1
|
Zhu C, Ke X, Gu Y, Wang C, Lin S, Qian Y, Cheng J, Chen Y, Xu L, Chen Z. Antimicrobial properties and preservation potential of Allium sativum L-derived extracellular vesicle-like particles for food applications. Food Chem 2025; 484:144419. [PMID: 40267679 DOI: 10.1016/j.foodchem.2025.144419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
This study proposes an innovative approach to food preservation by leveraging extracellular vesicle-like particles derived from Garlic (ASL-EVLPs) as a natural and effective preservation agent. To address the limitations of chemical preservatives and sensory drawbacks of garlic, we systematically investigated the antibacterial mechanisms, stability, and sensory impact of ASL-EVLPs. The isolated ASL-EVLPs exhibited notable stability and biocompatibility. Antibacterial evaluations demonstrated significant inhibition of Escherichia coli (ATCC 25922) and Staphylococcus aureus (CMCC(B) 26003) through membrane disruption mechanisms. ASL-EVLPs effectively delayed spoilage and preserved sensory attributes in carrot juice, with in vivo safety confirmed. These findings position ASL-EVLPs as a dual-functional alternative, overcoming both microbial and sensory challenges in food preservation.
Collapse
Affiliation(s)
- Chenqi Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China; Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Xiaoxiao Ke
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yi Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China; Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Chunmeng Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shangyang Lin
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China; Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Yijie Qian
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China; Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Jiale Cheng
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China; Gusu School, Nanjing Medical University, Suzhou 215002, China; Linzhou County People's Hospital, Lhasa 851600, China
| | - Yan Chen
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China; Gusu School, Nanjing Medical University, Suzhou 215002, China.
| | - Liu Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhipeng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2
|
Lo HR, Yan CH, Yan Y, Lo CC. Dimercaptosuccinic acid with membrane-targeting activity against Pseudomonas aeruginosa. Microb Pathog 2025; 204:107550. [PMID: 40194609 DOI: 10.1016/j.micpath.2025.107550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/07/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
BACKGROUND Multidrug resistant (MDR) gram-negative bacteria (GNB) are a serious health threat. GNB require divalent cations for the integrity of their outer membrane (OM), which can be inhibited by dimercaptosuccinic acid (DMSA), a sulfhydryl-containing metal chelator that has been used as an antidote to heavy metal toxicity. We aim to investigatethe effects and mechanisms of action of DMSA on Pseudomonas aeruginosa. MAIN METHODS The inhibition of P. aeruginosa strains by DMSA was determined using growth kinetics analysis. Biofilm formation was evaluated using crystal violet staining after incubation for 24 h. We determined the bacterial OM permeability and cell membrane potential using propidium iodide (PI) and bis-(1,3-dibutylbarbituric acid) trimethineoxonol (DiBAC4(3)) staining, respectively, following DMSA exposure. The bioenergetics-related activity of DMSA-treated bacteria was assessed by determining intracellular ATP levels, bacterial motility and N-phenyl-naphtylamide (NPN) efflux assay. RESULTS DMSA inhibited the growth of bacteria in a concentration-dependent manner and repressed biofilm formation by P. aeruginosa. DMSA-treated bacteria exhibited increased PI uptake and enhanced DiBAC4(3) fluorescence intensity compared with untreated cells. Treatment of P. aeruginosa with DMSA reduced the intracellular ATP levels, bacterial motility, and efflux activity in the tested cells. SIGNIFICANCE The antibacterial mechanisms of DMSA may be related to alterations in OM permeability, membrane depolarization, and impaired bioenergetics-related activity, which are essential for bacterial viability and infection.
Collapse
Affiliation(s)
- Horng-Ren Lo
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung, Taiwan.
| | - Cian-Hui Yan
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Ya Yan
- Department of Laboratory Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
| | - Chung-Cheng Lo
- Department of Internal Medicine, Pingtung Veterans General Hospital Longquan Branch, Pingtung, Taiwan
| |
Collapse
|
3
|
Sarkar T, Rajalakshmi VS, K R R, Thummer RP, Chatterjee S. Serum-Stable, Cationic, α-Helical AMPs to Combat Infections of ESKAPE Pathogens and C. albicans. ACS APPLIED BIO MATERIALS 2025; 8:3941-3957. [PMID: 40305093 DOI: 10.1021/acsabm.5c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Expedition in the rate of development of antimicrobial resistance accompanied by the slowdown in the development of new antimicrobials has led to a dire necessity to develop an alternate class of antimicrobial agents. Antimicrobial peptides (AMPs), available in nature, are effective molecules that can combat microbial infections. However, due to several inherent shortcomings such as salt sensitivity of their potency, short systemic half-lives owing to protease and serum degradation, and cytotoxicity, their commercial success is limited. Inspired by α helical AMPs present in nature, here in this work, we have developed two short, cationic, helical AMPs RR-12 and FL-13. Both peptides exhibited high broad-spectrum antimicrobial activity, salt tolerance, prompt bactericidal activity, considerable serum stability, remaining non-cytotoxic and non-hemolytic at relevant microbicidal concentrations. The designed AMPs were membranolytic toward the microbial strains, though there were subtle differences in the mechanism owing to the variation in the composition of the cell membranes in different microbes. Rigorous experimental techniques and molecular dynamics (MD) simulations were performed to understand the structure, activity, and their mechanisms in detail. Positive charge, balanced hydrophobicity-hydrophilicity, and helical conformation were the different attributes that led to the development of the superior performance of the AMPs, making them valuable additions to the repertoire of therapeutically promising antimicrobials.
Collapse
Affiliation(s)
- Tanumoy Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam-781039, India
| | | | - Ronima K R
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam-781039, India
| | - Rajkumar P Thummer
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam-781039, India
| | - Sunanda Chatterjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam-781039, India
| |
Collapse
|
4
|
Huang LZY, Truong VK, Murdoch BJ, Elbourne A, Caruso RA. Inherent variation in surface roughness of Selective Laser Melting (SLM) printed titanium caused by build angle changes the mechanomicrobiocidal effectiveness of nanostructures. J Colloid Interface Sci 2025; 696:137866. [PMID: 40373429 DOI: 10.1016/j.jcis.2025.137866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 05/08/2025] [Accepted: 05/10/2025] [Indexed: 05/17/2025]
Abstract
Additively manufactured titanium implant materials are rapidly advancing prosthetics and orthopaedic devices by making them more cost-effective and customisable. However, the surface finish of materials printed via Selective Laser Melting (SLM) currently limits their integration into the medical device field. Printing parameters, such as build angle inclination, can cause variations in the surface roughness of a part, often exceeding what is suitable for implant materials. Excessive roughness can promote microbial attachment and proliferation, potentially leading to implant rejection. Nanostructuring titanium has previously demonstrated success in mitigating bacteria and fungi via a mechanomicrobiocial mechanism on traditionally flat titanium and complex SLM-made parts but its effectiveness on the inherent roughness of three-dimensional (3D) printed titanium remains unexplored. This study examines the surface roughness of 3D-Ti at three build angles (0, 40 and 90 degrees), before and after nanostructuring. Surfaces were assessed against methicillin-resistant Staphylococcus aureus (MRSA) and Candida albicans, representative antimicrobial resistant pathogens. Results showed the nanostructures were more effective against MRSA, but microbial attachment increase with steeper angles, regardless of the presence of nanostructures. This study investigates how surface roughness of 3D printed titanium substrates impacts bacterial and fungal adhesion and the resulting nanomorphology of the surface post-hydrothermal modification.
Collapse
Affiliation(s)
- Louisa Z Y Huang
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Vi Khanh Truong
- Healthcare Engineering Innovation Group, Department of Biomedical Engineering & Biotechnology, College of Medicine and Health Science, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Billy J Murdoch
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Aaron Elbourne
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Rachel A Caruso
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
5
|
FitzGerald L, Sutton AL, Doherty CM. Encapsulation of a Probiotic Bacterial Strain in a Biocompatible Iron(III) Fumarate Matrix. ACS APPLIED BIO MATERIALS 2025; 8:2765-2770. [PMID: 40164131 PMCID: PMC12015948 DOI: 10.1021/acsabm.4c01398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
The encapsulation of bacteria in metal-organic frameworks (MOFs) is being studied for use in biomedicine and bioremediation. However, biocompatibility could be improved, as much of the research focuses on ZIF-8 and Escherichia coli. MIL-88A, composed of fumaric acid and iron, offers a safer alternative. This study investigates encapsulation of the probiotic strain Lactiplantibacillus plantarum 299v in a nanocrystalline matrix via a simple one-pot synthesis. The encapsulated bacteria show improved stability in saline, lysozyme and pepsin compared to uncoated cells. These findings highlight the potential of the iron(III) fumarate matrix for bacterial protection and controlled release for biological applications.
Collapse
|
6
|
Park J, Ke W, Kaage A, Feigin CY, Griffing AH, Pritykin Y, Donia MS, Mallarino R. Cathelicidin antimicrobial peptides mediate immune protection in marsupial neonates. SCIENCE ADVANCES 2025; 11:eads6359. [PMID: 40238884 PMCID: PMC12002115 DOI: 10.1126/sciadv.ads6359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/12/2025] [Indexed: 04/18/2025]
Abstract
Marsupial neonates are born with immature immune systems, making them vulnerable to pathogens. While neonates receive maternal protection, they can also independently combat pathogens, although the mechanisms remain unknown. Using the sugar glider (Petaurus breviceps) as a model, we investigated immunological defense strategies of marsupial neonates. Cathelicidins-a family of antimicrobial peptides expanded in the genomes of marsupials-are highly expressed in developing neutrophils. Sugar glider cathelicidins reside in two genomic clusters, and their coordinated expression is achieved by enhancer sharing within clusters and long-range physical interactions between clusters. Functionally, cathelicidins modulate immune responses and have potent antibacterial effects, sufficient to provide protection in a mouse model of sepsis. Evolutionarily, cathelicidins have a complex history, with marsupials and monotremes uniquely retaining both clusters among tetrapods. Thus, cathelicidins are critical mediators of marsupial immunity, and their evolution may reflect the life history-specific immunological needs of these animals.
Collapse
Affiliation(s)
- Jongbeom Park
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Wenfan Ke
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Aellah Kaage
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Charles Y. Feigin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Aaron H. Griffing
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Yuri Pritykin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
- Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
| | - Mohamed S. Donia
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ricardo Mallarino
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
7
|
Kaczmarczyk O, Augustyniak D, Żak A. Imaging of Hydrated and Living Cells in Transmission Electron Microscope: Summary, Challenges, and Perspectives. ACS NANO 2025; 19:12710-12733. [PMID: 40156542 PMCID: PMC11984313 DOI: 10.1021/acsnano.5c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/01/2025]
Abstract
Transmission electron microscopy (TEM) is well-known for performing in situ studies in the nanoscale. Hence, scientists took this opportunity to explore the subtle processes occurring in living organisms. Nevertheless, such observations are complex─they require delicate samples kept in the liquid phase, low electron dose, and proper cell viability verification methods. Despite being highly demanding, so-called "live-cell" experiments have seen some degree of success. The presented review consists of an exhaustive literature review on reported "live-cell" studies and associated subjects, including liquid phase imaging, electron radiation interactions with liquids, and methods for cell viability testing. The challenges of modern, reliable research on living organisms are widely explained and discussed, and future perspectives for developing these techniques are presented.
Collapse
Affiliation(s)
- Olga Kaczmarczyk
- Institute
of Advanced Materials, Wroclaw University
of Science and Technology, 50-370 Wroclaw, Poland
| | - Daria Augustyniak
- Department
of Pathogen Biology and Immunology, Faculty of Biological Sciences, University of Wroclaw, 51-148 Wroclaw, Poland
| | - Andrzej Żak
- Institute
of Advanced Materials, Wroclaw University
of Science and Technology, 50-370 Wroclaw, Poland
- Department
of Material Science and Engineering, Massachusetts
Institute of Science and Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Amann V, Kissmann AK, Firacative C, Rosenau F. Biofilm-Associated Candidiasis: Pathogenesis, Prevalence, Challenges and Therapeutic Options. Pharmaceuticals (Basel) 2025; 18:460. [PMID: 40283897 PMCID: PMC12030374 DOI: 10.3390/ph18040460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/11/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
The rising prevalence of fungal infections, especially those caused by Candida species, presents a major risk to global health. With approximately 1.5 million deaths annually, the urgency for effective treatment options has never been greater. Candida spp. are the leading cause of invasive infections, significantly impacting immunocompromised patients and those in healthcare settings. C. albicans, C. parapsilosis and the emerging species C. auris are categorized as highly dangerous species because of their pathogenic potential and increasing drug resistance. This review comparatively describes the formation of microbial biofilms of both bacterial and fungal origin, including major pathogens, thereby creating a novel focus. Biofilms can further complicate treatment, as these structures provide enhanced resistance to antifungal therapies. Traditional antifungal agents, including polyenes, azoles and echinocandins, have shown effectiveness, yet resistance development continues to rise, necessitating the exploration of novel therapeutic approaches. Antimicrobial peptides (AMPs) such as the anti-biofilm peptides Pom-1 and Cm-p5 originally isolated from snails represent promising candidates due to their unique mechanisms of action and neglectable cytotoxicity. This review article discusses the challenges posed by Candida infections, the characteristics of important species, the role of biofilms in virulence and the potential of new therapeutic options like AMPs.
