1
|
Kalecký K, Buitrago L, Alarcon JM, Singh A, Bottiglieri T, Kaddurah-Daouk R, Hernández AI. Rescue of hippocampal synaptic plasticity and memory performance by Fingolimod (FTY720) in APP/PS1 model of Alzheimer's disease is accompanied by correction in metabolism of sphingolipids, polyamines, and phospholipid saturation composition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633452. [PMID: 39868189 PMCID: PMC11761635 DOI: 10.1101/2025.01.17.633452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Previously, our metabolomic, transcriptomic, and genomic studies characterized the ceramide/sphingomyelin pathway as a therapeutic target in Alzheimer's disease, and we demonstrated that FTY720, a sphingosine-1-phospahate receptor modulator approved for treatment of multiple sclerosis, recovers synaptic plasticity and memory in APP/PS1 mice. To further investigate how FTY720 rescues the pathology, we performed metabolomic analysis in brain, plasma, and liver of trained APP/PS1 and wild-type mice. APP/PS1 mice showed area-specific brain disturbances in polyamines, phospholipids, and sphingolipids. Most changes were completely or partially normalized in FTY720-treated subjects, indicating rebalancing the "sphingolipid rheostat", reactivating phosphatidylethanolamine synthesis via mitochondrial phosphatidylserine decarboxylase pathway, and normalizing polyamine levels that support mitochondrial activity. Synaptic plasticity and memory were rescued, with spermidine synthesis in temporal cortex best corresponding to hippocampal CA3-CA1 plasticity normalization. FTY720 effects, also reflected in other pathways, are consistent with promotion of mitochondrial function, synaptic plasticity, and anti-inflammatory environment, while reducing pro-apoptotic and pro-inflammatory signals.
Collapse
Affiliation(s)
- Karel Kalecký
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Luna Buitrago
- Neural and Behavioral Sciences Program, School of Graduate Studies, Department of Neurology/Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Juan Marcos Alarcon
- Neural and Behavioral Sciences Program, School of Graduate Studies, The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Pathology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Abanish Singh
- Department of Psychiatry and Behavioral Sciences; and Department of Medicine, Duke University School of Medicine, Durham, Durham, NC, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioural Sciences, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Alejandro Iván Hernández
- Neural and Behavioral Sciences Program, School of Graduate Studies, The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Pathology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | | |
Collapse
|
2
|
Musumeci A, Vinci M, Verbinnen I, Treccarichi S, Nigliato E, Chiavetta V, Greco D, Vitello GA, Federico C, Janssens V, Saccone S, Calì F. PPP2R5E: New gene potentially involved in specific learning disorders and myopathy. Gene 2025; 933:148945. [PMID: 39284558 DOI: 10.1016/j.gene.2024.148945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/21/2024]
Abstract
Protein phosphatase 2A (PP2A) is a family of multifunctional enzymatic complexes crucial for cellular signalling, playing a pivotal role in brain function and development. Mutations in specific genes encoding PP2A complexes have been associated with neurodevelopmental disorders with hypotonia and high risk of seizures. In the current work, we present an individual with specific learning problems, motor coordination disorders, hypotonia and behavioural issues. Although whole exome sequencing (WES) did not unveil pathogenic variants in known genes related to these symptoms, a de novo heterozygous variant Glu191Lys was identified within PPP2R5E, encoding the PP2A regulatory subunit B56ε. The novel variant was not observed in the four healthy brothers and was not detected as parental somatic mosaicism. The mutation predicted a change of charge of the mutated amino acid within a conserved LFDSEDPRER motif common to all PPP2R5 B-subunits. Biochemical assays demonstrated a decreased interaction with the PP2A A and C subunits, leading to disturbances in holoenzyme formation, and thus likely, function. For the first time, we report a potential causal link between the observed variant within the PPP2R5E gene and the symptoms manifested in the subject, spanning specific learning problems and motor coordination disorders potentially associated with myopathy.
Collapse
Affiliation(s)
- Antonino Musumeci
- Oasi Research Institute-IRCCS, via Conte Ruggero 73, 94018, Troina, EN, Italy
| | - Mirella Vinci
- Oasi Research Institute-IRCCS, via Conte Ruggero 73, 94018, Troina, EN, Italy
| | - Iris Verbinnen
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), Herestraat 49, PO-box 901, B-3000 Leuven, Belgium
| | - Simone Treccarichi
- Oasi Research Institute-IRCCS, via Conte Ruggero 73, 94018, Troina, EN, Italy
| | - Eleonora Nigliato
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), Herestraat 49, PO-box 901, B-3000 Leuven, Belgium
| | - Valeria Chiavetta
- Oasi Research Institute-IRCCS, via Conte Ruggero 73, 94018, Troina, EN, Italy
| | - Donatella Greco
- Oasi Research Institute-IRCCS, via Conte Ruggero 73, 94018, Troina, EN, Italy
| | | | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), Herestraat 49, PO-box 901, B-3000 Leuven, Belgium
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy.
| | - Francesco Calì
- Oasi Research Institute-IRCCS, via Conte Ruggero 73, 94018, Troina, EN, Italy
| |
Collapse
|
3
|
Dong MZ, Ouyang YC, Gao SC, Gu LJ, Guo JN, Sun SM, Wang ZB, Sun QY. Protein phosphatase 4 maintains the survival of primordial follicles by regulating autophagy in oocytes. Cell Death Dis 2024; 15:658. [PMID: 39245708 PMCID: PMC11381532 DOI: 10.1038/s41419-024-07051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
In mammalian ovary, the primordial follicle pool serves as the source of developing follicles and fertilizable ova. To maintain the normal length of female reproductive life, the primordial follicles must have adequate number and be kept in a quiescent state before menopause. However, the molecular mechanisms underlying primordial follicle survival are poorly understood. Here, we provide genetic evidence showing that lacking protein phosphatase 4 (PPP4) in oocytes, a member of PP2A-like subfamily, results in infertility in female mice. A large quantity of primordial follicles has been depleted around the primordial follicle pool formation phase and the ovarian reserve is exhausted at about 7 months old. Further investigation demonstrates that depletion of PPP4 causes the abnormal activation of mTOR, which suppresses autophagy in primordial follicle oocytes. The abnormal primordial follicle oocytes are eventually erased by pregranulosa cells in the manner of lysosome invading. These results show that autophagy prevents primordial follicles over loss and PPP4-mTOR pathway governs autophagy during the primordial follicle formation and dormant period.
Collapse
Affiliation(s)
- Ming-Zhe Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shi-Cai Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin-Jian Gu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Ni Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Si-Min Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| |
Collapse
|
4
|
Lei L, Gao X, Zhai J, Liu S, Liu Q, Li C, Cao H, Feng C, Chen L, Lei L, Pan X, Li P, Liu Z, Huan Y, Shen Z. The GPR40 novel agonist SZZ15-11 improves non-alcoholic fatty liver disease by activating the AMPK pathway and restores metabolic homeostasis in diet-induced obese mice. Diabetes Obes Metab 2024; 26:2257-2266. [PMID: 38497233 DOI: 10.1111/dom.15539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024]
Abstract
AIM Non-alcoholic fatty liver is the most common cause of chronic liver disease. GPR40 is a potential therapeutic target for energy metabolic disorders. GPR40 is a potential therapeutic target for energy metabolic disorders. SZZ15-11 is a newly synthesized GPR40 agonist. In this study, we estimate the potency of SZZ15-11 in fatty liver treatment. METHODS In vivo, diet-induced obese (DIO) mice received SZZ15-11 (50 mg/kg) and TAK875 (50 mg/kg) for 6 weeks. Blood glucose and lipid, hepatocyte lipid and liver morphology were analysed. In vitro, HepG2 cells and GPR40-knockdown HepG2 cells induced with 0.3 mM oleic acid were treated with SZZ15-11. Triglyceride and total cholesterol of cells were measured. At the same time, the AMPK pathway regulating triglycerides and cholesterol esters synthesis was investigated via western blot and quantitative polymerase chain reaction in both liver tissue and HepG2 cells. RESULTS SZZ15-11 was found to not only attenuate hyperglycaemia and hyperlipidaemia but also ameliorate fatty liver disease in DIO mice. At the same time, SZZ15-11 decreased triglyceride and total cholesterol content in HepG2 cells. Whether examined in the liver of DIO mice or in HepG2 cells, SZZ15-11 upregulated AMPKα phosphorylation and then downregulated the expression of the cholesterogenic key enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase and inhibited acetyl-CoA carboxylase activity. Furthermore, SZZ15-11 promotes AMPK activity via [cAMP]i accumulation. CONCLUSION This study confirmed that SZZ15-11, a novel GPR40 agonist, improves hyperlipidaemia and fatty liver, partially via Gs signalling and the AMPK pathway in hepatocytes.
Collapse
Affiliation(s)
- Lei Lei
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuefeng Gao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiayu Zhai
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuainan Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Quan Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Caina Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Cao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cunyu Feng
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Leilei Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liran Lei
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuan Pan
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pingping Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhanzhu Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Huan
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhufang Shen
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Huang J, Gu L, Sun Y, Zhang L, Huang Y, Yang Z. Declining aqueous calcium and fish predation risk interactively modify the phenotypic plasticity in Daphnia pulex. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124266. [PMID: 38821339 DOI: 10.1016/j.envpol.2024.124266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Aqueous calcium (Ca) decline is threatening freshwater ecosystems worldwide. There are great concerns about the possible ecological consequences of Ca limitation combined with biological pressures like predation. Here we investigated the interactions between Ca restriction and fish predation risk on the phenotypic plasticity in the keystone herbivore Daphnia, together with physiological responses underlying the plastic trait changes. Fish predation risk induced D. pulex to mature earlier and produce more but smaller offspring at adequate Ca. Declining Ca inhibited the expression of defensive traits, with the inhibitive degree showing a linear or threshold-limited dynamic. The presence of predation risk mitigated the negative effect of declining Ca on reducing body size but exacerbated the delay in maturity, indicating a life history trade-off for larger body size rather than the current reproduction in multi-stressed Daphnia. Actin 3-mediated cytoskeleton and AMPK β-mediated energy metabolism were highly correlated with these plastic trait changes. Altered phenotypic plasticity in planktonic animals is expected to trigger many ecological impacts from individual fitness to community structure, thus providing new insights into the mechanisms underlying decreased Ca affecting lake ecosystems.
Collapse
Affiliation(s)
- Jing Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 2 Mengxi Road, Zhenjiang 212100, China
| | - Lei Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
6
|
Gao N, Liu Y, Liu G, Liu B, Cheng Y. Sanghuangporus vaninii extract ameliorates hyperlipidemia in rats by mechanisms identified with transcriptome analysis. Food Sci Nutr 2024; 12:3360-3376. [PMID: 38726415 PMCID: PMC11077191 DOI: 10.1002/fsn3.4002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 05/12/2024] Open
Abstract
The increasing incidence of hyperlipidemia is a serious threat to public health. The development of effective and safe lipid-lowering drugs with few side effects is necessary. The purpose of this study was to assess the lipid-lowering activity of Sanghuangporus vaninii extract (SVE) in rat experiments and reveal the molecular mechanism by transcriptome analysis. Hyperlipidemia was induced in the animals using a high-fat diet for 4 weeks. At the end of the 4th week, hyperlipidemic rats were assigned into two control groups (model and positive simvastatin control) and three treatment groups that received SVE at 200, 400, or 800 mg kg-1 day-1 for another 4 weeks. A last control group comprised normal chow-fed rats. At the end of the 8th week, rats were sacrificed and lipid serum levels, histopathology, and liver transcriptome profiles were determined. SVE was demonstrated to relieve the lipid disorder and improve histopathological liver changes in a dose-dependent manner. The transcriptomic analysis identified changes in hepatocyte gene activity for major pathways including steroid biosynthesis, bile secretion, cholesterol metabolism, AMPK signaling, thyroid hormone signaling, and glucagon signaling. The changed expression of crucial genes in the different groups was confirmed by qPCR. Collectively, this study revealed that SVE could relieve hyperlipidemia in rats, the molecular mechanism might be to promote the metabolism of lipids and the excretion of cholesterol, inhibit the biosynthesis of cholesterol by activating the AMPK signaling pathway, the thyroid hormone signaling pathway, and the glucagon signaling pathway.
