1
|
Delmer D, Dixon RA, Keegstra K, Mohnen D. The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter. THE PLANT CELL 2024; 36:1257-1311. [PMID: 38301734 PMCID: PMC11062476 DOI: 10.1093/plcell/koad325] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
Mythology is replete with good and evil shapeshifters, who, by definition, display great adaptability and assume many different forms-with several even turning themselves into trees. Cell walls certainly fit this definition as they can undergo subtle or dramatic changes in structure, assume many shapes, and perform many functions. In this review, we cover the evolution of knowledge of the structures, biosynthesis, and functions of the 5 major cell wall polymer types that range from deceptively simple to fiendishly complex. Along the way, we recognize some of the colorful historical figures who shaped cell wall research over the past 100 years. The shapeshifter analogy emerges more clearly as we examine the evolving proposals for how cell walls are constructed to allow growth while remaining strong, the complex signaling involved in maintaining cell wall integrity and defense against disease, and the ways cell walls adapt as they progress from birth, through growth to maturation, and in the end, often function long after cell death. We predict the next century of progress will include deciphering cell type-specific wall polymers; regulation at all levels of polymer production, crosslinks, and architecture; and how walls respond to developmental and environmental signals to drive plant success in diverse environments.
Collapse
Affiliation(s)
- Deborah Delmer
- Section of Plant Biology, University of California Davis, Davis, CA 95616, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kenneth Keegstra
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA
| | - Debra Mohnen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Urbancsok J, Donev EN, Sivan P, van Zalen E, Barbut FR, Derba-Maceluch M, Šimura J, Yassin Z, Gandla ML, Karady M, Ljung K, Winestrand S, Jönsson LJ, Scheepers G, Delhomme N, Street NR, Mellerowicz EJ. Flexure wood formation via growth reprogramming in hybrid aspen involves jasmonates and polyamines and transcriptional changes resembling tension wood development. THE NEW PHYTOLOGIST 2023; 240:2312-2334. [PMID: 37857351 DOI: 10.1111/nph.19307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023]
Abstract
Stem bending in trees induces flexure wood but its properties and development are poorly understood. Here, we investigated the effects of low-intensity multidirectional stem flexing on growth and wood properties of hybrid aspen, and on its transcriptomic and hormonal responses. Glasshouse-grown trees were either kept stationary or subjected to several daily shakes for 5 wk, after which the transcriptomes and hormones were analyzed in the cambial region and developing wood tissues, and the wood properties were analyzed by physical, chemical and microscopy techniques. Shaking increased primary and secondary growth and altered wood differentiation by stimulating gelatinous-fiber formation, reducing secondary wall thickness, changing matrix polysaccharides and increasing cellulose, G- and H-lignin contents, cell wall porosity and saccharification yields. Wood-forming tissues exhibited elevated jasmonate, polyamine, ethylene and brassinosteroids and reduced abscisic acid and gibberellin signaling. Transcriptional responses resembled those during tension wood formation but not opposite wood formation and revealed several thigmomorphogenesis-related genes as well as novel gene networks including FLA and XTH genes encoding plasma membrane-bound proteins. Low-intensity stem flexing stimulates growth and induces wood having improved biorefinery properties through molecular and hormonal pathways similar to thigmomorphogenesis in herbaceous plants and largely overlapping with the tension wood program of hardwoods.
Collapse
Affiliation(s)
- János Urbancsok
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Evgeniy N Donev
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Pramod Sivan
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Elena van Zalen
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden
| | - Félix R Barbut
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Marta Derba-Maceluch
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Jan Šimura
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Zakiya Yassin
- RISE Research Institutes of Sweden, Drottning Kristinas väg 61, 11428, Stockholm, Sweden
| | | | - Michal Karady
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, 78371, Olomouc, Czech Republic
| | - Karin Ljung
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | | | - Leif J Jönsson
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | - Gerhard Scheepers
- RISE Research Institutes of Sweden, Drottning Kristinas väg 61, 11428, Stockholm, Sweden
| | - Nicolas Delhomme
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Nathaniel R Street
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden
- SciLifeLab, Umeå University, 90187, Umeå, Sweden
| | - Ewa J Mellerowicz
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| |
Collapse
|
3
|
Qi M, Wang S, Li N, Li L, Zhang Y, Xue J, Wang J, Wu R, Lian N. Genome-wide analysis of TPX2 gene family in Populus trichocarpa and its specific response genes under various abiotic stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1159181. [PMID: 36993860 PMCID: PMC10040543 DOI: 10.3389/fpls.2023.1159181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
Microtubules are essential for regulating cell morphogenesis, plant growth, and the response of plants to abiotic stresses. TPX2 proteins are the main players determining the spatiotemporally dynamic nature of the MTs. However, how TPX2 members respond to abiotic stresses in poplar remains largely unknown. Herein, 19 TPX2 family members were identified from the poplar genome and analyzed the structural characteristics as well as gene expression patterns. All TPX2 members had the conserved structural characteristics, but exhibited different expression profiles in different tissues, indicating their varying roles during plant growth. Additionally, several light, hormone, and abiotic stress responsive cis-acting regulatory elements were detected on the promoters of PtTPX2 genes. Furthermore, expression analysis in various tissues of Populus trichocarpa showed that the PtTPX2 genes responded differently to heat, drought and salt stress. In summary, these results provide a comprehensive analysis for the TPX2 gene family in poplar and an effective contribution to revealing the mechanisms of PtTPX2 in the regulatory network of abiotic stress.
Collapse
Affiliation(s)
- Meng Qi
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shengjie Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Na Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Lingfeng Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yue Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jingyi Xue
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jingyi Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Rongling Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Na Lian
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
| |
Collapse
|
4
|
Song Q, Gao W, Du C, Wang J, Zuo K. Cotton microtubule-associated protein GhMAP20L5 mediates fiber elongation through the interaction with the tubulin GhTUB13. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 327:111545. [PMID: 36464024 DOI: 10.1016/j.plantsci.2022.111545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/30/2022] [Accepted: 11/27/2022] [Indexed: 05/26/2023]
Abstract
Targeting proteins for Xklp2 (TPX2s) comprise a class of MAPs that are essential for plant growth and development by regulating the dynamic changes of microtubules (MTs) and proper formation of cytoskeleton. However, the function of TPX2 proteins in cotton fiber development remains poorly understood. Here, we identified the function of a fiber elongation-specific TPX2 protein, GhMAP20L5, in cotton. Suppressed GhMAP20L5 gene expression in cotton (GhMAP20L5i) significantly reduced fiber elongation rate, fiber length and lint percentage. GhMAP20L5i fibers had thinner and looser secondary cell walls (SCW), and incompact helix twists. GhMAP20L5 specifically interacted with the tubulin GhTUB13 on the cytoskeleton. Gene coexpression analysis showed that GhMAP20L5 involved in multiple pathways related to cytoskeleton establishment and fiber cell wall formation and affected cellulase genes expressions. In summary, our results revealed that GhMAP20L5 is important for fiber development by regulating cytoskeleton establishment and the cellulose deposition in cotton.
