1
|
Obakanurhe O, Irikefe-Ekeke EP, Moemeka AM, Onwumelu IJ, Sanubi JO, Unukevwere JU. Antioxidant and antinutritional potentials of sweet potato (Ipomoea batatas) leaf meal on the growth performance, economics of production, blood indices, carcass characteristics and histopathology of broiler chickens. Trop Anim Health Prod 2025; 57:51. [PMID: 39928188 DOI: 10.1007/s11250-025-04299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 01/23/2025] [Indexed: 02/11/2025]
Abstract
A feed trial on seven hundred-and twenty-day old Cobb-500 strain broilers finisher chickens on substituting sweet potato leaf meal (SPLM) in broiler chicken diets was conducted. In a completely randomized design, the birds were allocated randomly to five (5) diets with 144 birds per treatment and divided into four replicates of thirty-six birds each. Treatment 1 was designated as the control (0% SPLM) while 3.75% SPLM, 7.5% SPLM, 11.25% SPLM and 15% SPLM served as T2 - T5 respectively. Data were collected on blood indices, carcass characteristics and histopathology which were subjected to analysis of variance (ANOVA) and the means were separated using Duncan's Multiple Range Test. The proximate analysis and phytochemicals in the leaf revealed significant amounts of constituents analysed. The bird's performance, cost of production, blood indices, carcass, and organs characteristics on experimental diets recorded significant (p < 0.05) effects on the weight gain, FCR, cost of diets, cost of body weight gain, WBC, MCH, MCV, glucose and total cholesterol, live weight, plucked weight, eviscerated carcass weight and dressed carcass weight values. Treatment 3 had superior carcass values in comparison to the other treatments. The histopathology results recorded significant (p < 0.05) effects at 15%SPLM on the heart and liver respectively but no tissue damage was recorded. The superoxide dismutase enzyme exhibited the highest level compared to the other treatments. However, the level of the glutathione peroxidase enzyme significantly decreased in comparison to the other SPLM levels. Also, birds on SPLM supplements showed (p < 0.05) compared to the control. Conclusively, T3 revealed better weight gain, FCR and carcass quality while at higher inclusion levels up to 15% SPLM diet showed lowers values of production cost, serum cholesterol concentration, improves the serum superoxide dismutase and glutathione peroxidase activities of the chickens.
Collapse
Affiliation(s)
- Oghenebrorhie Obakanurhe
- Department of Animal Production, Faculty of Agriculture, Dennis Osadebay University, Asaba, Delta State, Nigeria.
- Department of Animal Science, Faculty of Agriculture, Delta State University, Abraka, Delta State, Nigeria.
| | - Efe Peterson Irikefe-Ekeke
- Department of Animal Production, Faculty of Agriculture, Dennis Osadebay University, Asaba, Delta State, Nigeria
| | - Adimabua Mike Moemeka
- Department of Animal Production, Faculty of Agriculture, Dennis Osadebay University, Asaba, Delta State, Nigeria
| | - Ifeoma Jane Onwumelu
- Department of Animal Production, Faculty of Agriculture, Dennis Osadebay University, Asaba, Delta State, Nigeria
| | | | | |
Collapse
|
2
|
Tang C, Xu Y, Zhang R, Mo X, Jiang B, Wang Z. Comprehensive quality assessment of 296 sweetpotato core germplasm in China: A quantitative and qualitative analysis. Food Chem X 2024; 24:102009. [PMID: 39634522 PMCID: PMC11615577 DOI: 10.1016/j.fochx.2024.102009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
The potential for improving sweetpotato quality remains underutilized due to a lack of comprehensive quality data on germplasm resources. This study evaluated 296 core germplasms, revealing significant phenotypic diversity across 24 quality traits in both stem tips and roots. Landraces had higher sugar content in roots, while wild relatives showed increased total flavonoid and phenol contents. Accessions with red-orange flesh were rich in sugars and carotenoids, whereas those with purple flesh had higher dry matter, flavonoids, and phenols. The accessions were classified into three clusters: high sugars and carotenoids, high phenolic compounds, and high starch. A comprehensive quality scoring model identified SP286 and SP192 as superior for stem tips and roots, respectively. Near-infrared spectroscopy, combined with a random forest algorithm, enabled rapid screening of superior germplasm, achieving prediction accuracies of 97 % for stem tips and 98 % for roots. These findings offer valuable resources and high-throughput models for enhancing sweetpotato quality.
Collapse
Affiliation(s)
- Chaochen Tang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou 510640, China
| | - Yi Xu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Rong Zhang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou 510640, China
| | - Xueying Mo
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou 510640, China
| | - Bingzhi Jiang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou 510640, China
| | - Zhangying Wang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou 510640, China
| |
Collapse
|
3
|
Ivane NMA, Wang W, Ma Q, Wang J, Sun J. Harnessing the health benefits of purple and yellow-fleshed sweet potatoes: Phytochemical composition, stabilization methods, and industrial utilization- A review. Food Chem X 2024; 23:101462. [PMID: 38974195 PMCID: PMC11225668 DOI: 10.1016/j.fochx.2024.101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/20/2024] [Accepted: 05/09/2024] [Indexed: 07/09/2024] Open
Abstract
Purple-fleshed sweet potato (PFSP) and yellow-fleshed sweet potato (YFSP) are crops highly valued for their nutritional benefits and rich bioactive compounds. These compounds include carotenoids, flavonoids (including anthocyanins), and phenolic acids etc. which are present in both the leaves and roots of these sweet potatoes. PFSP and YFSP offer numerous health benefits, such as antioxidant, anti-inflammatory, anti-cancer, and neuroprotective properties. The antioxidant activity of these sweet potatoes holds significant potential for various industries, including food, pharmaceutical, and cosmetics. However, a challenge in utilizing PFSP and YFSP is their susceptibility to rapid oxidation and color fading during processing and storage. To address this issue and enhance the nutritional value and shelf life of food products, researchers have explored preservation methods such as co-pigmentation and encapsulation. While YFSP has not been extensively studied, this review provides a comprehensive summary of the nutritional value, phytochemical composition, health benefits, stabilization techniques for phytochemical, and industrial applications of both PFSP and YFSP in the food industry. Additionally, the comparison between PFSP and YFSP highlights their similarities and differences, shedding light on their potential uses and benefits in various food products.
Collapse
Affiliation(s)
- Ngouana Moffo A. Ivane
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China
| | - Wenxiu Wang
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China
- Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China
| | - Qianyun Ma
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China
- Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China
| | - Jie Wang
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China
- Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China
| | - Jianfeng Sun
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China
- Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China
- Hebei Technology Innovation Center of Potato Processing, Hebei 076576, China
| |
Collapse
|
4
|
Zhang L, Xu M, Liu F, Li R, Azzam MM, Dong X. Characterization and Evaluation of Taihe Black-Boned Silky Fowl Eggs Based on Physical Properties, Nutritive Values, and Flavor Profiles. Foods 2024; 13:3308. [PMID: 39456371 PMCID: PMC11508104 DOI: 10.3390/foods13203308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Taihe black-boned silky fowl (TS) is a native chicken breed in China with more than 2000 years of history. The present study aimed to characterize and evaluate the physical, nutritional, and flavor properties of TS eggs with a comparison to two other commercial breeds. Eggs from TS (n = 60) crossbred black-boned silky fowl (CB, n = 60) and Hy-line Brown (HL, n = 60) were used for physicochemical analysis. The evaluation system was divided into four parts based on nutrient and flavor profiles: protein and amino acids, lipids and fatty acids, mineral elements, and flavor-related amino acids and volatile compounds. Results showed that TS eggs were typically associated with the lowest egg weight and the highest yolk color, as compared with CB and HL eggs. No differences were found in crude protein, crude fat, triglycerides, and cholesterol content between eggs from the different breeds, but these eggs were distinct in terms of the amino acid, fatty acid, and volatile flavor compound profiles. Moreover, the differences in amino acid and fatty acid profiles might contribute to the specific flavor of TS eggs. Evaluation results indicated that TS egg whites may be suitable as a protein source for premature infants and young children under three years old and TS egg yolks could be considered a beneficial dietary lipid source due to their potential anti-cardiovascular properties. Additionally, TS whole eggs could serve as a valuable source of selenium (Se), molybdenum (Mo), zinc (Zn), and phosphorus (P) for adults aged 18 to 65. However, TS and CB eggs showed inferior Haugh units, eggshell quality, and essential amino acid compositions for older children, adolescents, and adults. These findings provide a better insight into the health benefits of TS eggs and contribute to the breeding and nutrition regulation of TS breeds.
Collapse
Affiliation(s)
- Libo Zhang
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, China; (L.Z.); (M.X.); (F.L.); (R.L.)
| | - Mengru Xu
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, China; (L.Z.); (M.X.); (F.L.); (R.L.)
| | - Fang Liu
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, China; (L.Z.); (M.X.); (F.L.); (R.L.)
| | - Ru Li
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, China; (L.Z.); (M.X.); (F.L.); (R.L.)
| | - Mahmoud M. Azzam
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Xinyang Dong
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, China; (L.Z.); (M.X.); (F.L.); (R.L.)
| |
Collapse
|
5
|
Sultana T, Islam S, Azad MAK, Akanda MJH, Rahman A, Rahman MS. Phytochemical Profiling and Antimicrobial Properties of Various Sweet Potato ( Ipomoea batatas L.) Leaves Assessed by RP-HPLC-DAD. Foods 2024; 13:2787. [PMID: 39272552 PMCID: PMC11395622 DOI: 10.3390/foods13172787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
This study aimed to investigate the leaves of six cultivars of Ipomoea batatas L. from the USA, focusing on their Total Polyphenol Content (TPC), Total Flavonoid Content (TFC), antioxidant, and antimicrobial activities. TPC and TFC ranged from 7.29 ± 0.62 to 10.49 ± 1.04 mg TAE/g Dw, and from 2.30 ± 0.04 to 4.26 ± 0.23 mg QE/g Dw, respectively, with the highest values found in the 'O'Henry' variety. RP-High-Performance Liquid Chromatography identified six phenolic and flavonoid compounds: caffeic acid, chlorogenic acid, 3,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, and quercetin, excluding gallic acid. The highest levels of these compounds were found in acidified methanolic extracts. Antioxidant activities, measured by ABTS and DPPH assays, showed low IC50 values ranging from 94.6 ± 2.76 to 115.17 ± 7.65 µg/mL, and from 88.83 ± 1.94 to 147.6 ± 1.22 µg/mL. Ferric Ion-Reducing Antioxidant Potential (FRAP) measurements indicated significant antioxidant levels, varying from 1.98 ± 0.14 to 2.83 ± 0.07, with the 'O'Henry' variety exhibiting the highest levels. The antimicrobial activity test included five Gram-positive bacteria, three Gram-negative bacteria, and two pathogenic fungi. S. aureus, S. mutans, L. monocytogenes, E. coli, S. dysenteriae, and C. albicans were most susceptible to the methanolic extract. This study underscores the impressive antioxidant and antimicrobial activities of sweet potato leaves, often discarded, making them a valuable source of natural antioxidants, antimicrobials, and other health-promoting compounds.
