1
|
García-Domínguez M. A Comprehensive Analysis of Fibromyalgia and the Role of the Endogenous Opioid System. Biomedicines 2025; 13:165. [PMID: 39857749 PMCID: PMC11762748 DOI: 10.3390/biomedicines13010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Fibromyalgia represents a chronic pain disorder characterized by musculoskeletal pain, fatigue, and cognitive impairments. The exact mechanisms underlying fibromyalgia remain undefined; as a result, diagnosis and treatment present considerable challenges. On the other hand, the endogenous opioid system is believed to regulate pain intensity and emotional responses; hence, it might be expected to play a key role in the enhanced sensitivity experienced by fibromyalgia patients. One explanation for the emergence of disrupted pain modulation in individuals with fibromyalgia is a significant reduction in opioid receptor activity or an imbalance in the levels of endogenous opioid peptides. Further research is essential to clarify the complex details of the mechanisms underlying this abnormality. This complexity arises from the notion that an improved understanding could contribute to the development of innovative therapeutic strategies aimed at targeting the endogenous opioid system in the context of fibromyalgia. Although progress is being made, a complete understanding of these complexities remains a significant challenge. This paradigm has the potential to revolutionize the complex management of fibromyalgia, although its implementation may experience challenges. The effectiveness of this approach depends on multiple factors, but the implications could be profound. Despite the challenges involved in this transformation, the potential for improving patient care is considerable, as this condition has long been inadequately treated.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Program of Immunology and Immunotherapy, CIMA-Universidad de Navarra, 31008 Pamplona, Spain;
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
2
|
Ichinose Y, Nakatsuji M, Bando H, Yamamoto M, Kanzawa M, Yoshino K, Fukuoka H, Ogawa W. Understanding negative feedback: Changes in high-molecular-weight adrenocorticotropic hormone in adrenocorticotropic hormone-independent Cushing's syndrome. J Neuroendocrinol 2024; 36:e13438. [PMID: 39136082 DOI: 10.1111/jne.13438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/21/2024] [Accepted: 07/22/2024] [Indexed: 11/16/2024]
Abstract
Cushing's syndrome is characterized by chronic glucocorticoid oversecretion and diverse clinical manifestations. Distinguishing between adrenocorticotropic hormone (ACTH)-independent and ACTH-dependent forms is crucial for determining treatment options. Plasma ACTH levels aid in the differential diagnosis, with undetectable or low levels suggesting ACTH-independent hypercortisolemia. ACTH is derived from pro-opiomelanocortin, and its processing involves prohormone convertase 1/3. High-molecular-weight ACTH is generally found in ACTH-producing pituitary tumors and ectopic ACTH syndrome. The mechanism of negative feedback and the process of high-molecular-weight ACTH alternation during ACTH-independent Cushing's syndrome remain unclear. A 40-year-old woman with hypertension and multiple fractures developed symptoms suggestive of Cushing's syndrome. Computed tomography revealed a left adrenocortical tumor along with atrophy of the right adrenal gland. ACTH levels were undetectable at the previous clinic, indicating ACTH-independent Cushing's syndrome. However, subsequent measurements at our hospital revealed non-suppressed ACTH (18.1 pg/mL), prompting further investigation. Gel exclusion chromatography confirmed the presence of high-molecular-weight ACTH. Metyrapone treatment decreased the cortisol levels. In this situation, in which ACTH levels should be elevated, a decrease in high-molecular-weight ACTH levels was observed. Histological findings revealed cortisol-producing adenoma without ACTH expression. This case highlights the importance of assay differences in evaluating ACTH concentrations and introduces a novel finding of circulating high-molecular-weight ACTH. The observed decline in high-molecular-weight ACTH levels suggests a potential time lag in the negative feedback within the hypothalamic-pituitary-adrenal axis exhibited by glucocorticoids. This temporal aspect of the regulation of ACTH-related molecules warrants further exploration to enhance our understanding of the hypothalamic-pituitary-adrenal axis feedback mechanism.
Collapse
Affiliation(s)
- Yuto Ichinose
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
| | - Mei Nakatsuji
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
| | - Hironori Bando
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
| | - Masaaki Yamamoto
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Maki Kanzawa
- Division of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kei Yoshino
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
| | - Hidenori Fukuoka
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
3
|
Minakhina S, Kim SY, Wondisford FE. Regulation of hypothalamic reactive oxygen species and feeding behavior by phosphorylation of the beta 2 thyroid hormone receptor isoform. Sci Rep 2024; 14:7200. [PMID: 38531895 PMCID: PMC10965981 DOI: 10.1038/s41598-024-57364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Unlike other thyroid hormone receptors (THRs), the beta 2 isoform (THRB2) has a restricted expression pattern and is uniquely and abundantly phosphorylated at a conserved serine residue S101 (S102 in humans). Using tagged and or phosphorylation-defective (S101A) THRB2 mutant mice, we show that THRB2 is present in a large subset of POMC neurons and mitigates ROS accumulation during ROS-triggering events, such as fasting/refeeding or high fat diet (HFD). Excessive ROS accumulation in mutant POMC neurons was accompanied by a skewed production of orexigenic/anorexigenic hormones, resulting in elevated food intake. The prolonged exposure to pathogenic hypothalamic ROS levels during HFD feeding lead to a significant loss of POMC neurons in mutant versus wild-type (WT) mice. In cultured cells, the presence of WT THRB2 isoform, but not other THRs, or THRB2S101A, reduced ROS accumulation upon exogenous induction of oxidative stress by tert-butyl hydroperoxide. The protective function of phospho-THRB2 (pTHRB2) did not require thyroid hormone (TH), suggesting a TH-independent role of the THRB2 isoform, and phospho-S101 in particular, in regulating oxidative stress. We propose that pTHRB2 has a fundamental role in neuronal protection against ROS cellular damage, and mitigates hypothalamic pathological changes found in diet-induced obesity.
Collapse
Affiliation(s)
- Svetlana Minakhina
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
- Mount Sinai School of Medicine, New York, NY, USA.
| | - Sun Young Kim
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Fredric E Wondisford
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
- University of Arizona College of Medicine, Phoenix, AZ, USA.
| |
Collapse
|
4
|
Liu S, Ezran C, Wang MFZ, Li Z, Awayan K, Long JZ, De Vlaminck I, Wang S, Epelbaum J, Kuo CS, Terrien J, Krasnow MA, Ferrell JE. An organism-wide atlas of hormonal signaling based on the mouse lemur single-cell transcriptome. Nat Commun 2024; 15:2188. [PMID: 38467625 PMCID: PMC10928088 DOI: 10.1038/s41467-024-46070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Hormones mediate long-range cell communication and play vital roles in physiology, metabolism, and health. Traditionally, endocrinologists have focused on one hormone or organ system at a time. Yet, hormone signaling by its very nature connects cells of different organs and involves crosstalk of different hormones. Here, we leverage the organism-wide single cell transcriptional atlas of a non-human primate, the mouse lemur (Microcebus murinus), to systematically map source and target cells for 84 classes of hormones. This work uncovers previously-uncharacterized sites of hormone regulation, and shows that the hormonal signaling network is densely connected, decentralized, and rich in feedback loops. Evolutionary comparisons of hormonal genes and their expression patterns show that mouse lemur better models human hormonal signaling than mouse, at both the genomic and transcriptomic levels, and reveal primate-specific rewiring of hormone-producing/target cells. This work complements the scale and resolution of classical endocrine studies and sheds light on primate hormone regulation.
Collapse
Affiliation(s)
- Shixuan Liu
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Camille Ezran
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Michael F Z Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Zhengda Li
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kyle Awayan
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford, CA, USA
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Sheng Wang
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Jacques Epelbaum
- Adaptive Mechanisms and Evolution (MECADEV), UMR 7179, National Center for Scientific Research, National Museum of Natural History, Brunoy, France
| | - Christin S Kuo
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jérémy Terrien
- Adaptive Mechanisms and Evolution (MECADEV), UMR 7179, National Center for Scientific Research, National Museum of Natural History, Brunoy, France
| | - Mark A Krasnow
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford, CA, USA.
| | - James E Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
5
|
Barakat GM, Ramadan W, Assi G, Khoury NBE. Satiety: a gut-brain-relationship. J Physiol Sci 2024; 74:11. [PMID: 38368346 PMCID: PMC10874559 DOI: 10.1186/s12576-024-00904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/30/2024] [Indexed: 02/19/2024]
Abstract
Many hormones act on the hypothalamus to control hunger and satiety through various pathways closely associated with several factors. When food is present in the gastro intestinal (GI) tract, enteroendocrine cells (EECs) emit satiety signals such as cholecystokinin (CCK), glucagon like peptide-1 (GLP-1) and peptide YY (PYY), which can then communicate with the vagus nerve to control food intake. More specifically, satiety has been shown to be particularly affected by the GLP-1 hormone and its receptor agonists that have lately been acknowledged as a promising way to reduce weight. In addition, there is increasing evidence that normal flora is also involved in the peripheral, central, and reward system that impact satiety. Moreover, neurologic pathways control satiety through neurotransmitters. In this review, we discuss the different roles of each of the GLP-1 hormone and its agonist, gut microbiomes, as well as neurotransmitters and their interconnected relation in the regulation of body's satiety homeostasis.
Collapse
Affiliation(s)
- Ghinwa M Barakat
- Biological and Chemical Sciences Department, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon.
| | - Wiam Ramadan
- Biological and Chemical Sciences Department, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon
- Nutrition and Food Sciences Department, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon
| | - Ghaith Assi
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Noura B El Khoury
- Psychology department, Faculty of Arts and Sciences, University of Balamand, Balamand, Lebanon
| |
Collapse
|
6
|
Tsuneki H, Honda K, Sekine Y, Yahata K, Yasue M, Fujishima M, Takeda R, Wada T, Sasaoka T. C-terminal peptide of preproorexin enhances brain-derived neurotrophic factor expression in rat cerebrocortical cells and recognition memory in mice. Eur J Pharmacol 2024; 964:176306. [PMID: 38145647 DOI: 10.1016/j.ejphar.2023.176306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023]
Abstract
During the production of orexin A and B from preproorexin, a common precursor protein, in hypothalamic orexin neurons, C-terminal peptide (herein called preproorexin C-peptide) is concomitantly produced via post-translational processing. The predicted three-dimensional structure of preproorexin C-peptide is similar among mammalian species, suggestive of a conserved function in the mammalian brain. However, C-peptide has long been regarded as a non-functional peptide. We herein examined the effects of rat and/or mouse preproorexin C-peptide on gene expression and cell viability in cultured rat cerebrocortical cells and on memory behavior in C57BL/6J mice. Rat and mouse C-peptides both increased brain-derived neurotrophic factor (Bdnf) mRNA levels. Moreover, C-peptide enhanced high K+-, glutamate-, and BDNF-induced increases in Bdnf mRNA levels without affecting forskolin-induced Bdnf expression. H-89, a protein kinase A inhibitor, blocked C-peptide-induced Bdnf expression, whereas rolipram, a phosphodiesterase inhibitor, enhanced this effect. Intracellular cyclic AMP concentrations were elevated by C-peptide. These results demonstrate that preproorexin C-peptide promoted Bdnf mRNA expression by a cyclic AMP-dependent mechanism. Eleven amino acids at the N terminus of rat preproorexin C-peptide exerted similar effects on Bdnf expression as full-length preproorexin C-peptide. Preproorexin C-peptide also exerted protective effects against CoCl2-induced neuronal cell death. An intracerebroventricular injection of mouse preproorexin C-peptide induced c-fos and Bdnf expression in the cerebral cortex and hippocampus and enhanced novel object recognition memory in mice. Collectively, the present results show that preproorexin C-peptide is a functional substance, at least in some pharmacological and neuronal settings.
