1
|
Pham KY, Khanal S, Bohara G, Rimal N, Song SH, Nguyen TTK, Hong IS, Cho J, Kang JS, Lee S, Choi DY, Yook S. HDAC6 inhibitor-loaded brain-targeted nanocarrier-mediated neuroprotection in methamphetamine-driven Parkinson's disease. Redox Biol 2025; 79:103457. [PMID: 39700694 PMCID: PMC11722933 DOI: 10.1016/j.redox.2024.103457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
The dynamic equilibrium between acetylation and deacetylation is vital for cellular homeostasis. Parkinson's disease (PD), a neurodegenerative disorder marked by α-synuclein (α-syn) accumulation and dopaminergic neuron loss in the substantia nigra, is associated with a disruption of this balance. Therefore, correcting this imbalance with histone deacetylase (HDAC) inhibitors represents a promising treatment strategy for PD. CAY10603 (CAY) is a potent and selective HDAC6 inhibitor. However, because of its poor water solubility and short biological half-life, it faces clinical limitations. Herein, we engineered lactoferrin-decorated CAY-loaded poly(lactic-co-glycolic acid) nanoparticles (denoted as PLGA@CAY@Lf NPs) to effectively counter methamphetamine (Meth)-induced PD. PLGA@CAY@Lf NPs showed enhanced blood-brain barrier crossing and significant brain accumulation. Notably, CAY released from PLGA@CAY@Lf NPs restored the disrupted acetylation balance in PD, resulting in neuroprotection by reversing mitochondrial dysfunction, suppressing reactive oxygen species, and inhibiting α-syn accumulation. Additionally, PLGA@CAY@Lf NPs treatment normalized dopamine and tyrosine hydroxylase levels, reduced neuroinflammation, and improved behavioral impairments. These findings underscore the potential of PLGA@CAY@Lf NPs in treating Meth-induced PD and suggest that an innovative HDAC6-inhibitor-based strategy can be used to treat PD.
Collapse
Affiliation(s)
- Khang-Yen Pham
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Shristi Khanal
- College of Pharmacy, Yeungnam University, Gyeongbuk, 38541, Republic of Korea
| | - Ganesh Bohara
- College of Pharmacy, Yeungnam University, Gyeongbuk, 38541, Republic of Korea
| | - Nikesh Rimal
- College of Pharmacy, Yeungnam University, Gyeongbuk, 38541, Republic of Korea
| | - Sang-Hoon Song
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Thoa Thi Kim Nguyen
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - In-Sun Hong
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 21565, Republic of Korea
| | - Jinkyung Cho
- College of Sport Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea.
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, Gyeongbuk, 38541, Republic of Korea.
| | - Simmyung Yook
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
2
|
Du Y, Guo T, Hao Y, Li C, Tang L, Li X, Zhang X, Li L, Yao D, Xu X, Si H, Zhang J, Zhao N, Yu T, Zhao Y, Zhang W, Xu H. PKCδ serves as a potential biomarker and therapeutic target for microglia-mediated neuroinflammation in Alzheimer's disease. Alzheimers Dement 2024; 20:5511-5527. [PMID: 38938161 PMCID: PMC11350009 DOI: 10.1002/alz.14047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/17/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION To investigate the role of a novel type of protein kinase C delta (PKCδ) in the neuroinflammation of Alzheimer's disease (AD). METHODS We analyzed PKCδ and inflammatory cytokines levels in cerebrospinal fluid (CSF) of AD and normal controls, as well as their correlations. The cellular expression pattern of PKCδ and the effects of PKCδ modulation on microglia-mediated neuroinflammation were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR), western blot, RNA sequencing (RNA-seq), and immunofluorescence staining. RESULTS PKCδ levels were increased dramatically in the CSF of AD patients and positively correlated with cytokines. PKCδ is expressed mainly in microglia in the brain. Amyloid beta (Aβ) stimulation increased PKCδ expression and secretion, which led to upregulation of the nuclear factor kappa B (NF-κB) pathway and overproduction of proinflammatory cytokines. Downregulation or inhibition of PKCδ attenuated Aβ-induced microglial responses and improved cognitive function in an AD mouse model. DISCUSSION Our study identifies PKCδ as a potential biomarker and therapeutic target for microglia-mediated neuroinflammation in AD. HIGHLIGHTS Protein kinase C delta (PKCδ) levels increase in cerebrospinal fluid (CSF) of patients with Alzheimer's disease (AD), and positively correlate with elevated inflammatory cytokines in human subjects. PKCδ is expressed mainly in microglia in vivo, whereas amyloid beta (Aβ) stimulation increases PKCδ expression and secretion, causing upregulation of the nuclear factor kappa B (NF-κB) pathway and production of inflammatory cytokines. Downregulation or inhibition of PKCδ attenuates Aβ-enhanced NF-κB signaling and cytokine production in microglia and improves cognitive function in AD mice. PKCδ serves as a potential biomarker and therapeutic target for microglia-mediated neuroinflammation in AD.
Collapse
Affiliation(s)
- Ying Du
- Department of NeurologyTangdu HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Tiantian Guo
- Center for Brain Sciencesthe First Affiliated Hospital of Xiamen UniversityInstitute of NeuroscienceFujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchSchool of MedicineXiamen UniversityXiamenFujianChina
| | - Yunfeng Hao
- Department of NeurologyTangdu HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Chuan Li
- Department of NeurologyTangdu HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Linghui Tang
- Center for Brain Sciencesthe First Affiliated Hospital of Xiamen UniversityInstitute of NeuroscienceFujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchSchool of MedicineXiamen UniversityXiamenFujianChina
| | - Xia Li
- Department of AnatomyHistology and Embryology and K. K. Leung Brain Research CentreFourth Military Medical UniversityXi'anShaanxiChina
| | - Xiaoxiao Zhang
- Department of Respiratory and Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Lin Li
- Department of NeurologyTangdu HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Dan Yao
- Department of NeurologyTangdu HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Xia Xu
- Center for Brain Sciencesthe First Affiliated Hospital of Xiamen UniversityInstitute of NeuroscienceFujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchSchool of MedicineXiamen UniversityXiamenFujianChina
| | - Huaxing Si
- College of Life ScienceNorthwest UniversityXi'anShaanxiChina
| | - Jinghan Zhang
- College of Life ScienceNorthwest UniversityXi'anShaanxiChina
| | - Nana Zhao
- College of Life ScienceNorthwest UniversityXi'anShaanxiChina
| | - Tong Yu
- Department of Neurologythe Second Affiliated Hospital of Shaanxi University of Chinese MedicineXianyangShaanxiChina
| | - Yingjun Zhao
- Center for Brain Sciencesthe First Affiliated Hospital of Xiamen UniversityInstitute of NeuroscienceFujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchSchool of MedicineXiamen UniversityXiamenFujianChina
| | - Wei Zhang
- Department of NeurologyTangdu HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Huaxi Xu
- Center for Brain Sciencesthe First Affiliated Hospital of Xiamen UniversityInstitute of NeuroscienceFujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchSchool of MedicineXiamen UniversityXiamenFujianChina
| |
Collapse
|
3
|
Cruciani F, Aparo A, Brusini L, Combi C, Storti SF, Giugno R, Menegaz G, Boscolo Galazzo I. Identifying the joint signature of brain atrophy and gene variant scores in Alzheimer's Disease. J Biomed Inform 2024; 149:104569. [PMID: 38104851 DOI: 10.1016/j.jbi.2023.104569] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
The joint modeling of genetic data and brain imaging information allows for determining the pathophysiological pathways of neurodegenerative diseases such as Alzheimer's disease (AD). This task has typically been approached using mass-univariate methods that rely on a complete set of Single Nucleotide Polymorphisms (SNPs) to assess their association with selected image-derived phenotypes (IDPs). However, such methods are prone to multiple comparisons bias and, most importantly, fail to account for potential cross-feature interactions, resulting in insufficient detection of significant associations. Ways to overcome these limitations while reducing the number of traits aim at conveying genetic information at the gene level and capturing the integrated genetic effects of a set of genetic variants, rather than looking at each SNP individually. Their associations with brain IDPs are still largely unexplored in the current literature, though they can uncover new potential genetic determinants for brain modulations in the AD continuum. In this work, we explored an explainable multivariate model to analyze the genetic basis of the grey matter modulations, relying on the AD Neuroimaging Initiative (ADNI) phase 3 dataset. Cortical thicknesses and subcortical volumes derived from T1-weighted Magnetic Resonance were considered to describe the imaging phenotypes. At the same time the genetic counterpart was represented by gene variant scores extracted by the Sequence Kernel Association Test (SKAT) filtering model. Moreover, transcriptomic analysis was carried on to assess the expression of the resulting genes in the main brain structures as a form of validation. Results highlighted meaningful genotype-phenotype interactionsas defined by three latent components showing a significant difference in the projection scores between patients and controls. Among the significant associations, the model highlighted EPHX1 and BCAS1 gene variant scores involved in neurodegenerative and myelination processes, hence relevant for AD. In particular, the first was associated with decreased subcortical volumes and the second with decreasedtemporal lobe thickness. Noteworthy, BCAS1 is particularly expressed in the dentate gyrus. Overall, the proposed approach allowed capturing genotype-phenotype interactions in a restricted study cohort that was confirmed by transcriptomic analysis, offering insights into the underlying mechanisms of neurodegeneration in AD in line with previous findings and suggesting new potential disease biomarkers.
Collapse
Affiliation(s)
- Federica Cruciani
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy.
| | - Antonino Aparo
- Department of Computer Science, University of Verona, Verona, Italy
| | - Lorenza Brusini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Carlo Combi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Silvia F Storti
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, Verona, Italy
| | - Gloria Menegaz
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | | |
Collapse
|
4
|
Vincent B, Shukla M. The Common Denominators of Parkinson's Disease Pathogenesis and Methamphetamine Abuse. Curr Neuropharmacol 2024; 22:2113-2156. [PMID: 37691228 PMCID: PMC11337683 DOI: 10.2174/1570159x21666230907151226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/12/2023] Open
Abstract
The pervasiveness and mortality associated with methamphetamine abuse have doubled during the past decade, suggesting a possible worldwide substance use crisis. Epitomizing the pathophysiology and toxicology of methamphetamine abuse proclaims severe signs and symptoms of neurotoxic and neurobehavioral manifestations in both humans and animals. Most importantly, chronic use of this drug enhances the probability of developing neurodegenerative diseases manifolds. Parkinson's disease is one such neurological disorder, which significantly and evidently not only shares a number of toxic pathogenic mechanisms induced by methamphetamine exposure but is also interlinked both structurally and genetically. Methamphetamine-induced neurodegeneration involves altered dopamine homeostasis that promotes the aggregation of α-synuclein protofibrils in the dopaminergic neurons and drives these neurons to make them more vulnerable to degeneration, as recognized in Parkinson's disease. Moreover, the pathologic mechanisms such as mitochondrial dysfunction, oxidative stress, neuroinflammation and decreased neurogenesis detected in methamphetamine abusers dramatically resemble to what is observed in Parkinson's disease cases. Therefore, the present review comprehensively cumulates a holistic illustration of various genetic and molecular mechanisms putting across the notion of how methamphetamine administration and intoxication might lead to Parkinson's disease-like pathology and Parkinsonism.
Collapse
Affiliation(s)
- Bruno Vincent
- Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| | - Mayuri Shukla
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 10210, Bangkok, Thailand
| |
Collapse
|
5
|
Shin EJ, Jeong JH, Nguyen BT, Sharma N, Tran CNK, Nah SY, Lee Y, Byun JK, Ko SK, Kim HC. Ginsenoside Re attenuates 8-OH-DPAT-induced serotonergic behaviors in mice via interactive modulation between PKCδ gene and Nrf2. Drug Chem Toxicol 2023; 46:281-296. [PMID: 35707918 DOI: 10.1080/01480545.2021.2022689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It has been recognized that serotonergic blocker showed serious side effects, and that ginsenoside modulated serotonergic system with the safety. However, the effects of ginsenoside on serotonergic impairments remain to be clarified. Thus, we investigated ginsenoside Re (GRe), a major bioactive component in the mountain-cultivated ginseng on (±)-8-hydroxy-dipropylaminotetralin (8-OH-DPAT), a 5-HT1A receptor agonist. In the present study, we observed that the treatment with GRe resulted in significant inhibition of protein kinase C δ (PKCδ) phosphorylation induced by the 5-HT1A receptor agonist (±)-8-hydroxy-dipropylaminotetralin (8-OH-DPAT) in the hypothalamus of the wild-type (WT) mice. The inhibition of GRe was comparable with that of the PKCδ inhibitor rottlerin or the 5-HT1A receptor antagonist WAY100635 (WAY). 8-OH-DPAT-induced significant reduction in nuclear factor erythroid-2-related factor 2 (Nrf2)-related system (i.e., Nrf2 DNA binding activity, γ-glutamylcysteine ligase modifier (GCLm) and γ-glutamylcysteine ligase catalytic (GCLc) mRNA expression, and glutathione (GSH)/oxidized glutathione (GSSG) ratio) was significantly attenuated by GRe, rottlerin, or WAY in WT mice. However, PKCδ gene knockout significantly protected the Nrf2-dependent system from 8-OH-DPAT insult in mice. Increases in 5-hydroxytryptophan (5-HT) turnover rate, overall serotonergic behavioral score, and hypothermia induced by 8-OH-DPAT were significantly attenuated by GRe, rottlerin, or WAY in WT mice. Consistently, PKCδ gene knockout significantly attenuated these parameters in mice. However, GRe or WAY did not provide any additional positive effects on the serotonergic protective potential mediated by PKCδ gene knockout in mice. Therefore, our results suggest that PKCδ is an important mediator for GRe-mediated protective activity against serotonergic impairments/oxidative burden caused by the 5-HT1A receptor.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, College of Medicine, Graduate School of Chung-Ang University, Chung-Ang University, Seoul, Republic of Korea
| | - Bao-Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, South Korea.,Department of Global Innovative Drugs, College of Medicine, Graduate School of Chung-Ang University, Chung-Ang University, Seoul, Republic of Korea
| | - Cuong Ngoc Kim Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Yi Lee
- Department of Industrial Plant Science & Technology, Chungbuk National University, Chungju, Republic of Korea
| | - Jae Kyung Byun
- Korea Society of Forest Environmental Research, Namyangju, Republic of Korea
| | - Sung Kwon Ko
- Department of Oriental Medical Food and Nutrition, Semyung University, Jecheon, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
6
|
Miller DR, Bu M, Gopinath A, Martinez LR, Khoshbouei H. Methamphetamine Dysregulation of the Central Nervous System and Peripheral Immunity. J Pharmacol Exp Ther 2021; 379:372-385. [PMID: 34535563 PMCID: PMC9351721 DOI: 10.1124/jpet.121.000767] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
Methamphetamine (METH) is a potent psychostimulant that increases extracellular monoamines, such as dopamine and norepinephrine, and affects multiple tissue and cell types in the central nervous system (CNS) and peripheral immune cells. The reinforcing properties of METH underlie its significant abuse potential and dysregulation of peripheral immunity and central nervous system functions. Together, the constellation of METH's effects on cellular targets and regulatory processes has led to immune suppression and neurodegeneration in METH addicts and animal models of METH exposure. Here we extensively review many of the cell types and mechanisms of METH-induced dysregulation of the central nervous and peripheral immune systems. SIGNIFICANCE STATEMENT: Emerging research has begun to show that methamphetamine regulates dopaminergic neuronal activity. In addition, METH affects non-neuronal brain cells, such as microglia and astrocytes, and immunological cells of the periphery. Concurrent disruption of bidirectional communication between dopaminergic neurons and glia in the CNS and peripheral immune cell dysregulation gives rise to a constellation of dysfunctional neuronal, cell, and tissue types. Therefore, understanding the pathophysiology of METH requires consideration of the multiple targets at the interface between basic and clinical neuroscience.
