival was 85%, and 2-year event-free survival was 72%. CONCLUSION GVHD prophylaxis with PTCy and ruxolitinib is associated with low toxicity, good acute and chronic GVHD control, and low relapse incidence. However, the relatively high rate of SPGF should be taken into account. SPGF could possibly be mitigated by ruxolitinib dose reduction.
Collapse
Affiliation(s)
- Elena Vladislavovna Morozova
- R.M. Gorbacheva Memorial Institute of Oncology, Hematology and Transplantation, Pavlov First Saint Petersburg State Medical University, Saint-Petersburg, Russian Federation
| | - Maria Vladimirovna Barabanshikova
- R.M. Gorbacheva Memorial Institute of Oncology, Hematology and Transplantation, Pavlov First Saint Petersburg State Medical University, Saint-Petersburg, Russian Federation,
| | - Ivan Sergeevich Moiseev
- R.M. Gorbacheva Memorial Institute of Oncology, Hematology and Transplantation, Pavlov First Saint Petersburg State Medical University, Saint-Petersburg, Russian Federation
| | - Alena Igorevna Shakirova
- R.M. Gorbacheva Memorial Institute of Oncology, Hematology and Transplantation, Pavlov First Saint Petersburg State Medical University, Saint-Petersburg, Russian Federation
| | - Ildar Munerovich Barhatov
- R.M. Gorbacheva Memorial Institute of Oncology, Hematology and Transplantation, Pavlov First Saint Petersburg State Medical University, Saint-Petersburg, Russian Federation
| | - Inna Edvardovna Ushal
- Nikiforov Russian Center of Emergency and Radiation Medicine, Saint-Petersburg, Russian Federation
| | | | - Sergey Ivanovich Moiseev
- Nikiforov Russian Center of Emergency and Radiation Medicine, Saint-Petersburg, Russian Federation
| | - Elena Arkadjevna Surkova
- Laboratory of Autoimmune Diagnostics, Pavlov First Saint Petersburg State Medical University, Saint-Petersburg, Russian Federation
| | - Sergey Vladimirovich Lapin
- Laboratory of Autoimmune Diagnostics, Pavlov First Saint Petersburg State Medical University, Saint-Petersburg, Russian Federation
| | - Julia Jurjevna Vlasova
- R.M. Gorbacheva Memorial Institute of Oncology, Hematology and Transplantation, Pavlov First Saint Petersburg State Medical University, Saint-Petersburg, Russian Federation
| | - Tatjana Alexandrovna Rudakova
- R.M. Gorbacheva Memorial Institute of Oncology, Hematology and Transplantation, Pavlov First Saint Petersburg State Medical University, Saint-Petersburg, Russian Federation
| | - Elena Igorevna Darskaya
- R.M. Gorbacheva Memorial Institute of Oncology, Hematology and Transplantation, Pavlov First Saint Petersburg State Medical University, Saint-Petersburg, Russian Federation
| | - Vadim Valentinovich Baykov
- R.M. Gorbacheva Memorial Institute of Oncology, Hematology and Transplantation, Pavlov First Saint Petersburg State Medical University, Saint-Petersburg, Russian Federation
| | - Alksandr Leonidovich Alyanski
- R.M. Gorbacheva Memorial Institute of Oncology, Hematology and Transplantation, Pavlov First Saint Petersburg State Medical University, Saint-Petersburg, Russian Federation
| | - Sergey Nikolaevich Bondarenko
- R.M. Gorbacheva Memorial Institute of Oncology, Hematology and Transplantation, Pavlov First Saint Petersburg State Medical University, Saint-Petersburg, Russian Federation
| | - Boris Vladimirovich Afanasyev
- R.M. Gorbacheva Memorial Institute of Oncology, Hematology and Transplantation, Pavlov First Saint Petersburg State Medical University, Saint-Petersburg, Russian Federation
| |
Collapse
|
36
|
Histological and magnified endoscopic evaluation of villous atrophy in gastrointestinal graft-versus-host disease. Ann Hematol 2020; 99:1121-1128. [PMID: 32130472 DOI: 10.1007/s00277-020-03966-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/15/2020] [Indexed: 10/24/2022]
Abstract
AIM To measure histological villous atrophy and to clarify the diagnostic accuracy of endoscopic villous atrophy in gastrointestinal graft-versus-host disease. METHODS Data for patients who underwent upper and/or lower endoscopic examinations after hematopoietic stem cell transplantation were retrospectively collected. In study 1, group A included 56 patients in whom GI-GVHD was histologically confirmed and group B included 60 patients in whom GI-GVHD was not histologically confirmed. Group C included 59 patients before HSCT. The lengths of villi and crypts in the duodenum and terminal ileum were histologically measured. In study 2, the diagnostic accuracies of villous atrophy of the duodenum and of the terminal ileum using magnifying endoscopy were evaluated. RESULTS In study 1, the lengths of villi and the villi/crypt (V/C) ratios of the duodenum and terminal ileum in group A were significantly smaller than those in the other groups (p < 0.05). V/C ratio was moderately correlated with clinical severity, histological grades, and endoscopic grades in the terminal ileum. In study 2, the diagnostic accuracies of magnified images for villous atrophy were 83.8% in the duodenum and 94.9% in the terminal ileum. CONCLUSION Magnifying endoscopy enables evaluation of villous atrophy and is useful for optical biopsy of GVHD.