Collapse
Affiliation(s)
- Ning Gao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of EducationHarbinChina
- School of PharmacyHeilongjiang University of Chinese MedicineHarbinChina
| | - Yuanzhen Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of EducationHarbinChina
- School of PharmacyHeilongjiang University of Chinese MedicineHarbinChina
| | - Guangjie Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of EducationHarbinChina
- School of PharmacyHeilongjiang University of Chinese MedicineHarbinChina
| | - Bo Liu
- School of Pharmaceutical EngineeringHeilongjiang Agricultural Reclamation Vocational CollegeHarbinChina
| | - Yupeng Cheng
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of EducationHarbinChina
- School of PharmacyHeilongjiang University of Chinese MedicineHarbinChina
| |
Collapse
|
7
|
Qi Y, Zhang YM, Gao YN, Chen WG, Zhou T, Chang L, Zang Y, Li J. AMPK role in epilepsy: a promising therapeutic target? J Neurol 2024; 271:748-771. [PMID: 38010498 DOI: 10.1007/s00415-023-12062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023]
Abstract
Epilepsy is a complex and multifaceted neurological disorder characterized by spontaneous and recurring seizures. It poses significant therapeutic challenges due to its diverse etiology and often-refractory nature. This comprehensive review highlights the pivotal role of AMP-activated protein kinase (AMPK), a key metabolic regulator involved in cellular energy homeostasis, which may be a promising therapeutic target for epilepsy. Current therapeutic strategies such as antiseizure medication (ASMs) can alleviate seizures (up to 70%). However, 30% of epileptic patients may develop refractory epilepsy. Due to the complicated nature of refractory epilepsy, other treatment options such as ketogenic dieting, adjunctive therapy, and in limited cases, surgical interventions are employed. These therapy options are only suitable for a select group of patients and have limitations of their own. Current treatment options for epilepsy need to be improved. Emerging evidence underscores a potential association between impaired AMPK functionality in the brain and the onset of epilepsy, prompting an in-depth examination of AMPK's influence on neural excitability and ion channel regulation, both critical factors implicated in epileptic seizures. AMPK activation through agents such as metformin has shown promising antiepileptic effects in various preclinical and clinical settings. These effects are primarily mediated through the inhibition of the mTOR signaling pathway, activation of the AMPK-PI3K-c-Jun pathway, and stimulation of the PGC-1α pathway. Despite the potential of AMPK-targeted therapies, several aspects warrant further exploration, including the detailed mechanisms of AMPK's role in different brain regions, the impact of AMPK under various conditional circumstances such as neural injury and zinc toxicity, the long-term safety and efficacy of chronic metformin use in epilepsy treatment, and the potential benefits of combination therapy involving AMPK activators. Moreover, the efficacy of AMPK activators in refractory epilepsy remains an open question. This review sets the stage for further research with the aim of enhancing our understanding of the role of AMPK in epilepsy, potentially leading to the development of more effective, AMPK-targeted therapeutic strategies for this challenging and debilitating disorder.
Collapse
Affiliation(s)
- Yingbei Qi
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong-Mei Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Nan Gao
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Wen-Gang Chen
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Ting Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liuliu Chang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jia Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, Zhejiang, China.
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Hashemi M, Razzazan M, Bagheri M, Asadi S, Jamali B, Khalafi M, Azimi A, Rad S, Behroozaghdam M, Nabavi N, Rashidi M, Dehkhoda F, Taheriazam A, Entezari M. Versatile function of AMPK signaling in osteosarcoma: An old player with new emerging carcinogenic functions. Pathol Res Pract 2023; 251:154849. [PMID: 37837858 DOI: 10.1016/j.prp.2023.154849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
AMP-activated protein kinase (AMPK) signaling has a versatile role in Osteosarcoma (OS), an aggressive bone malignancy with a poor prognosis, particularly in cases that have metastasized or recurred. This review explores the regulatory mechanisms, functional roles, and therapeutic applications of AMPK signaling in OS. It focuses on the molecular activation of AMPK and its interactions with cellular processes like proliferation, apoptosis, and metabolism. The uncertain role of AMPK in cancer is also discussed, highlighting its potential as both a tumor suppressor and a contributor to carcinogenesis. The therapeutic potential of targeting AMPK signaling in OS treatment is examined, including direct and indirect activators like metformin, A-769662, resveratrol, and salicylate. Further research is needed to determine dosing, toxicities, and molecular mechanisms responsible for the anti-osteosarcoma effects of these compounds. This review underscores the complex involvement of AMPK signaling in OS and emphasizes the need for a comprehensive understanding of its molecular mechanisms. By elucidating the role of AMPK in OS, the aim is to pave the way for innovative therapeutic approaches that target this pathway, ultimately improving the prognosis and quality of life for OS patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Bagheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Behdokht Jamali
- Department of Microbiology and Genetics, Kherad Institute of Higher Education, Bushehr, lran
| | - Maryam Khalafi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Abolfazl Azimi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Sepideh Rad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Farshid Dehkhoda
- Department of Orthopedics, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
9
|
Miao Z, Miao Z, Feng S, Xu S. Chlorpyrifos-mediated mitochondrial calcium overload induces EPC cell apoptosis via ROS/AMPK/ULK1. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109053. [PMID: 37661036 DOI: 10.1016/j.fsi.2023.109053] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
Chlorpyrifos (CPF) is a typical organophosphate insecticide known to has serious toxicological effects on aquatic animals and causes many environmental contamination problems. To assess the effects of CPF on the epithelioma papulosum cyprini (EPC) cells of the common carps from the point of calcium ion (Ca2+) transport, the CPF-exposed EPC models were primarily established, and both AO/EB staining and Annexin V/PI assay with flow cytometry analysis were subsequently implemented to identify that CPF-induced EPC cell apoptosis, in consistent with the up-regulated expression of BAX, Cyt-c, CASP3 and CASP9, and down-regulated BCL-2 expression. Then, Mag-Fluo-4 AM, Fluo-4 AM and Rhod-2 AM staining probes were co-stained with ER-Tracker Red and Mito-Tracker Green applied to image cellular Ca2+ flux, illuminating Ca2+ depleted from ER and flux into mitochondria, resulting in ER stress and mitochondrial dysfunction. Additionally, 2-Aminoethyl Diphenylborinate (2-APB), 4-Phenylbutyric acid (4-PBA) and Dorsomorphin (Compound C) were performed as the inhibitor of Ca2+ transition, ER stress and AMPK phosphorylation, suggesting CPF-mediated Ca2+ overload triggered ER stress. And the over-generation of Mito-ROS intensified oxidative stress, promoting the phosphorylation of AMPK and deteriorating cell apoptotic death. The results of this study demonstrated Ca2+ overload-dependent mitochondrial dysfunction engages in the CPF-induced apoptosis, providing a novel concept for investigating the toxicity of CPF as environmental pollution on aquatic organisms.
Collapse
Affiliation(s)
- Zhiying Miao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhiruo Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shuang Feng
- Large Scale Instrument and Equipment Sharing Service Platform, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
10
|
Jong YJI, Izumi Y, Harmon SK, Zorumski CF, ÓMalley KL. Striatal mGlu 5-mediated synaptic plasticity is independently regulated by location-specific receptor pools and divergent signaling pathways. J Biol Chem 2023; 299:104949. [PMID: 37354970 PMCID: PMC10388212 DOI: 10.1016/j.jbc.2023.104949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023] Open
Abstract
Metabotropic glutamate receptor 5 (mGlu5) is widely expressed throughout the central nervous system and is involved in neuronal function, synaptic transmission, and a number of neuropsychiatric disorders such as depression, anxiety, and autism. Recent work from this lab showed that mGlu5 is one of a growing number of G protein-coupled receptors that can signal from intracellular membranes where it drives unique signaling pathways, including upregulation of extracellular signal-regulated kinase (ERK1/2), ETS transcription factor Elk-1, and activity-regulated cytoskeleton-associated protein (Arc). To determine the roles of cell surface mGlu5 as well as the intracellular receptor in a well-known mGlu5 synaptic plasticity model such as long-term depression, we used pharmacological isolation and genetic and physiological approaches to analyze spatially restricted pools of mGlu5 in striatal cultures and slice preparations. Here we show that both intracellular and cell surface receptors activate the phosphatidylinositol-3-kinase-protein kinase B-mammalian target of rapamycin (PI3K/AKT/mTOR) pathway, whereas only intracellular mGlu5 activates protein phosphatase 2 and leads to fragile X mental retardation protein degradation and de novo protein synthesis followed by a protein synthesis-dependent increase in Arc and post-synaptic density protein 95. However, both cell surface and intracellular mGlu5 activation lead to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor GluA2 internalization and chemically induced long-term depression albeit via different signaling mechanisms. These data underscore the importance of intracellular mGlu5 in the cascade of events associated with sustained synaptic transmission in the striatum.
Collapse
Affiliation(s)
- Yuh-Jiin I Jong
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, USA
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, Missouri, USA
| | - Steven K Harmon
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, USA
| | - Charles F Zorumski
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, USA; Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, Missouri, USA
| | - Karen L ÓMalley
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
11
|
Vertyshev AY, Akberdin IR, Kolpakov FA. Numerous Trigger-like Interactions of Kinases/Protein Phosphatases in Human Skeletal Muscles Can Underlie Transient Processes in Activation of Signaling Pathways during Exercise. Int J Mol Sci 2023; 24:11223. [PMID: 37446402 DOI: 10.3390/ijms241311223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Optimizing physical training regimens to increase muscle aerobic capacity requires an understanding of the internal processes that occur during exercise that initiate subsequent adaptation. During exercise, muscle cells undergo a series of metabolic events that trigger downstream signaling pathways and induce the expression of many genes in working muscle fibers. There are a number of studies that show the dependence of changes in the activity of AMP-activated protein kinase (AMPK), one of the mediators of cellular signaling pathways, on the duration and intensity of single exercises. The activity of various AMPK isoforms can change in different directions, increasing for some isoforms and decreasing for others, depending on the intensity and duration of the load. This review summarizes research data on changes in the activity of AMPK, Ca2+/calmodulin-dependent protein kinase II (CaMKII), and other components of the signaling pathways in skeletal muscles during exercise. Based on these data, we hypothesize that the observed changes in AMPK activity may be largely related to metabolic and signaling transients rather than exercise intensity per se. Probably, the main events associated with these transients occur at the beginning of the exercise in a time window of about 1-10 min. We hypothesize that these transients may be partly due to putative trigger-like kinase/protein phosphatase interactions regulated by feedback loops. In addition, numerous dynamically changing factors, such as [Ca2+], metabolite concentration, and reactive oxygen and nitrogen species (RONS), can shift the switching thresholds and change the states of these triggers, thereby affecting the activity of kinases (in particular, AMPK and CaMKII) and phosphatases. The review considers the putative molecular mechanisms underlying trigger-like interactions. The proposed hypothesis allows for a reinterpretation of the experimental data available in the literature as well as the generation of ideas to optimize future training regimens.
Collapse
Affiliation(s)
| | - Ilya R Akberdin
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- Biosoft.Ru, Ltd., 630058 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Fedor A Kolpakov
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- Biosoft.Ru, Ltd., 630058 Novosibirsk, Russia
- Federal Research Center for Information and Computational Technologies, 630090 Novosibirsk, Russia
| |
Collapse
|
12
|
Yang Y, Reid MA, Hanse EA, Li H, Li Y, Ruiz BI, Fan Q, Kong M. SAPS3 subunit of protein phosphatase 6 is an AMPK inhibitor and controls metabolic homeostasis upon dietary challenge in male mice. Nat Commun 2023; 14:1368. [PMID: 36914647 PMCID: PMC10011557 DOI: 10.1038/s41467-023-36809-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Inhibition of AMPK is tightly associated with metabolic perturbations upon over nutrition, yet the molecular mechanisms underlying are not clear. Here, we demonstrate the serine/threonine-protein phosphatase 6 regulatory subunit 3, SAPS3, is a negative regulator of AMPK. SAPS3 is induced under high fat diet (HFD) and recruits the PP6 catalytic subunit to deactivate phosphorylated-AMPK, thereby inhibiting AMPK-controlled metabolic pathways. Either whole-body or liver-specific deletion of SAPS3 protects male mice against HFD-induced detrimental consequences and reverses HFD-induced metabolic and transcriptional alterations while loss of SAPS3 has no effects on mice under balanced diets. Furthermore, genetic inhibition of AMPK is sufficient to block the protective phenotype in SAPS3 knockout mice under HFD. Together, our results reveal that SAPS3 is a negative regulator of AMPK and suppression of SAPS3 functions as a guardian when metabolism is perturbed and represents a potential therapeutic strategy to treat metabolic syndromes.