Collapse
Affiliation(s)
- Douglas R Miller
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Mengfei Bu
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Adithya Gopinath
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Luis R Martinez
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Habibeh Khoshbouei
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| |
Collapse
|
7
|
Shin EJ, Nguyen BT, Jeong JH, Hoai Nguyen BC, Tran NKC, Sharma N, Kim DJ, Nah SY, Lichtstein D, Nabeshima T, Kim HC. Ouabain inhibitor rostafuroxin attenuates dextromethorphan-induced manic potential. Food Chem Toxicol 2021; 158:112657. [PMID: 34740715 DOI: 10.1016/j.fct.2021.112657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 02/08/2023]
Abstract
Dextromethorphan (DM) abuse produces mania-like symptoms in humans. ERK/Akt signaling activation involved in manic potential can be attenuated by the inhibition of ouabain-like cardiac steroids. In this study, increased phosphorylations of ERK/Akt and hyperlocomotion induced by DM (30 mg/kg, i.p./day × 7) were significantly protected by the ouabain inhibitor rostafuroxin (ROSTA), suggesting that DM induces the manic potential. ROSTA significantly attenuated DM-induced protein kinase C δ (PKCδ) phosphorylation, GluN2B (i.e., MDA receptor subunit) expression, and phospho-PKCδ/GluN2B interaction. DM instantly upregulated the nuclear factor erythroid-2-related factor 2 (Nrf2)-dependent system. However, DM reduced Nrf2 nuclear translocation, Nrf2 DNA binding activity, γ-glutamylcysteine mRNA expression, and subsequent GSH/GSSG level and enhanced oxidative parameters following 1-h of administration. ROSTA, PKCδ inhibitor rottlerin, and GluN2B inhibitor traxoprodil significantly attenuated DM-induced alterations in Nrf2-related redox parameters and locomotor activity induced by DM in wild-type mice. Importantly, in PKCδ knockout mice, DM failed to alter the above parameters. Further, ROSTA and traxoprodil also failed to enhance PKCδ depletion effect, suggesting that PKCδ is a critical target for the anti-manic potential of ROSTA or GluN2B antagonism. Our results suggest that ROSTA inhibits DM-induced manic potential by attenuating ERK/Akt activation, GluN2B/PKCδ signalings, and Nrf2-dependent system.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Bao-Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Bao-Chau Hoai Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ngoc Kim Cuong Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dae-Joong Kim
- Department of Anatomy and Cell Biology, Medical School, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - David Lichtstein
- Walter and Greta Stiel Chair in Heart Studies, Dean, Faculty of Medicine 2013-2017, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake, 470-1192, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
8
|
Hwang Y, Kim HC, Shin EJ. Repeated exposure to microcystin-leucine-arginine potentiates excitotoxicity induced by a low dose of kainate. Toxicology 2021; 460:152887. [PMID: 34352349 DOI: 10.1016/j.tox.2021.152887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/15/2021] [Accepted: 07/30/2021] [Indexed: 02/08/2023]
Abstract
Microcystin-leucine-arginine (MLCR) is a cyanobacterial toxin, and has been demonstrated to cause neurotoxicity. In addition, MCLR has been identified as an inhibitor of protein phosphatase (PP)1 and PP2A, which are known to regulate the phosphorylation of various molecules related to synaptic excitability. Thus, in the present study, we examined whether MCLR exposure affects seizures induced by a low dose of kainic acid (KA; 0.05 μg, i.c.v.) administration. KA-induced seizure occurrence and seizure score significantly increased after repeated exposure to MCLR (2.5 or 5.0 μg/kg, i.p., once a day for 10 days), but not after acute MCLR exposure (2.5 or 5.0 μg/kg, i.p., 2 h and 30 min prior to KA administration), and hippocampal neuronal loss was consistently facilitated by repeated exposure to MCLR. In addition, repeated MCLR significantly elevated the membrane expression of kainate receptor GluK2 subunits, p-pan-protein kinase C (PKC), and p-extracellular signal-related kinase (ERK) at 1 h after KA. However, KA-induced membrane expression of Ca2+/calmodulin-dependent kinase II (CaMKII) was significantly reduced by repeated MCLR exposure. Consistent with the enhanced seizures and neurodegeneration, MCLR exposure significantly potentiated KA-induced oxidative stress and microglial activation, which was accompanied by increased expression of p-ERK and p-PKCδ in the hippocampus. The combined results suggest that repeated MCLR exposure potentiates KA-induced excitotoxicity in the hippocampus by increasing membrane GluK2 expression and enhancing oxidative stress and neuroinflammation through the modulation of p-CaMKII, p-PKC, and p-ERK.
Collapse
Affiliation(s)
- Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
9
|
Shin EJ, Jeong JH, Hwang Y, Sharma N, Dang DK, Nguyen BT, Nah SY, Jang CG, Bing G, Nabeshima T, Kim HC. Methamphetamine-induced dopaminergic neurotoxicity as a model of Parkinson's disease. Arch Pharm Res 2021; 44:668-688. [PMID: 34286473 DOI: 10.1007/s12272-021-01341-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/06/2021] [Indexed: 12/01/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease with a high prevalence, approximately 1 % in the elderly population. Numerous studies have demonstrated that methamphetamine (MA) intoxication caused the neurological deficits and nigrostriatal damage seen in Parkinsonian conditions, and subsequent rodent studies have found that neurotoxic binge administration of MA reproduced PD-like features, in terms of its symptomatology and pathology. Several anti-Parkinsonian medications have been shown to attenuate the motor impairments and dopaminergic damage induced by MA. In addition, it has been recognized that mitochondrial dysfunction, oxidative stress, pro-apoptosis, proteasomal/autophagic impairment, and neuroinflammation play important roles in inducing MA neurotoxicity. Importantly, MA neurotoxicity has been shown to share a common mechanism of dopaminergic toxicity with that of PD pathogenesis. This review describes the major findings on the neuropathological features and underlying neurotoxic mechanisms induced by MA and compares them with Parkinsonian pathogenesis. Taken together, it is suggested that neurotoxic binge-type administration of MA in rodents is a valid animal model for PD that may provide knowledge on the neuropathogenesis of PD.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea.,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea.,Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, 900000, Can Tho City, Vietnam
| | - Bao-Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, 05029, Seoul, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Guoying Bing
- Department of Neuroscience, College of Medicine, University of Kentucky, KY, 40536, Lexington, USA
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Graduate School of Health Science, Fujita Health University, 470-1192, Toyoake, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea. .,Neuropsychopharmacology & Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea.
| |
Collapse
|
10
|
Shin EJ, Jeong JH, Nguyen BT, Sharma N, Nah SY, Chung YH, Lee Y, Byun JK, Nabeshima T, Ko SK, Kim HC. Ginsenoside Re Protects against Serotonergic Behaviors Evoked by 2,5-Dimethoxy-4-iodo-amphetamine in Mice via Inhibition of PKCδ-Mediated Mitochondrial Dysfunction. Int J Mol Sci 2021; 22:ijms22137219. [PMID: 34281274 PMCID: PMC8268959 DOI: 10.3390/ijms22137219] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
It has been recognized that serotonin 2A receptor (5-HT2A) agonist 2,5-dimethoxy-4-iodo-amphetamine (DOI) impairs serotonergic homeostasis. However, the mechanism of DOI-induced serotonergic behaviors remains to be explored. Moreover, little is known about therapeutic interventions against serotonin syndrome, although evidence suggests that ginseng might possess modulating effects on the serotonin system. As ginsenoside Re (GRe) is well-known as a novel antioxidant in the nervous system, we investigated whether GRe modulates 5-HT2A receptor agonist DOI-induced serotonin impairments. We proposed that protein kinase Cδ (PKCδ) mediates serotonergic impairments. Treatment with GRe or 5-HT2A receptor antagonist MDL11939 significantly attenuated DOI-induced serotonergic behaviors (i.e., overall serotonergic syndrome behaviors, head twitch response, hyperthermia) by inhibiting mitochondrial translocation of PKCδ, reducing mitochondrial glutathione peroxidase activity, mitochondrial dysfunction, and mitochondrial oxidative stress in wild-type mice. These attenuations were in line with those observed upon PKCδ inhibition (i.e., pharmacologic inhibitor rottlerin or PKCδ knockout mice). Furthermore, GRe was not further implicated in attenuation mediated by PKCδ knockout in mice. Our results suggest that PKCδ is a therapeutic target for GRe against serotonergic behaviors induced by DOI.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea; (E.-J.S.); (B.-T.N.); (N.S.)
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul 06974, Korea;
| | - Bao-Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea; (E.-J.S.); (B.-T.N.); (N.S.)
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea; (E.-J.S.); (B.-T.N.); (N.S.)
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul 06974, Korea;
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea;
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul 06974, Korea;
| | - Yi Lee
- Department of Industrial Plant Science & Technology, Chungbuk National University, Chungju 28644, Korea;
| | - Jae Kyung Byun
- Korea Society of Forest Environmental Research, Namyanju 12106, Korea;
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake 470-1192, Japan;
| | - Sung Kwon Ko
- Department of Oriental Medical Food and Nutrition, Semyung University, Jecheon 27136, Korea
- Correspondence: (S.K.K.); (H.-C.K.); Tel.: +82-33-250-6917 (H.-C.K.); Fax: +82-33-259-5631 (H.-C.K.)
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea; (E.-J.S.); (B.-T.N.); (N.S.)
- Correspondence: (S.K.K.); (H.-C.K.); Tel.: +82-33-250-6917 (H.-C.K.); Fax: +82-33-259-5631 (H.-C.K.)
| |
Collapse
|
11
|
Sharma N, Shin EJ, Pham DT, Sharma G, Dang DK, Duong CX, Kang SW, Nah SY, Jang CG, Lei XG, Nabeshima T, Bing G, Jeong JH, Kim HC. GPx-1-encoded adenoviral vector attenuates dopaminergic impairments induced by methamphetamine in GPx-1 knockout mice through modulation of NF-κB transcription factor. Food Chem Toxicol 2021; 154:112313. [PMID: 34082047 DOI: 10.1016/j.fct.2021.112313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 01/10/2023]
Abstract
We suggested that selenium-dependent glutathione peroxidase (GPx) plays a protective role against methamphetamine (MA)-induced dopaminergic toxicity. We focused on GPx-1, a major selenium-dependent enzyme and constructed a GPx-1 gene-encoded adenoviral vector (Ad-GPx-1) to delineate the role of GPx-1 in MA-induced dopaminergic neurotoxicity. Exposure to Ad-GPx-1 significantly induced GPx activity and GPx-1 protein levels in GPx-1-knockout (GPx-1-KO) mice. MA-induced dopaminergic impairments [i.e., hyperthermia; increased nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) DNA-binding activity; and decreased dopamine levels, TH activity, and behavioral activity] were more pronounced in GPx-1-KO mice than in WT mice. In contrast, exposure to Ad-GPx-1 significantly attenuated MA-induced dopaminergic loss in GPx-1-KO mice. The protective effect exerted by Ad-GPx-1 was comparable to that exerted by pyrrolidine dithiocarbamate (PDTC), an NF-κB inhibitor against MA insult. Consistently, GPx-1 overexpression significantly attenuated MA dopaminergic toxicity in mice. PDTC did not significantly impact the protective effect of GPx-1 overexpression, suggesting that interaction between NF-κB and GPx-1 is critical for dopaminergic protection. Thus, NF-κB is a potential therapeutic target for GPx-1-mediated dopaminergic protective activity. This study for the first time demonstrated that Ad-GPx-1 rescued dopaminergic toxicity in vivo following MA insult. Furthermore, GPx-1-associated therapeutic interventions may be important against dopaminergic toxicity.
