1
|
Wróblewska K, Bieszczad D, Popławska M, Ziętara KJ, Zajączkowska M, Filip A. Gene therapy as an innovative approach to the treatment of hemophilia B-a review. J Appl Genet 2025:10.1007/s13353-025-00952-w. [PMID: 40178764 DOI: 10.1007/s13353-025-00952-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/23/2024] [Accepted: 02/12/2025] [Indexed: 04/05/2025]
Abstract
Hemophilia B is a disease that affects the human coagulation system, causing the absence or deficiency of coagulation factor IX, which may manifest itself in uncontrolled bleeding that is life-threatening to patients. Due to its inheritance, the disease more often affects men, and the severity of symptoms directly correlates with the concentration of the missing factor IX; hence, the aim of therapy is to maintain it at a level that allows for sufficient hemostasis. The basic model of treatment offered to patients is based on primary prevention with coagulation factor IX with a prolonged half-life, which, however, does not solve the numerous problems faced by patients. An innovative proposal that, despite initial concerns, is becoming more and more popular every day is the recently approved genetic therapy in Europe, which uses viral vectors to transfer the correct gene that encodes coagulation factor IX. The introduction of a recombinant gene in place of its defective counterpart seems to be a promising solution and the beginning of a new era in which genetic therapies have a chance to develop their full potential and replace existing therapeutic regimens.
Collapse
Affiliation(s)
- Kinga Wróblewska
- Students' Scientific Association at the Department of Cancer Genetics with Cytogenetics Laboratory, Medical University of Lublin, Ul. Radziwiłłowska 11, 20-080, Lublin, Poland.
| | - Dominika Bieszczad
- Students' Scientific Association at the Department of Cancer Genetics with Cytogenetics Laboratory, Medical University of Lublin, Ul. Radziwiłłowska 11, 20-080, Lublin, Poland
| | - Magdalena Popławska
- Students' Scientific Association at the Department of Cancer Genetics with Cytogenetics Laboratory, Medical University of Lublin, Ul. Radziwiłłowska 11, 20-080, Lublin, Poland
| | - Karolina Joanna Ziętara
- Student Scientific Association at the Department of Psychology, Faculty of Medicine, Medical University of Lublin, 20-093, Lublin, Poland
| | - Monika Zajączkowska
- Students' Scientific Association at the Department of Cancer Genetics with Cytogenetics Laboratory, Medical University of Lublin, Ul. Radziwiłłowska 11, 20-080, Lublin, Poland
| | - Agata Filip
- Department of Cancer Genetics, Cytogenetics Laboratory, Medical University of Lublin, 20-080, Lublin, Poland
| |
Collapse
|
2
|
Martin C, Servais L. X-linked myotubular myopathy: an untreated treatable disease. Expert Opin Biol Ther 2025; 25:379-394. [PMID: 40042390 DOI: 10.1080/14712598.2025.2473430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION X-linked myotubular myopathy (XLMTM) is a life-threatening congenital disorder characterized by severe respiratory and motor impairment. This disease presents significant therapeutic challenges, with various strategies being explored to address its underlying pathology. Among these approaches, gene replacement therapy has demonstrated substantial functional improvements in clinical trials. However, safety issues emerged across different therapeutic approaches, highlighting the need for further research. AREAS COVERED This review provides a comprehensive analysis of the data gathered from natural history studies, preclinical models and clinical trials, with a particular focus on gene replacement therapy for XLMTM. The different therapeutic strategies are addressed, including their outcomes and associated safety concerns. EXPERT OPINION Despite the encouraging potential of gene therapy for XLMTM, the occurrence of safety challenges emphasizes the urgent need for a more comprehensive understanding of the disease's complex phenotype. Enhancing preclinical models to more accurately mimic the full spectrum of disease manifestations will be crucial for optimizing therapeutic strategies and reducing risks in future clinical applications.
Collapse
Affiliation(s)
- Cristina Martin
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Laurent Servais
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Department of Pediatrics, Neuromuscular Reference Center, University and University Hospital of Liège, Liège, Belgium
| |
Collapse
|
3
|
Keeler AM, Zhan W, Ram S, Fitzgerald KA, Gao G. The curious case of AAV immunology. Mol Ther 2025:S1525-0016(25)00211-4. [PMID: 40156190 DOI: 10.1016/j.ymthe.2025.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Immune responses to adeno-associated virus (AAV) have long been perplexing, from its first discovery to the latest clinical trials of recombinant AAV (rAAV) therapy. Wild-type AAV (wtAAV) does not cause any known disease, making it an ideal vector for gene therapy, as viral vectors retain virus-like properties. Although AAV stimulates only a mild immune response compared with other viruses, it is still recognized by the innate immune system and induces adaptive immune responses. B cell responses against both wtAAV and rAAV are robust and can hinder gene therapy applications and prevent redosing. T cell responses can clear transduced cells or establish tolerance against gene therapy. Immune responses to AAV gene therapy are influenced by many factors. Most clinical immunotoxicities that develop in response to gene therapies have emerged as higher doses of AAV vectors have been utilized and were not properly modeled in preclinical animal studies. Thus, several strategies have been undertaken to reduce or mitigate immune responses to AAV. While we have learned a considerable amount about how the immune system responds to AAV gene therapy since the discovery of AAV virus, it still remains a curious case that requires more investigation to fully understand.
Collapse
Affiliation(s)
- Allison M Keeler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; NeroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
4
|
Herzog RW, Kaczmarek R, High KA. Gene therapy for hemophilia - From basic science to first approvals of "one-and-done" therapies. Mol Ther 2025:S1525-0016(25)00217-5. [PMID: 40156189 DOI: 10.1016/j.ymthe.2025.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Realistic paths to gene therapy for the X-linked bleeding disorder hemophilia started to materialize in the mid 1990s, resulting in disease correction in small and large animal models. Out of a diversity of approaches, in vivo adeno-associated viral (AAV) gene transfer to hepatocytes emerged as the most promising strategy, eventually forming the basis for multiple advanced clinical trials and regulatory approval of two products for the treatment of hemophilia B (coagulation factor IX deficiency) and one for hemophilia A (factor VIII deficiency). Ideally, gene therapy is effective with a single administration, thus providing therapeutic factor levels over a period of years, without the need for frequent injections. Overcoming multiple obstacles, some not predicted by preclinical studies, sustained partial to complete correction of coagulation for several years to an entire decade has now been documented in patients, with observation ongoing. A hyperactive form of FIX improved efficacy in hemophilia B, and superior engineered variants of FVIII are emerging. Nonetheless, challenges remain, including pre-existing immunity to AAV capsids, toxicities, inter-patient variability in response to treatment, and difficulty in obtaining durable therapeutic expression of FVIII. In alternative approaches, in vivo gene editing and ex vivo gene therapies targeting hemopoietic cells are in development.
Collapse
Affiliation(s)
- Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Radoslaw Kaczmarek
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Katherine A High
- Laboratory of Blood and Vascular Biology, Rockefeller University, New York, NY, USA.
| |
Collapse
|
5
|
Eshghi S, Mousakhan Bakhtiari M, Behfar M, Izadi E, Naji P, Jafari L, Mohseni R, Saltanatpour Z, Hamidieh AA. Viral-based gene therapy clinical trials for immune deficiencies and blood disorders from 2013 until 2023 - an overview. Regen Ther 2025; 28:262-279. [PMID: 39844821 PMCID: PMC11751425 DOI: 10.1016/j.reth.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/16/2024] [Accepted: 12/04/2024] [Indexed: 01/24/2025] Open
Abstract
Gene therapy (GT) as a groundbreaking approach holds promise for treating many diseases including immune deficiencies and blood disorders. GT can benefit patients suffering from these diseases, especially those without matched donors or who are at risk after hematopoietic stem cell transplantation (HSCT). Due to all the advances in the field of GT, its main challenge is still gene delivery. Generally, gene delivery systems are categorized into two types depending on utilized vectors: non-viral and viral. Viral vectors are commonly used in GT because of their high efficiency compared to non-viral vectors. In this article, all clinical trials on viral-based GT (with the exclusion of CRISPR and CAR-T cell Therapy) in the last decade for immune deficiencies and blood disorders including Severe combined immune deficiency (SCID), Wiskott-Aldrich syndrome (WAS), Chronic granulomatous disease (CGD), Leukocyte adhesion deficiency (LAD), Fanconi anemia (FA), Hemoglobinopathies, and Hemophilia will thoroughly be discussed. Moreover, viral vectors used in these trials including Retroviruses (RVs), Lentiviruses (LVs), and Adeno-Associated Viruses (AAVs) will be reviewed. This review provides a concise overview of traditional treatments for the mentioned disease and precise details of their viral-based GT clinical trial studies in the last decade, then presents the advantages, disadvantages, and potential adverse events of GT. In conclusion, this review presents GT as a hopeful and growing field in healthcare that could offer cures to diseases that were previously thought to be untreatable.
Collapse
Affiliation(s)
- Shirin Eshghi
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Mahsa Mousakhan Bakhtiari
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Maryam Behfar
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Elaheh Izadi
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
- Stem Cell and Regenerative Medicine Innovation Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Naji
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Leila Jafari
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Rashin Mohseni
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Zohreh Saltanatpour
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
- Stem Cell and Regenerative Medicine Innovation Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
6
|
Chaugule S, Constantinou CK, John AA, Micha D, Eekhoff M, Gravallese E, Gao G, Shim JH. Comprehensive Review of Osteogenesis Imperfecta: Current Treatments and Future Innovations. Hum Gene Ther 2025; 36:597-617. [PMID: 39932815 PMCID: PMC11971546 DOI: 10.1089/hum.2024.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025] Open
Abstract
Osteogenesis imperfecta (OI) is a rare genetic disorder characterized by bone fragility due to reduced bone quality, often accompanied by low bone mass, recurrent fractures, hearing loss, skeletal abnormalities, and short stature. Pathogenic variants in over 20 genes lead to clinical and genetic variability in OI, resulting in diverse symptoms and severity. Current management involves a multidisciplinary approach, including antiresorptive medications, physiotherapy, occupational therapy, and orthopedic surgery, which provide symptomatic relief but no cure. Advancements in gene therapy technologies and stem cell therapies offer promising prospects for long-lasting or permanent solutions. This review provides a comprehensive overview of OI's classification, pathogenesis, and current treatment options. It also explores emerging biotechnologies for stem cells and gene-targeted therapies in OI. The potential of these innovative therapies and their clinical implementation challenges are evaluated, focusing on their imminent success in treating bone disorders.
Collapse
Affiliation(s)
- Sachin Chaugule
- Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | | | - Aijaz Ahmad John
- Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Dimitra Micha
- Department of Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam; Amsterdam Rare Bone Disease center, Amsterdam Bone Center, Amsterdam Movement Sciences, Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | - Marelise Eekhoff
- Department of Internal Medicine, Section Endocrinology & Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam; Amsterdam Rare Bone Disease center, Amsterdam Bone Center, Amsterdam Movement Sciences, Amsterdam Reproduction and Development Amsterdam, Amsterdam, Netherlands
| | - Ellen Gravallese
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Viral Vector Core, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Jae-Hyuck Shim
- Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
7
|
Wang S, Xiao L. Progress in AAV-Mediated In Vivo Gene Therapy and Its Applications in Central Nervous System Diseases. Int J Mol Sci 2025; 26:2213. [PMID: 40076831 PMCID: PMC11899905 DOI: 10.3390/ijms26052213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
As the blood-brain barrier (BBB) prevents molecules from accessing the central nervous system (CNS), the traditional systemic delivery of chemical drugs limits the development of neurological drugs. However, in recent years, innovative therapeutic strategies have tried to bypass the restriction of traditional drug delivery methods. In vivo gene therapy refers to emerging biopharma vectors that carry the specific genes and target and infect specific tissues; these infected cells and tissues then undergo fundamental changes at the genetic level and produce therapeutic proteins or substances, thus providing therapeutic benefits. Clinical and preclinical trials mainly utilize adeno-associated viruses (AAVs), lentiviruses (LVs), and other viruses as gene vectors for disease investigation. Although LVs have a higher gene-carrying capacity, the vector of choice for many neurological diseases is the AAV vector due to its safety and long-term transgene expression in neurons. Here, we review the basic biology of AAVs and summarize some key issues in recombinant AAV (rAAV) engineering in gene therapy research; then, we summarize recent clinical trials using rAAV treatment for neurological diseases and provide translational perspectives and future challenges on target selection.