Collapse
Affiliation(s)
- Valerie Amann
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany; (V.A.); (A.-K.K.)
| | - Ann-Kathrin Kissmann
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany; (V.A.); (A.-K.K.)
| | - Carolina Firacative
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogota 111221, Colombia;
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany; (V.A.); (A.-K.K.)
| |
Collapse
|
9
|
Gatta E, Abd El E, Brunoldi M, Irfan M, Isolabella T, Massabò D, Parodi F, Prati P, Vernocchi V, Mazzei F. Viability studies of bacterial strains exposed to nitrogen oxides and light in controlled atmospheric conditions. Sci Rep 2025; 15:10320. [PMID: 40133562 PMCID: PMC11937341 DOI: 10.1038/s41598-025-94898-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
Airborne biological particles, such as pollen, fungi, bacteria, viruses, and plant or animal detritus, are known as bioaerosols. Understanding bioaerosols' behavior, especially their reaction to pollutants and atmospheric conditions, is crucial for addressing environmental and health issues related to air quality. Such complex investigations can benefit from experiments in controlled but realistic environments, such as the Atmospheric Simulation Chamber facility ChAMBRe (Chamber for Aerosol Modeling and Bio-aerosol Research). In this work, we report on the results of several experiments that were conducted at ChAMBRe using three strains of bacteria: E. coli, B. subtilis, and P. fluorescens. The goal of these experiments was to quantitively study how the culturability of these bacteria is affected by exposure to NO, NO2, and light. The experimental approach was simple but carefully controlled: before being introduced into ChAMBRe, the bacteria samples were characterized using three different methods to determine the ratio of viable to total bacteria. The bacteria suspension was then aerosolized and introduced into ChAMBRe, where it was exposed to two different concentrations of NO and NO2, in dark conditions and with simulated solar radiation. The culturability of the bacteria was assessed by collecting bacteria samples directly onto Petri dishes by an Andersen impactor at various time intervals after the end of injection. Finally, the formed bacteria colonies were counted after 24-48 h of incubation to measure their culturability and the temporal trend. The results show a reduction of culturability for all bacteria strains when exposed to NO2 (from 50 to 70%) and to high concentrations of NO (i.e. around 30% at more than 1200 ppb) at concentration values higher than the typical urban ambient values. Even higher effects were observed exposing the bacteria strain to a proxy of solar light. The findings show how atmospheric simulation chambers help the comprehension of interactions between pollutants and bioaerosols in controlled atmospheric environments.
Collapse
Affiliation(s)
- Elena Gatta
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16143, Genoa, Italy
| | - Elena Abd El
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16143, Genoa, Italy
- INFN - Sezione di Genova, Via Dodecaneso 33, 16143, Genoa, Italy
| | - Marco Brunoldi
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16143, Genoa, Italy
- INFN - Sezione di Genova, Via Dodecaneso 33, 16143, Genoa, Italy
| | - Muhammad Irfan
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16143, Genoa, Italy
| | - Tommaso Isolabella
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16143, Genoa, Italy
- INFN - Sezione di Genova, Via Dodecaneso 33, 16143, Genoa, Italy
| | - Dario Massabò
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16143, Genoa, Italy
- INFN - Sezione di Genova, Via Dodecaneso 33, 16143, Genoa, Italy
| | - Franco Parodi
- INFN - Sezione di Genova, Via Dodecaneso 33, 16143, Genoa, Italy
| | - Paolo Prati
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16143, Genoa, Italy
- INFN - Sezione di Genova, Via Dodecaneso 33, 16143, Genoa, Italy
| | | | - Federico Mazzei
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16143, Genoa, Italy
- INFN - Sezione di Genova, Via Dodecaneso 33, 16143, Genoa, Italy
| |
Collapse
|
10
|
Venado RE, Wilker J, Pankievicz VCS, Infante V, MacIntyre A, Wolf ESA, Vela S, Robbins F, Fernandes-Júnior PI, Vermerris W, Ané JM. Mucilage produced by aerial roots hosts diazotrophs that provide nitrogen in Sorghum bicolor. PLoS Biol 2025; 23:e3003037. [PMID: 40029899 DOI: 10.1371/journal.pbio.3003037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 03/10/2025] [Accepted: 01/24/2025] [Indexed: 03/12/2025] Open
Abstract
Sorghum (Sorghum bicolor) is an important food, feed, and fodder crop worldwide and is gaining popularity as an energy crop due to its high potential for biomass production. Some sorghum accessions develop many aerial roots and produce an abundant carbohydrate-rich mucilage after rain. This aerial root mucilage is similar to that observed in landraces of maize (Zea mays) from southern Mexico, which have been previously shown to host diazotrophs. In this study, we characterized the aerial root development of several sorghum accessions and the impact of humidity on this trait. We conducted a microbiome study of the aerial root mucilage of maize and sorghum and isolated numerous diazotrophs from field sorghum mucilage. We observed that the prevailing phyla in the mucilage were Pseudomonadota, Bacteroidota, and Bacillota. However, bacterial abundances varied based on the genotype and the location. Using acetylene reduction, 15N2 gas feeding, and 15N isotope dilution assays, we confirmed that these sorghum accessions can acquire about 40% of their nitrogen from the atmosphere through these associations on aerial roots. Nitrogen fixation in sorghum aerial root mucilage offers a promising avenue to reduce reliance on synthetic fertilizers and promote sustainable agricultural practices for food, feed, fodder, and bioenergy production.
Collapse
Affiliation(s)
- Rafael E Venado
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jennifer Wilker
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vânia C S Pankievicz
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Valentina Infante
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - April MacIntyre
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Emily S A Wolf
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, Florida, United States of America
| | - Saddie Vela
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, Florida, United States of America
| | - Fletcher Robbins
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Paulo Ivan Fernandes-Júnior
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Embrapa Semiárido, Petrolina, Pernambuco, Brazil
| | - Wilfred Vermerris
- Department of Microbiology & Cell Science and UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
11
|
Bloch S, Węgrzyn G, Arluison V. The Role of the Hfq Protein in Bacterial Resistance to Antibiotics: A Narrative Review. Microorganisms 2025; 13:364. [PMID: 40005731 PMCID: PMC11858733 DOI: 10.3390/microorganisms13020364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The antibiotic resistance of pathogenic microorganisms is currently one of most major medical problems, causing a few million deaths every year worldwide due to untreatable bacterial infections. Unfortunately, the prognosis is even worse, as over 8 million deaths associated with antibiotic resistance are expected to occur in 2050 if no new effective antibacterial treatments are discovered. The Hfq protein has been discovered as a bacterial RNA chaperone. However, subsequent studies have indicated that this small protein (composed of 102 amino acid residues in Escherichia coli) has more activities, including binding to DNA and influencing its compaction, interaction with biological membranes, formation of amyloid-like structures, and others. Although Hfq is known to participate in many cellular processes, perhaps surprisingly, only reports from recent years have demonstrated its role in bacterial antibiotic resistance. The aim of this narrative review is to discuss how can Hfq affects antibiotic resistance in bacteria and propose how this knowledge may facilitate developing new therapeutic strategies against pathogenic bacteria. We indicate that the mechanisms by which the Hfq protein modulates the response of bacterial cells to antibiotics are quite different, from the regulation of the expression of genes coding for proteins directly involved in antibiotic transportation or action, through direct effects on membranes, to controlling the replication or transposition of mobile genetic elements bearing antibiotic resistance genes. Therefore, we suggest that Hfq could be considered a potential target for novel antimicrobial compounds. We also discuss difficulties in developing such drugs, but since Hfq appears to be a promising target for drugs that may enhance the efficacy of antibiotics, we propose that works on such potential therapeutics are encouraged.
Collapse
Affiliation(s)
- Sylwia Bloch
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Véronique Arluison
- Laboratoire Léon Brillouin, UMR 12 CEA/CNRS, Bâtiment 563, Site de Saclay, 91191 Gif-sur-Yvette, France
- UFR Science Du Vivant, Université Paris Cité, 35 Rue Hélène Brion, 75013 Paris, France
| |
Collapse
|
12
|
Huang LZY, Penman R, Kariuki R, Vaillant PHA, Gharehgozlo S, Shaw ZL, Truong VK, Vongsvivut J, Elbourne A, Caruso RA. Graveyard effects of antimicrobial nanostructured titanium over prolonged exposure to drug resistant bacteria and fungi. NANOSCALE 2025; 17:3170-3188. [PMID: 39713977 DOI: 10.1039/d4nr03238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Innovations in nanostructured surfaces have found a practical place in the medical area with use in implant materials for post-operative infection prevention. These textured surfaces should be dual purpose: (1) bactericidal on contact and (2) resistant to biofilm formation over prolonged periods. Here, hydrothermally etched titanium surfaces were tested against two highly antimicrobial resistant microbial species, methicillin-resistant Staphylococcus aureus and Candida albicans. Two surface types - unmodified titanium and nanostructured titanium - were incubated in a suspension of each microbial strain for 1 day and 7 days. Surface topography and cross-sectional information of the microbial cells adhered to the surfaces, along with biomass volume and live/dead rate, showed that while nanostructured titanium was able to kill microbes after 1 day of exposure, after 7 days, the rate of death becomes negligible when compared to the unmodified titanium. This suggests that as biofilms mature on a nanostructured surface, the cells that have lysed conceal the nanostructures and prime the surface for planktonic cells to adhere, decreasing the possibility of structure-induced lysis. Synchrotron macro-attenuated total reflection Fourier transform infrared (macro ATR-FTIR) micro-spectroscopy was used to elucidate the biochemical changes occurring following exposure to differing surface texture and incubation duration, providing further understanding into the effects of surface morphology on the biochemical molecules (lipids, proteins and polysaccharides) in an evolving and growing microbial colony.
Collapse
Affiliation(s)
- Louisa Z Y Huang
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Rowan Penman
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Rashad Kariuki
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Pierre H A Vaillant
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Soroosh Gharehgozlo
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Z L Shaw
- School of Engineering, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Vi Khanh Truong
- Healthcare Engineering Innovation Group, Department of Biomedical Engineering & Biotechnology, College of Medicine and Health Science, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO - Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Aaron Elbourne
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Rachel A Caruso
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
13
|
Kroupová Z, Slaninová E, Mrázová K, Krzyžánek V, Hrubanová K, Fritz I, Obruča S. Evaluating stress resilience of cyanobacteria through flow cytometry and fluorescent viability assessment. Folia Microbiol (Praha) 2025; 70:205-223. [PMID: 39503830 PMCID: PMC11861008 DOI: 10.1007/s12223-024-01212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 10/17/2024] [Indexed: 02/27/2025]
Abstract
Cyanobacteria are prokaryotic organisms characterised by their complex structures and a wide range of pigments. With their ability to fix CO2, cyanobacteria are interesting for white biotechnology as cell factories to produce various high-value metabolites such as polyhydroxyalkanoates, pigments, or proteins. White biotechnology is the industrial production and processing of chemicals, materials, and energy using microorganisms. It is known that exposing cyanobacteria to low levels of stressors can induce the production of secondary metabolites. Understanding of this phenomenon, known as hormesis, can involve the strategic application of controlled stressors to enhance the production of specific metabolites. Consequently, precise measurement of cyanobacterial viability becomes crucial for process control. However, there is no established reliable and quick viability assay protocol for cyanobacteria since the task is challenging due to strong interferences of autofluorescence signals of intercellular pigments and fluorescent viability probes when flow cytometry is used. We performed the screening of selected fluorescent viability probes used frequently in bacteria viability assays. The results of our investigation demonstrated the efficacy and reliability of three widely utilised types of viability probes for the assessment of the viability of Synechocystis strains. The developed technique can be possibly utilised for the evaluation of the importance of polyhydroxyalkanoates for cyanobacterial cultures with respect to selected stressor-repeated freezing and thawing. The results indicated that the presence of polyhydroxyalkanoate granules in cyanobacterial cells could hypothetically contribute to the survival of repeated freezing and thawing.
Collapse
Affiliation(s)
- Zuzana Kroupová
- Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic.
| | - Eva Slaninová
- Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| | - Kateřina Mrázová
- Institute of Scientific Instruments of the Czech Academy of SciencesV.V.I., Kralovopolska 147, 612 64, Brno, Czech Republic
| | - Vladislav Krzyžánek
- Institute of Scientific Instruments of the Czech Academy of SciencesV.V.I., Kralovopolska 147, 612 64, Brno, Czech Republic
| | - Kamila Hrubanová
- Institute of Scientific Instruments of the Czech Academy of SciencesV.V.I., Kralovopolska 147, 612 64, Brno, Czech Republic
| | - Ines Fritz
- Institute of Environmental Biotechnology, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 20, 3430, Tulln an Der Donau, Austria
| | - Stanislav Obruča
- Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| |
Collapse
|
14
|
Tchatchiashvili T, Jundzill M, Marquet M, Mirza KA, Pletz MW, Makarewicz O, Thieme L. CAM/TMA-DPH as a promising alternative to SYTO9/PI for cell viability assessment in bacterial biofilms. Front Cell Infect Microbiol 2025; 14:1508016. [PMID: 39906213 PMCID: PMC11790577 DOI: 10.3389/fcimb.2024.1508016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/23/2024] [Indexed: 02/06/2025] Open
Abstract
Introduction Accurately assessing biofilm viability is essential for evaluating both biofilm formation and the efficacy of antibacterial treatments. Traditional SYTO9 and propidium iodide (PI) live/dead staining in biofilm viability assays often ace challenges due to non-specific staining, limiting precise differentiation between live and dead cells. To address this limitation, we investigated an alternative staining method employing calcein acetoxymethyl (CAM) to detect viable cells based on esterase activity, and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluenesulfonate (TMA-DPH) to assess the remaining biofilm population. Methods Biofilms of Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus, and Enterococcus faecium were matured and exposed to varying concentrations of antibiotics or sterile medium. Biofilm viability was assessed using CAM/TMA-DPH or SYTO9/PIstaining, followed by analysis with confocal laser scanning microscopy (CLSM) and ImageJ-based biofilm surface coverage quantification. Viability findings were compared with colony-forming units (CFU/mL), a standard microbial viability measure. Results CAM/TMA-DPH staining demonstrated strong positive correlations with CFU counts across all bacterial species (r = 0.59 - 0.91), accurately reflecting biofilm vitality. In contrast, SYTO9/PI staining consistently underestimated the viability of untreated biofilms, particularly in Klebsiella pneumoniae, where a negative correlation with CFU/mL was observed (r = -0.04). Positive correlations for SYTO9/PI staining were noted in other species (r = 0.65 - 0.79). These findings underscore the limitations of membrane integrity-based staining methods and highlight the advantages of metabolic-based probes like CAM/TMA-DPH. Discussion Our findings suggest that CAM/TMA-DPH staining provides a promising alternative to SYTO9/PI for cell viability assessment in bacterial biofilms, highlighting the advantages of metabolic-based probes over traditional membrane integrity assays. The consistency of CAM/TMA-DPH staining across different bacterial species underscores its potential to advance studies on biofilm and contribute to the development of more effective anti-biofilm treatments, which is essential for clinical management of biofilm-associated infections.