Collapse
Affiliation(s)
- Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, South Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, South Korea
| | - Duc Toan Pham
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, South Korea
| | - Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, South Korea
| | - Duy-Khanh Dang
- Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Viet Nam
| | - Chu Xuan Duong
- Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Viet Nam
| | - Sang Won Kang
- Department of Life Science, College of Natural Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake, 470-1192, Japan
| | - Guoying Bing
- Anatomy and Neurobiology, University of Kentucky Medical Center, Medical Center MN208 800 Rose Strees, Lexington, KY, 40536, USA
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, South Korea.
| |
Collapse
|
12
|
Chen L, Ru Q, Xiong Q, Zhou M, Yue K, Wu Y. The Role of Chinese Herbal Therapy in Methamphetamine Abuse and its Induced Psychiatric Symptoms. Front Pharmacol 2021; 12:679905. [PMID: 34040537 PMCID: PMC8143530 DOI: 10.3389/fphar.2021.679905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/16/2021] [Indexed: 01/21/2023] Open
Abstract
Repeated intake of methamphetamine (METH) leads to drug addiction, the inability to control intake, and strong drug cravings. It is also likely to cause psychiatric impairments, such as cognitive impairment, depression, and anxiety. Because the specific neurobiological mechanisms involved are complex and have not been fully and systematically elucidated, there is no established pharmacotherapy for METH abuse. Studies have found that a variety of Chinese herbal medicines have significant therapeutic effects on neuropsychiatric symptoms and have the advantage of multitarget comprehensive treatment. We conducted a systematic review, from neurobiological mechanisms to candidate Chinese herbal medicines, hoping to provide new perspectives and ideas for the prevention and treatment of METH abuse.
Collapse
Affiliation(s)
- Lin Chen
- Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Qin Ru
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, China
| | - Qi Xiong
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, China
| | - Mei Zhou
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, China
| | - Kai Yue
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan, China
| |
Collapse
|
13
|
Palkina KA, Ipatova DA, Shakhova ES, Balakireva AV, Markina NM. Therapeutic Potential of Hispidin-Fungal and Plant Polyketide. J Fungi (Basel) 2021; 7:jof7050323. [PMID: 33922000 PMCID: PMC8143579 DOI: 10.3390/jof7050323] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
There is a large number of bioactive polyketides well-known for their anticancer, antibiotic, cholesterol-lowering, and other therapeutic functions, and hispidin is among them. It is a highly abundant secondary plant and fungal metabolite, which is investigated in research devoted to cancer, metabolic syndrome, cardiovascular, neurodegenerative, and viral diseases. This review summarizes over 20 years of hispidin studies of its antioxidant, anti-inflammatory, anti-apoptotic, antiviral, and anti-cancer cell activity.
Collapse
Affiliation(s)
- Kseniia A. Palkina
- Department of Biomolecular Chemistry, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (K.A.P.); (D.A.I.); (E.S.S.); (A.V.B.)
- Planta LLC, 121205 Moscow, Russia
| | - Daria A. Ipatova
- Department of Biomolecular Chemistry, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (K.A.P.); (D.A.I.); (E.S.S.); (A.V.B.)
- School of Pharmacy, Faculty of Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Ekaterina S. Shakhova
- Department of Biomolecular Chemistry, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (K.A.P.); (D.A.I.); (E.S.S.); (A.V.B.)
- Planta LLC, 121205 Moscow, Russia
| | - Anastasia V. Balakireva
- Department of Biomolecular Chemistry, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (K.A.P.); (D.A.I.); (E.S.S.); (A.V.B.)
- Planta LLC, 121205 Moscow, Russia
| | - Nadezhda M. Markina
- Department of Biomolecular Chemistry, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (K.A.P.); (D.A.I.); (E.S.S.); (A.V.B.)
- Planta LLC, 121205 Moscow, Russia
- Correspondence: ; Tel.: +7-9161342855
| |
Collapse
|
14
|
Xu X, Fan R, Ruan Y, Xu M, He J, Cao M, Li X, Zhou W, Liu Y. Inhibition of PLCβ1 signaling pathway regulates methamphetamine self-administration and neurotoxicity in rats. Food Chem Toxicol 2021; 149:111970. [PMID: 33421459 DOI: 10.1016/j.fct.2021.111970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022]
Abstract
Studies have shown that the central renin-angiotensin system is involved in neurological disorders. Our previous studies have demonstrated that angiotensin II receptor type 1 (AT1R) in the brain could be a potential target against methamphetamine (METH) use disorder. The present study was designed to investigate the underlying mechanisms of the inhibitory effect of AT1R on various behavioural effects of METH. We first examined the effect of AT1R antagonist, candesartan cilexetil (CAN), on behavioural and neurotoxic effects of METH. Furthermore, we studied the role of phospholipase C beta 1 (PLCβ1) blockade behavioural and neurotoxic effects of METH. The results showed that CAN significantly attenuated METH-induced behavioral disorders and neurotoxicity associated with increased oxidative stress. AT1R and PLCβ1 were significantly upregulated in vivo and in vitro. Inhibition of PLCβ1 effectively alleviated METH-induced neurotoxicity and METH self-administration (SA) by central blockade of the PLCβ1 involved signalling pathway. PLCβ1 blockade significantly decreased the reinforcing and motivation effects of METH. PLCβ1 involved signalling pathway, as well as a more specific role of PLCβ1, involved the inhibitory effects of CAN on METH-induced behavioural dysfunction and neurotoxicity. Collectively, our findings reveal a novel role of PLCβ1 in METH-induced neurotoxicity and METH use disorder.
Collapse
Affiliation(s)
- Xing Xu
- The affiliated Hospital of Medical School, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, PR China; Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China.
| | - Runyue Fan
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China
| | - Yanqian Ruan
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China
| | - Mengjie Xu
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China
| | - Jiajie He
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China
| | - Mengye Cao
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China
| | - Xingxing Li
- Ningbo Kangning Hospital, 1 South Zhuangyu Road, Ningbo, Zhejiang, 315201, PR China
| | - Wenhua Zhou
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China; Ningbo Kangning Hospital, 1 South Zhuangyu Road, Ningbo, Zhejiang, 315201, PR China; Ningbo Addiction Research and Treatment Center, 21 Xibei Road, Zhejiang, 315040, PR China
| | - Yu Liu
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China.
| |
Collapse
|
15
|
Kim B, Yun J, Park B. Methamphetamine-Induced Neuronal Damage: Neurotoxicity and Neuroinflammation. Biomol Ther (Seoul) 2020; 28:381-388. [PMID: 32668144 PMCID: PMC7457172 DOI: 10.4062/biomolther.2020.044] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 01/11/2023] Open
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant and one of the most widely abused drugs worldwide. The continuous use of METH eventually leads to drug addiction and causes serious health complications, including attention deficit, memory loss and cognitive decline. These neurological complications are strongly associated with METH-induced neurotoxicity and neuroinflammation, which leads to neuronal cell death. The current review investigates the molecular mechanisms underlying METH-mediated neuronal damages. Our analysis demonstrates that the process of neuronal impairment by METH is closely related to oxidative stress, transcription factor activation, DNA damage, excitatory toxicity and various apoptosis pathways. Thus, we reach the conclusion here that METH-induced neuronal damages are attributed to the neurotoxic and neuroinflammatory effect of the drug. This review provides an insight into the mechanisms of METH addiction and contributes to the discovery of therapeutic targets on neurological impairment by METH abuse.
Collapse
Affiliation(s)
- Buyun Kim
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Jangmi Yun
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Byoungduck Park
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
16
|
Phan DH, Shin EJ, Sharma N, Hoang Yen TP, Dang DK, Lee YS, Lee YJ, Nah SY, Cheong JH, Jeong JH, Kim HC. 5-HT 2A receptor-mediated PKCδ phosphorylation is critical for serotonergic impairments induced by p-chloroamphetamine in mice. Food Chem Toxicol 2020; 141:111395. [PMID: 32437895 DOI: 10.1016/j.fct.2020.111395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/18/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
Abstract
p-Chloroamphetamine (PCA), an amphetamine derivative, has been shown to induce serotonergic toxicity. However, the precise mechanism of serotonergic toxicity induced by PCA remains unclear. In this study, PCA treatment (20 mg/kg, i.p.) did not significantly change 5-HT1A receptor gene expression, but significantly increased 5-HT2A receptor gene expression. Furthermore, 5-HT2A receptor antagonist MDL11939, but not 5-HT1A receptor antagonist WAY100635, significantly attenuated PCA-induced serotonergic impairments. We investigated whether PCA activated a specific isoform of protein kinase C (PKC), since previous evidence indicated the involvement of PKC in neurotoxicity induced by amphetamines. We observed that PCA treatment significantly increased the expression levels of PKCδ among all PKC isoforms. MDL11939 treatment significantly attenuated PCA-induced phosphorylation of PKCδ. However, PCA-induced increase in 5-HT2A receptor gene expression was not altered by rottlerin (a pharmacological inhibitor of PKCδ) in mice, suggesting that 5-HT2A receptor is an upstream molecule for the activation of PKCδ. Rottlerin or PKCδ knockout significantly attenuated serotonergic behaviors. However, MDL11939 did not show any additional effects against the attenuation caused by PKCδ knockout in mice, suggesting that PKCδ gene is a molecular target for 5-HT2A receptor-mediated serotonergic effects. Our results suggest that 5-HT2A receptor mediates PCA-induced serotonergic impairments via activation of PKC.δ.
Collapse
Affiliation(s)
- Dieu Hien Phan
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; School of Medicine and Pharmacy - Hoa Quy Ward, The University of Da Nang, Da Nang 550000, Viet Nam
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Tran Phi Hoang Yen
- Faculty of Pharmacy, University of Medicine and Pharmacy of Ho Chi Minh City, 710000, Viet Nam
| | - Duy-Khanh Dang
- Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Viet Nam
| | - Yong Sup Lee
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yu Jeung Lee
- Clinical Pharmacy, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jae Hoon Cheong
- Department of Pharmacy, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
17
|
Sabrini S, Russell B, Wang G, Lin J, Kirk I, Curley L. Methamphetamine induces neuronal death: Evidence from rodent studies. Neurotoxicology 2019; 77:20-28. [PMID: 31812708 DOI: 10.1016/j.neuro.2019.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 10/23/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022]
Abstract
Animal studies have consistently observed neuronal death following methamphetamine (MA) administration, however, these have not been systematically reviewed. This systematic review aims to present the evidence for MA-induced neuronal death in animals (rodents) and identify the regions affected. Locating the brain regions in which neuronal death occurs in animal studies will provide valuable insight into the linkage between MA consumption and the structural alterations observed in the human brain. The data were collected from three databases: Scopus, Ovid, and the Web of Science. Thirty-seven studies met the inclusion criteria and were divided into two sub-groups, i.e. acute and repeated administration. Twenty-six (of 27) acute and ten (of 11) repeated administration studies observed neuronal death. A meta-analysis was not possible due to different variables between studies, i.e. species, treatment regimens, withdrawal periods, methods of quantification, and regions studied. Acute MA treatment induced neuronal death in the frontal cortex, striatum, and substantia nigra, but not in the hippocampus, whereas repeated MA administration led to neuronal loss in the hippocampus, frontal cortex, and striatum. In addition, when animals self-administered the drug, neuronal death was observed at much lower doses than the doses administered by experimenters. There is some overlap in the regions where neuronal death occurred in animals and the identified regions from human studies. For instance, gray matter deficits have been observed in the prefrontal cortex and hippocampus of MA users. The findings presented in this review implicate that not only does MA induce neuronal death in animals, but it also damages the same regions affected in human users. Despite the inter-species differences, animal studies have contributed significantly to addiction research, and are still of great assistance for future research with a more relevant model of compulsive drug use in humans.
Collapse
Affiliation(s)
- Sabrini Sabrini
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142 New Zealand.
| | - Bruce Russell
- School of Pharmacy, University of Otago, New Zealand.
| | - Grace Wang
- Department of Psychology, Faculty of Health and Environmental Sciences, Auckland University of Technology, New Zealand.
| | - Joanne Lin
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand.
| | - Ian Kirk
- School of Psychology, Faculty of Science, The University of Auckland, New Zealand.
| | - Louise Curley
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142 New Zealand.
| |
Collapse
|
18
|
Protein kinase Cδ mediates methamphetamine-induced dopaminergic neurotoxicity in mice via activation of microsomal epoxide hydrolase. Food Chem Toxicol 2019; 133:110761. [PMID: 31422080 DOI: 10.1016/j.fct.2019.110761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022]
Abstract
We previously demonstrated that activation of protein kinase Cδ (PKCδ) is critical for methamphetamine (MA)-induced dopaminergic toxicity. It was recognized that microsomal epoxide hydrolase (mEH) also induces dopaminergic neurotoxicity. It was demonstrated that inhibition of PKC modulates the expression of mEH. We investigated whether MA-induced PKCδ activation requires mEH induction in mice. MA treatment (8 mg/kg, i.p., × 4; 2 h interval) significantly enhanced the level of phosphorylated PKCδ in the striatum of wild type (WT) mice. Subsequently, treatment with MA resulted in significant increases in the expression of cleaved PKCδ and mEH. Treatment with MA resulted in enhanced interaction between PKCδ and mEH. PKCδ knockout mice exhibited significant attenuation of the enhanced mEH expression induced by MA. MA-induced hyperthermia, oxidative stress, proapoptotic potentials, and dopaminergic impairments were attenuated by PKCδ knockout or mEH knockout in mice. However, treating mEH knockout in mice with PKCδ inhibitor, rottlerin did not show any additive beneficial effects, indicating that mEH is a critical mediator of neurotoxic potential of PKCδ. Our results suggest that MA-induced PKCδ activation requires mEH induction as a downstream signaling pathway and that the modulation of the PKCδ and mEH interaction is important for the pharmacological intervention against MA-induced dopaminergic neurotoxicity.