Collapse
Affiliation(s)
- Shuming Wang
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China;
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, South China Normal University, Guangzhou 510631, China
| | - Lin Xiao
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China;
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
8
|
Wu YF, Chen JA, Jong YJ. Treating neuromuscular diseases: unveiling gene therapy breakthroughs and pioneering future applications. J Biomed Sci 2025; 32:30. [PMID: 39985020 PMCID: PMC11844187 DOI: 10.1186/s12929-025-01123-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/21/2025] [Indexed: 02/23/2025] Open
Abstract
In this review, we highlight recent advancements in adeno-associated virus (AAV)-based gene therapy for genetic neuromuscular diseases (NMDs), focusing on spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD). We discuss the current FDA-approved gene therapies for NMDs and provide updates on preclinical studies that demonstrate the potential of various AAV-based gene therapies to reduce SMA severity and serve as effective treatments for DMD. Additionally, we explore the transformative impact of CRISPR/Cas9 technology on the future of gene therapy for NMDs. Despite these encouraging developments, further research is required to identify robust biomarkers that can guide treatment decisions and predict outcomes. Overall, these pioneering advancements in AAV-based gene therapy lay the groundwork for future efforts aimed at curing genetic NMDs and offer a roadmap for developing gene therapies for other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu-Fu Wu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.
| | - Jun-An Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.
| | - Yuh-Jyh Jong
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Pediatrics, Division of Pediatric Neurology, and Translational Research Center of Neuromuscular Diseases, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
9
|
Zwi-Dantsis L, Mohamed S, Massaro G, Moeendarbary E. Adeno-Associated Virus Vectors: Principles, Practices, and Prospects in Gene Therapy. Viruses 2025; 17:239. [PMID: 40006994 PMCID: PMC11861813 DOI: 10.3390/v17020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Gene therapy offers promising potential as an efficacious and long-lasting therapeutic option for genetic conditions, by correcting defective mutations using engineered vectors to deliver genetic material to host cells. Among these vectors, adeno-associated viruses (AAVs) stand out for their efficiency, versatility, and safety, making them one of the leading platforms in gene therapy. The enormous potential of AAVs has been demonstrated through their use in over 225 clinical trials and the FDA's approval of six AAV-based gene therapy products, positioning these vectors at the forefront of the field. This review highlights the evolution and current applications of AAVs in gene therapy, focusing on their clinical successes, ongoing developments, and the manufacturing processes required for the rapid commercial growth anticipated in the AAV therapy market. It also discusses the broader implications of these advancements for future therapeutic strategies targeting more complex and multi-systemic conditions and biological processes such as aging. Finally, we explore some of the major challenges currently confronting the field.
Collapse
Affiliation(s)
- Limor Zwi-Dantsis
- Department of Mechanical Engineering, Roberts Building, University College London, London WC1E 6BT, UK
| | - Saira Mohamed
- Department of Mechanical Engineering, Roberts Building, University College London, London WC1E 6BT, UK
| | - Giulia Massaro
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering, Roberts Building, University College London, London WC1E 6BT, UK
| |
Collapse
|
10
|
Castaman G, Miesbach W. Gene Therapy for Hemophilia B: Achievements, Open Issues, and Perspectives. Semin Thromb Hemost 2025; 51:41-48. [PMID: 38821066 DOI: 10.1055/s-0044-1787190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Hemophilia B is the first bleeding disorder for which gene therapy clinical programs began. Presently, adenovirus-associated vectors represent the best means to deliver the transgene, and their administration by intravenous route has been used in recent clinical trials. The natural occurring factor IX (FIX) Padua variant, which allows for a 5- to 8-fold higher activity of FIX, while maintaining a normal protein concentration, was subsequently used to enhance the level of transgene expression. All the recent trials using this variant showed good results, and accumulating data suggest that long-term expression durability could be maintained at a significant hemostatic level. However, the risk of loss of transgene expression associated to immune response with liver enzymes elevation remains a concern, especially as to the efficacy and duration of immunosuppressive treatment. Notwithstanding this limitation, the results of clinical trials suggest that gene therapy in hemophilia B has the potential to provide long-term benefits with sustained factor activity levels predicted to last several years in many patients.
Collapse
Affiliation(s)
- Giancarlo Castaman
- Department of Oncology, Center for Bleeding Disorders and Coagulation, Careggi University Hospital, Florence, Italy
| | - Wolfgang Miesbach
- Hemophilia Center of the Medical Clinic 2, University Hospital, Frankfurt/Main, Germany
| |
Collapse
|
11
|
Piccolo P, Brunetti-Pierri N. Current and Emerging Issues in Adeno-Associated Virus Vector-Mediated Liver-Directed Gene Therapy. Hum Gene Ther 2025; 36:77-87. [PMID: 39714937 DOI: 10.1089/hum.2024.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
Adeno-associated virus (AAV) vectors have demonstrated safety and efficacy for gene transfer to hepatocytes in preclinical models, in various clinical trials and from a clinical experience with a growing number of approved gene therapy products. Although the exact duration is unknown, the expression of therapeutic genes in hepatocytes remains stable for several years after a single administration of the vector at clinically relevant doses in adult patients with hemophilia and other inherited metabolic disorders. However, clinical applications, especially for diseases requiring high AAV vector doses by intravenous administrations, have raised several concerns. These include the high prevalence of pre-existing immunity against the vector capsid, activation of the complement and the innate immunity with serious life-threatening complications, elevation of liver transaminases, liver growth associated with loss of transgene expression, underlying conditions negatively affecting AAV vector safety and efficacy. Despite these issues, the field is rapidly advancing with a better understanding of vector-host interactions and the development of new strategies to improve liver-directed gene therapy. This review provides an overview of the current and emerging challenges for AAV-mediated liver-directed gene therapy.
Collapse
Affiliation(s)
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- Genomics and Experimental Medicine Program, Scuola Superiore Meridionale (SSM, School of Advanced Studies), Naples, Italy
| |
Collapse
|
12
|
Qie B, Tuo J, Chen F, Ding H, Lyu L. Gene therapy for genetic diseases: challenges and future directions. MedComm (Beijing) 2025; 6:e70091. [PMID: 39949979 PMCID: PMC11822459 DOI: 10.1002/mco2.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/16/2025] Open
Abstract
Genetic diseases constitute the majority of rare human diseases, resulting from abnormalities in an individual's genetic composition. Traditional treatments offer limited relief for these challenging conditions. In contrast, the rapid advancement of gene therapy presents significant advantages by directly addressing the underlying causes of genetic diseases, thereby providing the potential for precision treatment and the possibility of curing these disorders. This review aims to delineate the mechanisms and outcomes of current gene therapy approaches in clinical applications across various genetic diseases affecting different body systems. Additionally, genetic muscular disorders will be examined as a case study to investigate innovative strategies of novel therapeutic approaches, including gene replacement, gene suppression, gene supplementation, and gene editing, along with their associated advantages and limitations at both clinical and preclinical levels. Finally, this review emphasizes the existing challenges of gene therapy, such as vector packaging limitations, immunotoxicity, therapy specificity, and the subcellular localization and immunogenicity of therapeutic cargos, while discussing potential optimization directions for future research. Achieving delivery specificity, as well as long-term effectiveness and safety, will be crucial for the future development of gene therapies targeting genetic diseases.
Collapse
Affiliation(s)
- Beibei Qie
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Jianghua Tuo
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Feilong Chen
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Haili Ding
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Lei Lyu
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| |
Collapse
|
13
|
Cao M, Katial R, Liu Y, Lu X, Gu Q, Chen C, Liu K, Zhu Z, Marshall MR, Yu Y, Wang Z. Safety, efficacy, and immunogenicity of a novel IgG degrading enzyme (KJ103): results from two randomised, blinded, phase 1 clinical trials. Gene Ther 2025:10.1038/s41434-025-00512-1. [PMID: 39825100 DOI: 10.1038/s41434-025-00512-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/14/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
The approved intravenous adeno-associated virus (AAV) therapies are limited by the widespread prevalence of pre-existing anti-AAV antibodies in the general population, which are known to restrict patients' ability to receive gene therapy and limit transfection efficacy in vivo. To address this challenge, we have developed a novel recombinant human immunoglobulin G degrading enzyme KJ103, characterized by low immunogenicity and clinical value for the elimination of anti-AAV antibodies in gene transfer. Herein, we conducted two randomized, blinded, placebo-controlled, single ascending dose Phase I studies in China and New Zealand, to evaluate the pharmacokinetics, pharmacodynamics, safety and immunogenicity of KJ103 in healthy volunteers. The results confirmed that KJ103 rapidly reduced IgG and maintained plasma IgG at low levels for one week. Dose of KJ103 ranging from 0.01 to 0.40 mg/kg had a favorable safety and tolerability profile across diverse ethnic and gender groups. KJ103 demonstrated a lower incidence of pre-existing anti-drug antibodies (ADAs) compared to currently approved human IgG degrading enzyme Imlifidase, with most induced ADAs predominantly reverting to baseline six months after administration. These properties are ideal for the management of immune disorders, rejection responses, and immunotherapies where pre-existing antibodies can reduce efficacy. Furthermore, we tested AAV2 neutralizing antibodies to confirm the potential utility of KJ103 in enhancing gene therapy.
Collapse
Affiliation(s)
- Mengdie Cao
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, No.26 Daoqianjie Street, Canglang District, Suzhou, Jiangsu Province, China
| | - Rohit Katial
- New Zealand Clinical Research, Grd floor, 3 Ferncroft St, Grafton, Auckland, 1010, New Zealand
| | - Yanjun Liu
- Shanghai Bao Pharmaceuticals Co., Ltd., No. 28 Luoxin Road, Baoshan, Shanghai, China
| | - Xiaoyu Lu
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, No.26 Daoqianjie Street, Canglang District, Suzhou, Jiangsu Province, China
| | - Qin Gu
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, No.26 Daoqianjie Street, Canglang District, Suzhou, Jiangsu Province, China
| | - Chen Chen
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, No.26 Daoqianjie Street, Canglang District, Suzhou, Jiangsu Province, China
| | - Katie Liu
- New Zealand Clinical Research, Grd floor, 3 Ferncroft St, Grafton, Auckland, 1010, New Zealand
| | - Zhen Zhu
- Shanghai Bao Pharmaceuticals Co., Ltd., No. 28 Luoxin Road, Baoshan, Shanghai, China
| | - Mark R Marshall
- Tauranga Hospital, Hauora a Toi Bay of Plenty, 829 Cameron Road, Tauranga, 3112, New Zealand
| | - Yanxia Yu
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, No.26 Daoqianjie Street, Canglang District, Suzhou, Jiangsu Province, China.
| | - Zheng Wang
- Shanghai Bao Pharmaceuticals Co., Ltd., No. 28 Luoxin Road, Baoshan, Shanghai, China.
| |
Collapse
|
14
|
Gualtierotti R, Giachi A, Bitto N, La Mura V, Peyvandi F. Gene therapy in hemophilia: the dawn of a new era. Res Pract Thromb Haemost 2025; 9:102640. [PMID: 39810981 PMCID: PMC11730942 DOI: 10.1016/j.rpth.2024.102640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 01/16/2025] Open
Abstract
Hemophilia A and B are hereditary bleeding disorders associated with the X chromosome, stemming from genetic defects in the coding of coagulation factor (F)VIII or FIX protein, leading to partial or complete deficiency. In the absence of effective prophylaxis, these deficiencies can result in irreversible joint damage, known as hemophilic arthropathy, and subsequent disability. Despite advancements in hemophilia treatment, individuals with severe forms of the disease continue to face a high risk of bleeding, particularly in instances of trauma or major surgical procedures. In such scenarios, it remains imperative to administer replacement or bypassing drugs, especially when inhibitors are present. Within this context, gene therapy emerges as a compelling alternative, ensuring sustained expression of the deficient factor at levels often surpassing current recommendations. Some studies report an effect lasting up to 8 years, contributing significantly to clinical improvement and enhancing the quality of life for patients. However, a comprehensive evaluation of this innovative therapy is essential, encompassing both its benefits and potential risks. It is crucial to undertake a multidisciplinary assessment, engage in thoughtful discussions with the patient, and closely monitor the therapy's effects and any eventual side effects of therapy. This approach aims to facilitate an informed and collaborative decision-making process, ultimately maximizing the benefits for each individual patient.