Collapse
Affiliation(s)
- Ying Yang
- Department of Molecular Biology and Biochemistry; School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Michael A Reid
- Department of Cancer Biology, Beckman Research Institute of City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Eric A Hanse
- Department of Molecular Biology and Biochemistry; School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Haiqing Li
- Integrative Genomics Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Yuanding Li
- Department of Molecular Biology and Biochemistry; School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Bryan I Ruiz
- Department of Molecular Biology and Biochemistry; School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Qi Fan
- Department of Molecular Biology and Biochemistry; School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Mei Kong
- Department of Molecular Biology and Biochemistry; School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
13
|
Ulbricht C, Cao Y, Niesner RA, Hauser AE. In good times and in bad: How plasma cells resolve stress for a life-long union with the bone marrow. Front Immunol 2023; 14:1112922. [PMID: 37033993 PMCID: PMC10080396 DOI: 10.3389/fimmu.2023.1112922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/14/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- Carolin Ulbricht
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Yu Cao
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Raluca A. Niesner
- Biophysical Analysis, Deutsches Rheuma-Forschungszentrum (DRFZ), A Leibniz Institute, Berlin, Germany
- Dynamic and Functional in vivo Imaging, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Anja E. Hauser
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), A Leibniz Institute, Berlin, Germany
- *Correspondence: Anja E. Hauser,
| |
Collapse
|
14
|
Eguchi H, Kimura R, Onuma S, Ito A, Yu Y, Yoshino Y, Matsunaga T, Endo S, Ikari A. Elevation of Anticancer Drug Toxicity by Caffeine in Spheroid Model of Human Lung Adenocarcinoma A549 Cells Mediated by Reduction in Claudin-2 and Nrf2 Expression. Int J Mol Sci 2022; 23:ijms232415447. [PMID: 36555089 PMCID: PMC9779108 DOI: 10.3390/ijms232415447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Claudin-2 (CLDN2), a component of tight junctions, is abnormally expressed in human lung adenocarcinoma tissue. CLDN2 contributes to chemoresistance in human lung adenocarcinoma-derived A549 cells, and it may be a target for cancer therapy. Here, we found that coffee ingredients, namely caffeine and theobromine, decreased the protein level of CLDN2 in human lung adenocarcinoma-derived A549 cells. In contrast, other components, such as theophylline and chlorogenic acid, had no effect. These results indicate that the 7-methyl group in methylxanthines may play a key role in the reduction in CLDN2 expression. The caffeine-induced reduction in the CLDN2 protein was inhibited by chloroquine, a lysosome inhibitor. In a protein-stability assay using cycloheximide, CLDN2 protein levels decreased faster in caffeine-treated cells than in vehicle-treated cells. These results suggest that caffeine accelerates the lysosomal degradation of CLDN2. The accumulation and cytotoxicity of doxorubicin were dose-dependently increased, which was exaggerated by caffeine but not by theophylline in spheroids. Caffeine decreased nuclear factor-erythroid 2-related factor 2 (Nrf2) levels without affecting hypoxia-inducible factor-1α levels. Furthermore, caffeine decreased the expression of Nrf2-targeted genes. The effects of caffeine on CLDN2 expression and anticancer-drug-induced toxicity were also observed in lung adenocarcinoma RERF-LC-MS cells. We suggest that caffeine enhances doxorubicin-induced toxicity in A549 spheroids mediated by the reduction in CLDN2 and Nrf2 expression.
Collapse
Affiliation(s)
- Hiroaki Eguchi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Riho Kimura
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Saki Onuma
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Ayaka Ito
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Yaqing Yu
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu 502-8585, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
- Correspondence: ; Tel./Fax: +81-58-230-8124
| |
Collapse
|
15
|
Hees JT, Harbauer AB. Metabolic Regulation of Mitochondrial Protein Biogenesis from a Neuronal Perspective. Biomolecules 2022; 12:1595. [PMID: 36358945 PMCID: PMC9687362 DOI: 10.3390/biom12111595] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 09/29/2023] Open
Abstract
Neurons critically depend on mitochondria for ATP production and Ca2+ buffering. They are highly compartmentalized cells and therefore a finely tuned mitochondrial network constantly adapting to the local requirements is necessary. For neuronal maintenance, old or damaged mitochondria need to be degraded, while the functional mitochondrial pool needs to be replenished with freshly synthesized components. Mitochondrial biogenesis is known to be primarily regulated via the PGC-1α-NRF1/2-TFAM pathway at the transcriptional level. However, while transcriptional regulation of mitochondrial genes can change the global mitochondrial content in neurons, it does not explain how a morphologically complex cell such as a neuron adapts to local differences in mitochondrial demand. In this review, we discuss regulatory mechanisms controlling mitochondrial biogenesis thereby making a case for differential regulation at the transcriptional and translational level. In neurons, additional regulation can occur due to the axonal localization of mRNAs encoding mitochondrial proteins. Hitchhiking of mRNAs on organelles including mitochondria as well as contact site formation between mitochondria and endolysosomes are required for local mitochondrial biogenesis in axons linking defects in any of these organelles to the mitochondrial dysfunction seen in various neurological disorders.
Collapse
Affiliation(s)
- Jara Tabitha Hees
- TUM Medical Graduate Center, Technical University of Munich, 81675 Munich, Germany
- Max Planck Institute for Biological Intelligence, in Foundation, 82152 Planegg-Martinsried, Germany
| | - Angelika Bettina Harbauer
- Max Planck Institute for Biological Intelligence, in Foundation, 82152 Planegg-Martinsried, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, 80802 Munich, Germany
- Munich Cluster for Systems Neurology, 81377 Munich, Germany
| |
Collapse
|
16
|
Netto LES, Machado LESF. Preferential redox regulation of cysteine‐based protein tyrosine phosphatases: structural and biochemical diversity. FEBS J 2022; 289:5480-5504. [DOI: 10.1111/febs.16466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/20/2022] [Accepted: 04/28/2022] [Indexed: 12/30/2022]
Affiliation(s)
- Luís Eduardo S. Netto
- Departamento de Genética e Biologia Evolutiva Instituto de Biociências Universidade de São Paulo Brazil
| | | |
Collapse
|
17
|
Zhou Z, Li K, Liu J, Zhang H, Fan Y, Chen Y, Han H, Yang J, Liu Y. Expression Profile Analysis to Identify Circular RNA Expression Signatures in Muscle Development of Wu'an Goat Longissimus Dorsi Tissues. Front Vet Sci 2022; 9:833946. [PMID: 35518637 PMCID: PMC9062782 DOI: 10.3389/fvets.2022.833946] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The growth and development of skeletal muscle is a physiological process regulated by a variety of genes and signaling pathways. As a posttranscriptional regulatory factor, circRNA plays a certain regulatory role in the development of animal skeletal muscle in the form of a miRNA sponge. However, the role of circRNAs in muscle development and growth in goats is still unclear. In our study, apparent differences in muscle fibers in Wu'an goats of different ages was firstly detected by hematoxylin-eosin (HE) staining, the circRNA expression profiles of longissimus dorsi muscles from 1-month-old (mon1) and 9-month-old (mon9) goats were screened by RNA-seq and verified by RT-qPCR. The host genes of differentially expressed (DE) circRNAs were predicted, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses (KEGG) of host genes with DE circRNAs were performed to explore the functions of circRNAs. The circRNA-miRNA-mRNA networks were then constructed using Cytoscape software. Ten significantly differentially expressed circRNAs were also verified in the mon1 and mon9 groups by RT-qPCR. Luciferase Reporter Assay was used to verify the binding site between circRNA and its targeted miRNA. The results showed that a total of 686 DE circRNAs were identified between the mon9 and mon1 groups, of which 357 were upregulated and 329 were downregulated. Subsequently, the 467 host genes of DE circRNAs were predicted using Find_circ and CIRI software. The circRNA-miRNA-mRNA network contained 201 circRNAs, 85 miRNAs, and 581 mRNAs; the host mRNAs were associated with "muscle fiber development" and "AMPK signaling pathway" and were enriched in the FoxO signaling pathway. Competing endogenous RNA (ceRNA) network analysis showed that novel_circ_0005314, novel_circ_0005319, novel_circ_0009256, novel_circ_0009845, novel_circ_0005934 and novel_circ_0000134 may play important roles in skeletal muscle growth and development between the mon9 and mon1 groups. Luciferase Reporter Assay confirmed the combination between novel_circ_0005319 and chi-miR-199a-5p, novel_circ_0005934 and chi-miR-450-3p and novel_circ_0000134 and chi-miR-655. Our results provide specific information related to goat muscle development and a reference for the goat circRNA profile.
Collapse
Affiliation(s)
- Zuyang Zhou
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Kunyu Li
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Jiannan Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Hui Zhang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yekai Fan
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yulin Chen
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Haiyin Han
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Junqi Yang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yufang Liu
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
18
|
Collins HE, Anderson JC, Wende AR, Chatham JC. Cardiomyocyte stromal interaction molecule 1 is a key regulator of Ca 2+ -dependent kinase and phosphatase activity in the mouse heart. Physiol Rep 2022; 10:e15177. [PMID: 35179826 PMCID: PMC8855923 DOI: 10.14814/phy2.15177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 04/26/2023] Open
Abstract
Stromal interaction molecule 1 (STIM1) is a major regulator of store-operated calcium entry in non-excitable cells. Recent studies have suggested that STIM1 plays a role in pathological hypertrophy; however, the physiological role of STIM1 in the heart is not well understood. We have shown that mice with a cardiomyocyte deletion of STIM1 (cr STIM1-/- ) develop ER stress, mitochondrial, and metabolic abnormalities, and dilated cardiomyopathy. However, the specific signaling pathways and kinases regulated by STIM1 are largely unknown. Therefore, we used a discovery-based kinomics approach to identify kinases differentially regulated by STIM1. Twelve-week male control and cr STIM1-/- mice were injected with saline or phenylephrine (PE, 15 mg/kg, s.c, 15 min), and hearts obtained for analysis of the Serine/threonine kinome. Primary analysis was performed using BioNavigator 6.0 (PamGene), using scoring from the Kinexus PhosphoNET database and GeneGo network modeling, and confirmed using standard immunoblotting. Kinomics revealed significantly lower PKG and protein kinase C (PKC) signaling in the hearts of the cr STIM1-/- in comparison to control hearts, confirmed by immunoblotting for the calcium-dependent PKC isoform PKCα and its downstream target MARCKS. Similar reductions in cr STIM1-/- hearts were found for the kinases: MEK1/2, AMPK, and PDPK1, and in the activity of the Ca2+ -dependent phosphatase, calcineurin. Electrocardiogram analysis also revealed that cr STIM1-/- mice have significantly lower HR and prolonged QT interval. In conclusion, we have shown several calcium-dependent kinases and phosphatases are regulated by STIM1 in the adult mouse heart. This has important implications in understanding how STIM1 contributes to the regulation of cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
- Helen E. Collins
- Division of Environmental MedicineDepartment of MedicineUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Joshua C. Anderson
- Department of Radiation OncologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Adam R. Wende
- Division of Molecular and Cellular PathologyDepartment of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - John C. Chatham
- Division of Molecular and Cellular PathologyDepartment of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
19
|
Sergienko NM, Donner DG, Delbridge LMD, McMullen JR, Weeks KL. Protein phosphatase 2A in the healthy and failing heart: New insights and therapeutic opportunities. Cell Signal 2021; 91:110213. [PMID: 34902541 DOI: 10.1016/j.cellsig.2021.110213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
Abstract
Protein phosphatases have emerged as critical regulators of phosphoprotein homeostasis in settings of health and disease. Protein phosphatase 2A (PP2A) encompasses a large subfamily of enzymes that remove phosphate groups from serine/threonine residues within phosphoproteins. The heterogeneity in PP2A structure, which arises from the grouping of different catalytic, scaffolding and regulatory subunit isoforms, creates distinct populations of catalytically active enzymes (i.e. holoenzymes) that localise to different parts of the cell. This structural complexity, combined with other regulatory mechanisms, such as interaction of PP2A heterotrimers with accessory proteins and post-translational modification of the catalytic and/or regulatory subunits, enables PP2A holoenzymes to target phosphoprotein substrates in a highly specific manner. In this review, we summarise the roles of PP2A in cardiac physiology and disease. PP2A modulates numerous processes that are vital for heart function including calcium handling, contractility, β-adrenergic signalling, metabolism and transcription. Dysregulation of PP2A has been observed in human cardiac disease settings, including heart failure and atrial fibrillation. Efforts are underway, particularly in the cancer field, to develop therapeutics targeting PP2A activity. The development of small molecule activators of PP2A (SMAPs) and other compounds that selectively target specific PP2A holoenzymes (e.g. PP2A/B56α and PP2A/B56ε) will improve understanding of the function of different PP2A species in the heart, and may lead to the development of therapeutics for normalising aberrant protein phosphorylation in settings of cardiac remodelling and dysfunction.