Collapse
Affiliation(s)
- Qingwei Song
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanting Gao
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuanhui Du
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Kaijing Zuo
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
5
|
Kwok ACM, Chan WS, Wong JTY. Dinoflagellate Amphiesmal Dynamics: Cell Wall Deposition with Ecdysis and Cellular Growth. Mar Drugs 2023; 21:md21020070. [PMID: 36827111 PMCID: PMC9959387 DOI: 10.3390/md21020070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Dinoflagellates are a major aquatic protist group with amphiesma, multiple cortical membranous "cell wall" layers that contain large circum-cortical alveolar sacs (AVs). AVs undergo extensive remodeling during cell- and life-cycle transitions, including ecdysal cysts (ECs) and resting cysts that are important in some harmful algal bloom initiation-termination. AVs are large cortical vesicular compartments, within which are elaborate cellulosic thecal plates (CTPs), in thecate species, and the pellicular layer (PL). AV-CTPs provide cellular mechanical protection and are targets of vesicular transport that are replaced during EC-swarmer cell transition, or with increased deposition during the cellular growth cycle. AV-PL exhibits dynamical-replacement with vesicular trafficking that are orchestrated with amphiesmal chlortetracycline-labeled Ca2+ stores signaling, integrating cellular growth with different modes of cell division cycle/progression. We reviewed the dynamics of amphiesma during different cell division cycle modes and life cycle stages, and its multifaceted regulations, focusing on the regulatory and functional readouts, including the coral-zooxanthellae interactions.
Collapse
|
6
|
Lu HC, Lam SH, Zhang D, Hsiao YY, Li BJ, Niu SC, Li CY, Lan S, Tsai WC, Liu ZJ. R2R3-MYB genes coordinate conical cell development and cuticular wax biosynthesis in Phalaenopsis aphrodite. PLANT PHYSIOLOGY 2022; 188:318-331. [PMID: 34618124 PMCID: PMC8774817 DOI: 10.1093/plphys/kiab422] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/03/2021] [Indexed: 06/02/2023]
Abstract
Petals of the monocot Phalaenopsis aphrodite (Orchidaceae) possess conical epidermal cells on their adaxial surfaces, and a large amount of cuticular wax is deposited on them to serve as a primary barrier against biotic and abiotic stresses. It has been widely reported that subgroup 9A members of the R2R3-MYB gene family, MIXTA and MIXTA-like in eudicots, act to regulate the differentiation of conical epidermal cells. However, the molecular pathways underlying conical epidermal cell development and cuticular wax biosynthesis in monocot petals remain unclear. Here, we characterized two subgroup 9A R2R3-MYB genes, PaMYB9A1 and PaMYB9A2 (PaMYB9A1/2), from P. aphrodite through the transient overexpression of their coding sequences and corresponding chimeric repressors in developing petals. We showed that PaMYB9A1/2 function to coordinate conical epidermal cell development and cuticular wax biosynthesis. In addition, we identified putative targets of PaMYB9A1/2 through comparative transcriptome analyses, revealing that PaMYB9A1/2 acts to regulate the expression of cell wall-associated and wax biosynthetic genes. Furthermore, a chemical composition analysis of cuticular wax showed that even-chain n-alkanes and odd-chain primary alcohols are the main chemical constituents of cuticular wax deposited on petals, which is inconsistent with the well-known biosynthetic pathways of cuticular wax, implying a distinct biosynthetic pathway occurring in P. aphrodite flowers. These results reveal that the function of subgroup 9A R2R3-MYB family genes in regulating the differentiation of epidermal cells is largely conserved in monocots and dicots. Furthermore, both PaMYB9A1/2 have evolved additional functions controlling the biosynthesis of cuticular wax.
Collapse
Affiliation(s)
- Hsiang-Chia Lu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan 701, Taiwan
| | - Sio-Hong Lam
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu-Yun Hsiao
- Orchid Research and Development Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Bai-Jun Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shan-Ce Niu
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Chia-Ying Li
- Department of Applied Chemistry, National Pingtung University, Pingtung City, Pingtung 900003, Taiwan
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wen-Chieh Tsai
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan 701, Taiwan
- Orchid Research and Development Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Vegetable and Flowers, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China
| |
Collapse
|
7
|
Larson RT, McFarlane HE. Small but Mighty: An Update on Small Molecule Plant Cellulose Biosynthesis Inhibitors. PLANT & CELL PHYSIOLOGY 2021; 62:1828-1838. [PMID: 34245306 DOI: 10.1093/pcp/pcab108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/14/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Cellulose is one of the most abundant biopolymers on Earth. It provides mechanical support to growing plant cells and important raw materials for paper, textiles and biofuel feedstocks. Cellulose biosynthesis inhibitors (CBIs) are invaluable tools for studying cellulose biosynthesis and can be important herbicides for controlling weed growth. Here, we review CBIs with particular focus on the most widely used CBIs and recently discovered CBIs. We discuss the effects of these CBIs on plant growth and development and plant cell biology and summarize what is known about the mode of action of these different CBIs.
Collapse
Affiliation(s)
- Raegan T Larson
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | - Heather E McFarlane
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
8
|
Jang JH, Seo HS, Lee OR. The Reduced Longitudinal Growth Induced by Overexpression of pPLAIIIγ Is Regulated by Genes Encoding Microtubule-Associated Proteins. PLANTS 2021; 10:plants10122615. [PMID: 34961086 PMCID: PMC8706840 DOI: 10.3390/plants10122615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022]
Abstract
There are three subfamilies of patatin-related phospholipase A (pPLA) group of genes: pPLAI, pPLAII, and pPLAIII. Among the four members of pPLAIIIs (α, β, γ, δ), the overexpression of three isoforms (α, β, and δ) displayed distinct morphological growth patterns, in which the anisotropic cell expansion was disrupted. Here, the least studied pPLAIIIγ was characterized, and it was found that the overexpression of pPLAIIIγ in Arabidopsis resulted in longitudinally reduced cell expansion patterns, which are consistent with the general phenotype induced by pPLAIIIs overexpression. The microtubule-associated protein MAP18 was found to be enriched in a pPLAIIIδ overexpressing line in a previous study. This indicates that factors, such as microtubules and ethylene biosynthesis, are involved in determining the radial cell expansion patterns. Microtubules have long been recognized to possess functional key roles in the processes of plant cells, including cell division, growth, and development, whereas ethylene treatment was reported to induce the reorientation of microtubules. Thus, the possible links between the altered anisotropic cell expansion and microtubules were studied. Our analysis revealed changes in the transcriptional levels of microtubule-associated genes, as well as phospholipase D (PLD) genes, upon the overexpression of pPLAIIIγ. Overall, our results suggest that the longitudinally reduced cell expansion observed in pPLAIIIγ overexpression is driven by microtubules via transcriptional modulation of the PLD and MAP genes. The altered transcripts of the genes involved in ethylene-biosynthesis in pPLAIIIγOE further support the conclusion that the typical phenotype is derived from the link with microtubules.
Collapse
Affiliation(s)
- Jin Hoon Jang
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea; (J.H.J.); (H.S.S.)
- AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju 61186, Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Korea
| | - Hae Seong Seo
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea; (J.H.J.); (H.S.S.)
- AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju 61186, Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Korea
| | - Ok Ran Lee
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea; (J.H.J.); (H.S.S.)
- AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju 61186, Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Korea
- Correspondence: ; Tel.: +82-(0)-62-530-2054; Fax: +82-(0)-62-530-2059
| |
Collapse
|
9
|
Smertenko A, Clare SJ, Effertz K, Parish A, Ross A, Schmidt S. A guide to plant TPX2-like and WAVE-DAMPENED2-like proteins. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1034-1045. [PMID: 33130902 PMCID: PMC8502432 DOI: 10.1093/jxb/eraa513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/27/2020] [Indexed: 05/31/2023]
Abstract
TPX2 proteins were first identified in vertebrates as a key mitotic spindle assembly factor. Subsequent studies demonstrated that TPX2 is an intricate protein, with functionally and structurally distinct domains and motifs including Aurora kinase-binding, importin-binding, central microtubule-binding, and C-terminal TPX2 conserved domain, among others. The first plant TPX2-like protein, WAVE-DAMPENED2, was identified in Arabidopsis as a dominant mutation responsible for reducing the waviness of roots grown on slanted agar plates. Each plant genome encodes at least one 'canonical' protein with all TPX2 domains and a family of proteins (20 in Arabidopsis) that diversified to contain only some of the domains. Although all plant TPX2-family proteins to date bind microtubules, they function in distinct processes such as cell division, regulation of hypocotyl cell elongation by hormones and light signals, vascular development, or abiotic stress tolerance. Consequently, their expression patterns, regulation, and functions have diverged considerably. Here we summarize the current body of knowledge surrounding plant TPX2-family proteins.
