1
|
Latour S. Human Immune Responses to Epstein-Barr Virus Highlighted by Immunodeficiencies. Annu Rev Immunol 2025; 43:723-749. [PMID: 40279309 DOI: 10.1146/annurev-immunol-082323-035455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Inborn errors of immunity (IEIs) represent unique in natura models that uncover key components of immunity in humans, in particular those that predispose to infections. Epstein-Barr virus (EBV) is one of the most common opportunistic infectious agents in humans and is responsible for several diseases, including infectious mononucleosis, nonmalignant and malignant lymphoproliferative disorders, hemophagocytic lymphohistiocytosis, and smooth muscle and epithelial tumors. For most individuals, EBV infection persists for life without pathological consequences. IEIs that do not predispose to EBV infection suggest that innate and humoral responses are not necessary or redundant for the immune response to EBV. IEIs associated with high susceptibility to EBV infection provide unequivocal genetic proof of the central role of CD8+ T cell responses in immunity to EBV. They also highlight the distinct steps and pathways required for, on the one hand, the effector cytotoxic functions of CD8+ T cells and, on the other hand, the expansion and maturation of cytotoxic CD8+ T cells.
Collapse
Affiliation(s)
- Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Paris, France;
- Institut Imagine, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
van der Horst HJ, Mutis T. Enhancing Fc-mediated effector functions of monoclonal antibodies: The example of HexaBodies. Immunol Rev 2024; 328:456-465. [PMID: 39275983 PMCID: PMC11659923 DOI: 10.1111/imr.13394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
Since the approval of the CD20-targeting monoclonal antibody (mAb) rituximab for the treatment of lymphoma in 1997, mAb therapy has significantly transformed cancer treatment. With over 90 FDA-approved mAbs for the treatment of various hematological and solid cancers, modern cancer treatment relies heavily on these therapies. The overwhelming success of mAbs as cancer therapeutics is attributed to their broad applicability, high safety profile, and precise targeting of cancer-associated surface antigens. Furthermore, mAbs can induce various anti-tumor cytotoxic effector mechanisms including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC), all of which are mediated via their fragment crystallizable (Fc) domain. Over the past decades, these effector mechanisms have been substantially improved through Fc domain engineering. In this review, we will outline the different approaches to enhance Fc effector functions via Fc engineering of mAbs, with a specific emphasis on the so-called "HexaBody" technology, which is designed to enhance the hexamerization of mAbs on the target cell surface, thereby inducing greater complement activation, CDC, and receptor clustering. The review will summarize the development, preclinical, and clinical testing of several HexaBodies designed for the treatment of B-cell malignancies, as well as the potential use of the HexaBody technology beyond Fc-mediated effector functions.
Collapse
Affiliation(s)
- Hilma J. van der Horst
- Department of HematologyCancer Center Amsterdam, Amsterdam UMC, VU Medical CenterAmsterdamThe Netherlands
- Present address:
Department of Fundamental Oncology, Ludwig Institute for Cancer ResearchUniversity of LausanneEpalingesSwitzerland
| | - Tuna Mutis
- Department of HematologyCancer Center Amsterdam, Amsterdam UMC, VU Medical CenterAmsterdamThe Netherlands
| |
Collapse
|
3
|
Barman P, Basu S, Goyal T, Sharma S, Siniah S, Tyagi R, Sharma K, Jindal AK, Pilania RK, Vignesh P, Dhaliwal M, Suri D, Rawat A, Singh S. Epstein-Barr virus-driven lymphoproliferation in inborn errors of immunity: a diagnostic and therapeutic challenge. Expert Rev Clin Immunol 2024; 20:1331-1346. [PMID: 39066572 DOI: 10.1080/1744666x.2024.2386427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
INTRODUCTION Inborn errors of immunity (IEI) are a group of genetically heterogeneous disorders with a wide-ranging clinical phenotype, varying from increased predisposition to infections to dysregulation of the immune system, including autoimmune phenomena, autoinflammatory disorders, lymphoproliferation, and malignancy. Lymphoproliferative disorder (LPD) in IEI refers to the nodal or extra-nodal and persistent or recurrent clonal or non-clonal proliferation of lymphoid cells in the clinical context of an inherited immunodeficiency or immune dysregulation. The Epstein-Barr virus (EBV) plays a significant role in the etiopathogenesis of LPD in IEIs. In patients with specific IEIs, lack of immune surveillance can lead to an uninhibited proliferation of EBV-infected cells that may result in chronic active EBV infection, hemophagocytic lymphohistiocytosis, and LPD, particularly lymphomas. AREAS COVERED We intend to discuss the pathogenesis, diagnosis, and treatment modalities directed toward EBV-associated LPD in patients with distinct IEIs. EXPERT OPINION EBV-driven lymphoproliferation in IEIs presents a diagnostic and therapeutic problem that necessitates a comprehensive understanding of host-pathogen interactions, immune dysregulation, and personalized treatment approaches. A multidisciplinary approach involving immunologists, hematologists, infectious disease specialists, and geneticists is paramount to addressing the diagnostic and therapeutic challenges posed by this intriguing yet formidable clinical entity.
Collapse
Affiliation(s)
- Prabal Barman
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Suprit Basu
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Taru Goyal
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Saniya Sharma
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sangeetha Siniah
- Pediatric Infectious Disease and Immunology Unit, Department of Paediatrics, Hospital Tunku, Azizah Women and Children Hospital, Kuala Lumpur, Malaysia
| | - Rahul Tyagi
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kaushal Sharma
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankur K Jindal
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh K Pilania
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pandiarajan Vignesh
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manpreet Dhaliwal
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepti Suri
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
4
|
Zhao W, Yao Y, Li Q, Xue Y, Gao X, Liu X, Zhang Q, Zheng J, Sun S. Molecular mechanism of co-stimulatory domains in promoting CAR-T cell anti-tumor efficacy. Biochem Pharmacol 2024; 227:116439. [PMID: 39032532 DOI: 10.1016/j.bcp.2024.116439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/28/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Chimeric antigen receptor (CAR)-engineered T cells have been defined as 'living drug'. Adding a co-stimulatory domain (CSD) has enhanced the anti-hematological effects of CAR-T cells, thereby elevating their viability for medicinal applications. Various CSDs have helped prepare CAR-T cells to study anti-tumor efficacy. Previous studies have described and summarized the anti-tumor efficacy of CAR-T cells obtained from different CSDs. However, the underlying molecular mechanisms by which different CSDs affect CAR-T function have been rarely reported. The role of CSDs in T cells has been significantly studied, but whether they can play a unique role as a part of the CAR structure remains undetermined. Here, we summarized the effects of CSDs on CAR-T signaling pathways based on the limited references and speculated the possible mechanism depending on the specific characteristics of CAR-T cells. This review will help understand the molecular mechanism of CSDs in CAR-T cells that exert different anti-tumor effects while providing potential guidance for further interventions to enhance anti-tumor efficacy in immunotherapy.
Collapse
Affiliation(s)
- Wanxin Zhao
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yizhou Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qihong Li
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Xue
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoge Gao
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiangye Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qing Zhang
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Shishuo Sun
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
5
|
Ansari AW, Jayakumar MN, Ahmad F, Venkatachalam T, Salameh L, Unnikannan H, Raheed T, Mohammed AK, Mahboub B, Al-Ramadi BK, Hamid Q, Steinhoff M, Hamoudi R. Azithromycin targets the CD27 pathway to modulate CD27hi T-lymphocyte expansion and type-1 effector phenotype. Front Immunol 2024; 15:1447625. [PMID: 39211048 PMCID: PMC11357905 DOI: 10.3389/fimmu.2024.1447625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024] Open
Abstract
Macrolide antibiotic azithromycin is widely used in clinical practice to treat respiratory tract infections and inflammatory diseases. However, its mechanism of action is not fully understood. Given the involvement of the CD27 pathway in the pathophysiology of various T-lymphocyte-mediated inflammatory, autoimmune, and lymphoproliferative diseases, we examined the impact of AZM on CD27 regulation and potential consequences on CD4+ and CD8+ T-cell phenotypes. Using cellular immunology approaches on healthy donors' peripheral blood mononuclear cells, we demonstrate AZM-mediated downregulation of surface CD27 expression as well as its extracellular release as soluble CD27. Notably, AZM-exposed CD27high (hi) cells were defective in their ability to expand compared to CD27intermediate (Int) and CD27low (lo) subsets. The defective CD27hi subset expansion was found to be associated with impaired cell proliferation and cell division. At the molecular level, the CD27hi subset exhibited lower mTOR activity than other subsets. Functionally, AZM treatment resulted in marked depletion of helper CD4+ (Th1) and cytotoxic CD8+ T-lymphocyte (Tc1)-associated CXCR3+CD27hi effector cells and inhibition of inflammatory cytokine IFN-γ production. These findings provide mechanistic insights on immunomodulatory features of AZM on T-lymphocyte by altering the CD27 pathway. From a clinical perspective, this study also sheds light on potential clinical benefits observed in patients on prophylactic AZM regimens against various respiratory diseases and opens avenues for future adjunct therapy against Th1- and Tc1-dominated inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Abdul Wahid Ansari
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Manju Nidagodu Jayakumar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Fareed Ahmad
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Thenmozhi Venkatachalam
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Laila Salameh
- Department of Pulmonary Medicine, Rashid Hospital, Dubai, United Arab Emirates
| | - Hema Unnikannan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Thesni Raheed
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Khader Mohammed
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Bassam Mahboub
- Department of Pulmonary Medicine, Rashid Hospital, Dubai, United Arab Emirates
| | - Basel K. Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Qutayba Hamid
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Martin Steinhoff
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- Weill Cornell Medicine-Qatar, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
- Biomedically Informed Artificial Intelligence Laboratory (BIMAI-Lab), University of Sharjah, Sharjah, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
6
|
Deepa Deva K, Vanitha Bose B, A P C. Benzoic acid, 4-hydroxy-, methyl ester from Smilax zeylanica Linn emerges as a potent inhibitor of CD27/CD70 signaling pathway. J Biomol Struct Dyn 2024:1-22. [PMID: 38353477 DOI: 10.1080/07391102.2024.2317993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2025]
Abstract
Smilax zeylanica Linn is explored as a natural solution to inhibit the CD27/CD70 interaction crucial in T and B cell responses. This plant-based approach offers a cost-effective and promising drug candidate for overcoming challenges associated with anti-CD27 antibodies. The plants were macerated in an ethanol solution, and the cytotoxicity of crude extracts was determined using the MTT assay on Vero cell lines. Preliminary antiviral activity against the lentivirus plasmid was analyzed using plaque reduction assays for both ethanol and methanol fractions of the ethanol extract. Additionally, the methanol fraction underwent phytochemical analysis via GC-MS. Molecular docking with the CD27 receptor was carried out using Autodock Vina, followed by a 100 ns Molecular dynamics simulation with Gromacs. The expression of CD27 in MCF-7 was assessed by flow cytometry using the compound benzoic acid, 4-hydroxy-, methyl ester. On Vero cell lines, the ethanol extract was nontoxic. Furthermore, at 100 µg/ml, the ethanol extract and its methanol fraction showed percentage inhibitions of 64% and 66% in the plaque reduction assay. In addition, 22 chemicals were identified by GC-MS analysis of the ethanol extract's methanol fraction. Molecular Docking benzoic acid, 4-hydroxy-methyl ester of methanol fraction revealed the highest binding affinity with CD27. Molecular dynamics simulations of benzoic acid, 4-hydroxy-, methyl ester showed structure stability for a duration of 100 nanoseconds, Moreover, at a dosage of 50 µg/ml, benzoic acid, 4-hydroxy-, methyl ester was found to reduce CD27 expression in MCF-7 cells by 73.65% using flow cytometry.