Collapse
Affiliation(s)
- Tasbida Sultana
- Department of Agriculture/Agricultural Regulations, University of Arkansas at Pine Bluff, 1200 North University Dr., 148 Woodard Hall, Mail Slot 4913, Pine Bluff, AR 71601, USA
| | - Shahidul Islam
- Department of Agriculture/Agricultural Regulations, University of Arkansas at Pine Bluff, 1200 North University Dr., 148 Woodard Hall, Mail Slot 4913, Pine Bluff, AR 71601, USA
| | - Muhammad Abul Kalam Azad
- Department of Agriculture/Agricultural Regulations, University of Arkansas at Pine Bluff, 1200 North University Dr., 148 Woodard Hall, Mail Slot 4913, Pine Bluff, AR 71601, USA
| | - Md Jahurul Haque Akanda
- Department of Agriculture/Agricultural Regulations, University of Arkansas at Pine Bluff, 1200 North University Dr., 148 Woodard Hall, Mail Slot 4913, Pine Bluff, AR 71601, USA
| | - Atikur Rahman
- Department of Physics and Astronomy, University of Arkansas at Little Rock, 2801 S University Ave., Little Rock, AR 72204, USA
| | - Md Sahidur Rahman
- Department of Agriculture/Agricultural Regulations, University of Arkansas at Pine Bluff, 1200 North University Dr., 148 Woodard Hall, Mail Slot 4913, Pine Bluff, AR 71601, USA
| |
Collapse
|
6
|
Rahayu YYS, Sujarwo W, Irsyam ASD, Dwiartama A, Rosleine D. Exploring unconventional food plants used by local communities in a rural area of West Java, Indonesia: ethnobotanical assessment, use trends, and potential for improved nutrition. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2024; 20:68. [PMID: 39030547 PMCID: PMC11264525 DOI: 10.1186/s13002-024-00710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND As one of the world's biodiversity hotspots, Indonesia contains over 25,000 plant species, including unconventional food plants (UFPs). These plants are integral to the dietary practices of rural communities, providing essential nutrients often overlooked in modern diets. However, the use of UFP is declining, with both their dietary and cultural values being undermined. In rural West Java, this decline in UFP biodiversity coincides with public health challenges related to malnutrition. This study aims to document the diversity of UFPs used by local communities in rural West Java, assess their nutritional value, and explore their consumption practices. METHODS Data were collected using mixed methods, including interviews with 20 key informants and food frequency questionnaire administered to 107 women in three villages in the area. The nutritional compositions of documented UFPs were obtained from literature and analysis. Bivariate correlation was used to analyze the relationships between UFP consumption frequency and potential correlates. RESULTS The study documented 52 species of UFPs from 29 families, many of which are rich in nutritional value. About half of respondents (56%) consumed UFPs moderately (2-3 times a week). UFP consumption frequency had a strong correlation (r = 0.70) with associated knowledge (r = 0.70, p < 0.01) and a weak correlation with age (r = 0.240, p = 0.015), livestock possession (r = 0.260, p = 0.008), and family size (r = - 0.220, p = 0.02). Motivations for UFP consumption included availability as free food (33%), medicinal value (26%), nostalgic value (23%), and preferred taste (18%). Most respondents (92%) agreed that consumption has declined compared to the past, with perceived reduced availability and lack of knowledge cited as the primary reasons for the declining trend. CONCLUSIONS UFP use is common in the study area, where local communities value these plants for their critical roles in diet, medicine, and culture. Given their significant potential to meet dietary needs, educating and raising awareness about UFPs can enhance their consumption and contribute to food and nutrition security.
Collapse
Affiliation(s)
- Yen Yen Sally Rahayu
- Tokyo College, The University of Tokyo, 7-3-1 Hongo, Bunkyo Ward, Tokyo, 113-8657, Japan.
| | - Wawan Sujarwo
- Research Center for Ecology and Ethnobiology, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, Indonesia
| | - Arifin Surya Dwipa Irsyam
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| | - Angga Dwiartama
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| | - Dian Rosleine
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| |
Collapse
|
7
|
Meng X, Dong T, Li Z, Zhu M. First systematic review of the last 30 years of research on sweetpotato: elucidating the frontiers and hotspots. FRONTIERS IN PLANT SCIENCE 2024; 15:1428975. [PMID: 39036362 PMCID: PMC11258629 DOI: 10.3389/fpls.2024.1428975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024]
Abstract
Sweetpotato is an economically important crop, and it has various advantages over other crops in addressing global food security and climate change. Although substantial articles have been published on the research of various aspects of sweetpotato biology, there are no specific reports to systematically crystallize the research achievements. The current review takes the lead in conducting a keyword-centric spatiotemporal dimensional bibliometric analysis of articles on sweetpotato research using CiteSpace software to comprehensively clarify the development status, research hotspot, and development trend in the past 30 years (1993-2022). Quantitative analysis was carried out on the publishing countries, institutions, disciplines, and scholars to understand the basic status of sweetpotato research; then, visual analysis was conducted on high-frequency keywords, burst keywords, and keyword clustering; the evolution of major research hotspots and the development trend in different periods were summarized. Finally, the three main development stages-preliminary stage (1993-2005), rapid stage (2006-2013), and diversified mature stage (2014-2022)-were reviewed and analyzed in detail. Particularly, the development needs of sweetpotato production in improving breeding efficiency, enhancing stress tolerance, coordinating high yield with high quality and high resistance, and promoting demand were discussed, which will help to comprehensively understand the development dynamics of sweetpotato research from different aspects of biological exploration.
Collapse
Affiliation(s)
| | | | | | - Mingku Zhu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
8
|
Tshilongo L, Mianda SM, Seke F, Laurie SM, Sivakumar D. Influence of Harvesting Stages on Phytonutrients and Antioxidant Properties of Leaves of Five Purple-Fleshed Sweet Potato ( Ipomoea batatas) Genotypes. Foods 2024; 13:1640. [PMID: 38890868 PMCID: PMC11172356 DOI: 10.3390/foods13111640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Sweet potatoes (Ipomoea batatas) are highly profitable, contribute to food security, and their leaves rich in phytonutrients. This study examined the optimal leaf harvesting stage by harvesting newly formed leaves (leaves 1 to 5) to achieve the highest concentration of carotenoids, phenolic compounds, antioxidant properties and mineral content. Leaves of five purple-fleshed sweet potato genotypes '2019-11-2' and '2019-1-1', 'Purple-purple', and from the USA '08-21P' and '16-283P' were harvested based on tuber life cycle [vegetative 8 weeks after planting (VS-8WAP), tuber initiation (TIS-12WAP), and tuber maturation phases (TMS-16WAP)]. At the 8WAP stage, leaves of genotype '2019-11-2' had the highest concentrations of cyanidin-caffeoyl-sophoroside-glucoside (17.64 mg/kg), cyanidin-caffeoyl-feruloyl-sophoroside-glucoside (41.51 mg/kg), peonidin-caffeoyl-hydroxybenzoyl-sophoriside-glucoside (45.25 mg/kg), and peonidin caffeoyl-feruloyl-sophoriside-glucoside (24.47 mg/kg), as well as antioxidant scavenging activity. In contrast, 'Purple-purple' harvested at TIS-12WAP showed the highest concentration of caffeoylquinic acid derivatives. Zeaxanthin, lutein, all trans-β-carotene, and cis-β-carotene are the most abundant carotenoids in genotype '08-21P' at VS-8WAP. As a result, local genotypes '2019-11-2' harvested at 8WAP and 'Purple-purple' harvested at 12WAP are potential sources of anthocyanins and caffeoylquinic acid derivatives. Conversely, USA's genotype '08-21P' at the VS-8WAP stage is an excellent source of carotenoids. The leaves of USA's '08-21P' genotype and the local '2019-11-2' genotype at TMS-16WAP exhibited the highest content of Fe and Mn, respectively. The study identified the optimal leaf stage for consumption of leaves and for use as a functional ingredient.
Collapse
Affiliation(s)
- Lavhelani Tshilongo
- Department of Crop Sciences, Tshwane University of Technology, Pretoria 0183, South Africa; (L.T.); (D.S.)
| | - Sephora Mutombo Mianda
- Department of Crop Sciences, Tshwane University of Technology, Pretoria 0183, South Africa; (L.T.); (D.S.)
| | - Faith Seke
- Department of Crop Sciences, Tshwane University of Technology, Pretoria 0183, South Africa; (L.T.); (D.S.)
| | - Sunette M. Laurie
- Agricultural Research Council—Vegetable, Industrial and Medicinal Plants, Pretoria 0001, South Africa
| | - Dharini Sivakumar
- Department of Crop Sciences, Tshwane University of Technology, Pretoria 0183, South Africa; (L.T.); (D.S.)
- Agricultural Research Council—Vegetable, Industrial and Medicinal Plants, Pretoria 0001, South Africa
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Indooroopilly, QLD 4068, Australia
| |
Collapse
|
9
|
Sarker U, Oba S, Ullah R, Bari A, Ercisli S, Skrovankova S, Adamkova A, Zvonkova M, Mlcek J. Nutritional and bioactive properties and antioxidant potential of Amaranthus tricolor, A. lividus, A viridis, and A. spinosus leafy vegetables. Heliyon 2024; 10:e30453. [PMID: 38720726 PMCID: PMC11077029 DOI: 10.1016/j.heliyon.2024.e30453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Climate change results in continuous warming of the planet, threatening sustainable crop production around the world. Amaranth is an abiotic stress-tolerant, climate-resilient, C4 leafy orphan vegetable that has grown rapidly with great divergence and potential usage. The C4 photosynthesis allows amaranth to be grown as a sustainable future food crop across the world. Most amaranth species grow as weeds in many parts of the world, however, a few amaranth species can be also found in cultivated form. Weed species can be used as a folk medicine to relieve pain or reduce fever thanks to their antipyretic and analgesic properties. In this study, nutritional value, bioactive pigments, bioactive compounds content, and radical scavenging potential (RSP) of four weedy and cultivated (WC) amaranth species were evaluated. The highest dry matter, carbohydrate content, ash, content of iron, copper, sodium, boron, molybdenum, zinc, β-carotene and carotenoids, vitamin C, total polyphenols (TP), RSP (DPPH), and RSP (ABTS+) was determined in Amaranthus viridis (AV). On the other hand, A. spinosus (AS) was found to have the highest content of protein, fat, dietary fiber, manganese, molybdenum, and total flavonoids (TF). In A. tricolor (AT) species the highest total chlorophyll, chlorophyll a and b, betaxanthin, betacyanin, and betalain content was determined. A. lividus (AL) was evaluated as the highest source of energy. AV and AT accessions are underutilized but promising vegetables due to their bioactive phytochemicals and antioxidants.
Collapse
Affiliation(s)
- Umakanta Sarker
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur-1706, Bangladesh
| | - Shinya Oba
- Laboratory of Field Science, Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkiye
| | - Sona Skrovankova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic
| | - Anna Adamkova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic
| | - Magdalena Zvonkova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic
| | - Jiri Mlcek
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic
| |
Collapse
|
10
|
Liu T, Xie Q, Zhang M, Gu J, Huang D, Cao Q. Reclaiming Agriceuticals from Sweetpotato ( Ipomoea batatas [L.] Lam.) By-Products. Foods 2024; 13:1180. [PMID: 38672853 PMCID: PMC11049097 DOI: 10.3390/foods13081180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Sweetpotato (SP, Ipomoea batatas [L.] Lam.) is a globally significant food crop known for its high nutritional and functional values. Although the contents and compositions of bioactive constituents vary among SP varieties, sweetpotato by-products (SPBs), including aerial parts, storage root peels, and wastes generated from starch processing, are considered as excellent sources of polyphenols (e.g., chlorogenic acid, caffeoylquinic acid, and dicaffeoylquinic acid), lutein, functional carbohydrates (e.g., pectin, polysaccharides, and resin glycosides) or proteins (e.g., polyphenol oxidase, β-amylase, and sporamins). This review summarises the health benefits of these ingredients specifically derived from SPBs in vitro and/or in vivo, such as anti-obesity, anti-cancer, antioxidant, cardioprotective, and anti-diabetic, evidencing their potential to regenerate value-added bio-products in the fields of food and nutraceutical. Accordingly, conventional and novel technologies have been developed and sometimes combined for the pretreatment and extraction processes aimed at optimising the recovery efficiency of bioactive ingredients from SPBs while ensuring sustainability. However, so far, advanced extraction technologies have not been extensively applied for recovering bioactive compounds from SPBs except for SP leaves. Furthermore, the incorporation of reclaimed bioactive ingredients from SPBs into foods or other healthcare products remains limited. This review also briefly discusses current challenges faced by the SPB recycling industry while suggesting that more efforts should be made to facilitate the transition from scientific advances to commercialisation for reutilising and valorising SPBs.
Collapse
Affiliation(s)
- Tiange Liu
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, China; (M.Z.); (J.G.); (D.H.)
| | - Qingtong Xie
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore;
| | - Min Zhang
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, China; (M.Z.); (J.G.); (D.H.)
| | - Jia Gu
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, China; (M.Z.); (J.G.); (D.H.)
| | - Dejian Huang
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, China; (M.Z.); (J.G.); (D.H.)