Collapse
|
37
|
Mossallam GI, Fattah RA, Mahmoud HK. Nuclear factor-κB1 and MicroRNA-146a polymorphisms and risk of acute graft versus host disease post allogeneic stem cell transplantation. Immunobiology 2019; 225:151876. [PMID: 31813598 DOI: 10.1016/j.imbio.2019.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
Abstract
Acute graft-versus-host disease (aGVHD) is a severe inflammatory complication of haematopoeitic stem cell transplantation. The nuclear factor- Kappa Beta (NF-κB) signaling pathway regulates T cell activation. The NF-κB controls the expression of microRNA-146a (miR-146a) that in turn regulates NF-κB activation through a negative feedback loop. We aim to analyze the association between NF-κB1 encoding p50 (rs28362491, -94 in.ertion/deletion ATTG) and miR-146a (rs2910164, G > C) polymorphisms and risk of aGVHD. Genotyping was performed for 135 HLA-matched donors using polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP).The incidence of aGVHD grades II-IV was 24/135 (17.8 %). NF-κB1 genotype and cytomegalovirus infection were significantly associated with risk of aGVHD II-IV (p = 0.022, HR = 3.17, 95 % CI:1.18-8.51 and p = 0.048, HR = 2.56, 95 % CI:1.01-6.52, respectively). In multivariate analysis, NF-κB1homozygous deletion/deletion genotype was the only independent risk factor associated with aGVHD II-IV (p = 0.013, HR = 3.50, 95 % CI:1.30-9.44). No significant association could be observed between miR-146a polymorphism and aGVHD. Combined NF-κB1 and miR146a genotype analysis warrants investigation in a larger cohort. Our preliminary data do not support the association between miR146a and aGVHD, but suggest an association between NF-κB1 and risk of aGVHD that may pave the way for the development of a novel targeted therapy if proved in a larger cohort.
Collapse
Affiliation(s)
- Ghada I Mossallam
- Bone Marrow Transplantation Laboratory Unit, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Raafat Abdel Fattah
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt Bone Marrow Transplantation Unit, Nasser Institute Hospital for Research and Treatment, Cairo, Egypt
| | - Hossam K Mahmoud
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt Bone Marrow Transplantation Unit, Nasser Institute Hospital for Research and Treatment, Cairo, Egypt
| |
Collapse
|
38
|
Riegel C, Boeld TJ, Doser K, Huber E, Hoffmann P, Edinger M. Efficient treatment of murine acute GvHD by in vitro expanded donor regulatory T cells. Leukemia 2019; 34:895-908. [PMID: 31719679 PMCID: PMC7214258 DOI: 10.1038/s41375-019-0625-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/30/2019] [Accepted: 11/03/2019] [Indexed: 12/15/2022]
Abstract
Acute graft-versus-host disease (aGvHD) is a frequent complication after allogeneic bone marrow/stem cell transplantation (BMT/SCT) induced by co-transplanted alloreactive conventional donor T cells. We previously demonstrated that the adoptive transfer of donor CD4+CD25+Foxp3+ regulatory T cells (Treg) at the time of BMT prevents aGvHD in murine models. Yet, the therapeutic potential of donor Treg for the treatment of established aGvHD has not yet been studied in detail. We now used in vitro expanded phenotypically and functionally stable murine Treg to explore their therapeutic efficacy in haploidentical aGvHD models. Upon transfer donor Treg ameliorate clinical and histologic signs of aGvHD and significantly improve survival. They migrate to lymphoid as well as aGvHD target organs, predominantly the gastrointestinal tract, where they inhibit the proliferation of conventional T cells, reduce the influx of myeloid cells, and the accumulation of inflammatory cytokines. Successfully treated animals restore aGvHD-induced tissue damage in target organs and lymphoid tissues, thereby supporting lymphocyte reconstitution. The therapeutically applied Treg population survives long term without conversion into pathogenic effector T cells. These results demonstrate that donor Treg not only prevent aGvHD, but are also efficacious for the treatment of this life-threatening BMT complication.