Collapse
Affiliation(s)
- Hiroshi Tsuneki
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan; Department of Integrative Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Kosuke Honda
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yurika Sekine
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Koji Yahata
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Moeka Yasue
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Masashi Fujishima
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ryuta Takeda
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Tsutomu Wada
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Toshiyasu Sasaoka
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
7
|
Moore B, Jolly J, Izumiyama M, Kawai E, Ravasi T, Ryu T. Tissue-specific transcriptional response of post-larval clownfish to ocean warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168221. [PMID: 37923256 DOI: 10.1016/j.scitotenv.2023.168221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Anthropogenically driven climate change is predicted to increase average sea surface temperatures, as well as the frequency and intensity of marine heatwaves in the future. This increasing temperature is predicted to have a range of negative physiological impacts on multiple life-stages of coral reef fish. Nevertheless, studies of early-life stages remain limited, and tissue-specific transcriptomic studies of post-larval coral reef fish are yet to be conducted. Here, in an aquaria-based study we investigate the tissue-specific (brain, liver, muscle, and digestive tract) transcriptomic response of post-larval (20 dph) Amphiprion ocellaris to temperatures associated with future climate change (+3 °C). Additionally, we utilized metatranscriptomic sequencing to investigate how the microbiome of the digestive tract changes at +3 °C. Our results show that the transcriptional response to elevated temperatures is highly tissue-specific, as the number of differentially expressed genes (DEGs) and gene functions varied amongst the brain (102), liver (1785), digestive tract (380), and muscle (447). All tissues displayed DEGs associated with thermal stress, as 23 heat-shock protein genes were upregulated in all tissues. Our results indicate that post-larval clownfish may experience liver fibrosis-like symptoms at +3 °C as genes associated with extracellular matrix structure, oxidative stress, inflammation, glucose transport, and metabolism were all upregulated. We also observe a shift in the digestive tract microbiome community structure, as Vibrio sp. replace Escherichia coli as the dominant bacteria. This shift is coupled with the dysregulation of various genes involved in immune response in the digestive tract. Overall, this study highlights post-larval clownfish will display tissue-specific transcriptomic responses to future increases in temperature, with many potentially harmful pathways activated at +3 °C.
Collapse
Affiliation(s)
- Billy Moore
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Jeffrey Jolly
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Michael Izumiyama
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Erina Kawai
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Taewoo Ryu
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
8
|
Engin A. The Mechanism of Leptin Resistance in Obesity and Therapeutic Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:463-487. [PMID: 39287862 DOI: 10.1007/978-3-031-63657-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Leptin resistance is induced via leptin signaling blockade by chronic overstimulation of the leptin receptor and intracellular signaling defect or increased hypothalamic inflammation and suppressor of cytokine signaling (SOCS)-3 expression. High-fat diet triggers leptin resistance induced by at least two independent causes: first, the limited ability of peripheral leptin to activate hypothalamic signaling transducers and activators of transcription (STAT) signaling and secondly a signaling defect in leptin-responsive hypothalamic neurons. Central leptin resistance is dependent on decreased leptin transport efficiency across the blood brain barrier (BBB) rather than hypothalamic leptin insensitivity. Since the hypothalamic phosphorylated STAT3 (pSTAT3) represents a sensitive and specific readout of leptin receptor-B signaling, the assessment of pSTAT3 levels is the gold standard. Hypertriglyceridemia is one of important factors to inhibit the transport of leptin across BBB in obesity. Mismatch between high leptin and the amount of leptin receptor expression in obesity triggers brain leptin resistance via increasing hypothalamic inflammation and SOCS-3 expression. Therapeutic strategies that regulate the passage of leptin to the brain include the development of modifications in the structure of leptin analogues as well as the synthesis of new leptin receptor agonists with increased BBB permeability. In the hyperleptinemic state, polyethylene glycol (PEG)-modified leptin is unable to pass through the BBB. Peripheral histone deacetylase (HDAC) 6 inhibitor, tubastatin, and metformin increase central leptin sensitization. While add-on therapy with anagliptin, metformin and miglitol reduce leptin concentrations, the use of long-acting leptin analogs, and exendin-4 lead to the recovery of leptin sensitivity. Contouring surgery with fat removal, and bariatric surgery independently of the type of surgery performed provide significant improvement in leptin concentrations. Although approaches to correcting leptin resistance have shown some success, no clinically effective application has been developed to date. Due to the impairment of central and peripheral leptin signaling, as well as the extensive integration of leptin-sensitive metabolic pathways with other neurons, the effectiveness of methods used to eliminate leptin resistance is extremely limited.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
9
|
Podgórski R, Galiniak S, Mazur A, Podgórska D, Domin A. Serum Levels of Hormones Regulating Appetite in Patients with Fetal Alcohol Spectrum Disorders. Nutrients 2023; 15:4215. [PMID: 37836499 PMCID: PMC10574197 DOI: 10.3390/nu15194215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Prenatal alcohol exposure is the cause of impaired growth and a wide range of developmental and behavioral disorders in the child. Improper eating patterns are commonly associated with fetal alcohol spectrum disorders (FASD) and may contribute to poor nutrition and growth restriction. To date, there have been only a few studies investigating the hormonal regulation of appetite in patients with FASD. We analyzed the levels of neuropeptide Y (NPY), Agouti signaling protein (ASP), alpha-melanocyte-stimulating hormone (α-MSH), and kisspeptin (KISS1) in 57 patients with FASD and 23 healthy controls. A comparison of the hormone levels studied was also performed in subgroups of fetal alcohol syndrome (FAS) and neurobehavioral disorder associated with prenatal alcohol exposure (ND PAE), as well as in males and females. We have found no differences in hormone levels tested between affected individuals and the controls and between FASD subgroups. In addition, sex had no effect on hormone levels. However, we identified some associations between hormone concentrations and parameters describing the clinical status of patients with FASD. Most of them concerned ASP, which has shown a positive correlation with age and hormones involved in appetite and metabolism, such as proopiomelanocortin (POMC) and adrenocorticotropic hormone (ACTH). We have also found a negative correlation of α-MSH with age, BMI percentile, and glycated hemoglobin (HbA1c). Furthermore, we found a weak negative correlation of NPY with HbA1c. Although FASD has been associated with impaired child growth and development, including nutrition and puberty onset, we did not identify differences in the levels of the hormones studied, which may suggest that prenatal alcohol exposure does not affect the levels of these metabolites.
Collapse
Affiliation(s)
- Rafał Podgórski
- Department of Biochemistry, Institute of Medical Sciences, Medical College of Rzeszow University, 35-310 Rzeszow, Poland;
| | - Sabina Galiniak
- Department of Biochemistry, Institute of Medical Sciences, Medical College of Rzeszow University, 35-310 Rzeszow, Poland;
| | - Artur Mazur
- Department of Pediatric, Institute of Medical Sciences, Medical College of Rzeszow University, 35-310 Rzeszow, Poland; (A.M.); (A.D.)
| | - Dominika Podgórska
- Department of Rheumatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-310 Rzeszow, Poland;
| | - Agnieszka Domin
- Department of Pediatric, Institute of Medical Sciences, Medical College of Rzeszow University, 35-310 Rzeszow, Poland; (A.M.); (A.D.)
| |
Collapse
|
10
|
Sideri Gugger A, Dimino C, Panigrahi SK, Mayer L, Smiley RM, Korner J, Wardlaw SL. Defining Predictors of Weight Loss Response to Lorcaserin. J Clin Endocrinol Metab 2023; 108:2262-2271. [PMID: 36897161 PMCID: PMC10438887 DOI: 10.1210/clinem/dgad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/20/2023] [Accepted: 03/08/2023] [Indexed: 03/11/2023]
Abstract
CONTEXT Individual responses to weight loss (WL) medications vary widely and prediction of response remains elusive. OBJECTIVE We investigated biomarkers associated with use of lorcaserin (LOR), a 5HT2cR agonist that targets proopiomelanocortin (POMC) neurons that regulate energy and glucose homeostasis, to identify predictors of clinical efficacy. METHODS Thirty individuals with obesity were treated with 7 days of placebo and LOR in a randomized crossover study. Nineteen participants continued on LOR for 6 months. Cerebrospinal fluid (CSF) POMC peptide measurements were used to identify potential biomarkers that predict WL. Insulin, leptin, and food intake during a meal were also studied. RESULTS LOR induced a significant decrease in CSF levels of the POMC prohormone and an increase in its processed peptide β-endorphin after 7 days; β-endorphin/POMC increased by 30% (P < .001). This was accompanied by a substantial decrease in insulin, glucose, and homeostasis model assessment of insulin resistance before WL. Changes in CSF POMC peptides persisted after WL (6.9%) at 6 months that were distinct from prior reports after diet alone. Changes in POMC, food intake, or other hormones did not predict WL. However, baseline CSF POMC correlated negatively with WL (P = .07) and a cutoff level of CSF POMC was identified that predicted more than 10% WL. CONCLUSION Our results provide evidence that LOR affects the brain melanocortin system in humans and that effectiveness is increased in individuals with lower melanocortin activity. Furthermore, early changes in CSF POMC parallel WL-independent improvements in glycemic indexes. Thus, assessment of melanocortin activity could provide a way to personalize pharmacotherapy of obesity with 5HT2cR agonists.
Collapse
Affiliation(s)
- Aristea Sideri Gugger
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Cara Dimino
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Sunil K Panigrahi
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Laurel Mayer
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Richard M Smiley
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Judith Korner
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Sharon L Wardlaw
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
11
|
Li Y, Zhu S, Du D, Li Q, Xie K, Chen L, Feng X, Wu X, Sun Z, Zhou J, Yang J, Shu G, Wang S, Gao P, Zhu C, Jiang Q, Wang L. TLR4 in POMC neurons regulates thermogenesis in a sex-dependent manner. J Lipid Res 2023; 64:100368. [PMID: 37028769 PMCID: PMC10205441 DOI: 10.1016/j.jlr.2023.100368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/10/2023] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
The rising prevalence of obesity has become a worldwide health concern. Obesity usually occurs when there is an imbalance between energy intake and energy expenditure. However, energy expenditure consists of several components, including metabolism, physical activity, and thermogenesis. Toll-like receptor 4 (TLR4) is a transmembrane pattern recognition receptor, and it is abundantly expressed in the brain. Here, we showed that pro-opiomelanocortin (POMC)-specific deficiency of TLR4 directly modulates brown adipose tissue thermogenesis and lipid homeostasis in a sex-dependent manner. Deleting TLR4 in POMC neurons is sufficient to increase energy expenditure and thermogenesis resulting in reduced body weight in male mice. POMC neuron is a subpopulation of tyrosine hydroxylase neurons and projects into brown adipose tissue, which regulates the activity of sympathetic nervous system and contributes to thermogenesis in POMC-TLR4-KO male mice. By contrast, deleting TLR4 in POMC neurons decreases energy expenditure and increases body weight in female mice, which affects lipolysis of white adipose tissue (WAT). Mechanistically, TLR4 KO decreases the expression of the adipose triglyceride lipase and lipolytic enzyme hormone-sensitive lipase in WAT in female mice. Furthermore, the function of immune-related signaling pathway in WAT is inhibited because of obesity, which exacerbates the development of obesity reversely. Together, these results demonstrate that TLR4 in POMC neurons regulates thermogenesis and lipid balance in a sex-dependent manner.
Collapse
Affiliation(s)
- Yongxiang Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shuqing Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Dan Du
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Qiyong Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Kailai Xie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lvshuang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiajie Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xin Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhonghua Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jingjing Zhou
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jinping Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Canjun Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
The Association of the Hypothalamic-Pituitary-Adrenal Axis with Appetite Regulation in Children with Fetal Alcohol Spectrum Disorders (FASDs). Nutrients 2023; 15:nu15061366. [PMID: 36986097 PMCID: PMC10053353 DOI: 10.3390/nu15061366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Prenatal alcohol exposure causes growth impairment and a wide range of developmental, physical, and cognitive disorders in children, collectively referred to as fetal alcohol spectrum disorders (FASDs). In the course of FASDs, abnormalities can also affect eating behavior and nutritional status, but these problems have received little attention. Therefore, the aim of our study was to determine the levels of hormones involved in the action of the hypothalamic–pituitary–adrenal axis: proopiomelanocortin (POMC), cortisol, and adrenocorticotropic hormone (ACTH), in the serum of patients with FASDs. To our knowledge, none of these hormones studied have yet been evaluated in FASDs to date. We investigated 62 FASD patients and 23 healthy controls by applying an enzyme-linked immunosorbent method (ELISA). Fasting POMC levels were significantly lower in patients with FASDs (10.97 vs. 18,57 ng/mL, p = 0.039) compared to controls. However, there were no differences in cortisol concentrations. Additionally, the sex and subgroup status (fetal alcohol syndrome (FAS), neurobehavioral disorder associated with prenatal alcohol exposure (ND-PAE), and FASD risk) did not affect hormone levels. POMC was positively correlated with some clinical parameters such as age, BMI percentile, carbohydrate biomarkers, and ACTH. A positive correlation was observed between ACTH and cortisol levels, as well as ACTH and cholesterol levels. Data analysis showed no HPA axis abnormalities in the form of elevated serum cortisol and ACTH levels. Differences in POMC concentration may indicate the involvement and/or impairment of central nervous system structures in hormonal alterations in FASD individuals, caused by prenatal alcohol exposure. Hormonal dysregulation in FASDs can contribute to reduced growth and development, as well as many other disturbed processes, including neurological/neurodevelopmental dysfunctions. Further insightful studies involving a larger group of patients are needed to determine the potential impact of the measured hormones.