Collapse
Affiliation(s)
- Tinatini Tchatchiashvili
- Institute of Infectious Disease and Infection Control, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Institute of Infectious Disease and Infection Control, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
| | - Mateusz Jundzill
- Institute of Infectious Disease and Infection Control, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Institute of Infectious Disease and Infection Control, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
| | - Mike Marquet
- Institute of Infectious Disease and Infection Control, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Kamran A. Mirza
- Institute of Infectious Disease and Infection Control, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Institute of Infectious Disease and Infection Control, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
| | - Mathias W. Pletz
- Institute of Infectious Disease and Infection Control, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Institute of Infectious Disease and Infection Control, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
| | - Oliwia Makarewicz
- Institute of Infectious Disease and Infection Control, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Institute of Infectious Disease and Infection Control, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
| | - Lara Thieme
- Institute of Infectious Disease and Infection Control, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Institute of Infectious Disease and Infection Control, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
| |
Collapse
|
15
|
Sarkar T, Vignesh SR, Kumar Sundaravadivelu P, Thummer RP, Satpati P, Chatterjee S. De Novo Design of Tryptophan Containing Broad-Spectrum Cationic Antimicrobial Octapeptides. ChemMedChem 2025; 20:e202400566. [PMID: 39402809 DOI: 10.1002/cmdc.202400566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/07/2024] [Indexed: 11/14/2024]
Abstract
With the advent of antibiotic resistant organisms, development of alternate classes of molecules other than antibiotics to combat microbial infections, have become extremely important. In this context, antimicrobial peptides have taken center stage of antimicrobial therapeutic research. In this work, we have reported two cationic antimicrobial octapeptides WRL and LWRF, with broad spectrum antimicrobial activities against several strains of ESKAPE pathogens. Both the peptides were membrane associative and induced microbial cell death through membranolysis, being selective towards microbial membranes over mammalian membranes. The AMPs were unstructured in water, adopting partial helical conformation in the presence of microbial membrane mimics. Electrostatic interaction formed the primary basis of peptide-membrane interactions. WRL was more potent, salt tolerant and faster acting of the two AMPs, owing to the presence of two tryptophan residues against that of one in LWRF. Increased tryptophan number in WRL enhanced its membrane association ability, resulting in higher antimicrobial potency but lower selectivity. This experimental and computational work, established that an optimum number of tryptophan residues and their position was critical for obtaining high antimicrobial potency and selectivity simultaneously in the designed cationic AMPs. Understanding the peptide membrane interactions in atomistic details can lead to development of better antimicrobial therapeutics in future.
Collapse
Affiliation(s)
- Tanumoy Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - S R Vignesh
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Pradeep Kumar Sundaravadivelu
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Rajkumar P Thummer
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Priyadarshi Satpati
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sunanda Chatterjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
16
|
Crnčević D, Krce L, Brkljača Z, Cvitković M, Babić Brčić S, Čož-Rakovac R, Odžak R, Šprung M. A dual antibacterial action of soft quaternary ammonium compounds: bacteriostatic effects, membrane integrity, and reduced in vitro and in vivo toxicity. RSC Adv 2025; 15:1490-1506. [PMID: 39822568 PMCID: PMC11737066 DOI: 10.1039/d4ra07975b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/28/2024] [Indexed: 01/19/2025] Open
Abstract
Quaternary ammonium compounds (QACs) have served as essential antimicrobial agents for nearly a century due to their rapid membrane-disrupting action. However, the emergence of bacterial resistance and environmental concerns have driven interest in alternative designs, such as "soft QACs", which are designed for enhanced biodegradability and reduced resistance potential. In this study, we explored the antibacterial properties and mechanisms of action of our newly synthesized soft QACs containing a labile amide bond within a quinuclidine scaffold. Our findings revealed that these compounds primarily exhibit a bacteriostatic mode of action, effectively suppressing bacterial growth even at concentrations exceeding their minimum inhibitory concentrations (MICs). Unlike traditional QACs, fluorescence spectroscopy and microscopy demonstrated membrane preservation during treatment, with reduced membrane integration compared to cetylpyridinium chloride (CPC), as corroborated by parallel artificial membrane permeability assays. Additionally, molecular dynamics simulations revealed "hook-like" conformations that limit lipid bilayer penetration and promote the formation of larger aggregates, reducing their effective concentration and minimizing cytotoxic effects. Interestingly, secondary antibacterial mechanisms, including inhibition of protein synthesis, were observed, further enhancing their activity. Zebrafish embryotoxicity and in vitro cytotoxicity studies confirmed significantly lower toxicity compared to CPC. By addressing limitations associated with conventional QACs, including toxicity, resistance, and environmental persistence, these soft QACs provide a promising foundation for next-generation antimicrobials. This work advances the understanding of QAC mechanisms while paving the way for safer, eco-friendly applications in healthcare, agriculture, and industrial settings.
Collapse
Affiliation(s)
- Doris Crnčević
- University of Split, Faculty of Science, Department of Chemistry R. Bošković 33 Split Croatia
- University of Split, Faculty of Science, Doctoral Study in Biophysics R. Bošković 33 Split Croatia
| | - Lucija Krce
- University of Split, Faculty of Science, Department of Physics R. Bošković 33 Split Croatia
| | | | - Mislav Cvitković
- University of Split, Faculty of Science, Department of Physics R. Bošković 33 Split Croatia
| | - Sanja Babić Brčić
- Ruđer Bošković Institute, Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry Bijenička 54 Zagreb Croatia
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute Bijenička 54 Zagreb Croatia
| | - Rozelindra Čož-Rakovac
- Ruđer Bošković Institute, Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry Bijenička 54 Zagreb Croatia
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute Bijenička 54 Zagreb Croatia
| | - Renata Odžak
- University of Split, Faculty of Science, Department of Chemistry R. Bošković 33 Split Croatia
| | - Matilda Šprung
- University of Split, Faculty of Science, Department of Chemistry R. Bošković 33 Split Croatia
| |
Collapse
|
17
|
Wang Z, Huang Y, Yu M, Zhuang W, Sui M. Pre-exposure to peracetic acid followed by UV treatment for deactivating vancomycin-resistant Enterococcus faecalis through intracellular attack. ENVIRONMENTAL RESEARCH 2024; 262:119780. [PMID: 39142460 DOI: 10.1016/j.envres.2024.119780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Antimicrobial resistance (AMR) poses a global health threat to aquatic environments and its propagation is a hot topic. Therefore, deactivating antibiotic-resistant bacteria (ARB) and removing antibiotic resistance genes (ARGs) from water is crucial for controlling AMR transmission. Peracetic acid (PAA), which is known for its potent oxidizing properties and limited by-product formation, is emerging as a favorable disinfectant for water treatment. In this study, we aimed to assess the efficacy of pre-exposure to PAA followed by UV treatment (PAA-UV/PAA) compared with the simultaneous application of UV and PAA (UV/PAA). The focus was on deactivating vancomycin-resistant Enterococcus faecalis (VREfs), a typical ARB in water. Pre-exposure to PAA significantly enhanced the efficacy of subsequent UV/PAA treatment. At a UV fluence of 7.2 mJ cm-2, the PAA-UV/PAA method achieved a 6.21 log reduction in VREfs, surpassing the 1.29 log reduction observed with UV/PAA. Moreover, compared to UV/PAA, PAA-UV/PAA showed increased efficacy with longer pre-exposure times and higher PAA concentrations, maintaining superior performance across a broad pH range and in the presence of humic acid. Flow cytometry analysis indicated minimal cellular membrane damage using both methods. However, the assessments of superoxide dismutase (SOD) activity and adenosine triphosphate content revealed that PAA-UV/PAA induced greater oxidative stress under similar UV irradiation conditions, leading to slower bacterial regrowth. Specifically, SOD activity in PAA-UV/PAA surged to 3.06 times its baseline, exceeding the 1.73-fold increase under UV/PAA conditions. Additionally, pre-exposure to PAA amplified ARGs degradation and reduced resistance gene leakage, effectively mitigating the spread of AMR. Pre-exposure to 200 μM PAA for 10 and 20 min enhanced vanB gene removal efficiency by 0.14 log and 1.29 log, respectively. Our study provides a feasible approach for optimizing UV/PAA disinfection for efficient removal of ARB and ARGs.
Collapse
Affiliation(s)
- Ziqi Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yingyue Huang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Miao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Wei Zhuang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Minghao Sui
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
18
|
Korcoban D, Huang LZY, Elbourne A, Li Q, Wen X, Chen D, Caruso RA. Electroless Ag nanoparticle deposition on TiO 2 nanorod arrays, enhancing photocatalytic and antibacterial properties. J Colloid Interface Sci 2024; 680:146-156. [PMID: 39561642 DOI: 10.1016/j.jcis.2024.11.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
HYPOTHESIS The small size of the nanoparticles used to obtain high surface area photocatalysts makes their removal from solution difficult. Producing photocatalysts on substrates would alleviate this limitation. Adding heterojunctions to photocatalysts, for example, TiO2/Ag, could improve photocatalytic performance due to Schottky junction formation and introduce antibacterial properties. EXPERIMENTS TiO2 nanorod arrays were synthesised on a substrate via a hydrothermal approach, on which Ag nanoparticles were deposited using an electroless plating technique with varied deposition times and metal precursor concentrations. Photocatalytic performance was evaluated by monitoring Rhodamine B (RhB) degradation under ultraviolet light and antibacterial properties of the films tested using Methicillin-resistant Staphylococcus aureus. FINDINGS The Ag nanoparticle content was controlled by the Ag deposition process. The TiO2/Ag nanorod array containing 6.6 atomic% Ag as nanoparticles of ∼ 25 nm in diameter degraded 88 % of the RhB in 6 h compared to 54 % degradation for bare TiO2 nanorods under the same reaction conditions. Decreased photoluminescence with heterojunction formation would indicate electron transfer from the TiO2 into the Ag nanoparticles, thereby reducing charge carrier recombination. The antibacterial test conducted in the dark revealed enhanced performance for the TiO2/Ag sample compared to TiO2 nanorods against Methicillin-resistant Staphylococcus aureus after 16 h exposure with a death rate of 84 %.
Collapse
Affiliation(s)
- Dilek Korcoban
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3001, Australia
| | - Louisa Z Y Huang
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3001, Australia
| | - Aaron Elbourne
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3001, Australia
| | - Qi Li
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3001, Australia
| | - Xiaoming Wen
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3001, Australia
| | - Dehong Chen
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3001, Australia
| | - Rachel A Caruso
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
19
|
Choudhary M, Liao YY, Huang Z, Pereira J, Santra S, Da Silva S, Parajuli A, Freeman JH, Jones JB, Paret ML. Novel Magnesium-Copper Hybrid Nanomaterials for Management of Bacterial Spot of Tomato. PLANT DISEASE 2024; 108:3234-3242. [PMID: 37990522 DOI: 10.1094/pdis-09-23-1776-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Bacterial spot of tomato (BST), predominantly caused by Xanthomonas perforans (Xp) in Florida, is one of the most devastating diseases in hot, humid environments. Bacterial resistance to copper-based bactericides and antibiotics makes disease management extremely challenging. This necessitates alternative new solutions to manage the disease. In this study, we used two novel hybrid copper and magnesium nanomaterials, noted as magnesium double-coated (Mg-Db) and magnesium-copper (Mg-Cu), to manage BST. In in vitro experiments, no viable cells were recovered following 4 h of exposure to 500 μg/ml of both Mg-Db and Mg-Cu, while 100 and 200 μg/ml required 24 h of exposure for complete inhibition. In a viability assay using the live/dead cell straining method and epifluorescence microscopy, copper-tolerant Xp cells were killed within 4 h by both Mg-Cu and Mg-Db nanomaterials at 500 μg/ml but not by copper hydroxide (Kocide 3000). In the greenhouse, Mg-Db and Mg-Cu at 100 to 500 μg/ml significantly reduced BST severity compared with micron-sized commercial copper bactericide Kocide 3000 and the growers' standard (copper hydroxide + mancozeb) (P < 0.05). In field studies, Mg-Db and Mg-Cu nanomaterials significantly reduced disease severity in two out four field trials. Mg-Db at 500 μg/ml reduced BST severity by 34% compared with the nontreated control without affecting yield in fall, 2020. The use of hybrid nanomaterials at the highest concentrations (500 μg/ml) evaluated in the field experiments can reduce copper use by 90% compared with the growers' standard. In addition, there was no phytotoxicity observed with the use of hybrid nanomaterials in the field. These results suggest the potential of novel magnesium-copper-based hybrid nanomaterials to manage copper-tolerant bacterial pathogens.