Collapse
Affiliation(s)
- Christin Riegel
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Tina J Boeld
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Kristina Doser
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Comprehensive Cancer Center, Munich, Germany
| | - Elisabeth Huber
- Institute of Pathology, University Regensburg, Regensburg, Germany.,Pathology Department, Red Cross Hospital, Munich, Germany
| | - Petra Hoffmann
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology, Regensburg, Germany
| | - Matthias Edinger
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany. .,Regensburg Center for Interventional Immunology, Regensburg, Germany.
| |
Collapse
|
39
|
Matsuoka S, Hashimoto D, Kadowaki M, Ohigashi H, Hayase E, Yokoyama E, Hasegawa Y, Tateno T, Chen X, Aoyama K, Oka H, Onozawa M, Takeda K, Akashi K, Teshima T. Myeloid differentiation factor 88 signaling in donor T cells accelerates graft- versus-host disease. Haematologica 2019; 105:226-234. [PMID: 31048358 PMCID: PMC6939524 DOI: 10.3324/haematol.2018.203380] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 04/30/2019] [Indexed: 01/30/2023] Open
Abstract
Myeloid differentiation factor 88 (MyD88) signaling has a crucial role in activation of both innate and adoptive immunity. MyD88 transduces signals via Toll-like receptor and interleukin-1 receptor superfamily to the NFκB pathway and inflammasome by forming a molecular complex with interleukin-1 receptor-associated kinase 4. The MyD88/interleukin-1 receptor-associated kinase 4 pathway plays an important role, not only in innate immunity, but also T-cell immunity; however, its role in donor T cells on the pathophysiology of graft-versus-host disease (GvHD) remains to be elucidated. We addressed this issue by using MyD88-deficient T cells in a mouse model of allogeneic hematopoietic stem cell transplantation (allo-SCT). While MyD88-deficient and wild-type T cells proliferated equivalently after transplantation, MyD88-deficient T cells demonstrated impaired survival and differentiation toward Th1, Tc1, and Th17, and induced less severe GvHD compared to wild-type T cells. Administration of interleukin-1 receptor-associated kinase 4 inhibitor PF-06650833 significantly ameliorated GvHD after allo-SCT. These results thus demonstrate that donor T-cell MyD88/interleukin-1 receptor-associated kinase 4 pathway is a novel therapeutic target against GvHD after allo-SCT.
Collapse
Affiliation(s)
- Satomi Matsuoka
- Department of Hematology, Faculty of Medicine, Hokkaido University, Sapporo
| | - Daigo Hashimoto
- Department of Hematology, Faculty of Medicine, Hokkaido University, Sapporo
| | - Masanori Kadowaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka
| | - Hiroyuki Ohigashi
- Department of Hematology, Faculty of Medicine, Hokkaido University, Sapporo
| | - Eiko Hayase
- Department of Hematology, Faculty of Medicine, Hokkaido University, Sapporo
| | - Emi Yokoyama
- Department of Hematology, Faculty of Medicine, Hokkaido University, Sapporo
| | - Yuta Hasegawa
- Department of Hematology, Faculty of Medicine, Hokkaido University, Sapporo
| | - Takahiro Tateno
- Department of Hematology, Faculty of Medicine, Hokkaido University, Sapporo
| | - Xuanzhong Chen
- Department of Hematology, Faculty of Medicine, Hokkaido University, Sapporo
| | - Kazutoshi Aoyama
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka
| | - Hideyo Oka
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka
| | - Masahiro Onozawa
- Department of Hematology, Faculty of Medicine, Hokkaido University, Sapporo
| | - Kiyoshi Takeda
- Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka
| | - Takanori Teshima
- Department of Hematology, Faculty of Medicine, Hokkaido University, Sapporo
| |
Collapse
|
40
|
Abstract
Graft-versus-host disease (GvHD) is a common complication of hematopoietic cell transplantation that negatively impacts quality of life in recipients and can be fatal. Animal experiments and human studies provide compelling evidence that the gut microbiota is associated with risk of GvHD, but the nature of this relationship remains unclear. If the gut microbiota is a driver of GvHD pathogenesis, then manipulation of the gut microbiota offers one promising avenue for preventing or treating this common condition, and antibiotic stewardship efforts in transplantation may help preserve the indigenous microbiota and modulate immune responses to benefit the host.