Collapse
Affiliation(s)
- Nicola M Sergienko
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Central Clinical School, Monash University, Clayton VIC 3800, Australia
| | - Daniel G Donner
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia
| | - Lea M D Delbridge
- Department of Anatomy and Physiology, The University of Melbourne, Parkville VIC 3010, Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia; Department of Physiology and Department of Medicine Alfred Hospital, Monash University, Clayton VIC 3800, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora VIC 3086, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton VIC 3800, Australia.
| | - Kate L Weeks
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Department of Anatomy and Physiology, The University of Melbourne, Parkville VIC 3010, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton VIC 3800, Australia.
| |
Collapse
|
20
|
Ma H, Guo X, Cui S, Wu Y, Zhang Y, Shen X, Xie C, Li J. Dephosphorylation of AMP-activated kinase exacerbates ischemia/reperfusion-induced acute kidney injury via mitochondrial dysfunction. Kidney Int 2021; 101:315-330. [PMID: 34774556 DOI: 10.1016/j.kint.2021.10.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 01/14/2023]
Abstract
Kidney tubular epithelial cells are high energy-consuming epithelial cells that depend mainly on fatty acid oxidation for an energy supply. AMP-activated protein kinase (AMPK) is a key regulator of energy production in most cells, but the function of AMPK in tubular epithelial cells in acute kidney disease is unclear. Here, we found a rapid decrease in Thr172-AMPKα phosphorylation after ischemia/reperfusion in both in vivo and in vitro models. Mice with kidney tubular epithelial cell-specific AMPKα deletion exhibited exacerbated kidney impairment and apoptosis of tubular epithelial cells after ischemia/reperfusion. AMPKα deficiency was accompanied by the accumulation of lipid droplets in the kidney tubules and the elevation of ceramides and free fatty acid levels following ischemia/reperfusion injury. Mechanistically, ischemia/reperfusion triggered ceramide production and activated protein phosphatase PP2A, which dephosphorylated Thr172-AMPKα. Decreased AMPK activity repressed serine/threonine kinase ULK1-mediated autophagy and impeded clearance of the dysfunctional mitochondria. Targeting the PP2A-AMPK axis by the allosteric AMPK activator C24 restored fatty acid oxidation and reduced tubular cell apoptosis during ischemia/reperfusion-induced injury, by antagonizing PP2A dephosphorylation and promoting the mitophagy process. Thus, our study reveals that AMPKα plays an important role in protecting against tubular epithelial cell injury in ischemia/reperfusion-induced acute kidney injury. Hence, activation of AMPK could be a potential therapeutic strategy for acute kidney injury treatment.
Collapse
Affiliation(s)
- Haijian Ma
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shichao Cui
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yongmei Wu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yangming Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Shandong, China
| | - Xiaoyan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China.
| |
Collapse
|
21
|
Huang S, Wang Z, Zhao L. The Crucial Roles of Intermediate Metabolites in Cancer. Cancer Manag Res 2021; 13:6291-6307. [PMID: 34408491 PMCID: PMC8364365 DOI: 10.2147/cmar.s321433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic alteration, one of the hallmarks of cancer cells, is important for cancer initiation and development. To support their rapid growth, cancer cells alter their metabolism so as to obtain the necessary energy and building blocks for biosynthetic pathways, as well as to adjust their redox balance. Once thought to be merely byproducts of metabolic pathways, intermediate metabolites are now known to mediate epigenetic modifications and protein post-transcriptional modifications (PTM), as well as connect cellular metabolism with signal transduction. Consequently, they can affect a myriad of processes, including proliferation, apoptosis, and immunity. In this review, we summarize multiple representative metabolites involved in glycolysis, the pentose phosphate pathway (PPP), the tricarboxylic acid (TCA) cycle, lipid synthesis, ketogenesis, methionine metabolism, glutamine metabolism, and tryptophan metabolism, focusing on their roles in chromatin and protein modifications and as signal-transducing messengers.
Collapse
Affiliation(s)
- Sisi Huang
- Hengyang School of Medicine, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Zhiqin Wang
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Liang Zhao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| |
Collapse
|
22
|
Ahumada-Castro U, Puebla-Huerta A, Cuevas-Espinoza V, Lovy A, Cardenas JC. Keeping zombies alive: The ER-mitochondria Ca 2+ transfer in cellular senescence. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119099. [PMID: 34274397 DOI: 10.1016/j.bbamcr.2021.119099] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/14/2021] [Accepted: 06/18/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence generates a permanent cell cycle arrest, characterized by apoptosis resistance and a pro-inflammatory senescence-associated secretory phenotype (SASP). Physiologically, senescent cells promote tissue remodeling during development and after injury. However, when accumulated over a certain threshold as happens during aging or after cellular stress, senescent cells contribute to the functional decline of tissues, participating in the generation of several diseases. Cellular senescence is accompanied by increased mitochondrial metabolism. How mitochondrial function is regulated and what role it plays in senescent cell homeostasis is poorly understood. Mitochondria are functionally and physically coupled to the endoplasmic reticulum (ER), the major calcium (Ca2+) storage organelle in mammalian cells, through special domains known as mitochondria-ER contacts (MERCs). In this domain, the release of Ca2+ from the ER is mainly regulated by inositol 1,4,5-trisphosphate receptors (IP3Rs), a family of three Ca2+ release channels activated by a ligand (IP3). IP3R-mediated Ca2+ release is transferred to mitochondria through the mitochondrial Ca2+ uniporter (MCU), where it modulates the activity of several enzymes and transporters impacting its bioenergetic and biosynthetic function. Here, we review the possible connection between ER to mitochondria Ca2+ transfer and senescence. Understanding the pathways that contribute to senescence is essential to reveal new therapeutic targets that allow either delaying senescent cell accumulation or reduce senescent cell burden to alleviate multiple diseases.
Collapse
Affiliation(s)
- Ulises Ahumada-Castro
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile
| | - Andrea Puebla-Huerta
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile
| | - Victor Cuevas-Espinoza
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile
| | - Alenka Lovy
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; Department of Neuroscience, Center for Neuroscience Research, Tufts School of Medicine, Boston, MA, USA
| | - J Cesar Cardenas
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA; Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
23
|
Pan L, Liu Y, Lan H, Bao N, Zhao Y, Sun H, Qin G, Farouk MH. Biological Mechanisms Induced by Soybean Agglutinin Using an Intestinal Cell Model of Monogastric Animals. Front Vet Sci 2021; 8:639792. [PMID: 34150879 PMCID: PMC8207199 DOI: 10.3389/fvets.2021.639792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/30/2021] [Indexed: 11/30/2022] Open
Abstract
Soybean agglutinin (SBA) has a toxic effect on most animals. The anti-nutritional mechanisms of SBA are not fully understood, in terms of cell survival activity and metabolism of intestinal cells. This study aims to investigate the effects of SBA on the cell cycle, apoptosis, and to verify the mechanism of SBA anti-nutritional characters based on proteomic-based analysis. The IPEC-J2 cell line was cultured with medium containing 0.0, 0.5, or 2.0 mg/mL SBA. With increasing SBA levels, the percentage of the cells at G0/G1 phase, cell apoptosis rates, expressions of Bax and p21, and the activities of Casp-3 and Casp-9 were increased, while cyclin D1 and Bcl-2 expressions were declined (p < 0.05). The proteomic analysis showed that the numbers of differentially expressed proteins, induced by SBA, were mainly enriched in different pathways including DNA replication, base excision repair, nucleus excision repair, mismatch repair, amide and peptide biosynthesis, ubiquitin-mediated proteolysis, as well as structures and functions of mitochondria and ribosome. In conclusion, the anti-nutritional mechanism of SBA is a complex cellular process. Such process including DNA related activities; protein synthesis and metabolism; signal-conducting relation; as well as subcellular structure and function. This study provides comprehensive information to understand the toxic mechanism of SBA in monogastrics.
Collapse
Affiliation(s)
- Li Pan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yan Liu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hainan Lan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Nan Bao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuan Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hui Sun
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Guixin Qin
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Mohammed Hamdy Farouk
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
24
|
PPM1F in hippocampal dentate gyrus regulates the depression-related behaviors by modulating neuronal excitability. Exp Neurol 2021; 340:113657. [PMID: 33639208 DOI: 10.1016/j.expneurol.2021.113657] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/28/2020] [Accepted: 02/21/2021] [Indexed: 01/21/2023]
Abstract
Major depressive disorder (MDD) is a common, serious, debilitating mental illness. Protein phosphatase Mg2+/Mn2+-dependent 1F (PPM1F), a serine/threonine phosphatase, has been reported to have multiple biological and cellular functions. However, the effects of PPM1F and its neuronal substrates on depressive behaviors remain largely unknown. Here, we showed that PPM1F is widely distributed in the hippocampus, and chronic unpredictable stress (CUS) can induce increased expression of PPM1F in the hippocampus, which was correlated with depression-associated behaviors. Overexpression of PPM1F mediated by adeno-associated virus (AAV) in the dentate gyrus (DG) produced depression-related behaviors and enhanced susceptibility to subthreshold CUS (SCUS) in both male and female mice, while, knockout of PPM1F in DG produced antidepressant phonotypes under stress conditions. Whole-cell patch-clamp recordings demonstrated that overexpression of PPM1F increased the neuronal excitability of the granule cells in the DG. Consistent with neuronal hyperexcitability, overexpression of PPM1F regulated the expression of certain ion channel genes and induced decreased phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CAMKII) and Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) in hippocampus. These results suggest that PPM1F in the DG regulates depression-related behaviors by modulating neuronal excitability, which might be an important pathological gene for depression or other mental diseases.
Collapse
|
25
|
Stojakovic A, Chang SY, Nesbitt J, Pichurin NP, Ostroot MA, Aikawa T, Kanekiyo T, Trushina E. Partial Inhibition of Mitochondrial Complex I Reduces Tau Pathology and Improves Energy Homeostasis and Synaptic Function in 3xTg-AD Mice. J Alzheimers Dis 2021; 79:335-353. [PMID: 33285637 PMCID: PMC7902954 DOI: 10.3233/jad-201015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Accumulation of hyperphosphorylated tau (pTau) protein is associated with synaptic dysfunction in Alzheimer’s disease (AD). We previously demonstrated that neuroprotection in familial mouse models of AD could be achieved by targeting mitochondria complex I (MCI) and activating the adaptive stress response. Efficacy of this strategy on pTau-related pathology remained unknown. Objective: To investigate the effect of specific MCI inhibitor tricyclic pyrone compound CP2 on levels of human pTau, memory function, long term potentiation (LTP), and energy homeostasis in 18-month-old 3xTg-AD mice and explore the potential mechanisms. Methods: CP2 was administered to male and female 3xTg-AD mice from 3.5–18 months of age. Cognitive function was assessed using the Morris water maze. Glucose metabolism was measured in periphery using a glucose tolerance test and in the brain using fluorodeoxyglucose F18 positron-emission tomography (FDG-PET). LTP was evaluated using electrophysiology in the hippocampus. The expression of key proteins associated with neuroprotective mechanisms were assessed by western blotting. Results: Chronic CP2 treatment restored synaptic activity in female 3xTg-AD mice; cognitive function, levels of synaptic proteins, glucose metabolism, and energy homeostasis were improved in male and female 3xTg-AD mice. Significant reduction of human pTau in the brain was associated with increased activity of protein phosphatase of type 2A (PP2A), and reduced activity of cyclin-dependent kinase 5 (CDK5) and glycogen synthase kinase 3β (GSK3β). Conclusion: CP2 treatment protected against synaptic dysfunction and memory impairment in symptomatic 3xTg-AD mice, and reduced levels of human pTau, indicating that targeting mitochondria with small molecule specific MCI inhibitors represents a promising strategy for treating AD.