Collapse
Affiliation(s)
- Roberta Gualtierotti
- Dipartimento di Fisiopatologia Medico-chirurgica e dei Trapianti, Università degli Studi di Milano, Milano, Italia
- Centro Emofilia e Trombosi Angelo Bianchi Bonomi e S.C. Medicina - Emostasi e Trombosi, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milano, Italia
| | - Andrea Giachi
- Dipartimento di Fisiopatologia Medico-chirurgica e dei Trapianti, Università degli Studi di Milano, Milano, Italia
| | - Niccolò Bitto
- Centro Emofilia e Trombosi Angelo Bianchi Bonomi e S.C. Medicina - Emostasi e Trombosi, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milano, Italia
| | - Vincenzo La Mura
- Dipartimento di Fisiopatologia Medico-chirurgica e dei Trapianti, Università degli Studi di Milano, Milano, Italia
- Centro Emofilia e Trombosi Angelo Bianchi Bonomi e S.C. Medicina - Emostasi e Trombosi, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milano, Italia
| | - Flora Peyvandi
- Dipartimento di Fisiopatologia Medico-chirurgica e dei Trapianti, Università degli Studi di Milano, Milano, Italia
- Centro Emofilia e Trombosi Angelo Bianchi Bonomi e S.C. Medicina - Emostasi e Trombosi, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milano, Italia
| |
Collapse
|
15
|
Shi X, Bortolussi G, Collaud F, Le Brun PR, Bloemendaal LT, Guerchet N, Rudi de Waart D, Sellier P, Duijst S, Veron P, Mingozzi F, Kishimoto TK, Ronzitti G, Bosma P, Muro AF. Repeated dosing of AAV-mediated liver gene therapy in juvenile rat and mouse models of Crigler-Najjar syndrome type I. Mol Ther Methods Clin Dev 2024; 32:101363. [PMID: 39618425 PMCID: PMC11607602 DOI: 10.1016/j.omtm.2024.101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/25/2024] [Indexed: 01/30/2025]
Abstract
Crigler-Najjar syndrome is an ultra-rare monogenic recessive liver disease caused by UGT1A1 gene mutations. Complete UGT1A1 deficiency results in severe unconjugated hyperbilirubinemia in newborns that, if not treated, may lead to brain damage and death. Treatment is based on intensive phototherapy, but its efficacy decreases with age, rendering liver transplantation the only curative option. Adeno-associated virus (AAV)-mediated gene therapy has shown long-term correction in adult patients, but loss of viral DNA and therapeutic efficacy are expected in younger patients associated with liver growth. Effective vector re-administration is hindered by anti-AAV neutralizing antibodies generated during the first administration. Here, we investigated AAV vector re-administration by modulating the immune response with rapamycin-loaded nanoparticles (ImmTOR) in Gunn rats (Ugt1a -/- ) and Ugt1a -/- mice. We administered a liver-specific AAV8 vector expressing a codon-optimized hUGT1A1 cDNA (1.0E11 vg/kg) in P25-P28 mutant animals and, upon loss of efficacy after 3 to 5 weeks, a higher second dose (1.0E12 or 5.0E12 vg/kg) was given. ImmTOR co-administration reduced anti-AAV neutralizing antibodies and immunoglobulin Gs generation in male animals of both models allowing effective re-dosing, underscored by a significant and long-term decrease in plasma bilirubin, although efficacy was affected by low-titer residual anti-AAV antibodies suggesting that re-administration in patients may require combination with other methods.
Collapse
Affiliation(s)
- Xiaoxia Shi
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Meibergdreef 69-71, 1105 BK Amsterdam, the Netherlands
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116082, P.R. China
| | - Giulia Bortolussi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Fanny Collaud
- Genethon, 91000 Evry, France
- Université Paris-Saclay, Université d’Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | | | - Lysbeth ten Bloemendaal
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Meibergdreef 69-71, 1105 BK Amsterdam, the Netherlands
| | | | - Dirk Rudi de Waart
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Meibergdreef 69-71, 1105 BK Amsterdam, the Netherlands
| | - Pauline Sellier
- Genethon, 91000 Evry, France
- Université Paris-Saclay, Université d’Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Suzanne Duijst
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Meibergdreef 69-71, 1105 BK Amsterdam, the Netherlands
| | | | | | | | - Giuseppe Ronzitti
- Genethon, 91000 Evry, France
- Université Paris-Saclay, Université d’Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Piter Bosma
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Meibergdreef 69-71, 1105 BK Amsterdam, the Netherlands
| | - Andrés F. Muro
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| |
Collapse
|
16
|
Deshpande SR, Joseph K, Tong J, Chen Y, Pishko A, Cuker A. Adeno-associated virus-based gene therapy for hemophilia A and B: a systematic review and meta-analysis. Blood Adv 2024; 8:5957-5974. [PMID: 39374576 PMCID: PMC11629206 DOI: 10.1182/bloodadvances.2024014111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024] Open
Abstract
ABSTRACT Adeno-associated virus (AAV)-based gene therapy is an emerging treatment for hemophilia A (HA) and hemophilia B (HB). In this systematic review and meta-analysis, we searched for studies of adult males with severe or moderately severe HA or HB who received AAV-based gene therapy. Annualized bleeding rate (ABR), annualized infusion rate (AIR), total factor use, factor levels, and adverse events (AEs) were extracted. Eight HA trials representing 7 gene therapies and 211 patients and 12 HB trials representing 9 gene therapies and 184 patients were included. For HA, gene therapy resulted in an annualized decrease of 7.58 bleeding events (95% confidence interval [CI], -11.50 to -3.67) and 117.2 factor infusions (95% CI, -151.86 to -82.53) compared with before gene therapy. Factor VIII level at 12 months ranged from 10.4 to 70.31 IU/mL by 1-stage assay. HB gene therapies were associated with an annualized decrease of 5.64 bleeding events (95% CI, -8.61 to -2.68) and 58.92 factor infusions (95% CI, -68.19 to -49.65). Mean factor IX level at 12 months was 28.72 IU/mL (95% CI, 18.78-38.66). Factor expression was more durable for HB than HA; factor IX levels remained at 95.7% of their peak whereas factor VIII levels fell to 55.8% of their peak at 24 months. The pooled percentage of patients experiencing a serious AE was 19% (10%-31%) and 21% (10%-37%) for HA and HB gene therapies, respectively. No thrombosis or inhibitor formation was reported. AAV-based gene therapies for both HA and HB demonstrated significant reductions in ABR, AIR, and factor use.
Collapse
Affiliation(s)
- Saarang R. Deshpande
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Keerthy Joseph
- Department of Hematology and Oncology, St. Luke’s University Hospital, Easton, PA
| | - Jiayi Tong
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Yong Chen
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Allyson Pishko
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Adam Cuker
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
17
|
Yudaeva A, Kostyusheva A, Kachanov A, Brezgin S, Ponomareva N, Parodi A, Pokrovsky VS, Lukashev A, Chulanov V, Kostyushev D. Clinical and Translational Landscape of Viral Gene Therapies. Cells 2024; 13:1916. [PMID: 39594663 PMCID: PMC11592828 DOI: 10.3390/cells13221916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/29/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Gene therapies hold significant promise for treating previously incurable diseases. A number of gene therapies have already been approved for clinical use. Currently, gene therapies are mostly limited to the use of adeno-associated viruses and the herpes virus. Viral vectors, particularly those derived from human viruses, play a critical role in this therapeutic approach due to their ability to efficiently deliver genetic material to target cells. Despite their advantages, such as stable gene expression and efficient transduction, viral vectors face numerous limitations that hinder their broad application. These limitations include small cloning capacities, immune and inflammatory responses, and risks of insertional mutagenesis. This review explores the current landscape of viral vectors used in gene therapy, discussing the different types of DNA- and RNA-based viral vectors, their characteristics, limitations, and current medical and potential clinical applications. The review also highlights strategies to overcome existing challenges, including optimizing vector design, improving safety profiles, and enhancing transgene expression both using molecular techniques and nanotechnologies, as well as by approved drug formulations.
Collapse
Affiliation(s)
- Alexandra Yudaeva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
| | - Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
| | - Artyom Kachanov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
| | - Sergey Brezgin
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (V.S.P.)
| | - Natalia Ponomareva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (V.S.P.)
- Department of Pharmaceutical and Toxicological Chemistry, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (V.S.P.)
| | - Vadim S. Pokrovsky
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (V.S.P.)
- Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
- Department of Biochemistry, People’s Friendship University, 117198 Moscow, Russia
| | - Alexander Lukashev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
- Research Institute for Systems Biology and Medicine, 117246 Moscow, Russia
| | - Vladimir Chulanov
- Department of Infectious Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Dmitry Kostyushev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (V.S.P.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
18
|
Wang Y, Jiang H, Li M, Xu Z, Xu H, Chen Y, Chen K, Zheng W, Lin W, Liu Z, Lin Z, Zhang M. Delivery of CRISPR/Cas9 system by AAV as vectors for gene therapy. Gene 2024; 927:148733. [PMID: 38945310 DOI: 10.1016/j.gene.2024.148733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
The adeno-associated virus (AAV) is a defective single-stranded DNA virus with the simplest structure reported to date. It constitutes a capsid protein and single-stranded DNA. With its high transduction efficiency, low immunogenicity, and tissue specificity, it is the most widely used and promising gene therapy vector. The clustered regularly interspaced short palindromic sequence (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing system is an emerging technology that utilizes cas9 nuclease to specifically recognize and cleave target genes under the guidance of small guide RNA and realizes gene editing through homologous directional repair and non-homologous recombination repair. In recent years, an increasing number of animal experiments and clinical studies have revealed the great potential of AAV as a vector to deliver the CRISPR/cas9 system for treating genetic diseases and viral infections. However, the immunogenicity, toxicity, low transmission efficiency in brain and ear tissues, packaging size limitations of AAV, and immunogenicity and off-target effects of Cas9 protein pose several clinical challenges. This research reviews the role, challenges, and countermeasures of the AAV-CRISPR/cas9 system in gene therapy.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Neonatology, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Anesthesiology, 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haibin Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mopu Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zidi Xu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hang Xu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuetong Chen
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kepei Chen
- Department of Neonatology, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weihong Zheng
- Department of Neonatology, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Lin
- Department of Neonatology, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiming Liu
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Zhenlang Lin
- Department of Neonatology, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Min Zhang
- Department of Neonatology, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
19
|
Samelson-Jones BJ, Small JC, George LA. Roctavian gene therapy for hemophilia A. Blood Adv 2024; 8:5179-5189. [PMID: 38991118 PMCID: PMC11530397 DOI: 10.1182/bloodadvances.2023011847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024] Open
Abstract
ABSTRACT After successful efforts in adeno-associated virus (AAV) gene addition for hemophilia B gene therapy, the development of valoctocogene roxaparvovec (Roctavian; Biomarin) over the past decade represents a potential new hemophilia A (HA) treatment paradigm. Roctavian is the first licensed HA gene therapy that was conditionally approved in Europe in August 2022 and approved in the United States in June 2023. Beyond Roctavian, there are ongoing pivotal trials of additional AAV vectors for HA, others that are progressing through preclinical development or early-phase clinical trial, as well as non-AAV approaches in clinical development. This review focuses on the clinical development of Roctavian for which the collective clinical trials represent the largest body of work thus far available for any licensed AAV product. From this pioneering clinical development, several outstanding questions have emerged for which the answers will undoubtedly be important to the clinical adaptation of Roctavian and future efforts in HA gene therapy. Most notably, unexplained year-over-year declines in factor VIII (FVIII) expression after Roctavian treatment contrast with stable FVIII expression observed in other AAV HA gene therapy clinical trials with more modest initial FVIII expression. This observation has been qualitatively replicated in animal models that may permit mechanistic study. The development and approval of Roctavian is a landmark in HA therapeutics, although next-generation approaches are needed before HA gene therapy fulfills its promise of stable FVIII expression that normalizes hemostasis.