Collapse
|
13
|
Wang X, Wang X, Cong P, Wu L, Ma Y, Wang Z, Jiang T, Xu J. Sea cucumber ether-phospholipids improve hepatic steatosis and enhance hypothalamic autophagy in high-fat diet-fed mice. J Nutr Biochem 2022; 106:109032. [DOI: 10.1016/j.jnutbio.2022.109032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/02/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
|
14
|
He M, Yao J, Zhang Z, Zhang Y, Chen R, Gu Z, Huang X, Deng C, Zhou R, Fan J, Zhang B, Xie Y, Gao G, Sun T. Gold nanoclusters eliminate obesity induced by antipsychotics. Sci Rep 2022; 12:5502. [PMID: 35365730 PMCID: PMC8975852 DOI: 10.1038/s41598-022-09541-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/24/2022] [Indexed: 12/18/2022] Open
Abstract
Obesity induced by antipsychotics have plagued more than 20 million people worldwide. However, no drug is available to eliminate the obesity induced by antipsychotics. Here we examined the effect and potential mechanisms of a gold nanoclusters (AuNCs) modified by N-isobutyryl-L-cysteine on the obesity induced by olanzapine, the most prescribed but obesogenic antipsychotics, in a rat model. Our results showed that AuNCs completely prevented and reversed the obesity induced by olanzapine and improved glucose metabolism profile in rats. Further mechanism investigations revealed that AuNCs exert its anti-obesity function through inhibition of olanzapine-induced dysfunction of histamine H1 receptor and proopiomelanocortin signaling therefore reducing hyperphagia, and reversing olanzapine-induced inhibition of uncoupling-protein-1 signaling which increases thermogenesis. Together with AuNCs' good biocompatibility, these findings not only provide AuNCs as a promising nanodrug candidate for treating obesity induced by antipsychotics, but also open an avenue for the potential application of AuNCs-based nanodrugs in treating general obesity.
Collapse
Affiliation(s)
- Meng He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Jing Yao
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Zijun Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Ying Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Rui Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhenhua Gu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - XuFeng Huang
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Chao Deng
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Ruqin Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Jun Fan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Baohua Zhang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Capital Medical University, Beijing, 100191, China
| | - Yanqian Xie
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
15
|
Wang X, Liu F, Cui Y, Yin Y, Li S, Li X. Apple Polyphenols Extracts Ameliorate High Carbohydrate Diet-Induced Body Weight Gain by Regulating the Gut Microbiota and Appetite. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:196-210. [PMID: 34935369 DOI: 10.1021/acs.jafc.1c07258] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To investigate the potential contribution of appetite regulation and modulation of gut microbiota to the ameliorated effects of apple polyphenols extracts (APE) on high carbohydrate diet (HCD)-induced body weight (BW) gain, we conducted this study. One hundred C57BL/6 male mice were randomly divided into seven groups and fed with the following diets for 12 weeks: chow diet (CON), HCD (HCD), high fructose and sucrose diet (HSCD), and HCD and HSCD with 125 or 500 mg/kg·day APE gavage. Compared to the CON group, the BW of mice in the HCD and HSCD groups increased significantly. HSCD induced a more significant weight gain in the white adipose tissue (WAT) and liver than HCD, accompanied by severe impairment of glucose tolerance and a larger diameter of adipocytes. On the other hand, by decreasing food intake, APE significantly reduced BW via mechanisms, including decreased weights of the WAT and liver, amelioration of glucose tolerance, and amplification of WAT browning by upregulating the mRNA levels of Ucp-1 and Cidea. Moreover, APE promoted transcription and secretion of GLP-1, with the increased expression of gut anorexigenic hormone peptides Ffar 2/3 in the colon and anorectic neuropeptide gene expression of Pomc, Cart, and Mc4r in the hypothalamus, causing increased satiety. Additionally, APE significantly increased Verrucomicrobia colonization and the relative abundance of Akkermansia. APE potentially ameliorates high simple carbohydrate diet-induced body weight gain by mechanisms related to gut microbiota regulation and appetite inhibition.
Collapse
Affiliation(s)
- Xinjing Wang
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Fang Liu
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Yuan Cui
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Yan Yin
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Shilan Li
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Xinli Li
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, P. R. China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
16
|
Yang D, Hou X, Yang G, Li M, Zhang J, Han M, Zhang Y, Liu Y. Effects of the POMC System on Glucose Homeostasis and Potential Therapeutic Targets for Obesity and Diabetes. Diabetes Metab Syndr Obes 2022; 15:2939-2950. [PMID: 36186941 PMCID: PMC9521683 DOI: 10.2147/dmso.s380577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
The hypothalamus is indispensable in energy regulation and glucose homeostasis. Previous studies have shown that pro-opiomelanocortin neurons receive both central neuronal signals, such as α-melanocyte-stimulating hormone, β-endorphin, and adrenocorticotropic hormone, as well as sense peripheral signals such as leptin, insulin, adiponectin, glucagon-like peptide-1, and glucagon-like peptide-2, affecting glucose metabolism through their corresponding receptors and related signaling pathways. Abnormalities in these processes can lead to obesity, type 2 diabetes, and other metabolic diseases. However, the mechanisms by which these signal molecules fulfill their role remain unclear. Consequently, in this review, we explored the mechanisms of these hormones and signals on obesity and diabetes to suggest potential therapeutic targets for obesity-related metabolic diseases. Multi-drug combination therapy for obesity and diabetes is becoming a trend and requires further research to help patients to better control their blood glucose and improve their prognosis.
Collapse
Affiliation(s)
- Dan Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xintong Hou
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Guimei Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Mengnan Li
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jian Zhang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Minmin Han
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, People’s Republic of China
- Correspondence: Yi Zhang, Department of Pharmacology, Shanxi Medical University, Taiyuan, People’s Republic of China, Email
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- Yunfeng Liu, Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China, Tel +86 18703416196, Email
| |
Collapse
|
17
|
Saucisse N, Mazier W, Simon V, Binder E, Catania C, Bellocchio L, Romanov RA, Léon S, Matias I, Zizzari P, Quarta C, Cannich A, Meece K, Gonzales D, Clark S, Becker JM, Yeo GSH, Fioramonti X, Merkle FT, Wardlaw SL, Harkany T, Massa F, Marsicano G, Cota D. Functional heterogeneity of POMC neurons relies on mTORC1 signaling. Cell Rep 2021; 37:109800. [PMID: 34644574 DOI: 10.1016/j.celrep.2021.109800] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 07/21/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022] Open
Abstract
Hypothalamic pro-opiomelanocortin (POMC) neurons are known to trigger satiety. However, these neuronal cells encompass heterogeneous subpopulations that release γ-aminobutyric acid (GABA), glutamate, or both neurotransmitters, whose functions are poorly defined. Using conditional mutagenesis and chemogenetics, we show that blockade of the energy sensor mechanistic target of rapamycin complex 1 (mTORC1) in POMC neurons causes hyperphagia by mimicking a cellular negative energy state. This is associated with decreased POMC-derived anorexigenic α-melanocyte-stimulating hormone and recruitment of POMC/GABAergic neurotransmission, which is restrained by cannabinoid type 1 receptor signaling. Electrophysiology and optogenetic studies further reveal that pharmacological blockade of mTORC1 simultaneously activates POMC/GABAergic neurons and inhibits POMC/glutamatergic ones, implying that the functional specificity of these subpopulations relies on mTORC1 activity. Finally, POMC neurons with different neurotransmitter profiles possess specific molecular signatures and spatial distribution. Altogether, these findings suggest that mTORC1 orchestrates the activity of distinct POMC neurons subpopulations to regulate feeding behavior.
Collapse
Affiliation(s)
- Nicolas Saucisse
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Wilfrid Mazier
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Vincent Simon
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Elke Binder
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Caterina Catania
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Luigi Bellocchio
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Roman A Romanov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria
| | - Stéphane Léon
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Isabelle Matias
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Philippe Zizzari
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Carmelo Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Astrid Cannich
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Kana Meece
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Delphine Gonzales
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Samantha Clark
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Julia M Becker
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Giles S H Yeo
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Xavier Fioramonti
- NutriNeuro, UMR 1286 INRAE, Bordeaux University, Bordeaux INP, F-33000 Bordeaux, France
| | - Florian T Merkle
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Sharon L Wardlaw
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria; Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Federico Massa
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Giovanni Marsicano
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France.
| |
Collapse
|
18
|
de Guia RM, Hassing AS, Ma T, Plucinska K, Holst B, Gerhart-Hines Z, Emanuelli B, Treebak JT. Ablation of Nampt in AgRP neurons leads to neurodegeneration and impairs fasting- and ghrelin-mediated food intake. FASEB J 2021; 35:e21450. [PMID: 33788980 DOI: 10.1096/fj.202002740r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Agouti-related protein (AgRP) neurons in the arcuate nucleus of the hypothalamus regulates food intake and whole-body metabolism. NAD+ regulates multiple cellular processes controlling energy metabolism. Yet, its role in hypothalamic AgRP neurons to control food intake is poorly understood. Here, we aimed to assess whether genetic deletion of nicotinamide phosphoribosyltransferase (Nampt), a rate-limiting enzyme in NAD+ production, affects AgRP neuronal function to impact whole-body metabolism and food intake. Metabolic parameters during fed and fasted states, and upon systemic ghrelin and leptin administration were studied in AgRP-specific Nampt knockout (ARNKO) mice. We monitored neuropeptide expression levels and density of AgRP neurons in ARNKO mice from embryonic to adult age. NPY cells were used to determine effects of NAMPT inhibition on neuronal viability, energy status, and oxidative stress in vitro. In these cells, NAD+ depletion reduced ATP levels, increased oxidative stress, and promoted cell death. Agrp expression in the hypothalamus of ARNKO mice gradually decreased after weaning due to progressive AgRP neuron degeneration. Adult ARNKO mice had normal glucose and insulin tolerance, but exhibited an elevated respiratory exchange ratio (RER) when fasted. Remarkably, fasting-induced food intake was unaffected in ARNKO mice when evaluated in metabolic cages, but fasting- and ghrelin-induced feeding and body weight gain decreased in ARNKO mice when evaluated outside metabolic cages. Collectively, deletion of Nampt in AgRP neurons causes progressive neurodegeneration and impairs fasting and ghrelin responses in a context-dependent manner. Our data highlight an essential role of Nampt in AgRP neuron function and viability.
Collapse
Affiliation(s)
- Roldan Medina de Guia
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna S Hassing
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tao Ma
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaja Plucinska
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zach Gerhart-Hines
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brice Emanuelli
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Chu C, Huang Y, Ru Y, Lu X, Zeng X, Liu K, Gan L, Zhang Y, Zhao S. α-MSH ameliorates corneal surface dysfunction in scopolamine-induced dry eye rats and human corneal epithelial cells via enhancing EGFR expression. Exp Eye Res 2021; 210:108685. [PMID: 34252414 DOI: 10.1016/j.exer.2021.108685] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 01/02/2023]
Abstract
Dry eye (DE) is a chronic, multifactorial ocular surface disease associated with visual disturbance, tear film instability, hyperosmolarity, ocular surface inflammation and damage. Effective intervention is necessary to control this disease. In this study we topically applied α-melanocyte stimulating hormone (α-MSH) on the ocular surface of scopolamine-induced DE rats and found that it promoted tear secretion, reduced tear breakup time and fluorescein sodium staining and increased the number of conjunctival goblet cells. To investigate the mechanism, protein array was conducted, which showed that α-MSH exerted its effects via epithelial growth factor receptor (EGFR) in the JAK-STAT signaling pathway. Furthermore, in vitro experiments showed that α-MSH protected human corneal epithelial cells (hCECs) by maintaining their migration ability and viability and decreasing apoptosis. However, blockade of EGFR abolished these protective effects. Moreover, α-MSH decreased the level of autophagy in benzalkonium chloride (BAC)-stressed hCECs via EGFR. These results demonstrated that α-MSH ameliorated lesions and restored ocular surface functions by upregulating EGFR expression.