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore;
| | - Qinghe Cao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China;
- Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, China
| |
Collapse
|
11
|
Jing X, Chen P, Jin X, Lei J, Wang L, Chai S, Yang X. Physiological, Photosynthetic, and Transcriptomics Insights into the Influence of Shading on Leafy Sweet Potato. Genes (Basel) 2023; 14:2112. [PMID: 38136933 PMCID: PMC10742944 DOI: 10.3390/genes14122112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Leafy sweet potato is a new type of sweet potato, whose leaves and stems are used as green vegetables. However, sweet potato tips can be affected by pre-harvest factors, especially the intensity of light. At present, intercropping, greenhouse planting, and photovoltaic agriculture have become common planting modes for sweet potato. Likewise, they can also cause insufficient light conditions or even low light stress. This research aimed to evaluate the influence of four different shading levels (no shading, 30%, 50%, and 70% shading degree) on the growth profile of sweet potato leaves. The net photosynthetic rate, chlorophyll pigments, carbohydrates, and polyphenol components were determined. Our findings displayed that shading reduced the content of the soluble sugar, starch, and sucrose of leaves, as well as the yield and Pn. The concentrations of Chl a, Chl b, and total Chl were increased and the Chl a/b ratio was decreased for the more efficient interception and absorption of light under shading conditions. In addition, 30% and 50% shading increased the total phenolic, total flavonoids, and chlorogenic acid. Transcriptome analysis indicated that genes related to the antioxidant, secondary metabolism of phenols and flavonoids, photosynthesis, and MAPK signaling pathway were altered in response to shading stresses. We concluded that 30% shading induced a high expression of antioxidant genes, while genes related to the secondary metabolism of phenols and flavonoids were upregulated by 50% shading. And the MAPK signaling pathway was modulated under 70% shading, and most stress-related genes were downregulated. Moreover, the genes involved in photosynthesis, such as chloroplast development, introns splicing, and Chlorophyll synthesis, were upregulated as shading levels increased. This research provides a new theoretical basis for understanding the tolerance and adaptation mechanism of leafy sweet potato in low light environments.
Collapse
Affiliation(s)
- Xiaojing Jing
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.J.); (P.C.); (X.J.); (J.L.); (L.W.); (S.C.)
- Agricultural College, Yangtze University, Jingzhou 434022, China
| | - Peiru Chen
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.J.); (P.C.); (X.J.); (J.L.); (L.W.); (S.C.)
| | - Xiaojie Jin
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.J.); (P.C.); (X.J.); (J.L.); (L.W.); (S.C.)
| | - Jian Lei
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.J.); (P.C.); (X.J.); (J.L.); (L.W.); (S.C.)
| | - Lianjun Wang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.J.); (P.C.); (X.J.); (J.L.); (L.W.); (S.C.)
| | - Shasha Chai
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.J.); (P.C.); (X.J.); (J.L.); (L.W.); (S.C.)
| | - Xinsun Yang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.J.); (P.C.); (X.J.); (J.L.); (L.W.); (S.C.)
| |
Collapse
|
12
|
Timilsina A, Adhikari K, Chen H. Foliar application of green synthesized ZnO nanoparticles reduced Cd content in shoot of lettuce. CHEMOSPHERE 2023; 338:139589. [PMID: 37478984 DOI: 10.1016/j.chemosphere.2023.139589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023]
Abstract
Though Zinc (Zn) supplementation can mitigate root-based Cadmium (Cd) uptake in plants, the impact of foliar-applied Zinc Oxide nanoparticles (ZnO NPs) on this process remains under-explored. This study investigates the influence of foliar-applied ZnO NPs on the growth of lettuce and its Cd uptake in Cd-contaminated soil in greenhouse setting. Green synthesized ZnO (G-ZnO) NPs (10 and 100 mg/L) using sweet potato leaf extracts were used, and compared with commercially available ZnO (C-ZnO) NPs (100 mg/L) for their efficacy. Scanning electron microscopy and Fourier-transform infrared spectroscopy were used for G-ZnO NPs characterization. Shoot dry weight, antioxidant activity, and chlorophyll content were all negatively affected by Cd but positively affected by ZnO NPs application. ZnO NPs application resulted in a notable reduction in lettuce Cd uptake, with the highest reduction (43%) observed at 100 mg/L G-ZnO NPs. In the lettuce shoot, Zn and Cd concentration showed a significant inverse correlation (R2 = 0.79-0.9, P < 0.05). This study offers insights into the impact of chemical and green synthesized ZnO NPs on enhancing crop growth under stress conditions, and their role in modulating Cd uptake in plants, indicating potential implications for sustainable agricultural practices.
Collapse
Affiliation(s)
- Anil Timilsina
- Department of Agriculture, University of Arkansas at Pine Bluff, AR, 71601, United States
| | - Kaushik Adhikari
- Department of Agriculture, University of Arkansas at Pine Bluff, AR, 71601, United States
| | - Hao Chen
- Department of Agriculture, University of Arkansas at Pine Bluff, AR, 71601, United States.
| |
Collapse
|
13
|
Li G, Gao X, Wang Y, He S, Guo W, Huang J. Effects of superfine grinding sweet potato leaf powders on physicochemical and structure properties of sweet potato starch noodles. Food Sci Nutr 2023; 11:6498-6508. [PMID: 37823126 PMCID: PMC10563675 DOI: 10.1002/fsn3.3593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 10/13/2023] Open
Abstract
Sweet potato leaves (SPLs) containing abundant functional components are consumed primarily as fresh vegetables worldwide. This study investigated the physical properties of superfine grinding SPLs powder, and their effects on cooking, texture, and sensory properties, micro- and molecular structures of starch noodles were also explored. The results showed that the bulk and tapped density (from 0.34 to 0.28 g/mL3 and from 0.69 to 0.61 g/mL3), repose and slid angle (from 42.15 to 30.96° and from 48.67 to 22.00°), water-holding capacity and swelling capacity (from 8.66 to 4.94 g/g and from 10.03 to 7.77 mL/g) of SPLs powders were decreased with milling time increased. The cooking loss, swelling index, texture, and sensory properties of SPLs sweet potato starch noodles (SPLSNs) were improved as the particle size of SPLs decreased. XRD and FT-IR showed that SPLSNs contained less complete crystallites (from 28.85% to 14.19%) and lower proportion of crystalline region (R 1047/1017 from 0.96 to 0.81, R 1017/994 from 0.41 to 0.43). SEM revealed that SPLSNs exhibited fewer ordered arrays and smooth cross sections. Our findings provide a foundation for utilizing SPLs and developing functional starch noodles.
Collapse
Affiliation(s)
- Guanghui Li
- Food and Pharmacy CollegeXuchang UniversityXuchangChina
| | - Xueli Gao
- Food and Pharmacy CollegeXuchang UniversityXuchangChina
| | - Yonghui Wang
- Food and Pharmacy CollegeXuchang UniversityXuchangChina
| | - Shenghua He
- Food and Pharmacy CollegeXuchang UniversityXuchangChina
| | - Weiyun Guo
- Food and Pharmacy CollegeXuchang UniversityXuchangChina
| | - Jihong Huang
- Food and Pharmacy CollegeXuchang UniversityXuchangChina
- College of AgricultureHenan UniversityZhengzhouChina
| |
Collapse
|
14
|
Arisanti CIS, Wirasuta IMAG, Musfiroh I, Ikram EHK, Muchtaridi M. Mechanism of Anti-Diabetic Activity from Sweet Potato ( Ipomoea batatas): A Systematic Review. Foods 2023; 12:2810. [PMID: 37509903 PMCID: PMC10378973 DOI: 10.3390/foods12142810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
This study aims to provide an overview of the compounds found in sweet potato (Ipomoea batatas) that contribute to its anti-diabetic activity and the mechanisms by which they act. A comprehensive literature search was conducted using electronic databases, such as PubMed, Scopus, and Science Direct, with specific search terms and Boolean operators. A total of 269 articles were initially retrieved, but after applying inclusion and exclusion criteria only 28 articles were selected for further review. Among the findings, four varieties of sweet potato were identified as having potential anti-diabetic properties. Phenolic acids, flavonols, flavanones, and anthocyanidins are responsible for the anti-diabetic activity of sweet potatoes. The anti-diabetic mechanism of sweet potatoes was determined using a combination of components with multi-target actions. The results of these studies provide evidence that Ipomoea batatas is effective in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Cokorda Istri Sri Arisanti
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Pharmacy Department, Faculty of Mathematic and Natural Science, Udayana University, Kampus Bukit Jimbaran, Bali 80361, Indonesia
| | - I Made Agus Gelgel Wirasuta
- Pharmacy Department, Faculty of Mathematic and Natural Science, Udayana University, Kampus Bukit Jimbaran, Bali 80361, Indonesia
| | - Ida Musfiroh
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Emmy Hainida Khairul Ikram
- Centre for Dietetics Studies, Faculty of Health Sciences, Universiti Teknologi MARA Cawangan Selangor, Kampus Puncak Alam, Bandar Puncak Alam 42300, Malaysia
- Integrated Nutrition Science and Therapy Research Group (INSPIRE), Faculty of Health Sciences, Universiti Teknologi MARA Cawangan Selangor, Kampus Puncak Alam, Bandar Puncak Alam 42300, Malaysia
- Research Collaboration Center for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Sumedang 45363, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Research Collaboration Center for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Sumedang 45363, Indonesia
| |
Collapse
|
15
|
Hisamuddin ASDB, Naomi R, Bin Manan KA, Bahari H, Yazid MD, Othman F, Embong H, Hadizah Jumidil S, Hussain MK, Zakaria ZA. Phytochemical component and toxicological evaluation of purple sweet potato leaf extract in male Sprague–Dawley rats. Front Pharmacol 2023; 14:1132087. [PMID: 37077809 PMCID: PMC10106777 DOI: 10.3389/fphar.2023.1132087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/03/2023] [Indexed: 04/05/2023] Open
Abstract
This study assessed the toxicity of lutein-rich purple sweet potato leaf (PSPL) extract in male Sprague–Dawley rats.Methods and study design: A total of 54 adult male Sprague–Dawley rats were used. For the acute toxicity study, three rats in the acute control group were fed 2,000 mg/kg of PSPL for 14 days. The subacute toxicity study included six rats each in four groups administered 50, 250, 500, or 1,000 mg/kg for 28 days and observed for further 14 days without treatment in the subacute control and subacute satellite groups. Changes in body weight; blood biochemistry; hematological parameters; relative organ weight; and histological sections of the heart, kidney, liver, pancreas, aorta, and retina were observed for signs of toxicity.Results: The gradual increase in weekly body weight, normal level full blood count, normal liver and kidney profile, relative organ weight, and histological sections of all stained organ tissue in the treated group compared with the acute, subacute, and satellite control groups demonstrated the absence of signs of toxicity.Conclusion: Lutein-rich PSPL extract shows no signs of toxicity up to 2,000 mg/kg/day.
Collapse
|
16
|
Khan MA, Kumar S, Wang Q, Wang M, Fahad S, Nizamani MM, Chang K, Khan S, Huang Q, Zhu G. Influence of polyvinyl chloride microplastic on chromium uptake and toxicity in sweet potato. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114526. [PMID: 36634477 DOI: 10.1016/j.ecoenv.2023.114526] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
The extensive use of plastic products and rapid industrialization have created a universal concern about microplastics (MPs). MPs can pose serious environmental risks when combined with heavy metals. However, current research on the combined effects of MPs and hexavalent chromium [Cr(VI)] on plants is insufficient. Herein, a 14-day hydroponic experiment was conducted to investigate the impact of PVC MPs (100 and 200 mg/L) and Cr(VI) (5, 10, and 20 μM) alone and in combination on sweet potato. Results showed that combined Cr(VI) and PVC MPs affected plant growth parameters significantly, but PVC MPs alone did not. The combined application of PVC MPs and Cr(VI) resulted in a decrease in plant height (24-65%), fresh biomass per plant (36-71%), and chlorophyll content (16-34%). Cr(VI) bioaccumulation increased with the increase in its doses, with the highest concentration of Cr(VI) in the leaves (16.45 mg/kg), stems (13.81 mg/kg), and roots (236.65 mg/kg). Cr(VI) and PVC MPs-induced inhibition varied with Cr(VI) and PVC MPs doses. Osmolytes and antioxidants, lipid peroxidation, and H2O2 contents were significantly increased, while antioxidant enzymes except CAT were decreased with increasing Cr(VI) concentration alone and mixed treatments. The presence of PVC MPs promoted Cr(VI) accumulation in sweet potato plants, which clearly showed severe toxic effects on their physio-biochemical characteristics, as indicated by a negative correlation between Cr(VI) concentration and these parameters. PVC MPs alone did not significantly inhibit these parameters. The findings of this study provide valuable implications for the proper management of PVC MPs and Cr(VI) in sweet potato plants.