Collapse
Affiliation(s)
- K Deepa Deva
- Department of Biochemistry, School of Life Science (Ooty Campus), JSS Academy of Higher Education and Research, India
| | - B Vanitha Bose
- Department of Biochemistry, School of Life Science (Ooty Campus), JSS Academy of Higher Education and Research, India
| | - Cardiliya A P
- Department of Microbiology, School of Life Science (Ooty Campus), JSS Academy of Higher Education and Research, India
| |
Collapse
|
7
|
Jaeger-Ruckstuhl CA, Lo Y, Fulton E, Waltner OG, Shabaneh TB, Simon S, Muthuraman PV, Correnti CE, Newsom OJ, Engstrom IA, Kanaan SB, Bhise SS, Peralta JMC, Ruff R, Price JP, Stull SM, Stevens AR, Bugos G, Kluesner MG, Voillet V, Muhunthan V, Morrish F, Olson JM, Gottardo R, Sarthy JF, Henikoff S, Sullivan LB, Furlan SN, Riddell SR. Signaling via a CD27-TRAF2-SHP-1 axis during naive T cell activation promotes memory-associated gene regulatory networks. Immunity 2024; 57:287-302.e12. [PMID: 38354704 PMCID: PMC10967230 DOI: 10.1016/j.immuni.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/26/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024]
Abstract
The interaction of the tumor necrosis factor receptor (TNFR) family member CD27 on naive CD8+ T (Tn) cells with homotrimeric CD70 on antigen-presenting cells (APCs) is necessary for T cell memory fate determination. Here, we examined CD27 signaling during Tn cell activation and differentiation. In conjunction with T cell receptor (TCR) stimulation, ligation of CD27 by a synthetic trimeric CD70 ligand triggered CD27 internalization and degradation, suggesting active regulation of this signaling axis. Internalized CD27 recruited the signaling adaptor TRAF2 and the phosphatase SHP-1, thereby modulating TCR and CD28 signals. CD27-mediated modulation of TCR signals promoted transcription factor circuits that induced memory rather than effector associated gene programs, which are induced by CD28 costimulation. CD27-costimulated chimeric antigen receptor (CAR)-engineered T cells exhibited improved tumor control compared with CD28-costimulated CAR-T cells. Thus, CD27 signaling during Tn cell activation promotes memory properties with relevance to T cell immunotherapy.
Collapse
Affiliation(s)
- Carla A Jaeger-Ruckstuhl
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| | - Yun Lo
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Elena Fulton
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Olivia G Waltner
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Tamer B Shabaneh
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sylvain Simon
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Pranav V Muthuraman
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Colin E Correnti
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Oliver J Newsom
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ian A Engstrom
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sami B Kanaan
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Shruti S Bhise
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jobelle M C Peralta
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Raymond Ruff
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Jason P Price
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Sylvia M Stull
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Andrew R Stevens
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Grace Bugos
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Mitchell G Kluesner
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Valentin Voillet
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Vishaka Muhunthan
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Fionnuala Morrish
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - James M Olson
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Raphaël Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Statistics, University of Washington, Seattle, WA 98195, USA; Swiss Institute of Bioinformatics, University of Lausanne and Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Jay F Sarthy
- Seattle Children's Hospital, Seattle, WA 98105, USA; Basic Science Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Steven Henikoff
- Basic Science Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Lucas B Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Scott N Furlan
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Stanley R Riddell
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
8
|
Li S, Chen D, Guo H, Liu D, Yang C, Zhang R, Wang T, Zhang F, Bai X, Yang Y, Sun N, Zhang W, Zhang L, Zhao G, Peng L, Tu X, Tian W. The novel high-affinity humanized antibody IMM40H targets CD70, eliminates tumors via Fc-mediated effector functions, and interrupts CD70/CD27 signaling. Front Oncol 2023; 13:1240061. [PMID: 37849799 PMCID: PMC10578964 DOI: 10.3389/fonc.2023.1240061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/01/2023] [Indexed: 10/19/2023] Open
Abstract
Background A significant level of CD70 can be detected in various types of tumor tissues and CD27 is expressed on Treg cells, but CD70 expression is low in normal tissues. The interaction between CD70 and CD27 can stimulate the proliferation and survival of cancer cells and increase the level of soluble CD27, which is associated with poor prognosis in patients with lymphoma and certain solid tumors. Thus, it is a promising therapeutic target for the treatment of many major CD70+ cancer indications, including CD70+ lymphoma, RCC, NSCLC, HNSCC and OC. Methods IMM40H was obtained through hybridoma screening and antibody humanization techniques. IMM40H was evaluated for its binding, blocking, Fc-dependent effector functions and antitumor activity characteristics in various in vitro and in vivo systems. The safety and tolerability profile of IMM40H were evaluated through single and repeated administration in cynomolgus monkeys. Results In vitro cell-based assays demonstrated that IMM40H had considerably stronger CD70-binding affinity than competitor anti-CD70 antibodies, including cusatuzumab, which enabled it to block the interaction of between CD70 and CD27 more effectively. IMM40H also exhibited potent Fc-dependent effector functions (ADCC/CDC/ADCP), and could make a strong immune attack on tumor cells and enhance therapeutic efficacy. Preclinical findings showed that IMM40H had potent antitumor activity in multiple myeloma U266B1 xenograft model, and could eradicate subcutaneously established tumors at a low dose of 0.3 mg/kg. IMM40H (0.3 mg/kg) showed therapeutic effects faster than cusatuzumab (1 mg/kg). A strong synergistic effect between IMM01 (SIRPα-Fc fusion protein) and IMM40H was recorded in Burkitt's lymphoma Raji and renal carcinoma cell A498 tumor models. In cynomolgus monkeys, the highest non-severely toxic dose (HNSTD) for repeat-dose toxicity was up to 30 mg/kg, while the maximum tolerated dose (MTD) for single-dose toxicity was up to 100 mg/kg, confirming that IMM40H had a good safety and tolerability profile. Conclusion IMM40H is a high-affinity humanized IgG1 specifically targeting the CD70 monoclonal antibody with enhanced Fc-dependent activities. IMM40H has a dual mechanism of action: inducing cytotoxicity against CD70+ tumor cells via various effector functions (ADCC, ADCP and CDC) and obstructs the proliferation and activation of Tregs by inhibiting CD70/CD27 signaling.
Collapse
Affiliation(s)
- Song Li
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, China
| | - Dianze Chen
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, China
| | - Huiqin Guo
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, China
| | - Dandan Liu
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, China
| | - Chunmei Yang
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, China
| | - Ruliang Zhang
- Department of CMC, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, China
| | - Tianxiang Wang
- Department of CMC, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, China
| | - Fan Zhang
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, China
| | - Xing Bai
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, China
| | - Yanan Yang
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, China
| | - Nana Sun
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, China
| | - Wei Zhang
- Department of CMC, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, China
| | - Li Zhang
- Department of CMC, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, China
| | - Gui Zhao
- Department of CMC, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, China
| | - Liang Peng
- Department of CMC, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, China
| | - Xiaoping Tu
- Department of CMC, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, China
| | - Wenzhi Tian
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, China
- Department of CMC, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, China
| |
Collapse
|
9
|
Hipp AV, Bengsch B, Globig AM. Friend or Foe - Tc17 cell generation and current evidence for their importance in human disease. DISCOVERY IMMUNOLOGY 2023; 2:kyad010. [PMID: 38567057 PMCID: PMC10917240 DOI: 10.1093/discim/kyad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Accepted: 07/19/2023] [Indexed: 04/04/2024]
Abstract
The term Tc17 cells refers to interleukin 17 (IL-17)-producing CD8+ T cells. While IL-17 is an important mediator of mucosal defense, it is also centrally involved in driving the inflammatory response in immune-mediated diseases, such as psoriasis, multiple sclerosis, and inflammatory bowel disease. In this review, we aim to gather the current knowledge on the phenotypic and transcriptional profile, the in vitro and in vivo generation of Tc17 cells, and the evidence pointing towards a relevant role of Tc17 cells in human diseases such as infectious diseases, cancer, and immune-mediated diseases.
Collapse
Affiliation(s)
- Anna Veronika Hipp
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Bertram Bengsch
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Anna-Maria Globig
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| |
Collapse
|
10
|
Jiang B, Li Q, Zhang Z, Huang Y, Wu Y, Li X, Huang M, Huang Y, Jian J. Involvement of CD27 in innate and adaptive immunities of Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2023; 139:108923. [PMID: 37394017 DOI: 10.1016/j.fsi.2023.108923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/15/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
CD27 is a member of the TNF-receptor superfamily and plays various roles in immunities. However, the detailed information and mechanism of CD27 in bony fish immunity remain unclear. Therefore, in this research, certain interesting roles of CD27 in Nile tilapia (On-CD27) were determined. On-CD27 was largely expressed in the immune organs, head kidney, and spleen, and was sharply induced during bacterial infection. The in vitro tests suggested On-CD27 was involved in regulating inflammatory responses, activating immune-related signal pathways, and inducing apoptosis and pyroptosis progress. The scRNA data and in vivo experiments indicated that On-CD27 is mainly expressed in CD4+ T cells and involved in both innate and adaptive immunities. The present data provide a theoretical principle for further research on the mechanisms of CD27 in the innate and adaptive immunities of fish.
Collapse
Affiliation(s)
- Baijian Jiang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Qi Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Zhiqiang Zhang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yongxiong Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yiqin Wu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Xing Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Meiling Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yu Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| |
Collapse
|
11
|
Bowakim-Anta N, Acolty V, Azouz A, Yagita H, Leo O, Goriely S, Oldenhove G, Moser M. Chronic CD27-CD70 costimulation promotes type 1-specific polarization of effector Tregs. Front Immunol 2023; 14:1023064. [PMID: 36993956 PMCID: PMC10041113 DOI: 10.3389/fimmu.2023.1023064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
IntroductionMost T lymphocytes, including regulatory T cells, express the CD27 costimulatory receptor in steady state conditions. There is evidence that CD27 engagement on conventional T lymphocytes favors the development of Th1 and cytotoxic responses in mice and humans, but the impact on the regulatory lineage is unknown.MethodsIn this report, we examined the effect of constitutive CD27 engagement on both regulatory and conventional CD4+ T cells in vivo, in the absence of intentional antigenic stimulation.ResultsOur data show that both T cell subsets polarize into type 1 Tconvs or Tregs, characterized by cell activation, cytokine production, response to IFN-γ and CXCR3-dependent migration to inflammatory sites. Transfer experiments suggest that CD27 engagement triggers Treg activation in a cell autonomous fashion.ConclusionWe conclude that CD27 may regulate the development of Th1 immunity in peripheral tissues as well as the subsequent switch of the effector response into long-term memory.
Collapse
Affiliation(s)
- Natalia Bowakim-Anta
- Laboratory of Immunobiology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Valérie Acolty
- Laboratory of Immunobiology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Abdulkader Azouz
- Institute for Medical Immunology, Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Oberdan Leo
- Laboratory of Immunobiology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Stanislas Goriely
- Laboratory of Immunobiology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Institute for Medical Immunology, Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Guillaume Oldenhove
- Laboratory of Immunobiology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Muriel Moser
- Laboratory of Immunobiology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- *Correspondence: Muriel Moser,
| |
Collapse
|
12
|
Burton AM, Ligman BR, Kearney CA, Murray SE. SMAC mimetics inhibit human T cell proliferation and fail to augment type 1 cytokine responses. Cell Immunol 2023; 384:104674. [PMID: 36706656 PMCID: PMC10319349 DOI: 10.1016/j.cellimm.2023.104674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Second mitochondria-derived activator of caspases (SMAC) mimetics are small molecule drugs that mimic the activity of the endogenous SMAC protein. SMAC and SMAC mimetics antagonize inhibitors of apoptosis proteins (IAPs), thereby sensitizing cells to apoptosis. As such, SMAC mimetics are being tested in numerous clinical trials for cancer. In addition to their direct anti-cancer effect, it has been suggested that SMAC mimetics may activate T cells, thereby promoting anti-tumor immunity. Here, we tested the effect of three clinically relevant SMAC mimetics on activation of primary human T cells. As previously reported, SMAC mimetics killed tumor cells and activated non-canonical NF-κB in T cells at clinically relevant doses. Surprisingly, none of the SMAC mimetics augmented T cell responses. Rather, SMAC mimetics impaired T cell proliferation and decreased the proportion of IFNγ/TNFα double-producing T cells. These results question the assumption that SMAC mimetics are likely to boost anti-tumor immunity in cancer patients.