Collapse
Affiliation(s)
- Manoj Choudhary
- North Florida Research and Education Center, University of Florida, Gainesville, FL, U.S.A
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
- National Center for Integrated Pest Management, New Delhi, India
| | - Ying-Yu Liao
- North Florida Research and Education Center, University of Florida, Gainesville, FL, U.S.A
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, U.S.A
| | - Ziyang Huang
- NanoScience Technology Center and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, U.S.A
| | - Jorge Pereira
- NanoScience Technology Center and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, U.S.A
| | - Swadeshmukul Santra
- NanoScience Technology Center and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, U.S.A
| | - Susannah Da Silva
- North Florida Research and Education Center, University of Florida, Gainesville, FL, U.S.A
| | - Apekshya Parajuli
- North Florida Research and Education Center, University of Florida, Gainesville, FL, U.S.A
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
| | - Joshua H Freeman
- North Florida Research and Education Center, University of Florida, Gainesville, FL, U.S.A
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
| | - Mathews L Paret
- North Florida Research and Education Center, University of Florida, Gainesville, FL, U.S.A
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
| |
Collapse
|
20
|
Lee Y, Shin S, Kim MJ. Production of CaCO 3-single-coated probiotics and evaluation of their spectroscopic properties, morphological characteristics, viability, and intestinal delivery efficiency. Food Chem 2024; 457:140076. [PMID: 38879960 DOI: 10.1016/j.foodchem.2024.140076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
The intake of probiotics offers various health benefits; however, their efficacy depends on the maintenance of viability during industrial processing and digestion. Probiotic viability can be compromised during encapsulation, freeze-drying, storage, and digestion, necessitating multiple coatings. This complicates production and raises costs. In this study, CaCO3-single-coated probiotics (CSCPs) were prepared, an approach rarely reported before. Through instrumental analyses, the encapsulation of probiotics within CaCO3 was confirmed, ensuring their high viability. This proposed technology effectively preserves the viability of probiotics during the encapsulation and freeze-drying processes, resulting in minimal cell loss. Moreover, CSCPs demonstrated exceptional viability performance under simulated gastric and intestinal conditions. Notably, 100% of these microorganisms reached the intestines, delivering over 10 billion CFUs of probiotics in a viable state. This study highlights the potential of CSCPs as a feasible solution for overcoming probiotic encapsulation challenges and optimizing therapeutic benefits.
Collapse
Affiliation(s)
- Youjeong Lee
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea
| | - Seonmi Shin
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea
| | - Myoung-Jin Kim
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea.
| |
Collapse
|
21
|
Shah R, Narh JK, Urlaub M, Jankiewicz O, Johnson C, Livingston B, Dahl JU. Pseudomonas aeruginosa kills Staphylococcus aureus in a polyphosphate-dependent manner. mSphere 2024; 9:e0068624. [PMID: 39365057 PMCID: PMC11520310 DOI: 10.1128/msphere.00686-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024] Open
Abstract
Due to their frequent coexistence in many polymicrobial infections, including in patients with cystic fibrosis or burn/chronic wounds, many studies have investigated the mechanistic details of the interaction between the opportunistic pathogens Pseudomonas aeruginosa and Staphylococcus aureus. P. aeruginosa rapidly outcompetes S. aureus under in vitro cocultivation conditions, which is mediated by several of P. aeruginosa's virulence factors. Here, we report that polyphosphate (polyP), an efficient stress defense system and virulence factor in P. aeruginosa, plays a role in the pathogen's ability to inhibit and kill S. aureus in a contact-independent manner. We show that P. aeruginosa cells characterized by low polyP levels are less detrimental to S. aureus growth and survival while the Gram-positive pathogen is significantly more compromised by the presence of P. aeruginosa cells that produce high levels of polyP. The polyP-dependent phenotype of P. aeruginosa-mediated killing of S. aureus could at least in part be direct, as polyP was detected in the spent media and causes significant damage to the S. aureus cell envelope. However, more likely is that polyP's effects are indirect through modulating the production of one of P. aeruginosa's virulence factors, pyocyanin. We show that pyocyanin production in P. aeruginosa occurs polyP-dependently and harms S. aureus through membrane damage and potentially the generation of reactive oxygen species, resulting in the increased expression of antioxidant enzymes. In summary, our study adds a new component to the list of biomolecules that the Gram-negative pathogen P. aeruginosa generates to compete with S. aureus for resources.IMPORTANCEHow do interactions between microorganisms shape the course of polymicrobial infections? Previous studies have provided evidence that the two opportunistic pathogens Pseudomonas aeruginosa and Staphylococcus aureus generate molecules that modulate their interaction with potentially significant impact on disease outcomes. Our study identified the biopolymer polyphosphate (polyP) as a new effector molecule that impacts P. aeruginosa's interaction with S. aureus. We show that P. aeruginosa kills S. aureus in a polyP-dependent manner, which occurs primarily through the polyP-dependent production of the P. aeruginosa virulence factor pyocyanin. Our findings add a new role for polyP to an already extensive list of functions. A more in-depth understanding of how polyP influences interspecies interactions is critical, as targeting polyP synthesis in bacteria such as P. aeruginosa may have a significant impact on other microorganisms and potentially result in dynamic changes in the microbial composition.
Collapse
Affiliation(s)
- Ritika Shah
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| | - Julius Kwesi Narh
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| | - Magdalena Urlaub
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| | - Olivia Jankiewicz
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| | - Colton Johnson
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| | - Barry Livingston
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| | - Jan-Ulrik Dahl
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| |
Collapse
|
22
|
Shin S, Lee Y, Kim MJ. Oyster shell based indirect carbonation integrated with probiotic encapsulation. Sci Rep 2024; 14:24709. [PMID: 39433771 PMCID: PMC11494112 DOI: 10.1038/s41598-024-72976-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/12/2024] [Indexed: 10/23/2024] Open
Abstract
Recycling oyster shells-an abundant industrial waste-is essential to reduce marine pollution. Indirect carbonation is promising; however, is cost-prohibitive. This study is a pioneering endeavor to merge indirect carbonation and probiotic encapsulation technologies using oyster shells. Probiotics were encapsulated in the CaCO3 produced through indirect carbonation with oyster shells, and the performance was evaluated. Confocal laser scanning microscopy certified the survival of a substantial proportion of the encased probiotics. Importantly, the majority of the enveloped probiotics demonstrated robust survivability while passing through gastrointestinal and bile fluids. These findings underscore the applicability of oyster shells as an optimal precursor for probiotic encapsulation which is eco-friendly and addresses the challenges faced in industrial waste recycling. This novel approach overcomes the economic limitations associated with indirect carbonation and mitigates the shortcomings of existing probiotic encapsulation methods. Convergence of indirect carbonation and probiotic encapsulation technologies can chart new routes for the environmental sector.
Collapse
Affiliation(s)
- Seonmi Shin
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea
- Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea
| | - Youjeong Lee
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea
- Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea
| | - Myoung-Jin Kim
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea.
- Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea.
| |
Collapse
|
23
|
Fritzsche S, Hübner H, Oldiges M, Castiglione K. Comparative evaluation of the extracellular production of a polyethylene terephthalate degrading cutinase by Corynebacterium glutamicum and leaky Escherichia coli in batch and fed-batch processes. Microb Cell Fact 2024; 23:274. [PMID: 39390488 PMCID: PMC11468216 DOI: 10.1186/s12934-024-02547-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND With a growing global population, the generation of plastic waste and the depletion of fossil resources are major concerns that need to be addressed by developing sustainable and efficient plastic recycling methods. Biocatalytic recycling is emerging as a promising ecological alternative to conventional processes, particularly in the recycling of polyethylene terephthalate (PET). However, cost-effective production of the involved biocatalyst is essential for the transition of enzymatic PET recycling to a widely used industrial technology. Extracellular enzyme production using established organisms such as Escherichia coli or Corynebacterium glutamicum offers a promising way to reduce downstream processing costs. RESULTS In this study, we compared extracellular recombinant protein production by classical secretion in C. glutamicum and by membrane leakage in E. coli. A superior extracellular release of the cutinase ICCGDAQI was observed with E. coli in batch and fed-batch processes on a litre-scale. This phenomenon in E. coli, in the absence of a signal peptide, might be associated with membrane-destabilizing catalytic properties of the expressed cutinase. Optimisations regarding induction, expression temperature and duration as well as carbon source significantly enhanced extracellular cutinase activity. In particular, in fed-batch cultivation of E. coli at 30 °C with lactose as carbon source and inducer, a remarkable extracellular activity (137 U mL-1) and cutinase titre (660 mg L-1) were achieved after 48 h. Literature values obtained with other secretory organisms, such as Bacillus subtilis or Komagataella phaffii were clearly outperformed. The extracellular ICCGDAQI produced showed high efficacy in the hydrolysis of PET textile fibres, either chromatographically purified or unpurified as culture supernatant. In less than 18 h, 10 g L-1 substrate was hydrolysed using supernatant containing 3 mg cutinase ICCGDAQI at 70 °C, pH 9 with terephthalic acid yields of up to 97.8%. CONCLUSION Extracellular production can reduce the cost of recombinant proteins by simplifying downstream processing. In the case of the PET-hydrolysing cutinase ICCGDAQI, it was even possible to avoid chromatographic purification and still achieve efficient PET hydrolysis. With such production approaches and their further optimisation, enzymatic recycling of PET can contribute to a more efficient and environmentally friendly solution to the industrial recycling of plastics in the future.
Collapse
Affiliation(s)
- Stefanie Fritzsche
- Institute of Bioprocess Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany
| | - Holger Hübner
- Institute of Bioprocess Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Kathrin Castiglione
- Institute of Bioprocess Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany.
| |
Collapse
|
24
|
Ramesh Kumar U, Nguyen NT, Dewangan NK, Mohiuddin SG, Orman MA, Cirino PC, Conrad JC. Co-Expression of type 1 fimbriae and flagella in Escherichia coli: consequences for adhesion at interfaces. SOFT MATTER 2024; 20:7397-7404. [PMID: 39021099 DOI: 10.1039/d4sm00499j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Escherichia coli expresses surface appendages including fimbriae, flagella, and curli, at various levels in response to environmental conditions and external stimuli. Previous studies have revealed an interplay between expression of fimbriae and flagella in several E. coli strains, but how this regulation between fimbrial and flagellar expression affects adhesion to interfaces is incompletely understood. Here, we investigate how the concurrent expression of fimbriae and flagella by engineered strains of E. coli MG1655 affects their adhesion at liquid-solid and liquid-liquid interfaces. We tune fimbrial and flagellar expression on the cell surface through plasmid-based inducible expression of the fim operon and fliC-flhDC genes. We show that increased fimbrial expression increases interfacial adhesion as well as bacteria-driven actuation of micron-sized objects. Co-expression of flagella in fimbriated bacteria, however, does not greatly affect either of these properties. Together, these results suggest that interfacial adhesion as well as motion actuated by adherent bacteria can be altered by controlling the expression of surface appendages.
Collapse
Affiliation(s)
- Udayanidhi Ramesh Kumar
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - Nam T Nguyen
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - Narendra K Dewangan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - Sayed Golam Mohiuddin
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - Mehmet A Orman
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - Patrick C Cirino
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
25
|
Park J, Ke W, Kaage A, Feigin CY, Pritykin Y, Donia MS, Mallarino R. Marsupial immune protection is shaped by enhancer sharing and gene cluster duplication of cathelicidin antimicrobial peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605640. [PMID: 39211247 PMCID: PMC11361154 DOI: 10.1101/2024.07.29.605640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Marsupial neonates are born with immature immune systems, making them vulnerable to pathogens. While neonates receive maternal protection, they can also independently combat pathogens, though the mechanisms remain unknown. Using the sugar glider (Petaurus breviceps) as a model, we investigated immunological defense strategies of marsupial neonates. Cathelicidins, a family of antimicrobial peptides expanded in the genomes of marsupials, are highly expressed in developing neutrophils. Sugar glider cathelicidins reside in two genomic clusters and their coordinated expression is achieved by enhancer sharing within clusters and long-range physical interactions between clusters. These cathelicidins modulate immune responses and have potent antimicrobial effects, sufficient to provide protection in a mouse model of sepsis. Lastly, cathelicidins have a complex evolutionary history, where marsupials and monotremes are the only tetrapods that retained two cathelicidin clusters. Thus, cathelicidins are critical mediators of marsupial immunity, and their evolution reflects the life history-specific immunological needs of these animals.
Collapse
|
26
|
Yan X, Yang F, Lv G, Qiu Y, Jia X, Hu Q, Zhang J, Yang J, Ouyang X, Gao L, Jia C. Multi-Hydrogen Bonding on Quaternized-Oligourea Receptor Facilitated Its Interaction with Bacterial Cell Membranes and DNA for Broad-Spectrum Bacteria Killing. Molecules 2024; 29:3937. [PMID: 39203016 PMCID: PMC11357520 DOI: 10.3390/molecules29163937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Herein, we report a new strategy for the design of antibiotic agents based on the electrostatic interaction and hydrogen bonding, highlighting the significance of hydrogen bonding and the increased recognition sites in facilitating the interaction with bacterial cell membranes and DNA. A series of quaternary ammonium functionalized urea-based anion receptors were studied. While the monodentate mono-urea M1, bisurea M2, and trisurea M3 failed to break through the cell membrane barrier and thus could not kill bacteria, the extended bidentate dimers D1-D3 presented gradually increased membrane penetrating capabilities, DNA conformation perturbation abilities, and broad-spectrum antibacterial activities against E. coli, P. aeruginosa, S. aureus, E. faecalis, and S. epidermidis.