Collapse
|
19
|
Methiopropamine, a methamphetamine analogue, produces neurotoxicity via dopamine receptors. Chem Biol Interact 2019; 305:134-147. [PMID: 30922767 DOI: 10.1016/j.cbi.2019.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/03/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022]
Abstract
Methiopropamine (MPA) is structurally categorized as a thiophene ring-based methamphetamine (MA) derivative. Although abusive potential of MPA was recognized, little is known about the neurotoxic potential of MPA up to now. We investigated whether MPA induces dopaminergic neurotoxicity, and whether MPA activates a specific dopamine receptor. Here, we observed that treatment with MPA resulted in dopaminergic neurotoxicity in a dose-dependent manner. MPA treatment potentiated oxidative parameters (i.e., increases in the level of reactive oxygen species, 4-hydroxynonenal, and protein carbonyl), M1 phenotype-related microglial activity, and pro-apoptotic property (i.e., increases in Bax- and cleaved caspase-3-expressions, while a decrease in Bcl-2-expression). Moreover, treatment with MPA resulted in significant impairments in dopaminergic parameters [i.e., changes in dopamine level, dopamine turnover rate, tyrosine hydroxylase (TH) levels, dopamine transporter (DAT) expression, and vesicular monoamine transporter-2 (VMAT-2) expression], and in behavioral deficits. Both dopamine D1 receptor antagonist SCH23390 and D2 receptor antagonist sulpiride protected from these neurotoxic consequences. Therefore, our results suggest that dopamine D1 and D2 receptors simultaneously mediate MPA-induced dopaminergic neurodegeneration in mice via oxidative burdens, microgliosis, and pro-apoptosis.
Collapse
|
20
|
Tran HQ, Park SJ, Shin EJ, Tran TV, Sharma N, Lee YJ, Jeong JH, Jang CG, Kim DJ, Nabeshima T, Kim HC. Clozapine attenuates mitochondrial burdens and abnormal behaviors elicited by phencyclidine in mice via inhibition of p47 phox; Possible involvements of phosphoinositide 3-kinase/Akt signaling. J Psychopharmacol 2018; 32:1233-1251. [PMID: 30207504 DOI: 10.1177/0269881118795244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Oxidative stress and mitochondrial dysfunction have been implicated in the pathophysiology of schizophrenia. AIMS We investigated whether antipsychotic clozapine modulates nicotinamide adenine dinucleotide phosphate oxidase and mitochondrial burdens induced by phencyclidine in mice. METHODS We examined the effect of clozapine on nicotinamide adenine dinucleotide phosphate oxidase activation, mitochondrial burdens (i.e. oxidative stress and mitochondrial dysfunction), and activities of enzymatic antioxidant in the prefrontal cortex, and subsequent abnormal behaviors induced by repeated treatment with phencyclidine. p47 phox Knockout mice and LY294002, a phosphoinositide 3-kinase inhibitor, were employed to elucidate the pharmacological mechanism of clozapine. RESULTS Phencyclidine treatment resulted in an early increase nicotinamide adenine dinucleotide phosphate oxidase activity, membrane translocation of p47 phox, interaction between p-Akt and p47 phox, and mitochondrial burdens in wild-type mice. Although these increases returned to near control level four days post-phencyclidine, mitochondrial superoxide dismutase and glutathione peroxidase activities were decreased at that time. Clozapine, LY294002, or p47 phox knockout significantly ameliorated social withdrawal and recognition memory deficits produced by phencyclidine. Importantly, LY294002 did not significantly alter the effects of clozapine against abnormal behaviors and the interaction between p-Akt and p47 phox induced by phencyclidine. Furthermore, neither LY294002 nor clozapine exhibited any additive effects to the protection afforded by p47 phox knockout against phencyclidine insult. CONCLUSION Our results suggest that p47 phox gene mediates phencyclidine-induced mitochondrial burdens and abnormal behaviors, and that the interactive modulation between p47 phox and phosphoinositide 3-kinase/Akt is important for the understanding on the pharmacological mechanism of clozapine.
Collapse
Affiliation(s)
- Hai-Quyen Tran
- 1 Neuropsychopharmacology and Toxicology Program, Kangwon National University, Chunchon, Republic of Korea
| | - Se J Park
- 2 School of Natural Resources and Environmental Sciences, Kangwon National University, Chunchon, Republic of Korea
| | - Eun-Joo Shin
- 1 Neuropsychopharmacology and Toxicology Program, Kangwon National University, Chunchon, Republic of Korea
| | - The-Vinh Tran
- 1 Neuropsychopharmacology and Toxicology Program, Kangwon National University, Chunchon, Republic of Korea
| | - Naveen Sharma
- 1 Neuropsychopharmacology and Toxicology Program, Kangwon National University, Chunchon, Republic of Korea
| | - Yu J Lee
- 3 Clinical Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Ji H Jeong
- 4 Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
| | - Choon-Gon Jang
- 5 Department of Pharmacology, Sungkyunkwan University, Suwon, Korea
| | - Dae-Joong Kim
- 6 Department of Anatomy and Cell Biology, Kangwon National University, Chunchon, Korea
| | - Toshitaka Nabeshima
- 7 Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan.,9 Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Hyoung-Chun Kim
- 1 Neuropsychopharmacology and Toxicology Program, Kangwon National University, Chunchon, Republic of Korea
| |
Collapse
|
21
|
Tran HQ, Shin EJ, Hoai Nguyen BC, Phan DH, Kang MJ, Jang CG, Jeong JH, Nah SY, Mouri A, Saito K, Nabeshima T, Kim HC. 5-HT 1A receptor agonist 8-OH-DPAT induces serotonergic behaviors in mice via interaction between PKCδ and p47phox. Food Chem Toxicol 2018; 123:125-141. [PMID: 30366073 DOI: 10.1016/j.fct.2018.10.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 12/22/2022]
Abstract
Serotonin syndrome is an adverse reaction due to increased serotonin (5-hydroxytryptophan: 5-HT) concentrations in the central nervous system (CNS). The full 5-HT1A receptor (5-HT1AR) agonist (±)-8-hydroxy-dipropylaminotetralin (8-OH-DPAT) has been recognized to elicit traditional serotonergic behaviors. Treatment with 8-OH-DPAT selectively increased PKCδ expression out of PKC isoforms and 5-HT turnover rate in the hypothalamus of wild-type mice. Treatment with 8-OH-DPAT resulted in oxidative burdens, co-immunoprecipitation of 5-HT1AR and PKCδ, and phosphorylation and membrane translocation of p47phox. Importantly, p47phox also interacted with 5-HT1AR or PKCδ in the presence of 8-OH-DPAT. Consistently, the interaction and oxidative burdens were attenuated by 5-HT1AR antagonism (i.e., WAY100635), PKCδ inhibition (i.e., rottlerin and genetic depletion of PKCδ), or NADPH oxidase/p47phox inhibition (i.e., apocynin and genetic depletion of p47phox). However, WAY100635, apocynin, or rottlerin did not exhibit any additive effects against the protective effect by inhibition of PKCδ or p47phox. Furthermore, apocynin, rottlerin, or WAY100635 also significantly protected from pro-inflammatory/pro-apoptotic changes induced by 8-OH-DPAT. Therefore, we suggest that 8-OH-DPAT-induced serotonergic behaviors requires oxidative stress, pro-inflammatory, and pro-apoptotic changes, that PKCδ or p47phox mediates the serotonergic behaviors induced by 8-OH-DPAT, and that the inhibition of PKCδ-dependent p47phox activation is critical for protecting against serotonergic behaviors.
Collapse
Affiliation(s)
- Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Bao-Chau Hoai Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Dieu-Hien Phan
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Min-Ji Kang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Akihiro Mouri
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, 470-1192, Japan
| | - Kuniaki Saito
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, 470-1192, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, 470-1192, Japan; Aino University, Ibaraki, 576-0012, Japan; Japanese Drug Organization of Appropriate and Research, Nagoya, 468-0069, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
22
|
Shin EJ, Hwang YG, Sharma N, Tran HQ, Dang DK, Jang CG, Jeong JH, Nah SY, Nabeshima T, Kim HC. Role of protein kinase Cδ in dopaminergic neurotoxic events. Food Chem Toxicol 2018; 121:254-261. [PMID: 30195712 DOI: 10.1016/j.fct.2018.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/13/2022]
Abstract
The pro-apoptotic role of Protein kinase Cδ (PKCδ), a member of the novel PKC subfamily, has been well-documented in various pathological conditions. In the central nervous system, the possible role of PKCδ has been studied, mainly in the condition of dopaminergic loss. It has been suggested that the phosphorylation of PKCδ at tyrosine 311 residue (Tyr311) by redox-sensitive Src family kinases (SFKs) is critical for the caspase-3-mediated proteolytic cleavage, which produces the constitutively active cleaved form of PKCδ. Mitochondrial translocation of cleaved PKCδ has been suggested to facilitate mitochondria-derived apoptosis and oxidative burdens. Moreover, it has been suggested that PKCδ contribute to neuroinflammation through the transformation of microglia into the pro-inflammatory M1 phenotype and the assembly of membrane NADPH oxidase in dopaminergic impairments. Interestingly, mitochondrial respiratory chain inhibitors or neuroinflammogens have shown to induce PKCδ activation in dopaminergic systems. Thus, PKCδ activation may be one of the pivotal causes of neuropathologic events, and could amplify these processes further in a positive feedback manner. Furthermore, PKCδ may play an intermediary role in connecting each neuropathologic event. This review affords insight into the role of PKCδ in various dopaminergic neurotoxic models, which could provide a potential target for mitigating dopaminergic neurotoxicity.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Young Gwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake, 470-1192, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
23
|
Jakaria M, Park SY, Haque ME, Karthivashan G, Kim IS, Ganesan P, Choi DK. Neurotoxic Agent-Induced Injury in Neurodegenerative Disease Model: Focus on Involvement of Glutamate Receptors. Front Mol Neurosci 2018; 11:307. [PMID: 30210294 PMCID: PMC6123546 DOI: 10.3389/fnmol.2018.00307] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
Glutamate receptors play a crucial role in the central nervous system and are implicated in different brain disorders. They play a significant role in the pathogenesis of neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Although many studies on NDDs have been conducted, their exact pathophysiological characteristics are still not fully understood. In in vivo and in vitro models of neurotoxic-induced NDDs, neurotoxic agents are used to induce several neuronal injuries for the purpose of correlating them with the pathological characteristics of NDDs. Moreover, therapeutic drugs might be discovered based on the studies employing these models. In NDD models, different neurotoxic agents, namely, kainic acid, domoic acid, glutamate, β-N-Methylamino-L-alanine, amyloid beta, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 1-methyl-4-phenylpyridinium, rotenone, 3-Nitropropionic acid and methamphetamine can potently impair both ionotropic and metabotropic glutamate receptors, leading to the progression of toxicity. Many other neurotoxic agents mainly affect the functions of ionotropic glutamate receptors. We discuss particular neurotoxic agents that can act upon glutamate receptors so as to effectively mimic NDDs. The correlation of neurotoxic agent-induced disease characteristics with glutamate receptors would aid the discovery and development of therapeutic drugs for NDDs.
Collapse
Affiliation(s)
- Md. Jakaria
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju, South Korea
| | - Shin-Young Park
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju, South Korea
| | - Md. Ezazul Haque
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju, South Korea
| | - Govindarajan Karthivashan
- Department of Integrated Bioscience and Biotechnology, College of Biomedical and Health Sciences, Research Institute of Inflammatory Diseases (RID), Konkuk University, Chungju, South Korea
| | - In-Su Kim
- Department of Integrated Bioscience and Biotechnology, College of Biomedical and Health Sciences, Research Institute of Inflammatory Diseases (RID), Konkuk University, Chungju, South Korea
| | - Palanivel Ganesan
- Department of Integrated Bioscience and Biotechnology, College of Biomedical and Health Sciences, Research Institute of Inflammatory Diseases (RID), Konkuk University, Chungju, South Korea
- Nanotechnology Research Center, Konkuk University, Chungju, South Korea
| | - Dong-Kug Choi
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju, South Korea
- Department of Integrated Bioscience and Biotechnology, College of Biomedical and Health Sciences, Research Institute of Inflammatory Diseases (RID), Konkuk University, Chungju, South Korea
- Nanotechnology Research Center, Konkuk University, Chungju, South Korea
| |
Collapse
|
24
|
Du Y, Zhao Y, Li C, Zheng Q, Tian J, Li Z, Huang TY, Zhang W, Xu H. Inhibition of PKCδ reduces amyloid-β levels and reverses Alzheimer disease phenotypes. J Exp Med 2018; 215:1665-1677. [PMID: 29739836 PMCID: PMC5987914 DOI: 10.1084/jem.20171193] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/11/2018] [Accepted: 03/29/2018] [Indexed: 12/28/2022] Open
Abstract
β-amyloid protein (Aβ) plays a central role in the pathogenesis of Alzheimer disease (AD). Aβ is generated from sequential cleavage of amyloid precursor protein (APP) by β-site APP-cleaving enzyme 1 (BACE1) and the γ-secretase complex. Although activation of some protein kinase C (PKC) isoforms such as PKCα and ε has been shown to regulate nonamyloidogenic pathways and Aβ degradation, it is unclear whether other PKC isoforms are involved in APP processing/AD pathogenesis. In this study, we report that increased PKCδ levels correlate with BACE1 expression in the AD brain. PKCδ knockdown reduces BACE1 expression, BACE1-mediated APP processing, and Aβ production. Conversely, overexpression of PKCδ increases BACE1 expression and Aβ generation. Importantly, inhibition of PKCδ by rottlerin markedly reduces BACE1 expression, Aβ levels, and neuritic plaque formation and rescues cognitive deficits in an APP Swedish mutations K594N/M595L/presenilin-1 with an exon 9 deletion-transgenic AD mouse model. Our study indicates that PKCδ plays an important role in aggravating AD pathogenesis, and PKCδ may be a potential target in AD therapeutics.
