1
|
Copetti F, Nobre CR, Paço MS, de Camargo TFT, Moreno BB, Fernandes MN, Schveitzer R, Pereira CDS. Biochemical and cytogenetic consequences of settleable atmospheric particulate matter on Pacific white shrimp Litopenaeus vannamei. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107322. [PMID: 40199159 DOI: 10.1016/j.aquatox.2025.107322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/24/2025] [Accepted: 03/07/2025] [Indexed: 04/10/2025]
Abstract
This study hypothesizes that micro and nanoparticles of metals from metallurgical atmospheric emissions can trigger sublethal effects on the Pacific white shrimp Litopenaeus vannamei. We aimed to analyze cytotoxicity (Lysosomal Membrane Stability - LMS), Lipid peroxidation (LPO), genotoxicity (DNA strand break), and neurotoxicity (Acetylcholinesterase activity AChE) in shrimp exposed to environmentally relevant concentrations (0.001, 0.1, and 1.0 g.L-1) of settleable atmospheric particulate matter (SePM) for different times (T2, T4, T7, T15 and T30 days), and in several tissues (gills, hemolymph, muscle,e and hepatopancreas). LPO within the first 2 day, and LMS showed significant differences. From the seventh to the fifteenth day of exposure, the concentration of 0.1 g.L-1 exhibited significant effects. In the most extended exposure period (30 days), all concentrations triggered cytotoxicity effects on the Pacific white shrimp Litopenaeus vannamei. Thus, exposure to SePM can impair essential cellular functions, denoting a pre-pathological status. These findings underscore the potential hazards of metallurgical SePM to estuarine and farmed shrimp populations, emphasizing the need for ongoing monitoring and effective mitigation strategies to ensure aquaculture sustainability.
Collapse
Affiliation(s)
- F Copetti
- Institute of Biosciences, São Paulo State University "Júlio de Mesquita Filho", Litoral Paulista Campus, Infante Dom Henrique Square, s/n - Parque Bitaru, São Vicente, São Paulo 11330-900, Brazil
| | - C R Nobre
- Department of Marine Sciences, Federal University of São Paulo, Baixada Santista Campus, 168 Maria Máximo Street, Santos, São Paulo 11030-100, Brazil.
| | - M S Paço
- Department of Marine Sciences, Federal University of São Paulo, Baixada Santista Campus, 168 Maria Máximo Street, Santos, São Paulo 11030-100, Brazil
| | - T F T de Camargo
- Department of Marine Sciences, Federal University of São Paulo, Baixada Santista Campus, 168 Maria Máximo Street, Santos, São Paulo 11030-100, Brazil
| | - B B Moreno
- Department of Marine Sciences, Federal University of São Paulo, Baixada Santista Campus, 168 Maria Máximo Street, Santos, São Paulo 11030-100, Brazil
| | - M N Fernandes
- Department of Physiological Sciences, Federal University of São Carlos (DCF/UFSCar), Washington Luiz Highway, Km 235, São Carlos, São Paulo 13565-905, Brazil
| | - R Schveitzer
- Department of Marine Sciences, Federal University of São Paulo, Baixada Santista Campus, 168 Maria Máximo Street, Santos, São Paulo 11030-100, Brazil
| | - C D S Pereira
- Department of Marine Sciences, Federal University of São Paulo, Baixada Santista Campus, 168 Maria Máximo Street, Santos, São Paulo 11030-100, Brazil
| |
Collapse
|
2
|
Mokra D, Porvaznik I, Mokry J. N-Acetylcysteine in the Treatment of Acute Lung Injury: Perspectives and Limitations. Int J Mol Sci 2025; 26:2657. [PMID: 40141299 PMCID: PMC11942046 DOI: 10.3390/ijms26062657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/03/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
N-acetylcysteine (NAC) can take part in the treatment of chronic respiratory diseases because of the potent mucolytic, antioxidant, and anti-inflammatory effects of NAC. However, less is known about its use in the treatment of acute lung injury. Nowadays, an increasing number of studies indicates that early administration of NAC may reduce markers of oxidative stress and alleviate inflammation in animal models of acute lung injury (ALI) and in patients suffering from distinct forms of acute respiratory distress syndrome (ARDS) or pulmonary infections including community-acquired pneumonia or Coronavirus Disease (COVID)-19. Besides low costs, easy accessibility, low toxicity, and rare side effects, NAC can also be combined with other drugs. This article provides a review of knowledge on the mechanisms of inflammation and oxidative stress in various forms of ALI/ARDS and critically discusses experience with the use of NAC in these disorders. For preparing the review, articles published in the English language from the PubMed database were used.
Collapse
Affiliation(s)
- Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia
| | - Igor Porvaznik
- Department of Laboratory Medicine, Faculty of Health Sciences, Catholic University in Ružomberok, SK-03401 Ružomberok, Slovakia;
| | - Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia;
| |
Collapse
|
3
|
Byeon E, Jeong H, Kim MS, Yun SC, Lee JS, Lee MC, Kim JH, Sayed AEDH, Bo J, Kim HS, Yoon C, Hagiwara A, Sakakura Y, Lee JS. Toxicity and speciation of inorganic arsenics and their adverse effects on in vivo endpoints and oxidative stress in the marine medaka Oryzias melastigma. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134641. [PMID: 38788572 DOI: 10.1016/j.jhazmat.2024.134641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/24/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
Here, we investigate the effects of acute and chronic exposure to arsenate (AsV) and arsenite (AsIII) in the marine medaka Oryzias melastigma. In vivo effects, biotransformation, and oxidative stress were studied in marine medaka exposed to the two inorganic arsenics for 4 or 28 days. An investigation of embryonic development revealed no effect on in vivo parameters, but the hatching rate increased in the group exposed to AsIII. Exposure to AsIII also caused the greatest accumulation of arsenic in medaka. For acute exposure, the ratio of AsV to AsIII was higher than that of chronic exposure, indicating that bioaccumulation of inorganic arsenic can induce oxidative stress. The largest increase in oxidative stress was observed following acute exposure to AsIII, but no significant degree of oxidative stress was induced by chronic exposure. During acute exposure to AsV, the increase in the enzymatic activity of glutathione-S-transferase (GST) was twice as high compared with exposure to AsIII, suggesting that GST plays an important role in the initial detoxification process. In addition, an RNA-seq-based ingenuity pathway analysis revealed that acute exposure to AsIII may be related to cell-cycle progression. A network analysis using differentially expressed genes also revealed a potential link between the generation of inflammatory cytokines and oxidative stress due to arsenic exposure.
Collapse
Affiliation(s)
- Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Seong Chan Yun
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin-Sol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Food & Nutrition, College of Bio-Nano Technology, Gachon University, Seongnam 13120, South Korea
| | - Jin-Hyoung Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | | | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Chulho Yoon
- Ochang Center, Korea Basic Science Institute, Cheongju 28119, South Korea
| | - Atsushi Hagiwara
- Institute of Integrated Science and Technology, Graduate School of Fisheries Science and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Yoshitaka Sakakura
- Institute of Integrated Science and Technology, Graduate School of Fisheries Science and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
4
|
Xue W, Wang T, Tian WJ, Pang SQ, Zhang HF, Jia WD. NQO1 Mediates Lenvatinib Resistance by Regulating ROS-induced Apoptosis in Hepatocellular Carcinoma. Curr Med Sci 2024; 44:168-179. [PMID: 38217831 DOI: 10.1007/s11596-023-2804-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/19/2023] [Indexed: 01/15/2024]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is the third leading cause of cancer-associated death worldwide. As a first-line drug for advanced HCC treatment, lenvatinib faces a significant hurdle due to the development of both intrinsic and acquired resistance among patients, and the underlying mechanism remains largely unknown. The present study aims to identify the pivotal gene responsible for lenvatinib resistance in HCC, explore the potential molecular mechanism, and propose combinatorial therapeutic targets for HCC management. METHODS Cell viability and colony formation assays were conducted to evaluate the sensitivity of cells to lenvatinib and dicoumarol. RNA-Seq was used to determine the differences in transcriptome between parental cells and lenvatinib-resistant (LR) cells. The upregulated genes were analyzed by GO and KEGG analyses. Then, qPCR and Western blotting were employed to determine the relative gene expression levels. Afterwards, the intracellular reactive oxygen species (ROS) and apoptosis were detected by flow cytometry. RESULTS PLC-LR and Hep3B-LR were established. There was a total of 116 significantly upregulated genes common to both LR cell lines. The GO and KEGG analyses indicated that these genes were involved in oxidoreductase and dehydrogenase activities, and reactive oxygen species pathways. Notably, NAD(P)H:quinone oxidoreductase 1 (NQO1) was highly expressed in LR cells, and was involved in the lenvatinib resistance. The high expression of NQO1 decreased the production of ROS induced by lenvatinib, and subsequently suppressed the apoptosis. The combination of lenvatinib and NQO1 inhibitor, dicoumarol, reversed the resistance of LR cells. CONCLUSION The high NQO1 expression in HCC cells impedes the lenvatinib-induced apoptosis by regulating the ROS levels, thereby promoting lenvatinib resistance in HCC cells.
Collapse
Affiliation(s)
- Wei Xue
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ting Wang
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Wen-Jing Tian
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Si-Qi Pang
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Hua-Feng Zhang
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, China.
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Wei-Dong Jia
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
5
|
Arreguin-Rebolledo U, Castelhano Gebara R, Valencia-Castañeda G, Rico-Martínez R, Frías-Espericueta MG, Longo E, Páez-Osuna F. Toxicity of binary-metal mixtures (As, Cd, Cu, Fe, Hg, Pb and Zn) in the euryhaline rotifer Proales similis: Antagonistic and synergistic effects. MARINE POLLUTION BULLETIN 2024; 198:115819. [PMID: 37995590 DOI: 10.1016/j.marpolbul.2023.115819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Data regarding the effects of binary metal mixtures in marine zooplankton are scarce, particularly for rotifers. We examined the toxicity of 21 binary equitoxic mixtures of As, Cd, Cu, Fe, Hg, Pb, and Zn on the euryhaline rotifer Proales similis. The toxic units (TU50) revealed that 20 of these binary mixtures exhibited synergistic effects (TU50 < 1.00). The AsHg mixture showed a strong antagonistic effect (TU50 = 2.39), whereas the HgCu interaction exhibited a significant synergistic effect (TU50 = 0.29) on P. similis. TU50 values were <0.60 in all cases that showed synergism (80 %). Regarding the MIXTOX analysis, 13 binary mixtures presented some level of synergism, while two mixtures presented only additivity. Results emphasize the need for environmental agencies to revise and readjust protection guidelines for marine biota in response to the evident synergistic effects occurring at metal mixtures concentrations below the current permissible limits.
