1
|
Serneels PJ, De Schutter JD, De Groef L, Moons L, Bergmans S. Oligodendroglial heterogeneity in health, disease, and recovery: deeper insights into myelin dynamics. Neural Regen Res 2025; 20:3179-3192. [PMID: 39665821 PMCID: PMC11881716 DOI: 10.4103/nrr.nrr-d-24-00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 12/13/2024] Open
Abstract
Decades of research asserted that the oligodendroglial lineage comprises two cell types: oligodendrocyte precursor cells and oligodendrocytes. However, recent studies employing single-cell RNA sequencing techniques have uncovered novel cell states, prompting a revision of the existing terminology. Going forward, the oligodendroglial lineage should be delineated into five distinct cell states: oligodendrocyte precursor cells, committed oligodendrocyte precursor cells, newly formed oligodendrocytes, myelin-forming oligodendrocytes, and mature oligodendrocytes. This new classification system enables a deeper understanding of the oligodendroglia in both physiological and pathological contexts. Adopting this uniform terminology will facilitate comparison and integration of data across studies. This, including the consolidation of findings from various demyelinating models, is essential to better understand the pathogenesis of demyelinating diseases. Additionally, comparing injury models across species with varying regenerative capacities can provide insights that may lead to new therapeutic strategies to overcome remyelination failure. Thus, by standardizing terminology and synthesizing data from diverse studies across different animal models, we can enhance our understanding of myelin pathology in central nervous system disorders such as multiple sclerosis, Alzheimer's disease, and amyotrophic lateral sclerosis, all of which involve oligodendroglial and myelin dysfunction.
Collapse
Affiliation(s)
- Pieter-Jan Serneels
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| | - Julie D. De Schutter
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| | - Lies De Groef
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Cellular Communication & Neurodegeneration Research Group, Leuven, Belgium
| | - Lieve Moons
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| | - Steven Bergmans
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| |
Collapse
|
2
|
Huang Q, Tang J, Xiang Y, Shang X, Li K, Chen L, Hu J, Li H, Pi Y, Yang H, Zhang H, Tan H, Xiyang Y, Jin H, Li X, Chen M, Mao R, Wang Q. 4-Benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione rescues oligodendrocytes ferroptosis leading to myelin loss and ameliorates neuronal injury facilitating memory in neonatal hypoxic-ischemic brain damage. Exp Neurol 2025; 390:115262. [PMID: 40246011 DOI: 10.1016/j.expneurol.2025.115262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/08/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
Neonatal brain hypoxia-ischemia (HI) is proved to cause white matter injury (WMI), which resulted in behavioral disturbance. Myelin formed by oligodendrocytes vulnerable to hypoxia-ischemia (HI), regulating motor and cognitive function, is easily damaged by HI causing myelin loss. 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8) has a potential rescue role in neuronal death post HI. Studies reported that neuronal ferroptosis could be induced by HI and linked to behavioral abnormalities. However, the effect of TDZD-8 on WMI and its involvement in memory recovery remains unclear. In this study, our HIBD model showed impaired memory function caused by neuronal injury and myelin loss. TDZD-8 effectively reversed this pathology. Underlying mechanistic exploration implied that TDZD-8 ameliorating myelin loss via ferroptosis pathway was involved in the process of TDZD-8 treating neonatal HIBD. In conclusion, our data demonstrated that combined effect of white matter repairment and neuronal protection achieved the therapeutic role of TDZD-8 in neonatal HIBD, and suggested that white matter repairment also could be a considerable clinical therapy for neonatal HIBD.
Collapse
Affiliation(s)
- Qiyi Huang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Jiahang Tang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - You Xiang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Xinying Shang
- Department of Emergency Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming 650500, China
| | - Kunlin Li
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Lijia Chen
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Junnan Hu
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Han Li
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Yanxiong Pi
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Haiyan Yang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Huijia Zhang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Heng Tan
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Yanbin Xiyang
- Institution of Neuroscience, Kunming Medical University, Kunming 650500, China
| | - Huiyan Jin
- Department of Functional Experiment, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Xia Li
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Manjun Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650500, China
| | - Rongrong Mao
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China.
| | - Qian Wang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China.
| |
Collapse
|
3
|
Duncan ID, Vivian JA, August BK, Keuler NS, Komro A, Radecki D, Kiland JA, Gandhi R, Reilly M, Cameron S, Rylander H, Pritchard J, Ver Hoeve JN. Promotion of remyelination by a thyromimetic drug leading to functional recovery. Exp Neurol 2025; 389:115227. [PMID: 40120662 DOI: 10.1016/j.expneurol.2025.115227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Promotion of remyelination has become a critical therapeutic approach in the treatment of demyelinating disorders including multiple sclerosis (MS), both to restore function and protect intact axons against future degeneration. Thyroid hormone receptor agonist mediated signaling is critical for the maturation of oligodendrocytes (Ols) from oligodendrocyte precursor cells (OPCs) and may be a rational target for drug development in the treatment of MS. Therefore, we tested the potential of a thyromimetic drug pro-drug, LL-341070, to promote remyelination and neurologic recovery in a unique large animal model in which there is extensive demyelination throughout the CNS that results from the prolonged feeding of irradiated food. In four out of eight cats fed the irradiated diet that had developed significant neurologic dysfunction, daily treatment with LL-341070 led to clinical improvement or complete recovery of baseline function. Extensive evidence of remyelination was observed throughout the brain, spinal cord and in the optic nerve in these four animals when compared with non- treated animals. These results provide support for thyroid hormone receptor agonism as a potential novel target to promote remyelination and clinical outcomes in patients with MS.
Collapse
Affiliation(s)
- Ian D Duncan
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Jeffrey A Vivian
- Autobahn Therapeutics Inc, 9880 Campus Point Drive, San Diego, CA, United States of America
| | - Benjamin K August
- Electron Microscopy Facility, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Nicholas S Keuler
- Department of Statistics, College of Letters and Science, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Abigail Komro
- Electron Microscopy Facility, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Daniel Radecki
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Julie A Kiland
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Rohan Gandhi
- Autobahn Therapeutics Inc, 9880 Campus Point Drive, San Diego, CA, United States of America
| | - Madelyn Reilly
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Starr Cameron
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Helena Rylander
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Jessica Pritchard
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - James N Ver Hoeve
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, United States of America.
| |
Collapse
|
4
|
Ramesh V, Tsoukala E, Kougianou I, Kozic Z, Burr K, Viswanath B, Hampton D, Story D, Reddy BK, Pal R, Dando O, Kind PC, Chattarji S, Selvaraj BT, Chandran S, Zoupi L. The Fragile X Messenger Ribonucleoprotein 1 Regulates the Morphology and Maturation of Human and Rat Oligodendrocytes. Glia 2025; 73:1203-1220. [PMID: 39928301 PMCID: PMC12012330 DOI: 10.1002/glia.24680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
The Fragile X Messenger Ribonucleoprotein (FMRP) is an RNA binding protein that regulates the translation of multiple mRNAs and is expressed by neurons and glia in the mammalian brain. Loss of FMRP leads to fragile X syndrome (FXS), a common inherited form of intellectual disability and autism. While most research has been focusing on the neuronal contribution to FXS pathophysiology, the role of glia, particularly oligodendrocytes, is largely unknown. FXS individuals are characterized by white matter changes, which imply impairments in oligodendrocyte differentiation and myelination. We hypothesized that FMRP regulates oligodendrocyte maturation and myelination during postnatal development. Using a combination of human pluripotent stem cell-derived oligodendrocytes and an Fmr1 knockout rat model, we studied the role of FMRP on mammalian oligodendrocyte development. We found that the loss of FMRP leads to shared defects in oligodendrocyte morphology in both rat and human systems in vitro, which persist in the presence of FMRP-expressing axons in chimeric engraftment models. Our findings point to species-conserved, cell-autonomous defects during oligodendrocyte maturation in FXS.
Collapse
|
5
|
Han B, Bao MY, Sun QQ, Wang RN, Deng X, Xing K, Yu FL, Zhang Y, Li YB, Li XQ, Chai NN, Ma GX, Yang YN, Tian MY, Zhang Q, Li X, Zhang Y. Nuclear receptor PPARγ targets GPNMB to promote oligodendrocyte development and remyelination. Brain 2025; 148:1801-1816. [PMID: 39756479 DOI: 10.1093/brain/awae378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/11/2024] [Accepted: 10/24/2024] [Indexed: 01/07/2025] Open
Abstract
Myelin injury occurs in brain ageing and in several neurological diseases. Failure of spontaneous remyelination is attributable to insufficient differentiation of oligodendrocyte precursor cells (OPCs) into mature myelin-forming oligodendrocytes in CNS demyelinated lesions. Emerging evidence suggests that peroxisome proliferator-activated receptor γ (PPARγ) is the master gatekeeper of CNS injury and repair and plays an important regulatory role in various neurodegenerative diseases. Although studies demonstrate positive effects of PPARγ in oligodendrocyte ontogeny in vitro, the cell-intrinsic role of PPARγ and the molecular mechanisms involved in the processes of OPC development and CNS remyelination in vivo are poorly understood. Here, we identify PPARγ as an enriched transcription factor in the dysfunctional OPCs accumulated in CNS demyelinated lesions. Its expression increases during OPC differentiation and myelination and is closely related to the process of CNS demyelination/remyelination. Administration of pharmacological agonists of PPARγ not only promotes OPC differentiation and CNS myelination, but also causes a significant increase in remyelination in both cuprizone- and lysophosphatidylcholine-induced demyelination models. In contrast, the attenuation of PPARγ function, either through the specific knockout of PPARγ in oligodendrocytes in vivo or through its inhibition in vitro, leads to decreased OPC maturation, hindered myelin generation and reduced therapeutic efficacy of PPARγ agonists. At a mechanistic level, PPARγ induces myelin repair by directly targeting glycoprotein non-metastatic melanoma protein B (GPNMB), a novel regulator that drives OPCs to differentiate into oligodendrocytes, promotes myelinogenesis in the developing CNS of postnatal mice and enhances remyelination in mice with lysophosphatidylcholine-induced demyelination. In conclusion, our evidence reveals that PPARγ is a positive regulator of endogenous OPC differentiation and CNS myelination/remyelination and suggests that PPARγ and/or its downstream sensor (GPNMB) might be a candidate pharmacological target for regenerative therapy in the CNS.
Collapse
Affiliation(s)
- Bing Han
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Ming-Yue Bao
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Qing-Qing Sun
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Rui-Ning Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xin Deng
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Kun Xing
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Feng-Lin Yu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yue-Bo Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xiu-Qing Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Na-Nan Chai
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Gai-Xin Ma
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Ya-Na Yang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Meng-Yuan Tian
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Qian Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xing Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yuan Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
6
|
Kovaleva T, Gainullin M, Mukhina I, Pershin V, Matskova L. Cofilin(s) and Mitochondria: Function Beyond Actin Dynamics. Int J Mol Sci 2025; 26:4094. [PMID: 40362336 PMCID: PMC12071280 DOI: 10.3390/ijms26094094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/18/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
ADF/cofilins form a family of small, widely expressed actin-binding proteins, regulating actin dynamics in various cellular and physiological processes in all eukaryotes, from yeasts to animals. Changes in the expression of the ADF/cofilin family proteins have been demonstrated under various pathological conditions. The well-established role of cofilin in migration, invasion, epithelial-mesenchymal transition, apoptosis, resistance to radiotherapy and chemotherapy, immune escape, and transcriptional dysregulation in malignant tumors is primarily attributed to its actin-modifying activity. Moreover, drugs targeting this function of cofilin have been developed for cancer treatment. However, its multilevel regulation, highly diverse effects across various pathological conditions, and conflicting data on the functional consequences of altered cofilin expression have prompted us to explore additional roles of cofilin-beyond actin modulation-particularly its involvement in lipid metabolism and mitochondrial homeostasis. Here, we review recent data on the expression of ADF/cofilin family proteins in various pathologies, account for the mutations and post-translational modifications of these proteins and their functional consequences, dwell on the role of K63-type ubiquitination of cofilin for its involvement in lipid metabolism and mitochondrial homeostasis, more specifically, a process of mitochondrial division or mitofission, point out conflicting data in cofilin research, and describe prospects for future studies of cofilin functions.
Collapse
Affiliation(s)
- Tatiana Kovaleva
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin Sq., 603005 Nizhny Novgorod, Russia; (I.M.); (V.P.)
| | | | - Irina Mukhina
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin Sq., 603005 Nizhny Novgorod, Russia; (I.M.); (V.P.)
| | - Vladimir Pershin
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin Sq., 603005 Nizhny Novgorod, Russia; (I.M.); (V.P.)
| | - Liudmila Matskova
- Microbiology and Tumor Biology Center (MTC), Karolinska Institutet, Solnavägen 9, Q8C, 17165 Stockholm, Sweden
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine (IMBB FRC FTM), 2/12, Timakova Street, 630117 Novosibirsk, Russia
| |
Collapse
|
7
|
Shao Q, Chen S, Xu T, Shi Y, Sun Z, Wang Q, Wang X, Cheng F. Structure of myelin in the central nervous system and another possible driving force for its formation- myelin compaction. J Zhejiang Univ Sci B 2025; 26:303-316. [PMID: 40274381 PMCID: PMC12021537 DOI: 10.1631/jzus.b2300776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/22/2024] [Indexed: 04/26/2025]
Abstract
Myelin formation is considered the last true "invention" in the evolution of vertebrate nervous system cell structure. The rapid jumping pulse propagation achieved by myelin enables the high conduction speed that is the basis of human movement, sensation, and cognitive function. As a key structure in the brain, white matter is the gathering place of myelin. However, with age, white matter-associated functions become abnormal and a large number of myelin sheaths undergo degenerative changes, causing serious neurological and cognitive disorders. Despite the extensive time and effort invested in exploring myelination and its functions, numerous unresolved issues and challenges persist. In-depth exploration of the functional role of myelin may bring new inspiration for the treatment of central nervous system (CNS) diseases and even mental illnesses. In this study, we conducted a comprehensive examination of the structure and key molecules of the myelin in the CNS, delving into its formation process. Specifically, we propose a new hypothesis regarding the source of power for myelin expansion in which membrane compaction may serve as a driving force for myelin extension. The implications of this hypothesis could provide valuable insights into the pathophysiology of diseases involving myelin malfunction and open new avenues for therapeutic intervention in myelin-related disorders.