Collapse
|
41
|
Ruxolitinib for Therapy of Graft-versus-Host Disease. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8163780. [PMID: 30956985 PMCID: PMC6431395 DOI: 10.1155/2019/8163780] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 12/03/2022]
Abstract
Objective Steroid-resistant graft-versus-host disease (GvHD) is a major challenge after allogeneic stem cell transplantation and associated with significant morbidity and mortality. There is no therapeutic standard defined beyond calcineurin inhibitors (CNI) and steroids. Furthermore, some patients may have contraindications against CNI or high-dose steroids. Efficacy of ruxolitinib against GvHD has been described recently. Methods Ruxolitinib was used for treatment of acute or chronic GvHD in eight patients. The patients either needed intensification of therapy or had contraindications against use of CNI or high-dose steroids. Results Supplementation of therapy in acute GvHD with severe diarrhea with ruxolitinib was unsuccessful. All these patients died from acute GvHD. Introduction of ruxolitinib into therapy and relapse prophylaxis in other patients was successful in 4/4 cases (CR=3, PR=1). Indications for ruxolitinib were contraindications against CNI due to aHUS in two cases and the need for steroid sparing in two other cases. None of these patients suffered from diarrhea at the initiation of ruxolitinib. Conclusion Ruxolitinib was effective for therapy of acute and chronic GvHD in higher lines in patients without severe diarrhea. Ruxolitinib could replace successfully CNI and high-dose steroids. Further investigations are necessary to define the position of ruxolitinib in GvHD-therapy.
Collapse
|
42
|
Tijaro-Ovalle NM, Karantanos T, Wang HT, Boussiotis VA. Metabolic Targets for Improvement of Allogeneic Hematopoietic Stem Cell Transplantation and Graft-vs.-Host Disease. Front Immunol 2019; 10:295. [PMID: 30891031 PMCID: PMC6411635 DOI: 10.3389/fimmu.2019.00295] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/05/2019] [Indexed: 12/13/2022] Open
Abstract
Utilization of the adaptive immune system against malignancies, both by immune-based therapies to activate T cells in vivo to attack cancer and by T-cell therapies to transfer effector cytolytic T lymphocytes (CTL) to the cancer patient, represent major novel therapeutic advancements in oncologic therapy. Allogeneic hematopoietic stem cell (HSC) transplantation (HSCT) is a form of cell-based therapy, which replaces the HSC in the patient's bone marrow but also serves as a T-cell therapy due to the Graft-vs.-leukemia (GVL) effect mediated by donor T cells transferred with the graft. Allogeneic HSCT provides one potentially curative option to patients with relapsed or refractory leukemia but Graft-vs.-Host-Disease (GVHD) is the main cause of non-relapse mortality and limits the therapeutic benefit of allogeneic HSCT. Metabolism is a common cellular feature and has a key role in the differentiation and function of T cells during the immune response. Naïve T cells and memory T cells that mediate GVHD and GVL, respectively, utilize distinct metabolic programs to obtain their immunological and functional specification. Thus, metabolic targets that mediate immunosuppression might differentially affect the functional program of GVHD-mediating or GVL-mediating T cells. Components of the innate immune system that are indispensable for the activation of alloreactive T cells are also subjected to metabolism-dependent regulation. Metabolic alterations have also been implicated in the resistance to chemotherapy and survival of malignant cells such as leukemia and lymphoma, which are targeted by GVL-mediating T cells. Development of novel approaches to inhibit the activation of GVHD-specific naïve T cell but maintain the function of GVL-specific memory T cells will have a major impact on the therapeutic benefit of HSCT. Here, we will highlight the importance of metabolism on the function of GVHD-inducing and GVL-inducing alloreactive T cells as well as on antigen presenting cells (APC), which are required for presentation of host antigens. We will also analyze the metabolic alterations involved in the leukemogenesis which could differentiate leukemia initiating cells from normal HSC, providing potential therapeutic opportunities. Finally, we will discuss the immuno-metabolic effects of key drugs that might be repurposed for metabolic management of GVHD without compromising GVL.