Collapse
Affiliation(s)
- Ashley M Burton
- Department of Biology, University of Portland, Portland, OR, United States
| | - Brittany R Ligman
- Department of Biology, University of Portland, Portland, OR, United States
| | - Claire A Kearney
- Department of Biology, University of Portland, Portland, OR, United States
| | - Susan E Murray
- Department of Biology, University of Portland, Portland, OR, United States; Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
13
|
Lu J, Chen G, Sorokina A, Nguyen T, Wallace T, Nguyen C, Dunn C, Wang S, Ellis S, Shi G, McKelvey J, Sharov A, Liu YT, Schneck J, Weng NP. Cytomegalovirus infection reduced CD70 expression, signaling and expansion of viral specific memory CD8+ T cells in healthy human adults. IMMUNITY & AGEING 2022; 19:54. [DOI: 10.1186/s12979-022-00307-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022]
Abstract
Abstract
Background
Cytomegalovirus (CMV) infection leads to effector memory CD8+ T cell expansion and is associated with immune dysfunction in older adults. However, the molecular alterations of CMV-specific CD8+ T cells in CMV infected healthy young and middle-aged adults has not been fully characterized.
Results
We compared CD8+ T cells specific for a CMV epitope (pp65495-503, NLV) and an influenza A virus (IAV) epitope (M158-66, GIL) from the same young and middle-aged healthy adults with serum positive for anti-CMV IgG. Compared to the IAV-specific CD8+ T cells, CMV-specific CD8+ T cells contained more differentiated effector memory (TEM and TEMRA) cells. Isolated CMV-specific central memory (TCM) but not naïve (TN) cells had a significant reduced activation-induced expansion in vitro compared to their IAV-specific counterparts. Furthermore, we found that CD70 expression was reduced in CMV-specific CD28+CD8+ TCM and that CD70+ TCM had better expansion in vitro than did CD70- TCM. Mechanistically, we showed that CD70 directly enhanced MAPK phosphorylation and CMV-specific CD8+ TCM cells had a reduced MAPK signaling upon activation. Lastly, we showed that age did not exacerbate reduced CD70 expression in CMV- specific CD8+ TCM cells.
Conclusion
Our findings showed that CMV infection causes mild expansion of CMV-NLV-specific CD8+ T cells, reduced CD70 expression and signaling, and proliferation of CMV-NLV-specific CD8+ TCM cells in young and middle-aged healthy adults and revealed an age-independent and CMV infection-specific impact on CD8+ memory T cells.
Collapse
|
14
|
Botticelli A, Pomati G, Cirillo A, Scagnoli S, Pisegna S, Chiavassa A, Rossi E, Schinzari G, Tortora G, Di Pietro FR, Cerbelli B, Di Filippo A, Amirhassankhani S, Scala A, Zizzari IG, Cortesi E, Tomao S, Nuti M, Mezi S, Marchetti P. The role of immune profile in predicting outcomes in cancer patients treated with immunotherapy. Front Immunol 2022; 13:974087. [PMID: 36405727 PMCID: PMC9671166 DOI: 10.3389/fimmu.2022.974087] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022] Open
Abstract
Background Despite the efficacy of immunotherapy, only a small percentage of patients achieves a long-term benefit in terms of overall survival. The aim of this study was to define an immune profile predicting the response to immune checkpoint inhibitors (ICIs). Methods Patients with advanced solid tumors, who underwent ICI treatment were enrolled in this prospective study. Blood samples were collected at the baseline. Thirteen soluble immune checkpoints, 3 soluble adhesion molecules, 5 chemokines and 11 cytokines were analyzed. The results were associated with oncological outcomes. Results Regardless of tumor type, patients with values of sTIM3, IFNα, IFNγ, IL1β, IL1α, IL12p70, MIP1β, IL13, sCD28, sGITR, sPDL1, IL10 and TNFα below the median had longer overall survival (p<0.05). By using cluster analysis and grouping the patients according to the trend of the molecules, two clusters were found. Cluster A had a significantly higher mean progression free survival (Cluster A=11.9 months vs Cluster B=3.5 months, p<0.01), a higher percentage of disease stability (Cluster A=34.5% vs. Cluster B=0%, p<0.05) and a lower percentage of disease progression (Cluster A=55.2% vs. Cluster B = 94.4%, p=0.04). Conclusion The combined evaluation of soluble molecules, rather than a single circulating factor, may be more suitable to represent the fitness of the immune system status in each patient and could allow to identify two different prognostic and predictive outcome profiles.
Collapse
Affiliation(s)
- Andrea Botticelli
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Giulia Pomati
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessio Cirillo
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
- *Correspondence: Alessio Cirillo,
| | - Simone Scagnoli
- Department of Medical and Surgical Sciences and Translational Medicine, University of Rome “Sapienza”, Rome, Italy
| | - Simona Pisegna
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Antonella Chiavassa
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Ernesto Rossi
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCSS), Rome, Italy
| | - Giovanni Schinzari
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCSS), Rome, Italy
- Medical Oncology, Universitá Cattolica del Sacro Cuore, Rome, Italy
| | - Giampaolo Tortora
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCSS), Rome, Italy
- Medical Oncology, Universitá Cattolica del Sacro Cuore, Rome, Italy
| | | | - Bruna Cerbelli
- Department of Medico-Surgical Sciences and Biotechnology, Polo Pontino, Sapienza University, Rome, Italy
| | - Alessandra Di Filippo
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome “Sapienza”, Rome, Italy
| | - Sasan Amirhassankhani
- Department of Urology, S. Orsola-Malpighi Hospital University of Bologna, Via Palagi, Bologna, Italy
| | - Alessandro Scala
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCSS), Rome, Italy
| | - Ilaria Grazia Zizzari
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome “Sapienza”, Rome, Italy
| | - Enrico Cortesi
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Silverio Tomao
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Marianna Nuti
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome “Sapienza”, Rome, Italy
| | - Silvia Mezi
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
15
|
Zhang X, Liu C, Xie Y, Hu Q, Chen Y, Li J. Identification and characterization of blocking nanobodies against human CD70. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1518-1527. [PMID: 36239354 PMCID: PMC9827822 DOI: 10.3724/abbs.2022141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
CD70 is overexpressed in a variety of solid and hematological tumors and plays a role in tumor proliferation and evasion of immune surveillance. Targeting and blocking its binding to the receptor CD27 have the potential to treat CD70-dependent tumors. To generate novel CD70 blocking agents, we screen a human CD70-immunized camel VHH phage display library and isolate two blocking nanobodies against human CD70 targeting different epitopes. Upon enrichment by three rounds of biopanning, two strategies are employed to identify CD70 blockers. One named affinity selection is used for detecting clones with CD70 binding by conventional PE-ELISA. However, no clone with a blocking effect is obtained from 188 enriched clones by this method. The alternative strategy named competitive selection is based on the inhibiting capacity of CD70-CD27 binding by enriched VHHs. By this method, two clones, Nb-2B3 and Nb-3B6, with strong blocking capacity are obtained from 20 enriched VHHs, suggesting the efficiency of this strategy. Furthermore, Nb-2B3 and Nb-3B6 specifically bind to CD70-positive SKOV3 and Raji cells at low concentrations. Meanwhile, Nb-2B3 has no competitive effect on the binding of Nb-3B6 to CD70, and vice versa, indicating that they target two different epitopes on CD70. Our data show that nanobodies Nb-2B3 and Nb-3B6 are potential attractive theranostic agents for CD70-expressing cancers.
Collapse
Affiliation(s)
- Xin Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic EngineeringCollege of Life Science and TechnologyXinjiang UniversityUrumqi830046China
| | - Chang Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic EngineeringCollege of Life Science and TechnologyXinjiang UniversityUrumqi830046China
| | - Yuan Xie
- Xinjiang Key Laboratory of Biological Resources and Genetic EngineeringCollege of Life Science and TechnologyXinjiang UniversityUrumqi830046China
| | - Qianqian Hu
- Xinjiang Key Laboratory of Biological Resources and Genetic EngineeringCollege of Life Science and TechnologyXinjiang UniversityUrumqi830046China
| | | | - Jiangwei Li
- Xinjiang Key Laboratory of Biological Resources and Genetic EngineeringCollege of Life Science and TechnologyXinjiang UniversityUrumqi830046China,Xinjiang Unique Mab BioTech Co.LtdUrumqi830002China,Correspondence: Tel: +86-18099167036;
| |
Collapse
|
16
|
Rojas JM, Mancho C, Louloudes-Lázaro A, Rodríguez-Martín D, Avia M, Moreno S, Sevilla N, Martín V. Adenoviral delivery of soluble ovine OX40L or CD70 costimulatory molecules improves adaptive immune responses to a model antigen in sheep. Front Cell Infect Microbiol 2022; 12:1010873. [PMID: 36211974 PMCID: PMC9538494 DOI: 10.3389/fcimb.2022.1010873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
The tumour necrosis factor superfamily OX40L and CD70 and their receptors are costimulatory signalling axes critical for adequate T and B cell activation in humans and mice. In this work we inoculated groups of sheep with human recombinant adenovirus type 5 (Ad) expressing Ovis aries (Oa)OX40L or OaCD70 or a control adenoviral vector to determine whether they could improve the immune response to the model antigen OVA. PBMCs and serum samples were obtained for analysis of the adaptive immune response to OVA at days 0, 15, 30 and 90 post-inoculation (pi). Recall responses to OVA were assessed at day 7 and 30 after the second antigen inoculation (pb) at day 90. Administration of these immunomodulatory molecules did not induce unspecific PBMC stimulation. While OaOX40L administration mainly increased TNF-α and IL-4 in PBMC at day 15 pi concomitantly with a slight increase in antibody titer and the number of IFN-γ producing cells, we detected greater effects on adaptive immunity after OaCD70 administration. AdOaCD70 inoculation improved antibody titers to OVA at days 30 and 90 pi, and increased anti-OVA-specific IgG-secreting B cell counts when compared to control. Moreover, higher IFN-γ production was detected on days 7 pi, 7 pb and 30 pb in PBMCs from this group. Phenotypic analysis of T cell activation showed an increase in effector CD8+ T cells (CD8+ CD62L- CD27-) at day 15 pi in AdOaCD70 group, concurrent with a decrease in early activated cells (CD8+ CD62L- CD27+). Moreover, recall anti-OVA CD8+ T cell responses were increased at 7 pb in the AdOaCD70 group. AdOaCD70 administration could therefore promote CD8+ T cell effector differentiation and long-term activity. In this work we characterized the in vivo adjuvant potential on the humoral and cellular immune response of OaOX40L and OaCD70 delivered by non-replicative adenovirus vectors using the model antigen OVA. We present data highlighting the potency of these molecules as veterinary vaccine adjuvant.