Collapse
Affiliation(s)
- Benjamin J. Samelson-Jones
- Clinical In Vivo Gene Therapy and Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Juliana C. Small
- Clinical In Vivo Gene Therapy and Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Lindsey A. George
- Clinical In Vivo Gene Therapy and Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
20
|
Choules MP, Bonate PL, Heo N, Weddell J. Prospective approaches to gene therapy computational modeling - spotlight on viral gene therapy. J Pharmacokinet Pharmacodyn 2024; 51:399-416. [PMID: 37848637 DOI: 10.1007/s10928-023-09889-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/25/2023] [Indexed: 10/19/2023]
Abstract
Clinical studies have found there still exists a lack of gene therapy dose-toxicity and dose-efficacy data that causes gene therapy dose selection to remain elusive. Model informed drug development (MIDD) has become a standard tool implemented throughout the discovery, development, and approval of pharmaceutical therapies, and has the potential to inform dose-toxicity and dose-efficacy relationships to support gene therapy dose selection. Despite this potential, MIDD approaches for gene therapy remain immature and require standardization to be useful for gene therapy clinical programs. With the goal to advance MIDD approaches for gene therapy, in this review we first provide an overview of gene therapy types and how they differ from a bioanalytical, formulation, route of administration, and regulatory standpoint. With this biological and regulatory background, we propose how MIDD can be advanced for AAV-based gene therapies by utilizing physiological based pharmacokinetic modeling and quantitative systems pharmacology to holistically inform AAV and target protein dynamics following dosing. We discuss how this proposed model, allowing for in-depth exploration of AAV pharmacology, could be the key the field needs to treat these unmet disease populations.
Collapse
Affiliation(s)
- Mary P Choules
- Early Development, New Technologies Group, Astellas, Northbrook, IL, USA
| | - Peter L Bonate
- Early Development, New Technologies Group, Astellas, Northbrook, IL, USA.
| | - Nakyo Heo
- Early Development, New Technologies Group, Astellas, Northbrook, IL, USA
| | - Jared Weddell
- Early Development, New Technologies Group, Astellas, Northbrook, IL, USA
| |
Collapse
|
21
|
Chhabra A, Bashirians G, Petropoulos CJ, Wrin T, Paliwal Y, Henstock PV, Somanathan S, da Fonseca Pereira C, Winburn I, Rasko JE. Global seroprevalence of neutralizing antibodies against adeno-associated virus serotypes used for human gene therapies. Mol Ther Methods Clin Dev 2024; 32:101273. [PMID: 39022744 PMCID: PMC11253686 DOI: 10.1016/j.omtm.2024.101273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/23/2024] [Indexed: 07/20/2024]
Abstract
Adeno-associated virus (AAV) vectors are promising gene therapy candidates, but pre-existing anti-AAV neutralizing antibodies (NAbs) pose a significant challenge to successful gene delivery. Knowledge of NAb seroprevalence remains limited and inconsistent. We measured activity of NAbs against six clinically relevant AAV serotypes across 10 countries in adults (n = 502) and children (n = 50) using a highly sensitive transduction inhibition assay. NAb prevalence was generally highest for AAV1 and lowest for AAV5. There was considerable variability across countries and geographical regions. NAb prevalence increased with age and was higher in females, participants of Asian ethnicity, and participants in cancer trials. Co-prevalence was most frequently observed between AAV1 and AAV6 and less frequently between AAV5 and other AAVs. Machine learning analyses revealed a unique clustering of AAVs that differed from previous phylogenetic classifications. These results offer insights into the biological relationships between the immunogenicity of AAVs in humans beyond that observed previously using standard clades, which are based on linear capsid sequences. Our findings may inform improved vector design and facilitate the development of AAV vector-mediated clinical gene therapies.
Collapse
Affiliation(s)
| | | | | | - Terri Wrin
- Labcorp-Monogram Biosciences, South San Francisco, CA, USA
| | | | | | | | | | | | - John E.J. Rasko
- University of Sydney, Central Clinical School, Faculty of Medicine & Health, Sydney, NSW, Australia
- Department of Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Gene and Stem Cell Therapy Program, Centenary Institute University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
22
|
Jagadisan B, Dhawan A. Adeno-associated viral vector gene therapy: Challenges for the paediatric hepatologist. J Pediatr Gastroenterol Nutr 2024; 79:485-494. [PMID: 39073133 DOI: 10.1002/jpn3.12326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/09/2024] [Accepted: 06/22/2024] [Indexed: 07/30/2024]
Abstract
Hepatoxicity associated with recombinant adeno-associated virus gene therapy is being increasingly encountered by hepatologists in tertiary and quaternary referral units due to the recent increase of these therapies for neuromuscular and haematological disorders. The challenges in managing the condition stem from a lack of good-quality evidence on the appropriate protocols for immunosuppressants due to lack of representative animal models. There is a need for protocols for diagnosing and treating hepatotoxicity and this possible with further research to understand the problem and its management. The review also highlights the importance of a multidisciplinary team in managing hepatotoxicity and recommends further research to better identify at-risk individuals, define the extent of the problem and assess the long-term effects of liver injury and immunosuppressants.
Collapse
Affiliation(s)
- Barath Jagadisan
- Paediatric Liver GI and Nutrition Centre and Mowat Labs, King's College Hospital, London, UK
| | - Anil Dhawan
- Paediatric Liver GI and Nutrition Centre and Mowat Labs, King's College Hospital, London, UK
| |
Collapse
|
23
|
Dougherty JA, Dougherty KM. Valoctocogene Roxaparvovec and Etranacogene Dezaparavovec: Novel Gene Therapies for Hemophilia A and B. Ann Pharmacother 2024; 58:834-848. [PMID: 37978816 DOI: 10.1177/10600280231202247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
OBJECTIVE To review efficacy and safety data of valoctocogene roxaparvovec (Roctavian) and etranacogene dezaparavovec (Hemgenix), novel gene therapies for the treatment of the life-threatening bleeding disorders hemophilia A and B, respectively. DATA SOURCES A PubMed/Google Scholar search from inception through August 11, 2023 was conducted using the following keywords: gene therapy, hemophilia A, hemophilia B, etranacogene dezaparavovec, valoctocogene roxaparvovec, and bleeding. STUDY SELECTION AND DATA EXTRACTION Data, including phase 1 to 3 clinical trials (non-comparator), were obtained from primary literature and package inserts. These reports evaluated clinical pharmacology, efficacy, safety, adverse events, warnings, and precautions. DATA SYNTHESIS Valoctocogene phase 3 study in males (n = 134): 87% had factor VIII (FVIII) levels that at least met criteria for mild hemophilia. Etranacogene phase 3 study in males (n = 54): within 3 weeks of infusion, mean factor IX (FIX) levels had reached 26.8 IU/dL. Both therapies provided clinically and statistically significant decreases in bleeding events and prophylactic factor infusions. Most common adverse event was elevations in liver function tests that were treated with glucocorticoids. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE IN COMPARISON WITH EXISTING DRUGS The endogenous production of clotting factors mimics physiological production while decreasing morbidity and mortality related to bleeding events similar to the effects of existing replacement strategies. Gene therapy was also shown to increase patient quality of life. CONCLUSION Valoctocogene and etranacogene provide another treatment for selected patients with hemophilia. Treatment for the patient with hemophilia (gene therapy vs replacement strategy) must be personalized as new clinical data are published being cognizant of drug affordability.
Collapse
Affiliation(s)
- John A Dougherty
- Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, USA
| | | |
Collapse
|
24
|
Weber JA, Lang JF, Carrell EM, Alameh MG, Davidson BL. Temporal restriction of Cas9 expression improves CRISPR-mediated deletion efficacy and fidelity. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102172. [PMID: 38978694 PMCID: PMC11229411 DOI: 10.1016/j.omtn.2024.102172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/08/2024] [Indexed: 07/10/2024]
Abstract
Clinical application of CRISPR-Cas9 technology for large deletions of somatic mutations is inefficient, and methods to improve utility suffer from our inability to rapidly assess mono- vs. biallelic deletions. Here we establish a model system for investigating allelic heterogeneity at the single-cell level and identify indel scarring from non-simultaneous nuclease activity at gRNA cut sites as a major barrier to CRISPR-del efficacy both in vitro and in vivo. We show that non-simultaneous nuclease activity is partially prevented via restriction of CRISPR-Cas9 expression via inducible adeno-associated viruses (AAVs) or lipid nanoparticles (LNPs). Inducible AAV-based expression of CRISPR-del machinery significantly improved mono- and biallelic deletion frequency in vivo, supporting the use of the Xon cassette over traditional constitutively expressing AAV approaches. These data depicting improvements to deletions and insight into allelic heterogeneity after CRISPR-del will inform therapeutic approaches for phenotypes that require either large mono- or biallelic deletions, such as autosomal recessive diseases or where mutant allele-specific gRNAs are not readily available, or in situations where the targeted sequence for excision is located multiple times in a genome.
Collapse
Affiliation(s)
- Jesse A Weber
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan F Lang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellie M Carrell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mohamad-Gabriel Alameh
- Penn Institute for RNA Innovation, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Beverly L Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
25
|
Shao Y, Liu C, Liao HK, Zhang R, Yuan B, Yang H, Li R, Zhu S, Fang X, Rodriguez Esteban C, Chen J, Izpisua Belmonte JC. In vivo rescue of genetic dilated cardiomyopathy by systemic delivery of nexilin. Genome Biol 2024; 25:135. [PMID: 38783323 PMCID: PMC11112773 DOI: 10.1186/s13059-024-03283-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is one of the most common causes of heart failure. Multiple identified mutations in nexilin (NEXN) have been suggested to be linked with severe DCM. However, the exact association between multiple mutations of Nexn and DCM remains unclear. Moreover, it is critical for the development of precise and effective therapeutics in treatments of DCM. RESULTS In our study, Nexn global knockout mice and mice carrying human equivalent G645del mutation are studied using functional gene rescue assays. AAV-mediated gene delivery is conducted through systemic intravenous injections at the neonatal stage. Heart tissues are analyzed by immunoblots, and functions are assessed by echocardiography. Here, we identify functional components of Nexilin and demonstrate that exogenous introduction could rescue the cardiac function and extend the lifespan of Nexn knockout mouse models. Similar therapeutic effects are also obtained in G645del mice, providing a promising intervention for future clinical therapeutics. CONCLUSIONS In summary, we demonstrated that a single injection of AAV-Nexn was capable to restore the functions of cardiomyocytes and extended the lifespan of Nexn knockout and G645del mice. Our study represented a long-term gene replacement therapy for DCM that potentially covers all forms of loss-of-function mutations in NEXN.