Collapse
Affiliation(s)
- Xiaojin Yan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China; (X.Y.); (F.Y.); (G.L.); (Y.Q.); (X.J.); (Q.H.); (X.O.)
| | - Fan Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China; (X.Y.); (F.Y.); (G.L.); (Y.Q.); (X.J.); (Q.H.); (X.O.)
| | - Guanghao Lv
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China; (X.Y.); (F.Y.); (G.L.); (Y.Q.); (X.J.); (Q.H.); (X.O.)
| | - Yuping Qiu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China; (X.Y.); (F.Y.); (G.L.); (Y.Q.); (X.J.); (Q.H.); (X.O.)
| | - Xiaoying Jia
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China; (X.Y.); (F.Y.); (G.L.); (Y.Q.); (X.J.); (Q.H.); (X.O.)
| | - Qirong Hu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China; (X.Y.); (F.Y.); (G.L.); (Y.Q.); (X.J.); (Q.H.); (X.O.)
| | - Jia Zhang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China; (J.Z.); (J.Y.)
| | - Jing Yang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China; (J.Z.); (J.Y.)
| | - Xiangyuan Ouyang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China; (X.Y.); (F.Y.); (G.L.); (Y.Q.); (X.J.); (Q.H.); (X.O.)
| | - Lingyan Gao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China; (X.Y.); (F.Y.); (G.L.); (Y.Q.); (X.J.); (Q.H.); (X.O.)
| | - Chuandong Jia
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China; (X.Y.); (F.Y.); (G.L.); (Y.Q.); (X.J.); (Q.H.); (X.O.)
| |
Collapse
|
27
|
Rajalingam N, Choi SY, Van Haute S. Ultra violet-C pretreatment enhances the antimicrobial efficacy of unpeeled carrots against subsequent contamination with Listeria monocytogenes. Int J Food Microbiol 2024; 421:110800. [PMID: 38878705 DOI: 10.1016/j.ijfoodmicro.2024.110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
To our knowledge, this study is the first to elucidate the bactericidal efficacy of unpeeled carrots (hereafter referred to as carrots) pretreated with Ultra Violet-C (UV-C) against subsequent contamination with Listeria monocytogenes. Carrots pretreated with UV-C (240 mJ/cm2) exhibited a significant antilisterial effect within 2 h. In fact, the population of UV-C-pretreated carrots decreased from 7.94 log CFU/cm2 to levels below the limit of detection (LOD; <1.65 log CFU/cm2) within 24 h. For carrots that were not pretreated with UV-C, 3-4 log reductions were found after 24 h. Carrots pretreated with UV-C exhibited antimicrobial activity against another gram-positive pathogen, Staphylococcus aureus, but not against the gram-negative pathogens, E. coli O157:H7 and Salmonella enterica. Pretreatment with UV-C created a lasting antimicrobial effect as introducing L. monocytogenes on carrots, 72 h post-UV-C treatment, still maintained the antilisterial effect. Notably, all UV-C doses in the range of 48-240 mJ/cm2 induced a lasting antilisterial effect. The bactericidal effects against L. monocytogenes were confirmed in three varieties of washed and unwashed carrots (Danvers, Nantes, and Chantenay). Fluorescence microscopy confirmed the bactericidal effect of UV-C-pretreated carrots on the survival of L. monocytogenes. Conclusively, pretreating carrots with UV-C can reduce the population of L. monocytogenes to levels below the LOD and may further prevent pathogen growth during cold storage. Additional studies are necessary to discern the mechanism underlying the bactericidal efficacy of UV-C-pretreated carrots.
Collapse
Affiliation(s)
- Nagendran Rajalingam
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Center for Food Biotechnology and Microbiology, Ghent University Global Campus, Incheon 21985, Republic of Korea; Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Song-Yi Choi
- Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea.
| | - Sam Van Haute
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Center for Food Biotechnology and Microbiology, Ghent University Global Campus, Incheon 21985, Republic of Korea.
| |
Collapse
|
28
|
Athira PP, Anooja VV, Anju MV, Archana K, Neelima S, Muhammed Musthafa S, Bright Singh IS, Philip R. Antibacterial Efficacy and Mechanisms of Action of a Novel Beta-Defensin from Snakehead Murrel, Channa striata. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10307-2. [PMID: 38963507 DOI: 10.1007/s12602-024-10307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/05/2024]
Abstract
Beta-defensins, identified from fishes, constitute a crucial category of antimicrobial peptides important in combating bacterial fish pathogens. The present investigation centers on the molecular and functional characterization of CsDef, a 63-amino acid beta-defensin antimicrobial peptide derived from snakehead murrel (Channa striata). The physicochemical attributes of CsDef align with the distinctive characteristics observed in AMPs. CsDef was recombinantly produced, and the recombinant peptide, rCsDef, exhibited notable antibacterial efficacy against bacterial fish pathogens with an MIC of 16 μM for V. proteolyticus. A. hydrophila exhibited 91% inhibition, E. tarda 92%, and V. harveyi 53% at 32 μM of rCsDef. The rCsDef exhibited a multifaceted mechanism of action against bacteria, i.e., through membrane depolarization, membrane permeabilization, and generation of ROS. The rCsDef was non-hemolytic to hRBCs and non-cytotoxic to normal mammalian cell line CHO-K1. However, it exhibited anticancer properties in MCF-7. rCsDef demonstrated notable stability with respect to pH, temperature, salt, metal ions, and proteases. These findings suggest it is a potential candidate molecule for prospective applications in aquaculture.
Collapse
Affiliation(s)
- P P Athira
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - V V Anooja
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - M V Anju
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - K Archana
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - S Neelima
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - S Muhammed Musthafa
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - I S Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India.
| |
Collapse
|
29
|
Liu Q, Yan S, Zhang M, Wang C, Xing D. Air sampling and ATP bioluminescence for quantitative detection of airborne microbes. Talanta 2024; 274:126025. [PMID: 38574539 DOI: 10.1016/j.talanta.2024.126025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/16/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
Exposure to bioaerosol contamination has detrimental effects on human health. Recent advances in ATP bioluminescence provide more opportunities for the quantitative detection of bioaerosols. Since almost all active organisms can produce ATP, the amount of airborne microbes can be easily measured by detecting ATP-driven bioluminescence. The accurate evaluation of microorganisms mainly relies on following the four key steps: sampling and enrichment of airborne microbes, lysis for ATP extraction, enzymatic reaction, and measurement of luminescence intensity. To enhance the effectiveness of ATP bioluminescence, each step requires innovative strategies and continuous improvement. In this review, we summarized the recent advances in the quantitative detection of airborne microbes based on ATP bioluminescence, which focuses on the advanced strategies for improving sampling devices combined with ATP bioluminescence. Meanwhile, the optimized and innovative strategies for the remaining three key steps of the ATP bioluminescence assay are highlighted. The aim is to reawaken the prosperity of ATP bioluminescence and promote its wider utilization for efficient, real-time, and accurate detection of airborne microbes.
Collapse
Affiliation(s)
- Qing Liu
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Saisai Yan
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Miao Zhang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Chao Wang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Dongming Xing
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
30
|
Caselli L, Parra-Ortiz E, Micciulla S, Skoda MWA, Häffner SM, Nielsen EM, van der Plas MJA, Malmsten M. Boosting Membrane Interactions and Antimicrobial Effects of Photocatalytic Titanium Dioxide Nanoparticles by Peptide Coating. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309496. [PMID: 38402437 DOI: 10.1002/smll.202309496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/30/2024] [Indexed: 02/26/2024]
Abstract
Photocatalytic nanoparticles offer antimicrobial effects under illumination due to the formation of reactive oxygen species (ROS), capable of degrading bacterial membranes. ROS may, however, also degrade human cell membranes and trigger toxicity. Since antimicrobial peptides (AMPs) may display excellent selectivity between human cells and bacteria, these may offer opportunities to effectively "target" nanoparticles to bacterial membranes for increased selectivity. Investigating this, photocatalytic TiO2 nanoparticles (NPs) are coated with the AMP LL-37, and ROS generation is found by C11-BODIPY to be essentially unaffected after AMP coating. Furthermore, peptide-coated TiO2 NPs retain their positive ζ-potential also after 1-2 h of UV illumination, showing peptide degradation to be sufficiently limited to allow peptide-mediated targeting. In line with this, quartz crystal microbalance measurements show peptide coating to promote membrane binding of TiO2 NPs, particularly so for bacteria-like anionic and cholesterol-void membranes. As a result, membrane degradation during illumination is strongly promoted for such membranes, but not so for mammalian-like membranes. The mechanisms of these effects are elucidated by neutron reflectometry. Analogously, LL-37 coating promoted membrane rupture by TiO2 NPs for Gram-negative and Gram-positive bacteria, but not for human monocytes. These findings demonstrate that AMP coating may selectively boost the antimicrobial effects of photocatalytic NPs.
Collapse
Affiliation(s)
- Lucrezia Caselli
- Department of Pharmacy, University of Copenhagen, Copenhagen, DK-2100, Denmark
- Department of Physical Chemistry 1, Lund University, Lund, SE-22100, Sweden
| | - Elisa Parra-Ortiz
- Department of Pharmacy, University of Copenhagen, Copenhagen, DK-2100, Denmark
- Novonesis, Biologiens Vej 2, Lyngby, DK-2800 Kgs, Denmark
| | - Samantha Micciulla
- Institut Laue-Langevin, CS 20156, Grenoble Cedex 9, 38042, France
- Laboratoire Interdisciplinaire de Physique (LIPhy), Saint Martin d'Hères, 38402, France
- Centre National de la Recherche Scientifique (CNRS), Saint-Martin-d'Hères, Auvergne-Rhône-Alpes, France
| | - Maximilian W A Skoda
- ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell, OX11 0QX, UK
| | - Sara Malekkhaiat Häffner
- Department of Pharmacy, University of Copenhagen, Copenhagen, DK-2100, Denmark
- RISE Research Institutes of Sweden, Malvinas väg 3, Stockholm, 114 86, Sweden
| | | | | | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, Copenhagen, DK-2100, Denmark
- Department of Physical Chemistry 1, Lund University, Lund, SE-22100, Sweden
| |
Collapse
|
31
|
Caselli L, Köhler S, Schirone D, Humphreys B, Malmsten M. Conformational control of antimicrobial peptide amphiphilicity: consequences for boosting membrane interactions and antimicrobial effects of photocatalytic TiO 2 nanoparticles. Phys Chem Chem Phys 2024; 26:16529-16539. [PMID: 38828872 DOI: 10.1039/d4cp01724b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This study reports on the effects of conformationally controlled amphiphilicity of antimicrobial peptides (AMPs) on their ability to coat TiO2 nanoparticles (NPs) and boost the photocatalytic antimicrobial effects of such NPs. For this, TiO2 NPs were combined with AMP EFK17 (EFKRIVQRIKDFLRNLV), displaying a disordered conformation in aqueous solution but helix formation on interaction with bacterial membranes. The membrane-bound helix is amphiphilic, with all polar and charged amino acid residues located at one side and all non-polar and hydrophobic residues on the other. In contrast, the d-enantiomer variant EFK17-d (E(dF)KR(dI)VQR(dI)KD(dF)LRNLV) is unable to form the amphiphilic helix on bacterial membrane interaction, whereas the W-residues in EFK17-W (EWKRWVQRWKDFLRNLV) boost hydrophobic interactions of the amphiphilic helix. Circular dichroism results showed the effects displayed for the free peptide, to also be present for peptide-coated TiO2 NPs, causing peptide binding to decrease in the order EFK17-W > EFK17 > EFK17-d. Notably, the formation of reactive oxygen species (ROS) by the TiO2 NPs was essentially unaffected by the presence of peptide coating, for all the peptides investigated, and the coatings stabilized over hours of UV exposure. Photocatalytic membrane degradation from TiO2 NPs coated with EFK17-W and EFK17 was promoted for bacteria-like model bilayers containing anionic phosphatidylglycerol but suppressed in mammalian-like bilayers formed by zwitterionic phosphatidylcholine and cholesterol. Structural aspects of these effects were further investigated by neutron reflectometry with clear variations observed between the bacteria- and mammalian-like model bilayers for the three peptides. Mirroring these results in bacteria-like model membranes, combining TiO2 NPs with EFK17-W and EFK17, but not with non-adsorbing EFK17-d, resulted in boosted antimicrobial effects of the resulting cationic composite NPs already in darkness, effects enhanced further on UV illumination.
Collapse
Affiliation(s)
- Lucrezia Caselli
- Department of Physical Chemistry 1, Lund University, SE-22100 Lund, Sweden.
| | - Sebastian Köhler
- LINXS Institute of Advanced Neutron and X-ray Science, Scheelevagen 19, 22370 Lund, Sweden
| | - Davide Schirone
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Malmö University, 20506 Malmö, Sweden
| | - Ben Humphreys
- Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9, France
| | - Martin Malmsten
- Department of Physical Chemistry 1, Lund University, SE-22100 Lund, Sweden.