Collapse
Affiliation(s)
- José M. Rojas
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Carolina Mancho
- Departamento de Investigación Agroambiental, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), Madrid, Spain
| | - Andrés Louloudes-Lázaro
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Daniel Rodríguez-Martín
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Miguel Avia
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Santiago Moreno
- Departamento de Producción Animal, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), Madrid, Spain
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Verónica Martín
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
- *Correspondence: Verónica Martín,
| |
Collapse
|
17
|
Honikel MM, Olejniczak SH. Co-Stimulatory Receptor Signaling in CAR-T Cells. Biomolecules 2022; 12:biom12091303. [PMID: 36139142 PMCID: PMC9496564 DOI: 10.3390/biom12091303] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 01/28/2023] Open
Abstract
T cell engineering strategies have emerged as successful immunotherapeutic approaches for the treatment of human cancer. Chimeric Antigen Receptor T (CAR-T) cell therapy represents a prominent synthetic biology approach to re-direct the specificity of a patient's autologous T cells toward a desired tumor antigen. CAR-T therapy is currently FDA approved for the treatment of hematological malignancies, including subsets of B cell lymphoma, acute lymphoblastic leukemia (ALL) and multiple myeloma. Mechanistically, CAR-mediated recognition of a tumor antigen results in propagation of T cell activation signals, including a co-stimulatory signal, resulting in CAR-T cell activation, proliferation, evasion of apoptosis, and acquisition of effector functions. The importance of including a co-stimulatory domain in CARs was recognized following limited success of early iteration CAR-T cell designs lacking co-stimulation. Today, all CAR-T cells in clinical use contain either a CD28 or 4-1BB co-stimulatory domain. Preclinical investigations are exploring utility of including additional co-stimulatory molecules such as ICOS, OX40 and CD27 or various combinations of multiple co-stimulatory domains. Clinical and preclinical evidence implicates the co-stimulatory signal in several aspects of CAR-T cell therapy including response kinetics, persistence and durability, and toxicity profiles each of which impact the safety and anti-tumor efficacy of this immunotherapy. Herein we provide an overview of CAR-T cell co-stimulation by the prototypical receptors and discuss current and emerging strategies to modulate co-stimulatory signals to enhance CAR-T cell function.
Collapse
|
18
|
Siegmund D, Wagner J, Wajant H. TNF Receptor Associated Factor 2 (TRAF2) Signaling in Cancer. Cancers (Basel) 2022; 14:cancers14164055. [PMID: 36011046 PMCID: PMC9406534 DOI: 10.3390/cancers14164055] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Tumor necrosis factor (TNF) receptor associated factor-2 (TRAF2) is an intracellular adapter protein with E3 ligase activity, which interacts with a plethora of other signaling proteins, including plasma membrane receptors, kinases, phosphatases, other E3 ligases, and deubiquitinases. TRAF2 is involved in various cancer-relevant cellular processes, such as the activation of transcription factors of the NFκB family, stimulation of mitogen-activated protein (MAP) kinase cascades, endoplasmic reticulum (ER) stress signaling, autophagy, and the control of cell death programs. In a context-dependent manner, TRAF2 promotes tumor development but it can also act as a tumor suppressor. Based on a general description, how TRAF2 in concert with TRAF2-interacting proteins and other TRAF proteins act at the molecular level is discussed for its importance for tumor development and its potential usefulness as a therapeutic target in cancer therapy. Abstract Tumor necrosis factor (TNF) receptor associated factor-2 (TRAF2) has been originally identified as a protein interacting with TNF receptor 2 (TNFR2) but also binds to several other receptors of the TNF receptor superfamily (TNFRSF). TRAF2, often in concert with other members of the TRAF protein family, is involved in the activation of the classical NFκB pathway and the stimulation of various mitogen-activated protein (MAP) kinase cascades by TNFRSF receptors (TNFRs), but is also required to inhibit the alternative NFκB pathway. TRAF2 has also been implicated in endoplasmic reticulum (ER) stress signaling, the regulation of autophagy, and the control of cell death programs. TRAF2 fulfills its functions by acting as a scaffold, bringing together the E3 ligase cellular inhibitor of apoptosis-1 (cIAP1) and cIAP2 with their substrates and various regulatory proteins, e.g., deubiquitinases. Furthermore, TRAF2 can act as an E3 ligase by help of its N-terminal really interesting new gene (RING) domain. The finding that TRAF2 (but also several other members of the TRAF family) interacts with the latent membrane protein 1 (LMP1) oncogene of the Epstein–Barr virus (EBV) indicated early on that TRAF2 could play a role in the oncogenesis of B-cell malignancies and EBV-associated non-keratinizing nasopharyngeal carcinoma (NPC). TRAF2 can also act as an oncogene in solid tumors, e.g., in colon cancer by promoting Wnt/β-catenin signaling. Moreover, tumor cell-expressed TRAF2 has been identified as a major factor-limiting cancer cell killing by cytotoxic T-cells after immune checkpoint blockade. However, TRAF2 can also be context-dependent as a tumor suppressor, presumably by virtue of its inhibitory effect on the alternative NFκB pathway. For example, inactivating mutations of TRAF2 have been associated with tumor development, e.g., in multiple myeloma and mantle cell lymphoma. In this review, we summarize the various TRAF2-related signaling pathways and their relevance for the oncogenic and tumor suppressive activities of TRAF2. Particularly, we discuss currently emerging concepts to target TRAF2 for therapeutic purposes.
Collapse
|
19
|
Stem cell like memory T cells: A new paradigm in cancer immunotherapy. Clin Immunol 2022; 241:109078. [PMID: 35840054 DOI: 10.1016/j.clim.2022.109078] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 11/03/2022]
Abstract
Stem cell like memory T (TSCM) cells have emerged as the apex of memory T cell differentiation for their properties of self-renewal and replenishing progenies. With potent long-term persistence, proliferative capacity and antitumor activity, TSCM cells were thought to be the ideal candidate for cancer immunotherapies. Several strategies have been proposed, such as manipulations of cytokines, metabolic factors, signal pathways, and T cell receptor signal intensity, to induce more TSCM cells in vitro, in the hope that they could reach a clinical order of magnitude to provide more long-lasting and effective anti-tumor effects in vivo. In this review, we summarized the differentiation characteristics of TSCM cells and strategies to generate more TSCM cells. We focused on their roles and application in the cancer immunotherapy especially in adoptive cell transfer therapy and cancer therapeutic vaccines, and hopefully provided clues for future understanding and researches.
Collapse
|
20
|
Keshavarz-Fathi M, Sanati G, Sadr M, Mohebbi B, Ziaee V, Rezaei N. DNA Methylation of CD70 Promoter in Juvenile Systemic Lupus Erythematosus. Fetal Pediatr Pathol 2022; 41:58-67. [PMID: 32427516 DOI: 10.1080/15513815.2020.1764681] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Epigenetic alterations in pathogenesis of systemic lupus erythematosus (SLE) have gained more attention recently in adults. We assessed the methylation of CD70 promoter, a costimulatory molecule on T cells, in juvenile SLE (JSLE), and compared this to that found in controls and the literature of adult SLE patients. METHODS DNA methylation status was evaluated on peripheral blood from JSLE patients and healthy controls. RESULTS Twenty-five patients with JSLE and 24 healthy controls were compared. JSLE patients had lower unmethylated CpG islands compared to the control group (mean ± SD; 0.78 ± 0.42 vs 10503.80 ± 39796.95). However, the difference was not significant (P-value; 0.22). CONCLUSION Despite hypomethylation of CD70 gene promoter in CD4+ T-cells from adult patients with SLE, no statistically significant differences observed in patients with JSLE compared with healthy controls. This may suggest a mechanism different in JSLE patients than in adults.
Collapse
Affiliation(s)
- Mahsa Keshavarz-Fathi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Golshid Sanati
- Duke Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maryam Sadr
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Mohebbi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Ziaee
- Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| |
Collapse
|
21
|
Lino CNR, Ghosh S. Epstein-Barr Virus in Inborn Immunodeficiency-More Than Infection. Cancers (Basel) 2021; 13:cancers13194752. [PMID: 34638238 PMCID: PMC8507541 DOI: 10.3390/cancers13194752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Epstein–Barr Virus (EBV) is a common virus that is readily controlled by a healthy immune system and rarely causes serious problems in infected people. However, patients with certain genetic defects of their immune system might have difficulties controlling EBV and often develop severe and life-threatening conditions, such as severe inflammation and malignancies. In this review, we provide a summary of inherited immune diseases that lead to a high susceptibility to EBV infection and discuss how this infection is associated with cancer development. Abstract Epstein–Barr Virus (EBV) is a ubiquitous virus affecting more than 90% of the world’s population. Upon infection, it establishes latency in B cells. It is a rather benign virus for immune-competent individuals, in whom infections usually go unnoticed. Nevertheless, EBV has been extensively associated with tumorigenesis. Patients suffering from certain inborn errors of immunity are at high risk of developing malignancies, while infection in the majority of immune-competent individuals does not seem to lead to immune dysregulation. Herein, we discuss how inborn mutations in TNFRSF9, CD27, CD70, CORO1A, CTPS1, ITK, MAGT1, RASGRP1, STK4, CARMIL2, SH2D1A, and XIAP affect the development, differentiation, and function of key factors involved in the immunity against EBV, leading to increased susceptibility to lymphoproliferative disease and lymphoma.
Collapse
Affiliation(s)
| | - Sujal Ghosh
- Correspondence: ; Tel.: +49-211-811-6224; Fax: +49-211-811-6191
| |
Collapse
|
22
|
Ye Q, Singh S, Qian PR, Guo NL. Immune-Omics Networks of CD27, PD1, and PDL1 in Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:4296. [PMID: 34503105 PMCID: PMC8428355 DOI: 10.3390/cancers13174296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 01/03/2023] Open
Abstract
To date, there are no prognostic/predictive biomarkers to select chemotherapy, immunotherapy, and radiotherapy in individual non-small cell lung cancer (NSCLC) patients. Major immune-checkpoint inhibitors (ICIs) have more DNA copy number variations (CNV) than mutations in The Cancer Genome Atlas (TCGA) NSCLC tumors. Nevertheless, CNV-mediated dysregulated gene expression in NSCLC is not well understood. Integrated CNV and transcriptional profiles in NSCLC tumors (n = 371) were analyzed using Boolean implication networks for the identification of a multi-omics CD27, PD1, and PDL1 network, containing novel prognostic genes and proliferation genes. A 5-gene (EIF2AK3, F2RL3, FOSL1, SLC25A26, and SPP1) prognostic model was developed and validated for patient stratification (p < 0.02, Kaplan-Meier analyses) in NSCLC tumors (n = 1163). A total of 13 genes (COPA, CSE1L, EIF2B3, LSM3, MCM5, PMPCB, POLR1B, POLR2F, PSMC3, PSMD11, RPL32, RPS18, and SNRPE) had a significant impact on proliferation in 100% of the NSCLC cell lines in both CRISPR-Cas9 (n = 78) and RNA interference (RNAi) assays (n = 92). Multiple identified genes were associated with chemoresponse and radiotherapy response in NSCLC cell lines (n = 117) and patient tumors (n = 966). Repurposing drugs were discovered based on this immune-omics network to improve NSCLC treatment.
Collapse
Affiliation(s)
- Qing Ye
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (Q.Y.); (S.S.); (P.R.Q.)
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Salvi Singh
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (Q.Y.); (S.S.); (P.R.Q.)
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Peter R. Qian
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (Q.Y.); (S.S.); (P.R.Q.)
| | - Nancy Lan Guo
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (Q.Y.); (S.S.); (P.R.Q.)