Collapse
Affiliation(s)
- Chenchen Chu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Yue Huang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Yusha Ru
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xiaoxiao Lu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xiaoyu Zeng
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Ke Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Lu Gan
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Yan Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| | - Shaozhen Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| |
Collapse
|
20
|
Leyrer-Jackson JM, Hood LE, Olive MF. Alcohol consumption preferentially activates a subset of pro-opiomelanocortin (POMC) producing neurons targeting the amygdala. Neuropharmacology 2021; 195:108674. [PMID: 34153315 DOI: 10.1016/j.neuropharm.2021.108674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/26/2021] [Accepted: 06/12/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Alcohol abuse is a worldwide public health concern and leads to an estimated 90,000 alcohol-related deaths in the United States annually. Alcohol may promote its euphoric and motivational effects, in part, by activating the endogenous opioid system. Pro-opiomelanocortin (POMC) producing neurons located within the arcuate nucleus (ArcN) of the hypothalamus make up one circuit of the endogenous opioid system, and heavily projects to reward-related brain areas such as the amygdala, nucleus accumbens (NAc) and ventral tegmental area (VTA). POMC producing neurons release β-endorphin and other peptides that target opioid receptors within reward areas to elicit their associated rewarding effects. Here we explore ArcN POMC neuronal activation, as assessed via FosB expression, following alcohol consumption to determine whether activation varied within subsets of ArcN POMC projection neurons targeting different reward-related areas. METHODS Fluorescent retrobeads were used to label ArcN POMC projection neurons targeting the NAc, amygdala and VTA in POMC-cre mice expressing the reporter tdTomato. Animals (n = 57) were then allowed to voluntarily consume alcohol or water using the drinking-in-the-dark (DID) paradigm, and sacrificed for immunohistochemistry to examine FosB expression within ArcN POMC neurons. RESULTS Female mice displayed escalation of alcohol intake across DID sessions, whereas males did not. A greater percent of ArcN POMC neurons target the amygdala over the NAc and VTA, and alcohol consumption preferentially activated ArcN POMC neurons targeting the amygdala over other areas. CONCLUSION These findings highlight a novel aspect alcohol-induced activation of the endogenous opioid system, whereby alcohol activates a specific subpopulation of ArcN POMC producing neurons that project primarily to the amygdala.
Collapse
Affiliation(s)
| | - Lauren E Hood
- Department of Psychology, Arizona State University, Tempe, AZ, 85281, USA
| | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, 85281, USA
| |
Collapse
|
21
|
Pace NP, Vassallo J, Calleja-Agius J. Gestational diabetes, environmental temperature and climate factors - From epidemiological evidence to physiological mechanisms. Early Hum Dev 2021; 155:105219. [PMID: 33046275 DOI: 10.1016/j.earlhumdev.2020.105219] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gestational diabetes (GDM) is a common metabolic complication of pregnancy that is generally asymptomatic in its clinical course, although it is potentially associated with a wide range of both maternal and foetal complications. The population prevalence of GDM varies widely, depending on the clinical diagnostic criteria, ethnicity, demographics and background prevalence of type 2 diabetes. Climate variability and environmental temperature have recently come to the forefront as potential direct or indirect determinants of human health. The association between GDM and environmental temperature is complex, and studies have often reported conflicting findings. Epidemiologic studies have shown a direct relation between rising environmental temperature and the risk of both GDM and impaired beta cell function. Seasonal trends in the prevalence of GDM have been reported in several populations, with a higher prevalence in summer months. Multiple mechanisms have been proposed to explain the GDM-temperature correlation. A growing body of evidence supports a link between temperature, energy expenditure and adipose tissue metabolism. Brown adipose tissue thermogenesis, induced by cold temperatures, improves insulin sensitivity. Further biological explanations for the GDM-temperature correlation lie in potential association with low vitamin D levels, which varies according to sunshine exposure. Observational studies are also complicated by lifestyle factors, such as diet and physical activity, that could exhibit seasonal variation. In this review article, we provide a systematic overview of available epidemiological evidence linking environmental temperature and gestational diabetes. Furthermore, the physiological mechanisms that give biological plausibility to association between GDM and temperature are explored. As future climate patterns could drive global changes in GDM prevalence, this knowledge has important implications for both clinicians and researchers.
Collapse
Affiliation(s)
- Nikolai Paul Pace
- Department of Anatomy, Faculty of Medicine and Surgery, Biomedical Sciences Building, University of Malta, Msida MSD 2080, Malta.
| | - Josanne Vassallo
- Department of Medicine, Faculty of Medicine and Surgery, Biomedical Sciences Building, University of Malta, Msida MSD 2080, Malta
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, Biomedical Sciences Building, University of Malta, Msida MSD 2080, Malta
| |
Collapse
|
22
|
Shakya M, White A, Verchere CB, Low MJ, Lindberg I. Mice lacking PC1/3 expression in POMC-expressing cells do not develop obesity. Endocrinology 2021; 162:6167813. [PMID: 33693631 PMCID: PMC8253230 DOI: 10.1210/endocr/bqab055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Pro-opiomelanocortin (POMC) neurons form an integral part of the central melanocortin system regulating food intake and energy expenditure. Genetic and pharmacological studies have revealed that defects in POMC synthesis, processing, and receptor signaling lead to obesity. It is well established that POMC is extensively processed by a series of enzymes, including prohormone convertases PC1/3 and PC2, and that genetic insufficiency of both PC1/3 and POMC is strongly associated with obesity risk. However, whether PC1/3-mediated POMC processing is absolutely tied to body weight regulation is not known. To investigate this question, we generated a Pomc-CreER T2; Pcsk1 lox/lox mouse model in which Pcsk1 is specifically and temporally knocked out in POMC-expressing cells of adult mice by injecting tamoxifen at eight weeks of age. We then measured the impact of Pcsk1 deletion on POMC cleavage to ACTH and α-MSH, and on body weight. In whole pituitary, POMC cleavage was significantly impacted by the loss of Pcsk1, while hypothalamic POMC-derived peptide levels remained similar in all genotypes. However, intact POMC levels were greatly elevated in Pomc-CreER T2; Pcsk1 lox/lox mice. Males expressed two-fold greater levels of pituitary PC1/3 protein than females, consistent with their increased POMC cleavage. Past studies show that mice with germline removal of PC1/3 do not develop obesity, while mice expressing mutant PC1/3 forms do develop obesity. We conclude that obesity pathways are not disrupted by PC1/3 loss solely in POMC-expressing cells, further disfavoring the idea that alterations in POMC processing underlie obesity in PCSK1 deficiency.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Anatomy and Neurobiology, University of
Maryland-Baltimore, Baltimore, MD 21201,
USA
| | - Surbhi
- Department of Molecular & Integrative Physiology,
University of Michigan, Ann Arbor, MI
481091, USA
| | - Anne White
- Division of Diabetes, Endocrinology and Gastroenterology,
University of Manchester, Manchester, M13
9PT, United Kingdom
| | - C Bruce Verchere
- Departments of Pathology & Laboratory Medicine and
Surgery, University of British Columbia, British
Columbia, V5Z 4H4, Canada
| | - Malcolm J Low
- Department of Molecular & Integrative Physiology,
University of Michigan, Ann Arbor, MI
481091, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of
Maryland-Baltimore, Baltimore, MD 21201,
USA
- Correspondence: Iris Lindberg, PhD,
Department of Anatomy and Neurobiology, 20 Penn St., HSF2, S267, University of
Maryland-Baltimore, Baltimore, MD 21201, USA. E-mail:
| |
Collapse
|
23
|
Emet DC, Ozon A, Alikasifoglu A, Kandemir N, Gonc N. Alpha-Melanocyte-Stimulating Hormone is Elevated in Hypothalamic Obesity Associated with Childhood Craniopharyngioma. Obesity (Silver Spring) 2021; 29:402-408. [PMID: 33491320 DOI: 10.1002/oby.23087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/24/2020] [Accepted: 11/05/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the peripheral concentrations of leptin and neuropeptides taking part in the melanocortin pathway in hypothalamic obesity (HO) associated with craniopharyngioma (CP) and to find a peripheral marker for diagnosis. METHODS Thirty-one patients (52% girls; median age 16 years) with CP were enrolled in the study group. They were grouped as CP with obesity (CPobesity , n = 17) and CP without obesity (CPnonobesity , n = 14). Two control groups without CP consisted of 27 children with obesity (OC) (55% girls; median age 13.8 years) and 25 children without obesity (normal control [NC]) (72% girls; median age 14.5 years). Obesity was defined as BMI percentile ≥ 95%. Fasting serum concentrations of leptin, brain-derived neurotrophic factor (BDNF), and alpha-melanocyte-stimulating hormone (α-MSH) were measured in the groups. RESULTS Leptin and BDNF concentrations were correlated with BMI SD score (SDS) in controls (OC + NC) and CP. However, there was no correlation between α-MSH and BMI-SDS in CP or control groups. After adjusting for age, sex, and BMI-SDS, α-MSH was found to be significantly higher in CPobesity than in other groups, whereas leptin and BDNF were comparable among the four groups. CONCLUSIONS Serum BDNF, just like leptin, increased with BMI, regardless of hypothalamic damage. On the contrary, α-MSH concentration was significantly high in HO, designating a potential biomarker for HO in CP.
Collapse
Affiliation(s)
- Dicle Canoruc Emet
- Department of Pediatric Endocrinology, Hacettepe University, Ankara, Turkey
| | - Alev Ozon
- Department of Pediatric Endocrinology, Hacettepe University, Ankara, Turkey
| | - Ayfer Alikasifoglu
- Department of Pediatric Endocrinology, Hacettepe University, Ankara, Turkey
| | - Nurgun Kandemir
- Department of Pediatric Endocrinology, Hacettepe University, Ankara, Turkey
| | - Nazlı Gonc
- Department of Pediatric Endocrinology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
24
|
Impact of Genetic Variations and Epigenetic Mechanisms on the Risk of Obesity. Int J Mol Sci 2020; 21:ijms21239035. [PMID: 33261141 PMCID: PMC7729759 DOI: 10.3390/ijms21239035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Rare genetic obesity disorders are characterized by mutations of genes strongly involved in the central or peripheral regulation of energy balance. These mutations are effective in causing the early onset of severe obesity and insatiable hunger (hyperphagia), suggesting that the genetic component can contribute to 40–70% of obesity. However, genes’ roles in the processes leading to obesity are still unclear. This review is aimed to summarize the current knowledge of the genetic causes of obesity, especially monogenic obesity, describing the role of epigenetic mechanisms in obesity and metabolic diseases. A comprehensive understanding of the underlying genetic and epigenetic mechanisms, with the metabolic processes they control, will permit adequate management and prevention of obesity.