Collapse
Affiliation(s)
- Ying Du
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xian, China
| | - Yingjun Zhao
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Chuan Li
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xian, China
| | - Qiuyang Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, The Collaborative Innovation Center for Brain Science, Medical College, Xiamen University, Xiamen, China
| | - Jing Tian
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Eco-Environmental Science, Shenzhen University, Shenzhen, China
| | - Zhuyi Li
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xian, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Wei Zhang
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xian, China
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA.,Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, The Collaborative Innovation Center for Brain Science, Medical College, Xiamen University, Xiamen, China
| |
Collapse
|
25
|
Mai HN, Sharma N, Shin EJ, Nguyen BT, Nguyen PT, Jeong JH, Cho EH, Lee YJ, Kim NH, Jang CG, Nabeshima T, Kim HC. Exposure to far-infrared ray attenuates methamphetamine-induced impairment in recognition memory through inhibition of protein kinase C δ in male mice: Comparison with the antipsychotic clozapine. J Neurosci Res 2018; 96:1294-1310. [PMID: 29476655 DOI: 10.1002/jnr.24228] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/27/2018] [Accepted: 02/06/2018] [Indexed: 12/18/2022]
Abstract
We have previously demonstrated that repeated treatment with methamphetamine (MA) results in a recognition memory impairment via upregulation of protein kinase C (PKC) δ and downregulation of the glutathione peroxidase-1 (GPx-1)-dependent antioxidant system. We also demonstrated that far-infrared ray (FIR) attenuates acute restraint stress via induction of the GPx-1 gene. Herein, we investigated whether exposure to FIR modulates MA-induced recognition memory impairment in male mice, and whether cognitive potentials mediated by FIR require modulation of the PKCδ gene, extracellular signal-regulated kinase (ERK) 1/2, and glutathione-dependent system. Repeated treatment with MA significantly increased PKCδ expression and its phosphorylation out of PKC isoenzymes (i.e., PKCα, PKCβI, PKCβII, PKCζ, and PKCδ expression) in the prefrontal cortex of mice. Exposure to FIR significantly attenuated MA-induced increase in phospho-PKCδ and decrease in phospho-ERK 1/2. In addition, FIR further facilitated the nuclear factor E2-related factor 2 (Nrf2)-dependent glutathione synthetic system. Moreover, L-buthionine-(S, R)-sulfoximine, an inhibitor of glutathione synthesis, counteracted the FIR-mediated phospho-ERK 1/2 induction and memory-enhancing activity against MA insult. More important, positive effects of FIR are comparable to those of genetic depletion of PKCδ or the antipsychotic clozapine. Our results indicate that FIR protects against MA-induced memory impairment via activations of the Nrf2-dependent glutathione synthetic system, and ERK 1/2 signaling by inhibition of the PKCδ gene.
Collapse
Affiliation(s)
- Huynh Nhu Mai
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Phuong Tram Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Eun-Hee Cho
- Department of Internal Medicine, Medical School, Kangwon National University, Chunchon, Republic of Korea
| | - Yu Jeung Lee
- Clinical Pharmacology, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Nam Hun Kim
- College of Forest and Environmental Sciences, Kangwon National University, Chunchon, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University Suwon, Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Aichi, Japan.,Aino University, Ibaragi, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| |
Collapse
|
26
|
Tran HQ, Lee Y, Shin EJ, Jang CG, Jeong JH, Mouri A, Saito K, Nabeshima T, Kim HC. PKCδ Knockout Mice Are Protected from Dextromethorphan-Induced Serotonergic Behaviors in Mice: Involvements of Downregulation of 5-HT 1A Receptor and Upregulation of Nrf2-Dependent GSH Synthesis. Mol Neurobiol 2018; 55:7802-7821. [PMID: 29468562 DOI: 10.1007/s12035-018-0938-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/28/2018] [Indexed: 12/12/2022]
Abstract
We investigated whether a specific serotonin (5-HT) receptor-mediated mechanism was involved in dextromethorphan (DM)-induced serotonergic behaviors. We firstly observed that the activation of 5-HT1A receptor, but not 5-HT2A receptor, contributed to DM-induced serotonergic behaviors in mice. We aimed to determine whether the upregulation of 5-HT1A receptor induced by DM facilitates the specific induction of certain PKC isoform, because previous reports suggested that 5-HT1A receptor activates protein kinase C (PKC). A high dose of DM (80 mg/kg, i.p.) induced a selective induction of PKCδ out of PKCα, PKCβI, PKCβII, PKCξ, and PKCδ in the hypothalamus of wild-type (WT) mice. More importantly, 5-HT1A receptor co-immunoprecipitated PKCδ in the presence of DM. Consistently, rottlerin, a pharmacological inhibitor of PKCδ, or PKCδ knockout significantly protected against increases in 5-HT1A receptor gene expression, 5-HT turnover rate, and serotonergic behaviors induced by DM. Treatment with DM resulted in an initial increase in nuclear factor erythroid-2-related factor 2 (Nrf2) nuclear translocation and DNA-binding activity, γ-glutamylcysteine (GCL) mRNA expression, and glutathione (GSH) level. This compensative induction was further potentiated by rottlerin or PKCδ knockout. However, GCL mRNA and GSH/GSSG levels were decreased 6 and 12 h post-DM. These decreases were attenuated by PKCδ inhibition. Our results suggest that interaction between 5-HT1A receptor and PKCδ is critical for inducing DM-induced serotonergic behaviors and that inhibition of PKCδ attenuates the serotonergic behaviors via downregulation of 5-HT1A receptor and upregulation of Nrf2-dependent GSH synthesis.
Collapse
MESH Headings
- Acetophenones/pharmacology
- Animals
- Behavior, Animal
- Benzopyrans/pharmacology
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Dextromethorphan
- Down-Regulation
- Glutamate-Cysteine Ligase/genetics
- Glutamate-Cysteine Ligase/metabolism
- Glutathione/biosynthesis
- Glutathione Disulfide/metabolism
- Hypothalamus/metabolism
- Hypothermia, Induced
- Isoenzymes/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- NF-E2-Related Factor 2/metabolism
- Neuroprotective Agents/pharmacology
- Phosphorylation/drug effects
- Piperazines/pharmacology
- Protein Kinase C-delta/metabolism
- Pyridines/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT2A/metabolism
- Serotonin/metabolism
- Serotonin 5-HT1 Receptor Antagonists/pharmacology
- Time Factors
- Up-Regulation
Collapse
Affiliation(s)
- Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Youngho Lee
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Akihiro Mouri
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake, Aichi, 470-1192, Japan
| | - Kuniaki Saito
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake, Aichi, 470-1192, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake, Aichi, 470-1192, Japan
- Aino University, Ibaraki, 576-0012, Japan
- Japanese Drug Organization of Appropriate and Research, Nagoya, 468-0069, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
27
|
Dang DK, Shin EJ, Kim DJ, Tran HQ, Jeong JH, Jang CG, Nah SY, Jeong JH, Byun JK, Ko SK, Bing G, Hong JS, Kim HC. Ginsenoside Re protects methamphetamine-induced dopaminergic neurotoxicity in mice via upregulation of dynorphin-mediated κ-opioid receptor and downregulation of substance P-mediated neurokinin 1 receptor. J Neuroinflammation 2018; 15:52. [PMID: 29467000 PMCID: PMC5822489 DOI: 10.1186/s12974-018-1087-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/02/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We previously reported that ginsenoside Re (GRe) attenuated against methamphetamine (MA)-induced neurotoxicity via anti-inflammatory and antioxidant potentials. We also demonstrated that dynorphin possesses anti-inflammatory and antioxidant potentials against dopaminergic loss, and that balance between dynorphin and substance P is important for dopaminergic neuroprotection. Thus, we examined whether GRe positively affects interactive modulation between dynorphin and substance P against MA neurotoxicity in mice. METHODS We examined changes in dynorphin peptide level, prodynorphin mRNA, and substance P mRNA, substance P-immunoreactivity, homeostasis in enzymatic antioxidant system, oxidative parameter, microglial activation, and pro-apoptotic parameter after a neurotoxic dose of MA to clarify the effects of GRe, prodynorphin knockout, pharmacological inhibition of κ-opioid receptor (i.e., nor-binaltorphimine), or neurokinin 1 (NK1) receptor (i.e., L-733,060) against MA insult in mice. RESULTS GRe attenuated MA-induced decreases in dynorphin level, prodynorphin mRNA expression in the striatum of wild-type (WT) mice. Prodynorphin knockout potentiated MA-induced dopaminergic toxicity in mice. The imbalance of enzymatic antioxidant system, oxidative burdens, microgliosis, and pro-apoptotic changes led to the dopaminergic neurotoxicity. Neuroprotective effects of GRe were more pronounced in prodynorphin knockout than in WT mice. Nor-binaltorphimine, a κ-opioid receptor antagonist, counteracted against protective effects of GRe. In addition, we found that GRe significantly attenuated MA-induced increases in substance P-immunoreactivity and substance P mRNA expression in the substantia nigra. These increases were more evident in prodynorphin knockout than in WT mice. Although, we observed that substance P-immunoreactivity was co-localized in NeuN-immunreactive neurons, GFAP-immunoreactive astrocytes, and Iba-1-immunoreactive microglia. NK1 receptor antagonist L-733,060 or GRe selectively inhibited microgliosis induced by MA. Furthermore, L-733,060 did not show any additive effects against GRe-mediated protective activity (i.e., antioxidant, antimicroglial, and antiapoptotic effects), indicating that NK1 receptor is one of the molecular targets of GRe. CONCLUSIONS Our results suggest that GRe protects MA-induced dopaminergic neurotoxicity via upregulatgion of dynorphin-mediated κ-opioid receptor and downregulation of substance P-mediated NK1 R.
Collapse
Affiliation(s)
- Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Dae-Joong Kim
- Department of Anatomy and Cell Biology, Medical School, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jung Hwan Jeong
- Headquarters of Forestry Support, Korea Forestry Promotion Institute, Seoul, 07570, Republic of Korea
| | - Jae Kyung Byun
- Korean Society of Forest Environment Research, Namyangju, 12014, Republic of Korea
| | - Sung Kwon Ko
- Department of Oriental Medical Food and Nutrition, Semyung University, Jecheon, 27136, Republic of Korea.
| | - Guoying Bing
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY, 40536, USA
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
28
|
Role of dopamine D1 receptor in 3-fluoromethamphetamine-induced neurotoxicity in mice. Neurochem Int 2018; 113:69-84. [DOI: 10.1016/j.neuint.2017.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/14/2017] [Accepted: 11/28/2017] [Indexed: 01/26/2023]
|
29
|
Dang DK, Shin EJ, Kim DJ, Tran HQ, Jeong JH, Jang CG, Ottersen OP, Nah SY, Hong JS, Nabeshima T, Kim HC. PKCδ-dependent p47phox activation mediates methamphetamine-induced dopaminergic neurotoxicity. Free Radic Biol Med 2018; 115:318-337. [PMID: 29269308 PMCID: PMC7074955 DOI: 10.1016/j.freeradbiomed.2017.12.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/29/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022]
Abstract
Protein kinase C (PKC) has been recognized to activate NADPH oxidase (PHOX). However, the interaction between PKC and PHOX in vivo remains elusive. Treatment with methamphetamine (MA) resulted in a selective increase in PKCδ expression out of PKC isoforms. PKCδ co-immunoprecipitated with p47phox, and facilitated phosphorylation and membrane translocation of p47phox. MA-induced increases in PHOX activity and reactive oxygen species were attenuated by knockout of p47phox or PKCδ. In addition, MA-induced impairments in the Nrf-2-related glutathione synthetic system were also mitigated by knockout of p47phox or PKCδ. Glutathione-immunoreactivity was co-localized in Iba-1-labeled microglial cells and in NeuN-labeled neurons, but not in GFAP-labeled astrocytes, reflecting the necessity for self-protection against oxidative stress by mainly microglia. Buthionine-sulfoximine, an inhibitor of glutathione biosynthesis, potentiated microglial activation and pro-apoptotic changes, leading to dopaminergic losses. These neurotoxic processes were attenuated by rottlerin, a pharmacological inhibitor of PKCδ, genetic inhibitions of PKCδ [i.e., PKCδ knockout mice (KO) and PKCδ antisense oligonucleotide (ASO)], or genetic inhibition of p47phox (i.e., p47phox KO or p47phox ASO). Rottlerin did not exhibit any additive effects against the protective activity offered by genetic inhibition of p47phox. Therefore, we suggest that PKCδ is a critical regulator for p47phox activation induced by MA, and that Nrf-2-dependent GSH induction via inhibition of PKCδ or p47phox, is important for dopaminergic protection against MA insult.