Collapse
Affiliation(s)
| | - Su-Youne Chang
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Jarred Nesbitt
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Mark A Ostroot
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Tomonori Aikawa
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
26
|
Dzulko M, Pons M, Henke A, Schneider G, Krämer OH. The PP2A subunit PR130 is a key regulator of cell development and oncogenic transformation. Biochim Biophys Acta Rev Cancer 2020; 1874:188453. [PMID: 33068647 DOI: 10.1016/j.bbcan.2020.188453] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 12/25/2022]
Abstract
Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase. This enzyme is involved in a plethora of cellular processes, including apoptosis, autophagy, cell proliferation, and DNA repair. Remarkably, PP2A can act as a context-dependent tumor suppressor or promoter. Active PP2A complexes consist of structural (PP2A-A), regulatory (PP2A-B), and catalytic (PP2A-C) subunits. The regulatory subunits define the substrate specificity and the subcellular localization of the holoenzyme. Here we condense the increasing evidence that the PP2A B-type subunit PR130 is a critical regulator of cell identity and oncogenic transformation. We summarize knowledge on the biological functions of PR130 in normal and transformed cells, targets of the PP2A-PR130 complex, and how diverse extra- and intracellular stimuli control the expression and activity of PR130. We additionally review the impact of PP2A-PR130 on cardiac functions, neuronal processes, and anti-viral defense and how this might affect cancer development and therapy.
Collapse
Affiliation(s)
- Melanie Dzulko
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany
| | - Miriam Pons
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany
| | - Andreas Henke
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Friedrich Schiller University, 07745 Jena, Germany
| | - Günter Schneider
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, 81675 Munich, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany.
| |
Collapse
|
27
|
Rothschild JA, Bishop DJ. Effects of Dietary Supplements on Adaptations to Endurance Training. Sports Med 2020; 50:25-53. [PMID: 31531769 DOI: 10.1007/s40279-019-01185-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Endurance training leads to a variety of adaptations at the cellular and systemic levels that serve to minimise disruptions in whole-body homeostasis caused by exercise. These adaptations are differentially affected by training volume, training intensity, and training status, as well as by nutritional choices that can enhance or impair the response to training. A variety of supplements have been studied in the context of acute performance enhancement, but the effects of continued supplementation concurrent to endurance training programs are less well characterised. For example, supplements such as sodium bicarbonate and beta-alanine can improve endurance performance and possibly training adaptations during endurance training by affecting buffering capacity and/or allowing an increased training intensity, while antioxidants such as vitamin C and vitamin E may impair training adaptations by blunting cellular signalling but appear to have little effect on performance outcomes. Additionally, limited data suggest the potential for dietary nitrate (in the form of beetroot juice), creatine, and possibly caffeine, to further enhance endurance training adaptation. Therefore, the objective of this review is to examine the impact of dietary supplements on metabolic and physiological adaptations to endurance training.
Collapse
Affiliation(s)
- Jeffrey A Rothschild
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand. .,TriFit Performance Center, Santa Monica, CA, USA.
| | - David J Bishop
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
28
|
Moon JH, Park SY. Prion peptide-mediated calcium level alteration governs neuronal cell damage through AMPK-autophagy flux. Cell Commun Signal 2020; 18:109. [PMID: 32650778 PMCID: PMC7353712 DOI: 10.1186/s12964-020-00590-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The distinctive molecular structure of the prion protein, PrPsc, is established only in mammals with infectious prion diseases. Prion protein characterizes either the transmissible pathogen itself or a primary constituent of the disease. Our report suggested that prion protein-mediated neuronal cell death is triggered by the autophagy flux. However, the alteration of intracellular calcium levels, AMPK activity in prion models has not been described. This study is focused on the effect of the changes in intracellular calcium levels on AMPK/autophagy flux pathway and PrP (106-126)-induced neurotoxicity. METHODS Western blot and Immunocytochemistry was used to detect AMPK and autophagy-related protein expression. Flow cytometry and a TdT-mediated biotin-16-dUTP nick-end labeling (TUNEL) assay were used to detect the percentage of apoptotic cells. Calcium measurement was employed using fluo-4 by confocal microscope. RESULTS We examined the effect of calcium homeostasis alterations induced by human prion peptide on the autophagy flux in neuronal cells. Treatment with human prion peptide increased the intracellular calcium concentration and induced cell death in primary neurons as well as in a neuronal cell line. Using pharmacological inhibitors, we showed that the L-type calcium channel is involved in the cellular entry of calcium ions. Inhibition of calcium uptake prevented autophagic cell death and reduction in AMP-activated protein kinase (AMPK) activity induced by human prion peptide. CONCLUSION Our data demonstrated that prion peptide-mediated calcium inflow plays a pivotal role in prion peptide-induced autophagic cell death, and reduction in AMPK activity in neurons. Altogether, our results suggest that calcium influx might play a critical role in neurodegenerative diseases, including prion diseases. Video Abstract.
Collapse
Affiliation(s)
- Ji-Hong Moon
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk, 54596, South Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk, 54596, South Korea.
| |
Collapse
|
29
|
Luan M, Shi SS, Shi DB, Liu HT, Ma RR, Xu XQ, Sun YJ, Gao P. TIPRL, a Novel Tumor Suppressor, Suppresses Cell Migration, and Invasion Through Regulating AMPK/mTOR Signaling Pathway in Gastric Cancer. Front Oncol 2020; 10:1062. [PMID: 32719745 PMCID: PMC7350861 DOI: 10.3389/fonc.2020.01062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/28/2020] [Indexed: 12/25/2022] Open
Abstract
Invasion and metastasis of gastric cancer after curative resection remain the most common lethal outcomes. However, our current understanding of the molecular mechanism underlying gastric cancer metastasis is far from complete. Herein, we identified TOR signaling pathway regulator (TIPRL) as a novel metastasis suppressor in gastric cancer through genome-wide gene expression profiling analysis using mRNA microarray. Decreased TIPRL expression was detected in clinical gastric cancer specimens, and low TIPRL expression was correlated with more-advanced TNM stage, distant metastasis, and poor clinical outcome. Moreover, TIPRL was identified as a direct target of miR-216a-5p and miR-383-5p. Functional study revealed that re-expression of TIPRL in gastric cancer cell lines suppressed their migratory and invasive capacities, whereas inverse effects were observed in TIPRL-deficient models. Mechanistically, TIPRL downstream effectors and signaling pathways were investigated using mRNA microarray. Gene expression profiling revealed that TIPRL could not modulate the downstream genes at transcriptional levels, thereby implying that the regulation might occur at the post-transcriptional levels. We further demonstrated that TIPRL induced phosphorylation/activation of AMPK, which in turn attenuated phosphorylation of mTOR, p70S6K, and 4E-BP1, thereby leading to inactivation of mTOR signaling and subsequent suppression of cell migration/invasion in gastric cancer. Taken together, TIPRL acts as a novel metastasis suppressor in gastric cancer, at least in part, through regulating AMPK/mTOR signaling, likely representing a promising target for new therapies in gastric cancer.
Collapse
Affiliation(s)
- Meng Luan
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shan-Shan Shi
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Duan-Bo Shi
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| | - Hai-Ting Liu
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ran-Ran Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| | - Xiao-Qun Xu
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yu-Jing Sun
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| | - Peng Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
30
|
Mookherjee D, Das S, Mukherjee R, Bera M, Jana SC, Chakrabarti S, Chakrabarti O. RETREG1/FAM134B mediated autophagosomal degradation of AMFR/GP78 and OPA1 -a dual organellar turnover mechanism. Autophagy 2020; 17:1729-1752. [PMID: 32559118 DOI: 10.1080/15548627.2020.1783118] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Turnover of cellular organelles, including endoplasmic reticulum (ER) and mitochondria, is orchestrated by an efficient cellular surveillance system. We have identified a mechanism for dual regulation of ER and mitochondria under stress. It is known that AMFR, an ER E3 ligase and ER-associated degradation (ERAD) regulator, degrades outer mitochondrial membrane (OMM) proteins, MFNs (mitofusins), via the proteasome and triggers mitophagy. We show that destabilized mitochondria are almost devoid of the OMM and generate "mitoplasts". This brings the inner mitochondrial membrane (IMM) in the proximity of the ER. When AMFR levels are high and the mitochondria are stressed, the reticulophagy regulatory protein RETREG1 participates in the formation of the mitophagophore by interacting with OPA1. Interestingly, OPA1 and other IMM proteins exhibit similar RETREG1-dependent autophagosomal degradation as AMFR, unlike most of the OMM proteins. The "mitoplasts" generated are degraded by reticulo-mito-phagy - simultaneously affecting dual organelle turnover.Abbreviations: AMFR/GP78: autocrine motility factor receptor; BAPTA: 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid; BFP: blue fluorescent protein; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; CNBr: cyanogen bromide; ER: endoplasmic reticulum; ERAD: endoplasmic-reticulum-associated protein degradation; FL: fluorescence, GFP: green fluorescent protein; HA: hemagglutinin; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; IMM: inner mitochondrial membrane; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MFN: mitofusin, MGRN1: mahogunin ring finger 1; NA: numerical aperature; OMM: outer mitochondrial membrane; OPA1: OPA1 mitochondrial dynamin like GTPase; PRNP/PrP: prion protein; RER: rough endoplasmic reticulum; RETREG1/FAM134B: reticulophagy regulator 1; RFP: red fluorescent protein; RING: really interesting new gene; ROI: region of interest; RTN: reticulon; SEM: standard error of the mean; SER: smooth endoplasmic reticulum; SIM: structured illumination microscopy; SQSTM1/p62: sequestosome 1; STED: stimulated emission depletion; STOML2: stomatin like 2; TOMM20: translocase of outer mitochondrial membrane 20; UPR: unfolded protein response.
Collapse
Affiliation(s)
- Debdatto Mookherjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Subhrangshu Das
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Rukmini Mukherjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.,Buchmann Institute for Molecular Life Sciences, Frankfurt Am Main, Germany
| | - Manindra Bera
- Laboratory of Cell Biology, the Rockefeller University, New York, USA
| | | | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
31
|
Zimmermann HR, Yang W, Kasica NP, Zhou X, Wang X, Beckelman BC, Lee J, Furdui CM, Keene CD, Ma T. Brain-specific repression of AMPKα1 alleviates pathophysiology in Alzheimer's model mice. J Clin Invest 2020; 130:3511-3527. [PMID: 32213711 PMCID: PMC7324210 DOI: 10.1172/jci133982] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
AMPK is a key regulator at the molecular level for maintaining energy metabolism homeostasis. Mammalian AMPK is a heterotrimeric complex, and its catalytic α subunit exists in 2 isoforms: AMPKα1 and AMPKα2. Recent studies suggest a role of AMPKα overactivation in Alzheimer's disease-associated (AD-associated) synaptic failure. However, whether AD-associated dementia can be improved by targeting AMPK remains unclear, and roles of AMPKα isoforms in AD pathophysiology are not understood. Here, we showed distinct disruption of hippocampal AMPKα isoform expression patterns in postmortem human AD patients and AD model mice. We further investigated the effects of brain- and isoform-specific AMPKα repression on AD pathophysiology. We found that repression of AMPKα1 alleviated cognitive deficits and synaptic failure displayed in 2 separate lines of AD model mice. In contrast, AMPKα2 suppression did not alter AD pathophysiology. Using unbiased mass spectrometry-based proteomics analysis, we identified distinct patterns of protein expression associated with specific AMPKα isoform suppression in AD model mice. Further, AD-associated hyperphosphorylation of eukaryotic elongation factor 2 (eEF2) was blunted with selective AMPKα1 inhibition. Our findings reveal isoform-specific roles of AMPKα in AD pathophysiology, thus providing insights into potential therapeutic strategies for AD and related dementia syndromes.