Collapse
Affiliation(s)
- Andrei Smertenko
- Plant Molecular Sciences Graduate Program, Washington State University, Pullman, WA, USA
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Shaun J Clare
- Plant Molecular Sciences Graduate Program, Washington State University, Pullman, WA, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Karl Effertz
- Plant Molecular Sciences Graduate Program, Washington State University, Pullman, WA, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Alyssa Parish
- Plant Molecular Sciences Graduate Program, Washington State University, Pullman, WA, USA
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Austin Ross
- Plant Molecular Sciences Graduate Program, Washington State University, Pullman, WA, USA
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Sharol Schmidt
- Plant Molecular Sciences Graduate Program, Washington State University, Pullman, WA, USA
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| |
Collapse
|
10
|
Du J, Kirui A, Huang S, Wang L, Barnes WJ, Kiemle SN, Zheng Y, Rui Y, Ruan M, Qi S, Kim SH, Wang T, Cosgrove DJ, Anderson CT, Xiao C. Mutations in the Pectin Methyltransferase QUASIMODO2 Influence Cellulose Biosynthesis and Wall Integrity in Arabidopsis. THE PLANT CELL 2020; 32:3576-3597. [PMID: 32883711 PMCID: PMC7610292 DOI: 10.1105/tpc.20.00252] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/27/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023]
Abstract
Pectins are abundant in the cell walls of dicotyledonous plants, but how they interact with other wall polymers and influence wall integrity and cell growth has remained mysterious. Here, we verified that QUASIMODO2 (QUA2) is a pectin methyltransferase and determined that QUA2 is required for normal pectin biosynthesis. To gain further insight into how pectin affects wall assembly and integrity maintenance, we investigated cellulose biosynthesis, cellulose organization, cortical microtubules, and wall integrity signaling in two mutant alleles of Arabidopsis (Arabidopsis thaliana) QUA2, qua2 and tsd2 In both mutants, crystalline cellulose content is reduced, cellulose synthase particles move more slowly, and cellulose organization is aberrant. NMR analysis shows higher mobility of cellulose and matrix polysaccharides in the mutants. Microtubules in mutant hypocotyls have aberrant organization and depolymerize more readily upon treatment with oryzalin or external force. The expression of genes related to wall integrity, wall biosynthesis, and microtubule stability is dysregulated in both mutants. These data provide insights into how homogalacturonan is methylesterified upon its synthesis, the mechanisms by which pectin functionally interacts with cellulose, and how these interactions are translated into intracellular regulation to maintain the structural integrity of the cell wall during plant growth and development.
Collapse
Affiliation(s)
- Juan Du
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - Alex Kirui
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Shixin Huang
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Lianglei Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - William J Barnes
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Sarah N Kiemle
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Yunzhen Zheng
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Yue Rui
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Mei Ruan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - Shiqian Qi
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu 610041, People's Republic of China
| | - Seong H Kim
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Daniel J Cosgrove
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Charles T Anderson
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Chaowen Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
11
|
Agustí J, Blázquez MA. Plant vascular development: mechanisms and environmental regulation. Cell Mol Life Sci 2020; 77:3711-3728. [PMID: 32193607 PMCID: PMC11105054 DOI: 10.1007/s00018-020-03496-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
Plant vascular development is a complex process culminating in the generation of xylem and phloem, the plant transporting conduits. Xylem and phloem arise from specialized stem cells collectively termed (pro)cambium. Once developed, xylem transports mainly water and mineral nutrients and phloem transports photoassimilates and signaling molecules. In the past few years, major advances have been made to characterize the molecular, genetic and physiological aspects that govern vascular development. However, less is known about how the environment re-shapes the process, which molecular mechanisms link environmental inputs with developmental outputs, which gene regulatory networks facilitate the genetic adaptation of vascular development to environmental niches, or how the first vascular cells appeared as an evolutionary innovation. In this review, we (1) summarize the current knowledge of the mechanisms involved in vascular development, focusing on the model species Arabidopsis thaliana, (2) describe the anatomical effect of specific environmental factors on the process, (3) speculate about the main entry points through which the molecular mechanisms controlling of the process might be altered by specific environmental factors, and (4) discuss future research which could identify the genetic factors underlying phenotypic plasticity of vascular development.
Collapse
Affiliation(s)
- Javier Agustí
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universitat Politècnica de València, 46022, Valencia, Spain.
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universitat Politècnica de València, 46022, Valencia, Spain.
| |
Collapse
|
12
|
Smertenko T, Turner G, Fahy D, Brew-Appiah RAT, Alfaro-Aco R, de Almeida Engler J, Sanguinet KA, Smertenko A. Brachypodium distachyon MAP20 functions in metaxylem pit development and contributes to drought recovery. THE NEW PHYTOLOGIST 2020; 227:1681-1695. [PMID: 31863702 DOI: 10.1111/nph.16383] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Pits are regions in the cell walls of plant tracheary elements that lack secondary walls. Each pit consists of a space within the secondary wall called a pit chamber, and a modified primary wall called the pit membrane. The pit membrane facilitates transport of solutions between vessel cells and restricts embolisms during drought. Here we analyzed the role of an angiosperm-specific TPX2-like microtubule protein MAP20 in pit formation using Brachypodium distachyon as a model system. Live cell imaging was used to analyze the interaction of MAP20 with microtubules and the impact of MAP20 on microtubule dynamics. MAP20-specific antibody was used to study expression and localization of MAP20 in different cell types during vascular bundle development. We used an artificial microRNAs (amiRNA) knockdown approach to determine the function of MAP20. MAP20 is expressed during the late stages of vascular bundle development and localizes around forming pits and under secondary cell wall thickenings in metaxylem cells. MAP20 suppresses microtubule depolymerization; however, unlike the animal TPX2 counterpart, MAP20 does not cooperate with the γ-tubulin ring complex in microtubule nucleation. Knockdown of MAP20 causes bigger pits, thinner pit membranes, perturbed vasculature development, lower reproductive potential and higher drought susceptibility. We conclude that MAP20 may contribute to drought adaptation by modulating pit size and pit membrane thickness in metaxylem.