Collapse
Affiliation(s)
- Yanjiao Shao
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Altos Labs, San Diego, CA, 92121, USA
| | - Canzhao Liu
- Department of Cardiology, Translational Medicine Research Center, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, 510280, China
| | - Hsin-Kai Liao
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Ran Zhang
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Baolei Yuan
- Altos Labs, San Diego, CA, 92121, USA
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Hanyan Yang
- Department of Cardiology, Translational Medicine Research Center, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, 510280, China
| | - Ronghui Li
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Altos Labs, San Diego, CA, 92121, USA
| | - Siting Zhu
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xi Fang
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Concepcion Rodriguez Esteban
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Altos Labs, San Diego, CA, 92121, USA
| | - Ju Chen
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
- Altos Labs, San Diego, CA, 92121, USA.
| |
Collapse
|
26
|
Riley JS, Luks VL, Berkowitz CL, Dumitru AM, Kus NJ, Dave A, Menon P, De Paepe ME, Jain R, Li L, Dugoff L, Teefey CP, Alameh MG, Zoltick PW, Peranteau WH. Preexisting maternal immunity to AAV but not Cas9 impairs in utero gene editing in mice. J Clin Invest 2024; 134:e179848. [PMID: 38950310 PMCID: PMC11178531 DOI: 10.1172/jci179848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/01/2024] [Indexed: 07/03/2024] Open
Abstract
In utero gene editing (IUGE) is a potential treatment for inherited diseases that cause pathology before or soon after birth. Preexisting immunity to adeno-associated virus (AAV) vectors and Cas9 endonuclease may limit postnatal gene editing. The tolerogenic fetal immune system minimizes a fetal immune barrier to IUGE. However, the ability of maternal immunity to limit fetal gene editing remains a question. We investigated whether preexisting maternal immunity to AAV or Cas9 impairs IUGE. Using a combination of fluorescent reporter mice and a murine model of a metabolic liver disease, we demonstrated that maternal anti-AAV IgG antibodies were efficiently transferred from dam to fetus and impaired IUGE in a maternal titer-dependent fashion. By contrast, maternal cellular immunity was inefficiently transferred to the fetus, and neither maternal cellular nor humoral immunity to Cas9 impaired IUGE. Using human umbilical cord and maternal blood samples collected from mid- to late-gestation pregnancies, we demonstrated that maternal-fetal transmission of anti-AAV IgG was inefficient in midgestation compared with term, suggesting that the maternal immune barrier to clinical IUGE would be less relevant at midgestation. These findings support immunologic advantages for IUGE and inform maternal preprocedural testing protocols and exclusion criteria for future clinical trials.
Collapse
Affiliation(s)
- John S. Riley
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Valerie L. Luks
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cara L. Berkowitz
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ana Maria Dumitru
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nicole J. Kus
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Apeksha Dave
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Pallavi Menon
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Monique E. De Paepe
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Rajan Jain
- Division of Cardiology, Department of Medicine, and
| | - Li Li
- Division of Cardiology, Department of Medicine, and
| | - Lorraine Dugoff
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Mohamad-Gabriel Alameh
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Philip W. Zoltick
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - William H. Peranteau
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Fetal Diagnosis and Treatment and
| |
Collapse
|
27
|
Lemmens M, Dorsheimer L, Zeller A, Dietz-Baum Y. Non-clinical safety assessment of novel drug modalities: Genome safety perspectives on viral-, nuclease- and nucleotide-based gene therapies. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 896:503767. [PMID: 38821669 DOI: 10.1016/j.mrgentox.2024.503767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
Gene therapies have emerged as promising treatments for various conditions including inherited diseases as well as cancer. Ensuring their safe clinical application requires the development of appropriate safety testing strategies. Several guidelines have been provided by health authorities to address these concerns. These guidelines state that non-clinical testing should be carried out on a case-by-case basis depending on the modality. This review focuses on the genome safety assessment of frequently used gene therapy modalities, namely Adeno Associated Viruses (AAVs), Lentiviruses, designer nucleases and mRNAs. Important safety considerations for these modalities, amongst others, are vector integrations into the patient genome (insertional mutagenesis) and off-target editing. Taking into account the constraints of in vivo studies, health authorities endorse the development of novel approach methodologies (NAMs), which are innovative in vitro strategies for genotoxicity testing. This review provides an overview of NAMs applied to viral and CRISPR/Cas9 safety, including next generation sequencing-based methods for integration site analysis and off-target editing. Additionally, NAMs to evaluate the oncogenicity risk arising from unwanted genomic modifications are discussed. Thus, a range of promising techniques are available to support the safe development of gene therapies. Thorough validation, comparisons and correlations with clinical outcomes are essential to identify the most reliable safety testing strategies. By providing a comprehensive overview of these NAMs, this review aims to contribute to a better understanding of the genome safety perspectives of gene therapies.
Collapse
Affiliation(s)
| | - Lena Dorsheimer
- Research and Development, Preclinical Safety, Sanofi, Industriepark Hoechst, Frankfurt am Main 65926, Germany.
| | - Andreas Zeller
- Pharmaceutical Sciences, pRED Innovation Center Basel, Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Yasmin Dietz-Baum
- Research and Development, Preclinical Safety, Sanofi, Industriepark Hoechst, Frankfurt am Main 65926, Germany
| |
Collapse
|
28
|
Pierce GF, Fong S, Long BR, Kaczmarek R. Deciphering conundrums of adeno-associated virus liver-directed gene therapy: focus on hemophilia. J Thromb Haemost 2024; 22:1263-1289. [PMID: 38103734 DOI: 10.1016/j.jtha.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/07/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Adeno-associated virus gene therapy has been the subject of intensive investigation for monogenic disease gene addition therapy for more than 25 years, yet few therapies have been approved by regulatory agencies. Most have not progressed beyond phase 1/2 due to toxicity, lack of efficacy, or both. The liver is a natural target for adeno-associated virus since most serotypes have a high degree of tropism for hepatocytes due to cell surface receptors for the virus and the unique liver sinusoidal geometry facilitating high volumes of blood contact with hepatocyte cell surfaces. Recessive monogenic diseases such as hemophilia represent promising targets since the defective proteins are often synthesized in the liver and secreted into the circulation, making them easy to measure, and many do not require precise regulation. Yet, despite initiation of many disease-specific clinical trials, therapeutic windows are often nonexistent, resulting in excess toxicity and insufficient efficacy. Iterative progress built on these attempts is best illustrated by hemophilia, with the first regulatory approvals for factor IX and factor VIII gene therapies eventually achieved 25 years after the first gene therapy studies in humans. Although successful gene transfer may result in the production of sufficient transgenic protein to modify the disease, many emerging questions on durability, predictability, reliability, and variability of response have not been answered. The underlying biology accounting for these heterogeneous responses and the interplay between host and virus is the subject of intense investigation and the subject of this review.
Collapse
Affiliation(s)
- Glenn F Pierce
- World Federation of Hemophilia, Montreal, Quebec, Canada.
| | - Sylvia Fong
- BioMarin Pharmaceutical Inc, Research and Early Development, Novato, California, USA
| | - Brian R Long
- BioMarin Pharmaceutical Inc, Research and Early Development, Novato, California, USA
| | - Radoslaw Kaczmarek
- Department of Pediatrics, Indiana University School of Medicine, Wells Center for Pediatric Research, Indiana, USA; Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| |
Collapse
|
29
|
Anguela XM, High KA. Hemophilia B and gene therapy: a new chapter with etranacogene dezaparvovec. Blood Adv 2024; 8:1796-1803. [PMID: 38592711 PMCID: PMC11006816 DOI: 10.1182/bloodadvances.2023010511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/01/2024] [Indexed: 04/10/2024] Open
Abstract
ABSTRACT The US Food and Drug Administration (FDA)'s authorization of etranacogene dezaparvovec (Hemgenix) is a significant milestone, constituting not only the first FDA approval of a gene therapy for hemophilia but also the first approval of a liver-targeted adeno-associated virus vector gene therapy. This review summarizes the nonclinical studies and clinical development that supported regulatory clearance. Similar to other gene therapies for single gene disorders, both the short-term safety and the phenotypic improvement were unequivocal, justifying the modest-sized safety and efficacy database, which included 57 participants across the phase 2b (3 participants) and phase 3 (54 participants) studies. The most common adverse reactions included liver enzyme elevation, headache, flu-like symptoms, infusion-related reactions, creatine kinase elevation, malaise, and fatigue; these were mostly transient. One participant had hepatocellular carcinoma on a study-mandated liver ultrasound conducted 1 year after vector infusion; molecular analysis of the resected tumor showed no evidence of vector-related insertional mutagenesis as the etiology. A remarkable 96% of participants in the phase 3 trial were able to stop factor IX (FIX) prophylaxis, with the study demonstrating noninferiority to FIX prophylaxis in terms of the primary end point, annualized bleeding rate. Key secondary end points such as the annualized infusion rate, which declined by 97%, and the plasma FIX activity level at 18 months after infusion, with least squares mean increase of 34.3 percentage points compared with baseline, were both clinically and statistically significant. The FDA's landmark approval of Hemgenix as a pioneering treatment for hemophilia stands on the shoulders of >20 years of gene therapy clinical research and heralds a promising future for genomic medicines.
Collapse
Affiliation(s)
| | - Katherine A. High
- Rockefeller University, New York, NY
- Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
30
|
Maina A, Foster GR. Hepatitis after gene therapy, what are the possible causes? J Viral Hepat 2024; 31 Suppl 1:14-20. [PMID: 38606951 DOI: 10.1111/jvh.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/06/2023] [Accepted: 01/03/2024] [Indexed: 04/13/2024]
Abstract
Hepatitis is a common adverse event following gene therapy for haemophilia, often associated with a loss of transgene expression. Investigating the potential causes and implications of this is crucial for the overall success of treatment. Gene therapy trials using adeno-associated virus (AAV) vectors have demonstrated promising results marked by increases in factor FVIII and FIX levels and reductions in episodes of bleeding. However, hepatocellular injury characterised by elevations in alanine aminotransferases (ALT) has been noted. This liver injury is typically transient and asymptomatic, posing challenges in determining its clinical significance. Proposed causes encompass immune-mediated responses, notably T cell cytotoxicity in response to the AAV vector, direct liver injury from the viral capsid or transcribed protein via the unfolded protein response and pre-existing liver conditions. Liver biopsy data conducted years post-gene therapy infusion has shown sinusoidal infiltration without significant inflammation. The overall safety profile of gene therapy remains favourable with no evidence drug-induced liver injury (DILI) based on Hy's Law criteria. Essential pre-therapy monitoring and identifying patients at high risk of liver injury should involve liver function tests and non-invasive fibroscans, while novel blood-based biomarkers are under exploration. Further research is required to comprehend the mechanisms underlying transaminitis, loss of transgene expression and long-term effects on the liver, providing insights for optimising gene therapy for haemophilia.
Collapse
|
31
|
Di Dato F, D'Uonno G, Iorio R. Crigler-Najjar syndrome: looking to the future does not make us forget the present. Orphanet J Rare Dis 2024; 19:102. [PMID: 38448957 PMCID: PMC10918926 DOI: 10.1186/s13023-024-03108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
Recently, the safety and efficacy of gene therapy were evaluated in patients with Crigler-Najjar syndrome (CNS). Although it is a promising curative option for CNS, many doubts still persist about its long-term efficacy and safety. Furthermore, there is a risk of overlooking several unresolved problems still present in current clinical practice. This letter is a call for action on crucial open issues that remain nowadays an unmet need in the management of CNS patients.
Collapse
Affiliation(s)
- Fabiola Di Dato
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Giuseppe D'Uonno
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Raffaele Iorio
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
32
|
Muñoz S, Bertolin J, Jimenez V, Jaén ML, Garcia M, Pujol A, Vilà L, Sacristan V, Barbon E, Ronzitti G, El Andari J, Tulalamba W, Pham QH, Ruberte J, VandenDriessche T, Chuah MK, Grimm D, Mingozzi F, Bosch F. Treatment of infantile-onset Pompe disease in a rat model with muscle-directed AAV gene therapy. Mol Metab 2024; 81:101899. [PMID: 38346589 PMCID: PMC10877955 DOI: 10.1016/j.molmet.2024.101899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/03/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE Pompe disease (PD) is caused by deficiency of the lysosomal enzyme acid α-glucosidase (GAA), leading to progressive glycogen accumulation and severe myopathy with progressive muscle weakness. In the Infantile-Onset PD (IOPD), death generally occurs <1 year of age. There is no cure for IOPD. Mouse models of PD do not completely reproduce human IOPD severity. Our main objective was to generate the first IOPD rat model to assess an innovative muscle-directed adeno-associated viral (AAV) vector-mediated gene therapy. METHODS PD rats were generated by CRISPR/Cas9 technology. The novel highly myotropic bioengineered capsid AAVMYO3 and an optimized muscle-specific promoter in conjunction with a transcriptional cis-regulatory element were used to achieve robust Gaa expression in the entire muscular system. Several metabolic, molecular, histopathological, and functional parameters were measured. RESULTS PD rats showed early-onset widespread glycogen accumulation, hepato- and cardiomegaly, decreased body and tissue weight, severe impaired muscle function and decreased survival, closely resembling human IOPD. Treatment with AAVMYO3-Gaa vectors resulted in widespread expression of Gaa in muscle throughout the body, normalizing glycogen storage pathology, restoring muscle mass and strength, counteracting cardiomegaly and normalizing survival rate. CONCLUSIONS This gene therapy holds great potential to treat glycogen metabolism alterations in IOPD. Moreover, the AAV-mediated approach may be exploited for other inherited muscle diseases, which also are limited by the inefficient widespread delivery of therapeutic transgenes throughout the muscular system.