Collapse
Affiliation(s)
- Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Dae-Joong Kim
- Department of Anatomy and Cell Biology, Medical School, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ole Petter Ottersen
- Laboratory of Molecular Neuroscience, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Toshitaka Nabeshima
- Nabeshima Laboratory, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya 468-8503, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea.
| |
Collapse
|
30
|
Park JH, Seo YH, Jang JH, Jeong CH, Lee S, Park B. Asiatic acid attenuates methamphetamine-induced neuroinflammation and neurotoxicity through blocking of NF-kB/STAT3/ERK and mitochondria-mediated apoptosis pathway. J Neuroinflammation 2017; 14:240. [PMID: 29228978 PMCID: PMC5725763 DOI: 10.1186/s12974-017-1009-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 11/22/2017] [Indexed: 02/04/2023] Open
Abstract
Background Methamphetamine (METH) is a commonly abused drug that may result in neurotoxic effects. Recent studies have suggested that involvement of neuroinflammatory processes in brain dysfunction is induced by misuse of this drug. However, the mechanism underlying METH-induced inflammation and neurotoxicity in neurons is still unclear. In this study, we investigated whether asiatic acid (AA) effected METH-mediated neuroinflammation and neurotoxicity in dopaminergic neuronal cells. And we further determined whether the effect involved in the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription (STAT)3 and extracellular signal-regulated kinase (ERK) pathway. Methods We used the human dopaminergic neuroblastoma SH-SY5Y cell line, murine microglial BV2 cell line, and primary culture of rat embryo mesencephalic neurons. Pro-inflammatory cytokine production was monitored by ELISA and RT/real-time PCR. The cell cycle distribution and mitochondrial membrane integrity was analyzed by flow cytometry. We used immunoblotting, DNA-binding activity, and immunofluorescence staining to analyze the effect of AA on activation of the NF-κB, STAT3, MAPK-ERK, and apoptosis signaling pathways. Results METH induced TNF receptor (TNFR) expression and led to morphological changes of cells. Additionally, this drug increased pro-inflammatory cytokine (TNFα and IL-6) expression. AA significantly suppressed METH-induced TNFR expression in concentration dependent. Increased secretion of TNFα and IL-6 was inhibited in METH-stimulated neuronal cells by AA administration. AA showed significant protection against METH-induced translocation of NF-κB/STAT3 and ERK phosphorylation. AA inhibited METH-induced proteolytic fragmentation of caspase-3 and PARP. The pro-apoptotic protein Bax was significantly decreased, while the anti-apoptotic protein Bcl-xL was increased by AA treatment in METH-stimulated cells. A similar protective effect of AA on mitochondrial membrane integrity was also confirmed by flow cytometry and immunofluorescence staining. Conclusions Based on the literatures and our findings, AA is a promising candidate for an anti-neurotoxic agent, and it can potentially be used for the prevention and treatment of various neurological disorders. Electronic supplementary material The online version of this article (10.1186/s12974-017-1009-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ji-Hyun Park
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu, 42601, Republic of Korea
| | - Young Ho Seo
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu, 42601, Republic of Korea
| | - Jung-Hee Jang
- Department of Pharmacology, School of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu, 42601, Republic of Korea
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu, 42601, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu, 42601, Republic of Korea
| | - Byoungduck Park
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu, 42601, Republic of Korea.
| |
Collapse
|
31
|
Wongprayoon P, Govitrapong P. Melatonin as a mitochondrial protector in neurodegenerative diseases. Cell Mol Life Sci 2017; 74:3999-4014. [PMID: 28791420 PMCID: PMC11107580 DOI: 10.1007/s00018-017-2614-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/03/2017] [Indexed: 12/19/2022]
Abstract
Mitochondria are crucial organelles as their role in cellular energy production of eukaryotes. Because the brain cells demand high energy for maintaining their normal activities, disturbances in mitochondrial physiology may lead to neuropathological events underlying neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease and Huntington's disease. Melatonin is an endogenous compound with a variety of physiological roles. In addition, it possesses potent antioxidant properties which effectively play protective roles in several pathological conditions. Several lines of evidence also reveal roles of melatonin in mitochondrial protection, which could prevent development and progression of neurodegeneration. Since the mitochondrial dysfunction is a primary event in neurodegeneration, the neuroprotection afforded by melatonin is thereby more effective in early stages of the diseases. This article reviews mechanisms which melatonin exerts its protective roles on mitochondria as a potential therapeutic strategy against neurodegenerative disorders.
Collapse
Affiliation(s)
- Pawaris Wongprayoon
- Department of Biopharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand.
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, 10210, Thailand.
| |
Collapse
|
32
|
Tu THT, Sharma N, Shin EJ, Tran HQ, Lee YJ, Jeong JH, Jeong JH, Nah SY, Tran HYP, Byun JK, Ko SK, Kim HC. Ginsenoside Re Protects Trimethyltin-Induced Neurotoxicity via Activation of IL-6-Mediated Phosphoinositol 3-Kinase/Akt Signaling in Mice. Neurochem Res 2017; 42:3125-3139. [PMID: 28884396 DOI: 10.1007/s11064-017-2349-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/19/2017] [Accepted: 07/01/2017] [Indexed: 12/23/2022]
Abstract
Ginseng (Panax ginseng), an herbal medicine, has been used to prevent neurodegenerative disorders. Ginsenosides (e.g., Re, Rb1, or Rg1) were obtained from Korean mountain cultivated ginseng. The anticonvulsant activity of ginsenoside Re (20 mg/kg/day × 3) against trimethyltin (TMT) insult was the most pronounced out of ginsenosides (e.g., Re, Rb1, and Rg1). Re itself did not significantly alter tumor necrosis factor-α (TNF-α), interferon-ϒ (IFN-ϒ), and interleukin-1β (IL-1β) expression, however, it significantly increases the interleukin-6 (IL-6) expression. In addition, Re attenuated the TMT-induced decreases in IL-6 protein level. Therefore, IL-6 knockout (-/-) mice were employed to investigate whether Re requires IL-6-dependent neuroprotective activity against TMT toxicity. Re significantly attenuated TMT-induced lipid peroxidation, protein peroxidation, and reactive oxygen species in the hippocampus. Re-mediated antioxidant effects were more pronounced in IL-6 (-/-) mice than in WT mice. Consistently, TMT-induced increase in c-Fos-immunoreactivity (c-Fos-IR), TUNEL-positive cells, and nuclear chromatin clumping in the dentate gyrus of the hippocampus were significantly attenuated by Re. Furthermore, Re attenuated TMT-induced proapoptotic changes. Protective potentials by Re were comparable to those by recombinant IL-6 protein (rIL-6) against TMT-insult in IL-6 (-/-) mice. Moreover, treatment with a phosphoinositol 3-kinase (PI3K) inhibitor, LY294002 (1.6 µg, i.c.v) counteracted the protective potential mediated by Re or rIL-6 against TMT insult. The results suggest that ginsenoside Re requires IL-6-dependent PI3K/Akt signaling for its protective potential against TMT-induced neurotoxicity.
Collapse
Affiliation(s)
- Thu-Hien Thi Tu
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Yu Jeung Lee
- Clinical Pharmacy, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Pharmacology, College of Medicine, Chug-Ang University, Seoul, Republic of Korea
| | - Jung Hwan Jeong
- Headquarters of Forestry Support, Korea Forestry Promotion Institute, Seoul, 07570, Republic of Korea
| | - Seung Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Hoang-Yen Phi Tran
- Physical Chemistry Department, University of Medicine and Pharmacy, Ho Chi Minh City, 760000, Vietnam
| | - Jae Kyung Byun
- Korean Society of Forest Environment Research, Namyangju, 12014, Republic of Korea
| | - Sung Kwon Ko
- Department of Oriental Medical Food & Nutrition, Semyung University, Jecheon, 27136, Republic of Korea.
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
33
|
Dang DK, Shin EJ, Mai AT, Jang CG, Nah SY, Jeong JH, Ledent C, Yamamoto T, Nabeshima T, Onaivi ES, Kim HC. Genetic or pharmacological depletion of cannabinoid CB1 receptor protects against dopaminergic neurotoxicity induced by methamphetamine in mice. Free Radic Biol Med 2017; 108:204-224. [PMID: 28363605 DOI: 10.1016/j.freeradbiomed.2017.03.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/14/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022]
Abstract
Accumulating evidence suggests that cannabinoid ligands play delicate roles in cell survival and apoptosis decisions, and that cannabinoid CB1 receptors (CB1R) modulate dopaminergic function. However, the role of CB1R in methamphetamine (MA)-induced dopaminergic neurotoxicity in vivo remains elusive. Multiple high doses of MA increased phospho-ERK and CB1R mRNA expressions in the striatum of CB1R (+/+) mice. These increases were attenuated by CB1R antagonists (i.e., AM251 and rimonabant), an ERK inhibitor (U0126), or dopamine D2R antagonist (sulpiride). In addition, treatment with MA resulted in dopaminergic impairments, which were attenuated by CB1R knockout or CB1R antagonists (i.e., AM251 and rimonabant). Consistently, MA-induced oxidative stresses (i.e., protein oxidation, lipid peroxidation and reactive oxygen species) and pro-apoptotic changes (i.e., increases in Bax, cleaved PKCδ- and cleaved caspase 3-expression and decrease in Bcl-2 expression) were observed in the striatum of CB1R (+/+) mice. These toxic effects were attenuated by CB1R knockout or CB1R antagonists. Consistently, treatment with four high doses of CB1R agonists (i.e., WIN 55,212-2 36mg/kg and ACEA 16mg/kg) also resulted in significant oxidative stresses, pro-apoptotic changes, and dopaminergic impairments. Since CB1R co-immunoprecipitates PKCδ in the presence of MA or CB1R agonists, we applied PKCδ knockout mice to clarify the role of PKCδ in the neurotoxicity elicited by CB1Rs. CB1R agonist-induced toxic effects were significantly attenuated by CB1R knockout, CB1R antagonists or PKCδ knockout. Therefore, our results suggest that interaction between D2R, ERK and CB1R is critical for MA-induced dopaminergic neurotoxicity and that PKCδ mediates dopaminergic damage induced by high-doses of CB1R agonist.
Collapse
MESH Headings
- Animals
- Apoptosis
- Butadienes/pharmacology
- Cells, Cultured
- Corpus Striatum/metabolism
- Corpus Striatum/pathology
- Dopamine/metabolism
- Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors
- Extracellular Signal-Regulated MAP Kinases/pharmacology
- Methamphetamine/administration & dosage
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neurotoxicity Syndromes/genetics
- Neurotoxicity Syndromes/metabolism
- Nitriles/pharmacology
- Oxidative Stress
- Piperidines/pharmacology
- Protein Kinase C-delta/genetics
- Protein Kinase C-delta/metabolism
- Pyrazoles/pharmacology
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Dopamine D2/metabolism
- Rimonabant
- Sulpiride/pharmacology
Collapse
Affiliation(s)
- Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Anh-Thu Mai
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | | | - Tsuneyuki Yamamoto
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki 859-3298, Japan
| | - Toshitaka Nabeshima
- Nabeshima Laboratory, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya 468-8503, Japan
| | - Emmanuel S Onaivi
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea.
| |
Collapse
|
34
|
Tran TV, Shin EJ, Nguyen LTT, Lee Y, Kim DJ, Jeong JH, Jang CG, Nah SY, Toriumi K, Nabeshima T, Yamada K, Kim HC. Protein Kinase Cδ Gene Depletion Protects Against Methamphetamine-Induced Impairments in Recognition Memory and ERK1/2 Signaling via Upregulation of Glutathione Peroxidase-1 Gene. Mol Neurobiol 2017; 55:4136-4159. [DOI: 10.1007/s12035-017-0638-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 05/24/2017] [Indexed: 11/28/2022]
|
35
|
Shin EJ, Tran HQ, Nguyen PT, Jeong JH, Nah SY, Jang CG, Nabeshima T, Kim HC. Role of Mitochondria in Methamphetamine-Induced Dopaminergic Neurotoxicity: Involvement in Oxidative Stress, Neuroinflammation, and Pro-apoptosis-A Review. Neurochem Res 2017; 43:66-78. [PMID: 28589520 DOI: 10.1007/s11064-017-2318-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 01/08/2023]
Abstract
Methamphetamine (MA), an amphetamine-type psychostimulant, is associated with dopaminergic toxicity and has a high abuse potential. Numerous in vivo and in vitro studies have suggested that impaired mitochondria are critical in dopaminergic toxicity induced by MA. Mitochondria are important energy-producing organelles with dynamic nature. Evidence indicated that exposure to MA can disturb mitochondrial energetic metabolism by inhibiting the Krebs cycle and electron transport chain. Alterations in mitochondrial dynamic processes, including mitochondrial biogenesis, mitophagy, and fusion/fission, have recently been shown to contribute to dopaminergic toxicity induced by MA. Furthermore, it was demonstrated that MA-induced mitochondrial impairment enhances susceptibility to oxidative stress, pro-apoptosis, and neuroinflammation in a positive feedback loop. Protein kinase Cδ has emerged as a potential mediator between mitochondrial impairment and oxidative stress, pro-apoptosis, or neuroinflammation in MA neurotoxicity. Understanding the role and underlying mechanism of mitochondrial impairment could provide a molecular target to prevent or alleviate dopaminergic toxicity induced by MA.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Phuong-Tram Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake, 470-1192, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
36
|
The role of system Xc - in methamphetamine-induced dopaminergic neurotoxicity in mice. Neurochem Int 2017; 108:254-265. [PMID: 28457879 DOI: 10.1016/j.neuint.2017.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 01/18/2023]
Abstract
The cystine/glutamate antiporter (system Xc-, Sxc) transports cystine into cell in exchange for glutamate. Since xCT is a specific subunit of Sxc, we employed xCT knockout mice and investigated whether this antiporter affected methamphetamine (MA)-induced dopaminergic neurotoxicity. MA treatment significantly increased striatal oxidative burdens in wild type mice. xCT inhibitor [i.e., S-4-carboxy-phenylglycine (CPG), sulfasalazine] or an xCT knockout significantly protected against these oxidative burdens. MA-induced increases in Iba-1 expression and Iba-1-labeled microglial immunoreactivity (Iba-1-IR) were significantly attenuated by CPG or sulfasalazine administration or xCT knockout. CPG or sulfasalazine significantly attenuated MA-induced TUNEL-positive cell populations in the striatum of Taconic ICR mice. The decrease in excitatory amino acid transporter-2 (or glutamate transporter-1) expression and increase in glutamate release were attenuated by CPG, sulfasalazine or xCT knockout. In addition, CPG, sulfasalazine or xCT knockout significantly protected against dopaminergic loss (i.e., decreases in tyrosine hydroxylase expression and immunoreactivity, and an increase in dopamine turnover rate) induced by MA. However, CPG, sulfasalazine or xCT knockout did not significantly affect the impaired glutathione system [i.e., decrease in reduced glutathione (GSH) and increase in oxidized glutathione (GSSG)] induced by MA. Our results suggest that Sxc mediates MA-induced neurotoxicity via facilitating oxidative stress, microgliosis, proapoptosis, and glutamate-related toxicity.