Collapse
Affiliation(s)
| | | | | | | | - Xin Wang
- Gerontology and Geriatric Medicine and
| | | | - Jingyun Lee
- Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| | - Cristina M. Furdui
- Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - C. Dirk Keene
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Tao Ma
- Gerontology and Geriatric Medicine and
- Department of Physiology and Pharmacology and
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
32
|
Yuan D, Zhou S, Liu S, Li K, Zhao H, Long S, Liu H, Xie Y, Su Y, Yu F, Li S. The AMPK-PP2A axis in insect fat body is activated by 20-hydroxyecdysone to antagonize insulin/IGF signaling and restrict growth rate. Proc Natl Acad Sci U S A 2020; 117:9292-9301. [PMID: 32277029 PMCID: PMC7196814 DOI: 10.1073/pnas.2000963117] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In insects, 20-hydroxyecdysone (20E) limits the growth period by triggering developmental transitions; 20E also modulates the growth rate by antagonizing insulin/insulin-like growth factor signaling (IIS). Previous work has shown that 20E cross-talks with IIS, but the underlying molecular mechanisms are not fully understood. Here we found that, in both the silkworm Bombyx mori and the fruit fly Drosophila melanogaster, 20E antagonized IIS through the AMP-activated protein kinase (AMPK)-protein phosphatase 2A (PP2A) axis in the fat body and suppressed the growth rate. During Bombyx larval molt or Drosophila pupariation, high levels of 20E activate AMPK, a molecular sensor that maintains energy homeostasis in the insect fat body. In turn, AMPK activates PP2A, which further dephosphorylates insulin receptor and protein kinase B (AKT), thus inhibiting IIS. Activation of the AMPK-PP2A axis and inhibition of IIS in the Drosophila fat body reduced food consumption, resulting in the restriction of growth rate and body weight. Overall, our study revealed an important mechanism by which 20E antagonizes IIS in the insect fat body to restrict the larval growth rate, thereby expanding our understanding of the comprehensive regulatory mechanisms of final body size in animals.
Collapse
Affiliation(s)
- Dongwei Yuan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, 510631 Guangzhou, China
- Key Laboratory of Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Shun Zhou
- Key Laboratory of Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, 510631 Guangzhou, China
| | - Kang Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, 510631 Guangzhou, China
| | - Haigang Zhao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, 510631 Guangzhou, China
- Key Laboratory of Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Shihui Long
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, 510631 Guangzhou, China
| | - Hanhan Liu
- Key Laboratory of Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yongfang Xie
- Bioinformatic College, Chongqing University of Posts and Telecommunications, 400065 Chongqing, China
| | - Yunlin Su
- Key laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Science, 510650 Guangzhou, China
| | - Fengwei Yu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, Research Link, National University of Singapore, 117604, Singapore
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, 510631 Guangzhou, China;
- Key Laboratory of Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032 Shanghai, China
| |
Collapse
|
33
|
Characterization of cytotoxic effects of aristolochic acids on the vascular endothelium. Toxicol In Vitro 2020; 65:104811. [PMID: 32119997 DOI: 10.1016/j.tiv.2020.104811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/09/2020] [Accepted: 02/23/2020] [Indexed: 02/08/2023]
Abstract
Aristolochic acid nephropathy (AAN) is characterized by interstitial fibrosis, proximal tubular atrophy, and hypoxia. A correlation between a reduced peritubular capillary density and the severity of fibrosis has been demonstrated. As calcium, redox and energetic homeostasis are crucial in maintaining endothelial cell function and survival, we aimed to investigate AA-induced disturbances involved in endothelial cell injury. Our results showed a cytotoxic effect of AA on EAhy926 endothelial cells. Exposure of aortic rings to AA impaired vascular relaxation to Acetylcholine (ACh). Increased levels of intracellular reactive oxygen species (ROS) were observed in cells exposed to AA. Pre-treatment with antioxidant N-acetyl cysteine inhibited AA-induced cell death. Superoxide dismutase resulted in restoring ACh-induced relaxation. An increase in intracellular calcium level ([Ca2+]i) was observed on endothelial cells. Calcium chelators BAPTA-AM or APB, a specific inhibitor of IP3R, improved cell viability. Moreover, AA exposure led to reduced AMP-activated protein kinase (AMPK) expression. AICAR, an activator of AMPK, improved the viability of AA-intoxicated cells and inhibited the rise of cytosolic [Ca2+]i levels. This study provides evidence that AA exposure increases ROS generation, disrupts calcium homeostasis and decreases AMPK activity. It also suggests that significant damage observed in endothelial cells may enhance microcirculation defects, worsening hypoxia and tubulointerstitial lesions.
Collapse
|
34
|
Decoding the metabolic landscape of pathophysiological stress-induced cell death in anucleate red blood cells. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2020; 18:130-142. [PMID: 32203008 DOI: 10.2450/2020.0256-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/28/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND In response to stress, anucleate red blood cells (RBCs) can undergo a process of atypical cell death characterised by intracellular Ca2+ accumulation and phosphatidylserine (PS) externalisation. Here we studied alterations in RBC metabolism, a critical contributor to their capacity to survive environmental challenges, during this process. MATERIALS AND METHODS Metabolomics analyses of RBCs and supernatants, using ultra-high-pressure liquid chromatography coupled to mass spectrometry, were performed after in vitro exposure of RBCs to different pathophysiological cell stressors, including starvation, extracellular hypertonicity, hyperthermia, and supraphysiological ionic stress. Cell death was examined by flow cytometry. RESULTS Our data show that artificially enhancing RBC cytosolic Ca2+ influx significantly enhanced purine oxidation and strongly affected cellular bioenergetics by reducing glycolysis. Depleting extracellular Ca2+ curtailed starvation-induced cell death, an effect paralleled by the activation of compensatory pathways such as the pentose phosphate pathway, carboxylic acid metabolism, increased pyruvate to lactate ratios (methemoglobin reductase activation), one-carbon metabolism (protein-damage repair) and glutathione synthesis; RBCs exposed to hypertonic shock displayed a similar metabolic profile. Furthermore, cell stress promoted lipid remodelling as reflected by the levels of free fatty acids, acyl-carnitines and CoA precursors. Notably, RBC PS exposure, independently of the stressor, showed significant correlation with the levels of free fatty acids, glutamate, cystine, spermidine, tryptophan, 5-oxoproline, lactate, and hypoxanthine. DISCUSSION In conclusion, different cell death-inducing pathophysiological stressors, encountered in various clinical conditions, result in differential RBC metabolic phenotypes, only partly explained by intracellular Ca2+ levels and ATP availability.
Collapse
|
35
|
The Bewildering Effect of AMPK Activators in Alzheimer's Disease: Review of the Current Evidence. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9895121. [PMID: 32149150 PMCID: PMC7049408 DOI: 10.1155/2020/9895121] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/14/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is a multifactorial neurodegenerative disease characterized by progressive cognitive dysfunction. It is the most common form of dementia. The pathologic hallmarks of the disease include extracellular amyloid plaque, intracellular neurofibrillary tangles, and oxidative stress, to mention some of them. Despite remarkable progress in the understanding of the pathogenesis of the disease, drugs for cure or disease-modifying therapy remain somewhere in the distance. From recent time, the signaling molecule AMPK is gaining enormous attention in the AD drug research. AMPK is a master regulator of cellular energy metabolism, and recent pieces of evidence show that perturbation of its function is highly ascribed in the pathology of AD. Several drugs are known to activate AMPK, but their effect in AD remains to be controversial. In this review, the current shreds of evidence on the effect of AMPK activators in Aβ accumulation, tau aggregation, and oxidative stress are addressed. Positive and negative effects are reported with regard to Aβ and tauopathy but only positive in oxidative stress. We also tried to dissect the molecular interplays where the bewildering effects arise from.
Collapse
|
36
|
Chen XY, Cai CZ, Yu ML, Feng ZM, Zhang YW, Liu PH, Zeng H, Yu CH. LB100 ameliorates nonalcoholic fatty liver disease via the AMPK/Sirt1 pathway. World J Gastroenterol 2019; 25:6607-6618. [PMID: 31832001 PMCID: PMC6906208 DOI: 10.3748/wjg.v25.i45.6607] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/10/2019] [Accepted: 11/23/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND It is well known that nonalcoholic fatty liver disease (NAFLD) is associated with insulin resistance (IR). LB100, a serine/threonine protein phosphatase 2A (PP2A) inhibitor, is closely related to IR. However, there is little data regarding its direct influence on NAFLD. AIM To elucidate the effect and underlying mechanism of LB100 in NAFLD. METHODS After 10 wk of high fat diet (HFD) feeding, male C57BL/6 mice were injected intraperitoneally with vehicle or LB100 for an additional 6 wk (three times a week). The L02 cell line was treated with LB100 and free fatty acids (FFAs) for 24 h. Hematoxylin and eosin and oil red O staining were performed for histological examination. Western blot analysis was used to detect the protein expression of Sirtuin 1 (Sirt1), total and phosphorylated AMP-activated protein kinase α (AMPKα), and the proteins involved in lipogenesis and fatty acid oxidation. The mRNA levels were determined by qPCR. Pharmacological inhibition of AMPK was performed to further examine the exact mechanism of LB100 in NAFLD. RESULTS LB100 significantly ameliorated HFD-induced obesity, hepatic lipid accumulation and hepatic injury in mice. In addition, LB100 significantly downregulated the protein levels of acetyl-CoA carboxylase, sterol regulatory element-binding protein 1 and its lipogenesis target genes, including stearoyl-CoA desaturase-1 and fatty acid synthase, and upregulated the levels of proteins involved in fatty acid β-oxidation, such as peroxisome proliferator-activated receptor α (PPARα), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), carnitine palmitoyltransferase 1α, acyl-CoA oxidase 1 and uncoupling protein 2, as well as the upstream mediators Sirt1 and AMPKα in the livers of HFD-fed mice. In vitro, LB100 alleviated FFA-induced lipid accumulation in L02 cells through the AMPK/Sirt1 signaling pathway. Further studies showed that the curative effect of LB100 on lipid accumulation was abolished by inhibiting AMPKα in L02 cells. CONCLUSION PP2A inhibition by LB100 significantly ameliorates hepatic steatosis by regulating hepatic lipogenesis and fatty acid oxidation via the AMPK/Sirt1 pathway. LB100 may be a potential therapeutic agent for NAFLD.
Collapse
Affiliation(s)
- Xue-Yang Chen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Chang-Zhou Cai
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Meng-Li Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Ze-Min Feng
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Yu-Wei Zhang
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Pei-Hao Liu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Hang Zeng
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Chao-Hui Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Clinical Research Center for Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
37
|
Chen H, Xu J, Wang P, Shu Q, Huang L, Guo J, Zhang X, Zhang H, Wang Y, Shen Z, Chen X, Zhang Q. Protein phosphatase 2 regulatory subunit B''Alpha silencing inhibits tumor cell proliferation in liver cancer. Cancer Med 2019; 8:7741-7753. [PMID: 31647192 PMCID: PMC6912040 DOI: 10.1002/cam4.2620] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 09/29/2019] [Accepted: 10/06/2019] [Indexed: 12/24/2022] Open
Abstract
Aim To explore the effects of protein phosphatase 2 regulatory subunit B''Alpha (PPP2R3A) on the proliferation and migration of liver cancer cells. Methods Expression of PPP2R3A in tumor tissues of hepatocellular carcinoma (HCC) patients was detected by immunohistochemistry and western blotting. In two liver cancer cell lines (HepG2 and HuH7), PPP2R3A expression was silenced and then overexpression with PPP2R3A lentiviral vectors, and the effects of PPP2R3A knockdown or overexpression on the proliferation, cell cycle, migration, and invasion of HCC cells were determined in vitro. In a xenograft cancer model in nude mice, the in vivo effects of PPP2R3A knockdown on tumor growth and cancer cell proliferation were evaluated. Results PPP2R3A expression was found in tumor foci in six of eight HCC samples, at a level higher than that in the adjacent para‐tumor tissues. PPP2R3A expression was observed primarily in the cytoplasm of the cancer cells. Knockdown of PPP2R3A resulted in significant inhibition of hepatoma cell proliferation (P < .05), migration (P < .01), and invasion (P < .01) as well as a significant delay in the G1/S transition in both liver cancer lines (P < .05) and increased p53 expression. Conversely, overexpression of PPP2R3A promoted the proliferation (P < .05) and altered cell cycle progression (P < .05) of both liver cancer cell lines. In vivo, PPP2R3A knockdown in liver cancer cells led to significant reductions in the tumor volume (P < .001) and the expression of Ki‐67 in tumor tissues (P < .05). Conclusion PPP2R3A may play a role in liver cancer via the regulation of tumor cell proliferation and invasion.