Collapse
|
25
|
|
26
|
Zhang Y, Guan Y, Pan S, Yan L, Wang P, Chen Z, Shen Q, Zhao F, Zhang X, Li J, Li J, Cai D, Zhang G. Hypothalamic extended synaptotagmin-3 contributes to the development of dietary obesity and related metabolic disorders. Proc Natl Acad Sci U S A 2020; 117:20149-20158. [PMID: 32747560 PMCID: PMC7443966 DOI: 10.1073/pnas.2004392117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The C2 domain containing protein extended synaptotagmin (E-Syt) plays important roles in both lipid homeostasis and the intracellular signaling; however, its role in physiology remains largely unknown. Here, we show that hypothalamic E-Syt3 plays a critical role in diet-induced obesity (DIO). E-Syt3 is characteristically expressed in the hypothalamic nuclei. Whole-body or proopiomelanocortin (POMC) neuron-specific ablation of E-Syt3 ameliorated DIO and related comorbidities, including glucose intolerance and dyslipidemia. Conversely, overexpression of E-Syt3 in the arcuate nucleus moderately promoted food intake and impaired energy expenditure, leading to increased weight gain. Mechanistically, E-Syt3 ablation led to increased processing of POMC to α-melanocyte-stimulating hormone (α-MSH), increased activities of protein kinase C and activator protein-1, and enhanced expression of prohormone convertases. These findings reveal a previously unappreciated role for hypothalamic E-Syt3 in DIO and related metabolic disorders.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Toxicology, Key Laboratory of Environmental Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yunliang Guan
- Department of Toxicology, Key Laboratory of Environmental Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Susu Pan
- Department of Toxicology, Key Laboratory of Environmental Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lihong Yan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ping Wang
- Department of Toxicology, Key Laboratory of Environmental Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhuo Chen
- Department of Toxicology, Key Laboratory of Environmental Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Qing Shen
- Department of Toxicology, Key Laboratory of Environmental Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Faming Zhao
- Department of Toxicology, Key Laboratory of Environmental Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Juan Li
- Department of Toxicology, Key Laboratory of Environmental Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Juxue Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China;
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Guo Zhang
- Department of Toxicology, Key Laboratory of Environmental Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China;
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
27
|
Chougule A, Kolli V, Baroi S, Ebraheim N, Czernik PJ, Loh YP, Lecka-Czernik B. Nonenzymatic and Trophic Activities of Carboxypeptidase E Regulate Bone Mass and Bioenergetics of Skeletal Stem Cells in Mice. JBMR Plus 2020; 4:e10392. [PMID: 32995694 PMCID: PMC7507073 DOI: 10.1002/jbm4.10392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022] Open
Abstract
Bone and energy metabolism are integrated by common regulatory mechanisms. Carboxypeptidase E (CPE), also known as obesity susceptibility protein or neurotrophic factor‐α1, is recognized for its function in processing prohormones, including proinsulin and pro‐opiomelanocortin polypeptide. Independent of its enzymatic activity, CPE may also act as a secreted factor with divergent roles in neuroprotection and cancer growth; however, its role in the regulation of bone mass and skeletal cell differentiation is unknown. Male mice with global deficiency in CPE are characterized with profound visceral obesity, low bone mass in both appendicular and axial skeleton, and high volume of marrow fat. Interestingly, although metabolic deficit of CPE KO mice develops early in life, bone deficit develops in older age, suggesting that CPE bone‐specific activities differ from its enzymatic activities. Indeed, mutated CPE knockin (mCPE KI) mice ectopically expressing CPE‐E342Q, a mutated protein lacking enzymatic activity, develop the same obese phenotype and accumulate the same volume of marrow fat as CPE KO mice, but their bone mass is normal. In addition, differentiation of marrow hematopoietic cells toward tartrate‐resistant acid phosphatase‐positive multinucleated osteoclasts is highly increased in CPE KO mice, but normal in mCPE KI mice. Moreover, in murine skeletal stem cells, nonenzymatic trophic CPE has activated ERK signaling, increased cell proliferation and increased mitochondrial activity. Treatment of preosteoblastic cells with intact or mutated recombinant CPE led to a transient accumulation of small lipid droplets, increased oxidative phosphorylation, and increased cellular dependence on fatty acids as fuel for energy production. In human marrow aspirates, CPE expression increases up to 30‐fold in osteogenic conditions. These findings suggest that nonenzymatic and trophic activities of CPE regulate bone mass, whereas marrow adiposity is controlled by CPE enzymatic activity. Thus, CPE can be positioned as a factor regulating simultaneously bone and energy metabolism through a combination of shared and distinct mechanisms. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Amit Chougule
- Department of Orthopaedic Surgery University of Toledo, College of Medicine and Life Sciences Toledo OH USA.,Center for Diabetes and Endocrine Research University of Toledo, College of Medicine and Life Sciences Toledo OH USA
| | - Vipula Kolli
- Section on Cellular Neurobiology Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda MD USA
| | - Sudipta Baroi
- Department of Orthopaedic Surgery University of Toledo, College of Medicine and Life Sciences Toledo OH USA.,Center for Diabetes and Endocrine Research University of Toledo, College of Medicine and Life Sciences Toledo OH USA
| | - Nabil Ebraheim
- Department of Orthopaedic Surgery University of Toledo, College of Medicine and Life Sciences Toledo OH USA
| | - Piotr J Czernik
- Department of Physiology and Pharmacology University of Toledo, College of Medicine and Life Sciences Toledo OH USA
| | - Y Peng Loh
- Section on Cellular Neurobiology Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda MD USA
| | - Beata Lecka-Czernik
- Department of Orthopaedic Surgery University of Toledo, College of Medicine and Life Sciences Toledo OH USA.,Department of Physiology and Pharmacology University of Toledo, College of Medicine and Life Sciences Toledo OH USA.,Center for Diabetes and Endocrine Research University of Toledo, College of Medicine and Life Sciences Toledo OH USA
| |
Collapse
|
28
|
Ethanol has concentration-dependent effects on hypothalamic POMC neuronal excitability. Alcohol 2020; 86:103-112. [PMID: 32304714 DOI: 10.1016/j.alcohol.2020.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 11/21/2022]
Abstract
Alcohol abuse is a worldwide public health concern, yet the precise molecular targets of alcohol in the brain are still not fully understood. Alcohol may promote its euphoric and motivational effects, in part, by activating the endogenous opioid system. One particular component of this system consists of pro-opiomelanocortin (POMC) -producing neurons in the arcuate nucleus (ArcN) of the hypothalamus, which project to reward-related brain areas. To identify the physiological effects of ethanol on ArcN POMC neurons, we utilized whole cell patch-clamp recordings and bath application of ethanol (5-40 mM) to identify alterations in spontaneous baseline activity, rheobase, spiking characteristics, or intrinsic neuronal properties. We found that 10 mM ethanol increased the number of depolarization-induced spikes in the majority of recorded cells, whereas higher concentrations of ethanol (20-40 mM) decreased the number of spikes. Interestingly, we found that basal firing rates of ArcN POMC neurons may predict physiological responding to ethanol. Rheobase and spontaneous activity, measured by spontaneous excitatory post-synaptic potentials (EPSPs) at rest, were unchanged after exposure to ethanol, regardless of concentration. These results suggest that ethanol has concentration-dependent modulatory effects on ArcN POMC neuronal activity, which may be relevant to treatments for alcohol use disorders that target endogenous opioid systems.
Collapse
|
29
|
Razolli DS, de Araújo TM, Sant Apos Ana MR, Kirwan P, Cintra DE, Merkle FT, Velloso LA. Proopiomelanocortin Processing in the Hypothalamus Is Directly Regulated by Saturated Fat: Implications for the Development of Obesity. Neuroendocrinology 2020; 110:92-104. [PMID: 31104058 PMCID: PMC7614303 DOI: 10.1159/000501023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/17/2019] [Indexed: 02/02/2023]
Abstract
In outbred mice, susceptibility or resistance to diet-induced obesity is associated with rapid changes in hypothalamic proopiomelanocortin (POMC) levels. Here, we evaluated 3 hypotheses that potentially explain the development of the different obesity phenotypes in outbred Swiss mice. First, rapid and differential changes in the gut microbiota in obesity-prone (OP) and obesity-resistant (OR) mice fed on a high-fat diet (HFD) might cause differential efficiencies in fatty acid harvesting leading to changes in systemic fatty acid concentrations that in turn affect POMC expression and processing. Second, independently of the gut microbiota, OP mice might have increased blood fatty acid levels after the introduction of a HFD, which could affect POMC expression and processing. Third, fatty acids might act directly in the hypothalamus to differentially regulate POMC expression and/or processing in OP and OR mice. We evaluated OP and OR male Swiss mice using 16S rRNA sequencing for the determination of gut microbiota; gas chromatography for blood lipid determination; and immunoblot and real-time polymerase chain reaction for protein and transcript determination and indirect calorimetry. Some experiments were performed with human pluripotent stem cells differentiated into hypothalamic neurons. We did not find evidence supporting the first 2 hypotheses. However, we found that in OP but not in OR mice, palmitate induces a rapid increase in hypothalamic POMC, which is followed by increased expression of proprotein convertase subtilisin/kexin type 1 PC1/3. Lentiviral inhibition of hypothalamic PC1/3 increased caloric intake and body mass in both OP and OR mice. In human stem cell-derived hypothalamic cells, we found that palmitate potently suppressed the production of POMC-derived peptides. Palmitate directly regulates PC1/3 in OP mice and likely has a functional impact on POMC processing.
Collapse
Affiliation(s)
- Daniela S Razolli
- Laboratory of Cell Signalling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Thiago M de Araújo
- Laboratory of Cell Signalling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Marcella R Sant Apos Ana
- Laboratory of Nutritional Genomics, School of Applied Science, University of Campinas, Limeira, Brazil
| | - Peter Kirwan
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust, Medical Research Council Institute of Metabolic Science, and Wellcome Trust Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Dennys E Cintra
- Laboratory of Nutritional Genomics, School of Applied Science, University of Campinas, Limeira, Brazil
| | - Florian T Merkle
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust, Medical Research Council Institute of Metabolic Science, and Wellcome Trust Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Licio A Velloso
- Laboratory of Cell Signalling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil,
| |
Collapse
|
30
|
Tavares MR, Lemes SF, de Fante T, Saenz de Miera C, Pavan ICB, Bezerra RMN, Prada PO, Torsoni MA, Elias CF, Simabuco FM. Modulation of hypothalamic S6K1 and S6K2 alters feeding behavior and systemic glucose metabolism. J Endocrinol 2020; 244:71-82. [PMID: 31557728 PMCID: PMC8010582 DOI: 10.1530/joe-19-0364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 11/08/2022]
Abstract
The mTOR/S6Ks signaling is one of the intracellular pathways important for metabolic control, acting both peripherally and centrally. In the hypothalamus, mTOR/S6Ks axis mediates the action of leptin and insulin and can modulate the expression of neuropeptides. We analyzed the role of different S6Ks isoforms in the hypothalamic regulation of metabolism. We observed decreased food intake and decreased expression of agouti-related peptide (AgRP) following intracerebroventricular (icv) injections of adenoviral-mediated overexpression of three different S6Ks isoforms. Moreover, mice overexpressing p70-S6K1 in undefined periventricular hypothalamic neurons presented changes in glucose metabolism, as an increase in gluconeogenesis. To further evaluate the hypothalamic role of a less-studied S6K isoform, p54-S6K2, we used a Cre-LoxP approach to specifically overexpress it in AgRP neurons. Our findings demonstrate the potential participation of S6K2 in AgRP neurons regulating feeding behavior.
Collapse
Affiliation(s)
- Mariana Rosolen Tavares
- Multidisciplinary Laboratory of Food and Health (LABMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Laboratory of Metabolic Disorders (LABDIME), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Simone Ferreira Lemes
- Laboratory of Metabolic Disorders (LABDIME), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Thais de Fante
- Laboratory of Metabolic Disorders (LABDIME), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Cristina Saenz de Miera
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Isadora Carolina Betim Pavan
- Multidisciplinary Laboratory of Food and Health (LABMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Laboratory of Metabolic Disorders (LABDIME), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rosangela Maria Neves Bezerra
- Multidisciplinary Laboratory of Food and Health (LABMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Patricia Oliveira Prada
- Laboratory of Molecular Research in Obesity (LABIMO), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Marcio Alberto Torsoni
- Laboratory of Metabolic Disorders (LABDIME), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Carol Fuzeti Elias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LABMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Laboratory of Metabolic Disorders (LABDIME), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| |
Collapse
|
31
|
Gjevestad GO, Holven KB, Rundblad A, Flatberg A, Myhrstad M, Karlsen K, Mutt SJ, Herzig KH, Ottestad I, Ulven SM. Increased protein intake affects pro-opiomelanocortin (POMC) processing, immune function and IGF signaling in peripheral blood mononuclear cells of home-dwelling old subjects using a genome-wide gene expression approach. GENES AND NUTRITION 2019; 14:32. [PMID: 31798754 PMCID: PMC6883584 DOI: 10.1186/s12263-019-0654-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 10/02/2019] [Indexed: 12/18/2022]
Abstract
Background Adequate protein intake among older adults is associated with better health outcomes such as immune function and metabolic regulation of skeletal muscle, but conflicting results make it difficult to define the optimal intake. To further understand the impact of protein intake on metabolic processes, the aim of the study was to explore genome-wide gene expression changes in peripheral blood mononuclear cells (PBMCs) in home-dwelling old subjects after increased protein intake for 12 weeks. Method In a parallel double-blind randomized controlled intervention study, subjects (≥ 70 years) received a protein-enriched milk (2 × 20 g protein/day, n = 14, mean (±SD) age 76.9 ± 4.9 years) or an isocaloric carbohydrate drink (n = 17, mean (±SD) age 77.7 ± 4.8 years) for breakfast and evening meal for 12 weeks. PBMCs were isolated before and after the intervention. Microarray analysis was performed using Illumina technology. Serum levels of gut peptides and insulin growth factor (IGF)-1 were also measured. Results In total 758 gene transcripts were regulated after increased protein intake, and 649 gene transcripts were regulated after intake of carbohydrates (p < 0.05). Forty-two of these genes were overlapping. After adjusting for multiple testing, 27 of the 758 gene transcripts were regulated (FDR, q-value < 0.25) after protein intake. Of these 25 were upregulated and two downregulated. In particular, genes and signaling pathways involved in pro-opiomelanocortin (POMC) processing, immune function, and IGF signaling were significantly altered. Conclusions PBMCs can be used to study gene expression changes after long-term protein intake, as many signaling pathways were regulated after increased protein intake. The functional significance of these findings needs to be further investigated. Trial registration ClinicalTrials.gov, ID no. NCT02218333. The study was registered on August 18, 2014.