Collapse
Affiliation(s)
- Qi Shao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Simin Chen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tian Xu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yuyu Shi
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zijin Sun
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qingguo Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xueqian Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Fafeng Cheng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China. ,
| |
Collapse
|
8
|
Theisen EK, Rivas-Serna IM, Lee RJ, Jay TR, Kunduri G, Nguyen TT, Mazurak V, Clandinin MT, Clandinin TR, Vaughen JP. Glia phagocytose neuronal sphingolipids to infiltrate developing synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.14.648777. [PMID: 40313927 PMCID: PMC12045345 DOI: 10.1101/2025.04.14.648777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
The complex morphologies of mature neurons and glia emerge through profound rearrangements of cell membranes during development. Despite being integral components of these membranes, it is unclear whether lipids might actively sculpt these morphogenic processes. By analyzing lipid levels in the developing fruit fly brain, we discover dramatic increases in specific sphingolipids coinciding with neural circuit establishment. Disrupting this sphingolipid bolus via genetic perturbations of sphingolipid biosynthesis and catabolism leads to impaired glial autophagy. Remarkably, glia can obtain sphingolipid precursors needed for autophagy by phagocytosing neurons. These precursors are then converted into specific long-chain ceramide phosphoethanolamines (CPEs), invertebrate analogs of sphingomyelin. These lipids are essential for glia to arborize and infiltrate the brain, a critical step in circuit maturation that when disrupted leads to reduced synapse numbers. Taken together, our results demonstrate how spatiotemporal tuning of sphingolipid metabolism during development plays an instructive role in programming brain architecture. Highlights Brain sphingolipids (SLs) remodel to very long-chain species during circuit maturation Glial autophagy requires de novo SL biosynthesis coordinated across neurons and glia Glia evade a biosynthetic blockade by phagolysosomal salvage of neuronal SLsCeramide Phosphoethanolamine is critical for glial infiltration and synapse density.
Collapse
|
9
|
Zou Y, Jin Y, Yang Y, Zhang L, Feng Y, Long Y, Xu Z, He Y, Zheng W, Wang S, He Y, Li J, Li H, Luo Z, Hu C, Xiao L. Effect of Cytoskeletal Linker Protein GAS2L1 on Oligodendrocyte and Myelin Development. Glia 2025; 73:840-856. [PMID: 39743758 DOI: 10.1002/glia.24658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025]
Abstract
Oligodendrocytes (OLs), the myelin-forming cells of the central nervous system (CNS), develop from OL precursor cells (OPCs) through a complex process involving significant morphological changes that are critically dependent on the dynamic interactions between cytoskeletal networks. Growth arrest-specific 2-like protein 1 (GAS2L1) is a cytoskeletal linker protein that mediates the cross-talk between actin filaments and microtubules. However, its role in OL and myelin development remains unknown. Here, we report that GAS2L1 is expressed in both OPCs and mature OLs, and that overexpression or knockdown of Gas2l1 in cultured OPCs in vitro impaired or enhanced their differentiation, respectively, while both inhibited their proliferation. We generated a Gas2l1 fl/fl mouse line and found that mice with conditional knockout of Gas2l1 in OL lineage cells (Olig1-Cre;Gas2l1 fl/fl , cKO) showed an increased number of mature OLs and enhanced myelination, as well as a reduction in the branching complexity of OPCs. In addition, an alternative mouse line with postnatally induced Gas2l1 ablation specifically in OPCs (Pdfgra-CreER T2 ;Gas2l1 fl/fl , iKO) recapitulated the acceleration of OL and myelin development as well as the inhibition of OPC process branching. Furthermore, EdU tracking in Gas2l1 iKO mice in vivo and in their OPC cultures in vitro showed both a reduction in OPC proliferation and an increase in OL maturation. Finally, cultured OPCs from iKO mice showed an increase in filopodia extension. Taken together, our results demonstrate an effect of GAS2L1 on the regulation of OL/myelin development and may provide a novel potential therapeutic target for various diseases involving OL/myelin pathology.
Collapse
Affiliation(s)
- Yanping Zou
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Yili Jin
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Yuqian Yang
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Liuning Zhang
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Yuanyu Feng
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Yu Long
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - ZhengTao Xu
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Yuehua He
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Wei Zheng
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Shuming Wang
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Yongxiang He
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Jiong Li
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Zhigang Luo
- Department of Experimental Medicine, The Third People's Hospital of Sichuan Province, Chengdu, Sichuan, China
| | - Chun Hu
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Lin Xiao
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| |
Collapse
|
10
|
Ozarkar SS, Patel RKR, Vulli T, Friar CA, Burette AC, Philpot BD. Regional analysis of myelin basic protein across postnatal brain development of C57BL/6J mice. Front Neuroanat 2025; 19:1535745. [PMID: 40114847 PMCID: PMC11922784 DOI: 10.3389/fnana.2025.1535745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Abstract
Healthy brain development hinges on proper myelination, with disruption contributing to a wide array of neurological disorders. Immunohistochemical analysis of myelin basic protein (MBP) is a fundamental technique for investigating myelination and related disorders. However, despite decades of MBP research, detailed accounts of normal MBP progression in the developing mouse brain have been lacking. This study aims to address this gap by providing a detailed spatiotemporal account of MBP distribution across 13 developmental ages from postnatal day 2 to 60. We used an optimized immunohistochemistry protocol to overcome the challenges of myelin's unique lipid-rich composition, enabling more consistent staining across diverse brain structures and developmental stages, offering a robust baseline for typical myelination patterns, and enabling comparisons with pathological models. To support and potentially accelerate research into myelination disorders, we have made >1,400 high-resolution micrographs accessible online under the Creative Commons license.
Collapse
Affiliation(s)
- Siddhi S. Ozarkar
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ridthi K. R. Patel
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Tasmai Vulli
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Carlee A. Friar
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alain C. Burette
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin D. Philpot
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
11
|
Cipriani V, Vestito L, Magavern EF, Jacobsen JOB, Arno G, Behr ER, Benson KA, Bertoli M, Bockenhauer D, Bowl MR, Burley K, Chan LF, Chinnery P, Conlon PJ, Costa MA, Davidson AE, Dawson SJ, Elhassan EAE, Flanagan SE, Futema M, Gale DP, García-Ruiz S, Corcia CG, Griffin HR, Hambleton S, Hicks AR, Houlden H, Houlston RS, Howles SA, Kleta R, Lekkerkerker I, Lin S, Liskova P, Mitchison HH, Morsy H, Mumford AD, Newman WG, Neatu R, O'Toole EA, Ong ACM, Pagnamenta AT, Rahman S, Rajan N, Robinson PN, Ryten M, Sadeghi-Alavijeh O, Sayer JA, Shovlin CL, Taylor JC, Teltsh O, Tomlinson I, Tucci A, Turnbull C, van Eerde AM, Ware JS, Watts LM, Webster AR, Westbury SK, Zheng SL, Caulfield M, Smedley D. Rare disease gene association discovery in the 100,000 Genomes Project. Nature 2025:10.1038/s41586-025-08623-w. [PMID: 40011789 DOI: 10.1038/s41586-025-08623-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/10/2025] [Indexed: 02/28/2025]
Abstract
Up to 80% of rare disease patients remain undiagnosed after genomic sequencing1, with many probably involving pathogenic variants in yet to be discovered disease-gene associations. To search for such associations, we developed a rare variant gene burden analytical framework for Mendelian diseases, and applied it to protein-coding variants from whole-genome sequencing of 34,851 cases and their family members recruited to the 100,000 Genomes Project2. A total of 141 new associations were identified, including five for which independent disease-gene evidence was recently published. Following in silico triaging and clinical expert review, 69 associations were prioritized, of which 30 could be linked to existing experimental evidence. The five associations with strongest overall genetic and experimental evidence were monogenic diabetes with the known β cell regulator3,4 UNC13A, schizophrenia with GPR17, epilepsy with RBFOX3, Charcot-Marie-Tooth disease with ARPC3 and anterior segment ocular abnormalities with POMK. Further confirmation of these and other associations could lead to numerous diagnoses, highlighting the clinical impact of large-scale statistical approaches to rare disease-gene association discovery.
Collapse
Affiliation(s)
- Valentina Cipriani
- Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK.
- UCL Institute of Ophthalmology, University College London, London, UK.
- UCL Genetics Institute, University College London, London, UK.
| | - Letizia Vestito
- Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Emma F Magavern
- Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Julius O B Jacobsen
- Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Gavin Arno
- UCL Institute of Ophthalmology, University College London, London, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital, London, UK
| | - Elijah R Behr
- Cardiology Section, Cardiovascular and Genomics Research Institute, School of Health & Medical Sciences, City St George's, University of London, London, UK
- Cardiology Department, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Katherine A Benson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Republic of Ireland
| | - Marta Bertoli
- Northern Genetics Centre, The Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Detlef Bockenhauer
- Paediatric Nephrology, University Hospital and Catholic University Leuven, Leuven, Belgium
- Department of Renal Medicine, University College London, London, UK
| | - Michael R Bowl
- UCL Ear Institute, University College London, London, UK
| | - Kate Burley
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Li F Chan
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Patrick Chinnery
- Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Peter J Conlon
- Department of Medicine, Royal College of Surgeons in Ireland and Department of Nephrology, Beaumont Hospital, Dublin, Republic of Ireland
| | - Marcos A Costa
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Alice E Davidson
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Sally J Dawson
- UCL Ear Institute, University College London, London, UK
| | - Elhussein A E Elhassan
- Department of Medicine, Royal College of Surgeons in Ireland and Department of Nephrology, Beaumont Hospital, Dublin, Republic of Ireland
| | - Sarah E Flanagan
- Department of Clinical and Biomedical Science, University of Exeter Medical School, Exeter, UK
| | - Marta Futema
- Cardiology Section, Cardiovascular and Genomics Research Institute, School of Health & Medical Sciences, City St George's, University of London, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Daniel P Gale
- Department of Renal Medicine, University College London, London, UK
| | - Sonia García-Ruiz
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Cecilia Gonzalez Corcia
- Pediatric Cardiology, CHU Sainte Justine, University of Montreal, Montreal, Quebec, Canada
- Mc Gill University, Montreal, Quebec, Canada
| | - Helen R Griffin
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Sophie Hambleton
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
- Great North Children's Hospital, Newcastle upon Tyne, UK
| | - Amy R Hicks
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Henry Houlden
- UCL Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, London, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Sarah A Howles
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Robert Kleta
- Department of Renal Medicine, University College London, London, UK
| | | | - Siying Lin
- UCL Institute of Ophthalmology, University College London, London, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital, London, UK
| | - Petra Liskova
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Hannah H Mitchison
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Heba Morsy
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, UK
| | - Andrew D Mumford
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - William G Newman
- Division of Evolution, Infection and Genomics, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Ruxandra Neatu
- Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, UK
| | - Edel A O'Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, QMUL, London, UK
| | - Albert C M Ong
- Kidney Genetics Group, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- Sheffield Kidney Institute, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Alistair T Pagnamenta
- Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Shamima Rahman
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Neil Rajan
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
- Department of Dermatology and NIHR Biomedical Research Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Peter N Robinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mina Ryten
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- NIHR GOSH Biomedical Research Centre, Great Ormond Street Institute of Child Health, London, UK
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | | | - John A Sayer
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Renal Services, The Newcastle upon Tyne NHS Foundation Trust Hospitals, Newcastle upon Tyne, UK
- NIHR Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Claire L Shovlin
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jenny C Taylor
- Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Omri Teltsh
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Republic of Ireland
| | - Ian Tomlinson
- Department of Oncology, University of Oxford, Oxford, UK
| | - Arianna Tucci
- Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | | | - James S Ware
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
| | - Laura M Watts
- Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Genomic Medicine, Oxford University Foundation Trust, Oxford, UK
| | - Andrew R Webster
- UCL Institute of Ophthalmology, University College London, London, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital, London, UK
| | | | - Sean L Zheng
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
| | - Mark Caulfield
- Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Damian Smedley
- Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
12
|
Yamada M, Sasaki B, Yamada N, Hayashi C, Tsumoto K, de Vega S, Suzuki N. The pericellular function of Fibulin-7 in the adhesion of oligodendrocyte lineage cells to neuronal axons during CNS myelination. Biochem Biophys Res Commun 2025; 748:151271. [PMID: 39809135 DOI: 10.1016/j.bbrc.2024.151271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Myelin is an electrical insulator that enables saltatory nerve conduction and is essential for proper functioning of the central nervous system (CNS). It is formed by oligodendrocytes (OLs) in the CNS, and during OL development various molecules, including extracellular matrix (ECM) proteins, regulate OL differentiation and myelination; however, the role of ECM proteins in these processes is not well understood. Our present work is centered on the analyses of the expression and function of fibulin-7 (Fbln7), an ECM protein of the fibulin family, in OL differentiation. In the expression analysis of Fbln7 in the CNS, we found that it was expressed at early postnatal stage and localized in the processes of OL precursor cells (OPCs), in the inner region of myelin, and in axons. The functional analysis using recombinant Fbln7 protein (rFbln7) revealed that rFbln7 promoted OPC attachment activity via β1 integrin and heparan sulfate receptors. Further, rFbln7 induced the adhesion to neurites and the differentiation of OLs. Altogether, our results show that Fbln7 promotes the adhesion between OLs and axons and OL differentiation.