- Department of Occupational and Environmental Health Sciences, School of Public Health, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
23
|
Liu W, Maben Z, Wang C, Lindquist KC, Li M, Rayannavar V, Lopez Armenta I, Nager A, Pascua E, Dominik PK, Oyen D, Wang H, Roach RC, Allan CM, Mosyak L, Chaparro-Riggers J. Structural delineation and phase-dependent activation of the costimulatory CD27:CD70 complex. J Biol Chem 2021; 297:101102. [PMID: 34419446 PMCID: PMC8484739 DOI: 10.1016/j.jbc.2021.101102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 11/17/2022] Open
Abstract
CD27 is a tumor necrosis factor (TNF) receptor, which stimulates lymphocytes and promotes their differentiation upon activation by TNF ligand CD70. Activation of the CD27 receptor provides a costimulatory signal to promote T cell, B cell, and NK cell activity to facilitate antitumor and anti-infection immunity. Aberrant increased and focused expression of CD70 on many tumor cells renders CD70 an attractive therapeutic target for direct tumor killing. However, despite their use as drug targets to treat cancers, the molecular basis and atomic details of CD27 and CD70 interaction remain elusive. Here we report the crystal structure of human CD27 in complex with human CD70. Analysis of our structure shows that CD70 adopts a classical TNF ligand homotrimeric assembly to engage CD27 receptors in a 3:3 stoichiometry. By combining structural and rational mutagenesis data with reported disease-correlated mutations, we identified the key amino acid residues of CD27 and CD70 that control this interaction. We also report increased potency for plate-bound CD70 constructs compared with solution-phase ligand in a functional activity to stimulate T-cells in vitro. These findings offer new mechanistic insight into this critical costimulatory interaction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Hui Wang
- Pfizer, Inc, La Jolla, California, USA
| | | | | | | | | |
Collapse
|
24
|
Laudanski K, Jihane H, Antalosky B, Ghani D, Phan U, Hernandez R, Okeke T, Wu J, Rader D, Susztak K. Unbiased Analysis of Temporal Changes in Immune Serum Markers in Acute COVID-19 Infection With Emphasis on Organ Failure, Anti-Viral Treatment, and Demographic Characteristics. Front Immunol 2021; 12:650465. [PMID: 34177897 PMCID: PMC8226183 DOI: 10.3389/fimmu.2021.650465] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/10/2021] [Indexed: 12/29/2022] Open
Abstract
Identification of novel immune biomarkers to gauge the underlying pathology and severity of COVID-19 has been difficult due to the lack of longitudinal studies. Here, we analyzed serum collected upon COVID-19 admission (t1), 48 hours (t2), and seven days later (t3) using Olink proteomics and correlated to clinical, demographics, and therapeutic data. Older age positively correlated with decorin, pleiotrophin, and TNFRS21 but inversely correlated with chemokine (both C-C and C-X-C type) ligands, monocyte attractant proteins (MCP) and TNFRS14. The burden of pre-existing conditions was positively correlated with MCP-4, CAIX, TWEAK, TNFRS12A, and PD-L2 levels. Individuals with COVID-19 demonstrated increased expression of several chemokines, most notably from the C-C and C-X-C family, as well as MCP-1 and MCP-3 early in the course of the disease. Similarly, deceased individuals had elevated MCP-1 and MCP-3 as well as Gal-9 serum levels. LAMP3, GZMB, and LAG3 at admission correlated with mortality. Only CX3CL13 and MCP-4 correlated positively with APACHE score and length of stay, while decorin, MUC-16 and TNFRSF21 with being admitted to the ICU. We also identified several organ-failure-specific immunological markers, including those for respiratory (IL-18, IL-15, Gal-9) or kidney failure (CD28, VEGF). Treatment with hydroxychloroquine, remdesivir, convalescent plasma, and steroids had a very limited effect on the serum variation of biomarkers. Our study identified several potential targets related to COVID-19 heterogeneity (MCP-1, MCP-3, MCP-4, TNFR superfamily members, and programmed death-ligand), suggesting a potential role of these molecules in the pathology of COVID-19.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, The University of Pennsylvania, Philadelphia, PA, United States
- Leonard Davis Institute for Healthcare Economics, The University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurology, The University of Pennsylvania, Philadelphia, PA, United States
| | - Hajj Jihane
- School of Nursing, Widener University, Philadelphia, PA, United States
| | - Brook Antalosky
- College of Arts and Sciences, Drexel University, Philadelphia, PA, United States
| | - Danyal Ghani
- College of Arts and Sciences, Drexel University, Philadelphia, PA, United States
| | - Uyen Phan
- College of Arts and Sciences, Drexel University, Philadelphia, PA, United States
| | - Ruth Hernandez
- College of Arts and Sciences, Drexel University, Philadelphia, PA, United States
| | - Tony Okeke
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, United States
| | - Junnan Wu
- Department of Genetics, The University of Pennsylvania, Philadelphia, PA, United States
- Department of Nephrology, The University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel Rader
- Department of Genetics, The University of Pennsylvania, Philadelphia, PA, United States
- Department of Nephrology, The University of Pennsylvania, Philadelphia, PA, United States
| | - Katalin Susztak
- Department of Genetics, The University of Pennsylvania, Philadelphia, PA, United States
- Department of Nephrology, The University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
25
|
Narimatsu A, Hattori T, Usui Y, Ueno H, Funaki T, Komatsu H, Nakagawa H, Akiba H, Goto H. Blockade of costimulatory CD27/CD70 pathway promotes corneal allograft survival. Exp Eye Res 2020; 199:108190. [PMID: 32798537 DOI: 10.1016/j.exer.2020.108190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/26/2020] [Accepted: 08/07/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE To determine whether the CD27/CD70 pathway plays a significant role in corneal allograft rejection by investigating the effect of blocking the CD27/CD70 pathway by anti-CD70 antibody on corneal allograft survival. METHODS Orthotopic penetrating keratoplasty was performed using C57BL/6 donor grafts and BALB/c recipients. Expression of CD27 and CD70 on rejected cornea was examined by immunohistochemistry. Corneal transplant recipients received intraperitoneal injection of anti-CD70 antibody (FR70) or control rat IgG. Alloreactivity was measured by mixed lymphoid reaction (MLR) in recipients administered control rat IgG and those administered anti-CD70 antibody. Corneal expression of IFN-γ and IL-12 was also examined in both groups. Graft opacity was assessed over an 8-week period and graft survival was evaluated using Kaplan-Meier survival curves. Proportion of CD4+CD44+ memory T cells in lymph nodes was measured by flow cytometry. RESULTS CD4+CD27+ cells and CD11c+CD70+ cells were present in rejected cornea. Anti-CD70 antibody administration suppressed alloreactivity in corneal allograft recipients, and inhibited IFN-γ expression in recipient cornea (p < 0.05). Anti-CD70 antibody suppressed opacity score of recipient cornea and prolonged corneal allograft survival (p < 0.05). Proportion of CD4+CD44+ memory T cells in recipient lymph nodes was reduced by anti-CD70 antibody treatment. CONCLUSION The CD27/CD70 pathway plays a significant role in corneal allograft rejection by initiating alloreactive Th1 cells and preserving memory T cells. Anti-CD70 antibody administration prolongs corneal allograft survival indicating the potential therapeutic effect of CD27/CD70 pathway blockade on corneal allograft rejection.
Collapse
Affiliation(s)
- Akitomo Narimatsu
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Takaaki Hattori
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Yoshihiko Usui
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Hiroki Ueno
- Department of Immunology, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Toshinari Funaki
- Department of Ophthalmology, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan
| | - Hiroyuki Komatsu
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Hayate Nakagawa
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Hisaya Akiba
- Department of Immunology, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan
| | - Hiroshi Goto
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| |
Collapse
|
26
|
Dwivedi R, Pandey R, Chandra S, Mehrotra D. Apoptosis and genes involved in oral cancer - a comprehensive review. Oncol Rev 2020; 14:472. [PMID: 32685111 PMCID: PMC7365992 DOI: 10.4081/oncol.2020.472] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/20/2020] [Indexed: 12/24/2022] Open
Abstract
Oral cancers needs relentless research due to high mortality and morbidity associated with it. Despite of the comparable ease in accessibility to these sites, more than 2/3rd cases are diagnosed in advanced stages. Molecular/genetic studies augment clinical assessment, classification and prediction of malignant potential of oral lesions, thereby reducing its incidence and increasing the scope for early diagnosis and treatment of oral cancers. Herein we aim to review the role of apoptosis and genes associated with it in oral cancer development in order to aid in early diagnosis, prediction of malignant potential and evaluation of possible treatment targets in oral cancer. An internet-based search was done with key words apoptosis, genes, mutations, targets and analysis to extract 72 articles after considering inclusion and exclusion criteria. The knowledge of genetics and genomics of oral cancer is of utmost need in order to stop the rising prevalence of oral cancer. Translational approach and interventions at the early stage of oral cancer, targeted destruction of cancerous cells by silencing or promoting involved genes should be the ideal intervention.
Collapse
Affiliation(s)
- Ruby Dwivedi
- DHR-MRU & Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Rahul Pandey
- DHR-MRU & Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Shaleen Chandra
- DHR-MRU & Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Divya Mehrotra
- DHR-MRU & Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
27
|
Activation of OX40 and CD27 Costimulatory Signalling in Sheep through Recombinant Ovine Ligands. Vaccines (Basel) 2020; 8:vaccines8020333. [PMID: 32580486 PMCID: PMC7350415 DOI: 10.3390/vaccines8020333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/08/2020] [Accepted: 06/18/2020] [Indexed: 01/22/2023] Open
Abstract
Members of the tumour necrosis factor (TNF) superfamily OX40L and CD70 and their receptors are costimulating signalling axes critical for adequate T cell activation in humans and mice but characterisation of these molecules in other species including ruminants is lacking. Here we cloned and expressed the predicted ovine orthologues of the receptors OX40 and CD27, as well as soluble recombinant forms of their potential ovine ligands, OaOX40L and OaCD70. Using biochemical and immunofluorescence analyses, we show that both signalling axes are functional in sheep. We show that oligomeric recombinant ligand constructs are able to induce signalling through their receptors on transfected cells. Recombinant defective human adenoviruses were constructed to express the soluble forms of OaOX40L and OaCD70. Both proteins were detected in the supernatant of adenovirus-infected cells and shown to activate NF-κB signalling pathway through their cognate receptor. These adenovirus-secreted OaOX40L and OaCD70 forms could also activate ovine T cell proliferation and enhance IFN-γ production in CD4+ and CD8+ T cells. Altogether, this study provides the first characterisation of the ovine costimulatory OX40L-OX40 and CD70-CD27 signalling axes, and indicates that their activation in vivo may be useful to enhance vaccination-induced immune responses in sheep and other ruminants.
Collapse
|
28
|
Oshikawa Y, Makino T, Nakayama M, Sawamura S, Makino K, Kajihara I, Aoi J, Masuguchi S, Fukushima S, Ihn H. Increased CD27 expression in the skins and sera of patients with systemic sclerosis. Intractable Rare Dis Res 2020; 9:99-103. [PMID: 32494557 PMCID: PMC7263984 DOI: 10.5582/irdr.2020.03017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Systemic sclerosis (SSc) is a kind of collagen disease and has an acquired autoimmune activation as represented by the production of autoantibodies. CD27 is a type I glycoprotein and a member of the tumor necrosis factor receptor family. It binds to the CD70 ligand, CD27-CD70 signaling is implicated in the development of various autoimmune diseases, but its role in the regulation of extracellular matrix expression and its contribution to the phenotype of SSc both remain to be elucidated. This study aimed to investigate the associations between CD27 and SSc in the skins and sera. Immunohistochemistry were performed to determine the expression of CD27 in the skin. Enzyme-linked immunosorbent assays were done to the sera of the 54 patients with SSc and 23 normal healthy controls. CD27 expression was significantly increased in the affected regions of the skin and the sera of patients of SSc. Thereafter, we evaluated the correlation between the serum soluble CD27 (sCD27) levels and the clinical symptoms. The study subjects with increased sCD27 levels had a significantly higher ratio of dcSSc and to showed higher modified Rodnan's total skin thickness scores (mRSS) than those with normal sCD27 levels. These results suggest that sCD27 levels might be useful for diagnosis of SSc and its severity.