Collapse
Affiliation(s)
- Uriel Arreguin-Rebolledo
- Centro de Ciencias Básicas, Departamento de Química, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, C.P. 20100 Aguascalientes, Ags, Mexico; Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de Mexico, Unidad Académica Mazatlán, Joel Montes Camarena s/n, Mazatlán 82000, Sinaloa, Mexico
| | - Renan Castelhano Gebara
- Center for the Development of Functional Materials (CDMF), Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Gladys Valencia-Castañeda
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de Mexico, Unidad Académica Mazatlán, Joel Montes Camarena s/n, Mazatlán 82000, Sinaloa, Mexico
| | - Roberto Rico-Martínez
- Centro de Ciencias Básicas, Departamento de Química, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, C.P. 20100 Aguascalientes, Ags, Mexico
| | | | - Elson Longo
- Center for the Development of Functional Materials (CDMF), Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Federico Páez-Osuna
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de Mexico, Unidad Académica Mazatlán, Joel Montes Camarena s/n, Mazatlán 82000, Sinaloa, Mexico.
| |
Collapse
|
6
|
Bhattacharya S. Can the Toxic Heavy Metals Be Beneficial at Trace Levels? Understanding Their Outranged Biological Functions. J Environ Pathol Toxicol Oncol 2024; 43:71-77. [PMID: 37824371 DOI: 10.1615/jenvironpatholtoxicoloncol.2023049292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Heavy metal toxicity poses a serious danger to the environment and its inhabitants on a global scale. The harmful heavy metals that are not necessary but are still dangerous, such as lead, arsenic, cadmium, and mercury are frequently linked to pollution and the resulting health problems. Despite several gross ill effects, toxic heavy metals have been found to show beneficial biological activity when applied at very low or trace levels. This article aims to collate such investigations conducted during the last two decades with trace levels of cadmium, mercury and arsenic toxicity against animal systems. There are a total of 13 pre-clinical works demonstrating the protective or beneficial effect of mercury, cadmium and arsenic at trace levels. Such literature reports with lead could not be found. From the outcome of the current literature investigation it is evident that, trace levels of toxic heavy metals namely arsenic, cadmium and mercury possess remarkable protective and beneficial effects chiefly on growth, developmental and reproductive parameters against animal systems pre-clinically, in contrast to their known toxic effects-operated by multiple mechanisms which provided some empirical support for further understanding of the outranged biological functions of the heavy metals. Further mechanistic works on this sphere may pave the way for a better understanding of the protective role of toxic heavy metals for the accomplishment of animals including humans.
Collapse
Affiliation(s)
- Sanjib Bhattacharya
- West Bengal Medical Services Corporation Ltd., GN 29, Sector V, Salt Lake City, Kolkata 700091, West Bengal, India
| |
Collapse
|
7
|
Calabrese EJ, Pressman P, Hayes AW, Dhawan G, Kapoor R, Agathokleous E, Manes P, Calabrese V. Naringin commonly acts via hormesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:164728. [PMID: 37295528 DOI: 10.1016/j.scitotenv.2023.164728] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
The present paper provides the first integrative assessment of the capacity of naringin and its metabolite, naringenin, to induce hormetic dose responses within a broad range of experimental biomedical models. The findings indicate that these agents commonly induced protective effects that are typically mediated via hormetic mechanisms leading to biphasic dose-response relationships. The maximum protective effects are generally modest, 30-60 % greater than control group values. The range of experimental findings with these agents has been reported for models with various neurodegenerative diseases, nucleus pulpous cells (NPCs) located within intravertebral discs, several types of stem cells (i.e., bone marrow, amniotic fluid, periodontal, endothelial) as well as cardiac cells. These agents also were effective within preconditioning protocols protecting against environmental toxins such as ultraviolet radiation (UV), cadmium, and paraquat. The mechanism(s) by which the hormetic responses mediates these biphasic dose responses is complex but commonly involves the activation of nuclear factor erythroid 2-related factor (Nrf2), an increasingly recognized regulator of cellular resistance to oxidants. Nrf2 appears to play a role in controlling the basal and induced expression of an array of antioxidant response element-dependent genes to regulate oxidant exposure's physiological and pathophysiological outcomes. Hence its importance in the assessment of toxicologic and adaptive potential is likely to be significant.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME 04469, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA
| | | | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| | - Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | | | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania 95123, Italy.
| |
Collapse
|
8
|
Stołtny T, Dobrakowski M, Augustyn A, Kasperczyk S, Rokicka D, Skowroński R, Strojek K, Koczy B. Metal-on-metal metaphyseal and ceramic-on-ceramic femoral neck arthroplasty: the impact on clinical results, oxidative stress and concentration of metal ions in serum and blood. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY : ORTHOPEDIE TRAUMATOLOGIE 2023; 33:3089-3097. [PMID: 37017738 PMCID: PMC10504388 DOI: 10.1007/s00590-023-03540-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/27/2023] [Indexed: 04/06/2023]
Abstract
PURPOSE Growing number of hip arthroplasty in Poland performed with the use of metaphyseal stems results from the decreasing age of patients qualified for procedures and is consistent with the corresponding trends in European countries. To this day, a significant population functions after undergoing hip replacement using metal-on-metal implant. This study was aimed at the assessment of the variability of the oxidative system, as well as the concentrations of chromium and cobalt ions in serum and blood and their potential impact on postoperative clinical status. MATERIAL AND METHODS The analysis included 58 men. The first group-operated using J&J DePuy ASR metal-on-metal implant with metaphyseal stem ProximaTm. Second group-operated using K-Implant SPIRON® femoral neck prosthesis in full ceramic articulation. Selected parameters of oxidative stress and the antioxidant system as well as the concentration of metal ions in blood were determined twice. Each patient underwent two clinical evaluations using acclaimed physical examination scale systems. RESULTS In the first group, significantly higher concentrations of Cr (p = 0.028) and Co (p = 0.002) were demonstrated compared to the group of femoral neck arthroplasty. The mean concentrations of Cr and Co, 10.45 and 9.26 μg/l, respectively, were higher in patients operated bilaterally. In the ASR group, greater pain intensity in the operated hip and higher indicators of oxidative stress were found. CONCLUSIONS Metal-on-metal articulation of the hip significantly increases the concentration of Cr and Co in blood, induces oxidative stress and modifies function of the antioxidant system and generates greater pain in the operated hip.
Collapse
Affiliation(s)
- Tomasz Stołtny
- District Hospital of Orthopaedics and Trauma Surgery in Piekary Śląskie. Bytomska, St. 62, 41-940, Piekary Śląskie, Poland
| | - Michał Dobrakowski
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana St. 19, 41-808, Zabrze, Poland
| | - Aleksander Augustyn
- District Hospital of Orthopaedics and Trauma Surgery in Piekary Śląskie. Bytomska, St. 62, 41-940, Piekary Śląskie, Poland.
- , Solskiego St. 46 42-609, Tarnowskie Góry, Poland.
| | - Sławomir Kasperczyk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana St. 19, 41-808, Zabrze, Poland
| | - Dominika Rokicka
- Department of Internal Diseases, Diabetology, and Cardiometabolic Diseases, School of Medicine With the Division of Dentistry in Zabrze, Silesian Centre for Heart Diseases in Zabrze, Medical University of Silesia in Katowice, M. Curie-Skłodowskiej 9, 41-800, Zabrze, Poland
| | - Rafał Skowroński
- "ALFA" Orthopaedics and Traumatology Center Ul. Ogrodniczki, 51 15-763, Białystok, Poland
| | - Krzysztof Strojek
- Department of Internal Diseases, Diabetology, and Cardiometabolic Diseases, School of Medicine With the Division of Dentistry in Zabrze, Silesian Centre for Heart Diseases in Zabrze, Medical University of Silesia in Katowice, M. Curie-Skłodowskiej 9, 41-800, Zabrze, Poland
| | - Bogdan Koczy
- District Hospital of Orthopaedics and Trauma Surgery in Piekary Śląskie. Bytomska, St. 62, 41-940, Piekary Śląskie, Poland
| |
Collapse
|
9
|
Varona-Uribe ME, Díaz SM, Palma RM, Briceño-Ayala L, Trillos-Peña C, Téllez-Avila EM, Espitia-Pérez L, Pastor-Sierra K, Espitia-Pérez PJ, Idrovo AJ. Micronuclei, Pesticides, and Element Mixtures in Mining Contexts: The Hormetic Effect of Selenium. TOXICS 2023; 11:821. [PMID: 37888671 PMCID: PMC10611081 DOI: 10.3390/toxics11100821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 10/28/2023]
Abstract
The contexts where there are mining and agriculture activities are potential sources of risk to human health due to contamination by chemical mixtures. These contexts are frequent in several Colombian regions. This study explored the potential association between the frequency of micronuclei and pesticides and elements in regions with ferronickel (Montelibano, Córdoba) and gold (Nechí, Antioquia) mining, and a closed native mercury mine (Aranzazu, Caldas), with an emphasis in the potential effect of selenium as a potential chelator. A cross-sectional study was carried out with 247 individuals. Sociodemographic, occupational, and toxicological variables were ascertained. Blood and urine samples were taken for pesticide analysis (5 organophosphates, 4 organochlorines, and 3 carbamates), 68 elements were quantified in hair, and micronuclei were quantified in lymphocytes. The mixtures of elements were grouped through principal component analysis. Prevalence ratios were estimated with robust variance Poisson regressions to explore associations. Interactions of selenium with toxic elements were explored. The highest concentrations of elements were in the active mines. The potentially most toxic chemical mixture was observed in the ferronickel mine. Pesticides were detected in a low proportion of participants (<2.5%), except paraoxon-methyl in blood (27.55%) in Montelibano and paraoxon-ethyl in blood (18.81%) in Aranzazu. The frequency of micronuclei was similar in the three mining contexts, with means between 4 to 7 (p = 0.1298). There was great heterogeneity in the exposure to pesticides and elements. The "hormetic effect" of selenium was described, in which, at low doses, it acts as a chelator in Montelibano and Aranzazu, and at high doses, it can enhance the toxic effects of other elements, maybe as in Nechí. Selenium can serve as a protective agent, but it requires adaptation to the available concentrations in each region to avoid its toxic effects.
Collapse
Affiliation(s)
- Marcela E. Varona-Uribe
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C. 111221, Colombia; (M.E.V.-U.); (S.M.D.); (L.B.-A.); (C.T.-P.)
| | - Sonia M. Díaz
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C. 111221, Colombia; (M.E.V.-U.); (S.M.D.); (L.B.-A.); (C.T.-P.)
| | - Ruth-Marien Palma
- Environmental and Occupational Health Group, National Institute of Health, Bogotá D.C. 111321, Colombia; (R.-M.P.); (E.M.T.-A.)
| | - Leonardo Briceño-Ayala
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C. 111221, Colombia; (M.E.V.-U.); (S.M.D.); (L.B.-A.); (C.T.-P.)
| | - Carlos Trillos-Peña
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C. 111221, Colombia; (M.E.V.-U.); (S.M.D.); (L.B.-A.); (C.T.-P.)
| | - Eliana M. Téllez-Avila
- Environmental and Occupational Health Group, National Institute of Health, Bogotá D.C. 111321, Colombia; (R.-M.P.); (E.M.T.-A.)
| | - Lyda Espitia-Pérez
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú, Montería 230001, Colombia; (L.E.-P.); (K.P.-S.); (P.J.E.-P.)
| | - Karina Pastor-Sierra
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú, Montería 230001, Colombia; (L.E.-P.); (K.P.-S.); (P.J.E.-P.)
| | - Pedro Juan Espitia-Pérez
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú, Montería 230001, Colombia; (L.E.-P.); (K.P.-S.); (P.J.E.-P.)
| | - Alvaro J. Idrovo
- Public Health Department, School of Medicine, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| |
Collapse
|
10
|
Rachamalla M, Chinthada J, Kushwaha S, Putnala SK, Sahu C, Jena G, Niyogi S. Contemporary Comprehensive Review on Arsenic-Induced Male Reproductive Toxicity and Mechanisms of Phytonutrient Intervention. TOXICS 2022; 10:toxics10120744. [PMID: 36548577 PMCID: PMC9784647 DOI: 10.3390/toxics10120744] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 05/26/2023]
Abstract
Arsenic (As) is a poisonous metalloid that is toxic to both humans and animals. Drinking water contamination has been linked to the development of cancer (skin, lung, urinary bladder, and liver), as well as other disorders such as diabetes and cardiovascular, gastrointestinal, neurological, and developmental damage. According to epidemiological studies, As contributes to male infertility, sexual dysfunction, poor sperm quality, and developmental consequences such as low birth weight, spontaneous abortion, and small for gestational age (SGA). Arsenic exposure negatively affected male reproductive systems by lowering testicular and accessory organ weights, and sperm counts, increasing sperm abnormalities and causing apoptotic cell death in Leydig and Sertoli cells, which resulted in decreased testosterone synthesis. Furthermore, during male reproductive toxicity, several molecular signalling pathways, such as apoptosis, inflammation, and autophagy are involved. Phytonutrient intervention in arsenic-induced male reproductive toxicity in various species has received a lot of attention over the years. The current review provides an in-depth summary of the available literature on arsenic-induced male toxicity, as well as therapeutic approaches and future directions.