Collapse
Affiliation(s)
- Momona Yamada
- Department of Molecular and Cellular Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Binri Sasaki
- Department of Clinical Bioanalysis and Molecular Biology, Graduate School of Medical and Dental Sciences, Institute Science of Tokyo/TMDU, Tokyo, Japan
| | - Nanako Yamada
- Department of Clinical Bioanalysis and Molecular Biology, Graduate School of Medical and Dental Sciences, Institute Science of Tokyo/TMDU, Tokyo, Japan
| | - Chikako Hayashi
- Department of Molecular and Cellular Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kouhei Tsumoto
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Susana de Vega
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Nobuharu Suzuki
- Department of Molecular and Cellular Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Clinical Bioanalysis and Molecular Biology, Graduate School of Medical and Dental Sciences, Institute Science of Tokyo/TMDU, Tokyo, Japan.
| |
Collapse
|
13
|
Vale-Silva R, de Paes de Faria J, Seixas AI, Brakebusch C, Franklin RJM, Relvas JB. RhoA regulates oligodendrocyte differentiation and myelination by orchestrating cortical and membrane tension. Glia 2025; 73:381-398. [PMID: 39495111 DOI: 10.1002/glia.24640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Timely differentiation and myelin formation by oligodendrocytes are essential for the physiological functioning of the central nervous system (CNS). While the Rho GTPase RhoA has been hinted as a negative regulator of myelin sheath formation, the precise in vivo mechanisms have remained elusive. Here we show that RhoA controls the timing and progression of myelination by oligodendrocytes through a fine-tuned balance between cortical tension, membrane tension and cell shape. Using a conditional mouse model, we observe that Rhoa ablation results in the acceleration of myelination driven by hastened differentiation and facilitated through membrane expansion induced by changes in MLCII activity and in F-actin redistribution and turnover within the cell. These findings reveal RhoA as a central molecular integrator of alterations in actin cytoskeleton, actomyosin contractility and membrane tension underlying precise morphogenesis of oligodendrocytes and normal myelination of the CNS.
Collapse
Affiliation(s)
- Raquel Vale-Silva
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Joana de Paes de Faria
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Ana Isabel Seixas
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Cord Brakebusch
- Biotech Research and Innovation Centre (BRIC), Københavns Biocenter, Copenhagen, Denmark
| | | | - João B Relvas
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
14
|
Kim HG, Berdasco C, Nairn AC, Kim Y. The WAVE complex in developmental and adulthood brain disorders. Exp Mol Med 2025; 57:13-29. [PMID: 39774290 PMCID: PMC11799376 DOI: 10.1038/s12276-024-01386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/09/2024] [Accepted: 10/31/2024] [Indexed: 01/11/2025] Open
Abstract
Actin polymerization and depolymerization are fundamental cellular processes required not only for the embryonic and postnatal development of the brain but also for the maintenance of neuronal plasticity and survival in the adult and aging brain. The orchestrated organization of actin filaments is controlled by various actin regulatory proteins. Wiskott‒Aldrich syndrome protein-family verprolin-homologous protein (WAVE) members are key activators of ARP2/3 complex-mediated actin polymerization. WAVE proteins exist as heteropentameric complexes together with regulatory proteins, including CYFIP, NCKAP, ABI and BRK1. The activity of the WAVE complex is tightly regulated by extracellular cues and intracellular signaling to execute its roles in specific intracellular events in brain cells. Notably, dysregulation of the WAVE complex and WAVE complex-mediated cellular processes confers vulnerability to a variety of brain disorders. De novo mutations in WAVE genes and other components of the WAVE complex have been identified in patients with developmental disorders such as intellectual disability, epileptic seizures, schizophrenia, and/or autism spectrum disorder. In addition, alterations in the WAVE complex are implicated in the pathophysiology of Alzheimer's disease and Parkinson's disease, as well as in behavioral adaptations to psychostimulants or maladaptive feeding.
Collapse
Affiliation(s)
- Hyung-Goo Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Clara Berdasco
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, CT, USA
| | - Yong Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA.
- Brain Health Institute, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
15
|
Lan TH, Ambiel N, Lee YT, Nonomura T, Zhou Y, Zuchero JB. A Chemogenetic Toolkit for Inducible, Cell Type-Specific Actin Disassembly. SMALL METHODS 2025:e2401522. [PMID: 39891215 DOI: 10.1002/smtd.202401522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/04/2024] [Indexed: 02/03/2025]
Abstract
The actin cytoskeleton and its nanoscale organization are central to all eukaryotic cells-powering diverse cellular functions including morphology, motility, and cell division-and is dysregulated in multiple diseases. Historically studied largely with purified proteins or in isolated cells, tools to study cell type-specific roles of actin in multicellular contexts are greatly needed. DeActs are recently created, first-in-class genetic tools for perturbing actin nanostructures and dynamics in specific cell types across diverse eukaryotic model organisms. Here, ChiActs are introduced, the next generation of actin-perturbing genetic tools that can be rapidly activated in cells and optogenetically targeted to distinct subcellular locations using light. ChiActs are composed of split halves of DeAct-SpvB, whose potent actin disassembly-promoting activity is restored by chemical-induced dimerization or allosteric switching. It is shown that ChiActs function to rapidly induce actin disassembly in several model cell types and are able to perturb actin-dependent nano-assembly and cellular functions, including inhibiting lamellipodial protrusions and membrane ruffling, remodeling mitochondrial morphology, and reorganizing chromatin by locally constraining actin disassembly to specific subcellular compartments. ChiActs thus expand the toolbox of genetically-encoded tools for perturbing actin in living cells, unlocking studies of the many roles of actin nano-assembly and dynamics in complex multicellular systems.
Collapse
Affiliation(s)
- Tien-Hung Lan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77401, USA
| | - Nicholas Ambiel
- Department of Neurosurgery, Stanford University, Palo Alto, CA, 94304, USA
| | - Yi-Tsang Lee
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77401, USA
| | - Tatsuki Nonomura
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77401, USA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77401, USA
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, 77401, USA
| | - J Bradley Zuchero
- Department of Neurosurgery, Stanford University, Palo Alto, CA, 94304, USA
| |
Collapse
|
16
|
Altunay ZM, Biswas J, Cheung HW, Pijewski RS, Papile LE, Akinlaja YO, Tang A, Kresic LC, Schouw AD, Ugrak MV, Caro K, Peña Palomino PA, Ressl S, Nishiyama A, Crocker SJ, Martinelli DC. C1ql1 expression in oligodendrocyte progenitor cells promotes oligodendrocyte differentiation. FEBS J 2025; 292:52-74. [PMID: 39257292 PMCID: PMC11706710 DOI: 10.1111/febs.17256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024]
Abstract
Myelinating oligodendrocytes arise from the stepwise differentiation of oligodendrocyte progenitor cells (OPCs). Approximately 5% of all adult brain cells are OPCs. Why would a mature brain need such a large number of OPCs? New myelination is possibly required for higher-order functions such as cognition and learning. Additionally, this pool of OPCs represents a source of new oligodendrocytes to replace those lost during injury, inflammation, or in diseases such as multiple sclerosis (MS). How OPCs are instructed to differentiate into oligodendrocytes is poorly understood, and for reasons presently unclear, resident pools of OPCs are progressively less utilized in MS. The complement component 1, q subcomponent-like (C1QL) protein family has been studied for their functions at neuron-neuron synapses, but we show that OPCs express C1ql1. We created OPC-specific conditional knockout mice and show that C1QL1 deficiency reduces the differentiation of OPCs into oligodendrocytes and reduces myelin production during both development and recovery from cuprizone-induced demyelination. In vivo over-expression of C1QL1 causes the opposite phenotype: increased oligodendrocyte density and myelination during recovery from demyelination. We further used primary cultured OPCs to show that C1QL1 levels can bidirectionally regulate the extent of OPC differentiation in vitro. Our results suggest that C1QL1 may initiate a previously unrecognized signaling pathway to promote differentiation of OPCs into oligodendrocytes. This study has relevance for possible novel therapies for demyelinating diseases and may illuminate a previously undescribed mechanism to regulate the function of myelination in cognition and learning.
Collapse
Affiliation(s)
- Zeynep M. Altunay
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Joyshree Biswas
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Hiu W. Cheung
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Robert S. Pijewski
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
- Department of Biology, Anna Maria College, Paxton, MA, USA
| | - Lucille E. Papile
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Yetunde O. Akinlaja
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Andrew Tang
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Lyndsay C. Kresic
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Alexander D. Schouw
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Maksym V. Ugrak
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Keaven Caro
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | | | - Susanne Ressl
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
- The Connecticut Institute for the Brain and Cognitive Sciences (IBACS), Storrs, CT, USA
| | - Stephen J. Crocker
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
- The Connecticut Institute for the Brain and Cognitive Sciences (IBACS), Storrs, CT, USA
| | - David C. Martinelli
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
- The Connecticut Institute for the Brain and Cognitive Sciences (IBACS), Storrs, CT, USA
| |
Collapse
|
17
|
Siems SB, Gargareta V, Schadt LC, Daguano Gastaldi V, Jung RB, Piepkorn L, Casaccia P, Sun T, Jahn O, Werner HB. Developmental maturation and regional heterogeneity but no sexual dimorphism of the murine CNS myelin proteome. Glia 2025; 73:38-56. [PMID: 39344832 PMCID: PMC11660532 DOI: 10.1002/glia.24614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024]
Abstract
The molecules that constitute myelin are critical for the integrity of axon/myelin-units and thus speed and precision of impulse propagation. In the CNS, the protein composition of oligodendrocyte-derived myelin has evolutionarily diverged and differs from that in the PNS. Here, we hypothesized that the CNS myelin proteome also displays variations within the same species. We thus used quantitative mass spectrometry to compare myelin purified from mouse brains at three developmental timepoints, from brains of male and female mice, and from four CNS regions. We find that most structural myelin proteins are of approximately similar abundance across all tested conditions. However, the abundance of multiple other proteins differs markedly over time, implying that the myelin proteome matures between P18 and P75 and then remains relatively constant until at least 6 months of age. Myelin maturation involves a decrease of cytoskeleton-associated proteins involved in sheath growth and wrapping, along with an increase of all subunits of the septin filament that stabilizes mature myelin, and of multiple other proteins which potentially exert protective functions. Among the latter, quinoid dihydropteridine reductase (QDPR) emerges as a highly specific marker for mature oligodendrocytes and myelin. Conversely, female and male mice display essentially similar myelin proteomes. Across the four CNS regions analyzed, we note that spinal cord myelin exhibits a comparatively high abundance of HCN2-channels, required for particularly long sheaths. These findings show that CNS myelination involves developmental maturation of myelin protein composition, and regional differences, but absence of evidence for sexual dimorphism.
Collapse
Affiliation(s)
- Sophie B. Siems
- Department of NeurogeneticsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Vasiliki‐Ilya Gargareta
- Department of NeurogeneticsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Leonie C. Schadt
- Department of NeurogeneticsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | | | - Ramona B. Jung
- Department of NeurogeneticsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Lars Piepkorn
- Neuroproteomics Group, Department of Molecular NeurobiologyMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Translational Neuroproteomics Group, Department of Psychiatry and PsychotherapyUniversity Medical Center GöttingenGöttingenGermany
| | - Patrizia Casaccia
- Neuroscience Initiative, Advanced Science Research CenterThe City University of New YorkNew YorkNew YorkUSA
| | - Ting Sun
- Department of NeurogeneticsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Olaf Jahn
- Neuroproteomics Group, Department of Molecular NeurobiologyMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Translational Neuroproteomics Group, Department of Psychiatry and PsychotherapyUniversity Medical Center GöttingenGöttingenGermany
| | - Hauke B. Werner
- Department of NeurogeneticsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Faculty for Biology and PsychologyUniversity of GöttingenGöttingenGermany
| |
Collapse
|
18
|
McCaig CD. Electrical Forces Improve Memory in Old Age. Rev Physiol Biochem Pharmacol 2025; 187:453-520. [PMID: 39838022 DOI: 10.1007/978-3-031-68827-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
This penultimate chapter is based on a single paper published in Nature in 2022. I have used it specifically as an exemplar, in this case to show that memory improvement in old age may be regulated by a multiplicity of electrical forces. However, I include it because I believe that one could pick almost any other substantial single paper and show that a completely disparate set of biological mechanisms similarly depend crucially on multiple electrical forces.