Collapse
Affiliation(s)
- Tetyana Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Glenn Turner
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Deirdre Fahy
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Rhoda A T Brew-Appiah
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Raymundo Alfaro-Aco
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Janice de Almeida Engler
- Institut Sophia Agrobiotech, Institut National de la Recherche Agronomique, Université Côte d'Azur, Centre National de la Recherche Scientifique, 06903, Sophia-Antipolis, France
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
13
|
Kushwah S, Banasiak A, Nishikubo N, Derba-Maceluch M, Majda M, Endo S, Kumar V, Gomez L, Gorzsas A, McQueen-Mason S, Braam J, Sundberg B, Mellerowicz EJ. Arabidopsis XTH4 and XTH9 Contribute to Wood Cell Expansion and Secondary Wall Formation. PLANT PHYSIOLOGY 2020; 182:1946-1965. [PMID: 32005783 PMCID: PMC7140944 DOI: 10.1104/pp.19.01529] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/21/2020] [Indexed: 05/05/2023]
Abstract
Xyloglucan is the major hemicellulose of dicotyledon primary cell walls, affecting the load-bearing framework with the participation of xyloglucan endo-transglycosylase/hydrolases (XTHs). We used loss- and gain-of function approaches to study functions of XTH4 and XTH9 abundantly expressed in cambial regions during secondary growth of Arabidopsis (Arabidopsis thaliana). In secondarily thickened hypocotyls, these enzymes had positive effects on vessel element expansion and fiber intrusive growth. They also stimulated secondary wall thickening but reduced secondary xylem production. Cell wall analyses of inflorescence stems revealed changes in lignin, cellulose, and matrix sugar composition indicating an overall increase in secondary versus primary walls in mutants, indicative of higher xylem production compared with the wild type (since secondary walls were thinner). Intriguingly, the number of secondary cell wall layers compared with the wild type was increased in xth9 and reduced in xth4, whereas the double mutant xth4x9 displayed an intermediate number of layers. These changes correlated with specific Raman signals from the walls, indicating changes in lignin and cellulose. Secondary walls were affected also in the interfascicular fibers, where neither XTH4 nor XTH9 was expressed, indicating that these effects were indirect. Transcripts involved in secondary wall biosynthesis and cell wall integrity sensing, including THESEUS1 and WALL ASSOCIATED KINASE2, were highly induced in the mutants, indicating that deficiency in XTH4 and XTH9 triggers cell wall integrity signaling, which, we propose, stimulates xylem cell production and modulates secondary wall thickening. Prominent effects of XTH4 and XTH9 on secondary xylem support the hypothesis that altered xyloglucan affects wood properties both directly and via cell wall integrity sensing.
Collapse
Affiliation(s)
- Sunita Kushwah
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, S901-83 Umea, Sweden
| | - Alicja Banasiak
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, S901-83 Umea, Sweden
| | - Nobuyuki Nishikubo
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, S901-83 Umea, Sweden
| | - Marta Derba-Maceluch
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, S901-83 Umea, Sweden
| | - Mateusz Majda
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, S901-83 Umea, Sweden
| | - Satoshi Endo
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, S901-83 Umea, Sweden
| | - Vikash Kumar
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, S901-83 Umea, Sweden
| | - Leonardo Gomez
- Center for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Andras Gorzsas
- Department of Chemistry, Umeå University, SE-90187 Umea, Sweden
| | - Simon McQueen-Mason
- Center for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Janet Braam
- Department of Bioscience, Rice University, Houston, Texas 77005-1827
| | - Björn Sundberg
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, S901-83 Umea, Sweden
| | - Ewa J Mellerowicz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, S901-83 Umea, Sweden
| |
Collapse
|
14
|
Pei MS, Cao SH, Wu L, Wang GM, Xie ZH, Gu C, Zhang SL. Comparative transcriptome analyses of fruit development among pears, peaches, and strawberries provide new insights into single sigmoid patterns. BMC PLANT BIOLOGY 2020; 20:108. [PMID: 32143560 PMCID: PMC7060524 DOI: 10.1186/s12870-020-2317-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/27/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Pear fruit exhibit a single sigmoid pattern during development, while peach and strawberry fruits exhibit a double sigmoid pattern. However, little is known about the differences between these two patterns. RESULTS In this study, fruit weights were measured and paraffin sections were made from fruitlet to maturated pear, peach, and strawberry samples. Results revealed that both single and double sigmoid patterns resulted from cell expansion, but not cell division. Comparative transcriptome analyses were conducted among pear, peach, and strawberry fruits at five fruit enlargement stages. Comparing the genes involved in these intervals among peaches and strawberries, 836 genes were found to be associated with all three fruit enlargement stages in pears (Model I). Of these genes, 25 were located within the quantitative trait locus (QTL) regions related to fruit weight and 90 were involved in cell development. Moreover, 649 genes were associated with the middle enlargement stage, but not early or late enlargement in pears (Model II). Additionally, 22 genes were located within the QTL regions related to fruit weight and 63 were involved in cell development. Lastly, dual-luciferase assays revealed that the screened bHLH transcription factors induced the expression of cell expansion-related genes, suggesting that the two models explain the single sigmoid pattern. CONCLUSIONS Single sigmoid patterns are coordinately mediated by Models I and II, thus, a potential gene regulation network for the single sigmoid pattern was proposed. These results enhance our understanding of the molecular regulation of fruit size in Rosaceae.
Collapse
Affiliation(s)
- Mao-Song Pei
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Su-Hao Cao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Lei Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Guo-Ming Wang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhi-Hua Xie
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Chao Gu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shao-Ling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
15
|
Qiu ZL, Wen Z, Yang K, Tian T, Qiao G, Hong Y, Wen XP. Comparative Proteomics Profiling Illuminates the Fruitlet Abscission Mechanism of Sweet Cherry as Induced by Embryo Abortion. Int J Mol Sci 2020; 21:ijms21041200. [PMID: 32054063 PMCID: PMC7072775 DOI: 10.3390/ijms21041200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 12/14/2022] Open
Abstract
Sweet cherry (Prunus avium L.) is a delicious nutrient-rich fruit widely cultivated in countries such as China, America, Chile, and Italy. However, the yield often drops severely due to the frequently-abnormal fruitlet abscission, and few studies on the metabolism during its ripening process at the proteomic level have been executed so far. To get a better understanding regarding the sweet cherry abscission mechanism, proteomic analysis between the abscising carpopodium and non-abscising carpopodium of sweet cherry was accomplished using a newly developed Liquid chromatography-mass spectrometry/mass spectrometry with Tandem Mass Tag (TMT-LC-MS/MS) methodology. The embryo viability experiments showed that the vigor of the abscission embryos was significantly lower than that of retention embryo. The activity of cell wall degrading enzymes in abscising carpopodium was significantly higher than that in non-abscising carpopodium. The anatomy results suggested that cells in the abscission zone were small and separated. In total, 6280 proteins were identified, among which 5681 were quantified. It has been observed that differentially accumulated proteins (DAPs) influenced several biological functions and various subcellular localizations. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that plenty of metabolic pathways were notably enriched, particularly those involved in phytohormone biosynthesis, cell wall metabolism, and cytoskeletal metabolism, including 1-aminocyclopropane-1-carboxylate oxidase proteins which promote ethylene synthesis, and proteins promoting cell wall degradation, such as endoglucanases, pectinase, and polygalacturonase. Differential expression of proteins concerning phytohormone biosynthesis might activate the shedding regulation signals. Up-regulation of several cell wall degradation-related proteins possibly regulated the shedding of plant organs. Variations of the phytohormone biosynthesis and cell wall degradation-related proteins were explored during the abscission process. Furthermore, changes in cytoskeleton-associated proteins might contribute to the abscission of carpopodium. The current work represented the first study using comparative proteomics between abscising carpopodium and non-abscising carpopodium. These results indicated that embryo abortion might lead to phytohormone synthesis disorder, which effected signal transduction pathways, and hereby controlled genes involved in cell wall degradation and then caused the abscission of fruitlet. Overall, our data may give an intrinsic explanation of the variations in metabolism during the abscission of carpopodium.
Collapse
Affiliation(s)
- Zhi-Lang Qiu
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Guizhou University), Ministry of Education, Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China; (Z.-L.Q.); (Z.W.); (K.Y.); (G.Q.); (Y.H.)
| | - Zhuang Wen
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Guizhou University), Ministry of Education, Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China; (Z.-L.Q.); (Z.W.); (K.Y.); (G.Q.); (Y.H.)
| | - Kun Yang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Guizhou University), Ministry of Education, Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China; (Z.-L.Q.); (Z.W.); (K.Y.); (G.Q.); (Y.H.)
| | - Tian Tian
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Guizhou University), Ministry of Education, Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China; (Z.-L.Q.); (Z.W.); (K.Y.); (G.Q.); (Y.H.)