Collapse
|
37
|
Current understanding of methamphetamine-associated dopaminergic neurodegeneration and psychotoxic behaviors. Arch Pharm Res 2017; 40:403-428. [DOI: 10.1007/s12272-017-0897-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/02/2016] [Indexed: 12/21/2022]
|
38
|
McDonnell-Dowling K, Kelly JP. The Role of Oxidative Stress in Methamphetamine-induced Toxicity and Sources of Variation in the Design of Animal Studies. Curr Neuropharmacol 2017; 15:300-314. [PMID: 27121285 PMCID: PMC5412700 DOI: 10.2174/1570159x14666160428110329] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 04/21/2016] [Accepted: 04/27/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The prevalence of methamphetamine (MA) use has increased in recent years. In order to assess how this drug produces its effects, both clinical and preclinical studies have recently begun to focus on oxidative stress as an important biochemical mechanism in mediating these effects. OBJECTIVE The purpose of this review is to illustrate the variation in the design of preclinical studies investigating MA exposure on oxidative stress parameters in animal models. METHOD The experimental variables investigated and summarised include MA drug treatment, measurements of oxidative stress and antioxidant treatments that ameliorate the harmful effects of MA. RESULTS These preclinical studies differ greatly in their experimental design with respect to the dose of MA (ranging between 0.25 and 20 mg/kg), the dosing regime (acute, binge or chronic), the time of measurement of oxidative stress (0.5 h to 2 wks after last MA administration), the antioxidant system targeted and finally the use of antioxidants including the route of administration (i.p. or p.o.), the frequency of exposure and the time of exposure (preventative or therapeutic). CONCLUSION The findings in this paper suggest that there is a large diversity among these studies and so the interpretation of these results is challenging. For this reason, the development of guidelines and how best to assess oxidative stress in animal models may be beneficial. The use of these simple recommendations mean that results will be more comparable between laboratories and that future results generated will give us a greater understanding of the contribution of this important biochemical mechanism and its implications for the clinical scenario.
Collapse
Affiliation(s)
- Kate McDonnell-Dowling
- Discipline of Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Galway, Ireland
| | | |
Collapse
|
39
|
Zhang Z, Gong Q, Feng X, Zhang D, Quan L. Astrocytic clasmatodendrosis in the cerebral cortex of methamphetamine abusers. Forensic Sci Res 2017; 2:139-144. [PMID: 30483632 PMCID: PMC6197099 DOI: 10.1080/20961790.2017.1280890] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/09/2017] [Indexed: 11/21/2022] Open
Abstract
Postmortem investigation of methamphetamine (MA) abuse is an important task in forensic pathology. The present study investigated morphological changes in the astrocytes in the parietal cerebral cortex of MA abusers. Glial fibrillary acidic protein immunoreactivity in the cerebral cortex was examined in forensic autopsy cases for MA-detected group and control group. Clasmatodendrotic astrocytes (including those with swollen cell bodies and disintegrating distal processes) were frequently observed in the cerebral cortex of MA abusers. Quantitative analysis using a colour image processor showed a concomitant increase in the astrocyte area and astrocyte-to-vessel area ratio (size and number of astrocytes) in the grey matter in acute MA fatality and other MA-involved cases, although the astrocyte area (size) was also increased in cases of asphyxiation. The total astrocyte area (size) in the white matter was significantly higher in MA fatalities and asphyxia than in the other groups involving MA abusers. Those indices were independent of blood MA level, age, sex, survival or postmortem time. These observations suggest the increasing number and hypertrophic changes of astrocytes in the grey matter in MA abusers can be the outcome of long-term abuse, while disintegrating distal processes may exist only in acute fatal MA intoxication.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Forensic Science Center, Shunde Branch of Foshan Public Security Bureau, Foshan, China
| | - Qingjin Gong
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xueying Feng
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Dongchuan Zhang
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Institute of Forensic Science, Shanghai, China
| | - Li Quan
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
40
|
Liu M, Shi G, Yang KC, Gu L, Kanthasamy AG, Anantharam V, Dudley SC. Role of protein kinase C in metabolic regulation of the cardiac Na + channel. Heart Rhythm 2016; 14:440-447. [PMID: 27989687 DOI: 10.1016/j.hrthm.2016.12.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND The reduced form of nicotinamide adenine dinucleotide (NADH) increases in cardiomyopathy, activates protein kinase C (PKC), up-regulates mitochondrial reactive oxygen species (mitoROS), and down-regulates the cardiac Na+ channel (NaV1.5). OBJECTIVE The purpose of this study was to determine how NADH signals down-regulation of NaV1.5. METHODS Isolated mouse cardiomyocytes were used for patch-clamp recording and for monitoring mitoROS with MitoSOX Red. HEK293 cells were used for transient transfections. HEK293 cells stably expressing human NaV1.5 were used for single channel recording, whole-cell patch-clamp recording, activity measurements of phospholipase C and phospholipase D (PLD), channel protein purification, and co-immunoprecipitation with PKC isoforms. HL-1 cells were used for mitochondria isolation. RESULTS NADH enhanced PLD activity (1.6- ± 0.1-fold, P <.01) and activated PKCδ. Activated PKCδ translocated to mitochondria and up-regulated mitoROS (2.8- ± 0.3-fold, P <.01) by enhancing the activities of mitochondrial complexes I, II, and IV (1.1- to 1.5-fold, P <.01). PKCδ also interacted with NaV1.5 to down-regulate Na+ current (INa). Reduction in INa by activated PKCδ was prevented by antioxidants and by mutating the known PKC phosphorylation site S1503. At the single channel level, the mechanism of current reduction by PKC and recovery by protein kinase A was a change in single channel conductance. CONCLUSION NADH activated PKCδ by enhancing PLD activity. PKCδ modulated both mitoROS and NaV1.5. PKCδ elevated mitoROS by enhancing mitochondrial oxidative phosphorylation complex activities. PKCδ-mediated channel phosphorylation and mitoROS were both required to down-regulate NaV1.5 and alter single channel conductance.
Collapse
Affiliation(s)
- Man Liu
- Division of Cardiology, Department of Medicine, The Warren Alpert Medical School of Brown University, Lifespan Cardiovascular Institute, Providence, Rhode Island
| | - Guangbin Shi
- Division of Cardiology, Department of Medicine, The Warren Alpert Medical School of Brown University, Lifespan Cardiovascular Institute, Providence, Rhode Island
| | - Kai-Chien Yang
- Division of Cardiology, Department of Medicine, The Warren Alpert Medical School of Brown University, Lifespan Cardiovascular Institute, Providence, Rhode Island; Graduate Institute of Pharmacology, National Taiwan University School of Medicine, Taipei City, Taiwan
| | - Lianzhi Gu
- Section of Cardiology, University of Illinois at Chicago, Chicago, Illinois
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa
| | - Samuel C Dudley
- Division of Cardiology, Department of Medicine, The Warren Alpert Medical School of Brown University, Lifespan Cardiovascular Institute, Providence, Rhode Island; Providence VA Medical Center, Providence, Rhode Island.
| |
Collapse
|
41
|
Cliburn RA, Dunn AR, Stout KA, Hoffman CA, Lohr KM, Bernstein AI, Winokur EJ, Burkett J, Schmitz Y, Caudle WM, Miller GW. Immunochemical localization of vesicular monoamine transporter 2 (VMAT2) in mouse brain. J Chem Neuroanat 2016; 83-84:82-90. [PMID: 27836486 DOI: 10.1016/j.jchemneu.2016.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/31/2016] [Accepted: 11/04/2016] [Indexed: 12/16/2022]
Abstract
Vesicular monoamine transporter 2 (VMAT2, SLC18A2) is a transmembrane transporter protein that packages dopamine, serotonin, norepinephrine, and histamine into vesicles in preparation for neurotransmitter release from the presynaptic neuron. VMAT2 function and related vesicle dynamics have been linked to susceptibility to oxidative stress, exogenous toxicants, and Parkinson's disease. To address a recent depletion of commonly used antibodies to VMAT2, we generated and characterized a novel rabbit polyclonal antibody generated against a 19 amino acid epitope corresponding to an antigenic sequence within the C-terminal tail of mouse VMAT2. We used genetic models of altered VMAT2 expression to demonstrate that the antibody specifically recognizes VMAT2 and localizes to synaptic vesicles. Furthermore, immunohistochemical labeling using this VMAT2 antibody produces immunoreactivity that is consistent with expected VMAT2 regional distribution. We show the distribution of VMAT2 in monoaminergic brain regions of mouse brain, notably the midbrain, striatum, olfactory tubercle, dopaminergic paraventricular nuclei, tuberomammillary nucleus, raphe nucleus, and locus coeruleus. Normal neurotransmitter vesicle dynamics are critical for proper health and functioning of the nervous system, and this well-characterized VMAT2 antibody will be a useful tool in studying neurodegenerative and neuropsychiatric conditions characterized by vesicular dysfunction.
Collapse
Affiliation(s)
- Rachel A Cliburn
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States.
| | - Amy R Dunn
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Kristen A Stout
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Carlie A Hoffman
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Kelly M Lohr
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Alison I Bernstein
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Emily J Winokur
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - James Burkett
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Yvonne Schmitz
- Department of Neurology, Columbia University Medical Center, New York City, NY 10032, United States
| | - William M Caudle
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Gary W Miller
- Department of Environmental Health, Rollins School of Public Health, Department of Pharmacology, Department of Neurology, Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, United States.
| |
Collapse
|
42
|
Protective Potential of the Glutathione Peroxidase-1 Gene in Abnormal Behaviors Induced by Phencyclidine in Mice. Mol Neurobiol 2016; 54:7042-7062. [DOI: 10.1007/s12035-016-0239-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/17/2016] [Indexed: 12/30/2022]
|
43
|
Shin EJ, Dang DK, Tran HQ, Nam Y, Jeong JH, Lee YH, Park KT, Lee YS, Jang CG, Hong JS, Nabeshima T, Kim HC. PKCδ knockout mice are protected from para-methoxymethamphetamine-induced mitochondrial stress and associated neurotoxicity in the striatum of mice. Neurochem Int 2016; 100:146-158. [PMID: 27623093 DOI: 10.1016/j.neuint.2016.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/01/2016] [Accepted: 09/09/2016] [Indexed: 12/16/2022]
Abstract
Para-methoxymethamphetamine (PMMA) is a para-ring-substituted amphetamine derivative sold worldwide as an illegal psychotropic drug. Although PMMA use has been reported to lead to severe intoxication and even death, little is known about the mechanism(s) by which PMMA exerts its neurotoxic effects. Here we found that PMMA treatment resulted in phosphorylation of protein kinase Cδ (PKCδ) and subsequent mitochondrial translocation of cleaved PKCδ. PMMA-induced oxidative stress was more pronounced in mitochondria than in the cytosol. Moreover, treatment with PMMA consistently resulted in significant reductions in mitochondrial membrane potential, mitochondrial complex I activity, and mitochondrial Mn superoxide dismutase-immunoreactivity. In contrast, PMMA treatment led to a significant increase in intramitochondrial Ca2+ level. Treatment with PMMA also significantly increased ionized calcium binding adaptor molecule 1 (Iba-1)-labeled microglial activation and upregulated tumor necrosis factor alpha (TNF-α) gene expression. PKCδ knockout attenuated these mitochondrial effects and dampened the neurotoxic effects of PMMA. Importantly, TNF-α knockout mice were significantly protected from PMMA-induced increases in phospho-PKCδ expression, mitochondrial translocation of cleaved PKCδ, and Iba-1-labeled microgliosis. Both rottlerin, a pharmacological inhibitor of PKCδ, and etanercept, a pharmacological inhibitor of TNF-α, significantly protected against PMMA-mediated induction of apoptosis, as assessed by terminal deoxynucleotidyl transferase dUDP nick end labeling (TUNEL) assays. In addition, PKCδ knockout and TNF-α knockout both resulted in decreased PMMA-mediated induction of dopaminergic loss. Therefore, our results suggest that PKCδ mediates PMMA-induced neurotoxicity by facilitating oxidative stress (mitochondria > cytosol), mitochondrial dysfunction, microglial activation, and pro-apoptotic signaling. Our results also indicate that PMMA-induced PKCδ activation requires the proinflammatory cytokine TNF-α.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Yunsung Nam
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Young Hun Lee
- Department of Life and Nanopharmaceutical Sciences, Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kyung Tae Park
- Department of Life and Nanopharmaceutical Sciences, Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yong Sup Lee
- Department of Life and Nanopharmaceutical Sciences, Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Toshitaka Nabeshima
- Nabeshima Laboratory, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya, 468-8503, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
44
|
Dang DK, Shin EJ, Nam Y, Ryoo S, Jeong JH, Jang CG, Nabeshima T, Hong JS, Kim HC. Apocynin prevents mitochondrial burdens, microglial activation, and pro-apoptosis induced by a toxic dose of methamphetamine in the striatum of mice via inhibition of p47phox activation by ERK. J Neuroinflammation 2016; 13:12. [PMID: 26780950 PMCID: PMC4717833 DOI: 10.1186/s12974-016-0478-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/11/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Activation of NADPH oxidase (PHOX) plays a critical role in mediating dopaminergic neuroinflammation. In the present study, we investigated the role of PHOX in methamphetamine (MA)-induced neurotoxic and inflammatory changes in mice. METHODS We examined changes in mitogen-activated protein kinases (MAPKs), mitochondrial function [i.e., mitochondrial membrane potential, intramitochondrial Ca(2+) accumulation, mitochondrial oxidative burdens, mitochondrial superoxide dismutase expression, and mitochondrial translocation of the cleaved form of protein kinase C delta type (cleaved PKCδ)], microglial activity, and pro-apoptotic changes [i.e., cytosolic cytochrome c release, cleaved caspase 3, and terminal deoxynucleotidyl transferase dUDP nick-end labeling (TUNEL) positive populations] after a neurotoxic dose of MA in the striatum of mice to achieve a better understanding of the effects of apocynin, a non-specific PHOX inhibitor, or genetic inhibition of p47phox (by using p47phox knockout mice or p47phox antisense oligonucleotide) against MA-induced dopaminergic neurotoxicity. RESULTS Phosphorylation of extracellular signal-regulated kinases (ERK1/2) was most pronounced out of MAPKs after MA. We observed MA-induced phosphorylation and membrane translocation of p47phox in the striatum of mice. The activation of p47phox promoted mitochondrial stresses followed by microglial activation into the M1 phenotype, and pro-apoptotic changes, and led to dopaminergic impairments. ERK activated these signaling pathways. Apocynin or genetic inhibition of p47phox significantly protected these signaling processes induced by MA. ERK inhibitor U0126 did not exhibit any additional positive effects against protective activity mediated by apocynin or p47phox genetic inhibition, suggesting that ERK regulates p47phox activation, and ERK constitutes the crucial target for apocynin-mediated inhibition of PHOX activation. CONCLUSIONS Our results indicate that the neuroprotective mechanism of apocynin against MA insult is via preventing mitochondrial burdens, microglial activation, and pro-apoptotic signaling process by the ERK-dependent activation of p47phox.