Collapse
Affiliation(s)
- Colin D McCaig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|
19
|
Zeng B, Yang H, N.M. P, Venkatesh S, Mathur D, Auluck P, Bennett DA, Marenco S, Haroutunian V, PsychAD Consortium, Voloudakis G, Lee D, Fullard JF, Bendl J, Girdhar K, Hoffman GE, Roussos P. Single-Nucleus Atlas of Cell-Type Specific Genetic Regulation in the Human Brain. RESEARCH SQUARE 2024:rs.3.rs-5368620. [PMID: 39711543 PMCID: PMC11661307 DOI: 10.21203/rs.3.rs-5368620/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Genetic risk variants for common diseases are predominantly located in non-coding regulatory regions and modulate gene expression. Although bulk tissue studies have elucidated shared mechanisms of regulatory and disease-associated genetics, the cellular specificity of these mechanisms remains largely unexplored. This study presents a comprehensive single-nucleus multi-ancestry atlas of genetic regulation of gene expression in the human prefrontal cortex, comprising 5.6 million nuclei from 1,384 donors of diverse ancestries. Through multi-resolution analyses spanning eight major cell classes and 27 subclasses, we identify genetic regulation for 14,258 genes, with 857 showing cell type-specific regulatory effects at the class level and 981 at the subclass level. Colocalization of genetic variants associated with gene regulation and disease traits uncovers novel cell type-specific genes implicated in Alzheimer's disease, schizophrenia, and other disorders, which were not detectable in bulk tissue analyses. Analysis of dynamic genetic regulation at the single nucleus level identifies 2,073 genes with regulatory effects that vary across developmental trajectories, inferred from a broad age range of donors. We also uncover 1,655 genes with trans-regulatory effects, revealing distal regulation of gene expression. This high-resolution atlas provides unprecedented insight into the cell type-specific regulatory architecture of the human brain, and offers novel mechanistic targets for understanding the genetic basis of neuropsychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- Biao Zeng
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hui Yang
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Prashant N.M.
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sanan Venkatesh
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deepika Mathur
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pavan Auluck
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, MD, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Stefano Marenco
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, MD, USA
| | - Vahram Haroutunian
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education and Clinical Center VISN2, James J. Peters VA Medical Center, Bronx, NY, USA
| | | | - Georgios Voloudakis
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education and Clinical Center VISN2, James J. Peters VA Medical Center, Bronx, NY, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donghoon Lee
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F. Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kiran Girdhar
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriel E. Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education and Clinical Center VISN2, James J. Peters VA Medical Center, Bronx, NY, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education and Clinical Center VISN2, James J. Peters VA Medical Center, Bronx, NY, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA
| |
Collapse
|
20
|
Wu J, Kislinger G, Duschek J, Durmaz AD, Wefers B, Feng R, Nalbach K, Wurst W, Behrends C, Schifferer M, Simons M. Nonvesicular lipid transfer drives myelin growth in the central nervous system. Nat Commun 2024; 15:9756. [PMID: 39528474 PMCID: PMC11554831 DOI: 10.1038/s41467-024-53511-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Oligodendrocytes extend numerous cellular processes that wrap multiple times around axons to generate lipid-rich myelin sheaths. Myelin biogenesis requires an enormously productive biosynthetic machinery for generating and delivering these large amounts of newly synthesized lipids. Yet, a complete understanding of this process remains elusive. Utilizing volume electron microscopy, we demonstrate that the oligodendroglial endoplasmic reticulum (ER) is enriched in developing myelin, extending into and making contact with the innermost myelin layer where growth occurs. We explore the possibility of transfer of lipids from the ER to myelin, and find that the glycolipid transfer protein (GLTP), implicated in nonvesicular lipid transport, is highly enriched in the growing myelin sheath. Mice with a specific knockout of Gltp in oligodendrocytes exhibit ER pathology, hypomyelination and a decrease in myelin glycolipid content. In summary, our results demonstrate a role for nonvesicular lipid transport in CNS myelin growth, revealing a cellular pathway in developmental myelination.
Collapse
Affiliation(s)
- Jianping Wu
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
- Graduate School of Systemic Neurosciences, LMU Munich, Munich, Germany
| | - Georg Kislinger
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Jerome Duschek
- Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Ayşe Damla Durmaz
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Benedikt Wefers
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Ruoqing Feng
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
- Graduate School of Systemic Neurosciences, LMU Munich, Munich, Germany
| | - Karsten Nalbach
- Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Developmental Genetics, Helmholtz Center Munich, Neuherberg, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Christian Behrends
- Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Martina Schifferer
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany.
| |
Collapse
|
21
|
Russo M, Zahaf A, Kassoussi A, Sharif A, Faure H, Traiffort E, Ruat M. Sonic Hedgehog Is an Early Oligodendrocyte Marker During Remyelination. Cells 2024; 13:1808. [PMID: 39513915 PMCID: PMC11545011 DOI: 10.3390/cells13211808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Failure of myelin regeneration by oligodendrocytes contributes to progressive decline in many neurological diseases. Here, using in vitro and in vivo rodent models, functional blockade, and mouse brain demyelination, we demonstrate that Sonic hedgehog (Shh) expression in a subset of oligodendrocyte progenitor cells precedes the expression of myelin basic protein (MBP), a major myelin sheath protein. Primary cultures of rodent cortical oligodendrocytes show that Shh mRNA and protein are upregulated during oligodendrocyte maturation before the upregulation of MBP expression. Importantly, almost all MBP-positive cells are Shh positive during differentiation. During remyelination, we identify a rapid induction of Shh mRNA and peptide in oligodendroglial cells present in the demyelinated corpus callosum of mice, including a population of PDGFRα-expressing cells. Shh invalidation by an adeno-associated virus strategy demonstrates that the downregulation of Shh impairs the differentiation of oligodendrocytes in vitro and decreases MBP and myelin proteolipid protein expression in the demyelinated mouse brain at late stages of remyelination. We also report a parallel expression of Shh and MBP in oligodendroglial cells during early post-natal myelination of the mouse brain. Thus, we identify a crucial Shh signal involved in oligodendroglial cell differentiation and remyelination, with potential interest in the design of better-targeted remyelinating therapeutic strategies.
Collapse
Affiliation(s)
- Mariagiovanna Russo
- Paris-Saclay University, CNRS, Neuroscience Paris-Saclay Institute, 91400 Saclay, France (A.K.); (H.F.)
| | - Amina Zahaf
- Paris-Saclay University, INSERM, Diseases and Hormones of the Nervous System-U1195, 94276 Le Kremlin-Bicêtre, France; (A.Z.); (E.T.)
| | - Abdelmoumen Kassoussi
- Paris-Saclay University, CNRS, Neuroscience Paris-Saclay Institute, 91400 Saclay, France (A.K.); (H.F.)
- Paris-Saclay University, INSERM, Diseases and Hormones of the Nervous System-U1195, 94276 Le Kremlin-Bicêtre, France; (A.Z.); (E.T.)
| | - Ariane Sharif
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, FHU 1000 Days for Health, INSERM, Université de Lille, CHU Lille, 59000 Lille, France;
| | - Hélène Faure
- Paris-Saclay University, CNRS, Neuroscience Paris-Saclay Institute, 91400 Saclay, France (A.K.); (H.F.)
| | - Elisabeth Traiffort
- Paris-Saclay University, INSERM, Diseases and Hormones of the Nervous System-U1195, 94276 Le Kremlin-Bicêtre, France; (A.Z.); (E.T.)
| | - Martial Ruat
- Paris-Saclay University, CNRS, Neuroscience Paris-Saclay Institute, 91400 Saclay, France (A.K.); (H.F.)
| |
Collapse
|
22
|
Collins HY, Doan RA, Li J, Early JE, Madden ME, Simkins T, Lyons DA, Monk KR, Emery B. FBXW7 regulates MYRF levels to control myelin capacity and homeostasis in the adult CNS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618515. [PMID: 39464137 PMCID: PMC11507870 DOI: 10.1101/2024.10.15.618515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Myelin, along with the oligodendrocytes (OLs) that produce it, is essential for proper central nervous system (CNS) function in vertebrates. Although the accurate targeting of myelin to axons and its maintenance are critical for CNS performance, the molecular pathways that regulate these processes remain poorly understood. Through a combination of zebrafish genetics, mouse models, and primary OL cultures, we found FBXW7, a recognition subunit of an E3 ubiquitin ligase complex, is a regulator of adult myelination in the CNS. Loss of Fbxw7 in myelinating OLs resulted in increased myelin sheath lengths with no change in myelin thickness. As the animals aged, they developed progressive abnormalities including myelin outfolds, disrupted paranodal organization, and ectopic ensheathment of neuronal cell bodies with myelin. Through biochemical studies we found that FBXW7 directly binds and degrades the N-terminal of Myelin Regulatory Factor (N-MYRF), to control the balance between oligodendrocyte myelin growth and homeostasis.
Collapse
Affiliation(s)
- Hannah Y. Collins
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, Oregon 97239, USA
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Ryan A. Doan
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Jiaxing Li
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Jason E. Early
- Centre for Discovery Brain Sciences, MS society Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Megan E. Madden
- Centre for Discovery Brain Sciences, MS society Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Tyrell Simkins
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, Oregon 97239, USA
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - David A. Lyons
- Centre for Discovery Brain Sciences, MS society Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Kelly R. Monk
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, Oregon 97239, USA
| |
Collapse
|
23
|
Simons M, Gibson EM, Nave KA. Oligodendrocytes: Myelination, Plasticity, and Axonal Support. Cold Spring Harb Perspect Biol 2024; 16:a041359. [PMID: 38621824 PMCID: PMC11444305 DOI: 10.1101/cshperspect.a041359] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The myelination of axons has evolved to enable fast and efficient transduction of electrical signals in the vertebrate nervous system. Acting as an electric insulator, the myelin sheath is a multilamellar membrane structure around axonal segments generated by the spiral wrapping and subsequent compaction of oligodendroglial plasma membranes. These oligodendrocytes are metabolically active and remain functionally connected to the subjacent axon via cytoplasmic-rich myelinic channels for movement of metabolites and macromolecules to and from the internodal periaxonal space under the myelin sheath. Increasing evidence indicates that oligodendrocyte numbers, specifically in the forebrain, and myelin as a dynamic cellular compartment can both respond to physiological demands, collectively referred to as adaptive myelination. This review summarizes our current understanding of how myelin is generated, how its function is dynamically regulated, and how oligodendrocytes support the long-term integrity of myelinated axons.
Collapse
Affiliation(s)
- Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich 80802, Germany
- German Center for Neurodegenerative Diseases, Munich Cluster of Systems Neurology (SyNergy), Institute for Stroke and Dementia Research, Munich 81377, Germany
| | - Erin M Gibson
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford 94305, California, USA
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37075, Germany
| |
Collapse
|
24
|
Bagheri H, Friedman H, Hadwen A, Jarweh C, Cooper E, Oprea L, Guerrier C, Khadra A, Collin A, Cohen‐Adad J, Young A, Victoriano GM, Swire M, Jarjour A, Bechler ME, Pryce RS, Chaurand P, Cougnaud L, Vuckovic D, Wilion E, Greene O, Nishiyama A, Benmamar‐Badel A, Owens T, Grouza V, Tuznik M, Liu H, Rudko DA, Zhang J, Siminovitch KA, Peterson AC. Myelin basic protein mRNA levels affect myelin sheath dimensions, architecture, plasticity, and density of resident glial cells. Glia 2024; 72:1893-1914. [PMID: 39023138 PMCID: PMC11426340 DOI: 10.1002/glia.24589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 05/29/2024] [Accepted: 06/23/2024] [Indexed: 07/20/2024]
Abstract
Myelin Basic Protein (MBP) is essential for both elaboration and maintenance of CNS myelin, and its reduced accumulation results in hypomyelination. How different Mbp mRNA levels affect myelin dimensions across the lifespan and how resident glial cells may respond to such changes are unknown. Here, to investigate these questions, we used enhancer-edited mouse lines that accumulate Mbp mRNA levels ranging from 8% to 160% of wild type. In young mice, reduced Mbp mRNA levels resulted in corresponding decreases in Mbp protein accumulation and myelin sheath thickness, confirming the previously demonstrated rate-limiting role of Mbp transcription in the control of initial myelin synthesis. However, despite maintaining lower line specific Mbp mRNA levels into old age, both MBP protein levels and myelin thickness improved or fully normalized at rates defined by the relative Mbp mRNA level. Sheath length, in contrast, was affected only when mRNA levels were very low, demonstrating that sheath thickness and length are not equally coupled to Mbp mRNA level. Striking abnormalities in sheath structure also emerged with reduced mRNA levels. Unexpectedly, an increase in the density of all glial cell types arose in response to reduced Mbp mRNA levels. This investigation extends understanding of the role MBP plays in myelin sheath elaboration, architecture, and plasticity across the mouse lifespan and illuminates a novel axis of glial cell crosstalk.