Collapse
Affiliation(s)
- Natalia M Tijaro-Ovalle
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Theodoros Karantanos
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Hong-Tao Wang
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
43
|
Kumari R, Palaniyandi S, Hildebrandt GC. Microbiome: An Emerging New Frontier in Graft-Versus-Host Disease. Dig Dis Sci 2019; 64:669-677. [PMID: 30523482 DOI: 10.1007/s10620-018-5369-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/07/2018] [Indexed: 12/12/2022]
Abstract
Hematopoietic cell transplantation is an intensive therapy used to treat high-risk hematological malignant disorders and other life-threatening hematological and genetic diseases. Graft-versus-host disease (GVHD) presents a barrier to its wider application. A conditioning regimen and medications given to patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HCT) are capable of disturbing the homeostatic crosstalk between the microbiome and the host immune system and of leading to dysbiosis. Intestinal inflammation in the context of GVHD is associated with loss in microbial diversity that could serve as an independent predictor of mortality. Successful gastrointestinal decontamination using high doses of non-absorbable antibiotics likely affect allo-HCT outcomes leading to significantly less acute GVHD (aGVHD). Butyrate-producing Clostridia directly result in the increased presence of regulatory T cells in the gut, which are protective in GVHD development. Beyond the microbiome, Candida, a member of the mycobiome, colonization in the gut has been considered as a risk factor in pathophysiology of aGVHD and reduction in GVHD is observed with antifungal prophylaxis with fluconazole. Reduced number of goblet cells and Paneth cells have been shown to associate with GVHD and has a significant impact on the micro- and mycobiome density and their composition. Lower levels of 3-indoxyl sulfate at initial stages after allo-HCT are related with worse GVHD outcomes and increased mortality. Increased understanding of the vital role of the gut microbiome in GVHD can give directions to move the field towards the development of improved innovative approaches for preventing or treating GVHD following allo-HCT.
Collapse
Affiliation(s)
- Reena Kumari
- Division of Hematology & Blood and Marrow Transplantation, Markey Cancer Center, University of Kentucky, 900 S. Limestone, Lexington, KY, 40536-0093, USA
| | - Senthilnathan Palaniyandi
- Division of Hematology & Blood and Marrow Transplantation, Markey Cancer Center, University of Kentucky, 900 S. Limestone, Lexington, KY, 40536-0093, USA
| | - Gerhard Carl Hildebrandt
- Division of Hematology & Blood and Marrow Transplantation, Markey Cancer Center, University of Kentucky, 900 S. Limestone, Lexington, KY, 40536-0093, USA. .,Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, 800 Rose Street, Lexington, KY, 40536-0093, USA.
| |
Collapse
|
44
|
Daugėlaitė G, Užkuraitytė K, Jagelavičienė E, Filipauskas A. Prevention and Treatment of Chemotherapy and Radiotherapy Induced Oral Mucositis. ACTA ACUST UNITED AC 2019; 55:medicina55020025. [PMID: 30678228 PMCID: PMC6410239 DOI: 10.3390/medicina55020025] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/26/2018] [Accepted: 01/20/2019] [Indexed: 11/16/2022]
Abstract
Background and objectives: Oral mucositis is one of the main adverse events of cancer treatment with chemotherapy or radiation therapy. It presents as erythema, atrophy or/and ulceration of oral mucosa. It occurs in almost all patients, who receive radiation therapy of the head and neck area and from 20% to 80% of patients who receive chemotherapy. There are few clinical trials in the literature proving any kind of treatment or prevention methods to be effective. Therefore, the aim of this study is to perform systematic review of literature and examine the most effective treatment and prevention methods for chemotherapy or/and radiotherapy induced oral mucositis. Materials and methods: Clinical human trials, published from 1 January 2007 to 31 December 2017 in English, were included in this systematic review of literature. Preferred reporting items for systematic reviews and meta-analysis (PRISMA) protocol was followed while planning, providing objectives, selecting studies and analyzing data for this systematic review. "MEDLINE" and "PubMed Central" databases were used to search eligible clinical trials. Clinical trials researching medication, oral hygiene, cryotherapy or laser therapy efficiency in treatment or/and prevention of oral mucositis were included in this systematic review. Results: Results of the studies used in this systematic review of literature showed that laser therapy, cryotherapy, professional oral hygiene, antimicrobial agents, Royal jelly, L. brevis lozenges, Zync supplementation and Benzydamine are the best treatment or/and prevention methods for oral mucositis. Conclusions: Palifermin, Chlorhexidine, Smecta, Actovegin, Kangfuxin, L. brevis lozenges, Royal jelly, Zync supplement, Benzydamine, cryotherapy, laser therapy and professional oral hygiene may be used in oral mucositis treatment and prevention.