Collapse
Affiliation(s)
- Muhammad Amjad Khan
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou/Key Laboratory of Advanced Materials of Tropical Island Resources/Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan, 570228, China; Department of Environmental Sciences, University of Peshawar, Khyber Pakhtunkhwa, Peshawar 25120, Pakistan
| | - Sunjeet Kumar
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Qingqing Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou/Key Laboratory of Advanced Materials of Tropical Island Resources/Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan, 570228, China
| | - Mengzhao Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Mir Muhammad Nizamani
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang 550025, China
| | - Kenlin Chang
- Institute of Environmental Engineering, National Sun Yat-Sen University/ Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 804, Taiwan
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Khyber Pakhtunkhwa, Peshawar 25120, Pakistan
| | - Qing Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/College of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou/Key Laboratory of Advanced Materials of Tropical Island Resources/Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan, 570228, China.
| | - Guopeng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China.
| |
Collapse
|
17
|
Gao XR, Zhang H, Li X, Bai YW, Peng K, Wang Z, Dai ZR, Bian XF, Zhang Q, Jia LC, Li Y, Liu QC, Zhai H, Gao SP, Zhao N, He SZ. The B-box transcription factor IbBBX29 regulates leaf development and flavonoid biosynthesis in sweet potato. PLANT PHYSIOLOGY 2023; 191:496-514. [PMID: 36377782 PMCID: PMC9806656 DOI: 10.1093/plphys/kiac516] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/23/2022] [Indexed: 06/01/2023]
Abstract
Plant flavonoids are valuable natural antioxidants. Sweet potato (Ipomoea batatas) leaves are rich in flavonoids, regenerate rapidly, and can adapt to harsh environments, making them an ideal material for flavonoid biofortification. Here, we demonstrate that the B-box (BBX) family transcription factor IbBBX29 regulates the flavonoid contents and development of sweet potato leaves. IbBBX29 was highly expressed in sweet potato leaves and significantly induced by auxin (IAA). Overexpression of IbBBX29 contributed to a 21.37%-70.94% increase in leaf biomass, a 12.08%-21.85% increase in IAA levels, and a 31.33%-63.03% increase in flavonoid accumulation in sweet potato, whereas silencing this gene produced opposite effects. Heterologous expression of IbBBX29 in Arabidopsis (Arabidopsis thaliana) led to a dwarfed phenotype, along with enhanced IAA and flavonoid accumulation. RNA-seq analysis revealed that IbBBX29 modulates the expression of genes involved in the IAA signaling and flavonoid biosynthesis pathways. Chromatin immunoprecipitation-quantitative polymerase chain reaction and electrophoretic mobility shift assay indicated that IbBBX29 targets key genes of IAA signaling and flavonoid biosynthesis to activate their expression by binding to specific T/G-boxes in their promoters, especially those adjacent to the transcription start site. Moreover, IbBBX29 physically interacted with developmental and phenylpropanoid biosynthesis-related proteins, such as AGAMOUS-LIKE 21 protein IbAGL21 and MYB308-like protein IbMYB308L. Finally, overexpressing IbBBX29 also increased flavonoid contents in sweet potato storage roots. These findings indicate that IbBBX29 plays a pivotal role in regulating IAA-mediated leaf development and flavonoid biosynthesis in sweet potato and Arabidopsis, providing a candidate gene for flavonoid biofortification in plants.
Collapse
Affiliation(s)
- Xiao-ru Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Xu Li
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Yi-wei Bai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Kui Peng
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhen Wang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhuo-ru Dai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiao-feng Bian
- Provincial Key Laboratory of Agrobiology, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210000, China
| | - Qian Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Provincial Key Laboratory of Agrobiology, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210000, China
| | - Li-cong Jia
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Yan Li
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Qing-chang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shao-pei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shao-zhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Hainan 572025, China
| |
Collapse
|
18
|
Extraction, purification, chemical characterization and antioxidant properties in vitro of polyphenols from the brown macroalga Ascophyllum nodosum. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
19
|
Chan CH, Deng YH, Peng BY, Chiang PC, Wu LA, Lee YY, Tsao W, Mao HH, Wu CY, Deng WP. Anti-Colorectal Cancer Effects of Fucoidan Complex-Based Functional Beverage Through Retarding Proliferation, Cell Cycle and Epithelial-Mesenchymal Transition Signaling Pathways. Integr Cancer Ther 2023; 22:15347354231213613. [PMID: 38059303 PMCID: PMC10704951 DOI: 10.1177/15347354231213613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Fucus vesiculosus-derived fucoidan, a multifunctional bioactive polysaccharide sourced from marine organisms, exhibits a wide range of therapeutic properties, including its anti-tumor effects. While previous research has reported on its anti-cancer potential, limited studies have explored its synergistic capabilities when combined with other natural bioactive ingredients. In this current study, we present the development of an integrative functional beverage, denoted as VMW-FC, which is composed of a fucoidan complex (FC) along with a blend of various herbal components, including vegetables (V), mulberries and fruits (M), and spelt wheat (W). OBJECTIVE Colorectal cancer (CRC) remains a significant cause of mortality, particularly in metastatic cases. Therefore, the urgent need for novel alternative medicines that comprehensively inhibit CRC persists. In this investigation, we assess the impact of VMW-FC on CRC cell proliferation, cell cycle dynamics, metastasis, in vivo tumorigenesis, and potential side effects. METHODS Cell growth was assessed using MTT and colony formation assays, while metastatic potential was evaluated through wound healing and transwell migration assays. The underlying signaling mechanisms were elucidated through qPCR and western blot analysis. In vivo tumor formation and potential side effects were evaluated using a subcutaneous tumor-bearing NOD/SCID mouse model. RESULTS Our findings demonstrate that VMW-FC significantly impedes CRC proliferation and migration in a dose- and time-dependent manner. Furthermore, it induces sub-G1 cell cycle arrest and an increase in apoptotic cell populations, as confirmed through flow-cytometric analysis. Notably, VMW-FC also suppresses xenograft tumor growth in NOD/SCID mice without causing renal or hepatic toxicity. CONCLUSION The integrative herbal concoction VMW-FC presents a promising approach for inhibiting CRC by slowing proliferation and migration, inducing cell cycle arrest and apoptosis, and suppressing markers associated with proliferation (Ki-67, PCNA, and CDKs) and epithelial-mesenchymal transition (EMT) (Vimentin, N-cadherin, and β-catenin).
Collapse
Affiliation(s)
- Chun-Hao Chan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yue-Hua Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Bou-Yue Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Pao-Chang Chiang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Dental Department, Wan Fang Hospital, Taipei Medical University, Taipei 116081, Taiwan
| | - Li-An Wu
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yen-Yung Lee
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Wen Tsao
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Hsiang-Hsun Mao
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Chia-Yu Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei 110301, Taiwan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Win-Ping Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Department of Life Science, Tunghai University, Taichung 407224, Taiwan
| |
Collapse
|
20
|
Sarker U, Ercisli S. Salt Eustress Induction in Red Amaranth ( Amaranthus gangeticus) Augments Nutritional, Phenolic Acids and Antiradical Potential of Leaves. Antioxidants (Basel) 2022; 11:antiox11122434. [PMID: 36552642 PMCID: PMC9774578 DOI: 10.3390/antiox11122434] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Earlier researchers have highlighted the utilization of salt eustress for boosting the nutritional and phenolic acid (PA) profiles and antiradical potential (ARP) of vegetables, which eventually boost food values for nourishing human diets. Amaranth is a rapidly grown, diversely acclimated C4 leafy vegetable with climate resilience and salinity resistance. The application of salinity eustress in amaranth has a great scope to augment the nutritional and PA profiles and ARP. Therefore, the A. gangeticus genotype was evaluated in response to salt eustress for nutrients, PA profile, and ARP. Antioxidant potential and high-yielding genotype (LS1) were grown under four salt eustresses (control, 25 mM, 50 mM, 100 mM NaCl) in a randomized completely block design (RCBD) in four replicates. Salt stress remarkably augmented microelements, proximate, macro-elements, phytochemicals, PA profiles, and ARP of A. gangeticus leaves in this order: control < low sodium chloride stress (LSCS) < moderate sodium chloride stress (MSCS) < severe sodium chloride stress (SSCS). A large quantity of 16 PAs, including seven cinnamic acids (CAs) and nine benzoic acids (BAs) were detected in A. gangeticus genotypes. All the microelements, proximate, macro-elements, phytochemicals, PA profiles, and ARP of A. gangeticus under MSCS, and SSCS levels were much higher in comparison with the control. It can be utilized as preferential food for our daily diets as these antiradical compounds have strong antioxidants. Salt-treated A. gangeticus contributed to excellent quality in the end product in terms of microelements, proximate, macro-elements, phytochemicals, PA profiles, and ARP. A. gangeticus can be cultivated as an encouraging substitute crop in salt-affected areas of the world.
Collapse
Affiliation(s)
- Umakanta Sarker
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
- Correspondence:
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
21
|
Kumar S, Wang M, Liu Y, Zhu Z, Fahad S, Qayyum A, Zhu G. Vanadium Stress Alters Sweet Potato ( Ipomoea batatas L.) Growth, ROS Accumulation, Antioxidant Defense System, Stomatal Traits, and Vanadium Uptake. Antioxidants (Basel) 2022; 11:antiox11122407. [PMID: 36552615 PMCID: PMC9774804 DOI: 10.3390/antiox11122407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022] Open
Abstract
Vanadium (V) is a heavy metal found in trace amounts in many plants and widely distributed in the soil. This study investigated the effects of vanadium concentrations on sweet potato growth, biomass, root morphology, photosynthesis, photosynthetic assimilation, antioxidant defense system, stomatal traits, and V accumulation. Sweet potato plants were grown hydroponically and treated with five levels of V (0, 10, 25, 50, and 75 mg L-1). After 7 days of treatment, V content at low concentration (10 mg L-1) enhanced the plant growth and biomass; in contrast, drastic effects were observed at 25, 50, and 75 mg L-1. Higher V concentrations negatively affect the relative water content, photosynthetic assimilation, photosynthesis, and root growth and reduce tolerance indices. The stomatal traits of sweet potato, such as stomatal length, width, pore length, and pore width, were also decreased under higher V application. Furthermore, V concentration and uptake in the roots were higher than in the shoots. In the same way, reactive oxygen species (ROS) production (hydrogen peroxide), lipid peroxidation (malondialdehyde), osmolytes, glutathione, and enzymes (catalase and superoxide dismutase) activities were increased significantly under V stress. In conclusion, V at a low level (10 mg L-1) enhanced sweet potato growth, and a higher level of V treatment (25, 50, and 75 mg L-1) had a deleterious impact on the growth, physiology, and biochemical mechanisms, as well as stomatal traits of sweet potato.
Collapse
Affiliation(s)
- Sunjeet Kumar
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Mengzhao Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
- Correspondence: (G.Z.); (M.W.)
| | - Yonghua Liu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Zhixin Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Abdul Qayyum
- Department of Agronomy, The University of Haripur, Haripur 22620, Pakistan
| | - Guopeng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
- Correspondence: (G.Z.); (M.W.)
| |
Collapse
|
22
|
Li Y, Lin J, Xiao S, Feng D, Deng Y, Xuan W. Effects of sweet potato intercropping in banana orchard on soil microbial population diversity. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01702-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Abstract
Purpose
This study was purposely designed to understand the effects of intercropping banana and sweet potato on soil microbial community. The research question addressed was what were the differences in population number, population diversity and dominant population of soil microorganisms between interplant bananas with sweet potatoes and banana monoculture.
Methods
The Illumina MiSeq high-throughput sequencing technology was used to detect and analyse the population composition and structure of soil microorganisms in banana field.
Results
The results showed that from May to September, the number of soil bacterial population in intercropping sweet potato was 5.54-28.67% higher than that in monoculture, and the richness and diversity of the population were significantly or extremely significantly higher than that in monoculture. The number of dominant bacterial population was less than that in monoculture, and the relative abundance of non dominant population was 10.58 - 58.81% higher than that in monoculture. The number, abundance and diversity of soil fungal populations in intercropping were higher than those in monoculture.
Conclusions
The intercropping of banana and sweet potato has a significant effect on regulating the composition structure of soil microbial population and improving the abundance and diversity of microbial population. There has a great significance to improve the micro ecological environment of banana root soil and promote the stable and sustainable development of banana industry.