Collapse
Affiliation(s)
- Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Joshi Chinthada
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar 160062, India
| | - Sapana Kushwaha
- Department of Pharmacology and Toxicology, Transit Campus, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Sravan Kumar Putnala
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Chittaranjan Sahu
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar 160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar 160062, India
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
11
|
Hair methylmercury levels are inversely correlated with arterial stiffness. Atherosclerosis 2022; 357:14-19. [PMID: 36037758 DOI: 10.1016/j.atherosclerosis.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/16/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS Cardiovascular diseases (CVD), including coronary heart disease, are the leading cause of death worldwide. Several studies investigating the relationship between fish intake, methylmercury exposure, and CVDs in adults have reported inconsistent results. This study aimed to determine the association between hair methylmercury levels and arterial stiffness using brachial-ankle pulse wave velocity (baPWV). METHODS This cross-sectional study included 891 seemingly healthy Korean adults (418 men and 473 women). The anthropometric and biochemical profiles, including methylmercury levels in the hair, were measured. Arterial stiffness was measured using baPWV, wherein high baPWV was defined as >1375 cm/s (>75th percentile). The odds ratios for high baPWVs were examined using multivariable logistic regression analysis after adjusting for potential confounders across the quintiles of hair methylmercury levels (Q1 = ≤0.6, Q2 = 0.6-0.8, Q3 = 0.8-1.1, Q4 = 1.1-1.5, and Q5=>1.5 μg/g). RESULTS After adjusting for multiple confounders-age, sex, height, body weight, smoking status, weekly alcohol consumption, total metabolic equivalent of task, mean arterial blood pressure, resting heart rate, triglycerides, low density lipoprotein cholesterol, fasting plasma glucose, uric acid and white blood cell count-the odds ratios (95% confidence intervals) for high baPWVs in each quintile of hair methylmercury levels were 1.00, 0.36 (0.17-0.76), 0.38 (0.20-0.76), 0.28 (0.13-0.61), and 0.49 (0.24-0.99), respectively. CONCLUSIONS Within non-toxic low levels, higher hair methylmercury levels are independently associated with lower arterial stiffness in seemingly healthy Korean adults regardless of classical cardiovascular risk factors.
Collapse
|
12
|
Arshad S, Arif A, Wattoo JI. Response of Iron Deficiency Markers to Blood Lead Levels and Synergistic Outcomes at Prenatal Stage. Dose Response 2022; 20:15593258221101744. [PMID: 35602584 PMCID: PMC9121471 DOI: 10.1177/15593258221101744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/01/2022] [Indexed: 11/29/2022] Open
Abstract
Lead may be passed on from a mother to their unborn fetus. If she has been exposed to lead for an extended period, the lead deposited in their bones can be stimulated to be released into the bloodstream during gestation. This study was planned to examine blood lead level at the prenatal stage and its response to markers of iron deficiency during gestation. We collected 396 samples during the second trimester of gestation from women age 19 to 45 years. Hematological markers including hemoglobin, hepcidin, total iron-binding capacity (TIBC), ferritin, and blood iron were analyzed. For the detection of blood lead, we used Atomic absorption spectroscopy. The mean blood lead level of the control group was 3.25 ± .407 μg/dL, and in the iron deficiency group, it was 7.96 ± .502 μg/dL. At the same time, the women with iron deficiency anemia showed 22.12 ± 1.02 μg/dL of mean blood lead. Pearson's approach showed a non-significant negative correlation between blood lead and hepcidin, while hemoglobin, total iron-binding capacity, ferritin, and serum iron showed a significant (.01) negative correlation with blood lead. Blood lead has no direct effect on iron deficiency markers. In contrast, iron deficiency contributes to an increase in lead accumulation during pregnancy. Iron and lead both have an impact on the heme-biosynthetic pathways. The study revealed that pre-existing iron deficiency is connected with increased lead intake and can negatively impact health in gestational females.
Collapse
Affiliation(s)
- Shafia Arshad
- Department of Biochemistry, Faculty
of Life Sciences, University of Central
Punjab, Pakistan
- Faculty of Medicine and Allied
Health Sciences, The Islamia University, Bahawalpur, Pakistan
| | - Amina Arif
- Department of Biochemistry, Faculty
of Life Sciences, University of Central
Punjab, Pakistan
| | - Javed I. Wattoo
- Department of Biochemistry, Faculty
of Life Sciences, University of Central
Punjab, Pakistan
| |
Collapse
|
13
|
Zhu H, Huang ZY, Jiang S, Pan L, Xi YL. Rapid adaptation of Brachionus dorcas (Rotifera) to tetracycline antibiotic stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106126. [PMID: 35228124 DOI: 10.1016/j.aquatox.2022.106126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 01/25/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Although natural populations can rapidly adapt to selection pressures, the fitness consequences of selection are controversial. In this study, a selection experiment was conducted with replicate populations of Brachionus dorcas that were exposed to two sublethal concentrations (26.8 and 78.3 mg/L) of oxytetracycline (OTC), followed by two common garden experiments (population growth and life table experiments). During the 102-day (approximately 36 asexual generations) selection experiment, a markedly increased growth rate but a significantly decreased mictic ratio over time in the populations exposed to OTC when compared to the control populations suggested that the former adapted to the selection pressures and that a trade-off exists between asexual and sexual reproduction. The high and stable population growth rates after 90 days of OTC selection illustrate an example of evolutionary rescue. After 102 days of selection, OTC-selected populations showed higher population growth rates than the control populations when exposed to OTC, indicating significantly increased tolerance. OTC-selected populations showed a lower average growth rate, longer average generation time and life expectancy at hatching, and higher average net reproduction rate and proportion of mictic offspring than the control populations in the absence of OTC, which indicate that OTC selection results in two fitness costs and three fitness gains and that the effect of OTC selection on fitness differs with the measured fitness variables. Both the evolutionary potential of populations under the stress of higher concentrations of OTC and the fitness costs and gains of selection in the absence of OTC indicate that past exposures to pollutants cannot be neglected when evaluating the effects of current stressors on natural populations.
Collapse
Affiliation(s)
- Han Zhu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-funded by Anhui Province and Ministry of Education of the People's Republic of China, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, Anhui Province, China
| | - Zhi-Yu Huang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-funded by Anhui Province and Ministry of Education of the People's Republic of China, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, Anhui Province, China
| | - Shan Jiang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-funded by Anhui Province and Ministry of Education of the People's Republic of China, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, Anhui Province, China
| | - Ling Pan
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-funded by Anhui Province and Ministry of Education of the People's Republic of China, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, Anhui Province, China
| | - Yi-Long Xi
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-funded by Anhui Province and Ministry of Education of the People's Republic of China, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, Anhui Province, China.
| |
Collapse
|
14
|
Zaidi M, Athmouni K, Metais I, Ayadi H, Leignel V. The Mediterranean limpet Patella caerulea (Gastropoda, Mollusca) to assess marine ecotoxicological risk: a case study of Tunisian coasts contaminated by metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28339-28358. [PMID: 34989994 DOI: 10.1007/s11356-021-18490-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Participants in the coastal socio-economy of the Mediterranean Sea, such as industries, aquaculture, urban populations, conglomerates, and tourists, create intense anthropogenic pressures on marine ecosystems (such as the release of trace metals). This raises concerns about their impact on the surrounding environment and on marine organisms, including those collected for human consumption. This study introduces the possibility of using Patella caerulea (Linnaeus 1758), indigenous to the Mediterranean Sea, as a biosentinel of marine pollution. This study proposes coupling environmental (bioaccumulation) and toxicological (redox homeostasis) measures of bioavailability with genetic variability (COI mtDNA) assessments. Concentrations of six trace metals (cadmium, copper, iron, lead, nickel, and zinc) were measured in surface seawater and in P. caerulea individuals collected from four coastal stations on the Tunisian coast where different levels of metal contamination have occurred. The quantified biomarkers involved the determination of antioxidant defense enzymes, catalase (CAT), glutathione peroxidase (GPX), superoxide dismutase (SOD), and the measurement of lipid peroxidation indicated by malondialdehyde (MDA) levels. Our study identified critical levels of metal contamination among locations in the Gulf of Gabes. Concomitantly, the induction of antioxidant biomarkers (especially SOD and GPX) was observed, highlighting the potential of P. caerulea to acclimate to stressful pollution conditions. Molecular analysis of COI (mtDNA) revealed low discrimination between the four P. caerulea populations, highlighting the role of marine currents in the Mediterranean Sea in the dispersal and passive transportation of limpet larvae, allowing an exchange of individuals among physically separated, P. caerulea populations.
Collapse
Affiliation(s)
- Mariem Zaidi
- EA2160 Laboratory MMS (Water Molecules and Health), Le Mans University, Avenue Olivier Messiaen, 72000, Le Mans, France.
- UR/11ES72 Laboratory of Biodiversity and Aquatic Ecosystems, Sfax University, Sfax, Tunisia.
| | - Khaled Athmouni
- UR/11ES72 Laboratory of Biodiversity and Aquatic Ecosystems, Sfax University, Sfax, Tunisia
| | - Isabelle Metais
- EA2160 Laboratory MMS (Water Molecules and Health), The Catholic University of the West, PI, André Leroy, 49000, Angers, France
| | - Habib Ayadi
- UR/11ES72 Laboratory of Biodiversity and Aquatic Ecosystems, Sfax University, Sfax, Tunisia
| | - Vincent Leignel
- EA2160 Laboratory MMS (Water Molecules and Health), Le Mans University, Avenue Olivier Messiaen, 72000, Le Mans, France
| |
Collapse
|
15
|
Liu Y, Zhou S, Xiang D, Ju L, Shen D, Wang X, Wang Y. Friend or Foe? The Roles of Antioxidants in Acute Lung Injury. Antioxidants (Basel) 2021; 10:1956. [PMID: 34943059 PMCID: PMC8750496 DOI: 10.3390/antiox10121956] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022] Open
Abstract
Acute lung injury (ALI) is an acute hypoxic respiratory insufficiency caused by various intra- and extra-pulmonary injury factors. The oxidative stress caused by excessive reactive oxygen species (ROS) produced in the lungs plays an important role in the pathogenesis of ALI. ROS is a "double-edged sword", which is widely involved in signal transduction and the life process of cells at a physiological concentration. However, excessive ROS can cause mitochondrial oxidative stress, leading to the occurrence of various diseases. It is well-known that antioxidants can alleviate ALI by scavenging ROS. Nevertheless, more and more studies found that antioxidants have no significant effect on severe organ injury, and may even aggravate organ injury and reduce the survival rate of patients. Our study introduces the application of antioxidants in ALI, and explore the mechanisms of antioxidants failure in various diseases including it.