Collapse
Affiliation(s)
- Hooman Bagheri
- Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
| | - Hana Friedman
- Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
| | - Amanda Hadwen
- Department of PhysiologyMcGill UniversityMontrealQuebecCanada
| | - Celia Jarweh
- Department of Pharmacology & TherapeuticsMcGill UniversityMontrealQuebecCanada
| | - Ellis Cooper
- Department of PhysiologyMcGill UniversityMontrealQuebecCanada
| | - Lawrence Oprea
- Integrated Program in NeuroscienceMcGill UniversityMontréalQuebecCanada
| | | | - Anmar Khadra
- Integrated Program in NeuroscienceMcGill UniversityMontréalQuebecCanada
| | - Armand Collin
- Institute of Biomedical Engineering, Ecole Polytechnique de MontrealMontrealQuebecCanada
| | - Julien Cohen‐Adad
- Institute of Biomedical Engineering, Ecole Polytechnique de MontrealMontrealQuebecCanada
| | - Amanda Young
- Department of Cell and Developmental BiologyState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
- Department of Neuroscience and PhysiologyState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
| | - Gerardo Mendez Victoriano
- Department of Cell and Developmental BiologyState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
- Department of Neuroscience and PhysiologyState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
| | - Matthew Swire
- Department of Cell and Developmental BiologyState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
- Department of Neuroscience and PhysiologyState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
| | - Andrew Jarjour
- Department of Cell and Developmental BiologyState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
- Department of Neuroscience and PhysiologyState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
| | - Marie E. Bechler
- Department of Cell and Developmental BiologyState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
- Department of Neuroscience and PhysiologyState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
| | - Rachel S. Pryce
- Department of ChemistryUniversité de MontréalMontrealQuebecCanada
| | - Pierre Chaurand
- Department of ChemistryUniversité de MontréalMontrealQuebecCanada
| | - Lise Cougnaud
- Department of Chemistry and BiochemistryConcordia UniversityMontrealQuebecCanada
| | - Dajana Vuckovic
- Department of Chemistry and BiochemistryConcordia UniversityMontrealQuebecCanada
| | - Elliott Wilion
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Owen Greene
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Akiko Nishiyama
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsConnecticutUSA
- Institute for Systems Genomics, University of ConnecticutStorrsConnecticutUSA
- The Connecticut Institute for Brain and Cognitive Sciences, University of ConnecticutStorrsConnecticutUSA
| | - Anouk Benmamar‐Badel
- Department of Neurobiology ResearchInstitute for Molecular Medicine, University of Southern DenmarkOdenseDenmark
| | - Trevor Owens
- Department of Neurobiology ResearchInstitute for Molecular Medicine, University of Southern DenmarkOdenseDenmark
| | - Vladimir Grouza
- McConnell Brain Imaging Centre, Montreal Neurological Institute and HospitalMontrealQuebecCanada
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
| | - Marius Tuznik
- McConnell Brain Imaging Centre, Montreal Neurological Institute and HospitalMontrealQuebecCanada
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
| | - Hanwen Liu
- McConnell Brain Imaging Centre, Montreal Neurological Institute and HospitalMontrealQuebecCanada
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
| | - David A. Rudko
- McConnell Brain Imaging Centre, Montreal Neurological Institute and HospitalMontrealQuebecCanada
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Department of Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
| | - Jinyi Zhang
- Department of MedicineUniversity of TorontoTorontoOntarioCanada
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
- Mount Sinai Hospital, Lunenfeld‐Tanenbaum and Toronto General Hospital Research InstitutesTorontoOntarioCanada
| | - Katherine A. Siminovitch
- Department of MedicineUniversity of TorontoTorontoOntarioCanada
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
- Mount Sinai Hospital, Lunenfeld‐Tanenbaum and Toronto General Hospital Research InstitutesTorontoOntarioCanada
| | - Alan C. Peterson
- Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Gerald Bronfman Department of OncologyMcGill UniversityQuebecCanada
| |
Collapse
|
25
|
Torii T, Miyamoto Y, Yamauchi J. Myelination by signaling through Arf guanine nucleotide exchange factor. J Neurochem 2024; 168:2201-2213. [PMID: 38894552 DOI: 10.1111/jnc.16141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
During myelination, large quantities of proteins are synthesized and transported from the endoplasmic reticulum (ER)-trans-Golgi network (TGN) to their appropriate locations within the intracellular region and/or plasma membrane. It is widely believed that oligodendrocytes uptake neuronal signals from neurons to regulate the endocytosis- and exocytosis-mediated intracellular trafficking of major myelin proteins such as myelin-associated glycoprotein (MAG) and proteolipid protein 1 (PLP1). The small GTPases of the adenosine diphosphate (ADP) ribosylation factor (Arf) family constitute a large group of signal transduction molecules that act as regulators for intracellular signaling, vesicle sorting, or membrane trafficking in cells. Studies on mice deficient in Schwann cell-specific Arfs-related genes have revealed abnormal myelination formation in peripheral nerves, indicating that Arfs-mediated signaling transduction is required for myelination in Schwann cells. However, the complex roles in these events remain poorly understood. This review aims to provide an update on signal transduction, focusing on Arf and its activator ArfGEF (guanine nucleotide exchange factor for Arf) in oligodendrocytes and Schwann cells. Future studies are expected to provide important information regarding the cellular and physiological processes underlying the myelination of oligodendrocytes and Schwann cells and their function in modulating neural activity.
Collapse
Affiliation(s)
- Tomohiro Torii
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara-shi, Kanagawa, Japan
| | - Yuki Miyamoto
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
26
|
Yamazaki R, Ohno N. Myosin superfamily members during myelin formation and regeneration. J Neurochem 2024; 168:2264-2274. [PMID: 39136255 DOI: 10.1111/jnc.16202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/10/2024] [Accepted: 07/31/2024] [Indexed: 10/04/2024]
Abstract
Myelin is an insulator that forms around axons that enhance the conduction velocity of nerve fibers. Oligodendrocytes dramatically change cell morphology to produce myelin throughout the central nervous system (CNS). Cytoskeletal alterations are critical for the morphogenesis of oligodendrocytes, and actin is involved in cell differentiation and myelin wrapping via polymerization and depolymerization, respectively. Various protein members of the myosin superfamily are known to be major binding partners of actin filaments and have been intensively researched because of their involvement in various cellular functions, including differentiation, cell movement, membrane trafficking, organelle transport, signal transduction, and morphogenesis. Some members of the myosin superfamily have been found to play important roles in the differentiation of oligodendrocytes and in CNS myelination. Interestingly, each member of the myosin superfamily expressed in oligodendrocyte lineage cells also shows specific spatial and temporal expression patterns and different distributions. In this review, we summarize previous findings related to the myosin superfamily and discuss how these molecules contribute to myelin formation and regeneration by oligodendrocytes.
Collapse
Affiliation(s)
- Reiji Yamazaki
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
27
|
Kantarci H, Elvira PD, Thottumkara AP, O'Connell EM, Iyer M, Donovan LJ, Dugan MQ, Ambiel N, Granados A, Zeng H, Saw NL, Brosius Lutz A, Sloan SA, Gray EE, Tran KV, Vichare A, Yeh AK, Münch AE, Huber M, Agrawal A, Morri M, Zhong H, Shamloo M, Anderson TA, Tawfik VL, Du Bois J, Zuchero JB. Schwann cell-secreted PGE 2 promotes sensory neuron excitability during development. Cell 2024; 187:4690-4712.e30. [PMID: 39142281 PMCID: PMC11967275 DOI: 10.1016/j.cell.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2024] [Accepted: 06/21/2024] [Indexed: 08/16/2024]
Abstract
Electrical excitability-the ability to fire and propagate action potentials-is a signature feature of neurons. How neurons become excitable during development and whether excitability is an intrinsic property of neurons remain unclear. Here, we demonstrate that Schwann cells, the most abundant glia in the peripheral nervous system, promote somatosensory neuron excitability during development. We find that Schwann cells secrete prostaglandin E2, which is necessary and sufficient to induce developing somatosensory neurons to express normal levels of genes required for neuronal function, including voltage-gated sodium channels, and to fire action potential trains. Inactivating this signaling pathway in Schwann cells impairs somatosensory neuron maturation, causing multimodal sensory defects that persist into adulthood. Collectively, our studies uncover a neurodevelopmental role for prostaglandin E2 distinct from its established role in inflammation, revealing a cell non-autonomous mechanism by which glia regulate neuronal excitability to enable the development of normal sensory functions.
Collapse
Affiliation(s)
- Husniye Kantarci
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pablo D Elvira
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | - Emma M O'Connell
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Manasi Iyer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lauren J Donovan
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Micaela Quinn Dugan
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicholas Ambiel
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Hong Zeng
- Transgenic, Knockout and Tumor model Center (TKTC), Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nay L Saw
- Behavioral and Functional Neuroscience Laboratory, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amanda Brosius Lutz
- Department of Obstetrics and Gynecology, University Hospital, Bern, Switzerland
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Erin E Gray
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Khanh V Tran
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aditi Vichare
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ashley K Yeh
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexandra E Münch
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Max Huber
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Aditi Agrawal
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Behavioral and Functional Neuroscience Laboratory, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas Anthony Anderson
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - J Du Bois
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | - J Bradley Zuchero
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
28
|
Osso LA, Hughes EG. Dynamics of mature myelin. Nat Neurosci 2024; 27:1449-1461. [PMID: 38773349 PMCID: PMC11515933 DOI: 10.1038/s41593-024-01642-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/05/2024] [Indexed: 05/23/2024]
Abstract
Myelin, which is produced by oligodendrocytes, insulates axons to facilitate rapid and efficient action potential propagation in the central nervous system. Traditionally viewed as a stable structure, myelin is now known to undergo dynamic modulation throughout life. This Review examines these dynamics, focusing on two key aspects: (1) the turnover of myelin, involving not only the renewal of constituents but the continuous wholesale replacement of myelin membranes; and (2) the structural remodeling of pre-existing, mature myelin, a newly discovered form of neural plasticity that can be stimulated by external factors, including neuronal activity, behavioral experience and injury. We explore the mechanisms regulating these dynamics and speculate that myelin remodeling could be driven by an asymmetry in myelin turnover or reactivation of pathways involved in myelin formation. Finally, we outline how myelin remodeling could have profound impacts on neural function, serving as an integral component of behavioral adaptation.
Collapse
Affiliation(s)
- Lindsay A Osso
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ethan G Hughes
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
29
|
Baudouin L, Adès N, Kanté K, Bachelin C, Hmidan H, Deboux C, Panic R, Ben Messaoud R, Velut Y, Hamada S, Pionneau C, Duarte K, Poëa-Guyon S, Barnier JV, Nait Oumesmar B, Bouslama-Oueghlani L. Antagonistic actions of PAK1 and NF2/Merlin drive myelin membrane expansion in oligodendrocytes. Glia 2024; 72:1518-1540. [PMID: 38794866 DOI: 10.1002/glia.24570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
In the central nervous system, the formation of myelin by oligodendrocytes (OLs) relies on the switch from the polymerization of the actin cytoskeleton to its depolymerization. The molecular mechanisms that trigger this switch have yet to be elucidated. Here, we identified P21-activated kinase 1 (PAK1) as a major regulator of actin depolymerization in OLs. Our results demonstrate that PAK1 accumulates in OLs in a kinase-inhibited form, triggering actin disassembly and, consequently, myelin membrane expansion. Remarkably, proteomic analysis of PAK1 binding partners enabled the identification of NF2/Merlin as its endogenous inhibitor. Our findings indicate that Nf2 knockdown in OLs results in PAK1 activation, actin polymerization, and a reduction in OL myelin membrane expansion. This effect is rescued by treatment with a PAK1 inhibitor. We also provide evidence that the specific Pak1 loss-of-function in oligodendroglia stimulates the thickening of myelin sheaths in vivo. Overall, our data indicate that the antagonistic actions of PAK1 and NF2/Merlin on the actin cytoskeleton of the OLs are critical for proper myelin formation. These findings have broad mechanistic and therapeutic implications in demyelinating diseases and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lucas Baudouin
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Noémie Adès
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Kadia Kanté
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Corinne Bachelin
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Hatem Hmidan
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Al-Quds University, Faculty of Medicine, Jerusalem, Palestine
| | - Cyrille Deboux
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Radmila Panic
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Rémy Ben Messaoud
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Yoan Velut
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Soumia Hamada
- Sorbonne Université, Inserm, UMS Production et Analyse des Données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, Paris, France
| | - Cédric Pionneau
- Sorbonne Université, Inserm, UMS Production et Analyse des Données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, Paris, France
| | - Kévin Duarte
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Sandrine Poëa-Guyon
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Brahim Nait Oumesmar
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Lamia Bouslama-Oueghlani
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
30
|
Song J, Saglam A, Zuchero JB, Buch VP. Translating Molecular Approaches to Oligodendrocyte-Mediated Neurological Circuit Modulation. Brain Sci 2024; 14:648. [PMID: 39061389 PMCID: PMC11275066 DOI: 10.3390/brainsci14070648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The central nervous system (CNS) exhibits remarkable adaptability throughout life, enabled by intricate interactions between neurons and glial cells, in particular, oligodendrocytes (OLs) and oligodendrocyte precursor cells (OPCs). This adaptability is pivotal for learning and memory, with OLs and OPCs playing a crucial role in neural circuit development, synaptic modulation, and myelination dynamics. Myelination by OLs not only supports axonal conduction but also undergoes adaptive modifications in response to neuronal activity, which is vital for cognitive processing and memory functions. This review discusses how these cellular interactions and myelin dynamics are implicated in various neurocircuit diseases and disorders such as epilepsy, gliomas, and psychiatric conditions, focusing on how maladaptive changes contribute to disease pathology and influence clinical outcomes. It also covers the potential for new diagnostics and therapeutic approaches, including pharmacological strategies and emerging biomarkers in oligodendrocyte functions and myelination processes. The evidence supports a fundamental role for myelin plasticity and oligodendrocyte functionality in synchronizing neural activity and high-level cognitive functions, offering promising avenues for targeted interventions in CNS disorders.