Collapse
Affiliation(s)
- Yuka Oshikawa
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takamitsu Makino
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Miri Nakayama
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Soichiro Sawamura
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Katsunari Makino
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ikko Kajihara
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun Aoi
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinichi Masuguchi
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hironobu Ihn
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
29
|
Jaeger-Ruckstuhl CA, Hinterbrandner M, Höpner S, Correnti CE, Lüthi U, Friedli O, Freigang S, Al Sayed MF, Bührer ED, Amrein MA, Schürch CM, Radpour R, Riether C, Ochsenbein AF. TNIK signaling imprints CD8 + T cell memory formation early after priming. Nat Commun 2020; 11:1632. [PMID: 32242021 PMCID: PMC7118140 DOI: 10.1038/s41467-020-15413-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/04/2020] [Indexed: 01/15/2023] Open
Abstract
Co-stimulatory signals, cytokines and transcription factors regulate the balance between effector and memory cell differentiation during T cell activation. Here, we analyse the role of the TRAF2-/NCK-interacting kinase (TNIK), a signaling molecule downstream of the tumor necrosis factor superfamily receptors such as CD27, in the regulation of CD8+ T cell fate during acute infection with lymphocytic choriomeningitis virus. Priming of CD8+ T cells induces a TNIK-dependent nuclear translocation of β-catenin with consecutive Wnt pathway activation. TNIK-deficiency during T cell activation results in enhanced differentiation towards effector cells, glycolysis and apoptosis. TNIK signaling enriches for memory precursors by favouring symmetric over asymmetric cell division. This enlarges the pool of memory CD8+ T cells and increases their capacity to expand after re-infection in serial re-transplantation experiments. These findings reveal that TNIK is an important regulator of effector and memory T cell differentiation and induces a population of stem cell-like memory T cells. Coordinate expression of multiple factors play critical roles in the regulation between effector and memory CD8+ T cell differentiation. Here the authors show upon acute viral infection TNIK is critically required as a regulator of effector and memory T cell differentiation.
Collapse
Affiliation(s)
- Carla A Jaeger-Ruckstuhl
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, 3012, Switzerland.,Program in Immunology, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, WA, 98109, USA
| | - Magdalena Hinterbrandner
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, 3012, Switzerland
| | - Sabine Höpner
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland
| | - Colin E Correnti
- Clinical Research Division, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, WA, 98109, USA
| | - Ursina Lüthi
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland
| | - Olivier Friedli
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, 3012, Switzerland.,Institute of Pathology, University of Bern, Bern, 3008, Switzerland
| | - Stefan Freigang
- Institute of Pathology, University of Bern, Bern, 3008, Switzerland
| | - Mohamad F Al Sayed
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, 3012, Switzerland
| | - Elias D Bührer
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, 3012, Switzerland
| | - Michael A Amrein
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, 3012, Switzerland
| | - Christian M Schürch
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland.,Institute of Pathology, University of Bern, Bern, 3008, Switzerland
| | - Ramin Radpour
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland
| | - Carsten Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland
| | - Adrian F Ochsenbein
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland. .,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland.
| |
Collapse
|
30
|
Latour S, Fischer A. Signaling pathways involved in the T-cell-mediated immunity against Epstein-Barr virus: Lessons from genetic diseases. Immunol Rev 2020; 291:174-189. [PMID: 31402499 DOI: 10.1111/imr.12791] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022]
Abstract
Primary immunodeficiencies (PIDs) provide researchers with unique models to understand in vivo immune responses in general and immunity to infections in particular. In humans, impaired immune control of Epstein-Barr virus (EBV) infection is associated with the occurrence of several different immunopathologic conditions; these include non-malignant and malignant B-cell lymphoproliferative disorders, hemophagocytic lymphohistiocytosis (HLH), a severe inflammatory condition, and a chronic acute EBV infection of T cells. Studies of PIDs associated with a predisposition to develop severe, chronic EBV infections have led to the identification of key components of immunity to EBV - notably the central role of T-cell expansion and its regulation in the pathophysiology of EBV-associated diseases. On one hand, the defective expansion of EBV-specific CD8 T cells results from mutations in genes involved in T-cell activation (such as RASGRP1, MAGT1, and ITK), DNA metabolism (CTPS1) or co-stimulatory pathways (CD70, CD27, and TNFSFR9 (also known as CD137/4-1BB)) leads to impaired elimination of proliferating EBV-infected B cells and the occurrence of lymphoma. On the other hand, protracted T-cell expansion and activation after the defective killing of EBV-infected B cells is caused by genetic defects in the components of the lytic granule exocytosis pathway or in the small adapter protein SH2D1A (also known as SAP), a key activator of T- and NK cell-cytotoxicity. In this setting, the persistence of EBV-infected cells results in HLH, a condition characterized by unleashed T-cell and macrophage activation. Moreover, genetic defects causing selective vulnerability to EBV infection have highlighted the role of co-receptor molecules (CD27, CD137, and SLAM-R) selectively involved in immune responses against infected B cells via specific T-B cell interactions.
Collapse
Affiliation(s)
- Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institut, Paris, France
| | - Alain Fischer
- University Paris Descartes Sorbonne Paris Cité, Imagine Institut, Paris, France.,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.,Collège de France, Paris, France.,Inserm UMR 1163, Paris, France
| |
Collapse
|
31
|
Recognition of TRAIP with TRAFs: Current understanding and associated diseases. Int J Biochem Cell Biol 2019; 115:105589. [DOI: 10.1016/j.biocel.2019.105589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/31/2019] [Accepted: 08/13/2019] [Indexed: 01/02/2023]
|
32
|
Xia H, Li Y, Wang Z, Chen W, Cheng J, Yu D, Lu Y. Expression and functional analysis of tumor necrosis factor receptor (TNFR)-associated factor 5 from Nile tilapia, Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2019; 93:781-788. [PMID: 31326588 DOI: 10.1016/j.fsi.2019.07.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Nile tilapia (Oreochromis niloticus) is a pivotal economic fish that has been plagued by Streptococcus infections. Tumor necrosis factor receptor-associated factor 5 (TRAF5) is a crucial adaptor molecule, which can trigger downstream signaling cascades involved in immune pathway. In this study, Nile tilapia TRAF5 coding sequence (named OnTRAF5) was obtained, which contained typical functional domains, such as RING, zinc finger, coiled-coil and MATH domain. Different from other TRAF molecules, OnTRAF5 had shown relatively low identify with its homolog, and it was clustered into other teleost TRAF5 proteins. qRT-PCR was used to analysis the expression level of OnTRAF5 in gill, skin, muscle, head kidney, heart, intestine, thymus, liver, spleen and brain, In healthy Nile tilapia, the expression level of OnTRAF5 in intestine, gill and spleen were significantly higher than other tissues. While under Streptococcus agalactiae infection, the expression level of OnTRAF5 was improved significantly in all detected organs. Additionally, over-expression WT OnTRAF5 activated NF-κB, deletion of RING or zinc finger caused the activity impaired. In conclusion, OnTRAF5 participate in anti-bacteria immune response and is crucial for the signaling transduction.
Collapse
Affiliation(s)
- Hongli Xia
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Yuan Li
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Zhiwen Wang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Wenjie Chen
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430000, China
| | - Jun Cheng
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Dapeng Yu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Yishan Lu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China.
| |
Collapse
|
33
|
Bourque J, Hawiger D. Immunomodulatory Bonds of the Partnership between Dendritic Cells and T Cells. Crit Rev Immunol 2019; 38:379-401. [PMID: 30792568 DOI: 10.1615/critrevimmunol.2018026790] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
By acquiring, processing, and presenting both foreign and self-antigens, dendritic cells (DCs) initiate T cell activation that is shaped through the immunomodulatory functions of a variety of cell-membrane-bound molecules including BTLA-HVEM, CD40-CD40L, CTLA-4-CD80/CD86, CD70-CD27, ICOS-ICOS-L, OX40-OX40L, and PD-L1-PD-1, as well as several key cytokines and enzymes such as interleukin-6 (IL-6), IL-12, IL-23, IL-27, transforming growth factor-beta 1 (TGF-β1), retinaldehyde dehydrogenase (Raldh), and indoleamine 2,3-dioxygenase (IDO). Some of these distinct immunomodulatory signals are mediated by specific subsets of DCs, therefore contributing to the functional specialization of DCs in the priming and regulation of immune responses. In addition to responding to the DC-mediated signals, T cells can reciprocally modulate the immunomodulatory capacities of DCs, further refining immune responses. Here, we review recent studies, particularly in experimental mouse systems, that have delineated the integrated mechanisms of crucial immunomodulatory pathways that enable specific populations of DCs and T cells to work intimately together as single functional units that are indispensable for the maintenance of immune homeostasis.
Collapse
Affiliation(s)
- Jessica Bourque
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, St. Louis, MO, USA
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
34
|
Remedios KA, Zirak B, Sandoval PM, Lowe MM, Boda D, Henley E, Bhattrai S, Scharschmidt TC, Liao W, Naik HB, Rosenblum MD. The TNFRSF members CD27 and OX40 coordinately limit T H17 differentiation in regulatory T cells. Sci Immunol 2019; 3:3/30/eaau2042. [PMID: 30578350 DOI: 10.1126/sciimmunol.aau2042] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022]
Abstract
Regulatory T cells (Tregs) are closely related to TH17 cells and use aspects of the TH17-differentiation program for optimal immune regulation. In several chronic inflammatory human diseases, Tregs express IL-17A, suggesting that dysregulation of TH17-associated pathways in Tregs may result in either loss of suppressive function and/or conversion into pathogenic cells. The pathways that regulate the TH17 program in Tregs are poorly understood. We have identified two TNF receptor superfamily (TNFRSF) members, CD27 and OX40, that are preferentially expressed by skin-resident Tregs Both CD27 and OX40 signaling suppressed the expression of TH17-associated genes from Tregs in a cell-intrinsic manner in vitro and in vivo. However, only OX40 played a nonredundant role in promoting Treg accumulation. Tregs that lacked both CD27 and OX40 were defective in controlling skin inflammation and expressed high levels of IL-17A, as well as the master TH17 transcription factor, RORγt. Last, we found that CD27 expression was inversely correlated with Treg IL-17 production in skin of patients with psoriasis and hidradenitis suppurativa. Together, our results suggest that TNFRSF members play both redundant and distinct roles in regulating Treg plasticity in tissues.
Collapse
Affiliation(s)
- Kelly A Remedios
- Department of Dermatology, University of California, San Francisco, CA 94143, USA
| | - Bahar Zirak
- Department of Dermatology, University of California, San Francisco, CA 94143, USA
| | | | - Margaret M Lowe
- Department of Dermatology, University of California, San Francisco, CA 94143, USA
| | - Devi Boda
- Department of Dermatology, University of California, San Francisco, CA 94143, USA
| | - Evan Henley
- Department of Dermatology, University of California, San Francisco, CA 94143, USA
| | - Shrishti Bhattrai
- Department of Dermatology, University of California, San Francisco, CA 94143, USA
| | | | - Wilson Liao
- Department of Dermatology, University of California, San Francisco, CA 94143, USA
| | - Haley B Naik
- Department of Dermatology, University of California, San Francisco, CA 94143, USA
| | - Michael D Rosenblum
- Department of Dermatology, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
35
|
Xiong D, Wang Y, You M. Tumor intrinsic immunity related proteins may be novel tumor suppressors in some types of cancer. Sci Rep 2019; 9:10918. [PMID: 31358815 PMCID: PMC6662687 DOI: 10.1038/s41598-019-47382-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint blockade therapy (ICBT) can unleash T-cell responses against cancer. However, only a small fraction of patients exhibited responses to ICBT. The role of immune checkpoints in cancer cells is not well understood. In this study, we analyzed T-cell coinhibitory/costimulatory genes across more than 1100 samples of the Cancer Cell Line Encyclopedia (CCLE). Nearly 90% of such genes were not expressed or had low expression across the CCLE cancer cell lines. Cell line screening showed the enrichment of cancer cells deprived of the expression of CD27, CEACAM1, CTLA4, LRIG1, PDCD1LG2, or TNFRSF18, suggesting their role as tumor suppressor. The metagene expression signature derived from these six genes - Immu6Metagene was associated with prolonged survival phenotypes. A common set of five oncogenic pathways were significantly inhibited in different types of tumors of the cancer patients with good survival outcome and high Immu6Metagene signature expression. These pathways were TGF-β signaling, angiogenesis, EMT, hypoxia and mitotic process. Our study showed that oncoimmunology related molecules especially the six genes of the Immu6Metagene signature may play the tumor suppressor role in certain cancers. Therefore, the ICBT targeting them should be considered in such context to improve the efficacy.