Collapse
Affiliation(s)
- Gyrd O Gjevestad
- 1Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1046, Blindern, 0317 Oslo, Norway.,2Innovation and marketing, TINE SA, Lakkegata 23, 0187 Oslo, Norway
| | - Kirsten B Holven
- 1Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1046, Blindern, 0317 Oslo, Norway.,3National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway
| | - Amanda Rundblad
- 1Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1046, Blindern, 0317 Oslo, Norway
| | - Arnar Flatberg
- 4Department of Clinical and Molecular Medicine, Faculty of Medicine, Genomics Core Facility, Norwegian University of Sciences and Technology, Olav Kyrres gt. 9, 7489 Trondheim, Norway
| | - Mari Myhrstad
- 5Faculty of Health Sciences, Department of Nursing and Health Promotion, OsloMet - Oslo Metropolitan University, P.O. Box 4 St. Olavs plass, 0130 Oslo, Norway
| | - Karina Karlsen
- 1Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1046, Blindern, 0317 Oslo, Norway
| | - Shivaprakash J Mutt
- 6Research Unit of Biomedicine, and Biocenter of Oulu, Oulu University Hospital and Medical Research Center Oulu, Oulu University, P.O Box 5000, 90014 Oulu, Finland
| | - Karl-Heinz Herzig
- 6Research Unit of Biomedicine, and Biocenter of Oulu, Oulu University Hospital and Medical Research Center Oulu, Oulu University, P.O Box 5000, 90014 Oulu, Finland.,7Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| | - Inger Ottestad
- 1Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1046, Blindern, 0317 Oslo, Norway
| | - Stine M Ulven
- 1Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1046, Blindern, 0317 Oslo, Norway
| |
Collapse
|
32
|
Rossino MG, Dal Monte M, Casini G. Relationships Between Neurodegeneration and Vascular Damage in Diabetic Retinopathy. Front Neurosci 2019; 13:1172. [PMID: 31787868 PMCID: PMC6856056 DOI: 10.3389/fnins.2019.01172] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes and constitutes a major cause of vision impairment and blindness in the world. DR has long been described exclusively as a microvascular disease of the eye. However, in recent years, a growing interest has been focused on the contribution of neuroretinal degeneration to the pathogenesis of the disease, and there are observations suggesting that neuronal death in the early phases of DR may favor the development of microvascular abnormalities, followed by the full manifestation of the disease. However, the mediators that are involved in the crosslink between neurodegeneration and vascular changes have not yet been identified. According to our hypothesis, vascular endothelial growth factor (VEGF) could probably be the most important connecting link between the death of retinal neurons and the occurrence of microvascular lesions. Indeed, VEGF is known to play important neuroprotective actions; therefore, in the early phases of DR, it may be released in response to neuronal suffering, and it would act as a double-edged weapon inducing both neuroprotective and vasoactive effects. If this hypothesis is correct, then any retinal stress causing neuronal damage should be accompanied by VEGF upregulation and by vascular changes. Similarly, any compound with neuroprotective properties should also induce VEGF downregulation and amelioration of the vascular lesions. In this review, we searched for a correlation between neurodegeneration and vasculopathy in animal models of retinal diseases, examining the effects of different neuroprotective substances, ranging from nutraceuticals to antioxidants to neuropeptides and others and showing that reducing neuronal suffering also prevents overexpression of VEGF and vascular complications. Taken together, the reviewed evidence highlights the crucial role played by mediators such as VEGF in the relationship between retinal neuronal damage and vascular alterations and suggests that the use of neuroprotective substances could be an efficient strategy to prevent the onset or to retard the development of DR.
Collapse
Affiliation(s)
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Giovanni Casini
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
33
|
Farr OM, Mantzoros CS. Old and new tools to study human brain physiology: Current state, future directions and implications for metabolic regulation. Metabolism 2019; 99:iii-viii. [PMID: 31400385 DOI: 10.1016/j.metabol.2019.153957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Olivia M Farr
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, United States of America.
| | - Christos S Mantzoros
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, United States of America; Section of Endocrinology, Boston VA Healthcare System/Harvard Medical School, Boston, MA 02130, United States of America
| |
Collapse
|
34
|
Briski KP, Mandal SK. Hindbrain lactoprivic regulation of hypothalamic neuron transactivation and gluco-regulatory neurotransmitter expression: Impact of antecedent insulin-induced hypoglycemia. Neuropeptides 2019; 77:101962. [PMID: 31488323 PMCID: PMC6756167 DOI: 10.1016/j.npep.2019.101962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 12/18/2022]
Abstract
Hindbrain energy state shapes hypothalamic control of glucostasis. Dorsal vagal complex (DVC) L-lactate deficiency is a potent glucose-stimulatory signal that triggers neuronal transcriptional activation in key hypothalamic metabolic loci. The energy gauge AMPK is activated in DVC metabolic-sensory A2 noradrenergic neurons by hypoglycemia-associated lactoprivation, but sensor reactivity is diminished by antecedent hypoglycemia (AH). Current research addressed the premise that AH alters hindbrain lactoprivic regulation of hypothalamic metabolic transmitter function. AH did not modify reductions in A2 dopamine-beta-hydroxylase and monocarboxylate-2 (MCT2) protein expression elicited by caudal fourth ventricular delivery of the MCT inhibitor alpha-cyano-4-hydroxycinnamic acid (4CIN), but attenuated 4CIN activation of A2 AMPK. 4CIN constraint of hypothalamic norepinephrine (NE) activity was averted by AH in a site-specific manner. 4CIN induction of Fos immunolabeling in hypothalamic arcuate (ARH), ventromedial (VMN), dorsomedial (DMN) and paraventricular (PVN) nuclei and lateral hypothalamic area (LHA) was avoided by AH. AH affected reactivity of select hypothalamic metabolic neurotransmitter/enzyme marker proteins, e.g. ARH neuropeptide Y, VMN glutamate decarboxylase, DMN RFamide-related peptide-1 and -3, and LHA orexin-A profiles to 4CIN, but did not alleviate drug inhibition of ARH proopiomelanocortin. AH prevented 4CIN augmentation of circulating glucagon, but did not alter hyperglycemic or hypocorticosteronemic responses to that treatment. Results identify hindbrain lactate deficiency as a stimulus for glucagon secretion, and imply that habituation of this critical counter-regulatory hormone to recurring hypoglycemia may involve one or more hypothalamic neurotransmitters characterized here by acclimation to this critical sensory stimulus.
Collapse
Affiliation(s)
- Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States of America.
| | - Santosh K Mandal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States of America
| |
Collapse
|
35
|
mTORC1 and CB1 receptor signaling regulate excitatory glutamatergic inputs onto the hypothalamic paraventricular nucleus in response to energy availability. Mol Metab 2019; 28:151-159. [PMID: 31420305 PMCID: PMC6822143 DOI: 10.1016/j.molmet.2019.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE The hypothalamic paraventricular nucleus (PVN) is a key target of the melanocortin system, which orchestrates behavioral and metabolic responses depending on energy availability. The mechanistic target of rapamycin complex 1 (mTORC1) and the endocannabinoid type 1 receptor (CB1R) pathways are two key signaling systems involved in the regulation of energy balance whose activity closely depends upon energy availability. Here we tested the hypothesis that modulation of mTORC1 and CB1R signaling regulates excitatory glutamatergic inputs onto the PVN. METHODS Patch-clamp recordings in C57BL/6J mice, in mice lacking the mTORC1 component Rptor or CB1R in pro-opio-melanocortin (POMC) neurons, combined with pharmacology targeting mTORC1, the melanocortin receptor type 4 (MC4R), or the endocannabinoid system under chow or a hypercaloric diet. RESULTS Acute pharmacological inhibition of mTORC1 in C57BL/6J mice decreased glutamatergic inputs onto the PVN via a mechanism requiring modulation of MC4R, endocannabinoid 2-AG mobilization by PVN parvocellular neurons, and retrograde activation of presynaptic CB1R. Further electrophysiology studies using mice lacking mTORC1 activity or CB1R in POMC neurons indicated that the observed effects involved mTORC1 and CB1R-dependent regulation of glutamate release from POMC neurons. Finally, energy surfeit caused by hypercaloric high-fat diet feeding, rapidly and time-dependently altered the glutamatergic inputs onto parvocellular neurons and the ability of mTORC1 and CB1R signaling to modulate such excitatory activity. CONCLUSIONS These findings pinpoint the relationship between mTORC1 and endocannabinoid-CB1R signaling in the regulation of the POMC-mediated glutamatergic inputs onto PVN parvocellular neurons and its rapid alteration in conditions favoring the development of obesity.
Collapse
|
36
|
Neuroprotective Peptides in Retinal Disease. J Clin Med 2019; 8:jcm8081146. [PMID: 31374938 PMCID: PMC6722704 DOI: 10.3390/jcm8081146] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
In the pathogenesis of many disorders, neuronal death plays a key role. It is now assumed that neurodegeneration is caused by multiple and somewhat converging/overlapping death mechanisms, and that neurons are sensitive to unique death styles. In this respect, major advances in the knowledge of different types, mechanisms, and roles of neurodegeneration are crucial to restore the neuronal functions involved in neuroprotection. Several novel concepts have emerged recently, suggesting that the modulation of the neuropeptide system may provide an entirely new set of pharmacological approaches. Neuropeptides and their receptors are expressed widely in mammalian retinas, where they exert neuromodulatory functions including the processing of visual information. In multiple models of retinal diseases, different peptidergic substances play neuroprotective actions. Herein, we describe the novel advances on the protective roles of neuropeptides in the retina. In particular, we focus on the mechanisms by which peptides affect neuronal death/survival and the vascular lesions commonly associated with retinal neurodegenerative pathologies. The goal is to highlight the therapeutic potential of neuropeptide systems as neuroprotectants in retinal diseases.
Collapse
|
37
|
Formolo DA, Gaspar JM, Melo HM, Eichwald T, Zepeda RJ, Latini A, Okun MS, Walz R. Deep Brain Stimulation for Obesity: A Review and Future Directions. Front Neurosci 2019; 13:323. [PMID: 31057350 PMCID: PMC6482165 DOI: 10.3389/fnins.2019.00323] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/21/2019] [Indexed: 01/01/2023] Open
Abstract
The global prevalence of obesity has been steadily increasing. Although pharmacotherapy and bariatric surgeries can be useful adjuvants in the treatment of morbid obesity, they may lose long-term effectiveness. Obesity result largely from unbalanced energy homeostasis. Palatable and densely caloric foods may affect the brain overlapped circuits involved with homeostatic hypothalamus and hedonic feeding. Deep brain stimulation (DBS) consists of delivering electrical impulses to specific brain targets to modulate a disturbed neuronal network. In selected patients, DBS has been shown to be safe and effective for movement disorders. We review all the cases reports and series of patients treated with DBS for obesity using a PubMed search and will address the following obesity-related issues: (i) the hypothalamic regulation of homeostatic feeding; (ii) the reward mesolimbic circuit and hedonic feeding; (iii) basic concepts of DBS as well as the rationale for obesity treatment; (iv) perspectives and challenges in obesity DBS. The small number of cases provides preliminary evidence for the safety and the tolerability of a potential DBS approach. The ventromedial (n = 2) and lateral (n = 8) hypothalamic nuclei targets have shown mixed and disappointing outcomes. Although nucleus accumbens (n = 7) targets were more encouraging for the outcomes of body weight reduction and behavioral control for eating, there was one suicide reported after 27 months of follow-up. The authors did not attribute the suicide to DBS therapy. The identification of optimal brain targets, appropriate programming strategies and the development of novel technologies will be important as next steps to move DBS closer to a clinical application. The identification of electrical control signals may provide an opportunity for closed-loop adaptive DBS systems to address obesity. Metabolic and hormonal sensors such as glycemic levels, leptin, and ghrelin levels are candidate control signals for DBS. Focused excitation or alternatively inhibition of regions of the hypothalamus may provide better outcomes compared to non-selective DBS. Utilization of the NA delta oscillation or other physiological markers from one or multiple regions in obesity-related brain network is a promising approach. Experienced multidisciplinary team will be critical to improve the risk-benefit ratio for this approach.