Collapse
Affiliation(s)
- Sergio Muñoz
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Joan Bertolin
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Veronica Jimenez
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Maria Luisa Jaén
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Miquel Garcia
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Anna Pujol
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Laia Vilà
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Victor Sacristan
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Elena Barbon
- INTEGRARE, Genethon, INSERM UMR951, Univ Evry, Université Paris-Saclay, 91002, Evry, France
| | - Giuseppe Ronzitti
- INTEGRARE, Genethon, INSERM UMR951, Univ Evry, Université Paris-Saclay, 91002, Evry, France
| | - Jihad El Andari
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, BioQuant Center, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany
| | - Warut Tulalamba
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1090, Brussels, Belgium; Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, 3000, Leuven, Belgium
| | - Quang Hong Pham
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1090, Brussels, Belgium; Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, 3000, Leuven, Belgium
| | - Jesus Ruberte
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1090, Brussels, Belgium; Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, 3000, Leuven, Belgium
| | - Marinee K Chuah
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1090, Brussels, Belgium; Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, 3000, Leuven, Belgium
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, BioQuant Center, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany; German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg, Germany
| | - Federico Mingozzi
- INTEGRARE, Genethon, INSERM UMR951, Univ Evry, Université Paris-Saclay, 91002, Evry, France
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
33
|
Schieferecke AJ, Lee H, Chen A, Kilaru V, Krish Williams J, Schaffer DV. Evolving membrane-associated accessory protein variants for improved adeno-associated virus production. Mol Ther 2024; 32:340-351. [PMID: 38115579 PMCID: PMC10861973 DOI: 10.1016/j.ymthe.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/14/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
Manufacturing sufficient adeno-associated virus (AAV) to meet current and projected clinical needs is a significant hurdle to the growing gene therapy industry. The recently discovered membrane-associated accessory protein (MAAP) is encoded by an alternative open reading frame in the AAV cap gene that is found in all presently reported natural serotypes. Recent evidence has emerged supporting a functional role of MAAP in AAV egress, although the underlying mechanisms of MAAP function remain unknown. Here, we show that inactivation of MAAP from AAV2 by a single point mutation that is silent in the VP1 open reading frame (ORF) (AAV2-ΔMAAP) decreased exosome-associated and secreted vector genome production. We hypothesized that novel MAAP variants could be evolved to increase AAV production and thus subjected a library encoding over 1 × 106 MAAP protein variants to five rounds of packaging selection into the AAV2-ΔMAAP capsid. Between each successive packaging round, we observed a progressive increase in both overall titer and ratio of secreted vector genomes conferred by the bulk-selected MAAP library population. Next-generation sequencing uncovered enriched mutational features, and a resulting selected MAAP variant containing missense mutations and a frameshifted C-terminal domain increased overall GFP transgene packaging in AAV2, AAV6, and AAV9 capsids.
Collapse
Affiliation(s)
- Adam J Schieferecke
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hyuncheol Lee
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Aleysha Chen
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vindhya Kilaru
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Justin Krish Williams
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David V Schaffer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
34
|
Mücke MM, Fong S, Foster GR, Lillicrap D, Miesbach W, Zeuzem S. Adeno-associated viruses for gene therapy - clinical implications and liver-related complications, a guide for hepatologists. J Hepatol 2024; 80:352-361. [PMID: 37890721 DOI: 10.1016/j.jhep.2023.10.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
Gene therapy has garnered increasing interest over recent decades. Several therapies employing gene transfer mechanisms have been developed, and, of these, adeno-associated virus (AAV) vectors have demonstrated viability for use with in vivo gene therapy. Several AAV-based therapeutics have received regulatory approval in the last few years including those for retinal disease, spinal muscular atrophy or aromatic L-amino acid decarboxylase deficiency. Lately, with the introduction of novel liver-directed AAV vector-based therapeutics for the treatment of haemophilia A and B, gene therapy has attracted significant attention in the hepatology community, with the liver increasingly recognised as a target for gene therapy. However, the introduction of foreign DNA into hepatocytes is associated with a risk of hepatic reactions, with raised ALT (alanine aminotransferase) and AST (aspartate aminotransferase) being - so far - the most commonly reported side effects. The complete mechanisms underlying the ALT flairs remain to be determined and the long-term risks associated with these new treatments is not yet known. The liver community is increasingly being asked to support liver-directed gene therapy to mitigate potential liver associated harm. In this review, we focus on AAV vector-based gene therapy, shedding light on this promising technique and its remarkable success in haemophilia, with a special focus on hepatic complications and their management in daily clinical practice.
Collapse
Affiliation(s)
- Marcus Maximilian Mücke
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Sylvia Fong
- Research and Early Development, BioMarin Pharmaceutical. Inc, San Rafael, United States
| | - Graham R Foster
- Barts Liver Centre, Blizard Institute, QMUL, London, United Kingdom.
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - Wolfgang Miesbach
- Department of Internal Medicine II, Haemostaseology and Haemophilia Centre, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Stefan Zeuzem
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
35
|
Dhungel BP, Winburn I, Pereira CDF, Huang K, Chhabra A, Rasko JEJ. Understanding AAV vector immunogenicity: from particle to patient. Theranostics 2024; 14:1260-1288. [PMID: 38323309 PMCID: PMC10845199 DOI: 10.7150/thno.89380] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024] Open
Abstract
Gene therapy holds promise for patients with inherited monogenic disorders, cancer, and rare genetic diseases. Naturally occurring adeno-associated virus (AAV) offers a well-suited vehicle for clinical gene transfer due to its lack of significant clinical pathogenicity and amenability to be engineered to deliver therapeutic transgenes in a variety of cell types for long-term sustained expression. AAV has been bioengineered to produce recombinant AAV (rAAV) vectors for many gene therapies that are approved or in late-stage development. However, ongoing challenges hamper wider use of rAAV vector-mediated therapies. These include immunity against rAAV vectors, limited transgene packaging capacity, sub-optimal tissue transduction, potential risks of insertional mutagenesis and vector shedding. This review focuses on aspects of immunity against rAAV, mediated by anti-AAV neutralizing antibodies (NAbs) arising after natural exposure to AAVs or after rAAV vector administration. We provide an in-depth analysis of factors determining AAV seroprevalence and examine clinical approaches to managing anti-AAV NAbs pre- and post-vector administration. Methodologies used to quantify anti-AAV NAb levels and strategies to overcome pre-existing AAV immunity are also discussed. The broad adoption of rAAV vector-mediated gene therapies will require wider clinical appreciation of their current limitations and further research to mitigate their impact.
Collapse
Affiliation(s)
- Bijay P. Dhungel
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, NSW, Australia
| | | | | | | | | | - John E. J. Rasko
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, NSW, Australia
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
36
|
Hadi M, Qutaiba B Allela O, Jabari M, Jasoor AM, Naderloo O, Yasamineh S, Gholizadeh O, Kalantari L. Recent advances in various adeno-associated viruses (AAVs) as gene therapy agents in hepatocellular carcinoma. Virol J 2024; 21:17. [PMID: 38216938 PMCID: PMC10785434 DOI: 10.1186/s12985-024-02286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024] Open
Abstract
Primary liver cancer, which is scientifically referred to as hepatocellular carcinoma (HCC), is a significant concern in the field of global health. It has been demonstrated that conventional chemotherapy, chemo-hormonal therapy, and conformal radiotherapy are ineffective against HCC. New therapeutic approaches are thus urgently required. Identifying single or multiple mutations in genes associated with invasion, metastasis, apoptosis, and growth regulation has resulted in a more comprehensive comprehension of the molecular genetic underpinnings of malignant transformation, tumor advancement, and host interaction. This enhanced comprehension has notably propelled the development of novel therapeutic agents. Therefore, gene therapy (GT) holds great promise for addressing the urgent need for innovative treatments in HCC. However, the complexity of HCC demands precise and effective therapeutic approaches. The adeno-associated virus (AAV) distinctive life cycle and ability to persistently infect dividing and nondividing cells have rendered it an alluring vector. Another appealing characteristic of the wild-type virus is its evident absence of pathogenicity. As a result, AAV, a vector that lacks an envelope and can be modified to transport DNA to specific cells, has garnered considerable interest in the scientific community, particularly in experimental therapeutic strategies that are still in the clinical stage. AAV vectors emerge as promising tools for HCC therapy due to their non-immunogenic nature, efficient cell entry, and prolonged gene expression. While AAV-mediated GT demonstrates promise across diverse diseases, the current absence of ongoing clinical trials targeting HCC underscores untapped potential in this context. Furthermore, gene transfer through hepatic AAV vectors is frequently facilitated by GT research, which has been propelled by several congenital anomalies affecting the liver. Notwithstanding the enthusiasm associated with this notion, recent discoveries that expose the integration of the AAV vector genome at double-strand breaks give rise to apprehensions regarding their enduring safety and effectiveness. This review explores the potential of AAV vectors as versatile tools for targeted GT in HCC. In summation, we encapsulate the multifaceted exploration of AAV vectors in HCC GT, underlining their transformative potential within the landscape of oncology and human health.
Collapse
Affiliation(s)
- Meead Hadi
- Department of Microbiology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Mansoureh Jabari
- Medical Campus, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Asna Mahyazadeh Jasoor
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Omid Naderloo
- Department of Laboratory Sciences, Faculty of Medicine, Islamic Azad University of Gorgan Breanch, Gorgan, Iran
| | | | | | - Leila Kalantari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
37
|
Baruteau J, Brunetti-Pierri N, Gissen P. Liver-directed gene therapy for inherited metabolic diseases. J Inherit Metab Dis 2024; 47:9-21. [PMID: 38171926 DOI: 10.1002/jimd.12709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Gene therapy clinical trials are rapidly expanding for inherited metabolic liver diseases whilst two gene therapy products have now been approved for liver based monogenic disorders. Liver-directed gene therapy has recently become an option for treatment of haemophilias and is likely to become one of the favoured therapeutic strategies for inherited metabolic liver diseases in the near future. In this review, we present the different gene therapy vectors and strategies for liver-targeting, including gene editing. We highlight the current development of viral and nonviral gene therapy for a number of inherited metabolic liver diseases including urea cycle defects, organic acidaemias, Crigler-Najjar disease, Wilson disease, glycogen storage disease Type Ia, phenylketonuria and maple syrup urine disease. We describe the main limitations and open questions for further gene therapy development: immunogenicity, inflammatory response, genotoxicity, gene therapy administration in a fibrotic liver. The follow-up of a constantly growing number of gene therapy treated patients allows better understanding of its benefits and limitations and provides strategies to design safer and more efficacious treatments. Undoubtedly, liver-targeting gene therapy offers a promising avenue for innovative therapies with an unprecedented potential to address the unmet needs of patients suffering from inherited metabolic diseases.