Collapse
Affiliation(s)
- Jingwei Song
- Medical Scientist Training Program, School of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Aybike Saglam
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; (A.S.); (J.B.Z.)
| | - J. Bradley Zuchero
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; (A.S.); (J.B.Z.)
| | - Vivek P. Buch
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; (A.S.); (J.B.Z.)
| |
Collapse
|
31
|
Emery B, Wood TL. Regulators of Oligodendrocyte Differentiation. Cold Spring Harb Perspect Biol 2024; 16:a041358. [PMID: 38503504 PMCID: PMC11146316 DOI: 10.1101/cshperspect.a041358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Myelination has evolved as a mechanism to ensure fast and efficient propagation of nerve impulses along axons. Within the central nervous system (CNS), myelination is carried out by highly specialized glial cells, oligodendrocytes. The formation of myelin is a prolonged aspect of CNS development that occurs well into adulthood in humans, continuing throughout life in response to injury or as a component of neuroplasticity. The timing of myelination is tightly tied to the generation of oligodendrocytes through the differentiation of their committed progenitors, oligodendrocyte precursor cells (OPCs), which reside throughout the developing and adult CNS. In this article, we summarize our current understanding of some of the signals and pathways that regulate the differentiation of OPCs, and thus the myelination of CNS axons.
Collapse
Affiliation(s)
- Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Teresa L Wood
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA
| |
Collapse
|
32
|
Vepřek NA, Cooper MH, Laprell L, Yang EJN, Folkerts S, Bao R, Boczkowska M, Palmer NJ, Dominguez R, Oertner TG, Pon LA, Zuchero JB, Trauner DH. Optical Control of G-Actin with a Photoswitchable Latrunculin. J Am Chem Soc 2024; 146:8895-8903. [PMID: 38511265 PMCID: PMC11302737 DOI: 10.1021/jacs.3c10776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Actin is one of the most abundant proteins in eukaryotic cells and is a key component of the cytoskeleton. A range of small molecules has emerged that interfere with actin dynamics by either binding to polymeric F-actin or monomeric G-actin to stabilize or destabilize filaments or prevent their formation and growth, respectively. Among these, the latrunculins, which bind to G-actin and affect polymerization, are widely used as tools to investigate actin-dependent cellular processes. Here, we report a photoswitchable version of latrunculin, termed opto-latrunculin (OptoLat), which binds to G-actin in a light-dependent fashion and affords optical control over actin polymerization. OptoLat can be activated with 390-490 nm pulsed light and rapidly relaxes to its inactive form in the dark. Light activated OptoLat induced depolymerization of F-actin networks in oligodendrocytes and budding yeast, as shown by fluorescence microscopy. Subcellular control of actin dynamics in human cancer cell lines was demonstrated via live cell imaging. Light-activated OptoLat also reduced microglia surveillance in organotypic mouse brain slices while ramification was not affected. Incubation in the dark did not alter the structural and functional integrity of the microglia. Together, our data demonstrate that OptoLat is a useful tool for the elucidation of G-actin dependent dynamic processes in cells and tissues.
Collapse
Affiliation(s)
- Nynke A. Vepřek
- Department of Chemistry, New York University, New York, NY 10003, USA
- Department of Chemistry, Ludwig Maximilian University, D-80539 Munich, Germany
| | - Madeline H. Cooper
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura Laprell
- Institute for Synaptic Physiology, ZMNH, University Medical Center Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Emily Jie-Ning Yang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sander Folkerts
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Ruiyang Bao
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Malgorzata Boczkowska
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas J. Palmer
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas G. Oertner
- Institute for Synaptic Physiology, ZMNH, University Medical Center Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Liza A. Pon
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - J. Bradley Zuchero
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dirk H. Trauner
- Department of Chemistry, New York University, New York, NY 10003, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
33
|
Roy A, Trigun SK. The restoration of hippocampal nerve de-myelination by methylcobalamin relates with the enzymatic regulation of homocysteine level in a rat model of moderate grade hepatic encephalopathy. J Biochem Mol Toxicol 2024; 38:e23695. [PMID: 38511258 DOI: 10.1002/jbt.23695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/08/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
This article describes how methylcobalamin (MeCbl) restores nerve myelination in a moderate- grade hepatic encephalopathy (MoHE) model of ammonia neurotoxicity. The comparative profiles of myelin basic protein (MBP), homocysteine (Hcy) and methionine synthase (MS: a MeCbl- dependent enzyme) activity versus nerve myelination status were studied in the hippocampus of the control, the MoHE (developed by administering 100 mg/kg bw thioacetamide i.p. for 10 days) and the MoHE rats treated with MeCbl (500 µg/kg BW i.p.) for 7 days. Compared to those of control rats, the hippocampal CA1 and CA3 regions of the MoHE rats showed significantly lower myelinated areas and MBP immunostaining. This coincided with the deranged myelin layering in TEM images, decreased MBP protein and its transcript levels in hippocampus of MoHE rats. However, all these parameters recovered to normal levels after MeCbl treatment. MeCbl is a cofactor of MS that catalyzes the conversion of Hcy to methionine as a feeder step of methylation reactions. We observed significantly increased serum and hippocampal Hcy levels in MoHE rats, however, these levels were restored to control values with a concordant activation of MS due to MeCbl treatment. A significant recovery in neurobehavioral impairments in the MoHE rats due to MeCbl treatment was also observed. These findings suggest that MoHE pathogenesis is associated with deranged nerve myelination in the hippocampus and that MeCbl treatment is able to restore it mainly by activating MS, a MeCbl-dependent Hcy-metabolizing enzyme.
Collapse
Affiliation(s)
- Anima Roy
- Biochemistry Section, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Surendra Kumar Trigun
- Biochemistry Section, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
34
|
Arreguin AJ, Shao Z, Colognato H. Dmd mdx mice have defective oligodendrogenesis, delayed myelin compaction and persistent hypomyelination. Dis Model Mech 2024; 17:dmm050115. [PMID: 38721692 PMCID: PMC11095635 DOI: 10.1242/dmm.050115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/28/2024] [Indexed: 05/18/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene, resulting in the loss of dystrophin, a large cytosolic protein that links the cytoskeleton to extracellular matrix receptors in skeletal muscle. Aside from progressive muscle damage, many patients with DMD also have neurological deficits of unknown etiology. To investigate potential mechanisms for DMD neurological deficits, we assessed postnatal oligodendrogenesis and myelination in the Dmdmdx mouse model. In the ventricular-subventricular zone (V-SVZ) stem cell niche, we found that oligodendrocyte progenitor cell (OPC) production was deficient, with reduced OPC densities and proliferation, despite a normal stem cell niche organization. In the Dmdmdx corpus callosum, a large white matter tract adjacent to the V-SVZ, we also observed reduced OPC proliferation and fewer oligodendrocytes. Transmission electron microscopy further revealed significantly thinner myelin, an increased number of abnormal myelin structures and delayed myelin compaction, with hypomyelination persisting into adulthood. Our findings reveal alterations in oligodendrocyte development and myelination that support the hypothesis that changes in diffusion tensor imaging seen in patients with DMD reflect developmental changes in myelin architecture.
Collapse
Affiliation(s)
- Andrea J. Arreguin
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
- Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Zijian Shao
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Holly Colognato
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
35
|
Zhang Y, Song Z, Wu R, Kong X, Zhang H, Li S, Gong X, Gong S, Cheng J, Yuan F, Wu H, Wang S, Yuan Z. PRRC2B modulates oligodendrocyte progenitor cell development and myelination by stabilizing Sox2 mRNA. Cell Rep 2024; 43:113930. [PMID: 38507412 DOI: 10.1016/j.celrep.2024.113930] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 01/13/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) differentiate into myelin-producing cells and modulate neuronal activity. Defects in OPC development are associated with neurological diseases. N6-methyladenosine (m6A) contributes to neural development; however, the mechanism by which m6A regulates OPC development remains unclear. Here, we demonstrate that PRRC2B is an m6A reader that regulates OPC development and myelination. Nestin-Cre-mediated Prrc2b deletion affects neural stem cell self-renewal and glial differentiation. Moreover, the oligodendroglia lineage-specific deletion of Prrc2b reduces the numbers of OPCs and oligodendrocytes, causing hypomyelination and impaired motor coordination. Integrative methylated RNA immunoprecipitation sequencing, RNA sequencing, and RNA immunoprecipitation sequencing analyses identify Sox2 as the target of PRRC2B. Notably, PRRC2B, displaying separate and cooperative functions with PRRC2A, stabilizes mRNA by binding to m6A motifs in the coding sequence and 3' UTR of Sox2. In summary, we identify the posttranscriptional regulation of PRRC2B in OPC development, extending the understanding of PRRC2 family proteins and providing a therapeutic target for myelin-related disorders.
Collapse
Affiliation(s)
- Ying Zhang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Zhihong Song
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Rong Wu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xiangxi Kong
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Hongye Zhang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Shuoshuo Li
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xuanwei Gong
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Shenghui Gong
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Jinbo Cheng
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing 100081, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang 050000, China
| | - Fang Yuan
- Department of Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing 100071, China
| | - Haitao Wu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Shukun Wang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Zengqiang Yuan
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| |
Collapse
|
36
|
Iram T, Garcia MA, Amand J, Kaur A, Atkins M, Iyer M, Lam M, Ambiel N, Jorgens DM, Keller A, Wyss-Coray T, Kern F, Zuchero JB. SRF transcriptionally regulates the oligodendrocyte cytoskeleton during CNS myelination. Proc Natl Acad Sci U S A 2024; 121:e2307250121. [PMID: 38483990 PMCID: PMC10962977 DOI: 10.1073/pnas.2307250121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/10/2024] [Indexed: 03/19/2024] Open
Abstract
Myelination of neuronal axons is essential for nervous system development. Myelination requires dramatic cytoskeletal dynamics in oligodendrocytes, but how actin is regulated during myelination is poorly understood. We recently identified serum response factor (SRF)-a transcription factor known to regulate expression of actin and actin regulators in other cell types-as a critical driver of myelination in the aged brain. Yet, a major gap remains in understanding the mechanistic role of SRF in oligodendrocyte lineage cells. Here, we show that SRF is required cell autonomously in oligodendrocytes for myelination during development. Combining ChIP-seq with RNA-seq identifies SRF-target genes in oligodendrocyte precursor cells and oligodendrocytes that include actin and other key cytoskeletal genes. Accordingly, SRF knockout oligodendrocytes exhibit dramatically reduced actin filament levels early in differentiation, consistent with its role in actin-dependent myelin sheath initiation. Surprisingly, oligodendrocyte-restricted loss of SRF results in upregulation of gene signatures associated with aging and neurodegenerative diseases. Together, our findings identify SRF as a transcriptional regulator that controls the expression of cytoskeletal genes required in oligodendrocytes for myelination. This study identifies an essential pathway regulating oligodendrocyte biology with high relevance to brain development, aging, and disease.