Collapse
Affiliation(s)
- Douglas A Formolo
- Center for Applied Neuroscience, University Hospital, Federal University of Santa Catarina, Florianópolis, Brazil.,Graduate Program in Neuroscience, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Joana M Gaspar
- Laboratory of Bioenergetics and Oxidative Stress, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil.,Graduate Program in Biochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Hiago M Melo
- Center for Applied Neuroscience, University Hospital, Federal University of Santa Catarina, Florianópolis, Brazil.,Graduate Program in Neuroscience, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Tuany Eichwald
- Laboratory of Bioenergetics and Oxidative Stress, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil.,Graduate Program in Biochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Ramiro Javier Zepeda
- Department of Neuroscience, Faculty of Medicine, Chile University and Health Science Institute, O'Higgins University, Santiago, Chile
| | - Alexandra Latini
- Laboratory of Bioenergetics and Oxidative Stress, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil.,Graduate Program in Biochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Michael S Okun
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Roger Walz
- Center for Applied Neuroscience, University Hospital, Federal University of Santa Catarina, Florianópolis, Brazil.,Graduate Program in Neuroscience, Federal University of Santa Catarina, Florianópolis, Brazil.,Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, United States.,Graduate Program in Medical Sciences, Federal University of Santa Catarina, Florianópolis, Brazil.,Department of Internal Medicine, University Hospital, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
38
|
Neurobiological characteristics underlying metabolic differences between males and females. Prog Neurobiol 2018; 176:18-32. [PMID: 30194984 DOI: 10.1016/j.pneurobio.2018.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/22/2018] [Accepted: 09/01/2018] [Indexed: 12/24/2022]
Abstract
The hypothalamus is the main integrating center for metabolic control. Our understanding of how hypothalamic circuits function to control appetite and energy expenditure has increased dramatically in recent years, due to the rapid rise in the incidence of obesity and the search for effective treatments. Increasing evidence indicates that these treatments will most likely differ between males and females. Indeed, sex differences in metabolism have been demonstrated at various levels, including in two of the most studied neuronal populations involved in metabolic control: the anorexigenic proopiomelanocortin neurons and the orexigenic neuropeptide Y/Agouti-related protein neurons. Here we review what is known to date regarding the sex differences in these two neuronal populations, as well as other neuronal populations involved in metabolic control and glial cells.
Collapse
|
39
|
Koves IH, Roth C. Genetic and Syndromic Causes of Obesity and its Management. Indian J Pediatr 2018; 85:478-485. [PMID: 29177811 DOI: 10.1007/s12098-017-2502-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/20/2017] [Indexed: 12/17/2022]
Abstract
The aim of this article is to provide an in depth review of the rare genetic and syndromic forms of childhood obesity. The authors demonstrate the complexity and inter-relationships of the leptin-melanocortin signaling pathway and its central nervous system and systemic effects. Authors highlight the clinical distinctive features of genetic/syndromic causes for childhood obesity, in particular, relative shorter height to their genetic potential, developmental challenges and in some instances, ophthalmological and retina changes. They outline specific genetic testing and treatment options available for these conditions.
Collapse
Affiliation(s)
- Ildiko H Koves
- Division of Endocrinology and Diabetes, Department of Pediatrics, Seattle Children's Hospital, University of Washington, 4800 Sand Point Way NE, Seattle, WA, 98105, USA.
| | - Christian Roth
- Division of Endocrinology and Diabetes, Department of Pediatrics, Seattle Children's Hospital, University of Washington, 4800 Sand Point Way NE, Seattle, WA, 98105, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| |
Collapse
|
40
|
Li Z, Liu X, Zhang P, Han R, Sun G, Jiang R, Wang Y, Liu X, Li W, Kang X, Tian Y. Comparative transcriptome analysis of hypothalamus-regulated feed intake induced by exogenous visfatin in chicks. BMC Genomics 2018; 19:249. [PMID: 29642854 PMCID: PMC5896085 DOI: 10.1186/s12864-018-4644-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 04/03/2018] [Indexed: 01/15/2023] Open
Abstract
Background The intracerebroventricular injection of visfatin increases feed intake. However, little is known about the molecular mechanism in chicks. This study was conducted to assess the effect of visfatin on the feeding behavior of chicks and the associated molecular mechanism. Results In response to the intraventricular injection of 40 ng and 400 ng visfatin, feed intake in chicks was significantly increased, and the concentrations of glucose, insulin, TG, HDL and LDL were significantly altered. Using RNA-seq, we identified DEGs in the chick hypothalamus at 60 min after injection with various doses of visfatin. In total, 325, 85 and 519 DEGs were identified in the treated chick hypothalamus in the LT vs C, HT vs C and LT vs HT comparisons, respectively. The changes in the expression profiles of DEGs, GO functional categories, KEGG pathways, and PPI networks by visfatin-mediated regulation of feed intake were analyzed. The DEGs were grouped into 8 clusters based on their expression patterns via K-mean clustering; there were 14 appetite-related DEGs enriched in the hormone activity GO term. The neuroactive ligand-receptor interaction pathway was the key pathway affected by visfatin. The PPI analysis of DEGs showed that POMC was a hub gene that interacted with the maximum number of nodes and ingestion-related pathways, including POMC, CRH, AgRP, NPY, TRH, VIP, NPYL, CGA and TSHB. Conclusion These common DEGs were enriched in the hormone activity GO term and the neuroactive ligand-receptor interaction pathway. Therefore, visfatin causes hyperphagia via the POMC/CRH and NPY/AgRP signaling pathways. These results provide valuable information about the molecular mechanisms of the regulation of food intake by visfatin. Electronic supplementary material The online version of this article (10.1186/s12864-018-4644-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuelian Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Panpan Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ruirui Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yanbin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wenya Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
41
|
Deng Y, Xiao Y, Yuan F, Liu Y, Jiang X, Deng J, Fejes-Toth G, Naray-Fejes-Toth A, Chen S, Chen Y, Ying H, Zhai Q, Shu Y, Guo F. SGK1/FOXO3 Signaling in Hypothalamic POMC Neurons Mediates Glucocorticoid-Increased Adiposity. Diabetes 2018; 67:569-580. [PMID: 29321171 DOI: 10.2337/db17-1069] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/02/2018] [Indexed: 11/13/2022]
Abstract
Although the central nervous system has been implicated in glucocorticoid-induced gain of fat mass, the underlying mechanisms are poorly understood. The aim of this study was to investigate the possible involvement of hypothalamic serum- and glucocorticoid-regulated kinase 1 (SGK1) in glucocorticoid-increased adiposity. It is well known that SGK1 expression is induced by acute glucocorticoid treatment, but it is interesting that we found its expression to be decreased in the arcuate nucleus of the hypothalamus, including proopiomelanocortin (POMC) neurons, following chronic dexamethasone (Dex) treatment. To study the role of SGK1 in POMC neurons, we produced mice that developed or experienced adult-onset SGK1 deletion in POMC neurons (PSKO). As observed in Dex-treated mice, PSKO mice exhibited increased adiposity and decreased energy expenditure. Mice overexpressing constitutively active SGK1 in POMC neurons consistently had the opposite phenotype and did not experience Dex-increased adiposity. Finally, Dex decreased hypothalamic α-melanocyte-stimulating hormone (α-MSH) content and its precursor Pomc expression via SGK1/FOXO3 signaling, and intracerebroventricular injection of α-MSH or adenovirus-mediated FOXO3 knockdown in the arcuate nucleus largely reversed the metabolic alterations in PSKO mice. These results demonstrate that POMC SGK1/FOXO3 signaling mediates glucocorticoid-increased adiposity, providing new insights into the mechanistic link between glucocorticoids and fat accumulation and important hints for possible treatment targets for obesity.
Collapse
Affiliation(s)
- Yalan Deng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuzhong Xiao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Feixiang Yuan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yaping Liu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, School of Brain and Cognitive Sciences, Beijing Normal University, Beijing, China
| | - Xiaoxue Jiang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jiali Deng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Geza Fejes-Toth
- Department of Physiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH
| | | | - Shanghai Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yan Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hao Ying
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qiwei Zhai
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yousheng Shu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, School of Brain and Cognitive Sciences, Beijing Normal University, Beijing, China
| | - Feifan Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
42
|
Alhamami HN, Uddin MM, Mahmood ASMH, Briski KP. Lateral but not Medial Hypothalamic AMPK Activation Occurs at the Hypoglycemic Nadir in Insulin-injected Male Rats: Impact of Caudal Dorsomedial Hindbrain Catecholamine Signaling. Neuroscience 2018. [PMID: 29534973 DOI: 10.1016/j.neuroscience.2018.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The hypothalamic energy sensor adenosine 5'-monophosphate-activated protein kinase (AMPK), an important regulator of counter-regulatory responses to hypoglycemia, responds to pharmacological manipulation of hindbrain AMPK activity. Dorsomedial hindbrain A2 noradrenergic neurons express hypoglycemia-sensitive metabolo-sensory biomarkers, including AMPK. Here, adult male rats were pretreated by intra-caudal fourth ventricular administration of the selective neurotoxin 6-hydroxydopamine (6-OHDA) to determine if catecholamine signaling from the aforesaid site governs hypothalamic AMPK activation during insulin-induced hypoglycemia (IIH). Micropunched arcuate (ARH), ventromedial (VMH), paraventricular (PVH), dorsomedial (DMH) nuclei and lateral hypothalamic area (LHA) tissues were obtained at the neutral protamine Hagedorn insulin-induced hypoglycemic nadir, coincident with A2 AMPK activation, for Western blot analysis of AMPK, phospho-AMPK (pAMPK), and relevant metabolic neuropeptides. ARH, VMH, LHA, and DMH norepinephrine levels were altered according to insulin dose; 6-OHDA-mediated reversal of these responses was site-specific. IIH elevated LHA and reduced VMH pAMPK protein, profiles that were respectively unchanged or increased by 6-OHDA. PVH and ARH pAMPK was resistant to IIH, but augmented in ARH of neurotoxin- plus insulin-treated rats. ARH neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) proteins were correspondingly increased or refractory to IIH; 6-OHDA pretreatment normalized NPY and elevated POMC expression after insulin injection. Results demonstrate site-specific bi-directional adjustments in hypothalamic AMPK reactivity to hypoglycemia. Intensification of ARH/VMH pAMPK by 6-OHDA implies dorsomedial hindbrain improvement of energy balance in those sites during IIH. Neurotoxin-mediated augmentation versus suppression of basal catabolic (ARH POMC/VMH steroidogenic factor-1) or IIH-associated anabolic (ARH NPY) neuropeptide profiles, respectively, may involve local AMPK-dependent against independent mechanisms.
Collapse
Affiliation(s)
- Hussain N Alhamami
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Md Main Uddin
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - A S M Hasan Mahmood
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
43
|
|
44
|
Banse HE, Schultz N, McCue M, Geor R, McFarlane D. Comparison of two methods for measurement of equine adrenocorticotropin. J Vet Diagn Invest 2017; 30:233-237. [PMID: 29284383 DOI: 10.1177/1040638717752216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Accurate measurement of equine adrenocorticotropin (ACTH) is important for the diagnosis of equine pituitary pars intermedia dysfunction (PPID). Several radioimmunoassays (RIAs) and chemiluminescent immunoassays (CIAs) are used for measurement of ACTH concentration in horses; whether these methods yield similar results across a range of concentrations is not determined. We evaluated agreement between a commercial RIA and CIA. Archived plasma samples ( n = 633) were measured with both assays. Correlation between the 2 methods was moderate ( r = 0.49, p < 0.001). Bland-Altman analysis revealed poor agreement, with a proportional bias and widening limits of agreement with increasing values. Poor agreement between assays was also observed when evaluating plasma samples with concentrations at or below the recommended diagnostic cutoff value for PPID testing. The lack of agreement suggests that measurements obtained should not be considered interchangeable between methods.