Collapse
Affiliation(s)
- Julien Baruteau
- Department of Paediatric Metabolic Medicine, Great Ormond Street Hospital for Children NHS Trust, London, UK
- University College London Great Ormond Street Institute of Child Health, London, UK
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London, UK
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medicine, Federico II University, Naples, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| | - Paul Gissen
- Department of Paediatric Metabolic Medicine, Great Ormond Street Hospital for Children NHS Trust, London, UK
- University College London Great Ormond Street Institute of Child Health, London, UK
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London, UK
| |
Collapse
|
38
|
Khan SU, Khan MU, Suleman M, Inam A, Din MAU. Hemophilia Healing with AAV: Navigating the Frontier of Gene Therapy. Curr Gene Ther 2024; 24:265-277. [PMID: 38284735 DOI: 10.2174/0115665232279893231228065540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/30/2024]
Abstract
Gene therapy for hemophilia has advanced tremendously after thirty years of continual study and development. Advancements in medical science have facilitated attaining normal levels of Factor VIII (FVIII) or Factor IX (FIX) in individuals with haemophilia, thereby offering the potential for their complete recovery. Despite the notable advancements in various countries, there is significant scope for further enhancement in haemophilia gene therapy. Adeno-associated virus (AAV) currently serves as the primary vehicle for gene therapy in clinical trials targeting haemophilia. Subsequent investigations will prioritize enhancing viral capsid structures, transgene compositions, and promoters to achieve heightened transduction efficacy, diminished immunogenicity, and more predictable therapeutic results. The present study indicates that whereas animal models have transduction efficiency that is over 100% high, human hepatocytes are unable to express clotting factors and transduction efficiency to comparable levels. According to the current study, achieving high transduction efficiency and high levels of clotting factor expression in human hepatocytes is still insufficient. It is also crucial to reduce the risk of cellular stress caused by protein overload. Despite encountering various hurdles, the field of haemophilia gene therapy holds promise for the future. As technology continues to advance and mature, it is anticipated that a personalized therapeutic approach will be developed to cure haemophilia effectively.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Muhammad Suleman
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Amrah Inam
- School of Life Science and Technology, Institute of Biomedical Engineering and Bioinformatics, Xi'an Jiaotong University, Xi'an, China
| | - Muhammad Azhar Ud Din
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, P.R. China
| |
Collapse
|
39
|
Jacobs R, Dogbey MD, Mnyandu N, Neves K, Barth S, Arbuthnot P, Maepa MB. AAV Immunotoxicity: Implications in Anti-HBV Gene Therapy. Microorganisms 2023; 11:2985. [PMID: 38138129 PMCID: PMC10745739 DOI: 10.3390/microorganisms11122985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Hepatitis B virus (HBV) has afflicted humankind for decades and there is still no treatment that can clear the infection. The development of recombinant adeno-associated virus (rAAV)-based gene therapy for HBV infection has become important in recent years and research has made exciting leaps. Initial studies, mainly using mouse models, showed that rAAVs are non-toxic and induce minimal immune responses. However, several later studies demonstrated rAAV toxicity, which is inextricably associated with immunogenicity. This is a major setback for the progression of rAAV-based therapies toward clinical application. Research aimed at understanding the mechanisms behind rAAV immunity and toxicity has contributed significantly to the inception of approaches to overcoming these challenges. The target tissue, the features of the vector, and the vector dose are some of the determinants of AAV toxicity, with the latter being associated with the most severe adverse events. This review discusses our current understanding of rAAV immunogenicity, toxicity, and approaches to overcoming these hurdles. How this information and current knowledge about HBV biology and immunity can be harnessed in the efforts to design safe and effective anti-HBV rAAVs is discussed.
Collapse
Affiliation(s)
- Ridhwaanah Jacobs
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Makafui Dennis Dogbey
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa; (M.D.D.)
| | - Njabulo Mnyandu
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Keila Neves
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa; (M.D.D.)
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Mohube Betty Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| |
Collapse
|
40
|
Lisjak M, Iaconcig A, Guarnaccia C, Vicidomini A, Moretti L, Collaud F, Ronzitti G, Zentilin L, Muro AF. Lethality rescue and long-term amelioration of a citrullinemia type I mouse model by neonatal gene-targeting combined to SaCRISPR-Cas9. Mol Ther Methods Clin Dev 2023; 31:101103. [PMID: 37744006 PMCID: PMC10514469 DOI: 10.1016/j.omtm.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]
Abstract
Citrullinemia type I is a rare autosomal-recessive disorder caused by deficiency of argininosuccinate synthetase (ASS1). The clinical presentation includes the acute neonatal form, characterized by ammonia and citrulline accumulation in blood, which may lead to encephalopathy, coma, and death, and the milder late-onset form. Current treatments are unsatisfactory, and the only curative treatment is liver transplantation. We permanently modified the hepatocyte genome in lethal citrullinemia mice (Ass1fold/fold) by inserting the ASS1 cDNA into the albumin locus through the delivery of two AAV8 vectors carrying the donor DNA and the CRISPR-Cas9 platform. The neonatal treatment completely rescued mortality ensuring survival up to 5 months of age, with plasma citrulline levels significantly decreased, while plasma ammonia levels remained unchanged. In contrast, neonatal treatment with a liver-directed non-integrative AAV8-AAT-hASS1 vector failed to improve disease parameters. To model late-onset citrullinemia, we dosed postnatal day (P) 30 juvenile animals using the integrative approach, resulting in lifespan improvement and a minor reduction in disease markers. Conversely, treatment with the non-integrative vector completely rescued mortality, reducing plasma ammonia and citrulline to wild-type values. In summary, the integrative approach in neonates is effective, although further improvements are required to fully correct the phenotype. Non-integrative gene therapy application to juvenile mice ensures a stable and very efficient therapeutic effect.
Collapse
Affiliation(s)
- Michela Lisjak
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Alessandra Iaconcig
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Corrado Guarnaccia
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Antonio Vicidomini
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Laura Moretti
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Fanny Collaud
- Généthon, 91000 Évry, France
- Université Paris-Saclay, Université d’Évry, Inserm, Généthon, Integrare Research Unit UMR_S951, 91000 Évry, France
| | - Giuseppe Ronzitti
- Généthon, 91000 Évry, France
- Université Paris-Saclay, Université d’Évry, Inserm, Généthon, Integrare Research Unit UMR_S951, 91000 Évry, France
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Andrés F. Muro
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| |
Collapse
|
41
|
Notarte KI, Catahay JA, Macasaet R, Liu J, Velasco JV, Peligro PJ, Vallo J, Goldrich N, Lahoti L, Zhou J, Henry BM. Infusion reactions to adeno-associated virus (AAV)-based gene therapy: Mechanisms, diagnostics, treatment and review of the literature. J Med Virol 2023; 95:e29305. [PMID: 38116715 DOI: 10.1002/jmv.29305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
The use of adeno-associated virus (AAV) vectors in gene therapy has demonstrated great potential in treating genetic disorders. However, infusion-associated reactions (IARs) pose a significant challenge to the safety and efficacy of AAV-based gene therapy. This review provides a comprehensive summary of the current understanding of IARs to AAV therapy, including their underlying mechanisms, clinical presentation, and treatment options. Toll-like receptor activation and subsequent production of pro-inflammatory cytokines are associated with IARs, stimulating neutralizing antibodies (Nabs) and T-cell responses that interfere with gene therapy. Risk factors for IARs include high titers of pre-existing Nabs, previous exposure to AAV, and specific comorbidities. Clinical presentation ranges from mild flu-like symptoms to severe anaphylaxis and can occur during or after AAV administration. There are no established guidelines for pre- and postadministration tests for AAV therapies, and routine laboratory requests are not standardized. Treatment options include corticosteroids, plasmapheresis, and supportive medications such as antihistamines and acetaminophen, but there is no consensus on the route of administration, dosage, and duration. This review highlights the inadequacy of current treatment regimens for IARs and the need for further research to improve the safety and efficacy of AAV-based gene therapy.
Collapse
Affiliation(s)
- Kin Israel Notarte
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jesus Alfonso Catahay
- Department of Medicine, Saint Peter's University Hospital, New Brunswick, New Jersey, USA
| | - Raymart Macasaet
- Department of Medicine, Monmouth Medical Center, Long Branch, New Jersey, USA
| | - Jin Liu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Jolaine Vallo
- Faculty of Medicine and Surgery, University of Santo Tomas, Manila, Philippines
| | | | - Lokesh Lahoti
- Department of Medicine, Saint Peter's University Hospital, New Brunswick, New Jersey, USA
| | - Jiayan Zhou
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Brandon Michael Henry
- Clinical Laboratory, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
42
|
Brunet de Courssou JB, Deiva K. Les thérapies géniques en neurologie. PRATIQUE NEUROLOGIQUE - FMC 2023; 14:208-224. [DOI: 10.1016/j.praneu.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
43
|
Gardin A, Ronzitti G. Current limitations of gene therapy for rare pediatric diseases: Lessons learned from clinical experience with AAV vectors. Arch Pediatr 2023; 30:8S46-8S52. [PMID: 38043983 DOI: 10.1016/s0929-693x(23)00227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Gene therapy using adeno-associated viral (AAV) vectors is a promising therapeutic strategy for multiple inherited diseases. Following intravenous injection, AAV vectors carrying a copy of the missing gene or the genome-editing machinery reach their target cells and deliver the genetic material. Several clinical trials are currently ongoing and significant success has already been achieved with at least six AAV gene therapy products with market approval in Europe and the United States. Nonetheless, clinical trials and preclinical studies have uncovered several limitations of AAV gene transfer, which need to be addressed in order to improve the safety and enable the treatment of the largest patient population. Limitations include the occurrence of immune-mediated toxicities, the potential loss of correction in the long run, and the development of neutralizing antibodies against AAV vectors preventing re-administration. In this review, we summarize these limitations and discuss the potential technological developments to overcome them. © 2023 Published by Elsevier Masson SAS on behalf of French Society of Pediatrics.
Collapse
Affiliation(s)
- Antoine Gardin
- Genethon, 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, 91000 Evry, France; Hépatologie et Transplantation Hépatique Pédiatriques, Centre de référence de l'atrésie des voies biliaires et des cholestases génétiques, FSMR FILFOIE, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Hôpital Bicêtre, AP-HP, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Giuseppe Ronzitti
- Genethon, 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, 91000 Evry, France.
| |
Collapse
|
44
|
Ilyinskii PO, Roy C, Michaud A, Rizzo G, Capela T, Leung SS, Kishimoto TK. Readministration of high-dose adeno-associated virus gene therapy vectors enabled by ImmTOR nanoparticles combined with B cell-targeted agents. PNAS NEXUS 2023; 2:pgad394. [PMID: 38024395 PMCID: PMC10673641 DOI: 10.1093/pnasnexus/pgad394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Tolerogenic ImmTOR nanoparticles encapsulating rapamycin have been demonstrated to mitigate immunogenicity of adeno-associated virus (AAV) gene therapy vectors, enhance levels of transgene expression, and enable redosing of AAV at moderate vector doses of 2 to 5E12 vg/kg. However, recent clinical trials have often pushed AAV vector doses 10-fold to 50-fold higher, with serious adverse events observed at the upper range. Here, we assessed combination therapy of ImmTOR with B cell-targeting drugs for the ability to increase the efficiency of redosing at high vector doses. The combination of ImmTOR with a monoclonal antibody against B cell activation factor (aBAFF) exhibited strong synergy leading to more than a 5-fold to 10-fold reduction of splenic mature B cells and plasmablasts while increasing the fraction of pre-/pro-B cells. In addition, this combination dramatically reduced anti-AAV IgM and IgG antibodies, thus enabling four successive AAV administrations at doses up to 5E12 vg/kg and at least two AAV doses at 5E13 vg/kg, with the transgene expression level in the latter case being equal to that observed in control animals receiving a single vector dose of 1E14 vg/kg. Similar synergistic effects were seen with a combination of ImmTOR and a Bruton's tyrosine kinase inhibitor, ibrutinib. These results suggest that ImmTOR could be combined with B cell-targeting agents to enable repeated vector administrations as a potential strategy to avoid toxicities associated with vector doses above 1E14 vg/kg.