Collapse
Affiliation(s)
- Tal Iram
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA94305
| | - Miguel A. Garcia
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA94305
| | - Jérémy Amand
- Department of Clinical Bioinformatics, Helmholtz Institute for Pharmaceutical Research Saarland–Helmholtz Centre for Infection Research, Saarland University Campus, Saarbrücken66123, Germany
- Clinical Bioinformatics, Saarland University, Saarbrücken66123, Germany
| | - Achint Kaur
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA94305
| | - Micaiah Atkins
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA94305
| | - Manasi Iyer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA94305
| | - Mable Lam
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA94305
| | - Nicholas Ambiel
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA94305
| | | | - Andreas Keller
- Department of Clinical Bioinformatics, Helmholtz Institute for Pharmaceutical Research Saarland–Helmholtz Centre for Infection Research, Saarland University Campus, Saarbrücken66123, Germany
- Clinical Bioinformatics, Saarland University, Saarbrücken66123, Germany
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA94305
| | - Fabian Kern
- Department of Clinical Bioinformatics, Helmholtz Institute for Pharmaceutical Research Saarland–Helmholtz Centre for Infection Research, Saarland University Campus, Saarbrücken66123, Germany
- Clinical Bioinformatics, Saarland University, Saarbrücken66123, Germany
| | - J. Bradley Zuchero
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA94305
| |
Collapse
|
37
|
He J, Wang Y, Zhao ZH, He JY, Gao MY, Wang JQ, Wang LB, Zhang Y, Li X. Exosome-specific loading Sox10 for the treatment of Cuprizone-induced demyelinating model. Biomed Pharmacother 2024; 171:116128. [PMID: 38218078 DOI: 10.1016/j.biopha.2024.116128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
Demyelination is a pathological feature commonly observed in various central nervous system diseases. It is characterized by the aggregation of oligodendrocyte progenitor cells (OPCs) in the lesion area, which face difficulties in differentiating into mature oligodendrocytes (OLGs). The differentiation of OPCs requires the presence of Sox10, but its expression decreases under pathological conditions. Therefore, we propose a therapeutic strategy to regulate OPCs differentiation and achieve myelin repair by endogenously loading Sox10 into exosomes. To accomplish this, we generated a lentivirus-armed Sox10 that could anchor to the inner surface of the exosome membrane. We then infected HEK293 cells to obtain exosomes with high expression of Sox10 (exosomes-Sox10, ExoSs). In vitro, experiments confirmed that both Exos and ExoSs can be uptaken by OPCs, but only ExoSs exhibit a pro-differentiation effect on OPCs. In vivo, we administered PBS, Exos, and ExoSs to cuprizone-induced demyelinating mice. The results demonstrated that ExoSs can regulate the differentiation of PDGFRα+ OPCs into APC+ OLGs and reduce myelin damage in the corpus callosum region of the mouse brain compared to other groups. Further testing suggests that Sox10 may have a reparative effect on the myelin sheath by enhancing the expression of MBP, possibly facilitated by the exosome delivery of the protein into the lesion. This endogenously loaded technology holds promise as a strategy for protein-based drugs in the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Jin He
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Zhuo-Hua Zhao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Jia-Yi He
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Meng-Yuan Gao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Jia-Qi Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Li-Bin Wang
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen Nanshan Hospital, Shenzhen, Guangdong 518052, China
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
38
|
Iyer M, Kantarci H, Cooper MH, Ambiel N, Novak SW, Andrade LR, Lam M, Jones G, Münch AE, Yu X, Khakh BS, Manor U, Zuchero JB. Oligodendrocyte calcium signaling promotes actin-dependent myelin sheath extension. Nat Commun 2024; 15:265. [PMID: 38177161 PMCID: PMC10767123 DOI: 10.1038/s41467-023-44238-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Myelin is essential for rapid nerve signaling and is increasingly found to play important roles in learning and in diverse diseases of the CNS. Morphological parameters of myelin such as sheath length are thought to precisely tune conduction velocity, but the mechanisms controlling sheath morphology are poorly understood. Local calcium signaling has been observed in nascent myelin sheaths and can be modulated by neuronal activity. However, the role of calcium signaling in sheath formation remains incompletely understood. Here, we use genetic tools to attenuate oligodendrocyte calcium signaling during myelination in the developing mouse CNS. Surprisingly, genetic calcium attenuation does not grossly affect the number of myelinated axons or myelin thickness. Instead, calcium attenuation causes myelination defects resulting in shorter, dysmorphic sheaths. Mechanistically, calcium attenuation reduces actin filaments in oligodendrocytes, and an intact actin cytoskeleton is necessary and sufficient to achieve accurate myelin morphology. Together, our work reveals a cellular mechanism required for accurate CNS myelin formation and may provide mechanistic insight into how oligodendrocytes respond to neuronal activity to sculpt and refine myelin sheaths.
Collapse
Affiliation(s)
- Manasi Iyer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Husniye Kantarci
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Madeline H Cooper
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas Ambiel
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sammy Weiser Novak
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Leonardo R Andrade
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mable Lam
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Graham Jones
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexandra E Münch
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Xinzhu Yu
- Department of Molecular and Integrative Physiology, Beckman Institute, University of Illinois at Urbana-, Champaign, IL, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Cell and Developmental Biology, University of California, San Diego, San Diego, CA, USA
| | - J Bradley Zuchero
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
39
|
Pernin F, Kuhlmann T, Kennedy TE, Antel JP. Oligodendrocytes in multiple sclerosis. MECHANISMS OF DISEASE PATHOGENESIS IN MULTIPLE SCLEROSIS 2024:261-287. [DOI: 10.1016/b978-0-12-823848-6.00009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
40
|
Rassul SM, Otsu M, Styles IB, Neely RK, Fulton D. Single-molecule tracking of myelin basic protein during oligodendrocyte differentiation. BIOLOGICAL IMAGING 2023; 3:e24. [PMID: 38510175 PMCID: PMC10951920 DOI: 10.1017/s2633903x23000259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/14/2023] [Accepted: 10/10/2023] [Indexed: 03/22/2024]
Abstract
This study aimed to expand our understanding of myelin basic protein (MBP), a key component of central nervous system myelin, by developing a protocol to track and quantifying individual MBP particles during oligodendrocyte (OL) differentiation. MBP particle directionality, confinement, and diffusion were tracked by rapid TIRF and HILO imaging of Dendra2 tagged MBP in three stages of mouse oligodendroglia: OL precursors, early myelinating OLs, and mature myelinating OLs. The directionality and confinement of MBP particles increased at each stage consistent with progressive transport toward, and recruitment into, emerging myelin structures. Unexpectedly, diffusion data presented a more complex pattern with subpopulations of the most diffusive particles disappearing at the transition between the precursor and early myelinating stage, before reemerging in the membrane sheets of mature OLs. This diversity of particle behaviors, which would be undetectable by conventional ensemble-averaged methods, are consistent with a multifunctional view of MBP involving roles in myelin expansion and compaction.
Collapse
Affiliation(s)
- Sayed M. Rassul
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Physical Sciences of Imaging in the Biomedical Sciences Training Programme, University of Birmingham, Birmingham, UK
| | - Masahiro Otsu
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Braizon Therapeutics, Inc., Kanagawa, Japan
| | - Iain B. Styles
- School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, Belfast, UK
| | - Robert K. Neely
- School of Chemistry, University of Birmingham, Birmingham, UK
| | - Daniel Fulton
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
41
|
Rojo D, Dal Cengio L, Badner A, Kim S, Sakai N, Greene J, Dierckx T, Mehl LC, Eisinger E, Ransom J, Arellano-Garcia C, Gumma ME, Soyk RL, Lewis CM, Lam M, Weigel MK, Damonte VM, Yalçın B, Jones SE, Ollila HM, Nishino S, Gibson EM. BMAL1 loss in oligodendroglia contributes to abnormal myelination and sleep. Neuron 2023; 111:3604-3618.e11. [PMID: 37657440 PMCID: PMC10873033 DOI: 10.1016/j.neuron.2023.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023]
Abstract
Myelination depends on the maintenance of oligodendrocytes that arise from oligodendrocyte precursor cells (OPCs). We show that OPC-specific proliferation, morphology, and BMAL1 are time-of-day dependent. Knockout of Bmal1 in mouse OPCs during development disrupts the expression of genes associated with circadian rhythms, proliferation, density, morphology, and migration, leading to changes in OPC dynamics in a spatiotemporal manner. Furthermore, these deficits translate into thinner myelin, dysregulated cognitive and motor functions, and sleep fragmentation. OPC-specific Bmal1 loss in adulthood does not alter OPC density at baseline but impairs the remyelination of a demyelinated lesion driven by changes in OPC morphology and migration. Lastly, we show that sleep fragmentation is associated with increased prevalence of the demyelinating disorder multiple sclerosis (MS), suggesting a link between MS and sleep that requires further investigation. These findings have broad mechanistic and therapeutic implications for brain disorders that include both myelin and sleep phenotypes.
Collapse
Affiliation(s)
- Daniela Rojo
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Louisa Dal Cengio
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Anna Badner
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Samuel Kim
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Noriaki Sakai
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Jacob Greene
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Tess Dierckx
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Lindsey C Mehl
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Cancer Biology Graduate Program, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Ella Eisinger
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Julia Ransom
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Caroline Arellano-Garcia
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Biology Graduate Program, Stanford University, Palo Alto, CA 94305, USA
| | - Mohammad E Gumma
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Rebecca L Soyk
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Cheyanne M Lewis
- Neuroscience Graduate Program, Stanford University, Palo Alto, CA 94305, USA
| | - Mable Lam
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Maya K Weigel
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Stem Cell Biology and Regenerative Medicine Program, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Valentina Martinez Damonte
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Belgin Yalçın
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Samuel E Jones
- Institute for Molecular Medicine, HiLIFE, University of Helsinki, Helsinki 00014, Finland
| | - Hanna M Ollila
- Institute for Molecular Medicine, HiLIFE, University of Helsinki, Helsinki 00014, Finland; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, USA
| | - Seiji Nishino
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Erin M Gibson
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA.
| |
Collapse
|
42
|
Wang J, Shen J, Xu Y, Jiang Y, Qu X, Zhao W, Wang Y, Huang S. Differential sensitivity of ADF isovariants to a pH gradient promotes pollen tube growth. J Cell Biol 2023; 222:e202206074. [PMID: 37610419 PMCID: PMC10445753 DOI: 10.1083/jcb.202206074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/20/2022] [Accepted: 08/09/2023] [Indexed: 08/24/2023] Open
Abstract
The actin cytoskeleton is one of the targets of the pH gradient in tip-growing cells, but how cytosolic pH regulates the actin cytoskeleton remains largely unknown. We here demonstrate that Arabidopsis ADF7 and ADF10 function optimally at different pH levels when disassembling actin filaments. This differential pH sensitivity allows ADF7 and ADF10 to respond to the cytosolic pH gradient to regulate actin dynamics in pollen tubes. ADF7 is an unusual actin-depolymerizing factor with a low optimum pH in in vitro actin depolymerization assays. ADF7 plays a dominant role in promoting actin turnover at the pollen tube apex. ADF10 has a typically high optimum pH in in vitro assays and plays a dominant role in regulating the turnover and organization of subapical actin filaments. Thus, functional specification and cooperation of ADF isovariants with different pH sensitivities enable the coordination of the actin cytoskeleton with the cytosolic pH gradient to support pollen tube growth.
Collapse
Affiliation(s)
- Juan Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiangfeng Shen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanan Xu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuxiang Jiang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaolu Qu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wanying Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yingjie Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
43
|
Fekete CD, Horning RZ, Doron MS, Nishiyama A. Cleavage of VAMP2/3 Affects Oligodendrocyte Lineage Development in the Developing Mouse Spinal Cord. J Neurosci 2023; 43:6592-6608. [PMID: 37620160 PMCID: PMC10538588 DOI: 10.1523/jneurosci.2206-21.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 10/20/2022] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
In the developing and adult CNS, new oligodendrocytes (OLs) are generated from a population of cells known as oligodendrocyte precursor cells (OPCs). As they begin to differentiate, OPCs undergo a series of highly regulated changes to morphology, gene expression, and membrane organization. This stage represents a critical bottleneck in oligodendrogliogenesis, and the regulatory program that guides it is still not fully understood. Here, we show that in vivo toxin-mediated cleavage of the vesicle associated SNARE proteins VAMP2/3 in the OL lineage of both male and female mice impairs the ability of early OLs to mature into functional, myelinating OLs. In the developing mouse spinal cord, many VAMP2/3-cleaved OLs appeared to stall in the premyelinating, early OL stage, resulting in an overall loss of both myelin density and OL number. The Src kinase Fyn, a key regulator of oligodendrogliogenesis and myelination, is highly expressed among premyelinating OLs, but its expression decreases as OLs mature. We found that OLs with cleaved VAMP2/3 in the spinal cord white matter showed significantly higher expression of Fyn compared with neighboring control cells, potentially because of an extended premyelinating stage. Overall, our results show that functional VAMP2/3 in OL lineage cells is essential for proper myelin formation and plays a major role in controlling the maturation and terminal differentiation of premyelinating OLs.SIGNIFICANCE STATEMENT The production of mature oligodendrocytes (OLs) is essential for CNS myelination during development, myelin remodeling in adulthood, and remyelination following injury or in demyelinating disease. Before myelin sheath formation, newly formed OLs undergo a series of highly regulated changes during a stage of their development known as the premyelinating, or early OL stage. This stage acts as a critical checkpoint in OL development, and much is still unknown about the dynamic regulatory processes involved. In this study, we show that VAMP2/3, SNARE proteins involved in vesicular trafficking and secretion play an essential role in regulating premyelinating OL development and are required for healthy myelination in the developing mouse spinal cord.
Collapse
Affiliation(s)
- Christopher D Fekete
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Robert Z Horning
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Matan S Doron
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
44
|
Mich JK, Sunil S, Johansen N, Martinez RA, Leytze M, Gore BB, Mahoney JT, Ben-Simon Y, Bishaw Y, Brouner K, Campos J, Canfield R, Casper T, Dee N, Egdorf T, Gary A, Gibson S, Goldy J, Groce EL, Hirschstein D, Loftus L, Lusk N, Malone J, Martin NX, Monet D, Omstead V, Opitz-Araya X, Oster A, Pom CA, Potekhina L, Reding M, Rimorin C, Ruiz A, Sedeño-Cortés AE, Shapovalova NV, Taormina M, Taskin N, Tieu M, Valera Cuevas NJ, Weed N, Way S, Yao Z, McMillen DA, Kunst M, McGraw M, Thyagarajan B, Waters J, Bakken TE, Yao S, Smith KA, Svoboda K, Podgorski K, Kojima Y, Horwitz GD, Zeng H, Daigle TL, Lein ES, Tasic B, Ting JT, Levi BP. Enhancer-AAVs allow genetic access to oligodendrocytes and diverse populations of astrocytes across species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558718. [PMID: 37790503 PMCID: PMC10542530 DOI: 10.1101/2023.09.20.558718] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Proper brain function requires the assembly and function of diverse populations of neurons and glia. Single cell gene expression studies have mostly focused on characterization of neuronal cell diversity; however, recent studies have revealed substantial diversity of glial cells, particularly astrocytes. To better understand glial cell types and their roles in neurobiology, we built a new suite of adeno-associated viral (AAV)-based genetic tools to enable genetic access to astrocytes and oligodendrocytes. These oligodendrocyte and astrocyte enhancer-AAVs are highly specific (usually > 95% cell type specificity) with variable expression levels, and our astrocyte enhancer-AAVs show multiple distinct expression patterns reflecting the spatial distribution of astrocyte cell types. To provide the best glial-specific functional tools, several enhancer-AAVs were: optimized for higher expression levels, shown to be functional and specific in rat and macaque, shown to maintain specific activity in epilepsy where traditional promoters changed activity, and used to drive functional transgenes in astrocytes including Cre recombinase and acetylcholine-responsive sensor iAChSnFR. The astrocyte-specific iAChSnFR revealed a clear reward-dependent acetylcholine response in astrocytes of the nucleus accumbens during reinforcement learning. Together, this collection of glial enhancer-AAVs will enable characterization of astrocyte and oligodendrocyte populations and their roles across species, disease states, and behavioral epochs.