Collapse
Affiliation(s)
- Yang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.L.); (D.S.)
| | - Shujun Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China; (S.Z.); (D.X.)
| | - Du Xiang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China; (S.Z.); (D.X.)
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan 430071, China;
- Human Genetics Resource Preservation Center of Hubei Province, Wuhan 430071, China
| | - Dexin Shen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.L.); (D.S.)
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.L.); (D.S.)
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China; (S.Z.); (D.X.)
| |
Collapse
|
16
|
Banerjee M, Al-Eryani L, Srivastava S, Rai SN, Pan J, Kalbfleisch TS, States JC. Delineating the Effects of Passaging and Exposure in a Longitudinal Study of Arsenic-Induced Squamous Cell Carcinoma in a HaCaT Cell Line Model. Toxicol Sci 2021; 185:184-196. [PMID: 34730829 DOI: 10.1093/toxsci/kfab129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a major deleterious health effect of chronic arsenic (iAs) exposure. The molecular mechanism of arsenic-induced cSCC remains poorly understood. We recently demonstrated that chronic iAs exposure leads to temporally regulated genome-wide changes in profiles of differentially expressed mRNAs and miRNAs at each stage of carcinogenesis (7, 19 and 28 weeks) employing a well-established passage-matched HaCaT cell line model of arsenic-induced cSCC. Here, we performed longitudinal differential expression analysis (miRNA and mRNA) between the different time points (7 vs. 19 weeks and 19 vs. 28 weeks) within unexposed and exposed groups, coupled to expression pairing and pathway analyses to differentiate the relative effects of long-term passaging and chronic iAs exposure. Data showed that 66-105 miRNA [p < 0.05; log2(Fold Change)>I1I] and 2826-4079 mRNA [p < 0.001; log2(Fold Change)>I1I] molecules were differentially expressed depending on the longitudinal comparison. Several mRNA molecules differentially expressed as a function of time, independent of iAs exposure were being targeted by miRNA molecules which were also differentially expressed in a time dependent manner. Distinct pathways were predicted to be modulated as a function of time or iAs exposure. Some pathways were also modulated both by time and exposure. Thus, the HaCaT model can distinguish between the effects of passaging and chronic iAs exposure individually and corroborate our previously published data on effects of iAs exposure compared to unexposed passage matched HaCaT cells. In addition, this work provides a template for cell line based longitudinal chronic exposure studies to follow for optimal efficacy.
Collapse
Affiliation(s)
- Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, USA Louisville, KY
| | - Laila Al-Eryani
- Department of Pharmacology and Toxicology, University of Louisville, USA Louisville, KY
| | - Sudhir Srivastava
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, USA Louisville, KY.,Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, India New Delhi, 110012
| | - Shesh N Rai
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, USA Louisville, KY.,Department of Bioinformatics and Biostatistics, University of Louisville, USA Louisville, KY
| | - Jianmin Pan
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, USA Louisville, KY
| | - Theodore S Kalbfleisch
- Department of Biochemistry and Molecular Genetics, University of Louisville, USA Louisville, KY
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, USA Louisville, KY
| |
Collapse
|
17
|
Calabrese EJ. Hormesis and bone marrow stem cells: Enhancing cell proliferation, differentiation and resilience to inflammatory stress. Chem Biol Interact 2021; 351:109730. [PMID: 34728189 DOI: 10.1016/j.cbi.2021.109730] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022]
Abstract
This paper identifies and provides the first detailed assessment of hormetic dose responses by bone marrow stem cells (BMSCs) from a broad range of animal models and humans with particular emphasis on cell renewal (proliferation), cell differentiation and enhancing resilience to inflammatory stress. Such hormetic dose responses are commonly reported, being induced by a broad range of chemicals, including pharmaceuticals (e.g., caffeine, dexamethasone, nicotine), dietary supplements (e.g., curcumin, Ginkgo biloba, green tea extracts. resveratrol, sulforaphane), endogenous agents (e.g., hydrogen sulfide, interleukin 10), environmental contaminants (e.g., arsenic, PFOS) and physical stressor agents (e.g., EMF, shockwaves). Hormetic dose responses reported here for BMSCs are similar to those induced with other stem cell types [e.g., adipose-derived stem cells (ADSCs), dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), neuro stem cells (NSCs), embryonic stem cells (ESCs)], indicating a substantial degree of generality for hormetic responses in stem cells. The paper assesses both the underlying mechanistic foundations of BMSC hormetic responses and their potential therapeutic implications.
Collapse
Affiliation(s)
- Edward J Calabrese
- Professor of Toxicology, Environmental Health Sciences, School of Public Health and Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
18
|
Gianì F, Masto R, Trovato MA, Malandrino P, Russo M, Pellegriti G, Vigneri P, Vigneri R. Heavy Metals in the Environment and Thyroid Cancer. Cancers (Basel) 2021; 13:4052. [PMID: 34439207 PMCID: PMC8393334 DOI: 10.3390/cancers13164052] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022] Open
Abstract
In recent decades, the incidence of thyroid cancer has increased more than most other cancers, paralleling the generalized worldwide increase in metal pollution. This review provides an overview of the evidence supporting a possible causative link between the increase in heavy metals in the environment and thyroid cancer. The major novelty is that human thyroid stem/progenitor cells (thyrospheres) chronically exposed to different metals at slightly increased environmentally relevant concentrations show a biphasic increase in proliferation typical of hormesis. The molecular mechanisms include, for all metals investigated, the activation of the extracellular signal-regulated kinase (ERK1/2) pathway. A metal mixture, at the same concentration of individual metals, was more effective. Under the same conditions, mature thyrocytes were unaffected. Preliminary data with tungsten indicate that, after chronic exposure, additional abnormalities may occur and persist in thyrocytes derived from exposed thyrospheres, leading to a progeny population of transformation-prone thyroid cells. In a rat model predisposed to develop thyroid cancer, long-term exposure to low levels of metals accelerated and worsened histological signs of malignancy in the thyroid. These studies provide new insight on metal toxicity and carcinogenicity occurring in thyroid cells at a low stage of differentiation when chronically exposed to metal concentrations that are slightly increased, albeit still in the "normal" range.
Collapse
Affiliation(s)
- Fiorenza Gianì
- Endocrinology, Garibaldi-Nesima Medical Center, Department of Clinical and Experimental Medicine, University of Catania, 95122 Catania, Italy; (F.G.); (R.M.); (P.M.); (M.R.); (G.P.)
| | - Roberta Masto
- Endocrinology, Garibaldi-Nesima Medical Center, Department of Clinical and Experimental Medicine, University of Catania, 95122 Catania, Italy; (F.G.); (R.M.); (P.M.); (M.R.); (G.P.)
| | | | - Pasqualino Malandrino
- Endocrinology, Garibaldi-Nesima Medical Center, Department of Clinical and Experimental Medicine, University of Catania, 95122 Catania, Italy; (F.G.); (R.M.); (P.M.); (M.R.); (G.P.)
| | - Marco Russo
- Endocrinology, Garibaldi-Nesima Medical Center, Department of Clinical and Experimental Medicine, University of Catania, 95122 Catania, Italy; (F.G.); (R.M.); (P.M.); (M.R.); (G.P.)
| | - Gabriella Pellegriti
- Endocrinology, Garibaldi-Nesima Medical Center, Department of Clinical and Experimental Medicine, University of Catania, 95122 Catania, Italy; (F.G.); (R.M.); (P.M.); (M.R.); (G.P.)
| | - Paolo Vigneri
- Medical Oncology and Center of Experimental Oncology and Hematology, Department of Clinical and Experimental Medicine, University of Catania, A.O.U. Policlinico Vittorio Emanuele, 95125 Catania, Italy;
| | - Riccardo Vigneri
- Endocrinology, Garibaldi-Nesima Medical Center, Department of Clinical and Experimental Medicine, University of Catania, 95122 Catania, Italy; (F.G.); (R.M.); (P.M.); (M.R.); (G.P.)
- Consiglio Nazionale delle Ricerche, Cristallography Institute, Catania Section, via P. Gaifami 18, 95126 Catania, Italy
| |
Collapse
|
19
|
Banerjee M, Ferragut Cardoso A, Al-Eryani L, Pan J, Kalbfleisch TS, Srivastava S, Rai SN, States JC. Dynamic alteration in miRNA and mRNA expression profiles at different stages of chronic arsenic exposure-induced carcinogenesis in a human cell culture model of skin cancer. Arch Toxicol 2021; 95:2351-2365. [PMID: 34032870 PMCID: PMC8241660 DOI: 10.1007/s00204-021-03084-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/17/2021] [Indexed: 12/22/2022]
Abstract
Chronic arsenic exposure causes skin cancer, although the underlying molecular mechanisms are not well defined. Altered microRNA and mRNA expression likely play a pivotal role in carcinogenesis. Changes in genome-wide differential expression of miRNA and mRNA at 3 strategic time points upon chronic sodium arsenite (As3+) exposure were investigated in a well-validated HaCaT cell line model of arsenic-induced cutaneous squamous cell carcinoma (cSCC). Quadruplicate independent HaCaT cell cultures were exposed to 0 or 100 nM As3+ for up to 28-weeks (wk). Cell growth was monitored throughout the course of exposure and epithelial-mesenchymal transition (EMT) was examined employing immunoblot. Differentially expressed miRNA and mRNA profiles were generated at 7, 19, and 28-wk by RNA-seq, followed by identification of differentially expressed mRNA targets of differentially expressed miRNAs through expression pairing at each time point. Pathway analyses were performed for total differentially expressed mRNAs and for the miRNA targeted mRNAs at each time point. RNA-seq predictions were validated by immunoblot of selected target proteins. While the As3+-exposed cells grew slower initially, growth was equal to that of unexposed cells by 19-wk (transformation initiation), and exposed cells subsequently grew faster than passage-matched unexposed cells. As3+-exposed cells had undergone EMT at 28-wk. Pathway analyses demonstrate dysregulation of carcinogenesis-related pathways and networks in a complex coordinated manner at each time point. Immunoblot data largely corroborate RNA-seq predictions in the endoplasmic reticulum stress (ER stress) pathway. This study provides a detailed molecular picture of changes occurring during the arsenic-induced transformation of human keratinocytes.
Collapse
Affiliation(s)
- Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Ana Ferragut Cardoso
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Laila Al-Eryani
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
- Knowledge Management and Special Projects Branch, Center for Strategic Scientific Initiatives (HNC1L), National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jianmin Pan
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Biostatistics and Informatics Facility, Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, USA
| | - Theodore S Kalbfleisch
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
- Gluck Equine Research Center, University of Kentucky, Lexington, KY, USA
| | - Sudhir Srivastava
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, USA
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Shesh N Rai
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, USA
- Biostatistics and Informatics Facility, Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
20
|
Filipiak ZM, Bednarska AJ. Different effects of Zn nanoparticles and ions on growth and cellular respiration in the earthworm Eisenia andrei after long-term exposure. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:459-469. [PMID: 33616802 PMCID: PMC7987695 DOI: 10.1007/s10646-021-02360-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 05/13/2023]
Abstract
In this study, the effects of zinc nanoparticles (ZnO-NPs) and ions (ZnCl2) on the mortality, growth, maturation, and cellular respiration of the earthworm Eisenia andrei were assessed. Earthworms were individually exposed for 98 days, starting from the juvenile stage, to soils contaminated with either ZnO-NPs or ZnCl2 (125, 250, 500 and 1000 mg Zn kg-1 dry weight (dw)). Exposure to the highest-concentration ionic treatments (500 and 1000 mg kg-1) caused 100% mortality, while for other treatments, mortality did not exceed 15% at the end of exposure. Compared to the control treatment, both 125-1000 mg kg-1 ZnO-NPs and 125 or 250 mg kg-1 ZnCl2 stimulated earthworm growth, which might be due to a hormetic effect. ZnO-NPs and ZnCl2 caused different responses at medium Zn concentrations (250 and 500 mg kg-1): earthworms exposed to ionic treatment at 250 mg kg-1 were characterized by a significantly lower growth constant, lower cellular respiration rate, later inflection point, and higher final body weight than those exposed to ZnO-NPs treatments at the same (250 mg kg-1) or twice as high (500 mg kg-1) nominal Zn concentrations. However, differences were not observed in all examined parameters between the studied forms when the highest-concentration ZnO-NPs treatment was compared with the lowest-concentration ionic treatment, which was likely due to the same levels of available Zn concentrations in those treatments. Overall, different growth and maturation strategies accompanied by pronounced differences in cellular respiration were adopted by earthworms exposed to low and medium levels of either ZnO-NPs or ZnCl2.