Collapse
Affiliation(s)
- Heidi E Banse
- Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada (Banse).,Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (Schultz, McCue).,College of Sciences, Massey University, Manawatu, NZ (Geor).,Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK (McFarlane)
| | - Nichol Schultz
- Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada (Banse).,Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (Schultz, McCue).,College of Sciences, Massey University, Manawatu, NZ (Geor).,Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK (McFarlane)
| | - Molly McCue
- Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada (Banse).,Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (Schultz, McCue).,College of Sciences, Massey University, Manawatu, NZ (Geor).,Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK (McFarlane)
| | - Ray Geor
- Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada (Banse).,Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (Schultz, McCue).,College of Sciences, Massey University, Manawatu, NZ (Geor).,Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK (McFarlane)
| | - Dianne McFarlane
- Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada (Banse).,Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (Schultz, McCue).,College of Sciences, Massey University, Manawatu, NZ (Geor).,Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK (McFarlane)
| |
Collapse
|
45
|
Xiao Y, Xia T, Yu J, Deng Y, Liu H, Liu B, Chen S, Liu Y, Guo F. Knockout of inositol-requiring enzyme 1α in pro-opiomelanocortin neurons decreases fat mass via increasing energy expenditure. Open Biol 2017; 6:rsob.160131. [PMID: 27558934 PMCID: PMC5008012 DOI: 10.1098/rsob.160131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/15/2016] [Indexed: 01/21/2023] Open
Abstract
Although numerous functions of inositol-requiring enzyme 1α (IRE1α) have been identified, a role of IRE1α in pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus is largely unknown. Here, we showed that mice lacking IRE1α specifically in POMC neurons (PIKO) are lean and resistant to high-fat diet-induced obesity and obesity-related insulin resistance, liver steatosis and leptin resistance. Furthermore, PIKO mice had higher energy expenditure, probably due to increased thermogenesis in brown adipose tissue. Additionally, α-melanocyte-stimulating hormone production was increased in the hypothalamus of PIKO mice. These results demonstrate that IRE1α in POMC neurons plays a critical role in the regulation of obesity and obesity-related metabolic disorders. Our results also suggest that IRE1α is not only an endoplasmic reticulum stress sensor, but also a new potential therapeutic target for obesity and obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Yuzhong Xiao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, The Graduate School of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, People's Republic of China
| | - Tingting Xia
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, The Graduate School of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, People's Republic of China
| | - Junjie Yu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, The Graduate School of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, People's Republic of China
| | - Yalan Deng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, The Graduate School of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, People's Republic of China
| | - Hao Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, The Graduate School of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, People's Republic of China
| | - Bin Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, The Graduate School of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, People's Republic of China
| | - Shanghai Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, The Graduate School of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, People's Republic of China
| | - Yong Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, The Graduate School of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, People's Republic of China
| | - Feifan Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, The Graduate School of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, People's Republic of China
| |
Collapse
|
46
|
Szokol M, Priksz D, Bombicz M, Varga B, Kovacs A, Fulop GA, Csipo T, Posa A, Toth A, Papp Z, Szilvassy Z, Juhasz B. Long Term Osmotic Mini Pump Treatment with Alpha-MSH Improves Myocardial Function in Zucker Diabetic Fatty Rats. Molecules 2017; 22:molecules22101702. [PMID: 29023410 PMCID: PMC6151765 DOI: 10.3390/molecules22101702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/03/2017] [Indexed: 01/20/2023] Open
Abstract
The present investigation evaluates the cardiovascular effects of the anorexigenic mediator alpha-melanocyte stimulating hormone (MSH), in a rat model of type 2 diabetes. Osmotic mini pumps delivering MSH or vehicle, for 6 weeks, were surgically implanted in Zucker Diabetic Fatty (ZDF) rats. Serum parameters, blood pressure, and weight gain were monitored along with oral glucose tolerance (OGTT). Echocardiography was conducted and, following sacrifice, the effects of treatment on ischemia/reperfusion cardiac injury were assessed using the isolated working heart method. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity was measured to evaluate levels of oxidative stress, and force measurements were performed on isolated cardiomyocytes to determine calcium sensitivity, active tension and myofilament co-operation. Vascular status was also evaluated on isolated arterioles using a contractile force measurement setup. The echocardiographic parameters ejection fraction (EF), fractional shortening (FS), isovolumetric relaxation time (IVRT), mitral annular plane systolic excursion (MAPSE), and Tei-index were significantly better in the MSH-treated group compared to ZDF controls. Isolated working heart aortic and coronary flow was increased in treated rats, and higher Hill coefficient indicated better myofilament co-operation in the MSH-treated group. We conclude that MSH improves global heart functions in ZDF rats, but these effects are not related to the vascular status.
Collapse
Affiliation(s)
- Miklos Szokol
- Department of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Daniel Priksz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Mariann Bombicz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Balazs Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Arpad Kovacs
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Gabor Aron Fulop
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Tamas Csipo
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Aniko Posa
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Hungary.
| | - Attila Toth
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Zoltan Papp
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Zoltan Szilvassy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Bela Juhasz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| |
Collapse
|
47
|
Gordon RJ, Panigrahi SK, Meece K, Atalayer D, Smiley R, Wardlaw SL. Effects of Opioid Antagonism on Cerebrospinal Fluid Melanocortin Peptides and Cortisol Levels in Humans. J Endocr Soc 2017; 1:1235-1246. [PMID: 29264449 PMCID: PMC5686644 DOI: 10.1210/js.2017-00289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/25/2017] [Indexed: 11/19/2022] Open
Abstract
CONTEXT Hypothalamic proopiomelanocortin (POMC) is processed to α-melanocyte-stimulating hormone, which interacts with the melanocortin antagonist agouti-related protein (AgRP), to regulate energy balance. The POMC-derived opioid peptide β-endorphin (β-EP) also affects feeding behavior via interactions with brain µ-opioid receptors (MORs), including autoinhibitory interactions with MOR expressed by POMC neurons. The opioid antagonist naltrexone (NTX) stimulates POMC neurons in rodents and decreases food intake. OBJECTIVE AND DESIGN The effect of NTX on brain POMC in humans was assessed by measuring POMC peptide concentrations in lumbar cerebrospinal fluid (CSF). AgRP and cortisol levels were also measured because both are inhibited by opioids. In a double-blinded crossover study, 14 healthy subjects were given NTX (50 mg daily) or placebo for either 2 or 7 days. RESULTS CSF β-EP levels increased after 2 and 7 days of NTX treatment; CSF POMC levels did not change, but the β-EP-to-POMC ratio increased. CSF AgRP levels did not change, but plasma AgRP levels tended to increase after NTX (P = 0.06). Cortisol increased in plasma and CSF after NTX treatment; these changes correlated positively with changes in AgRP levels. CONCLUSION Opioid antagonism stimulates POMC peptide release into CSF in humans. The increase in the CSF β-EP-to-POMC ratio could indicate selective release of processed peptides or an effect on POMC processing. Furthermore, AgRP and cortisol stimulation by NTX may mitigate POMC-induced decrease in food intake. It remains to be determined if biomarkers in CSF and plasma could be used to predict responses to pharmacotherapy targeting the melanocortin system.
Collapse
Affiliation(s)
- Rebecca J. Gordon
- Department of Pediatrics, Columbia University College of Physicians & Surgeons, New York, NY 10032
| | - Sunil K. Panigrahi
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, NY 10032
| | - Kana Meece
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, NY 10032
| | - Deniz Atalayer
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, NY 10032
| | - Richard Smiley
- Department of Anesthesiology, Columbia University College of Physicians & Surgeons, New York, NY 10032
| | - Sharon L. Wardlaw
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, NY 10032
| |
Collapse
|
48
|
Yamada-Goto N, Ochi Y, Katsuura G, Yamashita Y, Ebihara K, Noguchi M, Fujikura J, Taura D, Sone M, Hosoda K, Gottschall PE, Nakao K. Neuronal cells derived from human induced pluripotent stem cells as a functional tool of melanocortin system. Neuropeptides 2017; 65:10-20. [PMID: 28434791 DOI: 10.1016/j.npep.2017.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND The preparation of human neurons derived from human induced pluripotent stem (iPS) cells can serve as a potential tool for evaluating the physiological and pathophysiological properties of human neurons and for drug development. METHODS In the present study, the functional activity in neuronal cells differentiated from human iPS cells was observed. RESULTS The differentiated cells expressed mRNAs for classical neuronal markers (microtubule-associated protein 2, β-tubulin III, calbindin 1, synaptophysin and postsynaptic density protein 95) and for subunits of various excitatory and inhibitory transmitters (NR1, NR2A, NR2B, GABAA α1). Moreover, the differentiated cells expressed neuropeptides and receptors which are predominantly present in the hypothalamus. The expression of mRNA for preopiomelanocortin, agouti-related protein (AgRP), melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) increased in culture with a peak on Day 30 which subsequently decreased at Day 45. Immunoreactivities for MC3R and MC4R were also observed in cells differentiated from human iPS cells. Application of a potent agonist for MC3R and MC4R, [Nle4, D-Phe7]-α-melanocyte-stimulating hormone, significantly increased intracellular cAMP levels, but this was suppressed by AgRP (83-132) and SHU9119. CONCLUSIONS These findings offer the possibility for drug developments using neurons differentiated from normal or disease-associated human iPS cells.
Collapse
Affiliation(s)
- Nobuko Yamada-Goto
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Yukari Ochi
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Goro Katsuura
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yui Yamashita
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ken Ebihara
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Michio Noguchi
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Junji Fujikura
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daisuke Taura
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masakatsu Sone
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kiminori Hosoda
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Human Health Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Paul E Gottschall
- Department of Pharmacology and Toxicology, Slot 611, University of Arkansas for Medical Sciences, AR, USA
| | - Kazuwa Nakao
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan; Kyoto University Graduate School of Medicine Medical Innovation Center, Kyoto, Japan
| |
Collapse
|
49
|
Abstract
The hypothalamus is an evolutionarily conserved brain structure that regulates an organism's basic functions, such as homeostasis and reproduction. Several hypothalamic nuclei and neuronal circuits have been the focus of many studies seeking to understand their role in regulating these basic functions. Within the hypothalamic neuronal populations, the arcuate melanocortin system plays a major role in controlling homeostatic functions. The arcuate pro-opiomelanocortin (POMC) neurons in particular have been shown to be critical regulators of metabolism and reproduction because of their projections to several brain areas both in and outside of the hypothalamus, such as autonomic regions of the brain stem and spinal cord. Here, we review and discuss the current understanding of POMC neurons from their development and intracellular regulators to their physiological functions and pathological dysregulation.
Collapse
Affiliation(s)
- Chitoku Toda
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut 06520; .,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Anna Santoro
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut 06520; .,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Jung Dae Kim
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut 06520; .,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Sabrina Diano
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut 06520; .,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520.,Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520.,Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
50
|
Aoyama K, Bhadhprasit W, Watabe M, Wang F, Matsumura N, Nakaki T. GTRAP3-18 regulates food intake and body weight by interacting with pro-opiomelanocortin. FASEB J 2017; 32:330-341. [PMID: 28904020 DOI: 10.1096/fj.201700421r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/28/2017] [Indexed: 01/16/2023]
Abstract
Pro-opiomelanocortin (POMC)-expressing neurons provide α-melanocyte-stimulating hormone (α-MSH), which stimulates melanocortin 4 receptor to induce hypophagia by AMPK inhibition in the hypothalamus. α-MSH is produced by POMC cleavage in secretory granules and released. However, it is not known yet whether any posttranscriptional regulatory mechanism of POMC signaling exists upstream of the secretory granules in neurons. Here we show that glutamate transporter-associated protein 3-18 (GTRAP3-18), an anchor protein that retains interacting proteins in the endoplasmic reticulum, is a critical regulator of food intake and body weight by interacting with POMC. GTRAP3-18-deficient mice showed hypophagia, lean bodies, and lower blood glucose, insulin, and leptin levels with increased serum and brain α-MSH levels, leading to AMPK inhibition. Intraperitoneal glucose tolerance tests revealed significantly decreased blood glucose levels and areas under the curve in GTRAP3-18-deficient mice compared to wild-type mice. An intracerebroventricular infusion of a selective melanocortin 4 receptor antagonist to GTRAP3-18-deficient mice significantly increased their food intake and body weight. A fluorescence resonance energy transfer study showed an interaction between GTRAP3-18 and POMC in vitro These findings suggest that activation of the melanocortin pathway by modulating GTRAP3-18/POMC interaction could be an alternative strategy for obesity and/or type 2 diabetes.-Aoyama, K., Bhadhprasit, W., Watabe, M., Wang, F., Matsumura, N., Nakaki, T. GTRAP3-18 regulates food intake and body weight by interacting with pro-opiomelanocortin.
Collapse
Affiliation(s)
- Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, Tokyo, Japan
| | | | - Masahiko Watabe
- General Medical Education Center (G-MEC), Teikyo University School of Medicine, Tokyo, Japan
| | - Fan Wang
- Department of Pharmacology, Teikyo University School of Medicine, Tokyo, Japan
| | - Nobuko Matsumura
- Department of Pharmacology, Teikyo University School of Medicine, Tokyo, Japan
| | - Toshio Nakaki
- Department of Pharmacology, Teikyo University School of Medicine, Tokyo, Japan;
| |
Collapse
|