Collapse
|
23
|
Kumar S, Wang M, Liu Y, Fahad S, Qayyum A, Jadoon SA, Chen Y, Zhu G. Nickel toxicity alters growth patterns and induces oxidative stress response in sweetpotato. FRONTIERS IN PLANT SCIENCE 2022; 13:1054924. [PMID: 36438136 PMCID: PMC9685627 DOI: 10.3389/fpls.2022.1054924] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Nickel (Ni) contaminated soil is a persistent risk to plant growth and production worldwide. Therefore, to explore the Ni toxicity levels in sweetpotato production areas, we investigated the influence of different Ni treatments (0, 7.5, 15, 30, and 60 mg L-1) for 15 days on phenotype, Ni uptake, relative water content, gas exchange, photosynthetic pigments, oxidative stress, osmolytes, antioxidants, and enzymes of sweetpotato plants. The results presented that Ni at higher levels (30 and 60 mg L-1) substantially reduced growth, biomass, and root morphological traits. The Pearson correlation analysis suggested that Ni toxicity causes oxidative injuries as persistent augmentation of hydrogen peroxide (H2O2) and malonaldehyde (MDA) and reduced RWC, gas exchange, and photosynthetic pigment. Furthermore, this study revealed that sweetpotato could tolerate moderate Ni treatment (up to 15 mg L-1) by reducing oxidative stress. The results also indicated that the increase in the activities of mentioned osmolytes, antioxidants, and enzymes is not sufficient to overcome the higher Ni toxicity. Based on these results, we suggest using low Ni-contaminated soil for better growth of sweetpotato and also could be used as a phytoremediator in moderate Ni-contaminated soil.
Collapse
Affiliation(s)
- Sunjeet Kumar
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
- Sanya Nanfan Research Institute, Hainan University, Sanya, China
| | - Mengzhao Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
- Sanya Nanfan Research Institute, Hainan University, Sanya, China
| | - Yi Liu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
- Sanya Nanfan Research Institute, Hainan University, Sanya, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abdul Qayyum
- Department of Agronomy, The University of Haripur, Haripur, Pakistan
| | - Sultan Akbar Jadoon
- Department of Plant Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Yanli Chen
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
- Sanya Nanfan Research Institute, Hainan University, Sanya, China
| | - Guopeng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
- Sanya Nanfan Research Institute, Hainan University, Sanya, China
| |
Collapse
|
24
|
Shi J, Wu Q, Deng J, Balfour K, Chen Z, Liu Y, Kumar S, Chen Y, Zhu Z, Zhu G. Metabolic Profiling and Antioxidant Analysis for the Juvenile Red Fading Leaves of Sweetpotato. PLANTS (BASEL, SWITZERLAND) 2022; 11:3014. [PMID: 36432744 PMCID: PMC9697311 DOI: 10.3390/plants11223014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Leaves of sweetpotato (Ipomoea batatas L.) are promising healthy leafy vegetable. Juvenile red fading (JRF) leaves of sweetpotato, with anthocyanins in young leaves, are good candidates for developing functional vegetables. Here, metabolic profiling and possible antioxidants were analyzed for five leaf stages of the sweetpotato cultivar "Chuanshan Zi". The contents of anthocyanins, total phenolics, and flavonoids all declined during leaf maturation, corresponding to declining antioxidant activities. By widely targeted metabolomics, we characterized 449 metabolites belonging to 23 classes. A total of 193 secondary metabolites were identified, including 82 simple phenols, 85 flavonoids, 18 alkaloids, and eight terpenes. Analysis of the metabolic data indicates that the antioxidant capacity of sweetpotato leaves is the combined result of anthocyanins and many other colorless compounds. Increased levels of "chlorogenic acid methyl ester", a compromised form of chlorogenic acid, significantly correlated with the declined antioxidant abilities. Besides anthocyanins, some significant metabolites contributing to the high antioxidant property of the sweetpotato leaves were highlighted, including chlorogenic acids, isorhamnetin glycosides, trans-4-hydroxycinnamic acid methyl ester, 4-methoxycinnamic acid, esculetin, caffeate, and trigonelline. This study provides metabolic data for the utilization of sweetpotato leaves as food sources, and sheds light on the metabolomic change for JRF leaves of other plants.
Collapse
Affiliation(s)
- Jie Shi
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
- Yazhou Nanfan Service Center of Agricultural and Rural Bureau, Sanya 572025, China
| | - Qiang Wu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Jiliang Deng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Kelly Balfour
- Department of Biology, Algoma University, Sault Sainte Marie, ON P6A 2G4, Canada
| | - Zhuo Chen
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Yonghua Liu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Sunjeet Kumar
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Yanli Chen
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Zhixin Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Guopeng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| |
Collapse
|
25
|
Kumar S, Wang M, Fahad S, Qayyum A, Chen Y, Zhu G. Chromium Induces Toxicity at Different Phenotypic, Physiological, Biochemical, and Ultrastructural Levels in Sweet Potato ( Ipomoea batatas L.) Plants. Int J Mol Sci 2022; 23:13496. [PMID: 36362283 PMCID: PMC9656234 DOI: 10.3390/ijms232113496] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 10/23/2023] Open
Abstract
Crop productivity is enormously exposed to different environmental stresses, among which chromium (Cr) stress raises considerable concerns and causes a serious threat to plant growth. This study explored the toxic effect of Cr on sweet potato plants. Plants were hydroponically grown, and treatments of 0, 25, 50, 100, and 200 µM Cr were applied for seven days. This study exhibited that a low level of Cr treatment (25 µM) enhanced the growth, biomass, photosynthesis, osmolytes, antioxidants, and enzyme activities. However, significant deleterious effects in growth, biomass, photosynthetic attributes, antioxidants, and enzymes were observed at higher levels of Cr treatment. The remarkable reduction in plant growth traits was associated with the over-accumulation of H2O2 and MDA contents (410% and 577%, respectively) under the highest rate of Cr (200 µM). Under 200 µM Cr, the uptake in the roots were 27.4 mg kg-1 DW, while in shoots were 11 mg kg-1 DW with the highest translocation rate from root to shoot was 0.40. The results showed that the higher accumulation of Cr negatively correlated with the phenotypic and physiological parameters. It may be proposed that Cr toxicity causes oxidative damage as sustained by augmented lipid peroxidation, reactive oxygen species, and reduced photosynthetic rate, chlorophyll, and stomatal traits. The chloroplastic ultrastructure was damaged, and more apparent damage and size reduction were observed at higher Cr levels. Furthermore, aggregated Cr concentration positively correlates with the increase of osmolytes and superoxide dismutase (SOD) activity in the leaves of sweet potato. Moreover, improved osmolytes and SOD do not help protect sweet potato against high Cr stress. Overall, these findings will improve the understanding of the defense mechanisms of sweet potato to Cr stress.
Collapse
Affiliation(s)
- Sunjeet Kumar
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Mengzhao Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Abdul Qayyum
- Department of Agronomy, The University of Haripur, Haripur 22620, Pakistan
| | - Yanli Chen
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Guopeng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| |
Collapse
|
26
|
Peng Y, Pan R, Liu Y, Medison MB, Shalmani A, Yang X, Zhang W. LncRNA-mediated ceRNA regulatory network provides new insight into chlorogenic acid synthesis in sweet potato. PHYSIOLOGIA PLANTARUM 2022; 174:e13826. [PMID: 36377281 DOI: 10.1111/ppl.13826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Sweet potato (Ipomoea batatas L.) is considered a highly nutritional and economical crop due to its high contents of bioactive substances, such as anthocyanin and chlorogenic acid (CGA), especially in leaves and stems. The roles of noncoding RNAs (ncRNA), including long noncoding RNA (lncRNA) and microRNA (miRNA), in CGA synthesis, are still unknown. In this study, the differentially expressed (DE) mRNAs, miRNAs, and lncRNAs in two leafy vegetable genotypes "FS7-6-14-7" (high CGA content) and "FS7-6" (low CGA content) were identified. The cis-regulation between lncRNA and mRNA was analyzed. Then, the CGA synthesis-related modules MEBlue and MEYellow were identified to detect trans-regulation mRNA-lncRNA pairs. The GO and KEGG annotations suggested that mRNA in these two modules was significantly enriched in the secondary metabolite synthesis biosynthesis category. A competing endogenous RNAs (ceRNA) network, including 8730 miRNA-mRNA and 444 miRNA-lncRNA pairs, was constructed by DEmiRNA target prediction. Then, a CGA synthesis-related ceRNA network was obtained with lncRNA and mRNA from MEBlue and MEYellow. Finally, one relational pair, MSTRG.47662.1/mes-miR398/itb04g00990, was selected for functional validation. Overexpression of lncRNA MSTRG.47662.1 and mRNA itb04g00990 increased CGA content in both tobacco and sweet potato callus, while overexpression of miRNA mes-miR398 decreased CGA content. Meanwhile, regression analysis of the expression patterns demonstrated that MSTRG.47662.1, acting as a ceRNA, promoted itb04g00990 expression by competitively binding mes-miR398 in CGA synthesis in sweet potato. Our results provide insights into how ncRNA-mediated ceRNA regulatory networks likely contribute to CGA synthesis in leafy sweet potato.
Collapse
Affiliation(s)
- Ying Peng
- Research Center of Crop Stresses Resistance Technologies/Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
| | - Rui Pan
- Research Center of Crop Stresses Resistance Technologies/Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
| | - Yi Liu
- Research Center of Crop Stresses Resistance Technologies/Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
- Institute of Food Crops/Hubei Engineering and Technology Research Centre of Sweet Potato/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Milca Banda Medison
- Research Center of Crop Stresses Resistance Technologies/Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
| | - Abdullah Shalmani
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xinsun Yang
- Institute of Food Crops/Hubei Engineering and Technology Research Centre of Sweet Potato/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wenying Zhang
- Research Center of Crop Stresses Resistance Technologies/Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
| |
Collapse
|
27
|
Sirasanagandla SR, Al-Huseini I, Sakr H, Moqadass M, Das S, Juliana N, Abu IF. Natural Products in Mitigation of Bisphenol A Toxicity: Future Therapeutic Use. Molecules 2022; 27:molecules27175384. [PMID: 36080155 PMCID: PMC9457803 DOI: 10.3390/molecules27175384] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Bisphenol A (BPA) is a ubiquitous environmental toxin with deleterious endocrine-disrupting effects. It is widely used in producing epoxy resins, polycarbonate plastics, and polyvinyl chloride plastics. Human beings are regularly exposed to BPA through inhalation, ingestion, and topical absorption routes. The prevalence of BPA exposure has considerably increased over the past decades. Previous research studies have found a plethora of evidence of BPA’s harmful effects. Interestingly, even at a lower concentration, this industrial product was found to be harmful at cellular and tissue levels, affecting various body functions. A noble and possible treatment could be made plausible by using natural products (NPs). In this review, we highlight existing experimental evidence of NPs against BPA exposure-induced adverse effects, which involve the body’s reproductive, neurological, hepatic, renal, cardiovascular, and endocrine systems. The review also focuses on the targeted signaling pathways of NPs involved in BPA-induced toxicity. Although potential molecular mechanisms underlying BPA-induced toxicity have been investigated, there is currently no specific targeted treatment for BPA-induced toxicity. Hence, natural products could be considered for future therapeutic use against adverse and harmful effects of BPA exposure.
Collapse
Affiliation(s)
- Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Isehaq Al-Huseini
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Hussein Sakr
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Marzie Moqadass
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
- Correspondence: or
| | - Norsham Juliana
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Izuddin Fahmy Abu
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kuala Lumpur 50250, Malaysia
| |
Collapse
|
28
|
Chiu CH, Lin KH, Lin HH, Chu WX, Lai YC, Chao PY. Analysis of Chlorogenic Acid in Sweet Potato Leaf Extracts. PLANTS 2022; 11:plants11152063. [PMID: 35956541 PMCID: PMC9370470 DOI: 10.3390/plants11152063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 12/27/2022]
Abstract
Sweet potato (Ipomoea batatas L.) is one of the most important food crops worldwide, with leaves of different varieties showing purple, green and yellow, and these leaves provide a dietary source of nutrients and various bioactive compounds. The objective of this study was to identify the active constituents of chlorogenic acids (CGAs) in different methanolic extract of leaves of three varieties of sweet potato (purple CYY 98-59, green Taoyuan 2, and yellow CN 1927-16) using liquid chromatography–tandem mass spectrometry. Genotype-specific metabolite variations were observed; CGAs and three isomeric peaks were detected in sweet potato leaf extracts (SPLEs). Among them, the yellow SPLE contained the highest contents of 3,5-dicaffeoylquinic acid (3,5-di-CQA) and 3,4-dicaffeoylquinic acid (3,4-di-CQA), followed by the green SPLE, whereas the purple SPLE retained lower 3,5-di-CQA content compared to yellow and green SPLEs. All three SPLEs contained lower 4,5-dicaffeoylquinic acid (4,5-di-CQA) and CGA contents compared to 3,5-di-CQA and 3,4-di-CQA, although CGA constituents were not significantly different in genotypes, whereas purple SPLE contained higher 4,5-di-CQA content compared to yellow and green SPLEs. This study indicates that SPLs marketed in Taiwan vary widely in their biological potentials and may impart different health benefits to consumers.