Collapse
Affiliation(s)
- Zuzanna M Filipiak
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Agnieszka J Bednarska
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120, Kraków, Poland
| |
Collapse
|
21
|
Neff E, Dharmarajan G. The direct and indirect effects of copper on vector-borne disease dynamics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116213. [PMID: 33302085 DOI: 10.1016/j.envpol.2020.116213] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/25/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Metal pollution is a growing concern that affects the health of humans and animals globally. Copper is an essential insect micronutrient required for respiration, pigmentation and oxidative stress protection but can also act as a potentially toxic trace element. While several studies have focused on the negative fitness effects of copper on the aquatic larvae of mosquitoes, the effects of larval copper exposure on adult mosquito fitness (i.e., survival and fecundity) and their ability to transmit parasites (i.e., vector competence) remains unclear. Here, using a well-studied model vector-parasite system, the mosquito Aedes aegypti and parasite Dirofilaria immitis, we show that sublethal copper exposure in larval mosquitoes alters adult female fecundity and vector competence. Specifically, mosquitoes exposed to copper had a hormetic fecundity response and mosquitoes exposed to 600 μg/L of copper had significantly fewer infective parasite larvae than control mosquitoes not exposed to copper. Thus, exposure of mosquito larvae to copper levels far below EPA-mandated safe drinking water limits (1300 μg/L) can impact vector-borne disease dynamics not only by reducing mosquito abundance (through increased larval mortality), but also by reducing parasite transmission risk. Our results also demonstrated that larval copper is retained through metamorphosis to adulthood in mosquitoes, indicating that these insects could transfer copper from aquatic to terrestrial foodwebs, especially in urban areas where they are abundant. To our knowledge this is the first study to directly link metal exposure with vector competence (i.e., ability to transmit parasites) in any vector-parasite system. Additionally, it also demonstrates unequivocally that mosquitoes can transfer contaminants from aquatic to terrestrial ecosystems. These results have broad implications for public health because they directly linking contaminants and vector-borne disease dynamics, as well as linking mosquitoes and contaminant dynamics.
Collapse
Affiliation(s)
- Erik Neff
- Savannah River Ecology Lab, University of Georgia, Aiken, SC, 29801, USA; Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA.
| | - Guha Dharmarajan
- Savannah River Ecology Lab, University of Georgia, Aiken, SC, 29801, USA
| |
Collapse
|
22
|
Moreira RA, de Araujo GS, Silva ARRG, Daam MA, Rocha O, Soares AMVM, Loureiro S. Effects of abamectin-based and difenoconazole-based formulations and their mixtures in Daphnia magna: a multiple endpoint approach. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1486-1499. [PMID: 32388636 DOI: 10.1007/s10646-020-02218-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
This study evaluated the toxicity of pesticide formulations Kraft® 36 EC (active ingredient-a.i. abamectin) and Score® 250 EC (a.i. difenoconazole), and their mixtures in Daphnia magna at different biological levels of organization. Survival, reproduction and biochemical markers (cholinesterase (ChE), catalase (CAT) and lipid peroxidation (LPO)) were some of the endpoints evaluated. Total proteins and lipids were also studied together with energy consumption (Ec). D. magna neonates were exposed for 96 h to Kraft (2, 4, and 6 ng a.i./L) and Score (12.5, 25, and 50 µg a.i./L) for the biochemical experiments, and for 15 days to abamectin (1-5 ng a.i./L) and to difenoconazole (3.12-50 µg a.i./L) to assess possible changes in reproduction. Exposures of organisms to both single compounds did not cause effects to antioxidant and detoxifying enzymes, except for LPO occurring at the highest concentration of difenoconazole tested. For ChE and CAT there was enzymatic induction in mixture treatments organisms, occurring at minor pesticides concentrations for CAT and at the two highest concentrations for ChE. There were no significant differences for total protein in D. magna but lipids showed an increase at the highest concentrations of pesticide mixture combinations. There was a significant increase of Ec in individuals of all treatments tested. In the chronic test, increased fecundity occurred for D. magna under difenoconazole exposures and mixtures. This study demonstrated that mixtures of these pesticides caused greater toxicity to D. magna than when tested individually, except for Ec. Therefore, effects of mixtures are very hard to predict only based on information from single compounds, which most possibly is the result of biological complexity and redundancy in response pathways, which need further experimentation to become better known.
Collapse
Affiliation(s)
- Raquel Aparecida Moreira
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13.560-970, Brazil.
| | | | | | - Michiel Adriaan Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516, Caparica, Portugal
| | - Odete Rocha
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, São Carlos, SP, 13565-905, Brazil
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Susana Loureiro
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
23
|
Raisbeck MF. Water Quality for Cattle: Metalloid and Metal Contamination of Water. Vet Clin North Am Food Anim Pract 2020; 36:581-620. [PMID: 32948413 DOI: 10.1016/j.cvfa.2020.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Water is the most important nutrient for rangeland livestock. However, competition with municipalities, industry, and other water users often results in grazing livestock being forced to use water supplies that are less than perfect. Surface water in western rangleands are often contaminated by mineral extraction, irrigation runoff and other human activities. Mineral contaminants in drinking water are additive with similar contaminants in feedstuffs. The goal of this article is to provide producers and veterinarians with the basic background to make informed decisions about whether a given water supply is "safe" for livestock.
Collapse
Affiliation(s)
- Merl F Raisbeck
- Department of Veterinary Sciences, College of Agriculture, University of Wyoming, 2852 Riverside, Laramie, WY 82070, USA.
| |
Collapse
|
24
|
Keshavarzi M, Khodaei F, Siavashpour A, Saeedi A, Mohammadi-Bardbori A. Hormesis Effects of Nano- and Micro-sized Copper Oxide. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:2042-2054. [PMID: 32184868 PMCID: PMC7059066 DOI: 10.22037/ijpr.2019.13971.12030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The concerns about the possible risk of manufactured nanoparticles (NPs) have been raised recently. Nano- and micro-sized copper oxide (CO and CONP) are widely used in many industries. In this regard, in-vitro studies have demonstrated that CONP is a toxic compound in different cell lines. Despite their unique properties, NPs possess unexpected toxicity profiling relative to the bulk materials. This study was designed to examine and compare the toxic effects of CO and CONPs in-vivo and in isolated rat mitochondria. Male Wistar albino rats received 50 to 1000 mg/kg CO or CONP by gavage and several toxicological endpoints including biochemical indices and oxidative stress markers. Then, the pathological parameters in the multiple organs such as liver, brain, spleen, kidney, and intestine were assessed. Mitochondria were isolated from the rat liver and several mitochondrial indices were measured. The results of this study demonstrated that CO and CONP exhibited biphasic dose-response effects. CONPs showed higher toxicity compared with the bulk material. There were no significant changes in the results of CONP and CO in isolated rat liver mitochondria. The present studies provided more information regarding the hormetic effects of CO and CONPs in-vivo and in isolated rat mitochondria.
Collapse
Affiliation(s)
- Majid Keshavarzi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Forouzan Khodaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asma Siavashpour
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arastoo Saeedi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afshin Mohammadi-Bardbori
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
25
|
Silva ARR, Santos CSA, Ferreira NGC, Morgado R, Cardoso DN, Cruz A, Mendo S, Soares AMVM, Loureiro S. Multigenerational effects of carbendazim in Daphnia magna: From a subcellular to a population level. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:412-422. [PMID: 30508263 DOI: 10.1002/etc.4307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/10/2018] [Accepted: 10/29/2018] [Indexed: 06/09/2023]
Abstract
Anthropogenic activities such as the use of pesticides may affect aquatic biota populations, due to potential agricultural runoffs or disposals. Carbendazim is one example of a widely used fungicide with a high potential to end up in aquatic ecosystems through runoff. Deleterious effects observed at the individual level are possibly explained by changes in homeostasis at the cellular level, and both factors can then be used to predict effects at the population level. In the present study, an isoclonal population of Daphnia magna (clone K6) was exposed to a concentration that mimics relevant levels of carbendazim in the environment over 12 generations. The effects of carbendazim were assessed in some generations using the following endpoints: biochemical biomarkers (cholinesterase, catalase, and glutathione-S-transferase), lipid peroxidation and energy-related parameters (carbohydrates, lipids, and proteins along with available energy and energy consumption), parental longevity, and population growth (r). Long-term exposure to carbendazim had no effect on the intrinsic rate of natural increase (r) of adult D. magna, but longevity was decreased at the F12 generation compared to that of control. Differences between the exposed and nonexposed populations were found for cholinesterase, glutathione-S-transferase, and lipid peroxidation. However, for catalase and energy-related parameters, no differences were observed between these 2 populations. Natural variability was seen throughout the test period, under control conditions, within the 12 generations. Overall, carbendazim induced some effects at the subcellular level that translated into changes in longevity but these later vanished in terms of population effects. Environ Toxicol Chem 2019;38:412-422. © 2018 SETAC.
Collapse
Affiliation(s)
- Ana Rita R Silva
- Department of Biology and Center for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Cátia S A Santos
- Department of Biology and Center for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
- Department of Biology, Terrestrial Ecology Unit, Ghent University, Ghent, Belgium
| | - Nuno G C Ferreira
- Department of Biology and Center for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Rui Morgado
- Department of Biology and Center for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Diogo N Cardoso
- Department of Biology and Center for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Andreia Cruz
- Department of Biology and Center for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Sónia Mendo
- Department of Biology and Center for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology and Center for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Susana Loureiro
- Department of Biology and Center for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
26
|
Tsatsakis AM, Docea AO, Calina D, Buga AM, Zlatian O, Gutnikov S, Kostoff RN, Aschner M. Hormetic Neurobehavioral effects of low dose toxic chemical mixtures in real-life risk simulation (RLRS) in rats. Food Chem Toxicol 2018; 125:141-149. [PMID: 30594548 DOI: 10.1016/j.fct.2018.12.043] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/18/2018] [Accepted: 12/26/2018] [Indexed: 12/12/2022]
Abstract
The current study aims to assess the long-term effects of very low dose exposures to a complex chemical mixture on motor performance and behavioural changes in rats. For twelve months (equivalent to thirty years in human terms), four groups of Sprague Dawley rats (five males and five females per group) were exposed to a thirteen chemical mixture (in drinking water) in doses of 0, 0.25, 1 and 5xADI/TDI (acceptable daily intake/tolerable daily intake) (mg/kg body weight/day). After twelve month exposure, the rats' motor performances were assessed by rotarod test, and their behavioural changes were assessed by open field exploratory test and elevated plus maze test. Exposure to the chemical mixture resulted in a statistically significant increase in the locomotor activity quantified by the number of crossings over external squares and in the spatial orientation activity quantified as the number of rearings in the lower dose group (0.25xADI/TDI) compared with the control group (p < 0.05). No significant changes were observed in the two higher dose groups (1xADI/TDI, 5xADI/TDI) compared with the control group. The administration of a very low doses of a cocktail of 13 chemicals led to a dose-dependent stimulation of the nervous system, rather than its inhibition.