Collapse
Affiliation(s)
- Goda Daugėlaitė
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, A. Mickevičiaus 9, LT-44307 Kaunas, Lithuania.
| | - Kristė Užkuraitytė
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, A. Mickevičiaus 9, LT-44307 Kaunas, Lithuania.
| | - Eglė Jagelavičienė
- Department of Dental and Oral Pathology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, LT-50161 Kaunas, Lithuania.
| | | |
Collapse
|
45
|
Villa NY, McFadden G. Virotherapy as Potential Adjunct Therapy for Graft-Vs-Host Disease. CURRENT PATHOBIOLOGY REPORTS 2018; 6:247-263. [PMID: 30595970 PMCID: PMC6290699 DOI: 10.1007/s40139-018-0186-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW This review discusses the pathophysiology, risk factors, and the advances in the prevention or treatment of graft-vs-host disease (GvHD) by exploiting adjunct virotherapy. In addition, nonviral adjunct therapeutic options for the prevention of GvHD in the context of allogeneic hematopoietic stem cell transplantation (allo-HSCT) are discussed. The role of oncolytic viruses to treat different HSCT-eligible hematological cancers is also considered and correlated with the issue of GvHD in the context of allo-HSCT. RECENT FINDINGS Emerging therapies focused on the prevention or treatment of GvHD include the use of regulatory T cells (Tregs), mesenchymal stem cells (MSCs), microbiome manipulation, B cell inhibitors, among others. Our lab and others have reported that an oncolytic DNA virus from the Poxviridae family, called myxoma virus (MYXV), not only exhibits oncolytic activity against various hematologic malignancies like multiple myeloma (MM) or acute myeloid leukemia (AML) but also, in addition, ex vivo MYXV treatment of human allogeneic-bone marrow transplants (allo-BMT), or allo-peripheral blood mononuclear cell (allo-PBMC) transplants can abrogate GvHD in xenografted mice without impairing graft-vs-tumor (GvT) effects against residual cancer. To date, this is the first and the only oncolytic virus with a dual potential of mediating oncolysis against a residual cancer target and also inhibiting or preventing GvHD following allo-HSCT. SUMMARY This review discusses how oncolytic virotherapy can be applied as a potential adjunct therapy for the potential treatment of GvHD. In addition, we highlight major emerging nonviral therapies currently studied for the treatment or prevention of GvHD. We also review the emerging oncolytic virotherapies against different hematological cancers currently eligible for allo-HSCT and highlight the potential role of the oncolytic virus MYXV to decrease GvHD while maintaining or enhancing the positive benefits of GvT.
Collapse
Affiliation(s)
- Nancy Y. Villa
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85287 USA
| | - Grant McFadden
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85287 USA
| |
Collapse
|
46
|
Recipient BCL2 inhibition and NK cell ablation form part of a reduced intensity conditioning regime that improves allo-bone marrow transplantation outcomes. Cell Death Differ 2018; 26:1516-1530. [PMID: 30420758 DOI: 10.1038/s41418-018-0228-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/28/2018] [Accepted: 10/08/2018] [Indexed: 11/08/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (alloSCT) is used to treat over 15,000 patients with acute myeloid leukemia (AML) per year. Donor graft-versus-leukemia (GVL) effect can prevent AML relapse; however, alloSCT is limited by significant toxicity related to conditioning intensity, immunosuppression, opportunistic infections, and graft-versus-host disease (GVHD). Reducing the intensity of conditioning regimens prior to alloSCT has improved their tolerability, but does not alter the pattern of GVHD and has been associated with increased rates of graft rejection and relapse. Here, using a murine pre-clinical model, we describe a novel recipient conditioning approach combining reduced intensity conditioning with either genetic or pharmacological inhibition of NK cell numbers that permits efficient donor engraftment and promotes GVL without inducing GVHD. We show that NK cell-specific deletion of Bcl2 or Mcl1 in mice, or pharmacological inhibition of BCL2 impairs radio-resistant NK cell-mediated rejection of allogeneic engraftment and allows reduction of conditioning intensity below that associated with GVHD priming. The combination of reduced intensity conditioning and NK cell targeting in mice allowed successful donor T cell engraftment and protective immunity against AML while avoiding GVHD. These findings suggest that reduced conditioning in combination with targeted therapies against recipient NK cells may allow the delivery of effective alloSCT against AML while reducing the toxicities associated with more intensive conditioning including GVHD.