- Institute for Forest Resources & Environment of Guizhou, College of Forestry, Guizhou University, Guiyang 550025, China;
| | - Guang Qiao
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Guizhou University), Ministry of Education, Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China; (Z.-L.Q.); (Z.W.); (K.Y.); (G.Q.); (Y.H.)
| | - Yi Hong
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Guizhou University), Ministry of Education, Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China; (Z.-L.Q.); (Z.W.); (K.Y.); (G.Q.); (Y.H.)
| | - Xiao-Peng Wen
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Guizhou University), Ministry of Education, Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China; (Z.-L.Q.); (Z.W.); (K.Y.); (G.Q.); (Y.H.)
- Institute for Forest Resources & Environment of Guizhou, College of Forestry, Guizhou University, Guiyang 550025, China;
- Correspondence: ; Tel.: +86-851-88290212
| |
Collapse
|
16
|
Tobias LM, Spokevicius AV, McFarlane HE, Bossinger G. The Cytoskeleton and Its Role in Determining Cellulose Microfibril Angle in Secondary Cell Walls of Woody Tree Species. PLANTS (BASEL, SWITZERLAND) 2020; 9:E90. [PMID: 31936868 PMCID: PMC7020502 DOI: 10.3390/plants9010090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/28/2022]
Abstract
Recent advances in our understanding of the molecular control of secondary cell wall (SCW) formation have shed light on molecular mechanisms that underpin domestication traits related to wood formation. One such trait is the cellulose microfibril angle (MFA), an important wood quality determinant that varies along tree developmental phases and in response to gravitational stimulus. The cytoskeleton, mainly composed of microtubules and actin filaments, collectively contribute to plant growth and development by participating in several cellular processes, including cellulose deposition. Studies in Arabidopsis have significantly aided our understanding of the roles of microtubules in xylem cell development during which correct SCW deposition and patterning are essential to provide structural support and allow for water transport. In contrast, studies relating to SCW formation in xylary elements performed in woody trees remain elusive. In combination, the data reviewed here suggest that the cytoskeleton plays important roles in determining the exact sites of cellulose deposition, overall SCW patterning and more specifically, the alignment and orientation of cellulose microfibrils. By relating the reviewed evidence to the process of wood formation, we present a model of microtubule participation in determining MFA in woody trees forming reaction wood (RW).
Collapse
Affiliation(s)
- Larissa Machado Tobias
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria 3363, Australia; (A.V.S.); (G.B.)
| | - Antanas V. Spokevicius
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria 3363, Australia; (A.V.S.); (G.B.)
| | - Heather E. McFarlane
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Gerd Bossinger
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria 3363, Australia; (A.V.S.); (G.B.)
| |
Collapse
|
17
|
Tan QW, Mutwil M. Inferring biosynthetic and gene regulatory networks from Artemisia annua RNA sequencing data on a credit card-sized ARM computer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194429. [PMID: 31634636 DOI: 10.1016/j.bbagrm.2019.194429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 02/05/2023]
Abstract
Prediction of gene function and gene regulatory networks is one of the most active topics in bioinformatics. The accumulation of publicly available gene expression data for hundreds of plant species, together with advances in bioinformatical methods and affordable computing, sets ingenuity as one of the major bottlenecks in understanding gene function and regulation. Here, we show how a credit card-sized computer retailing for <50 USD can be used to rapidly predict gene function and infer regulatory networks from RNA sequencing data. To achieve this, we constructed a bioinformatical pipeline that downloads and allows quality-control of RNA sequencing data; and generates a gene co-expression network that can reveal enzymes and transcription factors participating and controlling a given biosynthetic pathway. We exemplify this by first identifying genes and transcription factors involved in the biosynthesis of secondary cell wall in the plant Artemisia annua, the main natural source of the anti-malarial drug artemisinin. Networks were then used to dissect the artemisinin biosynthesis pathway, which suggest potential transcription factors regulating artemisinin biosynthesis. We provide the source code of our pipeline (https://github.com/mutwil/LSTrAP-Lite) and envision that the ubiquity of affordable computing, availability of biological data and increased bioinformatical training of biologists will transform the field of bioinformatics. This article is part of a Special Issue entitled: Transcriptional Profiles and Regulatory Gene Networks edited by Dr. Dr. Federico Manuel Giorgi and Dr. Shaun Mahony.
Collapse
Affiliation(s)
- Qiao Wen Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
18
|
Lei K, Liu A, Fan S, Peng H, Zou X, Zhen Z, Huang J, Fan L, Zhang Z, Deng X, Ge Q, Gong W, Li J, Gong J, Shi Y, Jiang X, Zhang S, Jia T, Zhang L, Yuan Y, Shang H. Identification of TPX2 Gene Family in Upland Cotton and Its Functional Analysis in Cotton Fiber Development. Genes (Basel) 2019; 10:E508. [PMID: 31277527 PMCID: PMC6678848 DOI: 10.3390/genes10070508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 11/16/2022] Open
Abstract
Microtubules (MTs) are of importance to fiber development. The Xklp2 (TPX2) proteins as a class of microtubule-associated proteins (MAPs) play a key role in plant growth and development by regulating the dynamic changes of microtubules (MTs). However, the mechanism underlying this is unknown. The interactions between TPX2 proteins and tubulin protein, which are the main structural components, have not been studied in fiber development of upland cotton. Therefore, a genome-wide analysis of the TPX2 family was firstly performed in Gossypiumhirsutum L. This study identified 41 GhTPX2 sequences in the assembled G. hirsutum genome by a series of bioinformatic methods. Generally, this gene family is phylogenetically grouped into six subfamilies, and 41 G. hirsutum TPX2 genes (GhTPX2s) are distributed across 21 chromosomes. A heatmap of the TPX2 gene family showed that homologous GhTPX2 genes, GhWDLA2/7 and GhWDLA4/9, have large differences in expression levels between two upland cotton recombinant inbred lines (69307 and 69362) that are different in fiber quality at 15 and 20 days post anthesis. The relative data indicate that these four genes are down-regulated under oryzalin, which causes microtubule depolymerization, as determined via qRT-PCR. A subcellular localization experiment suggested that GhWDLA2 and GhWDLA7 are localized to the microtubule cytoskeleton, and GhWDLA4 and GhWDLA9 are only localized to the nucleus. However, only GhWDLA7 between GhWDLA2 and GhWDLA7 interacted with GhTUA2 in the yeast two-hybrid assay. These results lay the foundation for further function study of the TPX2 gene family.
Collapse
Affiliation(s)
- Kang Lei
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Senmiao Fan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Huo Peng
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Xianyan Zou
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Zhang Zhen
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Jinyong Huang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China
| | - Liqiang Fan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Zhibin Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Xiaoying Deng
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Junwen Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Xiao Jiang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Shuya Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Tingting Jia
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Lipeng Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China.