Collapse
Affiliation(s)
- Aristidis M Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, GR-71003, Heraklion, Crete, Greece.
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy, Faculty of Pharmacy, Craiova, 200349, Romania.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Ana Maria Buga
- Department of Biochemistry, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania.
| | - Ovidiu Zlatian
- Department of Microbiology, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania.
| | - Sergei Gutnikov
- Stroke Prevention Research Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom.
| | - Ronald N Kostoff
- School of Public Policy, Georgia Institute of Technology, Gainesville, VA, 20155, USA.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einsten College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
27
|
Tan Q, Zhang M, Geng L, Xia Z, Li C, Usman M, Du Y, Wei L, Bi H. Hormesis of methylmercury-human serum albumin conjugate on N9 microglia via ERK/MAPKs and STAT3 signaling pathways. Toxicol Appl Pharmacol 2018; 362:59-66. [PMID: 30352208 DOI: 10.1016/j.taap.2018.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/18/2018] [Accepted: 10/19/2018] [Indexed: 10/28/2022]
Abstract
Methylmercury (MeHg+) is an extremely toxic organomercury cation that can induce severe neurological damage. Once it enters the body, methylmercury binds to amino acids or proteins containing free sulfhydryl groups. In particular, methylmercury is known to bind with human serum albumin (HSA) in human plasma; however, the effects of methylmercury-HSA conjugate (MeHg-HSA) on the central nervous system (CNS) are not fully understood. In the present study, we used the microglial cell line N9 as the target cells to evaluate the effect of MeHg-HSA on physiological function of the CNS preliminarily. The various factors in the cell culture were monitored by MTT assay, total lactate dehydrogenase assay, ELISA, qPCR, Western blot and flow cytometry techniques. The results showed that low-dose treatment with MeHg-HSA activated N9 cells, promoting cell proliferation and total cell number, enhancing NO and intracellular Ca2+ levels, and suppressing the release of TNFα and IL1β without cytotoxic effects; while high-dose MeHg-HSA exhibited cytotoxic effects on N9 cells, including promoting cell death and increasing the secretion of TNFα and IL1β. These results indicate that MeHg-HSA causes hormesis in microglia N9 cells. Furthermore, ERK/MAPKs and STAT3 signaling pathways related to the hormesis of MeHg-HSA on N9 cells. In addition, low dose of MeHg-HSA might be viewed as something very close to a lowest observed adverse effect level (LOAEL) for N9 cells. These findings will be useful for investigating the hormesis mechanism of MeHg+ and exploring the specific functions of MeHg-sulfhydryl conjugates on the central nervous system.
Collapse
Affiliation(s)
- Qiaozhu Tan
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ming Zhang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lujing Geng
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhenghua Xia
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; University of Chinese Academy of Sciences, Beijing, China
| | - Cen Li
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Muhammad Usman
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan
| | - Yuzhi Du
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Lixin Wei
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.
| |
Collapse
|
28
|
Tan Q, Liu Z, Li H, Liu Y, Xia Z, Xiao Y, Usman M, Du Y, Bi H, Wei L. Hormesis of mercuric chloride-human serum albumin adduct on N9 microglial cells via the ERK/MAPKs and JAK/STAT3 signaling pathways. Toxicology 2018; 408:62-69. [DOI: 10.1016/j.tox.2018.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/07/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022]
|
29
|
Meireles G, Daam MA, Sanches ALM, Zanoni MV, Soares AM, Gravato C, Oliveira DPD. Red disperse dyes (DR 60, DR 73 and DR 78) at environmentally realistic concentrations impact biochemical profile of early life stages of zebrafish (Danio rerio). Chem Biol Interact 2018; 292:94-100. [DOI: 10.1016/j.cbi.2018.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/28/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022]
|
30
|
Lamm SH, Boroje IJ, Ferdosi H, Ahn J. Lung Cancer Risk and Low (≤50 μg/L) Drinking Water Arsenic Levels for US Counties (2009⁻2013)-A Negative Association. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15061200. [PMID: 29880761 PMCID: PMC6025287 DOI: 10.3390/ijerph15061200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/22/2018] [Accepted: 06/04/2018] [Indexed: 12/11/2022]
Abstract
While epidemiologic studies clearly demonstrate drinking water with high levels of arsenic as a significant risk factor for lung cancer, the evidence at low levels (≤50 μg/L) is uncertain. Therefore, we have conducted an ecological analysis of recent lung cancer incidence for US counties with a groundwater supply of <50 μg/L, the historical limit for both the EPA and WHO. Data sources used included USGS for arsenic exposure, NCI for lung cancer outcome, and CDC and US Census Bureau forcovariates. Poisson log-linear models were conducted for male, female, and total populations using for exposure median county arsenic level, maximum arsenic level ≤50 μg/L, and ≥80% population groundwater dependency. Statistically significant negative associations were found in each of the six models in which the exposure was limited to those who had major exposure (≥80% dependency) to low-levels of arsenic (≤50 μg/L). This is the first large ecological study of lung cancer risk from drinking water arsenic levels that specifically examined the dose-response slope for populations whose exposure was below the historical limit of ≤50 μg/L. The models for each of the three populations (total; male; female) demonstrated an association that is both negative and statistically significant.
Collapse
Affiliation(s)
- Steven H Lamm
- Center for Epidemiology and Environmental Health (CEOH, LLC), Washington, DC 20016, USA.
- Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
- Department of Pediatrics, Georgetown University School of Medicine, Washington, DC 20007, USA.
| | - Isabella J Boroje
- Center for Epidemiology and Environmental Health (CEOH, LLC), Washington, DC 20016, USA.
- Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA.
| | - Hamid Ferdosi
- Center for Epidemiology and Environmental Health (CEOH, LLC), Washington, DC 20016, USA.
- Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA.
| | - Jaeil Ahn
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University School of Medicine, Washington, DC 20007, USA.
| |
Collapse
|
31
|
Pace C, Dagda R, Angermann J. Antioxidants Protect against Arsenic Induced Mitochondrial Cardio-Toxicity. TOXICS 2017; 5:toxics5040038. [PMID: 29206204 PMCID: PMC5750566 DOI: 10.3390/toxics5040038] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 12/17/2022]
Abstract
Arsenic is a potent cardiovascular toxicant associated with numerous biomarkers of cardiovascular diseases in exposed human populations. Arsenic is also a carcinogen, yet arsenic trioxide is used as a therapeutic agent in the treatment of acute promyelotic leukemia (APL). The therapeutic use of arsenic is limited due to its severe cardiovascular side effects. Many of the toxic effects of arsenic are mediated by mitochondrial dysfunction and related to arsenic's effect on oxidative stress. Therefore, we investigated the effectiveness of antioxidants against arsenic induced cardiovascular dysfunction. A growing body of evidence suggests that antioxidant phytonutrients may ameliorate the toxic effects of arsenic on mitochondria by scavenging free radicals. This review identifies 21 antioxidants that can effectively reverse mitochondrial dysfunction and oxidative stress in cardiovascular cells and tissues. In addition, we propose that antioxidants have the potential to improve the cardiovascular health of millions of people chronically exposed to elevated arsenic concentrations through contaminated water supplies or used to treat certain types of leukemias. Importantly, we identify conceptual gaps in research and development of new mito-protective antioxidants and suggest avenues for future research to improve bioavailability of antioxidants and distribution to target tissues in order reduce arsenic-induced cardiovascular toxicity in a real-world context.
Collapse
Affiliation(s)
- Clare Pace
- Department of Environmental Science and Health, University of Nevada, Reno, NV 89557, USA.
| | - Ruben Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA.
| | - Jeff Angermann
- School of Community Health Sciences, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
32
|
Zhang C, Li C, Chen S, Li Z, Jia X, Wang K, Bao J, Liang Y, Wang X, Chen M, Li P, Su H, Wan JB, Lee SMY, Liu K, He C. Berberine protects against 6-OHDA-induced neurotoxicity in PC12 cells and zebrafish through hormetic mechanisms involving PI3K/AKT/Bcl-2 and Nrf2/HO-1 pathways. Redox Biol 2017; 11:1-11. [PMID: 27835779 PMCID: PMC5107737 DOI: 10.1016/j.redox.2016.10.019] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/29/2016] [Accepted: 10/31/2016] [Indexed: 11/10/2022] Open
Abstract
Berberine (BBR) is a renowned natural compound that exhibits potent neuroprotective activities. However, the cellular and molecular mechanisms are still unclear. Hormesis is an adaptive mechanism generally activated by mild oxidative stress to protect the cells from further damage. Many phytochemicals have been shown to induce hormesis. This study aims to investigate whether the neuroprotective activity of BBR is mediated by hormesis and the related signaling pathways in 6-OHDA-induced PC12 cells and zebrafish neurotoxic models. Our results demonstrated that BBR induced a typical hormetic response in PC12 cells, i.e. low dose BBR significantly increased the cell viability, while high dose BBR inhibited the cell viability. Moreover, low dose BBR protected the PC12 cells from 6-OHDA-induced cytotoxicity and apoptosis, whereas relatively high dose BBR did not show neuroprotective activity. The hormetic and neuroprotective effects of BBR were confirmed to be mediated by up-regulated PI3K/AKT/Bcl-2 cell survival and Nrf2/HO-1 antioxidative signaling pathways. In addition, low dose BBR markedly mitigated the 6-OHDA-induced dopaminergic neuron loss and behavior movement deficiency in zebrafish, while high dose BBR only slightly exhibited neuroprotective activities. These results strongly suggested that the neuroprotection of BBR were attributable to the hormetic mechanisms via activating cell survival and antioxidative signaling pathways.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Chuwen Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Shenghui Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; Lee's Pharmaceutical (Hong Kong) Ltd., Shatin, Hong Kong 999077, China
| | - Zhiping Li
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Shandong Provincial Key Laboratory for Biosensor, Biology Institute of Shandong Academy of Sciences, Jinan 250014, China
| | - Xuejing Jia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Kai Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Jiaolin Bao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Yeer Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xiaotong Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Simon Ming Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Kechun Liu
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Shandong Provincial Key Laboratory for Biosensor, Biology Institute of Shandong Academy of Sciences, Jinan 250014, China.
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
33
|
Mohammadi-Bardbori A, Bastan F, Akbarizadeh AR. The highly bioactive molecule and signal substance 6-formylindolo[3,2-b]carbazole (FICZ) plays bi-functional roles in cell growth and apoptosis in vitro. Arch Toxicol 2017; 91:3365-3372. [DOI: 10.1007/s00204-017-1950-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/23/2017] [Indexed: 01/12/2023]
|
34
|
Hormetic effect of panaxatriol saponins confers neuroprotection in PC12 cells and zebrafish through PI3K/AKT/mTOR and AMPK/SIRT1/FOXO3 pathways. Sci Rep 2017; 7:41082. [PMID: 28112228 PMCID: PMC5253660 DOI: 10.1038/srep41082] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023] Open
Abstract
Hormesis is an adaptive response of living organisms to a moderate stress. However, its biomedical implication and molecular mechanisms remain to be intensively investigated. Panaxatriol saponins (PTS) is the major bioactive components extracted from Panax notoginseng, a widely used herbal medicine for cerebrovascular diseases. This study aims to examine the hormetic and neuroprotective effects of PTS in PC12 cells and zebrafish Parkinson's disease (PD) models. Our results demonstrated that PTS stimulated PC12 cell growth by about 30% at low doses, while PTS at high doses inhibited cell growth, which is a typical hormetic effect. Moreover, we found that low dose PTS pretreatment significantly attenuated 6-OHDA-induced cytotoxicity and up-regulated PI3K/AKT/mTOR cell proliferation pathway and AMPK/SIRT1/FOXO3 cell survival pathway in PC12 cells. These results strongly suggested that neuroprotective effects of PTS may be attributable to the hormetic effect induced by PTS through activating adaptive response-related signaling pathways. Notably, low dose PTS could significantly prevent the 6-OHDA-induced dopaminergic neuron loss and improve the behavior movement deficiency in zebrafish, whereas relative high dose PTS exhibited neural toxicity, further supporting the hormetic and neuroprotective effects of PTS. This study indicates that PTS may have the potential in the development of future therapeutic medicines for PD.