Collapse
Affiliation(s)
- Chun-Hui Chiu
- Graduate Institute of Health Industry and Technology, Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Department of Traditional Chinese Medicine, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Kuan-Hung Lin
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei 11114, Taiwan
| | - Hsin-Hung Lin
- Department of Agronomy, National Chung Hsing University, Taichung 40277, Taiwan
| | - Wen-Xin Chu
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei 11114, Taiwan
| | - Yung-Chang Lai
- Agronomy Division, Chiayi Agricultural Experiment Branch, Taiwan Agricultural Research Institute (TARI), Concil of Agriculture (COA), Executive Yuan, Chiayi 60044, Taiwan
| | - Pi-Yu Chao
- Department of Nutrition and Health Sciences, Chinese Culture University, Taipei 11114, Taiwan
- Correspondence:
| |
Collapse
|
29
|
Suárez SE, Sun H, Mu T, Añón MC. Bacterial characterization of fermented sweet potato leaves by high‐throughput sequencing and their impact on the nutritional and bioactive composition. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Santiago Emmanuel Suárez
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Beijing China
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) Facultad de Ciencias Exactas, Universidad Nacional de La Plata. CCT, La Plata, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas). CIC (Comisión de Investigaciones Científicas de la Provincia de Buenos Aires) La Plata Argentina
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Beijing China
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Beijing China
| | - María Cristina Añón
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) Facultad de Ciencias Exactas, Universidad Nacional de La Plata. CCT, La Plata, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas). CIC (Comisión de Investigaciones Científicas de la Provincia de Buenos Aires) La Plata Argentina
| |
Collapse
|
30
|
Xiong J, Tang X, Wei M, Yu W. Comparative full-length transcriptome analysis by Oxford Nanopore Technologies reveals genes involved in anthocyanin accumulation in storage roots of sweet potatoes ( Ipomoea batatas L.). PeerJ 2022; 10:e13688. [PMID: 35846886 PMCID: PMC9285475 DOI: 10.7717/peerj.13688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 06/16/2022] [Indexed: 01/17/2023] Open
Abstract
Background Storage roots of sweet potatoes (Ipomoea batatas L.) with different colors vary in anthocyanin content, indicating different economically agronomic trait. As the newest DNA/RNA sequencing technology, Oxford Nanopore Technologies (ONT) have been applied in rapid transcriptome sequencing for investigation of genes related to nutrient metabolism. At present, few reports concern full-length transcriptome analysis based on ONT for study on the molecular mechanism of anthocyanin accumulation leading to color change of tuberous roots of sweet potato cultivars. Results The storage roots of purple-fleshed sweet potato (PFSP) and white-fleshed sweet potato (WFSP) at different developmental stages were subjected to anthocyanin content comparison by UV-visible spectroscopy as well as transcriptome analysis at ONT MinION platform. UV-visible spectrophotometric measurements demonstrated the anthocyanin content of PFSP was much higher than that of WFSP. ONT RNA-Seq results showed each sample generated average 2.75 GB clean data with Full-Length Percentage (FL%) over 70% and the length of N50 ranged from 1,192 to 1,395 bp, indicating reliable data for transcriptome analysis. Subsequent analysis illustrated intron retention was the most prominent splicing event present in the resulting transcripts. As compared PFSP with WFSP at the relative developmental stages with the highest (PH vs. WH) and the lowest (PL vs. WL) anthocyanin content, 282 and 216 genes were up-regulated and two and 11 genes were down-regulated respectively. The differential expression genes involved in flavonoid biosynthesis pathway include CCoAOMT, PpLDOX, DFR, Cytochrome P450, CHI, and CHS. The genes encoding oxygenase superfamily were significantly up-regulated when compared PFSP with WFSP at the relative developmental stages. Conclusions Comparative full-length transcriptome analysis based on ONT serves as an effective approach to detect the differences in anthocyanin accumulation in the storage roots of different sweet potato cultivars at transcript level, with noting that some key genes can now be closely related to flavonoids biosynthesis. This study helps to improve understanding of molecular mechanism for anthocyanin accumulation in sweet potatoes and also provides a theoretical basis for high-quality sweet potato breeding.
Collapse
Affiliation(s)
- Jun Xiong
- Agricultural College, Guangxi University, Nanning, China,Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiuhua Tang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Minzheng Wei
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wenjin Yu
- Agricultural College, Guangxi University, Nanning, China
| |
Collapse
|
31
|
Sarker U, Iqbal MA, Hossain MN, Oba S, Ercisli S, Muresan CC, Marc RA. Colorant Pigments, Nutrients, Bioactive Components, and Antiradical Potential of Danta Leaves ( Amaranthus lividus). Antioxidants (Basel) 2022; 11:1206. [PMID: 35740102 PMCID: PMC9219785 DOI: 10.3390/antiox11061206] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
In the Indian subcontinent, danta (stems) of underutilized amaranth are used as vegetables in different culinary dishes. At the edible stage of the danta, leaves are discarded as waste in the dustbin because they are overaged. For the first time, we assessed the colorant pigments, bioactive components, nutrients, and antiradical potential (AP) of the leaves of danta to valorize the by-product (leaf) for antioxidant, nutritional, and pharmacological uses. Leaves of danta were analyzed for proximate and element compositions, colorant pigments, bioactive constituents, AP (DPPH), and AP (ABTS+). Danta leaves had satisfactory moisture, protein, carbohydrates, and dietary fiber. The chosen danta leaves contained satisfactory magnesium, iron, calcium, potassium, manganese, copper, and zinc; adequate bioactive pigments, such as betacyanins, carotenoids, betalains, β-carotene, chlorophylls, and betaxanthins; and copious bioactive ascorbic acid, polyphenols, flavonoids, and AP. The correlation coefficient indicated that bioactive phytochemicals and colorant pigments of the selected danta leaves had good AP as assessed via ABTS+ and DPPH assays. The selected danta leaves had good ROS-scavenging potential that could indicate massive possibilities for promoting the health of the nutraceutical- and antioxidant-deficit public. The findings showed that danta leaves are a beautiful by-product for contributing as an alternate origin of antioxidants, nutrients, and bioactive compounds with pharmacological use.
Collapse
Affiliation(s)
- Umakanta Sarker
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (M.A.I.); (M.N.H.)
| | - Md. Asif Iqbal
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (M.A.I.); (M.N.H.)
| | - Md. Nazmul Hossain
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (M.A.I.); (M.N.H.)
| | - Shinya Oba
- Laboratory of Field Science, Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan;
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey;
| | - Crina Carmen Muresan
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
32
|
Antioxidant Activity of Phenolic Extraction from Different Sweetpotato ( Ipomoea batatas (L.) Lam.) Blades and Comparative Transcriptome Analysis Reveals Differentially Expressed Genes of Phenolic Metabolism in Two Genotypes. Genes (Basel) 2022; 13:genes13061078. [PMID: 35741840 PMCID: PMC9222414 DOI: 10.3390/genes13061078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/04/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022] Open
Abstract
Sweetpotato (Ipomoea batatas (L.) Lam.), which has a complex genome, is one of the most important storage root crops in the world. Sweetpotato blades are considered as a potential source of natural antioxidants owing to their high phenolic content with powerful free radical scavenging ability. The molecular mechanism of phenolic metabolism in sweetpotato blades has been seldom reported thus far. In this work, 23 sweetpotato genotypes were used for the analysis of their antioxidant activity, total polyphenol content (TPC) and total flavonoid content (TFC). ‘Shangshu19’ and ‘Wan1314-6’ were used for RNA-seq. The results showed that antioxidant activity, TPC and TFC of 23 genotypes had significant difference. There was a significant positive correlation between TPC, TFC and antioxidant activity. The RNA-seq analysis results of two genotypes, ‘Shangshu19’ and ‘Wan1314-6’, which had significant differences in antioxidant activity, TPC and TFC, showed that there were 7810 differentially expressed genes (DEGs) between the two genotypes. Phenylpropanoid biosynthesis was the main differential pathway, and upregulated genes were mainly annotated to chlorogenic acid, flavonoid and lignin biosynthesis pathways. Our results establish a theoretical and practical basis for sweetpotato breeding with antioxidant activity and phenolics in the blades and provide a theoretical basis for the study of phenolic metabolism engineering in sweetpotato blade.
Collapse
|
33
|
Characterization of Phytochemicals, Nutrients, and Antiradical Potential in Slim Amaranth. Antioxidants (Basel) 2022; 11:antiox11061089. [PMID: 35739986 PMCID: PMC9219808 DOI: 10.3390/antiox11061089] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023] Open
Abstract
Slim amaranth (A. hybridus) having a C4 photosynthetic pathway with diverse variability is a climate-resilient crop that tolerates abiotic stresses. Owing to the high productivity of the C4 pathway, we have been searching for suitable accessions as preferable high-yielding antioxidant-enriched cultivars with ample bioactive compounds, or for future breeding programs to improve bioactive compounds as a source of natural antioxidants. Twelve slim amaranth accessions were tested for nutraceuticals, phytopigments, radical scavenging capacity (two different assays), vitamins, total flavonoids, and total polyphenols content. Slim amaranth leaves contained ample dietary fiber, protein, moisture, and carbohydrates. The current investigation demonstrated that there was remarkable K, Ca, Mg (8.86, 26.12, and 29.31), Fe, Mn, Cu, Zn, (1192.22, 275.42, 26.13, and 1069.93), TP, TF (201.36 and 135.70), pigments, such as chlorophyll a, ab, and b, (26.28, 38.02, and 11.72), betalains, betaxanthins, betacyanins (78.90, 39.36, 39.53,), vitamin C (1293.65), β-carotene, total carotenoids, (1242.25, 1641.07), and TA (DPPH, ABTS+) (27.58, 50.55) in slim amaranth leaves. The widespread variations were observed across the studied accessions. The slim amaranth accessions, AH11, AH10, and AH12, exhibited high profiles of antioxidants including high potentiality to quench radicals and can be selected as preferable high-yielding antioxidant-enriched cultivars with ample bioactive compounds. Phytopigments, flavonoids, vitamins, and phenolics of slim amaranth leaves showed intense activity of antioxidants. Slim amaranth could be a potential source of proximate phenolics, minerals, phytopigments, vitamins, and flavonoids for gaining adequate nutraceuticals, bioactive components, and potent antioxidants. Moderate yielding accessions having moderate phytochemicals can be used to develop new high-yielding antioxidant-enriched cultivars for future breeding programs to improve bioactive compounds as a source of natural antioxidants.
Collapse
|
34
|
Dhaduk P, Karmakar N, Faldu P, Narwade A, Desai K, Patel K, Debnath MK, Tarafdar J. Comparative Study between Nutritional Compositions of Processed White and Yellow Flesh Sweet Potato. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2022. [DOI: 10.1080/15428052.2022.2074330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Parag Dhaduk
- N M College of Agriculture, Navsari Agricultural University, Navsari, India
| | - Nilima Karmakar
- N M College of Agriculture, Navsari Agricultural University, Navsari, India
| | - Priti Faldu
- N M College of Agriculture, Navsari Agricultural University, Navsari, India
| | - Ajay Narwade
- N M College of Agriculture, Navsari Agricultural University, Navsari, India
| | - Ketan Desai
- N M College of Agriculture, Navsari Agricultural University, Navsari, India
| | - Kamlesh Patel
- N M College of Agriculture, Navsari Agricultural University, Navsari, India
| | - Manoj Kanti Debnath
- Department of Statistics, Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar, India
| | - Jayanta Tarafdar
- AICRP Tuber Crops, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, India
| |
Collapse
|
35
|
Jia R, Tang C, Chen J, Zhang X, Wang Z. Total Phenolics and Anthocyanins Contents and Antioxidant Activity in Four Different Aerial Parts of Leafy Sweet Potato ( Ipomoea batatas L.). Molecules 2022; 27:3117. [PMID: 35630594 PMCID: PMC9146295 DOI: 10.3390/molecules27103117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 11/16/2022] Open
Abstract
Leafy sweet potato (Ipomoea batatas L.) is an excellent source of nutritious greens and natural antioxidants, but reports on antioxidants content and activity at buds, leaves, petioles, and stems are scarce. Therefore, the total phenolics content (TPC), total anthocyanins content (TAC), and antioxidant activity (assessed by DPPH and ABTS radical scavenging activities and ferric reducing antioxidant power (FRAP)) were investigated in four aerial parts of 11 leafy sweet potato varieties. The results showed that varieties with pure green aerial parts, independently of the part analyzed, had higher TPC, FRAP, and ABTS radical scavenging activities. The green-purple varieties had a significantly higher TAC, while variety GS-17-22 had the highest TAC in apical buds and leaves, and variety Ziyang in petioles and stems. Among all parts, apical buds presented the highest TPC and antioxidant capacity, followed by leaves, petioles, and stems, while the highest TAC level was detected in leaves. The TPC was positively correlated with ABTS radical scavenging activity and FRAP in all parts studied, whereas the TAC was negatively correlated with DPPH radical scavenging activity. Collectively, the apical buds and leaves of sweet potato had the higher levels of nutritional values. These results would provide reference values for further breeding of leafy sweet potatoes.