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
32
|
Salpadoru T, Pinks KE, Lieberman JA, Cotton K, Wozniak KL, Gerasimchuk N, Patrauchan MA. Novel antimony-based antimicrobial drug targets membranes of Gram-positive and Gram-negative bacterial pathogens. Microbiol Spectr 2024; 12:e0423423. [PMID: 38651882 PMCID: PMC11237720 DOI: 10.1128/spectrum.04234-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant worldwide public health crisis that continues to threaten our ability to successfully treat bacterial infections. With the decline in effectiveness of conventional antimicrobial therapies and the lack of new antibiotic pipelines, there is a renewed interest in exploring the potential of metal-based antimicrobial compounds. Antimony-based compounds with a long history of use in medicine have re-emerged as potential antimicrobial agents. We previously synthesized a series of novel organoantimony(V) compounds complexed with cyanoximates with a strong potential of antimicrobial activity against several AMR bacterial and fungal pathogens. Here, five selected compounds were studied for their antibacterial efficacy against three important bacterial pathogens: Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. Among five tested compounds, SbPh4ACO showed antimicrobial activity against all three bacterial strains with the MIC of 50-100 µg/mL. The minimum bactericidal concentration/MIC values were less than or equal to 4 indicating that the effects of SbPh4ACO are bactericidal. Moreover, ultra-thin electron microscopy revealed that SbPh4ACO treatment caused membrane disruption in all three strains, which was further validated by increased membrane permeability. We also showed that SbPh4ACO acted synergistically with the antibiotics, polymyxin B and cefoxitin used to treat AMR strains of P. aeruginosa and S. aureus, respectively, and that at synergistic MIC concentration 12.5 µg/mL, its cytotoxicity against the cell lines, Hela, McCoy, and A549 dropped below the threshold. Overall, the results highlight the antimicrobial potential of novel antimony-based compound, SbPh4ACO, and its use as a potentiator of other antibiotics against both Gram-positive and Gram-negative bacterial pathogens. IMPORTANCE Antibiotic resistance presents a critical global public health crisis that threatens our ability to combat bacterial infections. In light of the declining efficacy of traditional antibiotics, the use of alternative solutions, such as metal-based antimicrobial compounds, has gained renewed interest. Based on the previously synthesized innovative organoantimony(V) compounds, we selected and further characterized the antibacterial efficacy of five of them against three important Gram-positive and Gram-negative bacterial pathogens. Among these compounds, SbPh4ACO showed broad-spectrum bactericidal activity, with membrane-disrupting effects against all three pathogens. Furthermore, we revealed the synergistic potential of SbPh4ACO when combined with antibiotics, such as cefoxitin, at concentrations that exert no cytotoxic effects tested on three mammalian cell lines. This study offers the first report on the mechanisms of action of novel antimony-based antimicrobial and presents the therapeutic potential of SbPh4ACO in combating both Gram-positive and Gram-negative bacterial pathogens while enhancing the efficacy of existing antibiotics.
Collapse
Affiliation(s)
- Tarosha Salpadoru
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kevin E. Pinks
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, Missouri, USA
| | - Jacob A. Lieberman
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kaitlyn Cotton
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Karen L. Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Nikolay Gerasimchuk
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, Missouri, USA
| | - Marianna A. Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
33
|
Shi Q, Zhao Y, Liu M, Shi F, Chen L, Xu X, Gao J, Zhao H, Lu F, Qin Y, Zhang Z, Lian M. Engineering Platelet Membrane-Coated Bimetallic MOFs as Biodegradable Nanozymes for Efficient Antibacterial Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309366. [PMID: 38150620 DOI: 10.1002/smll.202309366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/03/2023] [Indexed: 12/29/2023]
Abstract
Nanocatalytic-based wound therapeutics present a promising strategy for generating reactive oxygen species (ROS) to antipathogen to promote wound healing. However, the full clinical potential of these nanocatalysts is limited by their low reactivity, limited targeting ability, and poor biodegradability in the wound microenvironment. Herein, a bio-organic nanozyme is developed by encapsulating a FeZn-based bimetallic organic framework (MOF) (MIL-88B-Fe/Zn) in platelet membranes (PM@MIL-88B-Fe/Zn) for antimicrobial activity during wound healing. The introduction of Zn in MIL-88B-Fe/Zn modulates the electronic structure of Fe thus accelerating the catalytic kinetics of its peroxidase-like activity to catalytically generate powerful ROS. The platelet membrane coating of MOF innovatively enhanced the interaction between nanoparticles and the biological environment, further developing bacterial-targeted therapy with excellent antibacterial activity against both gram-positive and gram-negative bacteria. Furthermore, this nanozyme markedly suppressed the levels of inflammatory cytokines and promoted angiogenesis in vivo to effectively treat skin surface wounds and accelerate wound healing. PM@MIL-88B-Fe/Zn exhibited superior biodegradability, favourable metabolism and non-toxic accumulation, eliminating concerns regarding side effects from long-term exposure. The high catalytic reactivity, excellent targeting features, and biodegradability of these nanoenzymes developed in this study provide useful insights into the design and synthesis of nanocatalysts/nanozymes for practical biomedical applications.
Collapse
Affiliation(s)
- Qingying Shi
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ye Zhao
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin, 300300, China
| | - Meihan Liu
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin, 300300, China
| | - Feiyu Shi
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin, 300300, China
| | - Liuxing Chen
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin, 300300, China
| | - Xinru Xu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Jing Gao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Huabing Zhao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yongji Qin
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, China
| | - Zhen Zhang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Meiling Lian
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin, 300300, China
| |
Collapse
|
34
|
You H, Ma N, Li T, Yu Z, Gan N. Versatile Platinum Nanoparticles-Decorated Phage Nanozyme Integrating Recognition, Bacteriolysis, and Catalysis Capabilities for On-Site Detection of Foodborne Pathogenic Strains Vitality Based on Bioluminescence/Pressure Dual-Mode Bioassay. Anal Chem 2024; 96:8782-8790. [PMID: 38728110 DOI: 10.1021/acs.analchem.4c01192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Sensitive and on-site discrimination of live and dead foodborne pathogenic strains remains a significant challenge due to the lack of appropriate assay and signal probes. In this work, a versatile platinum nanoparticle-decorated phage nanozyme (P2@PtNPs) that integrated recognition, bacteriolysis, and catalysis was designed to establish the bioluminescence/pressure dual-mode bioassay for on-site determination of the vitality of foodborne pathogenic strains. Benefiting from the bacterial strain-level specificity of phage, the target Salmonella typhimurium (S.T) was specially captured to form sandwich complexes with P2@PtNPs on another phage-modified glass microbead (GM@P1). As the other part of the P2@PtNPs nanozyme, the introduced PtNPs could not only catalyze the decomposition of hydrogen peroxide to generate a significant oxygen pressure signal but also produce hydroxyl radicals around the target bacteria to enhance the bacteriolysis of phage and adenosine triphosphate release. It significantly improved the bioluminescence signal. The two signals corresponded to the total and live target bacteria counts, so the dead target could be easily calculated from the difference between the total and live target bacteria counts. Meanwhile, the vitality of S.T was realized according to the ratio of live and total S.T. Under optimal conditions, the application range of this proposed bioassay for bacterial vitality was 102-107 CFU/mL, with a limit of detections for total and live S.T of 30 CFU/mL and 40 CFU/mL, respectively. This work provides an innovative and versatile nanozyme signal probe for the on-site determination of bacterial vitality for food safety.
Collapse
Affiliation(s)
- Hang You
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Nannan Ma
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Tianhua Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Zhenzhong Yu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ning Gan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
35
|
Kohram M, Sanderson AE, Loui A, Thompson PV, Vashistha H, Shomar A, Oltvai ZN, Salman H. Nonlethal deleterious mutation-induced stress accelerates bacterial aging. Proc Natl Acad Sci U S A 2024; 121:e2316271121. [PMID: 38709929 PMCID: PMC11098108 DOI: 10.1073/pnas.2316271121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/29/2024] [Indexed: 05/08/2024] Open
Abstract
Random mutagenesis, including when it leads to loss of gene function, is a key mechanism enabling microorganisms' long-term adaptation to new environments. However, loss-of-function mutations are often deleterious, triggering, in turn, cellular stress and complex homeostatic stress responses, called "allostasis," to promote cell survival. Here, we characterize the differential impacts of 65 nonlethal, deleterious single-gene deletions on Escherichia coli growth in three different growth environments. Further assessments of select mutants, namely, those bearing single adenosine triphosphate (ATP) synthase subunit deletions, reveal that mutants display reorganized transcriptome profiles that reflect both the environment and the specific gene deletion. We also find that ATP synthase α-subunit deleted (ΔatpA) cells exhibit elevated metabolic rates while having slower growth compared to wild-type (wt) E. coli cells. At the single-cell level, compared to wt cells, individual ΔatpA cells display near normal proliferation profiles but enter a postreplicative state earlier and exhibit a distinct senescence phenotype. These results highlight the complex interplay between genomic diversity, adaptation, and stress response and uncover an "aging cost" to individual bacterial cells for maintaining population-level resilience to environmental and genetic stress; they also suggest potential bacteriostatic antibiotic targets and -as select human genetic diseases display highly similar phenotypes, - a bacterial origin of some human diseases.
Collapse
Affiliation(s)
- Maryam Kohram
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA15260
| | - Amy E. Sanderson
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA15260
| | - Alicia Loui
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA15260
| | | | - Harsh Vashistha
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA15260
| | - Aseel Shomar
- Department of Chemical Engineering, Technion–Israel Institute of Technology, Haifa32000, Israel
| | - Zoltán N. Oltvai
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA15260
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA15260
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY14627
| | - Hanna Salman
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA15260
| |
Collapse
|
36
|
Bennett HA, McAdorey A, Yan H. Staining Properties of Selected Commercial Fluorescent Dyes Toward B- and Z-DNA. J Fluoresc 2024; 34:1193-1205. [PMID: 37505363 DOI: 10.1007/s10895-023-03343-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
The properties of six commonly used, commercially available, fluorescent dyes were compared in staining right-handed B-DNA and left-handed Z-DNA. All showed different degree of fluorescence turn-on in the presence of B-DNA, but very little in the presence of Z-DNA. The optimal range of dye-DNA ratios of DNA was determined. While these dyes do not provide a turn-on type probe for Z-DNA, staining between B- and Z-DNA using dyes such as SYBR Green I was shown to be useful in tracking the kinetics of conformational changes between these two forms of DNA. Finally, SYBR Green I showed unique circular dichroism patterns in 4 M NaCl that change in the presence of double stranded DNA, both in the visible and UV range.
Collapse
Affiliation(s)
- Hayley-Ann Bennett
- Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| | - Alyssa McAdorey
- Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| | - Hongbin Yan
- Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|
37
|
Sun H, Zhou ZJ, Wen HQ, Chen FF, Pan Y, Tang Q, Yu HQ. Deciphering the Roles of Extracellular Polymeric Substances (EPS) in Shaping Disinfection Kinetics through Permanent Removal via Genetic Disruption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6552-6563. [PMID: 38571383 DOI: 10.1021/acs.est.4c01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Extracellular polymeric substances (EPS) ubiquitously encapsulate microbes and play crucial roles in various environmental processes. However, understanding their complex interactions with dynamic bacterial behaviors, especially during the disinfection process, remains very limited. In this work, we investigated the impact of EPS on bacterial disinfection kinetics by developing a permanent EPS removal strategy. We genetically disrupted the synthesis of exopolysaccharides, the structural components of EPS, in Pseudomonas aeruginosa, a well-known EPS-producing opportunistic pathogen found in diverse environments, creating an EPS-deficient strain. This method ensured a lasting absence of EPS while maintaining bacterial integrity and viability, allowing for real-time in situ investigations of the roles of EPS in disinfection. Our findings indicate that removing EPS from bacteria substantially lowered their susceptibility threshold to disinfectants such as ozone, chloramine B, and free chlorine. This removal also substantially accelerated disinfection kinetics, shortened the resistance time, and increased disinfection efficiency, thereby enhancing the overall bactericidal effect. The absence of EPS was found to enhance bacterial motility and increase bacterial cell vulnerability to disinfectants, resulting in greater membrane damage and intensified reactive oxygen species (ROS) production upon exposure to disinfectants. These insights highlight the central role of EPS in bacterial defenses and offer promising implications for developing more effective disinfection strategies.
Collapse
|
38
|
Minero GAS, Larsen PB, Hoppe ME, Meyer RL. Bacterial efflux pumps excrete SYTO™ dyes and lead to false-negative staining results. Analyst 2024; 149:2232-2235. [PMID: 38445898 DOI: 10.1039/d3an02112b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Multidrug efflux pumps excrete a range of small molecules from bacterial cells. In this study, we show that bacterial efflux pumps have affinity for a range of SYTO™ dyes that are commonly used to label bacteria. Efflux pump activity will there lead to false negative results from bacterial staining and SYTO™ dyes should be used with caution on live samples.
Collapse
Affiliation(s)
| | - Peter Bundgaard Larsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | - Marie Eline Hoppe
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | - Rikke Louise Meyer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
- Department of Biology, Aarhus University, Ny Munkegade 114, 8000 Aarhus, Denmark
| |
Collapse
|
39
|
Huang TT, Liu YN, Huang JX, Yan PP, Wang JJ, Cao YX, Cao L. Sodium sulfite-driven Helicobacter pylori eradication: Unraveling oxygen dynamics through multi-omics investigation. Biochem Pharmacol 2024; 222:116055. [PMID: 38354959 DOI: 10.1016/j.bcp.2024.116055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/05/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Due to the emergence and spread of multidrug resistance in Helicobacter pylori (H. pylori), its eradication has become difficult. Sodium sulfite (SS), a widely used food additive for ensuring food safety and storage, has been recognized as an effective nonbactericidal agent for H. pylori eradication. However, the mechanism by which H. pylori adapts and eventually succumbs under low- or no-oxygen conditions remains unknown. In this study, we aimed to evaluate the anti-H. pylori effect of SS and investigated the multiomics mechanism by which SS kills H. pylori. The results demonstrated that SS effectively eradicated H. pylori both in vitro and in vivo. H. pylori responds to the oxygen changes regulated by SS, downregulates the HcpE gene, which is responsible for redox homeostasis in bacteria, decreases the activities of enzymes related to oxidative stress, and disrupts the outer membrane structure, increasing susceptibility to oxidative stress. Furthermore, SS downregulates the content of cytochrome C in the microaerobic respiratory chain, leading to a sharp decrease in ATP synthesis. Consequently, the accumulation of triglycerides (TGs) in bacteria due to oxidative stress supports anaerobic respiration, meeting their energy requirements. The multifaceted death of H. pylori caused by SS does not result in drug resistance. Thus, screening of the redox homeostasis of HcpE as a new target for H. pylori infection treatment could lead to the development of a novel approach for H. pylori eradication therapy.