Collapse
|
35
|
Arsenite Effects on Mitochondrial Bioenergetics in Human and Mouse Primary Hepatocytes Follow a Nonlinear Dose Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9251303. [PMID: 28163822 PMCID: PMC5253485 DOI: 10.1155/2017/9251303] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/10/2016] [Accepted: 11/20/2016] [Indexed: 01/27/2023]
Abstract
Arsenite is a known carcinogen and its exposure has been implicated in a variety of noncarcinogenic health concerns. Increased oxidative stress is thought to be the primary cause of arsenite toxicity and the toxic effect is thought to be linear with detrimental effects reported at all concentrations of arsenite. But the paradigm of linear dose response in arsenite toxicity is shifting. In the present study we demonstrate that arsenite effects on mitochondrial respiration in primary hepatocytes follow a nonlinear dose response. In vitro exposure of primary hepatocytes to an environmentally relevant, moderate level of arsenite results in increased oxidant production that appears to arise from changes in the expression and activity of respiratory Complex I of the mitochondrial proton circuit. In primary hepatocytes the excess oxidant production appears to elicit adaptive responses that promote resistance to oxidative stress and a propensity to increased proliferation. Taken together, these results suggest a nonlinear dose-response characteristic of arsenite with low-dose arsenite promoting adaptive responses in a process known as mitohormesis, with transient increase in ROS levels acting as transducers of arsenite-induced mitohormesis.
Collapse
|
36
|
Abstract
This article describes the lifestyle patterns of boron mining and processing workers ( N = 936) and a comparison group ( N = 251) in northeast China, and explores relationships between boron exposure and reproductive health. An English version of an interview guide addressing areas of work and lifestyle relevant to boron exposure and metabolism was developed by an occupational health research team, translated to Chinese, and translated back, for clarity. Modifications incorporated suggestions from a local community advisory board and boron industry workers; the translation–back translation process was reapplied, and cultural and semantic equivalence was attained. Results from the interviews showed more than 64% of workers and comparison group participants smoked tobacco and more than 92% reported exposure to environmental tobacco smoke. Boron workers and the comparison group varied in their food intake and alcohol consumption, but not in their smoking habits. Thirty-four percent of boron workers reported eating in the contaminated work area. Nearly all boron workers (99%) showered or bathed after work, although approximately 10% redressed in their contaminated clothes. Reproductive health outcomes were explored, including delayed pregnancy, multiple births, spontaneous miscarriages, induced abortions, stillbirths, and an unusual ratio of male to female offspring. Implications for occupational health nurses and recommendations for future research are provided.
Collapse
Affiliation(s)
- Betty L Chang
- School of Nursing, University of California, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Luz AL, Meyer JN. Effects of reduced mitochondrial DNA content on secondary mitochondrial toxicant exposure in Caenorhabditis elegans. Mitochondrion 2016; 30:255-64. [PMID: 27566481 PMCID: PMC5023498 DOI: 10.1016/j.mito.2016.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/12/2016] [Accepted: 08/22/2016] [Indexed: 01/21/2023]
Abstract
The mitochondrial genome (mtDNA) is intimately linked to cellular and organismal health, as demonstrated by the fact that mutations in and depletion of mtDNA result in severe mitochondrial disease in humans. However, cells contain hundreds to thousands of copies of mtDNA, which provides genetic redundancy, and creates a threshold effect in which a large percentage of mtDNA must be lost prior to clinical pathogenesis. As certain pharmaceuticals and genetic mutations can result in depletion of mtDNA, and as many environmental toxicants target mitochondria, it is important to understand whether reduced mtDNA will sensitize an individual to toxicant exposure. Here, using ethidium bromide (EtBr), which preferentially inhibits mtDNA replication, we reduced mtDNA 35-55% in the in vivo model organism Caenorhabditis elegans. Chronic, lifelong, low-dose EtBr exposure did not disrupt nematode development or lifespan, and induced only mild alterations in mitochondrial respiration, while having no effect on steady-state ATP levels. Next, we exposed nematodes with reduced mtDNA to the known and suspected mitochondrial toxicants aflatoxin B1, arsenite, paraquat, rotenone or ultraviolet C radiation (UVC). EtBr pre-exposure resulted in mild sensitization of nematodes to UVC and arsenite, had no effect on AfB1 and paraquat, and provided some protection from rotenone toxicity. These mixed results provide a first line of evidence suggesting that reduced mtDNA content may sensitize an individual to certain environmental exposures.
Collapse
Affiliation(s)
- Anthony L Luz
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC 27708, United States.
| | - Joel N Meyer
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC 27708, United States.
| |
Collapse
|
38
|
Abstract
Many nations have shown mounting interest in a simple idea for the regulation of risk: In case of doubt, follow the precautionary principle (O'Riordan T, Cameron J eds. Interpreting the precautionary principle, 2002). Avoid steps that will create a risk of harm. Until safety is established, be cautious; do not require unambiguous evidence. In a catchphrase: Better safe than sorry.
Collapse
|
39
|
Yang Y, Qi S, Chen J, Liu Y, Teng M, Wang C. Toxic Effects of Bromothalonil and Flutolanil on Multiple Developmental Stages in Zebrafish. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 97:91-97. [PMID: 27209543 DOI: 10.1007/s00128-016-1833-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
In this study, we applied various developmental stages of zebrafish to address the potential environmental risk and aquatic toxicity of bromothalonil and flutolanil. This results demonstrated that the acute toxicity of bromothalonil to the three phases of zebrafish were 4.34 (embryo) < 3.27 (12 h old larvae) < 2.52 mg/L (adult fish) and that of flutolanil were 5.47 (embryo) < 4.09 (72 h old larvae) < 3.91 (12 h old larvae) < 2.70 mg/L (adult). Sublethal effects induced by both bromothalonil and flutolanil on zebrafish embryos were noted, including growth inhibition, abnormal spontaneous movement, slower heart rate, complete hatching failure, and morphological deformities. In addition, both bromothalonil and flutolanil could cause notochord deformation and short body length of larvae. This study provides a foundation for future investigation into the mechanism of bromothalonil and flutolanil toxicity in zebrafish.
Collapse
Affiliation(s)
- Yang Yang
- College of Sciences, China Agricultural University, No. 2 Yuan Mingyuan West Road, Haidian District, Beijing, People's Republic of China
| | - Suzhen Qi
- College of Sciences, China Agricultural University, No. 2 Yuan Mingyuan West Road, Haidian District, Beijing, People's Republic of China
| | - Jiayi Chen
- College of Sciences, China Agricultural University, No. 2 Yuan Mingyuan West Road, Haidian District, Beijing, People's Republic of China
| | - Yong Liu
- College of Sciences, China Agricultural University, No. 2 Yuan Mingyuan West Road, Haidian District, Beijing, People's Republic of China
| | - Miao Teng
- College of Sciences, China Agricultural University, No. 2 Yuan Mingyuan West Road, Haidian District, Beijing, People's Republic of China
| | - Chengju Wang
- College of Sciences, China Agricultural University, No. 2 Yuan Mingyuan West Road, Haidian District, Beijing, People's Republic of China.
| |
Collapse
|
40
|
Effects of mercury on the life table demography of the rotifer Brachionus calyciflorus under different algal food (Scenedesmus obliquus) densities. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.chnaes.2016.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Moreira RA, da Silva Mansano A, Rocha O. The toxicity of carbofuran to the freshwater rotifer, Philodina roseola. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:604-615. [PMID: 25588673 DOI: 10.1007/s10646-014-1408-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/27/2014] [Indexed: 06/04/2023]
Abstract
In this study, the effects of exposing the rotifer Philodina roseola to the pesticide carbofuran were investigated. Its range of sensitivity to potassium dichromate, the acute toxicity of active ingredient carbofuran and of carbofuran dosed as its commercial form, Furadan(®) 350 SC were determined. Chronic toxicity of carbofuran dosed as Furadan(®) 350 SC on P. roseola survival and fecundity were also studied. The sensitivity of P. roseola to K2Cr2O7 ranged from 29.52 to 64.67 mg L(-1), averaging 47.10 mg L(-1). The 48-h EC50 were 13.36 ± 2.63 mg L(-1) for carbofuran and 89.32 ± 6.52 mg L(-1) for commercial form. Chronic toxicity tests showed that the survival of this rotifer was not affected by the carbofuran dosed as Furadan(®) 350 SC at the concentrations tested and that at 1.56 and 3.12 mg L(-1) their fecundity was higher than in the absence of this commercial product, characterizing the hormesis phenomenon. The sensitivity profile of several species to carbofuran indicated that P. roseola is more susceptible to this pesticide than the fish Clarias batrachus, the bacterium Vibrio fischeri, the protozoan Paramecium caudatum and the rotifer Brachionus calyciflorus, although the acute toxicity of carbofuran dosed as Furadan(®) 350 SC to P. roseola is much lower than that of active ingredient carbofuran. The results also imply that the exacerbated use of pesticides and the constant, accelerated expansion of agricultural activity will make aquatic non-target species even more vulnerable. Furthermore, the relevant role of benthic organisms in aquatic environments justifies the inclusion of P. roseola and other benthic species in toxicity screening for risk assessment, regarding this environmental compartment.
Collapse
Affiliation(s)
- Raquel Aparecida Moreira
- Post-Graduate Program of Ecology and Natural Resources, Federal University of São Carlos, Rodovia Washington Luis, km 235, São Carlos, SP, CEP 13565-905, Brazil,
| | | | | |
Collapse
|
42
|
Mohammadi-Bardbori A, Rannug A. Arsenic, cadmium, mercury and nickel stimulate cell growth via NADPH oxidase activation. Chem Biol Interact 2014; 224:183-8. [PMID: 25446860 DOI: 10.1016/j.cbi.2014.10.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 10/18/2014] [Accepted: 10/27/2014] [Indexed: 01/14/2023]
Abstract
Exposure to metals and metalloids including arsenic, cadmium, mercury, and nickel has been a worldwide health problem for several decades. The aim of this study was to learn how metal-induced oxidative stress triggers cell proliferation, a process of great significance for cancer. NADPH oxidase (NOX) activity and cell proliferation were measured as endpoints in both NOX-deficient and NOX-proficient cells. The X chromosome linked CGD (X-CGD) human promyelocytic leukemia PLB-985 cells lacking gp91phox and the X-CGD cells re-transfected with gp91phox (X-CGD-gp91(phox)) were used together with immortalized human keratinocyte cells (HaCaT). The cells were exposed to different concentrations of the metals alone or together with the NOX inhibitor, diphenyleneiodonium (DPI). We found that the studied metals increased NOX activity. They stimulated cell proliferation in HaCaT and X-CGD-gp91(phox) cells at concentrations below 1μM but not in the X-CGD cells that lack functional NOX. Addition of DPI attenuated the metal-induced cell proliferation. At concentrations above 1μM these metals inhibited cell proliferation. Based on these findings, we propose that many environmental pollutants, including metals and also endogenous NOX-activators such as oxidants and growth factors, interfere with cell growth kinetics by increasing the levels of the diffusible molecule H2O2. Here, we provide evidence that NOXs is central to the mechanism of metal-mediated reactive oxygen species production and stimulation of cell proliferation.