Collapse
Affiliation(s)
- Ruixue Jia
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou 510640, China; (R.J.); (C.T.); (J.C.); (X.Z.)
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Changli 066600, China
| | - Chaochen Tang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou 510640, China; (R.J.); (C.T.); (J.C.); (X.Z.)
| | - Jingyi Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou 510640, China; (R.J.); (C.T.); (J.C.); (X.Z.)
| | - Xiongjian Zhang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou 510640, China; (R.J.); (C.T.); (J.C.); (X.Z.)
| | - Zhangying Wang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou 510640, China; (R.J.); (C.T.); (J.C.); (X.Z.)
| |
Collapse
|
36
|
Sarker U, Rabbani MG, Oba S, Eldehna WM, Al-Rashood ST, Mostafa NM, Eldahshan OA. Phytonutrients, Colorant Pigments, Phytochemicals, and Antioxidant Potential of Orphan Leafy Amaranthus Species. Molecules 2022; 27:2899. [PMID: 35566250 PMCID: PMC9101061 DOI: 10.3390/molecules27092899] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 11/22/2022] Open
Abstract
The underutilized Amaranthus leafy vegetables are a unique basis of pigments such as β-cyanins, β-xanthins, and betalains with radical scavenging capacity (RSC). They have abundant phytonutrients and antioxidant components, such as pigments, vitamins, phenolics, and flavonoids. Eight selected genotypes (four genotypes from each species) of underutilized Amaranthus leafy vegetables were evaluated for phytonutrients, pigments, vitamins, phenolics, flavonoids, and antioxidants in a randomized complete block design under ambient field conditions with three replicates. The studied traits showed a wide range of variations across eight genotypes of two species of Amaranthus leafy vegetables. The highest fat, β-xanthins, K, dietary fiber, Mg, β-cyanins, Mn, chlorophyll ab, Zn, TP, TF, betalains, chlorophyll a content, and (RSC) (DPPH) and RSC (ABTS+) were obtained from A. tricolor accessions. Conversely, the highest protein, Cu, carbohydrates, Ca, and chlorophyll b content were obtained from A. lividus accessions. The highest dry matter, carotenoids, Fe, energy, and ash were obtained from A. tricolor and A. lividus. The accession AT2 confirmed the highest vit. C and RSC (DPPH) and RSC (ABTS+); AT5 had the highest TP content; and AT12 had the highest TF content. A. tricolor accessions had high phytochemicals across the two species, such as phytopigments, vitamins, phenolics, antioxidants, and flavonoids, with considerable nutrients and protein. Hence, A. tricolor accessions can be used as high-yielding cultivars comprising ample antioxidants. The correlation study revealed that vitamin C, pigments, flavonoids, β-carotene, and phenolics demonstrated a strong RSC, and showed a substantial contribution to the antioxidant potential (AP) of A. tricolor. The investigation exposed that the accessions displayed a plentiful origin of nutritional values, phytochemicals, and AP with good quenching ability of reactive oxygen species (ROS) that provide enormous prospects for nourishing the mineral-, antioxidant-, and vitamin-threatened community.
Collapse
Affiliation(s)
- Umakanta Sarker
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Md. Golam Rabbani
- Department of Horticulture, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Shinya Oba
- Laboratory of Field Science, Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan;
| | - Wagdy M. Eldehna
- School of Biotechnology, Badr University in Cairo, Badr City 11829, Egypt;
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Sara T. Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Nada M. Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (N.M.M.); (O.A.E.)
| | - Omayma A. Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (N.M.M.); (O.A.E.)
| |
Collapse
|
37
|
Evaluation of the chemical composition and nutritional potential of brown macroalgae commercialised in China. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Hu Y, Sun H, Mu T. Effects of sweet potato leaf powder on sensory, texture, nutrition and digestive characteristics of steamed bread. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuwei Hu
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences; Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193 China
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences; Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193 China
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences; Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193 China
| |
Collapse
|
39
|
Sarker U, Oba S, Ercisli S, Assouguem A, Alotaibi A, Ullah R. Bioactive Phytochemicals and Quenching Activity of Radicals in Selected Drought-Resistant Amaranthus tricolor Vegetable Amaranth. Antioxidants (Basel) 2022; 11:antiox11030578. [PMID: 35326227 PMCID: PMC8944989 DOI: 10.3390/antiox11030578] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 01/01/2023] Open
Abstract
Leafy vegetables are susceptible to drought stress. Amaranthus tricolor vegetables are resistant to abiotic stress, including drought, and are a source of ample natural phytochemicals of interest to the food industry due to their benefits to consumers’ health. Hence, the selected drought-resistant amaranth genotypes were evaluated for phytochemicals and antioxidant activity in an RCBD study with three replicates. The selected drought-resistant amaranth accessions contained ample carbohydrates, protein, moisture, and dietary fiber. We noticed many macroelements and microelements including iron, copper, manganese, zinc, sodium, molybdenum, boron, potassium, calcium, magnesium, phosphorus, and sulfur; adequate phytopigments, including betacyanins, betalains, betaxanthins, carotenoids, and chlorophylls; plentiful bioactive phytochemicals, including ascorbic acid, flavonoids, polyphenols, and beta-carotene; and antioxidant potential in the selected drought-resistant amaranth accessions. The drought-resistant amaranth accessions VA14 and VA16 were proven to have high ascorbic acid, beta-carotene, and polyphenol levels. The drought-resistant accessions VA12 and VA14 had high flavonoid levels. The drought-resistant accessions VA3, VA14, and VA16 had high AC both in regard to both DPPH and ABTS+. These drought-resistant accessions, VA3, VA14, and VA16, can be utilized as high-yielding varieties with antioxidant profiles for purposes of drinks. The correlation study revealed that bioactive phytopigments and phytochemicals of amaranth accessions had good free radical quenching capacity against 2,2′-azino-bis (3-ethylbenzothiazo-6-sulfonic acid) and diphenyl-1-picrylhydrazyl, equivalent to Trolox. It was revealed in the present study that these drought-resistant accessions contain plentiful proximate, nutraceuticals, phytopigments, bioactive phytochemicals, and antioxidant potentiality. Their drought resistance and quenching of ROS offer huge prospects for the promotion of health benefits and the feeding of communities in drought-prone semiarid and arid areas of the globe, especially those deficient in nutraceuticals, phytopigments, and antioxidants.
Collapse
Affiliation(s)
- Umakanta Sarker
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
- Correspondence:
| | - Shinya Oba
- Laboratory of Field Science, Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan;
| | - Sezai Ercisli
- Department of Horticulture, Agricultural Faculty, Ataturk University, TR-25240 Erzurum, Turkey;
| | - Amine Assouguem
- Laboratory of Functional Ecology and Environment, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer Street, Fez 2202, Morocco;
| | - Amal Alotaibi
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
40
|
Sawicka B, Otekunrin OA, Krochmal-Marczak B, Skiba D. Food sources of natural antioxidants for body defense against SARS-CoV-2. CORONAVIRUS DRUG DISCOVERY 2022:105-131. [DOI: 10.1016/b978-0-323-95574-4.00013-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
|
41
|
LI Y, S RAMASWAMY H, LI J, GAO Y, YANG C, ZHANG X, IRSHAD A, REN Y. Nutrient evaluation of the seed, pulp, flesh, and peel of spaghetti squash. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.70920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yang LI
- Northwest A&F University, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Jobil AJ, Parameshwari S, Husain FM, Alomar SY, Ahmad N, Albalawi F, Alam P. Scientifically Formulated Avocado Fruit Juice: Phytochemical Analysis, Assessment of Its Antioxidant Potential and Consumer Perception. Molecules 2021; 26:7424. [PMID: 34946505 PMCID: PMC8706416 DOI: 10.3390/molecules26247424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/18/2021] [Accepted: 11/27/2021] [Indexed: 12/05/2022] Open
Abstract
The study's purpose was to find and create a nourishing fruit juice made from avocado to suit nutritional and health demands. In this regard, the avocado juice was formulated using a statistical technique, and its biochemical and phytochemical characteristics were evaluated. Statistically formulated fruit juice was evaluated for its sensory characteristics, proximate composition, nutrients and vitamins, total phenols and flavonoids, and for its antioxidant ability, in addition to a shelf-life test. The optimal amount of all ingredients included in the mathematical model for the preparation of the juice was 150 g of Persea americana (Avocado) fruit pulp, 12.5 g of honey and 100 mL of water. In fact, the composition of avocado juice was found to have higher phenolic (910.36 ± 0.215 mg EAG g-1/mL) and flavonoid (56.32 ± 1.26 mg QE g-1/ mL) amounts. DPPH, ABTS and FRAP antioxidant assays tended to be high compared with a standard. The shelf-life analysis indicated that the processed avocado juice (V7) had a long shelf life. In view of all these merits, a statistically formulated recipe for avocado fruit juice was recommended for the formulation of the most preferred health drink.
Collapse
Affiliation(s)
- Arackal Jose Jobil
- Department of Food Technology, Saintgits College of Engineering, Pathamuttom, Kottayam 686532, Kerala, India;
- Department of Nutrition and Dietetics, Periyar University, Salem 636011, Tamil Nadu, India
| | | | - Fohad Mabood Husain
- Department of Food Science and Nutrition, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Naushad Ahmad
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Fadwa Albalawi
- Department of Zoology, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| |
Collapse
|
43
|
Zhu L, Mu T, Ma M, Sun H, Zhao G. Nutritional composition, antioxidant activity, volatile compounds, and stability properties of sweet potato residues fermented with selected lactic acid bacteria and bifidobacteria. Food Chem 2021; 374:131500. [PMID: 34772572 DOI: 10.1016/j.foodchem.2021.131500] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 01/31/2023]
Abstract
The effects of four kinds of lactic acid bacteria (LAB) and one bifidobacteria on nutritional composition, antioxidant activity, volatile compounds and stability properties of fermented sweet potato residues (SPR) were investigated. The soluble dietary fiber (12.92-16.63 g/100 g DW), total polyphenols content (90.51-97.35 mg/100 g DW), organic acids, and stability of SPR were increased after fermentation. The DPPH radical scavenging capacity (39.49-62.04 mg AAE/100 g DW) and ferric reducing antioxidant power (47.14-71.87 mg TE/100 g DW) were also increased, of which SPR fermented with Lacticaseibacillus rhamnosus CICC 23119 exhibited the highest values. Meanwhile, the anti-nutritional compound (oxalic acid) was decreased from 0.46 to 0.08-0.30 mg/g DW. Also, the fermented SPR exhibited different flavors compared with SPR, due to the production of acids especially antiseptic hexanoic acid and sorbic acid. Therefore, these results can provide a theoretical basis for the high-value utilization of SPR.