Collapse
Affiliation(s)
- Huijuan Chen
- Department of Liver Transplantation, The Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China.,Graduate School, Anhui Medical University, Hefei, China
| | - Jing Xu
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Peixiao Wang
- Department of Gastroenterology, Henan Children's Hospital, Zhengzhou, China
| | - Qingming Shu
- Pathology Department, The Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Lihong Huang
- Medical Department, The Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Jing Guo
- Medical Department, The Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Xuyi Zhang
- Medical Department, The Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Hongying Zhang
- Medical Department, The Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Ying Wang
- Department of Liver Transplantation, The Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Zhongyang Shen
- Department of Liver Transplantation, The Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China.,Department of Transplantation Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Xinguo Chen
- Department of Liver Transplantation, The Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Qing Zhang
- Department of Liver Transplantation, The Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| |
Collapse
|
38
|
Tellone E, Galtieri A, Russo A, Ficarra S. Protective Effects of the Caffeine Against Neurodegenerative Diseases. Curr Med Chem 2019; 26:5137-5151. [DOI: 10.2174/0929867324666171009104040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022]
Abstract
Background:
Recent studies and increased interest of the scientific community helped to
clarify the neurological health property of caffeine, one of the pharmacologically active substances
most consumed in the world.
Methods:
This article is a review search to provide an overview on the current state of understanding
neurobiochemical impact of caffeine, focusing on the ability of the drug to effectively counteract several
neurodegenerative disorders such as Alzheimer’s, Parkinson’s, Huntington’s diseases, Multiple
sclerosis and Amyotrophic lateral sclerosis.
Results:
Data collection shown in this review provide a significant therapeutic and prophylactic potentiality
of caffeine which acts on human brain through several pathways because of its antioxidant activity
combined with multiple molecular targets. However, the need to adjust the CF dosage to individuals,
because some people are more sensitive to drugs than others, may constituted a limit to the CF effectiveness.
Conclusion:
What emerges from the complex of clinical and epidemiological studies is a significant CF
potential impact against all neurological disorders. Although, further studies are needed to fully elucidate
the several mechanisms of drug action which in part are still elusive.
Collapse
Affiliation(s)
- Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Antonio Galtieri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Annamaria Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Silvana Ficarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
39
|
Chiou JT, Shi YJ, Wang LJ, Huang CH, Lee YC, Chang LS. Naja atra Cardiotoxin 3 Elicits Autophagy and Apoptosis in U937 Human Leukemia Cells through the Ca 2+/PP2A/AMPK Axis. Toxins (Basel) 2019; 11:toxins11090527. [PMID: 31547294 PMCID: PMC6784133 DOI: 10.3390/toxins11090527] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/04/2019] [Accepted: 09/10/2019] [Indexed: 12/22/2022] Open
Abstract
Cardiotoxins (CTXs) are suggested to exert their cytotoxicity through cell membrane damage. Other studies show that penetration of CTXs into cells elicits mitochondrial fragmentation or lysosome disruption, leading to cell death. Considering the role of AMPK-activated protein kinase (AMPK) in mitochondrial biogenesis and lysosomal biogenesis, we aimed to investigate whether the AMPK-mediated pathway modulated Naja atra (Taiwan cobra) CTX3 cytotoxicity in U937 human leukemia cells. Our results showed that CTX3 induced autophagy and apoptosis in U937 cells, whereas autophagic inhibitors suppressed CTX3-induced apoptosis. CTX3 treatment elicited Ca2+-dependent degradation of the protein phosphatase 2A (PP2A) catalytic subunit (PP2Acα) and phosphorylation of AMPKα. Overexpression of PP2Acα mitigated the CTX3-induced AMPKα phosphorylation. CTX3-induced autophagy was via AMPK-mediated suppression of the Akt/mTOR pathway. Removal of Ca2+ or suppression of AMPKα phosphorylation inhibited the CTX3-induced cell death. CTX3 was unable to induce autophagy and apoptosis in U937 cells expressing constitutively active Akt. Met-modified CTX3 retained its membrane-perturbing activity, however, it did not induce AMPK activation and death of U937 cells. These results conclusively indicate that CTX3 induces autophagy and apoptosis in U937 cells via the Ca2+/PP2A/AMPK axis, and suggest that the membrane-perturbing activity of CTX3 is not crucial for the cell death signaling pathway induction.
Collapse
Affiliation(s)
- Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| | - Yi-Jun Shi
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| | - Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| | - Chia-Hui Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
40
|
Ouyang T, Niu G, Zhang Y, Liu X, Zhang X, Zhang S, Geng Y, Pang D, Ouyang H, Ren L. Porcine HMGCR Inhibits Porcine Circovirus Type 2 Infection by Directly Interacting with the Viral Proteins. Viruses 2019; 11:v11060544. [PMID: 31212640 PMCID: PMC6630565 DOI: 10.3390/v11060544] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 12/29/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is the etiological agent of porcine circovirus diseases and porcine circovirus-associated diseases (PCVDs/PCVADs). However, the pathogenesis of PCV2 is not fully understood. We previously found that 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) is negatively associated with PCV2 infection in vitro and in vivo. HMGCR inhibits the early stages of PCV2 infection, while PCV2 infection induces the phosphorylation of HMGCR to inactivate the protein. In this study, we investigated the possibility that adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK), and protein phosphatase 2 (PP2A) participate in HMGCR-mediated inhibition of PCV2 infection and the interaction of porcine HMGCR with PCV2 proteins. The results showed that AMPK activity fluctuated in cells during the early stage of PCV2 infection, while PP2A had little effect on PCV2 infection and HMGCR activity. Furthermore, PCV2 infection may enhance or maintain the level of phosphorylated HMGCR by directly interacting with the protein in PK-15 cells. These findings may provide a better understanding of PCV2 pathogenesis, and HMGCR may be a novel PCV2 antiviral target.
Collapse
Affiliation(s)
- Ting Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Guyu Niu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Yifang Zhang
- College of Animal Medicine, Yunnan Agricultural University, Black Dragon Pool, Kunming 650201, China.
| | - Xiaohua Liu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Xinwei Zhang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Shiqi Zhang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Yulu Geng
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Daxin Pang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Linzhu Ren
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| |
Collapse
|
41
|
Collins HE, Pat BM, Zou L, Litovsky SH, Wende AR, Young ME, Chatham JC. Novel role of the ER/SR Ca 2+ sensor STIM1 in the regulation of cardiac metabolism. Am J Physiol Heart Circ Physiol 2018; 316:H1014-H1026. [PMID: 30575437 PMCID: PMC6580390 DOI: 10.1152/ajpheart.00544.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The endoplasmic reticulum/sarcoplasmic reticulum Ca2+ sensor stromal interaction molecule 1 (STIM1), a key mediator of store-operated Ca2+ entry, is expressed in cardiomyocytes and has been implicated in regulating multiple cardiac processes, including hypertrophic signaling. Interestingly, cardiomyocyte-restricted deletion of STIM1 (crSTIM1-KO) results in age-dependent endoplasmic reticulum stress, altered mitochondrial morphology, and dilated cardiomyopathy in mice. Here, we tested the hypothesis that STIM1 deficiency may also impact cardiac metabolism. Hearts isolated from 20-wk-old crSTIM1-KO mice exhibited a significant reduction in both oxidative and nonoxidative glucose utilization. Consistent with the reduction in glucose utilization, expression of glucose transporter 4 and AMP-activated protein kinase phosphorylation were all reduced, whereas pyruvate dehydrogenase kinase 4 and pyruvate dehydrogenase phosphorylation were increased, in crSTIM1-KO hearts. Despite similar rates of fatty acid oxidation in control and crSTIM1-KO hearts ex vivo, crSTIM1-KO hearts contained increased lipid/triglyceride content as well as increased fatty acid-binding protein 4, fatty acid synthase, acyl-CoA thioesterase 1, hormone-sensitive lipase, and adipose triglyceride lipase expression compared with control hearts, suggestive of a possible imbalance between fatty acid uptake and oxidation. Insulin-mediated alterations in AKT phosphorylation were observed in crSTIM1-KO hearts, consistent with cardiac insulin resistance. Interestingly, we observed abnormal mitochondria and increased lipid accumulation in 12-wk crSTIM1-KO hearts, suggesting that these changes may initiate the subsequent metabolic dysfunction. These results demonstrate, for the first time, that cardiomyocyte STIM1 may play a key role in regulating cardiac metabolism. NEW & NOTEWORTHY Little is known of the physiological role of stromal interaction molecule 1 (STIM1) in the heart. Here, we demonstrate, for the first time, that hearts lacking cardiomyocyte STIM1 exhibit dysregulation of both cardiac glucose and lipid metabolism. Consequently, these results suggest a potentially novel role for STIM1 in regulating cardiac metabolism.
Collapse
Affiliation(s)
- Helen E Collins
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Betty M Pat
- Division of Cardiovascular Medicine, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Luyun Zou
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Silvio H Litovsky
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Martin E Young
- Division of Cardiovascular Medicine, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
42
|
Lu Z, Cui Y, Wei X, Gao P, Zhang H, Wei X, Li Q, Sun F, Yan Z, Zheng H, Yang G, Liu D, Zhu Z. Deficiency of PKD2L1 (TRPP3) Exacerbates Pathological Cardiac Hypertrophy by Augmenting NCX1-Mediated Mitochondrial Calcium Overload. Cell Rep 2018; 24:1639-1652. [DOI: 10.1016/j.celrep.2018.07.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 04/19/2018] [Accepted: 07/06/2018] [Indexed: 10/28/2022] Open
|
43
|
Yuan L, Wang H, Liu Q, Wang Z, Zhang M, Zhao Y, Liang K, Chen L, Xu T, Xu P. Etoposide-induced protein 2.4 functions as a regulator of the calcium ATPase and protects pancreatic β-cell survival. J Biol Chem 2018; 293:10128-10140. [PMID: 29769309 DOI: 10.1074/jbc.ra118.002399] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/07/2018] [Indexed: 12/22/2022] Open
Abstract
Calcium homeostasis is essential for maintaining the viability and function of pancreatic β cells and plays a key role in preventing the development of diabetes. Decreased levels of ATPase sarcoplasmic/endoplasmic reticulum Ca2+-transporting 2 (ATP2a2), the main calcium pump in β cells, are often found in individuals with diabetes and in diabetic animal models. However, the regulators of ATP2a2 and the molecular mechanisms responsible for controlling ATP2a2 activity remain unclear. Etoposide-induced protein 2.4 (Ei24) is also down-regulated in β cells of diabetic individuals, whereas the effect of decreased Ei24 level on β-cell function is not clarified. Here, using Cre-LoxP and CRISPR/Cas9-based genomic knockout (KO) approaches to generate pancreatic β cell-specific Ei24 KO mice and pancreatic β-cell lines, we found that Ei24 regulates ATP2a2 activity. Specifically, we observed that Ei24 binds to ATP2a2 through Ei24 residues 293-299, which we named here the ATP2a2-interacting region (AIR). Loss of Ei24 inactivated ATP2a2, disrupted calcium homeostasis, and deactivated the calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2)-AMP-activated protein kinase (AMPK) pathway. Elevation of calcium concentration in the endoplasmic reticulum or agonist-induced AMPK activation rescued pancreatic β-cell survival and improved glucose tolerance of Ei24 KO mice. Our findings indicate that targeting the Ei24-ATP2a2 interaction to increase ATP2a2 activity can protect pancreatic β cells and improve glucose homeostasis in diabetic models, suggesting that Ei24 could potentially serve as a target to prevent or manage diabetes.