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
19
|
Zhang X, Dominguez PG, Kumar M, Bygdell J, Miroshnichenko S, Sundberg B, Wingsle G, Niittylä T. Cellulose Synthase Stoichiometry in Aspen Differs from Arabidopsis and Norway Spruce. PLANT PHYSIOLOGY 2018; 177:1096-1107. [PMID: 29760198 PMCID: PMC6053019 DOI: 10.1104/pp.18.00394] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/03/2018] [Indexed: 05/02/2023]
Abstract
Cellulose is synthesized at the plasma membrane by cellulose synthase complexes (CSCs) containing cellulose synthases (CESAs). Genetic analysis and CESA isoform quantification indicate that cellulose in the secondary cell walls of Arabidopsis (Arabidopsis thaliana) is synthesized by isoforms CESA4, CESA7, and CESA8 in equimolar amounts. Here, we used quantitative proteomics to investigate whether the CSC model based on Arabidopsis secondary cell wall CESA stoichiometry can be applied to the angiosperm tree aspen (Populus tremula) and the gymnosperm tree Norway spruce (Picea abies). In the developing xylem of aspen, the secondary cell wall CESA stoichiometry was 3:2:1 for PtCESA8a/b:PtCESA4:PtCESA7a/b, while in Norway spruce, the stoichiometry was 1:1:1, as observed previously in Arabidopsis. Furthermore, in aspen tension wood, the secondary cell wall CESA stoichiometry changed to 8:3:1 for PtCESA8a/b:PtCESA4:PtCESA7a/b. PtCESA8b represented 73% of the total secondary cell wall CESA pool, and quantitative polymerase chain reaction analysis of CESA transcripts in cryosectioned tension wood revealed increased PtCESA8b expression during the formation of the cellulose-enriched gelatinous layer, while the transcripts of PtCESA4, PtCESA7a/b, and PtCESA8a decreased. A wide-angle x-ray scattering analysis showed that the shift in CESA stoichiometry in tension wood coincided with an increase in crystalline cellulose microfibril diameter, suggesting that the CSC CESA composition influences microfibril properties. The aspen CESA stoichiometry results raise the possibility of alternative CSC models and suggest that homomeric PtCESA8b complexes are responsible for cellulose biosynthesis in the gelatinous layer in tension wood.
Collapse
Affiliation(s)
- Xueyang Zhang
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden
| | - Pia Guadalupe Dominguez
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden
| | - Manoj Kumar
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Joakim Bygdell
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden
| | - Sergey Miroshnichenko
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden
| | - Björn Sundberg
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden
| | - Gunnar Wingsle
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden
| | - Totte Niittylä
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden
| |
Collapse
|
20
|
Du P, Kumar M, Yao Y, Xie Q, Wang J, Zhang B, Gan S, Wang Y, Wu AM. Genome-wide analysis of the TPX2 family proteins in Eucalyptus grandis. BMC Genomics 2016; 17:967. [PMID: 27881090 PMCID: PMC5122032 DOI: 10.1186/s12864-016-3303-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 11/16/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The Xklp2 (TPX2) proteins belong to the microtubule-associated (MAP) family of proteins. All members of the family contain the conserved TPX2 motif, which can interact with microtubules, regulate microtubule dynamics or assist with different microtubule functions, for example, maintenance of cell morphology or regulation of cell growth and development. However, the role of members of the TPX family have not been studied in the model tree species Eucalyptus to date. Here, we report the identification of the members of the TPX2 family in Eucalyptus grandis (Eg) and analyse the expression patterns and functions of these genes. RESULTS In present study, a comprehensive analysis of the plant TPX2 family proteins was performed. Phylogenetic analyses indicated that the genes can be classified into 6 distinct subfamilies. A genome-wide survey identified 12 members of the TPX2 family in the sequenced genome of Eucalyptus grandis. The basic genetic properties of the TPX2 family in Eucalyptus were analysed. Our results suggest that the TPX2 family proteins within different sub-groups are relatively conserved but there are important differences between groups. Quantitative real-time PCR (qRT-PCR) was performed to confirm the expression levels of the genes in different tissues. The results showed that in the whole plant, the levels of EgWDL5 transcript are the highest, followed by those of EgWDL4. Compared with other tissues, the level of the EgMAP20 transcript is the highest in the root. Over-expression of EgMAP20 in Arabidopsis resulted in organ twisting. The cotyledon petioles showed left-handed twisting while the hypocotyl epidermal cells produced right-handed helical twisting. Finally, EgMAP20, EgWDL3 and EgWDL3L were all able to decorate microtubules. CONCLUSIONS Plant TPX2 family proteins were systematically analysed using bioinformatics methods. There are 12 TPX2 family proteins in Eucalyptus. We have performed an initial characterization of the functions of several members of the TPX2 family. We found that the gene products are localized to the microtubule cytoskeleton. Our results lay the foundation for future efforts to reveal the biological significance of TPX2 family proteins in Eucalyptus.
Collapse
Affiliation(s)
- Pingzhou Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.,College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.,Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Manoj Kumar
- Faculty of Life Science, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Yuan Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.,College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiaoli Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jinyan Wang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Baolong Zhang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Siming Gan
- Research Institute of tropical forestry, Chinese Academy of Forestry, Guangzhou, 510520, China.
| | - Yuqi Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China. .,Boyce Thompson Institute for Plant Research, Ithaca, 14853, USA.
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
21
|
Xiao C, Anderson CT. Interconnections between cell wall polymers, wall mechanics, and cortical microtubules: Teasing out causes and consequences. PLANT SIGNALING & BEHAVIOR 2016; 11:e1215396. [PMID: 27611066 PMCID: PMC5155451 DOI: 10.1080/15592324.2016.1215396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 05/18/2023]
Abstract
In plants, cell wall components including cellulose, hemicelluloses, and pectins interact with each other to form complex extracellular network structures that control cell growth and maintain cell shape. However, it is still not clear exactly how different wall polymers interact, how the conformations and interactions of cell wall polymers relate to wall mechanics, and how these factors impinge on intracellular structures such as the cortical microtubule cytoskeleton. Here, based on studies of Arabidopsis thaliana xxt1 xxt2 mutants, which lack detectable xyloglucan in their walls and display aberrant wall mechanics, altered cellulose patterning and biosynthesis, and reduced cortical microtubule stability, we discuss the potential relationships between cell wall biosynthesis, wall mechanics, and cytoskeletal dynamics in an effort to better understand their roles in controlling plant growth and morphogenesis.
Collapse
Affiliation(s)
- Chaowen Xiao
- Department of Biology, The Pennsylvania State
University, University Park, PA, USA
- Center for Lignocellulose Structure and
Formation, The Pennsylvania State University, University Park, PA,
USA
| | - Charles T. Anderson
- Department of Biology, The Pennsylvania State
University, University Park, PA, USA
- Center for Lignocellulose Structure and
Formation, The Pennsylvania State University, University Park, PA,
USA
- CONTACT Charles T. Anderson
| |
Collapse
|
22
|
Xiao C, Zhang T, Zheng Y, Cosgrove DJ, Anderson CT. Xyloglucan Deficiency Disrupts Microtubule Stability and Cellulose Biosynthesis in Arabidopsis, Altering Cell Growth and Morphogenesis. PLANT PHYSIOLOGY 2016; 170:234-49. [PMID: 26527657 PMCID: PMC4704587 DOI: 10.1104/pp.15.01395] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/29/2015] [Indexed: 05/18/2023]
Abstract
Xyloglucan constitutes most of the hemicellulose in eudicot primary cell walls and functions in cell wall structure and mechanics. Although Arabidopsis (Arabidopsis thaliana) xxt1 xxt2 mutants lacking detectable xyloglucan are viable, they display growth defects that are suggestive of alterations in wall integrity. To probe the mechanisms underlying these defects, we analyzed cellulose arrangement, microtubule patterning and dynamics, microtubule- and wall-integrity-related gene expression, and cellulose biosynthesis in xxt1 xxt2 plants. We found that cellulose is highly aligned in xxt1 xxt2 cell walls, that its three-dimensional distribution is altered, and that microtubule patterning and stability are aberrant in etiolated xxt1 xxt2 hypocotyls. We also found that the expression levels of microtubule-associated genes, such as MAP70-5 and CLASP, and receptor genes, such as HERK1 and WAK1, were changed in xxt1 xxt2 plants and that cellulose synthase motility is reduced in xxt1 xxt2 cells, corresponding with a reduction in cellulose content. Our results indicate that loss of xyloglucan affects both the stability of the microtubule cytoskeleton and the production and patterning of cellulose in primary cell walls. These findings establish, to our knowledge, new links between wall integrity, cytoskeletal dynamics, and wall synthesis in the regulation of plant morphogenesis.