Collapse
Affiliation(s)
- Lili Zhu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, PR China; College of Food Science, Southwest University, No. 2 Tian Sheng Road, Beibei District, Chongqing 400715, PR China
| | - Taihua Mu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, PR China.
| | - Mengmei Ma
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, PR China.
| | - Hongnan Sun
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, PR China.
| | - Guohua Zhao
- College of Food Science, Southwest University, No. 2 Tian Sheng Road, Beibei District, Chongqing 400715, PR China
| |
Collapse
|
44
|
Identification of Bioactive Phytochemicals from Six Plants: Mechanistic Insights into the Inhibition of Rumen Protozoa, Ammoniagenesis, and α-Glucosidase. BIOLOGY 2021; 10:biology10101055. [PMID: 34681154 PMCID: PMC8533169 DOI: 10.3390/biology10101055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Rumen protozoa have some contribution to feed digestibility in the rumen, but Entodinium, the most predominant genus, is the main culprit of inefficient nitrogen utilization in ruminants. Using chemical drugs, many studies have attempted to inhibit the rumen protozoa, but few of the approaches are either effective or practical. In this study, we investigated the nutritional and functional properties of Adansonia digitata (baobab), Flemingia macrophylla (waras tree), Kalimeris indica (Indian aster),Brassica rapa subsp. chinensis (bok choy), Portulaca oleracea (common purslane), and Calotropis gigantea (giant milkweed) for their potential as feed additives in animal husbandry. The plants were also analyzed for their major phytochemicals using reversed phase-high performance liquid chromatography (HPLC) and then evaluated for their ability to inhibit rumen protozoa, ammoniagenesis, and microbial α-glucosidase activity in vitro. C. gigantea inhibited the rumen protozoa and reduced the wasteful ammoniagenesis, thereby indicating improved nitrogen utilization. A. digitata also reduced the microbial α-glucosidase activity that can potentially contribute to rumen acidosis. The tested plants, especially C. gigantea and A. digitata, could be used as potential alternatives to chemicals or antibiotics to ensure sustainable and green animal husbandry. Abstract Rumen protozoa prey on feed-degrading bacteria synthesizing microbial protein, lowering nitrogen utilization efficiency in ruminants. In this in vitro study, we evaluated six plants (Adansonia digitata, Flemingia macrophylla, Kalimeris indica,Brassica rapa subsp. chinensis, Portulaca oleracea, and Calotropis gigantea) for their potential to inhibit rumen protozoa and identified the phytochemicals potentially responsible for protozoa inhibition. Rumen protozoa were anaerobically cultured in vitro in the presence of each plant at four doses. All of the tested plants reduced total rumen protozoa (p ≤ 0.05), but C. gigantea and B. rapa were the most inhibitory, inhibiting rumen protozoa by 45.6 and 65.7%, respectively, at the dose of 1.1 mg/mL. Scanning electron microscopy revealed a disruption of the extracellular structure of protozoa cells. Only C. gigantea also decreased the wasteful ammoniagenesis (p ≤ 0.05). Moreover, the A. digitata extract inhibited α-glucosidase activity by about 70% at 100 µg/mL. Reversed-phase high-performance liquid chromatography analysis detected quercetin, anthraquinone, 3-hydroxybenzoic acid, astragaloside, and myricetin in the tested plant leaves. These plants may hold potential as feed additives to reduce rumen protozoa and α- glucosidase activity. Future research is needed to identify the specific anti-protozoal compound(s), the effects on the rumen microbiome, and its fermentation characteristics.
Collapse
|
45
|
Alam MK. A comprehensive review of sweet potato (Ipomoea batatas [L.] Lam): Revisiting the associated health benefits. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
46
|
Sweetpotato Leaves Inhibit Lipopolysaccharide-Induced Inflammation in RAW 264.7 Macrophages via Suppression of NF-κB Signaling Pathway. Foods 2021; 10:foods10092051. [PMID: 34574161 PMCID: PMC8464942 DOI: 10.3390/foods10092051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 11/29/2022] Open
Abstract
Limited information is available regarding the health-promoting activities of sweetpotato leaves (SPL). The present study investigated antioxidant and anti-inflammatory effects, and phenolic contents in 29 SPL cultivars harvested in 2018 and 2019. Extracts showed total phenolic contents 9.4–23.1 mg gallic acid equivalent/g, and DPPH radical scavenging activity indicated 36.6–247.3 mM of Trolox equivalent/g. SPL extracts were identified to contain bioactive components such as, chlorogenic acid (11.7–22.1 μg/mg), 3,4-dicaffeoylquinic acid (16.3–59.9 μg/mg), 3,5-dicaffeoylquinic acid (50.9–72.7 μg/mg), chlorophyll B (6.1–12.3 μg/mg), lutein (1.9–4.9 μg/mg), chlorophyll A (2.7–4.3 μg/mg) and β-carotene (0.1 ≤ μg/mg). RAW 264.7 murine macrophage cells were pretreated with 100–200 μg/mL of SPL extracts and 20 μM of dexamethasone, and inflammation was stimulated by lipopolysaccharide (LPS, 100 ng/mL) treatment for 24 h. In LPS-treated cells, prostaglandin E2 production and COX-2 expression were not downregulated by pretreatment of SPL extracts. However, SPL pretreated cells showed significant suppression of nitric oxide (NO), TNF-α, and IL-1β levels under the LPS-induced inflammatory condition. In addition, SPL extracts induced an anti-inflammatory effect in LPS-stimulated RAW 264.7 cells through suppression of NF-κB nuclear translocation, IKK-α and IκB-α phosphorylation, and iNOS expression. These results indicate that SPL extract can be utilized as a functional food ingredient.
Collapse
|
47
|
Gangalla R, Gattu S, Palaniappan S, Ahamed M, Macha B, Thampu RK, Fais A, Cincotti A, Gatto G, Dama M, Kumar A. Structural Characterisation and Assessment of the Novel Bacillus amyloliquefaciens RK3 Exopolysaccharide on the Improvement of Cognitive Function in Alzheimer's Disease Mice. Polymers (Basel) 2021; 13:polym13172842. [PMID: 34502882 PMCID: PMC8434388 DOI: 10.3390/polym13172842] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
In this study Bacillus amyloliquefaciens RK3 was isolated from a sugar mill effluent-contaminated soil and utilised to generate a potential polysaccharide with anti-Alzheimer's activity. Traditional and molecular methods were used to validate the strain. The polysaccharide produced by B. amyloliquefaciens RK3 was purified, and the yield was estimated to be 10.35 gL-1. Following purification, the polysaccharide was structurally and chemically analysed. The structural analysis revealed the polysaccharide consists of α-d-mannopyranose (α-d-Manp) and β-d-galactopyranose (β-d-Galp) monosaccharide units connected through glycosidic linkages (i.e., β-d-Galp(1→6)β-d-Galp (1→6)β-d-Galp(1→2)β-d-Galp(1→2)[β-d-Galp(1→6)]β-d-Galp(1→2)α-d-Manp(1→6)α-d-Manp (1→6)α-d-Manp(1→6)α-d-Manp(1→6)α-d-Manp). The scanning electron microscopy and energy-dispersive X-ray spectroscopy imaging of polysaccharides emphasise their compactness and branching in the usual tubular heteropolysaccharide structure. The purified exopolysaccharide significantly impacted the plaques formed by the amyloid proteins during Alzheimer's disease. Further, the results also highlighted the potential applicability of exopolysaccharide in various industrial and pharmaceutical applications.
Collapse
Affiliation(s)
- Ravi Gangalla
- Department of Microbiology, Kakatiya University, Warangal 506009, India;
| | - Sampath Gattu
- Department of Zoology, School of Life Sciences, Periyar University, Salem 636011, India;
| | - Sivasankar Palaniappan
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem 636011, India
- Correspondence: (S.P.); (R.K.T.)
| | - Maqusood Ahamed
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Baswaraju Macha
- Medicinal Chemistry Division, University College of Pharmaceutical Sciences, Kakatiya University, Warangal 506009, India;
| | - Raja Komuraiah Thampu
- Department of Microbiology, Kakatiya University, Warangal 506009, India;
- Correspondence: (S.P.); (R.K.T.)
| | - Antonella Fais
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy;
| | - Alberto Cincotti
- Department of Mechanical, Chemical and Material Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy;
| | - Gianluca Gatto
- Department of Electrical and Electronic Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy; (G.G.); (A.K.)
| | - Murali Dama
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Amit Kumar
- Department of Electrical and Electronic Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy; (G.G.); (A.K.)
| |
Collapse
|
48
|
Luo D, Mu T, Sun H. Sweet potato ( Ipomoea batatas L.) leaf polyphenols ameliorate hyperglycemia in type 2 diabetes mellitus mice. Food Funct 2021; 12:4117-4131. [PMID: 33977940 DOI: 10.1039/d0fo02733b] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The hypoglycemic effects and potential mechanism of sweet potato leaf polyphenols (SPLP) on type 2 diabetes mellitus (T2DM) were investigated. Results showed that oral administration of SPLP to mice could alleviate body weight loss, decrease fasting blood glucose levels (by 64.78%) and improve oral glucose tolerance compared with those of untreated diabetic mice. Furthermore, increased fasting serum insulin levels (by 100.11%), ameliorated insulin resistance and improved hepatic glycogen (by 126.78%) and muscle glycogen (increased by 135.85%) were observed in the SPLP treatment group. SPLP also could reverse dyslipidemia, as indicated by decreased total cholesterol, triglycerides, low density lipoprotein-cholesterol and promoted high density lipoprotein-cholesterol. Histopathological analysis revealed that SPLP could relieve liver inflammation and maintain the islet structure to inhibit β-cell apoptosis. A quantitative real-time polymerase chain reaction confirmed that SPLP could up-regulate the phosphatidylinositol 3-kinase/protein kinase B/glycogen synthase kinase-3β signaling pathway to improve glucose metabolism and up-regulate the phosphatidylinositol 3-kinase/protein kinase B/glucose transporter 4 signaling pathway in the skeletal muscle to enhance glucose transport. This study provides useful information to support the application of SPLP as a natural product for the treatment of T2DM.
Collapse
Affiliation(s)
- Dan Luo
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P.R. China.
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P.R. China.
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P.R. China.
| |
Collapse
|
49
|
Sarker U, Oba S. Color attributes, betacyanin, and carotenoid profiles, bioactive components, and radical quenching capacity in selected Amaranthus gangeticus leafy vegetables. Sci Rep 2021; 11:11559. [PMID: 34079029 PMCID: PMC8172918 DOI: 10.1038/s41598-021-91157-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 05/21/2021] [Indexed: 02/04/2023] Open
Abstract
Four selected A. gangeticus accessions were evaluated in terms of color attributes, phytopigments, including betaxanthin, betacyanin, and carotenoid profiles, proximate, minerals, and antioxidant capacity (AC). Color attributes, phytopigments, proximate, minerals, and AC of A. gangeticus significantly varied across the accessions. For the first time, we identified four betacyanin compounds, such as amaranthine, iso-amaranthine, betanin, iso-betanin. We also identified five carotenoid compounds zeaxanthin neoxanthin, violaxanthin, lutein, and pro-vitamin A in A. gangeticus accessions. A. gangeticus contained adequate carbohydrates, protein, moisture, and dietary fiber. We found adequate iron, manganese, copper, zinc, sodium, molybdenum, boron, potassium, calcium, magnesium, phosphorus, sulfur in A. gangeticus accessions. The accessions LS7 and LS9 had considerable color attributes, betacyanin, and carotenoid compounds, proximate, nutraceuticals, betalain, betaxanthin, and AC that could be used as preferable potent antioxidant varieties for consumption as sources of phytopigments, nutraceuticals, and antioxidants. The correlation study revealed that antioxidant constituents of A. gangeticus accession were strongly associated with AC. The identified components of betacyanin and carotenoid in A. gangeticus demands detail pharmacological study. The baseline data on color attributes, betacyanin, and carotenoid profiles, betaxanthins, betalains, and AC obtained in this present study could contribute to the scientific evaluation of pharmacologically active principles in A. gangeticus.
Collapse
Affiliation(s)
- Umakanta Sarker
- grid.443108.a0000 0000 8550 5526Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| | - Shinya Oba
- grid.256342.40000 0004 0370 4927Laboratory of Field Science, Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu, Japan
| |
Collapse
|
50
|
Bioactive Compounds, Antioxidants, and Health Benefits of Sweet Potato Leaves. Molecules 2021; 26:molecules26071820. [PMID: 33804903 PMCID: PMC8038024 DOI: 10.3390/molecules26071820] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Sweet potato (Ipomoea batatas) is one of the most important food crops worldwide and its leaves provide a dietary source of nutrients and various bioactive compounds. These constituents of sweet potato leaves (SPL) vary among varieties and play important roles in treating and preventing various diseases. Recently, more attentions in health-promoting benefits have led to several in vitro and in vivo investigations, as well as the identification and quantification of bioactive compounds in SPL. Among them, many new compounds have been reported as the first identified compounds from SPL with their dominant bioactivities. This review summarizes the current knowledge of the bioactive compositions of SPL and their health benefits. Since SPL serve as a potential source of micronutrients and functional compounds, they can be further developed as a sustainable crop for food and medicinal industries.
Collapse
|