Collapse
Affiliation(s)
- Ting-Ting Huang
- Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Yan-Ni Liu
- Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Jin-Xian Huang
- Software Department, East China University of Technology, Nanchang 330032, Jiangxi, China
| | - Ping-Ping Yan
- Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Ji-Jing Wang
- Department of Medical Biophysics and Biochemistry, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Yong-Xiao Cao
- Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China.
| | - Lei Cao
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China.
| |
Collapse
|
40
|
Jahan K, Battaje RR, Pratap V, Ahire G, Pushpakaran A, Ashtam A, Bharatam PV, Panda D. Identification of ethyl-6-bromo-2((phenylthio)methyl)imidazo[1,2-a]pyridine-3-carboxylate as a narrow spectrum inhibitor of Streptococcus pneumoniae and its FtsZ. Eur J Med Chem 2024; 267:116196. [PMID: 38350359 DOI: 10.1016/j.ejmech.2024.116196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 02/15/2024]
Abstract
Filamentous temperature-sensitive mutant Z (FtsZ) is a key cell-division protein recognized as an important target for anti-bacterial drug discovery, especially in the context of rising multi-drug resistance. A respiratory pathogen, Streptococcus pneumoniae, is rapidly evolving antibiotic resistance, thus posing a clinical risk in the developing world. Inhibiting the conserved protein FtsZ, leading to the arrest of cell division, is an attractive alternative strategy for inhibiting S. pneumoniae. Previously, Vitamin K3 was identified as an FtsZ-targeting agent against S. pneumoniae. In the present work, docking studies were used to identify potential anti-FtsZ agents that bind to the Vitamin K3-binding region of a homology model generated for S. pneumoniae FtsZ. Compounds with imidazo[1,2-a]pyridine-3-carboxylate core were synthesized and screened for their anti-proliferative activity against S. pneumoniae. Remarkably, the hit compound IP-01 showed anti-bacterial action against S. pneumoniae without any activity on other bacteria. In S. pneumoniae, IP-01 showed similar inhibitory action on FtsZ and cell division as Vitamin K3. Sequence alignment identified three unique residues within S. pneumoniae FtsZ that IP-01 binds to, providing a structural basis for the observed specificity. IP-01 is one of the first narrow-spectrum agents identified against S. pneumoniae that targets FtsZ, and we present it as a promising lead for the design of narrow-spectrum anti-FtsZ anti-pneumococcal compounds.
Collapse
Affiliation(s)
- Kousar Jahan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, 160062, India.
| | - Rachana Rao Battaje
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Vidyadhar Pratap
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Ganesh Ahire
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, 160062, India.
| | - Athira Pushpakaran
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Anvesh Ashtam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, 160062, India.
| | - Dulal Panda
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, 160062, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
41
|
Cho J, Hong HW, Park K, Myung H, Yoon H. Unveiling the mechanism of bactericidal activity of a cecropin A-fused endolysin LNT113. Int J Biol Macromol 2024; 260:129493. [PMID: 38224804 DOI: 10.1016/j.ijbiomac.2024.129493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Endolysins are lytic enzymes produced by bacteriophages at the end of their lytic cycle and degrade the peptidoglycan layer of the bacterial cell wall. Thus, they have been extensively explored as a promising antibacterial agent to replace or supplement current antibiotics. Gram-negative bacteria, however, are prone to resist exogenous endolysins owing to their protective outer membrane. We previously engineered endolysin EC340, encoded by the Escherichia coli phage PBEC131, by substituting its seven amino acids and fusing an antimicrobial peptide cecropin A at its N-terminus. The engineered endolysin LNT113 exerted superior activity to its intrinsic form. This study investigated how cecropin A fusion facilitated the bactericidal activity of LNT113 toward Gram-negative bacteria. Cecropin A of LNT113 markedly increased the interaction with lipopolysaccharides, while the E. coli defective in the core oligosaccharide was less susceptible to endolysins, implicating the interaction between the core oligosaccharide and endolysins. In fact, E. coli with compromised lipid A construction was more vulnerable to LNT113 treatment, suggesting that the integrity of the lipid A layer was important to resist the internalization of LNT113 across the outer membrane. Cecropin A fusion further accelerated the inner membrane destabilization, thereby enabling LNT113 to deconstruct it promptly. Owing to the increased membrane permeability, LNT113 could inactivate some Gram-positive bacteria as well. This study demonstrates that cecropin A fusion is a feasible method to improve the membrane permeability of endolysins in both Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Jeongik Cho
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | | | - Kyungah Park
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Heejoon Myung
- LyseNTech Co., Ltd., Seongnam, South Korea; Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yongin, South Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea; Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea.
| |
Collapse
|
42
|
Rosciardi V, Bandelli D, Bassu G, Casu I, Baglioni P. Highly biocidal poly(vinyl alcohol)-hydantoin/starch hybrid gels: A "Trojan Horse" for Bacillus subtilis. J Colloid Interface Sci 2024; 657:788-798. [PMID: 38081113 DOI: 10.1016/j.jcis.2023.11.142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 01/02/2024]
Abstract
HYPOTHESIS Poly (vinyl alcohol) (PVA) cryogels can be functionalized with n-Halamines to confer biocidal features useful for their application as wound-dressing tools. Their efficacy can be boosted by stably embedding a polymeric bacterial food source (e.g., starch) in the gel matrix. The bioavailability of the food source lures bacteria inside the gel network via chemotactic mechanisms, promoting their contact with the biocidal functionalities and their consequent inactivation. EXPERIMENTS The synthesis of a novel hydantoin-functionalized PVA (H-PVA-hyd) is proposed. The newly synthesized H-PVA-hyd polymer was introduced in the formulation of H-PVA-based cryogels. To promote the cryogelation of the systems we exploited phase-separation mechanisms employing either a PVA carrying residual acetate groups (L-PVA) or starch as phase-segregating components. The permanence of the biocidal functionality after swelling was investigated via proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FT-IR) microscopy. The activated H-PVA-hyd cryogels have been tested against bacteria with amylolytic activity (Bacillus subtilis) and the outcomes were analyzed by direct observation via confocal laser scanning microscopy (CLSM). FINDINGS The cryogels containing starch resulted in being the most effective (up to 90% bacterial killing), despite carrying a lower amount of hydantoin groups than their starch-free counterparts, suggesting that their improved efficacy relies on a "Trojan Horse" type of mechanism.
Collapse
Affiliation(s)
- Vanessa Rosciardi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy; CSGI, Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy.
| | - Damiano Bandelli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy.
| | - Gavino Bassu
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy; CSGI, Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy.
| | - Ilaria Casu
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy.
| | - Piero Baglioni
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy; CSGI, Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy.
| |
Collapse
|
43
|
Conde A, Voces D, Medel-Plaza M, Perales C, de Ávila AI, Aguilera-Correa JJ, de Damborenea JJ, Esteban J, Domingo E, Arenas MA. Fluoride anodic films on stainless-steel fomites to reduce transmission infections. Appl Environ Microbiol 2024; 90:e0189223. [PMID: 38289132 PMCID: PMC10880592 DOI: 10.1128/aem.01892-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/05/2024] [Indexed: 02/22/2024] Open
Abstract
The growing concern arising from viruses with pandemic potential and multi-resistant bacteria responsible for hospital-acquired infections and outbreaks of food poisoning has led to an increased awareness of indirect contact transmission. This has resulted in a renewed interest to confer antimicrobial properties to commonly used metallic materials. The present work provides a full characterization of optimized fluoride anodic films grown in stainless steel 304L as well as their antimicrobial properties. Antibacterial tests show that the anodic film, composed mainly of chromium and iron fluorides, reduces the count and the percentage of the area covered by 50% and 87.7% for Pseudomonas aeruginosa and Stenotrophomonas maltophilia, respectively. Virologic tests show that the same treatment reduces the infectivity of the coronavirus HCoV-229E-GFP, in comparison with the non-anodized stainless steel 304L.IMPORTANCEThe importance of environmental surfaces as a source of infection is a topic of particular interest today, as many microorganisms can survive on these surfaces and infect humans through direct contact. Modification of these surfaces by anodizing has been shown to be useful for some alloys of medical interest. This work evaluates the effect of anodizing on stainless steel, a metal widely used in a variety of applications. According to the study, the fluoride anodic layers reduce the colonization of the surfaces by both bacteria and viruses, thus reducing the risk of acquiring infections from these sources.
Collapse
Affiliation(s)
- Ana Conde
- Centro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Madrid, Spain
- CIBERINFEC, CENTRO DE INVESTIGACIÓN BIOMEDICA EN RED Enfermedades Infecciosas, Madrid, Spain
| | - Daniel Voces
- Centro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Madrid, Spain
| | | | - Celia Perales
- IIS-Fundación Jiménez Díaz, IIS-FJD, Madrid, Spain
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
- CIBEREHD, CENTRO DE INVESTIGACIÓN BIOMEDICA EN RED Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Ana Isabel de Ávila
- CIBEREHD, CENTRO DE INVESTIGACIÓN BIOMEDICA EN RED Enfermedades Hepáticas y Digestivas, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CBMSO) (CSIC-UAM), Madrid, Spain
| | - John Jairo Aguilera-Correa
- CIBERINFEC, CENTRO DE INVESTIGACIÓN BIOMEDICA EN RED Enfermedades Infecciosas, Madrid, Spain
- Pathogénie mycobactérienne et nouvelles cibles thérapeutiques, Institut de Recherche en Infectiologie de Montpellier, Montpellier, France
| | - Juan Jose de Damborenea
- Centro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Madrid, Spain
- CIBERINFEC, CENTRO DE INVESTIGACIÓN BIOMEDICA EN RED Enfermedades Infecciosas, Madrid, Spain
| | - Jaime Esteban
- CIBERINFEC, CENTRO DE INVESTIGACIÓN BIOMEDICA EN RED Enfermedades Infecciosas, Madrid, Spain
- IIS-Fundación Jiménez Díaz, IIS-FJD, Madrid, Spain
| | - Esteban Domingo
- CIBEREHD, CENTRO DE INVESTIGACIÓN BIOMEDICA EN RED Enfermedades Hepáticas y Digestivas, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Maria Angeles Arenas
- Centro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Madrid, Spain
- CIBERINFEC, CENTRO DE INVESTIGACIÓN BIOMEDICA EN RED Enfermedades Infecciosas, Madrid, Spain
| |
Collapse
|
44
|
Servain-Viel S, Aknin ML, Domenichini S, Perlemuter G, Cassard AM, Schlecht-Louf G, Moal VLL. A flow cytometry method for safe detection of bacterial viability. Cytometry A 2024; 105:146-156. [PMID: 37786349 DOI: 10.1002/cyto.a.24794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 10/04/2023]
Abstract
Flow cytometry is a relevant tool to meet the requirements of academic and industrial research projects aimed at estimating the features of a bacterial population (e.g., quantity, viability, activity). One of the remaining challenges is now the safe assessment of bacterial viability while minimizing the risks inherent to existing protocols. In our core facility at the Paris-Saclay University, we have addressed this issue with two objectives: measuring bacterial viability in biological samples and preventing bacterial contamination and chemical exposure of the staff and cytometers used on the platform. Here, we report the development of a protocol achieving these two objectives, including a viability labeling step before bacteria fixation, which removes the risk of biological exposure, and the decrease of the use of reagents such as propidium iodide (PI), which are dangerous for health (CMR: carcinogenic, mutagenic, and reprotoxic). For this purpose, we looked for a non-CMR viability dye that can irreversibly label dead bacteria before fixation procedures and maintain intense fluorescence after further staining. We decided to test on the bacteria, eFluor Fixable Viability dyes, which are usually used on eukaryotic cells. Since the bacteria had size and granularity characteristics very similar to those associated with flow cytometry background signals, a step of bacterial DNA labeling with SYTO or DRAQ5 was necessarily added to differentiate them from the background. Three marker combinations (viability-DNA) were tested on LSR Fortessa and validated on pure bacterial populations (Gram+ , Gram- ) and polybacterial cultures. Any of the three methods can be used and adapted to the needs of each project and allow users to adapt the combination according to the configuration of their cytometer. Having been tested on six bacterial populations, validated on two cytometers, and repeated at least two times in each evaluated condition, we consider this method reliable in the context of these conditions. The reliability of the results obtained in flow cytometry was successfully validated by applying this protocol to confocal microscopy, permeabilization, and also to follow cultures over time. This flow cytometry protocol for measuring bacterial viability under safer conditions also opens the prospect of its use for further bacterial characterization.