Collapse
Affiliation(s)
- Chaowen Xiao
- Center for Lignocellulose Structure and Formation (C.X., T.Z., Y.Z., D.J.C., C.T.A.) and Department of Biology (C.X., T.Z., D.J.C., C.T.A.), The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Tian Zhang
- Center for Lignocellulose Structure and Formation (C.X., T.Z., Y.Z., D.J.C., C.T.A.) and Department of Biology (C.X., T.Z., D.J.C., C.T.A.), The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Yunzhen Zheng
- Center for Lignocellulose Structure and Formation (C.X., T.Z., Y.Z., D.J.C., C.T.A.) and Department of Biology (C.X., T.Z., D.J.C., C.T.A.), The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Daniel J Cosgrove
- Center for Lignocellulose Structure and Formation (C.X., T.Z., Y.Z., D.J.C., C.T.A.) and Department of Biology (C.X., T.Z., D.J.C., C.T.A.), The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Charles T Anderson
- Center for Lignocellulose Structure and Formation (C.X., T.Z., Y.Z., D.J.C., C.T.A.) and Department of Biology (C.X., T.Z., D.J.C., C.T.A.), The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
23
|
Biotechnological aspects of cytoskeletal regulation in plants. Biotechnol Adv 2015; 33:1043-62. [DOI: 10.1016/j.biotechadv.2015.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 03/03/2015] [Accepted: 03/09/2015] [Indexed: 11/23/2022]
|
24
|
No stress! Relax! Mechanisms governing growth and shape in plant cells. Int J Mol Sci 2014; 15:5094-114. [PMID: 24663059 PMCID: PMC3975442 DOI: 10.3390/ijms15035094] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 12/15/2022] Open
Abstract
The mechanisms through which plant cells control growth and shape are the result of the coordinated action of many events, notably cell wall stress relaxation and turgor-driven expansion. The scalar nature of turgor pressure would drive plant cells to assume spherical shapes; however, this is not the case, as plant cells show an amazing variety of morphologies. Plant cell walls are dynamic structures that can display alterations in matrix polysaccharide composition and concentration, which ultimately affect the wall deformation rate. The wide varieties of plant cell shapes, spanning from elongated cylinders (as pollen tubes) and jigsaw puzzle-like epidermal cells, to very long fibres and branched stellate leaf trichomes, can be understood if the underlying mechanisms regulating wall biosynthesis and cytoskeletal dynamics are addressed. This review aims at gathering the available knowledge on the fundamental mechanisms regulating expansion, growth and shape in plant cells by putting a special emphasis on the cell wall-cytoskeleton system continuum. In particular, we discuss from a molecular point of view the growth mechanisms characterizing cell types with strikingly different geometries and describe their relationship with primary walls. The purpose, here, is to provide the reader with a comprehensive overview of the multitude of events through which plant cells manage to expand and control their final shapes.
Collapse
|
25
|
Guerriero G, Silvestrini L, Obersriebnig M, Salerno M, Pum D, Strauss J. Sensitivity of Aspergillus nidulans to the cellulose synthase inhibitor dichlobenil: insights from wall-related genes' expression and ultrastructural hyphal morphologies. PLoS One 2013; 8:e80038. [PMID: 24312197 PMCID: PMC3843659 DOI: 10.1371/journal.pone.0080038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/27/2013] [Indexed: 11/30/2022] Open
Abstract
The fungal cell wall constitutes an important target for the development of antifungal drugs, because of its central role in morphogenesis, development and determination of fungal-specific molecular features. Fungal walls are characterized by a network of interconnected glycoproteins and polysaccharides, namely α-, β-glucans and chitin. Cell walls promptly and dynamically respond to environmental stimuli by a signaling mechanism, which triggers, among other responses, modulations in wall biosynthetic genes’ expression. Despite the absence of cellulose in the wall of the model filamentous fungus Aspergillus nidulans, we found in this study that fungal growth, spore germination and morphology are affected by the addition of the cellulose synthase inhibitor dichlobenil. Expression analysis of selected genes putatively involved in cell wall biosynthesis, carried out at different time points of drug exposure (i.e. 0, 1, 3, 6 and 24 h), revealed increased expression for the putative mixed linkage β-1,3;1,4 glucan synthase celA together with the β-1,3-glucan synthase fksA and the Rho-related GTPase rhoA. We also compared these data with the response to Congo Red, a known plant/fungal drug affecting both chitin and cellulose biosynthesis. The two drugs exerted different effects at the cell wall level, as shown by gene expression analysis and the ultrastructural features observed through atomic force microscopy and scanning electron microscopy. Although the concentration of dichlobenil required to affect growth of A. nidulans is approximately 10-fold higher than that required to inhibit plant cellulose biosynthesis, our work for the first time demonstrates that a cellulose biosynthesis inhibitor affects fungal growth, changes fungal morphology and expression of genes connected to fungal cell wall biosynthesis.
Collapse
Affiliation(s)
- Gea Guerriero
- Department of Applied Genetics and Cell Biology, Fungal Genetics and Genomics Unit, University of Natural Resources and Life Sciences Vienna (BOKU), University and Research Center Campus Tulln-Technopol, Tulln/Donau, Austria
- * E-mail: (GG); (JS)
| | - Lucia Silvestrini
- Department of Applied Genetics and Cell Biology, Fungal Genetics and Genomics Unit, University of Natural Resources and Life Sciences Vienna (BOKU), University and Research Center Campus Tulln-Technopol, Tulln/Donau, Austria
| | - Michael Obersriebnig
- Institute of Wood Science and Technology, University of Natural Resources and Life Sciences Vienna (BOKU), University and Research Center Campus Tulln-Technopol, Tulln/Donau, Austria
| | - Marco Salerno
- Nanophysics Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Dietmar Pum
- Department of Nanobiotechnology, Institute for Biophysics, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, Fungal Genetics and Genomics Unit, University of Natural Resources and Life Sciences Vienna (BOKU), University and Research Center Campus Tulln-Technopol, Tulln/Donau, Austria
- Health and Environment Department, Austrian Institute of Technology GmbH - AIT, University and Research Center Campus Tulln-Technopol, Tulln/Donau, Austria
- * E-mail: (GG); (JS)
| |
Collapse
|
26
|
Porth I, Klapšte J, Skyba O, Hannemann J, McKown AD, Guy RD, DiFazio SP, Muchero W, Ranjan P, Tuskan GA, Friedmann MC, Ehlting J, Cronk QCB, El-Kassaby YA, Douglas CJ, Mansfield SD. Genome-wide association mapping for wood characteristics in Populus identifies an array of candidate single nucleotide polymorphisms. THE NEW PHYTOLOGIST 2013; 200:710-726. [PMID: 23889164 DOI: 10.1111/nph.12422] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 06/18/2013] [Indexed: 05/02/2023]
Abstract
Establishing links between phenotypes and molecular variants is of central importance to accelerate genetic improvement of economically important plant species. Our work represents the first genome-wide association study to the inherently complex and currently poorly understood genetic architecture of industrially relevant wood traits. Here, we employed an Illumina Infinium 34K single nucleotide polymorphism (SNP) genotyping array that generated 29,233 high-quality SNPs in c. 3500 broad-based candidate genes within a population of 334 unrelated Populus trichocarpa individuals to establish genome-wide associations. The analysis revealed 141 significant SNPs (α ≤ 0.05) associated with 16 wood chemistry/ultrastructure traits, individually explaining 3-7% of the phenotypic variance. A large set of associations (41% of all hits) occurred in candidate genes preselected for their suggested a priori involvement with secondary growth. For example, an allelic variant in the FRA8 ortholog explained 21% of the total genetic variance in fiber length, when the trait's heritability estimate was considered. The remaining associations identified SNPs in genes not previously implicated in wood or secondary wall formation. Our findings provide unique insights into wood trait architecture and support efforts for population improvement based on desirable allelic variants.