Collapse
|
47
|
Budde H, Papert S, Reichardt HM, Jarry H, Riggert J, Legler TJ. An alternative for extracorporeal photopheresis: 8-methoxypsoralen and UVA-treated leucocytes from allogeneic donors improve graft-versus-host disease in mice. Vox Sang 2018; 113:803-810. [PMID: 30353554 DOI: 10.1111/vox.12723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 09/26/2018] [Accepted: 09/29/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Extracorporeal photopheresis (ECP) is an important immune tolerance inducing therapy for graft-versus-host disease (GvHD). However, a sufficient number of ECP cycles cannot be performed in patients with severe GvHD and contraindications for apheresis. Allogeneic sources of leucocytes for use as ECP treatment would be of great benefit. Therefore, this study aimed to test the therapeutic potential of novel sources of leucocytes for ECP. MATERIALS AND METHODS Graft-versus-host disease mice were treated with ECP using therapeutic cells from different allogeneic sources. Splenocytes were incubated with 8-methoxypsoralen (8-MOP), irradiated with UVA light and injected into GvHD mice as a model for ECP. RESULTS The therapy with 8-MOP/UVA-treated cells from healthy mice of the bone marrow transplantation (BMT) donor strain reduced the GvHD symptoms, at least in a model of chronic GvHD. In the acute GvHD model, 8-MOP/UVA-treated cells from the BMT donor or recipient strain did not show significant improvements in GvHD symptoms or survival time. Pre-activation of cells by mixed lymphocyte reactions before 8-MOP/UVA treatment also failed to result in significant differences in survival time or GvHD score. In contrast, ECP with third-party 8-MOP/UVA-treated cells from a HLA-mismatched donor resulted in a mean survival time of 37 days compared to 21 days in the control group. CONCLUSION In our analysis of novel allogeneic leucocyte sources for ECP, we could demonstrate that the source of the 8-MOP/UVA-treated cells is crucial. The underlying immunologic effect of allogeneic 8-MOP/UVA-treated cells needs to be investigated in future studies.
Collapse
Affiliation(s)
- Holger Budde
- Department of Transfusion Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Susanne Papert
- Department of Transfusion Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Holger M Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Hubertus Jarry
- Department of Experimental Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Joachim Riggert
- Department of Transfusion Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Tobias J Legler
- Department of Transfusion Medicine, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
48
|
Li Y, Guan X, Liu W, Chen HL, Truscott J, Beyatli S, Metwali A, Weiner GJ, Zavazava N, Blumberg RS, Urban JF, Blazar BR, Elliott DE, Ince MN. Helminth-Induced Production of TGF-β and Suppression of Graft-versus-Host Disease Is Dependent on IL-4 Production by Host Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:2910-2922. [PMID: 30291167 DOI: 10.4049/jimmunol.1700638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/07/2018] [Indexed: 02/07/2023]
Abstract
Helminths stimulate the secretion of Th2 cytokines, like IL-4, and suppress lethal graft-versus-host disease (GVHD) after bone marrow transplantation. This suppression depends on the production of immune-modulatory TGF-β and is associated with TGF-β-dependent in vivo expansion of Foxp3+ regulatory T cells (Treg). In vivo expansion of Tregs is under investigation for its potential as a therapy for GVHD. Nonetheless, the mechanism of induced and TGF-β-dependent in vivo expansion of Tregs, in a Th2 polarized environment after helminth infection, is unknown. In this study, we show that helminth-induced IL-4 production by host cells is critical to the induction and maintenance of TGF-β secretion, TGF-β-dependent expansion of Foxp3+ Tregs, and the suppression of GVHD. In mice with GVHD, the expanding donor Tregs express the Th2-driving transcription factor, GATA3, which is required for helminth-induced production of IL-4 and TGF-β. In contrast, TGF-β is not necessary for GATA3 expression by Foxp3+ Tregs or by Foxp3- CD4 T cells. Various cell types of innate or adaptive immune compartments produce high quantities of IL-4 after helminth infection. As a result, IL-4-mediated suppression of GVHD does not require invariant NKT cells of the host, a cell type known to produce IL-4 and suppress GVHD in other models. Thus, TGF-β generation, in a manner dependent on IL-4 secretion by host cells and GATA3 expression, constitutes a critical effector arm of helminthic immune modulation that promotes the in vivo expansion of Tregs and suppresses GVHD.