Collapse
Affiliation(s)
- Donghai Xiong
- Center for Disease Prevention Research and Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Yian Wang
- Center for Disease Prevention Research and Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Ming You
- Center for Disease Prevention Research and Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
36
|
Remedios KA, Meyer L, Zirak B, Pauli ML, Truong HA, Boda D, Rosenblum MD. CD27 Promotes CD4 + Effector T Cell Survival in Response to Tissue Self-Antigen. THE JOURNAL OF IMMUNOLOGY 2019; 203:639-646. [PMID: 31209102 DOI: 10.4049/jimmunol.1900288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/29/2019] [Indexed: 11/19/2022]
Abstract
Signaling through CD27 plays a role in T cell activation and memory. However, it is currently unknown how this costimulatory receptor influences CD4+ effector T (Teff) cells in inflamed tissues. In the current study, we used a murine model of inducible self-antigen expression in the epidermis to elucidate the functional role of CD27 on autoreactive Teff cells. Expression of CD27 on Ag-specific Teff cells resulted in enhanced skin inflammation when compared with CD27-deficient Teff cells. CD27 signaling promoted the accumulation of IFN-γ and IL-2-producing T cells in skin draining lymph nodes in a cell-intrinsic fashion. Surprisingly, this costimulatory pathway had minimal effect on early T cell activation and proliferation. Instead, signaling through CD27 resulted in the progressive survival of Teff cells during the autoimmune response. Using BH3 profiling to assess mitochondrial cell priming, we found that CD27-deficient cells were equally as sensitive as CD27-sufficient cells to mitochondrial outer membrane polarization upon exposure to either BH3 activator or sensitizer peptides. In contrast, CD27-deficient Teff cells expressed higher levels of active caspase 8. Taken together, these results suggest that CD27 does not promote Teff cell survival by increasing expression of antiapoptotic BCL2 family members but instead acts by preferentially suppressing the cell-extrinsic apoptosis pathway, highlighting a previously unidentified role for CD27 in augmenting autoreactive Teff cell responses.
Collapse
Affiliation(s)
- Kelly A Remedios
- Department of Dermatology, University of California, San Francisco, CA 94143.,TRex Bio, Burlingame, CA 94010; and
| | - Lauren Meyer
- Department of Pediatrics, University of California, San Francisco, CA 94143
| | - Bahar Zirak
- Department of Dermatology, University of California, San Francisco, CA 94143
| | - Mariela L Pauli
- Department of Dermatology, University of California, San Francisco, CA 94143
| | | | - Devi Boda
- Department of Dermatology, University of California, San Francisco, CA 94143
| | - Michael D Rosenblum
- Department of Dermatology, University of California, San Francisco, CA 94143;
| |
Collapse
|
37
|
Abstract
Cancer remains the leading cause of death worldwide. Traditional treatments such as surgery, radiation, and chemotherapy have had limited efficacy, especially with late stage cancers. Cancer immunotherapy and targeted therapy have revolutionized how cancer is treated, especially in patients with late stage disease. In 2013 cancer immunotherapy was named the breakthrough of the year, partially due to the established efficacy of blockade of CTLA-4 and PD-1, both T cell co-inhibitory molecules involved in tumor-induced immunosuppression. Though early trials promised success, toxicity and tolerance to immunotherapy have hindered long-term successes. Optimizing the use of co-stimulatory and co-inhibitory pathways has the potential to increase the effectiveness of T cell-mediated antitumor immune response, leading to increased efficacy of cancer immunotherapy. This review will address major T cell co-stimulatory and co-inhibitory pathways and the role they play in regulating immune responses during cancer development and treatment.
Collapse
Affiliation(s)
- Rachel E O'Neill
- Department of Microbiology and Immunology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States
| | - Xuefang Cao
- Department of Microbiology and Immunology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States.
| |
Collapse
|
38
|
Yang M, Han R, Ni LY, Luo XC, Li AX, Dan XM, Tsim KWK, Li YW. Molecular characteristics and function study of TNF receptor-associated factor 5 from grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2019; 87:730-736. [PMID: 30769079 DOI: 10.1016/j.fsi.2019.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/02/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Tumor necrosis factor receptor-associated factor 5 (TRAF5) is a key adapter molecule that participates in numerous signaling pathways. The function of TRAF5 in fish is largely unknown. In the present study, a TRAF5 cDNA sequence (EcTRAF5) was identified in grouper (Epinephelus coioides). Similar to its mammalian counterpart, EcTRAF5 contained an N-terminal RING finger domain, a zinc finger domain, a C-terminal TRAF domain, including a coiled-coil domain and a MATH domain. The EcTRAF5 protein shared relatively low sequence identity with that of other species, but clustered with TRAF5 sequences from other fish. Real-time PCR analysis revealed that EcTRAF5 mRNA was broadly expressed in numerous tissues, with relatively high expression in skin, hindgut, and head kidney. Additionally, the expression of EcTRAF5 was up-regulated in gills and head kidney after infection with Cryptocaryon irritans. Intracellular localization analysis demonstrated that the full-length EcTRAF5 protein was uniformly distributed in the cytoplasm; while a deletion mutant of the coiled-coil domain of EcTRAF5 was observed uniformly distributed in the cytoplasm and the nucleus. After exogenous expression in HEK293T cells, TRAF5 significantly activated NF-κB. The deletion of the EcTRAF5 RING domain or of the zinc finger domain dramatically impaired its ability to activate NF-κB, implying that the RING domain and the zinc finger domain are required for EcTRAF5 signaling.
Collapse
Affiliation(s)
- Man Yang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Rui Han
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lu-Yun Ni
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Chun Luo
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | - An-Xing Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Lab for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong Province, PR China
| | - Xue-Ming Dan
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Karl Wah-Keung Tsim
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Yan-Wei Li
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
39
|
Signal Transduction Via Co-stimulatory and Co-inhibitory Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:85-133. [PMID: 31758532 DOI: 10.1007/978-981-32-9717-3_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
T-cell receptor (TCR)-mediated antigen-specific stimulation is essential for initiating T-cell activation. However, signaling through the TCR alone is not sufficient for inducing an effective response. In addition to TCR-mediated signaling, signaling through antigen-independent co-stimulatory or co-inhibitory receptors is critically important not only for the full activation and functional differentiation of T cells but also for the termination and suppression of T-cell responses. Many studies have investigated the signaling pathways underlying the function of each molecular component. Co-stimulatory and co-inhibitory receptors have no kinase activity, but their cytoplasmic region contains unique functional motifs and potential phosphorylation sites. Engagement of co-stimulatory receptors leads to recruitment of specific binding partners, such as adaptor molecules, kinases, and phosphatases, via recognition of a specific motif. Consequently, each co-stimulatory receptor transduces a unique pattern of signaling pathways. This review focuses on our current understanding of the intracellular signaling pathways provided by co-stimulatory and co-inhibitory molecules, including B7:CD28 family members, immunoglobulin, and members of the tumor necrosis factor receptor superfamily.
Collapse
|
40
|
Lim SH, Linton KM, Collins GP, Dhondt J, Caddy J, Rossiter L, Vadher K, Fines K, Rogers LE, Fernando D, Stanton L, Davies AJ, Johnson PWM, Griffiths G. RIVA - a phase IIa study of rituximab and varlilumab in relapsed or refractory B-cell malignancies: study protocol for a randomized controlled trial. Trials 2018; 19:619. [PMID: 30413184 PMCID: PMC6230275 DOI: 10.1186/s13063-018-2996-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Over 12,000 new cases of B-cell malignancies are diagnosed in the UK each year, with diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL) being the most common subtypes. Standard frontline therapy consists of immunochemotherapy with a CD20 monoclonal antibody (mAb), such as rituximab, delivered in combination with multi-agent chemotherapy. Despite being considered a treatable and potentially curable cancer, approximately 30% of DLBCL cases will relapse after frontline therapy. Advanced stage FL is incurable and typically has a relapsing and remitting course with a frequent need for re-treatment. Based on supportive preclinical data, we hypothesised that the addition of varlilumab (an anti-CD27 mAb) to rituximab (an anti-CD20 mAb) can improve the rate, depth and duration of the response of rituximab monotherapy in patients with relapsed or refractory B-cell malignancies. METHODS/DESIGN Combination treatment of varlilumab plus rituximab, in two different dosing regimens, is being tested in the RIVA trial. RIVA is a two-stage open-label randomised phase IIa design in up to 40 patients with low- or high-grade relapsed or refractory CD20+ B-cell lymphoma. The study is open to recruitment in the UK. Enrolled patients are randomised 1:1 to two different experimental varlilumab to rituximab combinations. The primary objective is to determine the safety and tolerability of the combination and the anti-tumour activity (response) in relapsed or refractory B-cell malignancies. Secondary objectives will include an evaluation of the duration of the response and overall survival. Tertiary translational objectives include assessment of B-cell depletion, changes in immune effector cell populations, expression of CD27 as a biomarker of response and pharmacokinetic properties. Analyses will not be powered for formal statistical comparisons between treatment arms. DISCUSSION RIVA will determine whether the combination of rituximab and varlilumab in relapsed or refractory B-cell malignancies is active and safe prior to future phase II/III trials. TRIAL REGISTRATION EudraCT, 2017-000302-37. Registered on 16 January 2017. ISRCTN, ISRCTN15025004 . Registered on 16 August 2017.
Collapse
Affiliation(s)
- Sean H. Lim
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Kim M. Linton
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Southampton, UK
| | - Graham P. Collins
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Joke Dhondt
- Southampton Clinical Trials Unit, Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Joshua Caddy
- Southampton Clinical Trials Unit, Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Liz Rossiter
- Southampton Clinical Trials Unit, Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Karan Vadher
- Southampton Clinical Trials Unit, Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Keira Fines
- Southampton Clinical Trials Unit, Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Laura E. Rogers
- Southampton Clinical Trials Unit, Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Diana Fernando
- Southampton Clinical Trials Unit, Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Louise Stanton
- Southampton Clinical Trials Unit, Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | | | | | - Gareth Griffiths
- Southampton Clinical Trials Unit, Centre for Cancer Immunology, University of Southampton, Southampton, UK
| |
Collapse
|
41
|
Bishop GA, Stunz LL, Hostager BS. TRAF3 as a Multifaceted Regulator of B Lymphocyte Survival and Activation. Front Immunol 2018; 9:2161. [PMID: 30319624 PMCID: PMC6165887 DOI: 10.3389/fimmu.2018.02161] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022] Open
Abstract
The adaptor protein TNF receptor-associated factor 3 (TRAF3) serves as a powerful negative regulator in multiple aspects of B cell biology. Early in vitro studies in transformed cell lines suggested the potential of TRAF3 to inhibit signaling by its first identified binding receptor, CD40. However, because the canonical TRAF3 binding site on many receptors also mediates binding of other TRAFs, and whole-mouse TRAF3 deficiency is neonatally lethal, an accurate understanding of TRAF3's specific functions was delayed until conditional TRAF3-deficient mice were produced. Studies of B cell-specific TRAF3-deficient mice, complemented by investigations in normal and malignant mouse and human B cells, reveal that TRAF3 has powerful regulatory roles that are unique to this TRAF, as well as functions context-specific to the B cell. This review summarizes the current state of knowledge of these roles and functions. These include inhibition of signaling by plasma membrane receptors, negative regulation of intracellular receptors, and restraint of cytoplasmic NF- κB pathways. TRAF3 is also now known to function as a resident nuclear protein, and to impact B cell metabolism. Through these and additional mechanisms TRAF3 exerts powerful restraint upon B cell survival and activation. It is thus perhaps not surprising that TRAF3 has been revealed as an important tumor suppressor in B cells. The many and varied functions of TRAF3 in B cells, and new directions to pursue in future studies, are summarized and discussed here.