Collapse
Affiliation(s)
- S Servain-Viel
- Plateforme CYM - UMS-IPSIT, Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, Orsay, France
| | - M-L Aknin
- Plateforme CYM - UMS-IPSIT, Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, Orsay, France
| | - S Domenichini
- Plateforme MIPSIT - UMS-IPSIT, Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, Orsay, France
| | - G Perlemuter
- Inflammation, Microbiome and Immunosurveillance, UMR-996, Université Paris-Saclay, Inserm, Orsay, France
- Service d'Hépato-Gastroentérologie Et Nutrition, Hôpital Antoine-Béclère, AP- HP Université Paris-Saclay, Clamart, France
| | - A-M Cassard
- Inflammation, Microbiome and Immunosurveillance, UMR-996, Université Paris-Saclay, Inserm, Orsay, France
| | - G Schlecht-Louf
- Inflammation, Microbiome and Immunosurveillance, UMR-996, Université Paris-Saclay, Inserm, Orsay, France
| | - V Lievin-Le Moal
- Inflammation, Microbiome and Immunosurveillance, UMR-996, Université Paris-Saclay, Inserm, Orsay, France
| |
Collapse
|
45
|
Huang LZY, Shaw ZL, Penman R, Cheeseman S, Truong VK, Higgins MJ, Caruso RA, Elbourne A. Cell Adhesion, Elasticity, and Rupture Forces Guide Microbial Cell Death on Nanostructured Antimicrobial Titanium Surfaces. ACS APPLIED BIO MATERIALS 2024; 7:344-361. [PMID: 38100088 DOI: 10.1021/acsabm.3c00943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Naturally occurring and synthetic nanostructured surfaces have been widely reported to resist microbial colonization. The majority of these studies have shown that both bacterial and fungal cells are killed upon contact and subsequent surface adhesion to such surfaces. This occurs because the presence of high-aspect-ratio structures can initiate a self-driven mechanical rupture of microbial cells during the surface adsorption process. While this technology has received a large amount of scientific and medical interest, one important question still remains: what factors drive microbial death on the surface? In this work, the interplay between microbial-surface adhesion, cell elasticity, cell membrane rupture forces, and cell lysis at the microbial-nanostructure biointerface during adsorptive processes was assessed using a combination of live confocal laser scanning microscopy, scanning electron microscopy, in situ amplitude atomic force microscopy, and single-cell force spectroscopy. Specifically, the adsorptive behavior and nanomechanical properties of live Gram-negative (Pseudomonas aeruginosa) and Gram-positive (methicillin-resistant Staphylococcus aureus) bacterial cells, as well as the fungal species Candida albicans and Cryptococcus neoformans, were assessed on unmodified and nanostructured titanium surfaces. Unmodified titanium and titanium surfaces with nanostructures were used as model substrates for investigation. For all microbial species, cell elasticity, rupture force, maximum cell-surface adhesion force, the work of adhesion, and the cell-surface tether behavior were compared to the relative cell death observed for each surface examined. For cells with a lower elastic modulus, lower force to rupture through the cell, and higher work of adhesion, the surfaces had a higher antimicrobial activity, supporting the proposed biocidal mode of action for nanostructured surfaces. This study provides direct quantification of the differences observed in the efficacy of nanostructured antimicrobial surface as a function of microbial species indicating that a universal, antimicrobial surface architecture may be hard to achieve.
Collapse
Affiliation(s)
- Louisa Z Y Huang
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Z L Shaw
- School of Engineering, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Rowan Penman
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Samuel Cheeseman
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
- Graeme Clark Institute, Faculty of Engineering and Information Technology & Faculty of Medicine, Dentistry and Health Services, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Vi Khanh Truong
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Michael J Higgins
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Rachel A Caruso
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Aaron Elbourne
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
46
|
Thorpe CL, Crawford R, Hand RJ, Radford JT, Corkhill CL, Pearce CI, Neeway JJ, Plymale AE, Kruger AA, Morris K, Boothman C, Lloyd JR. Microbial interactions with phosphorus containing glasses representative of vitrified radioactive waste. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132667. [PMID: 37839373 DOI: 10.1016/j.jhazmat.2023.132667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
The presence of phosphorus in borosilicate glass (at 0.1 - 1.3 mol% P2O5) and in iron-phosphate glass (at 53 mol% P2O5) stimulated the growth and metabolic activity of anaerobic bacteria in model systems. Dissolution of these phosphorus containing glasses was either inhibited or accelerated by microbial metabolic activity, depending on the solution chemistry and the glass composition. The breakdown of organic carbon to volatile fatty acids increased glass dissolution. The interaction of microbially reduced Fe(II) with phosphorus-containing glass under anoxic conditions decreased dissolution rates, whereas the interaction of Fe(III) with phosphorus-containing glass under oxic conditions increased glass dissolution. Phosphorus addition to borosilicate glasses did not significantly affect the microbial species present, however, the diversity of the microbial community was enhanced on the surface of the iron phosphate glass. Results demonstrate the potential for microbes to influence the geochemistry of radioactive waste disposal environments with implication for wasteform durability.
Collapse
Affiliation(s)
- C L Thorpe
- Immobilization Science Laboratory, Sir Robert Hadfield Building, University of Sheffield, S1 3JD, UK.
| | - R Crawford
- Immobilization Science Laboratory, Sir Robert Hadfield Building, University of Sheffield, S1 3JD, UK
| | - R J Hand
- Immobilization Science Laboratory, Sir Robert Hadfield Building, University of Sheffield, S1 3JD, UK
| | - J T Radford
- Immobilization Science Laboratory, Sir Robert Hadfield Building, University of Sheffield, S1 3JD, UK
| | - C L Corkhill
- Immobilization Science Laboratory, Sir Robert Hadfield Building, University of Sheffield, S1 3JD, UK; School of Earth Sciences, The University of Bristol, Bristol, UK
| | - C I Pearce
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - J J Neeway
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - A E Plymale
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - A A Kruger
- Office of River Protection, US Department of Energy, Richland, WA, USA
| | - K Morris
- Williamson Research Centre and Research Centre for Radwaste Disposal, Williamson Building, University of Manchester, 176 Oxford Road, M13 9PL, UK
| | - C Boothman
- Williamson Research Centre and Research Centre for Radwaste Disposal, Williamson Building, University of Manchester, 176 Oxford Road, M13 9PL, UK
| | - J R Lloyd
- Williamson Research Centre and Research Centre for Radwaste Disposal, Williamson Building, University of Manchester, 176 Oxford Road, M13 9PL, UK
| |
Collapse
|
47
|
Leong M, Parker CJ, Shaw ZL, Huang LZY, Nisbet DR, Daeneke T, Elbourne A, Cheeseman S. Metallic Gallium Droplets Exhibit Poor Antibacterial Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:332-341. [PMID: 38111109 DOI: 10.1021/acsami.3c15497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The rise of antibiotic resistance in pathogenic bacteria requires new therapeutics to be developed. Several metallic nanoparticles such as those made from silver, copper, and zinc have shown significant antibacterial activity, in part due to metal ion leaching. Ga3+ containing compounds have also been shown to have antibacterial properties. Accordingly, it is estimated that metallic Ga droplets may be antibacterial, and some studies to date have confirmed this. Here, multiple concentrations of Ga droplets were tested against the antibiotic resistant Gram-positive bacteria methicillin-resistantStaphylococcus aureus (MRSA) and the Gram-negative bacteria Pseudomonas aeruginosa (P. aeruginosa) Despite a high concentration (2 mg/mL), Ga droplets had only modest antibacterial activity against both bacteria after 24 h of interaction. Finally, we demonstrated that Ga droplets were easily functionalized through a galvanic replacement reaction to develop antibacterial particles with copper and silver demonstrating a total detectable reduction of MRSA and >96% reduction ofP. aeruginosa. Altogether, these results contradict previous literature and show that Ga droplets demonstrate no antibacterial activity at concentrations comparable to those of conventional antibiotics and well-established antibacterial nanomaterials and only modest antibacterial activity at very high concentrations. However, we demonstrate that their antibacterial activity can be easily enhanced by functionalization.
Collapse
Affiliation(s)
- Michelle Leong
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Caiden J Parker
- School of Engineering, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Z L Shaw
- School of Engineering, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Louisa Z Y Huang
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - David R Nisbet
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Carlton, Victoria 3053, Australia
- Graeme Clark Institute, Faculty of Engineering and Information Technology & Faculty of Medicine, Dentistry and Health Services, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Torben Daeneke
- School of Engineering, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Aaron Elbourne
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Samuel Cheeseman
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Carlton, Victoria 3053, Australia
- Graeme Clark Institute, Faculty of Engineering and Information Technology & Faculty of Medicine, Dentistry and Health Services, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
48
|
Ye C, Chen C, Feng M, Ou R, Yu X. Emerging contaminants in the water environment: Disinfection-induced viable but non-culturable waterborne pathogens. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132666. [PMID: 37793257 DOI: 10.1016/j.jhazmat.2023.132666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
Disinfection is essential for the control of waterborne pathogens (WPs), especially during the COVID-19 pandemic. WP can enter the viable but non-culturable (VBNC) state to evade disinfection, seriously threatening water safety. VBNC WPs should be considered as an emerging contaminant to ensure a higher level of safety of the water environment. Here, this study systematically reviewed the water disinfection methods that could induce WPs into the VBNC state, and clarified the risks of different species of VBNC WPs in the relevant water environment. The physicochemical and physiological properties of VBNC cells (e.g., morphology, physiology, and resuscitation potential) were then evaluated to better understand their potential health risks. In addition, the dominant detection methods of VBNC WPs were discussed, and real-time and label-free technologies were recommended for the study of VBNC WPs in the aquatic environment. The possible mechanisms of formation and persistence at the genetic level were highlighted. It concluded that the VBNC state has a deeper level of dormancy than the persistent state, which is associated with the general stress response and stringent response systems, and its persistence is also associated with the active efflux of harmful substances. Finally, the current shortcomings and research perspectives of VBNC bacteria were summarized. This review provides new insights into the characteristics, detection methods, persistence mechanisms, and potential health risks of VBNC WPs induced by water disinfection processes, and also serves as a basis for microbial risk control in the aquatic environment.
Collapse
Affiliation(s)
- Chengsong Ye
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Chenclan Chen
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen 361102, China
| | - Ranwen Ou
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen 361102, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen 361102, China.
| |
Collapse
|
49
|
Denis H, Werth R, Greuling A, Schwestka-Polly R, Stiesch M, Meyer-Kobbe V, Doll K. Antibacterial properties and abrasion-stability: Development of a novel silver-compound material for orthodontic bracket application. J Orofac Orthop 2024; 85:30-42. [PMID: 35849137 DOI: 10.1007/s00056-022-00405-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/24/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Bacteria-induced white spot lesions are a common side effect of modern orthodontic treatment. Therefore, there is a need for novel orthodontic bracket materials with antibacterial properties that also resist long-term abrasion. The aim of this study was to investigate the abrasion-stable antibacterial properties of a newly developed, thoroughly silver-infiltrated material for orthodontic bracket application in an in situ experiment. METHODS To generate the novel material, silver was vacuum-infiltrated into a sintered porous tungsten matrix. A tooth brushing simulation machine was used to perform abrasion equal to 2 years of tooth brushing. The material was characterized by energy dispersive X‑ray (EDX) analysis and roughness measurement. To test for antibacterial properties in situ, individual occlusal splints equipped with specimens were worn intraorally by 12 periodontal healthy patients for 48 h. After fluorescence staining, the quantitative biofilm volume and live/dead distribution of the initial biofilm formation were analyzed by confocal laser scanning microscopy (CLSM). RESULTS Silver was infiltrated homogeneously throughout the tungsten matrix. Toothbrush abrasion only slightly reduced the material's thickness similar to conventional stainless steel bracket material and did not alter surface roughness. The new silver-modified material showed significantly reduced biofilm accumulation in situ. The effect was maintained even after abrasion. CONCLUSION A promising, novel silver-infiltrated abrasion-stable material for use as orthodontic brackets, which also exhibit strong antibacterial properties on in situ grown oral biofilms, was developed. The strong antibacterial properties were maintained even after surface abrasion simulated with long-term toothbrushing.
Collapse
Affiliation(s)
- Hannah Denis
- Department of Dental Prosthetics and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625, Hannover, Germany
| | - Richard Werth
- Department of Dental Prosthetics and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Andreas Greuling
- Department of Dental Prosthetics and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Rainer Schwestka-Polly
- Department of Orthodontics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Meike Stiesch
- Department of Dental Prosthetics and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625, Hannover, Germany
| | - Viktoria Meyer-Kobbe
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625, Hannover, Germany.
- Department of Orthodontics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Katharina Doll
- Department of Dental Prosthetics and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625, Hannover, Germany.
| |
Collapse
|
50
|
Wang Y, Ma B, Zhao J, Tang Z, Li W, He C, Xia D, Linden KG, Yin R. Rapid Inactivation of Fungal Spores in Drinking Water by Far-UVC Photolysis of Free Chlorine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21876-21887. [PMID: 37978925 DOI: 10.1021/acs.est.3c05703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Effective and affordable disinfection technology is one key to achieving Sustainable Development Goal 6. In this work, we develop a process by integrating Far-UVC irradiation at 222 nm with free chlorine (UV222/chlorine) for rapid inactivation of the chlorine-resistant and opportunistic Aspergillus niger spores in drinking water. The UV222/chlorine process achieves a 5.0-log inactivation of the A. niger spores at a chlorine dosage of 3.0 mg L-1 and a UV fluence of 30 mJ cm-2 in deionized water, tap water, and surface water. The inactivation rate constant of the spores by the UV222/chlorine process is 0.55 min-1, which is 4.6-fold, 5.5-fold, and 1.8-fold, respectively, higher than those of the UV222 alone, chlorination alone, and the conventional UV254/chlorine process under comparable conditions. The more efficient inactivation by the UV222/chlorine process is mainly attributed to the enhanced generation of reactive chlorine species (e.g., 6.7 × 10-15 M of Cl•) instead of hydroxyl radicals from UV222 photolysis of chlorine, which is verified through both experiments and a kinetic model. We further demonstrate that UV222 photolysis damages the membrane integrity and benefits the penetration of chlorine and radicals into cells for inactivation. The merits of the UV222/chlorine process over the UV254/chlorine process also include the more effective inhibition of the photoreactivation of the spores after disinfection and the lower formation of chlorinated disinfection byproducts and toxicity.
Collapse
Affiliation(s)
- Yongyi Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Ben Ma
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Jing Zhao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Zhuoyun Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Wanxin Li
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215000, China
| | - Chun He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Karl G Linden
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| |
Collapse
|