Collapse
Affiliation(s)
- Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, South Korea.
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, South Korea.
| | - Yunsung Nam
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, South Korea.
| | - Sungwoo Ryoo
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chunchon, South Korea.
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, South Korea.
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea.
| | - Toshitaka Nabeshima
- Department of Regional Pharmaceutical Care and Sciences, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya, Japan. .,NPO, Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan.
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA.
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, South Korea.
| |
Collapse
|
45
|
Shin EJ, Nam Y, Lee JW, Nguyen PKT, Yoo JE, Tran TV, Jeong JH, Jang CG, Oh YJ, Youdim MBH, Lee PH, Nabeshima T, Kim HC. N-Methyl, N-propynyl-2-phenylethylamine (MPPE), a Selegiline Analog, Attenuates MPTP-induced Dopaminergic Toxicity with Guaranteed Behavioral Safety: Involvement of Inhibitions of Mitochondrial Oxidative Burdens and p53 Gene-elicited Pro-apoptotic Change. Mol Neurobiol 2015; 53:6251-6269. [PMID: 26563498 DOI: 10.1007/s12035-015-9527-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/05/2015] [Indexed: 12/12/2022]
Abstract
Selegiline is a monoamine oxidase-B (MAO-B) inhibitor with anti-Parkinsonian effects, but it is metabolized to amphetamines. Since another MAO-B inhibitor N-Methyl, N-propynyl-2-phenylethylamine (MPPE) is not metabolized to amphetamines, we examined whether MPPE induces behavioral side effects and whether MPPE affects dopaminergic toxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Multiple doses of MPPE (2.5 and 5 mg/kg/day) did not show any significant locomotor activity and conditioned place preference, whereas selegiline (2.5 and 5 mg/kg/day) significantly increased these behavioral side effects. Treatment with MPPE resulted in significant attenuations against decreases in mitochondrial complex I activity, mitochondrial Mn-SOD activity, and expression induced by MPTP in the striatum of mice. Consistently, MPPE significantly attenuated MPTP-induced oxidative stress and MPPE-mediated antioxidant activity appeared to be more pronounced in mitochondrial-fraction than in cytosolic-fraction. Because MPTP promoted mitochondrial p53 translocation and p53/Bcl-xL interaction, it was also examined whether mitochondrial p53 inhibitor pifithrin-μ attenuates MPTP neurotoxicity. MPPE, selegiline, or pifithrin-μ significantly attenuated mitochondrial p53/Bcl-xL interaction, impaired mitochondrial transmembrane potential, cytosolic cytochrome c release, and cleaved caspase-3 in wild-type mice. Subsequently, these compounds significantly ameliorated MPTP-induced motor impairments. Neuroprotective effects of MPPE appeared to be more prominent than those of selegiline. MPPE or selegiline did not show any additional protective effects against the attenuation by p53 gene knockout, suggesting that p53 gene is a critical target for these compounds. Our results suggest that MPPE possesses anti-Parkinsonian potentials with guaranteed behavioral safety and that the underlying mechanism of MPPE requires inhibition of mitochondrial oxidative stress, mitochondrial translocation of p53, and pro-apoptotic process.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - Yunsung Nam
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - Ji Won Lee
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 200-701, Republic of Korea.,Hutecs Korea Pharm Co., Ltd., Osan, 18111, Republic of Korea
| | - Phuong-Khue Thi Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - Ji Eun Yoo
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - The-Vinh Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Young J Oh
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul, 120-749, Republic of Korea
| | - Moussa B H Youdim
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Phil Ho Lee
- National Creative Research Initiative Center for Catalytic Organic Reactions, Department of Chemistry, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - Toshitaka Nabeshima
- Department of Regional Pharmaceutical Care and Sciences, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya, 468-8503, Japan.,NPO, Japanese Drug Organization of Appropriate Use and Research, Nagoya, 468-8503, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 200-701, Republic of Korea.
| |
Collapse
|
46
|
Nobiletin, a citrus flavonoid, improves cognitive impairment and reduces soluble Aβ levels in a triple transgenic mouse model of Alzheimer's disease (3XTg-AD). Behav Brain Res 2015; 289:69-77. [DOI: 10.1016/j.bbr.2015.04.028] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 01/15/2023]
|
47
|
Loftis JM, Janowsky A. Neuroimmune basis of methamphetamine toxicity. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 118:165-97. [PMID: 25175865 DOI: 10.1016/b978-0-12-801284-0.00007-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although it is not known which antigen-specific immune responses (or if antigen-specific immune responses) are relevant or required for methamphetamine's neurotoxic effects, it is apparent that methamphetamine exposure is associated with significant effects on adaptive and innate immunity. Alterations in lymphocyte activity and number, changes in cytokine signaling, impairments in phagocytic functions, and glial activation and gliosis have all been reported. These drug-induced changes in immune response, particularly within the CNS, are now thought to play a critical role in the addiction process for methamphetamine dependence as well as for other substance use disorders. In Section 2, methamphetamine's effects on glial cell (e.g., microglia and astrocytes) activity and inflammatory signaling cascades are summarized, including how alterations in immune cell function can induce the neurotoxic and addictive effects of methamphetamine. Section 2 also describes neurotransmitter involvement in the modulation of methamphetamine's inflammatory effects. Section 3 discusses the very recent use of pharmacological and genetic animal models which have helped elucidate the behavioral effects of methamphetamine's neurotoxic effects and the role of the immune system. Section 4 is focused on the effects of methamphetamine on blood-brain barrier integrity and associated immune consequences. Clinical considerations such as the combined effects of methamphetamine and HIV and/or HCV on brain structure and function are included in Section 4. Finally, in Section 5, immune-based treatment strategies are reviewed, with a focus on vaccine development, neuroimmune therapies, and other anti-inflammatory approaches.
Collapse
Affiliation(s)
- Jennifer M Loftis
- Research & Development Service, Portland VA Medical Center, Portland, Oregon, USA; Department of Psychiatry, Oregon Health & Science University, School of Medicine, Portland, Oregon, USA; Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon, USA.
| | - Aaron Janowsky
- Research & Development Service, Portland VA Medical Center, Portland, Oregon, USA; Department of Psychiatry, Oregon Health & Science University, School of Medicine, Portland, Oregon, USA; Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
48
|
Shin EJ, Nam Y, Tu THT, Lim YK, Wie MB, Kim DJ, Jeong JH, Kim HC. Protein kinase Cδ mediates trimethyltin-induced neurotoxicity in mice in vivo via inhibition of glutathione defense mechanism. Arch Toxicol 2015; 90:937-53. [PMID: 25895139 DOI: 10.1007/s00204-015-1516-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 03/31/2015] [Indexed: 12/11/2022]
Abstract
We investigated whether protein kinase C (PKC) is involved in trimethyltin (TMT)-induced neurotoxicity. TMT treatment (2.8 mg/kg, i.p.) significantly increased PKCδ expression out of PKC isozymes (i.e., α, βI, βII, δ, and ς) in the hippocampus of wild-type (WT) mice. Consistently, treatment with TMT resulted in significant increases in cleaved PKCδ expression. Genetic or pharmacological inhibition (PKCδ knockout or rottlerin) was less susceptible to TMT-induced seizures than WT mice. TMT treatment increased glutathione oxidation, lipid peroxidation, protein oxidation, and levels of reactive oxygen species. These effects were more pronounced in the WT mice than in PKCδ knockout mice. In addition, the ability of TMT to induce nuclear translocation of Nrf2, Nrf2 DNA-binding activity, and upregulation of γ-glutamylcysteine ligase was significantly increased in the PKCδ knockout mice and rottlerin (10 or 20 mg/kg, p.o. × 6)-treated WT mice. Furthermore, neuronal degeneration (as shown by nuclear chromatin clumping and TUNEL staining) in WT mice was most pronounced 2 days after TMT. At the same time, TMT-induced inhibition of phosphoinositol 3-kinase (PI3K)/Akt signaling was evident, thereby decreasing phospho-Bad, expression of Bcl-xL and Bcl-2, and the interaction between phospho-Bad and 14-3-3 protein, and increasing Bax expression and caspase-3 cleavage were observed. Rottlerin or PKCδ knockout significantly protected these changes in anti- and pro-apoptotic factors. Importantly, treatment of the PI3K inhibitor LY294002 (0.8 or 1.6 µg, i.c.v.) 4 h before TMT counteracted protective effects (i.e., Nrf-2-dependent glutathione induction and pro-survival phenomenon) of rottlerin. Therefore, our results suggest that down-regulation of PKCδ and up-regulations of Nrf2-dependent glutathione defense mechanism and PI3K/Akt signaling are critical for attenuating TMT neurotoxicity.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - Yunsung Nam
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - Thu-Hien Thi Tu
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - Yong Kwang Lim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - Myung-Bok Wie
- School of Veterinary Medicine, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - Dae-Joong Kim
- Department of Anatomy and Cell Biology, Medical School, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 200-701, Republic of Korea.
| |
Collapse
|
49
|
Hsieh YS, Chen PN, Yu CH, Chen CH, Tsai TT, Kuo DY. Involvement of oxidative stress in the regulation of NPY/CART-mediated appetite control in amphetamine-treated rats. Neurotoxicology 2015; 48:131-41. [PMID: 25825358 DOI: 10.1016/j.neuro.2015.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 01/09/2023]
Abstract
Amphetamine (AMPH) treatment can suppress appetite and increase oxidative stress in the brain. AMPH-induced appetite suppression is associated with the regulation of neuropeptide Y (NPY) and cocaine- and amphetamine-regulated transcript (CART) in the hypothalamus. The present study explored whether antioxidants, including glutathione S-transferase (GST) and glutathione peroxidase (GP), were involved in this NPY/CART-mediated appetite control. Rats were treated daily with AMPH for four days. Changes in food intake and expression levels of hypothalamic NPY, CART, GST, and GP were examined and compared. Results showed that, in AMPH-treated rats, (1) food intake and NPY expression decreased, while CART, GST, and GP expression increased; (2) NPY knockdown in the brain enhanced the decrease in NPY and the increases in CART, GST, and GP expression; and (3) central inhibition of reactive oxygen species production decreased GST and GP and modulated AMPH anorexia and the expression levels of NPY and CART. The present results suggest that oxidative stress in the brain participates in regulating NPY/CART-mediated appetite control in AMPH-treated rats. These results may advance the knowledge regarding the molecular mechanism of AMPH-evoked or NPY/CART-mediated appetite suppression.
Collapse
Affiliation(s)
- Yih-Shou Hsieh
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Pei-Ni Chen
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Ching-Han Yu
- Department of Physiology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Chia-Hui Chen
- Department of Biomedical Science, College of Medical Science and Technology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Tsung-Ta Tsai
- Department of Biomedical Science, College of Medical Science and Technology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Dong-Yih Kuo
- Department of Physiology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan.
| |
Collapse
|
50
|
Shin EJ, Chung YH, Le HLT, Jeong JH, Dang DK, Nam Y, Wie MB, Nah SY, Nabeshima YI, Nabeshima T, Kim HC. Melatonin attenuates memory impairment induced by Klotho gene deficiency via interactive signaling between MT2 receptor, ERK, and Nrf2-related antioxidant potential. Int J Neuropsychopharmacol 2015; 18:pyu105. [PMID: 25550330 PMCID: PMC4438546 DOI: 10.1093/ijnp/pyu105] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/29/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND We demonstrated that oxidative stress plays a crucial role in cognitive impairment in klotho mutant mice, a genetic model of aging. Since down-regulation of melatonin due to aging is well documented, we used this genetic model to determine whether the antioxidant property of melatonin affects memory impairment. METHODS First, we examined the effects of melatonin on hippocampal oxidative parameters and the glutathione/oxidized glutathione (GSH/GSSG) ratio and memory dysfunction of klotho mutant mice. Second, we investigated whether a specific melatonin receptor is involved in the melatonin-mediated pharmacological response by application with melatonin receptor antagonists. Third, we examined phospho-extracellular-signal-regulated kinase (ERK) expression, nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, Nrf2 DNA binding activity, and glutamate-cysteine ligase (GCL) mRNA expression. Finally, we examined effects of the ERK inhibitor SL327 in response to antioxidant efficacy and memory enhancement mediated by melatonin. RESULTS Treatment with melatonin resulted in significant attenuations of oxidative damage, a decrease in the GSH/GSSG ratio, and a significant amelioration of memory impairment in this aging model. These effects of melatonin were significantly counteracted by the selective MT2 receptor antagonist 4-P-PDOT. Importantly, 4-P-PDOT or SL327 also counteracted melatonin-mediated attenuation in response to the decreases in phospho-ERK expression, Nrf2 nuclear translocation, Nrf2 DNA-binding activity, and GCL mRNA expression in the hippocampi of klotho mutant mice. SL327 also counteracted the up-regulation of the GSH/GSSG ratio and the memory enhancement mediated by melatonin in klotho mutant mice. CONCLUSIONS Melatonin attenuates oxidative stress and the associated memory impairment induced by klotho deficiency via signaling interaction between the MT2 receptor and ERK- and Nrf2-related antioxidant potential.
Collapse
|