Collapse
Affiliation(s)
- Afshin Mohammadi-Bardbori
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars 71345-1583, Iran
| | - Agneta Rannug
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
43
|
Dolara P. Occurrence, exposure, effects, recommended intake and possible dietary use of selected trace compounds (aluminium, bismuth, cobalt, gold, lithium, nickel, silver). Int J Food Sci Nutr 2014; 65:911-24. [DOI: 10.3109/09637486.2014.937801] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Gressel J, Dodds J. Commentary: Hormesis can be used in enhancing plant productivity and health; but not as previously envisaged. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 213:123-7. [PMID: 24157215 DOI: 10.1016/j.plantsci.2013.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 05/08/2023]
Abstract
Sub-toxic doses of many toxicants have positive, beneficial effects on productivity, or stress resistance (hormesis). Transcriptomic, proteomic, and metabolomic responses to a disparate variety hormetic agents, coupled with bioinformatic analyses, can be used to identify consensus genes, their controlling elements, and their metabolites related to stimulation of growth and/or health. This information can then be used as a method for generating healthier and higher yielding crops using transgenic or other biotechnological techniques. The same bioinformatic information can be used to develop knowledge-based, transcriptomic, proteomic and metabolomic high throughput pre-screens using young plants to identify hormetic chemicals that are potentially useful for enhancement of crop health and yield. Such pre-screens preclude the need to use whole plants through maturity. While the hormetic effectors themselves have to date been of limited direct utility, it is clear that they can be used to help pinpoint genes and chemicals that are potentially useful. This is superior to the presently used random screening or even "educated guess" screening of genes and chemicals.
Collapse
Affiliation(s)
- Jonathan Gressel
- Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
45
|
Shupert LA, Ebbs SD, Lawrence J, Gibson DJ, Filip P. Dissolution of copper and iron from automotive brake pad wear debris enhances growth and accumulation by the invasive macrophyte Salvinia molesta Mitchell. CHEMOSPHERE 2013; 92:45-51. [PMID: 23582708 DOI: 10.1016/j.chemosphere.2013.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/27/2013] [Accepted: 03/01/2013] [Indexed: 06/02/2023]
Abstract
Automotive vehicles release particulate matter into the environment when their brakes are applied. The environmental effects of this automotive brake pad wear debris (BPWD) on the environment is a matter of growing debate yet the effects on plants have been largely untested. In this study, the effect of BPWD on the growth of the aquatic invasive Salvinia molesta Mitchell was examined. Salvinia molesta, plants were grown hydroponically in distilled water or in a distilled water extract containing BPWD. Growth of floating leaves, submerged leaves, and leaf nodes were measured over 20 d at 4-d intervals. At the conclusion of the study the amount of BPWD present in solutions and plant tissues was quantified using atomic absorption spectrometry (AAS). Cultivation of S. molesta in the water containing BPWD resulted in greater dissolution of Cu and Fe than occurred in the absence of plants. The tissue Cu and Fe concentrations of plants cultivated in the BPWD were significantly higher than plants grown in the absence of BPWD. Growth of S. molesta significantly increased when cultivated in the BPWD solutions in comparison to the distilled water. The results suggest that S. molesta and similar aquatic plants may be capable of increasing the dissolution of metal micronutrients from BPWD and utilizing those micronutrients to increase growth. Such growth responses could indicate that BPWD may interact with invasive floating macrophytes to more rapidly degrade the quality and stability of aquatic communities.
Collapse
Affiliation(s)
- Lindsay A Shupert
- Department of Plant Biology and Center for Ecology, Southern Illinois University, Carbondale, IL 62901, USA
| | | | | | | | | |
Collapse
|
46
|
|
47
|
Haghighi M, Heidarian S, Teixeira da Silva JA. The effect of titanium amendment in N-withholding nutrient solution on physiological and photosynthesis attributes and micronutrient uptake of tomato. Biol Trace Elem Res 2012; 150:381-90. [PMID: 22864688 DOI: 10.1007/s12011-012-9481-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/23/2012] [Indexed: 11/26/2022]
Abstract
Titanium (Ti) is a beneficial element that promotes growth and biomass production although the mechanism by which this improvement takes place is still unclear, as are other effects on plants, although it is believed that Ti can compensate for N deficiency. To prove this hypothesis, a hydroponic experiment was designed to investigate the effect of adding Ti to a nutrient solution on the nutrient uptake of tomato (Lycopersicon esculentum L.) by withholding N within the nutrient solution (NS) by 25 % (NS2) and by 50 % (NS1). Ti was added at 1 and 2 mg L⁻¹. When Ti was added to nutrient solution, the elemental concentration in tomato changed significantly: K, Ca, Fe, and Zn decreased while Ti increased. As the concentration of N in nutrient solution decreased, the Ca and Ti concentration of tomato leaves decreased and the K, Mn, Fe, Cu, and Zn concentration increased. As the N concentration in nutrient solution increased, the Ca concentration decreased although the application of Ti compensated for Ca concentration in NS1. All the photosynthetic attributes and physiological characteristics, including flower induction, decreased when the N concentration of NS decreased by 50 %, although this decrease could be compensated by applying 1 mg L⁻¹ Ti. This has valuable and practical applications and implications for tomato hydroponic culture.
Collapse
Affiliation(s)
- Maryam Haghighi
- Horticulture Department, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| | | | | |
Collapse
|
48
|
Cai G, Zhu J, Shen C, Cui Y, Du J, Chen X. The effects of cobalt on the development, oxidative stress, and apoptosis in zebrafish embryos. Biol Trace Elem Res 2012; 150:200-7. [PMID: 22983774 DOI: 10.1007/s12011-012-9506-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 09/04/2012] [Indexed: 11/29/2022]
Abstract
Metal-on-metal hip arthroplasty has been performed with increasing frequency throughout the world, particularly in younger and more active patients, including women of childbearing age. The potential toxicity of cobalt exposure on fetus is concerned since cobalt ions generated by metal-on-metal bearings can traverse the placenta and be detected in fetal blood and amniotic fluid. This study examined the effects of cobalt exposure on early embryonic development and the mechanisms underlying its toxicity. Zebrafish embryos were exposed to a range of cobalt concentrations (0-100 mg/L) between 1 and 144 h postfertilization. The survival and early development of embryos were not significantly affected by cobalt at concentrations <100 μg/L. However, embryos exposed to higher concentrations (>100 μg/L) displayed reduced survival rates and abnormal development, including delayed hatching, aberrant morphology, retarded growth, and bradycardia. Furthermore, this study examined oxidative stress and apoptosis in embryos exposed to cobalt at concentrations of 0-500 μg/L. Lipid peroxidation levels were increased in cobalt-treated embryos at concentrations of 100 and 500 μg/L. The mRNA levels of catalase, superoxide dismutase 2, p53, caspase-3, and caspase-9 genes were upregulated in a dose-dependent manner. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays also revealed abnormal apoptotic signals in the brain, trunk, and tail when treated with 500 μg/L cobalt. These data suggest that oxidative stress and apoptosis are associated with cobalt toxicity in zebrafish embryos.
Collapse
Affiliation(s)
- Guiquan Cai
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kong-Jiang Road, Shanghai, 200092, China
| | | | | | | | | | | |
Collapse
|
49
|
Nam DH, Yates D, Ardapple P, Evers DC, Schmerfeld J, Basu N. Elevated mercury exposure and neurochemical alterations in little brown bats (Myotis lucifugus) from a site with historical mercury contamination. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:1094-101. [PMID: 22331394 DOI: 10.1007/s10646-012-0864-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/31/2012] [Indexed: 05/04/2023]
Abstract
Despite evidence of persistent methylmercury (MeHg) contamination in the South River (Virginia, USA) ecosystem, there is little information concerning MeHg-associated neurological impacts in resident wildlife. Here we determined mercury (Hg) concentrations in tissues of insectivorous little brown bats (Myotis lucifugus) collected from a reference site and a MeHg-contaminated site in the South River ecosystem. We also explored whether neurochemical biomarkers (monoamine oxidase, MAO; acetylcholinesterase, ChE; muscarinic acetylcholine receptor, mAChR; N-methyl-D-aspartate receptor, NMDAR) previously shown to be altered by MeHg in other wildlife were associated with brain Hg levels in these bats. Concentrations of Hg (total and MeHg) in tissues were significantly higher (10-40 fold difference) in South River bats when compared to reference sites. Mean tissue mercury levels (71.9 ppm dw in liver, 7.14 ppm dw in brain, 132 ppm fw in fur) in the South River bats exceed (sub)-clinical thresholds in mammals. When compared to the South River bats, animals from the reference site showed a greater ability to demethylate MeHg in brain (33.1% of total Hg was MeHg vs. 65.5%) and liver (8.9% of total Hg was MeHg vs. 50.8%) thus suggesting differences in their ability to detoxify and eliminate Hg. In terms of Hg-associated neurochemical biomarker responses, interesting biphasic responses were observed with an inflection point between 1 and 5 ppm dw in the brain. In the reference bats Hg-associated decreases in MAO (r = -0.61; p < 0.05) and ChE (r = -0.79; p < 0.01) were found in a manner expected but these were not found in the bats from the contaminated site. Owing to high Hg exposures, differences in Hg metabolism, and the importance of the aforementioned neurochemicals in multiple facets of animal health, altered or perhaps even a lack of expected neurochemical responses in Hg-contaminated bats raise questions about the ecological and physiological impacts of Hg on the bat population as well as the broader ecosystem in the South River.
Collapse
Affiliation(s)
- Dong-Ha Nam
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
50
|
Calabrese V, Cornelius C, Dinkova-Kostova AT, Iavicoli I, Di Paola R, Koverech A, Cuzzocrea S, Rizzarelli E, Calabrese EJ. Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim Biophys Acta Mol Basis Dis 2011; 1822:753-83. [PMID: 22108204 DOI: 10.1016/j.bbadis.2011.11.002] [Citation(s) in RCA: 293] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 12/30/2022]
Abstract
Modulation of endogenous cellular defense mechanisms represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. This paper introduces the emerging role of exogenous molecules in hormetic-based neuroprotection and the mitochondrial redox signaling concept of hormesis and its applications to the field of neuroprotection and longevity. Maintenance of optimal long-term health conditions is accomplished by a complex network of longevity assurance processes that are controlled by vitagenes, a group of genes involved in preserving cellular homeostasis during stressful conditions. Vitagenes encode for heat shock proteins (Hsp) Hsp32, Hsp70, the thioredoxin and the sirtuin protein systems. Dietary antioxidants, such as polyphenols and L-carnitine/acetyl-L-carnitine, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways, including vitagenes. Hormesis provides the central underpinning of neuroprotective responses, providing a framework for explaining the common quantitative features of their dose response relationships, their mechanistic foundations, their relationship to the concept of biological plasticity as well as providing a key insight for improving the accuracy of the therapeutic dose of pharmaceutical agents within the highly heterogeneous human population. This paper describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways including sirtuin, Nrfs and related pathways that integrate adaptive stress responses in the prevention of neurodegenerative diseases. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.
Collapse
|