Collapse
Affiliation(s)
| | | | | | - Gina Rizzo
- Selecta Biosciences, Watertown, MA 02472, USA
| | | | | | | |
Collapse
|
45
|
Chou SC, Hsu YC, Lin SW. Gene therapy for hemophilia, a clinical viewpoint. J Formos Med Assoc 2023; 122:1101-1110. [PMID: 37210312 DOI: 10.1016/j.jfma.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/07/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023] Open
Abstract
Gene therapy for hemophilia has been investigated for decades but no breakthroughs were made until Nathwani et al. achieved a significant and sustainable factor IX increase in hemophilia B patients in 2011. About eleven years later, in August 2022, the first hemophilia A gene therapy product was approved by the European Commission and hemophilia treatment entered a new era. This review does not focus on the newest advances but rather the practical aspects of gene therapy aiming to provide an overview for physicians who treat hemophiliacs who did not participate in the clinical trials. The current status of gene therapy, focusing particularly on products likely to be clinically available soon, are reviewed and summarized. Currently, possible limitations of gene therapy are pre-existing neutralizing antibodies toward the vector, liver health, age, and inhibitor status. Possible safety concerns include infusion reactions, liver damage, and adverse effects from immune suppressants or steroids. In summary, generally speaking, gene therapy is effective, at least for several years, but the exact effect may be unpredictable and intensive monitoring for several months is needed. It can also be considered safe with careful practice on selected patients. In its current form, gene therapy will not replace all hemophilia treatments. Advances in non-factor therapy will also improve hemophilia care greatly in the future. We envisage that gene therapy may be included in multiple novel therapies for hemophilia and benefit some hemophilia patients while novel non-factor therapies may benefit others, together fulfilling the unmet needs of all hemophilia patients.
Collapse
Affiliation(s)
- Sheng-Chieh Chou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Chen Hsu
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Liver Disease Prevention and Treatment Research Foundation, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
46
|
Di Minno G, Spadarella G, Maldonato NM, De Lucia N, Castaman G, De Cristofaro R, Santoro C, Peyvandi F, Borrelli A, Lupi A, Follino M, Guerrino G, Morisco F, Di Minno M. Awareness of individual goals, preferences, and priorities of persons with severe congenital haemophilia A for a tailored shared decision-making approach to liver-directed gene therapy. A practical guideline. Blood Rev 2023; 62:101118. [PMID: 37544828 DOI: 10.1016/j.blre.2023.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/08/2023]
Abstract
In clinical medicine, shared decision making (SDM) is a well-recognized strategy to enhance engagement of both patients and clinicians in medical decisions. The success of liver-directed gene therapy (GT) to transform severe congenital haemophilia A (HA) from an incurable to a curable disease has launched a shift beyond current standards of treatment. However, GT acceptance remains low in the community of HA persons. We argue for both persons with haemophilia (PWH) and specialists in HA care including clinicians, as needing SDM-oriented educational programs devoted to GT. Here, we provide an ad hoc outline to implement education to SDM and tailor clinician information on GT to individual PWHs. Based on routine key components of SDM: patient priorities; recommendations based on individual risk reduction; adverse effects; drug-drug interactions; alternatives to GT; and ongoing re-assessment of the objectives as risk factors (and individual priorities) change, this approach is finalized to exploit efficacious communication.
Collapse
Affiliation(s)
| | - Gaia Spadarella
- Dipartimento di Scienze Mediche Traslazionali, Naples, Italy.
| | - Nelson Mauro Maldonato
- Dipartimento di Neuroscienze e di Scienze Riproduttive e Odontostomatologiche, "Federico II" University, Naples, Italy
| | - Natascia De Lucia
- Dipartimento di Neuroscienze e di Scienze Riproduttive e Odontostomatologiche, "Federico II" University, Naples, Italy.
| | - Giancarlo Castaman
- Center for Bleeding Disorders and Coagulation, Careggi University Hospital, Florence, Italy.
| | - Raimondo De Cristofaro
- Section of Haemorrhagic and Thrombotic Diseases, Department of Medicine and Translational Surgery, Sacred Heart University, Rome, Italy..
| | - Cristina Santoro
- Ematologia, Azienda Ospedaliero-Universitaria Policlinico Umberto I, Rome, Italy.
| | - Flora Peyvandi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, 20122 Milan, Italy; Università degli Studi di Milano, Department of Pathophysiology and Transplantation, Milan, Italy.
| | - Anna Borrelli
- Direzione Sanitaria, AOU "Federico II" Napoli, Italy
| | - Angelo Lupi
- Federazione delle Associazioni Emofilici (FedEmo), Milan, Italy.
| | | | | | | | - Matteo Di Minno
- Dipartimento di Medicina Clinica e Chirurgia, Naples, Italy.
| |
Collapse
|
47
|
Oh N, Tarte NH. Subcellular distribution of the rAAV genome depends on genome structure. Sci Rep 2023; 13:17325. [PMID: 37833341 PMCID: PMC10575858 DOI: 10.1038/s41598-023-44074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Many studies have been conducted on the transduction efficiency of recombinant adeno-associated virus (rAAV) depending on the serotype and genome structure, such as single-stranded (ss) and self-complementary (sc). To understand the variation in therapeutic efficacy, we focused on investigating subcellular distribution of viral genome depending on rAAV genome structure. It is critical to ascertain the location of the virus within the host cell after the entry because a larger amount of the viral genome placed in the nucleus facilitates viral genome replication by utilizing the host cell's system, thereby enhancing the therapeutic outcome. In this sense, tracking the location of the virus within the host cell's organelles can inform a new strategy to improve therapeutic efficacy. Therefore, we attempted to stain only the viral genome with APEX2 and DAB chemicals specifically, and the distribution of the viral genome was examined by transmission electron microscopy (TEM). Consequently, when the two types of rAAV were transduced for 6 h, scAAV2 tended to be more located in the lysosome and nucleus compared to ssAAV2.
Collapse
Affiliation(s)
- Nuri Oh
- Department of Chemistry and Biology, Korea Science Academy of KAIST, Busan, 47162, Republic of Korea.
| | - Naresh H Tarte
- Department of Chemistry and Biology, Korea Science Academy of KAIST, Busan, 47162, Republic of Korea
| |
Collapse
|
48
|
von Drygalski A, Gomez E, Giermasz A, Castaman G, Key NS, Lattimore SU, Leebeek FWG, Miesbach WA, Recht M, Gut R, Dolmetsch R, Monahan PE, Le Quellec S, Pipe SW. Stable and durable factor IX levels in patients with hemophilia B over 3 years after etranacogene dezaparvovec gene therapy. Blood Adv 2023; 7:5671-5679. [PMID: 36490302 PMCID: PMC10539871 DOI: 10.1182/bloodadvances.2022008886] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/10/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Etranacogene dezaparvovec (AMT-061) is a recombinant adeno-associated virus serotype 5 (AAV5) vector containing a codon-optimized Padua variant human factor IX (FIX) transgene with a liver-specific promoter. Here, we report 3-year outcomes from a phase 2b, open-label, single-dose, single-arm, multicenter trial conducted among adults with severe or moderately severe hemophilia B (FIX ≤2%). All participants (n = 3) received a single intravenous dose (2 × 1013 gene copies per kg) and will be followed up for 5 years. The primary end point of FIX activity ≥5% at 6 weeks was met. Secondary end points included bleed frequency, FIX concentrate use, joint health, and adverse events (AEs). All participants required routine FIX prophylaxis and had neutralizing antibodies to AAV5 before etranacogene dezaparvovec treatment. After administration, FIX activity rose to a mean of 40.8% in year 1 and was sustained in year 3 at 36.9%. All participants discontinued FIX prophylaxis. Bleeding was completely eliminated in 2 out of 3 participants. One participant required on-demand FIX replacement therapy per protocol because of elective surgical procedures, for 2 reported bleeding episodes, and twice for a single self-administered infusion because of an unreported reason. One participant experienced 2 mild, self-limiting AEs shortly after dosing. During the 3-year study period, there were no clinically significant elevations in liver enzymes, no requirement for steroids, no FIX inhibitor development, and no late-emergent safety events in any participant. Etranacogene dezaparvovec was safe and effective in adults with hemophilia B over 3 years after administration. This trial was registered at www.clinicaltrials.gov as #NCT03489291.
Collapse
Affiliation(s)
- Annette von Drygalski
- Division of Hematology/Oncology, Department of Medicine, University of California San Diego, San Diego, CA
| | | | - Adam Giermasz
- Division of Hematology/Oncology, Department of Medicine, Hemophilia Treatment Center, University of California Davis, Sacramento, CA
| | - Giancarlo Castaman
- Center for Bleeding Disorders, Department of Oncology, Careggi University Hospital, Florence, Italy
| | - Nigel S. Key
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina, Chapel Hill, NC
| | | | - Frank W. G. Leebeek
- Department of Hematology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Wolfgang A. Miesbach
- Department of Hemostaseology and Hemophilia Center, Medical Clinic 2, Institute of Transfusion Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Michael Recht
- American Thrombosis and Hemostasis Network, Rochester, NY
- Hemophilia Treatment Center, Yale University School of Medicine, New Haven, CT
| | | | | | | | | | - Steven W. Pipe
- Departments of Pediatrics and Pathology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
49
|
Li L, Vasan L, Kartono B, Clifford K, Attarpour A, Sharma R, Mandrozos M, Kim A, Zhao W, Belotserkovsky A, Verkuyl C, Schmitt-Ulms G. Advances in Recombinant Adeno-Associated Virus Vectors for Neurodegenerative Diseases. Biomedicines 2023; 11:2725. [PMID: 37893099 PMCID: PMC10603849 DOI: 10.3390/biomedicines11102725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors are gene therapy delivery tools that offer a promising platform for the treatment of neurodegenerative diseases. Keeping up with developments in this fast-moving area of research is a challenge. This review was thus written with the intention to introduce this field of study to those who are new to it and direct others who are struggling to stay abreast of the literature towards notable recent studies. In ten sections, we briefly highlight early milestones within this field and its first clinical success stories. We showcase current clinical trials, which focus on gene replacement, gene augmentation, or gene suppression strategies. Next, we discuss ongoing efforts to improve the tropism of rAAV vectors for brain applications and introduce pre-clinical research directed toward harnessing rAAV vectors for gene editing applications. Subsequently, we present common genetic elements coded by the single-stranded DNA of rAAV vectors, their so-called payloads. Our focus is on recent advances that are bound to increase treatment efficacies. As needed, we included studies outside the neurodegenerative disease field that showcased improved pre-clinical designs of all-in-one rAAV vectors for gene editing applications. Finally, we discuss risks associated with off-target effects and inadvertent immunogenicity that these technologies harbor as well as the mitigation strategies available to date to make their application safer.
Collapse
Affiliation(s)
- Leyao Li
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
| | - Lakshmy Vasan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Bryan Kartono
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Kevan Clifford
- Institute of Medical Science, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Centre for Addiction and Mental Health (CAMH), 250 College St., Toronto, ON M5T 1R8, Canada
| | - Ahmadreza Attarpour
- Department of Medical Biophysics, University of Toronto, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Raghav Sharma
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Matthew Mandrozos
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Ain Kim
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Ari Belotserkovsky
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Claire Verkuyl
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
50
|
Schmidt M, Foster GR, Coppens M, Thomsen H, Dolmetsch R, Heijink L, Monahan PE, Pipe SW. Molecular evaluation and vector integration analysis of HCC complicating AAV gene therapy for hemophilia B. Blood Adv 2023; 7:4966-4969. [PMID: 37352263 PMCID: PMC10463188 DOI: 10.1182/bloodadvances.2023009876] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/23/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023] Open
Affiliation(s)
| | - Graham R. Foster
- Barts Liver Centre, Queen Mary University of London, London, United Kingdom
| | - Michiel Coppens
- Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension & Thrombosis, Amsterdam, The Netherlands
| | | | | | | | | | - Steven W. Pipe
- Departments of Pediatrics and Pathology, University of Michigan, Ann Arbor, MI
| |
Collapse
|