Collapse
Affiliation(s)
- Lin Yuan
- From the Key Laboratory of RNA Biology and
| | - Huiyu Wang
- From the Key Laboratory of RNA Biology and.,the College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100101
| | - Qi Liu
- From the Key Laboratory of RNA Biology and.,the College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100101
| | - Zhe Wang
- From the Key Laboratory of RNA Biology and.,the College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100101
| | | | - Yan Zhao
- the National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101
| | - Kuo Liang
- the Department of General Surgery, XuanWu Hospital, Capital Medical University, Beijing 100053, and
| | - Liangyi Chen
- the State Key Laboratory of Biomembrane and Membrane Biotechnology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Tao Xu
- the College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100101, .,the National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101
| | - Pingyong Xu
- From the Key Laboratory of RNA Biology and .,the College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100101
| |
Collapse
|
44
|
Behera S, Kapadia B, Kain V, Alamuru-Yellapragada NP, Murunikkara V, Kumar ST, Babu PP, Seshadri S, Shivarudraiah P, Hiriyan J, Gangula NR, Maddika S, Misra P, Parsa KV. ERK1/2 activated PHLPP1 induces skeletal muscle ER stress through the inhibition of a novel substrate AMPK. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1702-1716. [DOI: 10.1016/j.bbadis.2018.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/29/2018] [Accepted: 02/22/2018] [Indexed: 11/28/2022]
|
45
|
Hage-Sleiman R, Hamze AB, El-Hed AF, Attieh R, Kozhaya L, Kabbani S, Dbaibo G. Ceramide inhibits PKCθ by regulating its phosphorylation and translocation to lipid rafts in Jurkat cells. Immunol Res 2017; 64:869-86. [PMID: 26798039 DOI: 10.1007/s12026-016-8787-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein kinase C theta (PKCθ) is a novel, calcium-independent member of the PKC family of kinases that was identified as a central player in T cell signaling and proliferation. Upon T cell activation by antigen-presenting cells, PKCθ gets phosphorylated and activated prior to its translocation to the immunological synapse where it couples with downstream effectors. PKCθ may be regulated by ceramide, a crucial sphingolipid that is known to promote differentiation, growth arrest, and apoptosis. To further investigate the mechanism, we stimulated human Jurkat T cells with either PMA or anti-CD3/anti-CD28 antibodies following induction of ceramide accumulation by adding exogenous ceramide, bacterial sphingomyelinase, or Fas ligation. Our results suggest that ceramide regulates the PKCθ pathway through preventing its critical threonine 538 (Thr538) phosphorylation and subsequent activation, thereby inhibiting the kinase's translocation to lipid rafts. Moreover, this inhibition is not likely to be a generic effect of ceramide on membrane reorganization. Other lipids, namely dihydroceramide, palmitate, and sphingosine, did not produce similar effects on PKCθ. Addition of the phosphatase inhibitors okadaic acid and calyculin A reversed the inhibition exerted by ceramide, and this suggests involvement of a ceramide-activated protein phosphatase. Such previously undescribed mechanism of regulation of PKCθ raises the possibility that ceramide, or one of its derivatives, and may prove valuable in novel therapeutic approaches for disorders involving autoimmunity or excessive inflammation-where PKCθ plays a critical role.
Collapse
Affiliation(s)
- Rouba Hage-Sleiman
- Department of Biology, Faculty of Sciences, Lebanese University, Hadath, Lebanon
| | - Asmaa B Hamze
- Department of Biomedical Science, Faculty of Health Sciences, Global University, Batrakiyye, Beirut, Lebanon
| | - Aimée F El-Hed
- Department of Pediatrics and Adolescent Medicine, Center for Infectious Diseases Research, Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-0236 Riad El Solh, Beirut, Lebanon
| | - Randa Attieh
- Department of Pediatrics and Adolescent Medicine, Center for Infectious Diseases Research, Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-0236 Riad El Solh, Beirut, Lebanon
| | - Lina Kozhaya
- Department of Pediatrics and Adolescent Medicine, Center for Infectious Diseases Research, Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-0236 Riad El Solh, Beirut, Lebanon
| | - Sarah Kabbani
- Department of Pediatrics and Adolescent Medicine, Center for Infectious Diseases Research, Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-0236 Riad El Solh, Beirut, Lebanon
| | - Ghassan Dbaibo
- Department of Pediatrics and Adolescent Medicine, Center for Infectious Diseases Research, Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-0236 Riad El Solh, Beirut, Lebanon.
| |
Collapse
|
46
|
Shah SZA, Zhao D, Hussain T, Yang L. Role of the AMPK pathway in promoting autophagic flux via modulating mitochondrial dynamics in neurodegenerative diseases: Insight into prion diseases. Ageing Res Rev 2017; 40:51-63. [PMID: 28903070 DOI: 10.1016/j.arr.2017.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022]
Abstract
Neurons are highly energy demanding cells dependent on the mitochondrial oxidative phosphorylation system. Mitochondria generate energy via respiratory complexes that constitute the electron transport chain. Adenosine triphosphate depletion or glucose starvation act as a trigger for the activation of adenosine monophosphate-activated protein kinase (AMPK). AMPK is an evolutionarily conserved protein that plays an important role in cell survival and organismal longevity through modulation of energy homeostasis and autophagy. Several studies suggest that AMPK activation may improve energy metabolism and protein clearance in the brains of patients with vascular injury or neurodegenerative disease. Mild mitochondrial dysfunction leads to activated AMPK signaling, but severe endoplasmic reticulum stress and mitochondrial dysfunction may lead to a shift from autophagy towards apoptosis and perturbed AMPK signaling. Hence, controlling mitochondrial dynamics and autophagic flux via AMPK activation might be a useful therapeutic strategy in neurodegenerative diseases to reinstate energy homeostasis and degrade misfolded proteins. In this review article, we discuss briefly the role of AMPK signaling in energy homeostasis, the structure of AMPK, activation mechanisms of AMPK, regulation of AMPK, the role of AMPK in autophagy, the role of AMPK in neurodegenerative diseases, and finally the role of autophagic flux in prion diseases.
Collapse
Affiliation(s)
- Syed Zahid Ali Shah
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Tariq Hussain
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Lifeng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
47
|
Kim N, Jung Y, Nam M, Sun Kang M, Lee MK, Cho Y, Choi EK, Hwang GS, Soo Kim H. Angiotensin II affects inflammation mechanisms via AMPK-related signalling pathways in HL-1 atrial myocytes. Sci Rep 2017; 7:10328. [PMID: 28871102 PMCID: PMC5583339 DOI: 10.1038/s41598-017-09675-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 07/27/2017] [Indexed: 11/30/2022] Open
Abstract
Inflammation is a common cause of cardiac arrhythmia. Angiotensin ІІ (Ang ІІ) is a major contributing factor in the pathogenesis of cardiac inflammation; however, its underlying molecular mechanism remains unclear. Here, we explored the effect of Ang ІІ on inflammatory mechanisms and oxidative stress using HL-1 atrial myocytes. We showed that Ang ІІ activated c-Jun N-terminal kinase (JNK) phosphorylation and other inflammatory markers, such as transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α). Ang ІІ decreased oxygen consumption rate, which resulted in reactive oxygen species (ROS) generation and inhibition of ROS blocked Ang II-mediated JNK phosphorylation and TGF-β1 induction. Ang ІІ induced the expression of its specific receptor, AT1R. Ang II-induced intracellular calcium production associated with Ang ІІ-mediated signalling pathways. In addition, the generated ROS and calcium stimulated AMPK phosphorylation. Inhibiting AMPK blocked Ang II-mediated JNK and TGF-β signalling pathways. Ang ІІ concentration, along with TGF-β1 and tumor necrosis factor-α levels, was slightly increased in plasma of patients with atrial fibrillation. Taken together, these results suggest that Ang ІІ induces inflammation mechanisms through an AMPK-related signalling pathway. Our results provide new molecular targets for the development of therapeutics for inflammation-related conditions, such as atrial fibrillation.
Collapse
Affiliation(s)
- Nami Kim
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea
| | - Youngae Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea
| | - Miso Nam
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea
| | - Mi Sun Kang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea
| | - Min Kyung Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea
| | - Youngjin Cho
- Division of Cardiology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Eue-Keun Choi
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea. .,Chemistry & Nanoscience, Ewha Womans University, Seoul, Republic of Korea.
| | - Hyeon Soo Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| |
Collapse
|
48
|
Wang X, Mu Y, Sun M, Han J. Bidirectional regulation of fragile X mental retardation protein phosphorylation controls rhodopsin homoeostasis. J Mol Cell Biol 2017; 9:104-116. [PMID: 27702760 DOI: 10.1093/jmcb/mjw041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/29/2016] [Indexed: 01/03/2023] Open
Abstract
Homoeostatic regulation of the light sensor, rhodopsin, is critical for the maintenance of light sensitivity and survival of photoreceptors. The major fly rhodopsin, Rh1, undergoes light-induced endocytosis and degradation, but its protein and mRNA levels remain constant during light/dark cycles. It is not clear how translation of Rh1 is regulated. Here, we show that adult photoreceptors maintain a constant, abundant quantity of ninaE mRNA, which encodes Rh1. We demonstrate that the Fmr1 protein associates with ninaE mRNA and represses its translation. Further, light exposure triggers a calcium-dependent dephosphorylation of Fmr1, which relieves suppression of Rh1 translation. We demonstrate that Mts, the catalytic subunit of protein phosphatase 2A (PP2A), mediates light-induced Fmr1 dephosphorylation in a regulatory B subunit of PP2A (CKa)-dependent manner. Finally, we show that blocking light-induced Rh1 translation results in reduced light sensitivity. Our results reveal the molecular mechanism of Rh1 homoeostasis and physiological consequence of Rh1 dysregulation.
Collapse
Affiliation(s)
- Xiao Wang
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Yawen Mu
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Mengshi Sun
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Junhai Han
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
49
|
St-Cyr Giguère F, Attiori Essis S, Chagniel L, Germain M, Cyr M, Massicotte G. The sphingosine-1-phosphate receptor 1 agonist SEW2871 reduces Tau-Ser262 phosphorylation in rat hippocampal slices. Brain Res 2017; 1658:51-59. [DOI: 10.1016/j.brainres.2017.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 12/13/2022]
|
50
|
Downs RM, Hughes MA, Kinsey ST, Johnson MC, Baumgarner BL. Inhibiting c-Jun N-terminal kinase partially attenuates caffeine-dependent cell death without alleviating the caffeine-induced reduction in mitochondrial respiration in C2C12 skeletal myotubes. Biochem Biophys Res Commun 2016; 480:61-68. [PMID: 27717822 DOI: 10.1016/j.bbrc.2016.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022]
Abstract
Caffeine is a widely consumed stimulant that has previously been shown to promote cytotoxic stress and even cell death in numerous mammalian cell lines. Thus far there is little information available regarding the toxicity of caffeine in skeletal muscle cells. Our preliminary data revealed that treating C2C12 myotubes with 5 mM caffeine for 6 h increased nuclear fragmentation and reduced basal and maximal oxygen consumption rate (OCR) in skeletal myotubes. The purpose of this study was to further elucidate the pathways by which caffeine increased cell death and reduced mitochondrial respiration. We specifically examined the role of c-Jun N-terminal kinase (JNK), which has previously been shown to simultaneously increase caspase-dependent cell death and reduce mitochondrial respiration in other mammalian cell lines. We found that caffeine promoted a dose-dependent increase in cell death in multinucleated myotubes but did not in mononucleated myoblasts. The addition of 10 μM Z-DEVD-FMK, a specific inhibitor of executioner caspases, completely inhibited caffeine-dependent cell death. Further, the addition of 400 μM dantrolene, a specific ryanodine receptor (RYR) inhibitor, prevented the caffeine-dependent increase in cell death and the reduction in basal and maximal OCR. We also discovered that caffeine treatment significantly increased the phosphorylation of JNK and that the addition of 30 μM SP600125 (JNKi), a specific JNK inhibitor, partially attenuated caffeine-induced cell death without preventing the caffeine-dependent reduction in basal and maximal OCR. Our results suggest that JNK partially mediates the increase in caspase-dependent cell death but does not contribute to reduced mitochondrial respiration in caffeine-treated skeletal muscle cells. We conclude that caffeine increased cell death and reduced mitochondrial respiration in a calcium-dependent manner by activating the RYR and promoting reticular calcium release.
Collapse
Affiliation(s)
- R M Downs
- Division of Natural Sciences and Engineering, University of South Carolina Upstate, Spartanburg, SC, USA
| | - M A Hughes
- Division of Natural Sciences and Engineering, University of South Carolina Upstate, Spartanburg, SC, USA
| | - S T Kinsey
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - M C Johnson
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - B L Baumgarner
- Division of Natural Sciences and Engineering, University of South Carolina Upstate, Spartanburg, SC, USA.
| |
Collapse
|