Collapse
Affiliation(s)
- Yue Li
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Xiaoqun Guan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Weiren Liu
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Hung-Lin Chen
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Jamie Truscott
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Sonay Beyatli
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Ahmed Metwali
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - George J Weiner
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242.,Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Nicholas Zavazava
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242.,Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Richard S Blumberg
- Department of Internal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Joseph F Urban
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705; and
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455
| | - David E Elliott
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242.,Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - M Nedim Ince
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242; .,Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
49
|
Yang C, Chen Y, Li F, You M, Zhong L, Li W, Zhang B, Chen Q. The biological changes of umbilical cord mesenchymal stem cells in inflammatory environment induced by different cytokines. Mol Cell Biochem 2018; 446:171-184. [PMID: 29356988 DOI: 10.1007/s11010-018-3284-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/18/2018] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are used as therapeutic tool for the treatment of immune diseases. The inflammatory environment also influences the characteristics of MSCs after transplantation. The aim of the study was to investigate the effects of pro-inflammatory cytokines on the characteristics of umbilical cord mesenchymal stem cells (UCMSCs). UCMSCs were exposed to pro-inflammatory cytokines in vitro for 3 and 7 days, and the biological properties were analyzed. The results showed that the proliferation ability was suppressed by interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β). The adipogenic capacity was inhibited in all conditioned medium, while the chondrogenic and osteogenic capacity was enhanced by TNF-α and IL-1β in vitro. Prostaglandin E2 (PGE2) was increased by IL-1β on the third day, and angiopoietin-1 (Ang-1) was inhibited appreciably by TNF-α on the seventh day. Interleukin-6 (IL-6) was increased by TNF-α and IL-1β, and hepatocyte growth factor (HGF) was inhibited by all inflammatory cytokines. IFN-γ secretion level from human peripheral mononuclear cells (hPBMCs) was lowered by UCMSCs which had been stimulated by TNF-α or IL-1β for 3 days. Moreover, IFN-γ and TNF-α secretion level was only inhibited by UCMSCs which had been by stimulated IFN-γ for 3 days but not 7 days. Our data demonstrated that different inflammatory cytokines and the duration of treatment had different effects on the properties of UCMSCs, which might be instructive for clinical pretreatment in cellular therapeutics.
Collapse
Affiliation(s)
- Chao Yang
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Yu Chen
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Fan Li
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Min You
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Liwu Zhong
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Wenxian Li
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Bo Zhang
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Qiang Chen
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China.
| |
Collapse
|
50
|
Ehx G, Somja J, Warnatz HJ, Ritacco C, Hannon M, Delens L, Fransolet G, Delvenne P, Muller J, Beguin Y, Lehrach H, Belle L, Humblet-Baron S, Baron F. Xenogeneic Graft-Versus-Host Disease in Humanized NSG and NSG-HLA-A2/HHD Mice. Front Immunol 2018; 9:1943. [PMID: 30214443 PMCID: PMC6125392 DOI: 10.3389/fimmu.2018.01943] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/07/2018] [Indexed: 12/30/2022] Open
Abstract
Despite the increasing use of humanized mouse models to study new approaches of graft-versus-host disease (GVHD) prevention, the pathogenesis of xenogeneic GVHD (xGVHD) in these models remains misunderstood. The aim of this study is to describe this pathogenesis in NOD/LtSz-PrkdcscidIL2rγtm1Wjl (NSG) mice infused with human PBMCs and to assess the impact of the expression of HLA-A0201 by NSG mice cells (NSG-HLA-A2/HHD mice) on xGVHD and graft-versus-leukemia (GvL) effects, by taking advantage of next-generation technologies. We found that T cells recovered from NSG mice after transplantation had upregulated expression of genes involved in cell proliferation, as well as in TCR, co-stimulatory, IL-2/STAT5, mTOR and Aurora kinase A pathways. T cells had mainly an effector memory or an effector phenotype and exhibited a Th1/Tc1-skewed differentiation. TCRβ repertoire diversity was markedly lower both in the spleen and lungs (a xGVHD target organ) than at infusion. There was no correlation between the frequencies of specific clonotypes at baseline and in transplanted mice. Finally, expression of HLA-A0201 by NSG mice led to more severe xGVHD and enhanced GvL effects toward HLA-A2+ leukemic cells. Altogether our data demonstrate that the pathogenesis of xGVHD shares important features with human GVHD and that NSG-HLA-A2/HHD mice could serve as better model to study GVHD and GvL effects.
Collapse
Affiliation(s)
- Grégory Ehx
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Joan Somja
- Department of Pathology, CHU of Liège, Liège, Belgium
| | - Hans-Jörg Warnatz
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Caroline Ritacco
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Muriel Hannon
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Loïc Delens
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Gilles Fransolet
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | | | - Joséphine Muller
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Yves Beguin
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium.,Department of Medicine, Division of Hematology, CHU of Liège, Liège, Belgium
| | | | - Ludovic Belle
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Stéphanie Humblet-Baron
- Translational Immunology Laboratory, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Frédéric Baron
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium.,Department of Medicine, Division of Hematology, CHU of Liège, Liège, Belgium
| |
Collapse
|