Collapse
Affiliation(s)
- Gail A. Bishop
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, United States
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
- Iowa City VA Health Care System, Iowa City, Iowa City, IA, United States
| | - Laura L. Stunz
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, United States
| | - Bruce S. Hostager
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
42
|
Gupta I, Varshney NK, Khan S. Emergence of Members of TRAF and DUB of Ubiquitin Proteasome System in the Regulation of Hypertrophic Cardiomyopathy. Front Genet 2018; 9:336. [PMID: 30186311 PMCID: PMC6110912 DOI: 10.3389/fgene.2018.00336] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/03/2018] [Indexed: 01/10/2023] Open
Abstract
The ubiquitin proteasome system (UPS) plays an imperative role in many critical cellular processes, frequently by mediating the selective degradation of misfolded and damaged proteins and also by playing a non-degradative role especially important as in many signaling pathways. Over the last three decades, accumulated evidence indicated that UPS proteins are primal modulators of cell cycle progression, DNA replication, and repair, transcription, immune responses, and apoptosis. Comparatively, latest studies have demonstrated a substantial complexity by the UPS regulation in the heart. In addition, various UPS proteins especially ubiquitin ligases and proteasome have been identified to play a significant role in the cardiac development and dynamic physiology of cardiac pathologies such as ischemia/reperfusion injury, hypertrophy, and heart failure. However, our understanding of the contribution of UPS dysfunction in the plausible development of cardiac pathophysiology and the complete list of UPS proteins regulating these afflictions is still in infancy. The recent emergence of the roles of TNF receptor-associated factor (TRAFs) and deubiquitinating enzymes (DUBs) superfamily in hypertrophic cardiomyopathy has enhanced our knowledge. In this review, we have mainly compiled the TRAF superfamily of E3 ligases and few DUBs proteins with other well-documented E3 ligases such as MDM2, MuRF-1, Atrogin-I, and TRIM 32 that are specific to myocardial hypertrophy. In this review, we also aim to highlight their expression profile following physiological and pathological stimulation leading to the onset of hypertrophic phenotype in the heart that can serve as biomarkers and the opportunity for the development of novel therapies.
Collapse
Affiliation(s)
- Ishita Gupta
- Structural Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.,Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad, India
| | - Nishant K Varshney
- Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad, India
| | - Sameena Khan
- Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
43
|
Han X, Vesely MD. Stimulating T Cells Against Cancer With Agonist Immunostimulatory Monoclonal Antibodies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 342:1-25. [PMID: 30635089 DOI: 10.1016/bs.ircmb.2018.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Elimination of cancer cells through antitumor immunity has been a long-sought after goal since Sir F. Macfarlane Burnet postulated the theory of immune surveillance against tumors in the 1950s. Finally, the use of immunotherapeutics against established cancer is becoming a reality in the past 5years. Most notable are the monoclonal antibodies (mAbs) directed against inhibitory T-cell receptors cytotoxic T lymphocyte antigen-4 and programmed death-1. The next generation of mAbs targeting T cells is designed to stimulate costimulatory receptors on T cells. Here we review the recent progress on these immunostimulatory agonist antibodies against the costimulatory receptors CD137, GITR, OX40, and CD27.
Collapse
Affiliation(s)
- Xue Han
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - Matthew D Vesely
- Department of Dermatology, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
44
|
Wei SC, Duffy CR, Allison JP. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discov 2018; 8:1069-1086. [PMID: 30115704 DOI: 10.1158/2159-8290.cd-18-0367] [Citation(s) in RCA: 2139] [Impact Index Per Article: 305.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/04/2018] [Accepted: 07/11/2018] [Indexed: 02/06/2023]
Abstract
Immune checkpoint blockade is able to induce durable responses across multiple types of cancer, which has enabled the oncology community to begin to envision potentially curative therapeutic approaches. However, the remarkable responses to immunotherapies are currently limited to a minority of patients and indications, highlighting the need for more effective and novel approaches. Indeed, an extraordinary amount of preclinical and clinical investigation is exploring the therapeutic potential of negative and positive costimulatory molecules. Insights into the underlying biological mechanisms and functions of these molecules have, however, lagged significantly behind. Such understanding will be essential for the rational design of next-generation immunotherapies. Here, we review the current state of our understanding of T-cell costimulatory mechanisms and checkpoint blockade, primarily of CTLA4 and PD-1, and highlight conceptual gaps in knowledge.Significance: This review provides an overview of immune checkpoint blockade therapy from a basic biology and immunologic perspective for the cancer research community. Cancer Discov; 8(9); 1069-86. ©2018 AACR.
Collapse
Affiliation(s)
- Spencer C Wei
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Colm R Duffy
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - James P Allison
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
45
|
Tang X, Zhang L, Wei W. Roles of TRAFs in NF-κB signaling pathways mediated by BAFF. Immunol Lett 2018; 196:113-118. [PMID: 29378215 DOI: 10.1016/j.imlet.2018.01.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 12/27/2022]
Abstract
B cell activating factor (BAFF) is an important cytokine for the maintenance of B cell development, survival and homeostasis. BAFF/BAFF-R could directly activate nuclear factor kappa B (NF-κB) pathway. Tumour necrosis factor receptor-associated factors (TRAFs) are key regulatory proteins in NF-κB signaling pathways. TRAF1 enhances the activation of tumor necrosis factor receptor 2 (TNF-R2) induced by NF-κB. TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals mediated by BAFF receptor. TRAF5 is most homologous to TRAF3, as well as most functionally similar to TRAF2. TRAF6 is also required for the BAFF-mediated activation of NF-κB signal pathway. TRAF7 is involved in signal transduction pathways that lead either to activation or repression of NF-κB transcription factor. In this article, we reviewed the roles of TRAFs in NF-κB signaling pathway mediated by BAFF.
Collapse
Affiliation(s)
- Xiaoyu Tang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology of Education, Ministry of China, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology of Education, Ministry of China, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology of Education, Ministry of China, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China.
| |
Collapse
|
46
|
Buchan SL, Rogel A, Al-Shamkhani A. The immunobiology of CD27 and OX40 and their potential as targets for cancer immunotherapy. Blood 2018; 131:39-48. [PMID: 29118006 DOI: 10.1182/blood-2017-07-741025] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/08/2017] [Indexed: 12/13/2022] Open
Abstract
In recent years, monoclonal antibodies (mAbs) able to reinvigorate antitumor T-cell immunity have heralded a paradigm shift in cancer treatment. The most high profile of these mAbs block the inhibitory checkpoint receptors PD-1 and CTLA-4 and have improved life expectancy for patients across a range of tumor types. However, it is becoming increasingly clear that failure of some patients to respond to checkpoint inhibition is attributable to inadequate T-cell priming. For full T-cell activation, 2 signals must be received, and ligands providing the second of these signals, termed costimulation, are often lacking in tumors. Members of the TNF receptor superfamily (TNFRSF) are key costimulators of T cells during infection, and there has been an increasing interest in harnessing these receptors to augment tumor immunity. We here review the immunobiology of 2 particularly promising TNFRSF target receptors, CD27 and OX40, and their respective ligands, CD70 and OX40L, focusing on their role within a tumor setting. We describe the influence of CD27 and OX40 on human T cells based on in vitro studies and on the phenotypes of several recently described individuals exhibiting natural deficiencies in CD27/CD70 and OX40. Finally, we review key literature describing progress in elucidating the efficacy and mode of action of OX40- and CD27-targeting mAbs in preclinical models and provide an overview of current clinical trials targeting these promising receptor/ligand pairings in cancer.
Collapse
Affiliation(s)
- Sarah L Buchan
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Anne Rogel
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Aymen Al-Shamkhani
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
47
|
Co-stimulation Agonists via CD137, OX40, GITR, and CD27 for Immunotherapy of Cancer. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
48
|
Turaj AH, Hussain K, Cox KL, Rose-Zerilli MJJ, Testa J, Dahal LN, Chan HTC, James S, Field VL, Carter MJ, Kim HJ, West JJ, Thomas LJ, He LZ, Keler T, Johnson PWM, Al-Shamkhani A, Thirdborough SM, Beers SA, Cragg MS, Glennie MJ, Lim SH. Antibody Tumor Targeting Is Enhanced by CD27 Agonists through Myeloid Recruitment. Cancer Cell 2017; 32:777-791.e6. [PMID: 29198913 PMCID: PMC5734932 DOI: 10.1016/j.ccell.2017.11.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/28/2017] [Accepted: 10/27/2017] [Indexed: 12/12/2022]
Abstract
Monoclonal antibodies (mAbs) can destroy tumors by recruiting effectors such as myeloid cells, or targeting immunomodulatory receptors to promote cytotoxic T cell responses. Here, we examined the therapeutic potential of combining a direct tumor-targeting mAb, anti-CD20, with an extended panel of immunomodulatory mAbs. Only the anti-CD27/CD20 combination provided cures. This was apparent in multiple lymphoma models, including huCD27 transgenic mice using the anti-huCD27, varlilumab. Detailed mechanistic analysis using single-cell RNA sequencing demonstrated that anti-CD27 stimulated CD8+ T and natural killer cells to release myeloid chemo-attractants and interferon gamma, to elicit myeloid infiltration and macrophage activation. This study demonstrates the therapeutic advantage of using an immunomodulatory mAb to regulate lymphoid cells, which then recruit and activate myeloid cells for enhanced killing of mAb-opsonized tumors.
Collapse
Affiliation(s)
- Anna H Turaj
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Khiyam Hussain
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Kerry L Cox
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Matthew J J Rose-Zerilli
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - James Testa
- Celldex Therapeutics, Inc., Hampton, NJ 08827, USA
| | - Lekh N Dahal
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - H T Claude Chan
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Sonya James
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Vikki L Field
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Matthew J Carter
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Hyung J Kim
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Jonathan J West
- Institute for Life Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | | | - Li-Zhen He
- Celldex Therapeutics, Inc., Hampton, NJ 08827, USA
| | - Tibor Keler
- Celldex Therapeutics, Inc., Hampton, NJ 08827, USA
| | - Peter W M Johnson
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Aymen Al-Shamkhani
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Stephen M Thirdborough
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Stephen A Beers
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; Institute for Life Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Martin J Glennie
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Sean H Lim
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK.
| |
Collapse
|
49
|
CD27 marks murine embryonic hematopoietic stem cells and type II prehematopoietic stem cells. Blood 2017; 130:372-376. [PMID: 28588017 DOI: 10.1182/blood-2017-03-776849] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
50
|
Bullock TN. Stimulating CD27 to quantitatively and qualitatively shape adaptive immunity to cancer. Curr Opin Immunol 2017; 45:82-88. [PMID: 28319731 DOI: 10.1016/j.coi.2017.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/09/2017] [Accepted: 02/16/2017] [Indexed: 12/22/2022]
Abstract
The capacity of the immune system to recognize and respond to tumors has been appreciated for over 100 years. However, clinical success has largely depended on the elucidation of the positive and negative regulators of effector cells after their activation via the antigen cell receptor. On the one hand, effector cells upregulate checkpoint molecules that are thought to play a role in limiting immunopathology. On the other, second and third waves of costimulation are often required to promote the expansion, survival and differentiation of effector cells. While it is clear that the immune system can be unleashed by blocking checkpoint molecules, this approach is most effective when pre-existing responses exist in patients' tumors. Thus, coordinating checkpoint blockade with costimulation could potentially expand the patient population that receives benefit from cancer immunotherapy. This review will discuss how the costimulatory molecule CD27 sculpts immunity and preclinical/clinical data indicating its potential for cancer immunotherapy and its clinical translation.
Collapse
Affiliation(s)
- Timothy Nj Bullock
- Department of Pathology and Human Immune Therapy Center, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|