Collapse
|
45
|
Buchanan J, da Costa NM, Cheadle L. Emerging roles of oligodendrocyte precursor cells in neural circuit development and remodeling. Trends Neurosci 2023; 46:628-639. [PMID: 37286422 PMCID: PMC10524797 DOI: 10.1016/j.tins.2023.05.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/26/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) are non-neuronal brain cells that give rise to oligodendrocytes, glia that myelinate the axons of neurons in the brain. Classically known for their contributions to myelination via oligodendrogenesis, OPCs are increasingly appreciated to play diverse roles in the nervous system, ranging from blood vessel formation to antigen presentation. Here, we review emerging literature suggesting that OPCs may be essential for the establishment and remodeling of neural circuits in the developing and adult brain via mechanisms that are distinct from the production of oligodendrocytes. We discuss the specialized features of OPCs that position these cells to integrate activity-dependent and molecular cues to shape brain wiring. Finally, we place OPCs within the context of a growing field focused on understanding the importance of communication between neurons and glia in the contexts of both health and disease.
Collapse
Affiliation(s)
- JoAnn Buchanan
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Lucas Cheadle
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
46
|
Nilsson G, Mottahedin A, Zelco A, Lauschke VM, Ek CJ, Song J, Ardalan M, Hua S, Zhang X, Mallard C, Hagberg H, Leavenworth JW, Wang X. Two different isoforms of osteopontin modulate myelination and axonal integrity. FASEB Bioadv 2023; 5:336-353. [PMID: 37554545 PMCID: PMC10405251 DOI: 10.1096/fba.2023-00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/22/2023] [Accepted: 06/06/2023] [Indexed: 08/10/2023] Open
Abstract
Abnormal myelination underlies the pathology of white matter diseases such as preterm white matter injury and multiple sclerosis. Osteopontin (OPN) has been suggested to play a role in myelination. Murine OPN mRNA is translated into a secreted isoform (sOPN) or an intracellular isoform (iOPN). Whether there is an isoform-specific involvement of OPN in myelination is unknown. Here we generated mouse models that either lacked both OPN isoforms in all cells (OPN-KO) or lacked sOPN systemically but expressed iOPN specifically in oligodendrocytes (OLs-iOPN-KI). Transcriptome analysis of isolated oligodendrocytes from the neonatal brain showed that genes and pathways related to increase of myelination and altered cell cycle control were enriched in the absence of the two OPN isoforms in OPN-KO mice compared to control mice. Accordingly, adult OPN-KO mice showed an increased axonal myelination, as revealed by transmission electron microscopy imaging, and increased expression of myelin-related proteins. In contrast, neonatal oligodendrocytes from OLs-iOPN-KI mice compared to control mice showed differential regulation of genes and pathways related to the increase of cell adhesion, motility, and vasculature development, and the decrease of axonal/neuronal development. OLs-iOPN-KI mice showed abnormal myelin formation in the early phase of myelination in young mice and signs of axonal degeneration in adulthood. These results suggest an OPN isoform-specific involvement, and a possible interplay between the isoforms, in myelination, and axonal integrity. Thus, the two isoforms of OPN need to be separately considered in therapeutic strategies targeting OPN in white matter injury and diseases.
Collapse
Affiliation(s)
- Gisela Nilsson
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Amin Mottahedin
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Aura Zelco
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Volker M. Lauschke
- Department of Physiology and PharmacologyKarolinska InstituteStockholmSweden
- Dr Margarete Fischer‐Bosch Institute of Clinical PharmacologyStuttgartGermany
- University of TübingenTübingenGermany
| | - C. Joakim Ek
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Juan Song
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Henan Key Laboratory of Child Brain InjuryInstitute of Neuroscience and Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Maryam Ardalan
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Sha Hua
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Cardiology, Ruijin Hospital/Luwan Branch, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoli Zhang
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Henan Key Laboratory of Child Brain InjuryInstitute of Neuroscience and Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Carina Mallard
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Henrik Hagberg
- Centre of Perinatal Medicine & Health, Department of Obstetrics and Gynaecology, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Jianmei W. Leavenworth
- Department of NeurosurgeryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Xiaoyang Wang
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Henan Key Laboratory of Child Brain InjuryInstitute of Neuroscience and Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Centre of Perinatal Medicine & Health, Department of Obstetrics and Gynaecology, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
47
|
Chen W, Wang R, Chen C. Cerebral Myelination in a Bronchopulmonary Dysplasia Murine Model. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1321. [PMID: 37628321 PMCID: PMC10453924 DOI: 10.3390/children10081321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023]
Abstract
INTRODUCTION Bronchopulmonary dysplasia (BPD) is a devastating disease in preterm infants concurrent with neurodevelopmental disorders. Chronic hyperoxia exposure might also cause brain injury, but the evidence was insufficient. METHODS Neonatal C57BL/6J mice were exposed to hyperoxia from P0 to induce a BPD disease model. Lung histopathological morphology analyses were performed at P10, P15, and P20. Cerebral myelination was assessed using MBP (myelin basic protein, a major myelin protein), NfH (neurofilament heavy chain, a biomarker of neurofilament heavy chain), and GFAP (glial fibrillary acidic protein, a marker of astrocytes) as biomarkers by western blot and immunofluorescence. RESULTS Mice exposed to hyperoxia exhibited reduced and enlarged alveoli in lungs. During hyperoxia exposure, MBP declined at P10, but then increased to a comparable level to the air group at P15 and P20. Meanwhile, GFAP elevated significantly at P10, and the elevation sustained to P15 and P20. CONCLUSION Neonatal hyperoxia exposure caused an arrest of lung development, as well as an obstacle of myelination process in white matter of the immature brain, with a decline of MBP in the generation period of myelin and persistent astrogliosis.
Collapse
Affiliation(s)
- Wenwen Chen
- Children’s Hospital of Fudan University, Shanghai 201102, China; (W.C.); (R.W.)
- Key Laboratory of Neonatal Diseases, National Health Commission, Shanghai 201102, China
- Zhangzhou Municipal Hospital of Fujian Province, Zhangzhou 363000, China
| | - Ran Wang
- Children’s Hospital of Fudan University, Shanghai 201102, China; (W.C.); (R.W.)
- Key Laboratory of Neonatal Diseases, National Health Commission, Shanghai 201102, China
| | - Chao Chen
- Children’s Hospital of Fudan University, Shanghai 201102, China; (W.C.); (R.W.)
- Key Laboratory of Neonatal Diseases, National Health Commission, Shanghai 201102, China
| |
Collapse
|
48
|
Huang H, Jing B, Zhu F, Jiang W, Tang P, Shi L, Chen H, Ren G, Xia S, Wang L, Cui Y, Yang Z, Platero AJ, Hutchins AP, Chen M, Worley PF, Xiao B. Disruption of neuronal RHEB signaling impairs oligodendrocyte differentiation and myelination through mTORC1-DLK1 axis. Cell Rep 2023; 42:112801. [PMID: 37463107 PMCID: PMC11849431 DOI: 10.1016/j.celrep.2023.112801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/12/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
How neuronal signaling affects brain myelination remains poorly understood. We show dysregulated neuronal RHEB-mTORC1-DLK1 axis impairs brain myelination. Neuronal Rheb cKO impairs oligodendrocyte differentiation/myelination, with activated neuronal expression of the imprinted gene Dlk1. Neuronal Dlk1 cKO ameliorates myelination deficit in neuronal Rheb cKO mice, indicating that activated neuronal Dlk1 expression contributes to impaired myelination caused by Rheb cKO. The effect of Rheb cKO on Dlk1 expression is mediated by mTORC1; neuronal mTor cKO and Raptor cKO and pharmacological inhibition of mTORC1 recapitulate elevated neuronal Dlk1 expression. We demonstrate that both a secreted form of DLK1 and a membrane-bound DLK1 inhibit the differentiation of cultured oligodendrocyte precursor cells into oligodendrocytes expressing myelin proteins. Finally, neuronal expression of Dlk1 in transgenic mice reduces the formation of mature oligodendrocytes and myelination. This study identifies Dlk1 as an inhibitor of oligodendrocyte myelination and a mechanism linking altered neuronal signaling with oligodendrocyte dysfunction.
Collapse
Affiliation(s)
- Haijiao Huang
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China
| | - Bo Jing
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China.
| | - Feiyan Zhu
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China
| | - Wanxiang Jiang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ping Tang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Liyang Shi
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China
| | - Huiting Chen
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China
| | - Guoru Ren
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China
| | - Shiyao Xia
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China
| | - Luoling Wang
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China
| | - Yiyuan Cui
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhiwen Yang
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China
| | - Alexander J Platero
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew P Hutchins
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China
| | - Mina Chen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Paul F Worley
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Bo Xiao
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China.
| |
Collapse
|
49
|
Vepřek NA, Cooper MH, Laprell L, Yang EJN, Folkerts S, Bao R, Oertner TG, Pon LA, Zuchero JB, Trauner DH. Optical Control of G-Actin with a Photoswitchable Latrunculin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.17.549222. [PMID: 37502978 PMCID: PMC10370057 DOI: 10.1101/2023.07.17.549222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Actin is one of the most abundant proteins in eukaryotic cells and a key component of the cytoskeleton. A range of small molecules have emerged that interfere with actin dynamics by either binding to polymeric F-actin or monomeric G-actin to stabilize or destabilize filaments or prevent their formation and growth, respectively. Amongst these, the latrunculins, which bind to G-actin and affect polymerization, are widely used as tools to investigate actin-dependent cellular processes. Here, we report a photoswitchable version of latrunculin, termed opto-latrunculin (OptoLat), which binds to G-actin in a light-dependent fashion and affords optical control over actin polymerization. OptoLat can be activated with 390 - 490 nm pulsed light and rapidly relaxes to the inactive form in the dark. Light activated OptoLat induced depolymerization of F-actin networks in oligodendrocytes and budding yeast, as shown by fluorescence microscopy. Subcellular control of actin dynamics in human cancer cell lines was demonstrated by live cell imaging. Light-activated OptoLat also reduced microglia surveillance in organotypic mouse brain slices while ramification was not affected. Incubation in the dark did not alter the structural and functional integrity of microglia. Together, our data demonstrate that OptoLat is a useful tool for the elucidation of G-actin dependent dynamic processes in cells and tissues.
Collapse
Affiliation(s)
- Nynke A Vepřek
- Department of Chemistry, New York University, New York, NY 10003, USA
- Department of Chemistry, Ludwig Maximilian University, D-80539 Munich, Germany
| | - Madeline H Cooper
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura Laprell
- Institute for Synaptic Physiology, ZMNH, University Medical Center Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Emily Jie-Ning Yang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sander Folkerts
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Ruiyang Bao
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Thomas G Oertner
- Institute for Synaptic Physiology, ZMNH, University Medical Center Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Liza A Pon
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - J Bradley Zuchero
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dirk H Trauner
- Department of Chemistry, New York University, New York, NY 10003, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
50
|
Dominicis A, Del Giovane A, Torreggiani M, Recchia AD, Ciccarone F, Ciriolo MR, Ragnini-Wilson A. N-Acetylaspartate Drives Oligodendroglial Differentiation via Histone Deacetylase Activation. Cells 2023; 12:1861. [PMID: 37508525 PMCID: PMC10378218 DOI: 10.3390/cells12141861] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
An unmet clinical goal in demyelinating pathologies is to restore the myelin sheath prior to neural degeneration. N-acetylaspartate (NAA) is an acetylated derivative form of aspartate, abundant in the healthy brain but severely reduced during traumatic brain injury and in patients with neurodegenerative pathologies. How extracellular NAA variations impact the remyelination process and, thereby, the ability of oligodendrocytes to remyelinate axons remains unexplored. Here, we evaluated the remyelination properties of the oligodendroglial (OL) mouse cell line Oli-neuM under different concentrations of NAA using a combination of biochemical, qPCR, immunofluorescence assays, and in vitro engagement tests, at NAA doses compatible with those observed in healthy brains and during brain injury. We observed that oligodendroglia cells respond to decreasing levels of NAA by stimulating differentiation and promoting gene expression of myelin proteins in a temporally regulated manner. Low doses of NAA potently stimulate Oli-neuM to engage with synthetic axons. Furthermore, we show a concentration-dependent expression of specific histone deacetylases essential for MBP gene expression under NAA or Clobetasol treatment. These data are consistent with the idea that oligodendrocytes respond to lowering the NAA concentration by activating the remyelination process via deacetylase activation.
Collapse
Affiliation(s)
| | - Alice Del Giovane
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Matteo Torreggiani
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | - Fabio Ciccarone
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- IRCCS San Raffaele, 00166 Rome, Italy
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- IRCCS San Raffaele, 00166 Rome, Italy
| | | |
Collapse
|