Collapse
Affiliation(s)
- Ilga Porth
- Department of Wood Science, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Jaroslav Klapšte
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- Department of Dendrology and Forest Tree Breeding, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, 165 21, Czech Republic
| | - Oleksandr Skyba
- Department of Wood Science, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Jan Hannemann
- Department of Biology and Centre for Forest Biology, University of Victoria, Victoria, BC, Canada, V8W 3N5
| | - Athena D McKown
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Robert D Guy
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, 26506-6057, USA
| | - Wellington Muchero
- BioSciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Priya Ranjan
- BioSciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Gerald A Tuskan
- BioSciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Michael C Friedmann
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Juergen Ehlting
- Department of Biology and Centre for Forest Biology, University of Victoria, Victoria, BC, Canada, V8W 3N5
| | - Quentin C B Cronk
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Carl J Douglas
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
27
|
Gea G, Kjell S, Jean-François H. Integrated -omics: a powerful approach to understanding the heterogeneous lignification of fibre crops. Int J Mol Sci 2013; 14:10958-78. [PMID: 23708098 PMCID: PMC3709712 DOI: 10.3390/ijms140610958] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/15/2013] [Accepted: 05/17/2013] [Indexed: 12/15/2022] Open
Abstract
Lignin and cellulose represent the two main components of plant secondary walls and the most abundant polymers on Earth. Quantitatively one of the principal products of the phenylpropanoid pathway, lignin confers high mechanical strength and hydrophobicity to plant walls, thus enabling erect growth and high-pressure water transport in the vessels. Lignin is characterized by a high natural heterogeneity in its composition and abundance in plant secondary cell walls, even in the different tissues of the same plant. A typical example is the stem of fibre crops, which shows a lignified core enveloped by a cellulosic, lignin-poor cortex. Despite the great value of fibre crops for humanity, however, still little is known on the mechanisms controlling their cell wall biogenesis, and particularly, what regulates their spatially-defined lignification pattern. Given the chemical complexity and the heterogeneous composition of fibre crops' secondary walls, only the use of multidisciplinary approaches can convey an integrated picture and provide exhaustive information covering different levels of biological complexity. The present review highlights the importance of combining high throughput -omics approaches to get a complete understanding of the factors regulating the lignification heterogeneity typical of fibre crops.
Collapse
Affiliation(s)
- Guerriero Gea
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg; E-Mails: (G.G.); (S.K.)
| | - Sergeant Kjell
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg; E-Mails: (G.G.); (S.K.)
| | - Hausman Jean-François
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg; E-Mails: (G.G.); (S.K.)
| |
Collapse
|
28
|
Peng L, Zhang L, Cheng X, Fan LS, Hao HQ. Disruption of cellulose synthesis by 2,6-dichlorobenzonitrile affects the structure of the cytoskeleton and cell wall construction in Arabidopsis. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:405-14. [PMID: 22759307 DOI: 10.1111/j.1438-8677.2012.00630.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cellulose is the major component of plant cell walls and is an important source of industrial raw material. Although cellulose biosynthesis is one of the most important biochemical processes in plant biology, the regulatory mechanisms of cellulose synthesis are still unclear. Here, we report that 2,6-dichlorobenzonitrile (DCB), an inhibitor of cellulose synthesis, inhibits Arabidopsis root development in a dose- and time-dependent manner. When treated with DCB, the plant cell wall showed altered cellulose distribution and intensity, as shown by calcofluor white and S4B staining. Moreover, pectin deposition was reduced in the presence of DCB when immunostained with the monoclonal antibody JIM5, which was raised against pectin epitopes. This result was confirmed using Fourier transform infrared (FTIR) analysis. Confocal microscopy revealed that the organisation of the microtubule cytoskeleton was significantly disrupted in the presence of low concentrations of DCB, whereas the actin cytoskeleton only showed changes with the application of high DCB concentrations. In addition, the subcellular dynamics of Golgi bodies labelled with N-ST-YFP and TGN labelled with VHA-a1-GFP were both partially blocked by DCB. Transmission electron microscopy indicated that the cell wall structure was affected by DCB, as were the Golgi bodies. Scanning electron microscopy showed changes in the organisation of cellulose microfibrils. These results suggest that the inhibition of cellulose synthesis by DCB not only induced changes in the chemical composition of the root cell wall and cytoskeleton structure, but also changed the distribution of cellulose microfibrils, implying that cellulose plays an important role in root development in Arabidopsis.
Collapse
Affiliation(s)
- L Peng
- School of Life Science, Ningxia University, Yinchuan, China
| | | | | | | | | |
Collapse
|
29
|
Du Q, Pan W, Xu B, Li B, Zhang D. Polymorphic simple sequence repeat (SSR) loci within cellulose synthase (PtoCesA) genes are associated with growth and wood properties in Populus tomentosa. THE NEW PHYTOLOGIST 2013; 197:763-776. [PMID: 23278184 DOI: 10.1111/nph.12072] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/27/2012] [Indexed: 05/02/2023]
Abstract
Chinese white poplar (Populus tomentosa), an important commercial tree species for timber and pulp production in northern China, has been used to examine the individual genes and allelic diversity responsible for complex traits controlling growth and lignocellulosic biosynthesis. Taking advantage of the low degree of linkage disequilibrium (LD) within P. tomentosa association populations, we examined associations between 15 cellulose synthase (PtoCesA) genes and traits including growth and wood properties. Thirty-six novel simple sequence repeat (SSR) markers within PtoCesA genes were detected by re-sequencing and genotyped in an association population (460 individuals). Single-marker and haplotype-based LD approaches were used to identify significant marker-trait associations. Family-based linkage studies and real-time PCR testing were conducted to validate the functional significance of SSR variation. Fifteen single-marker associations from seven PtoCesA genes and nine haplotype-based associations within six genes were identified in the association population (false discovery rate Q < 0.05). Next, five SSR marker-trait associations (Q < 0.05) from four PtoCesA genes were successfully validated in a linkage mapping population (1200 individuals). The results imply a functional role for these genes in mediating wood properties, demonstrating the potential of combining single-marker and haplotype-based LD approaches to detect functional allelic variation underlying quantitative traits in a low-LD population.
Collapse
Affiliation(s)
- Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Wei Pan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Baohua Xu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Bailian Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Department of Forestry, North Carolina State University, Raleigh, NC, 27695-8203, USA
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
30
|
Begum S, Nakaba S, Yamagishi Y, Oribe Y, Funada R. Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees. PHYSIOLOGIA PLANTARUM 2013; 147:46-54. [PMID: 22680337 DOI: 10.1111/j.1399-3054.2012.01663.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 05/04/2012] [Accepted: 05/04/2012] [Indexed: 05/23/2023]
Abstract
The timing of cambial reactivation plays an important role in determination of the amount and quality of wood and the environmental adaptivity of trees. Environmental factors, such as temperature, influence the growth and development of trees. Temperatures from late winter to early spring affect the physiological processes that are involved in the initiation of cambial cell division and xylem differentiation in trees. Cumulative elevated temperatures from late winter to early spring result in earlier initiation of cambial reactivation and xylem differentiation in tree stems and an extended growth period. However, earlier cambial reactivation increases the risk for frost damage because the cold tolerance of cambium decreases after cambial reactivation. The present review focuses on temperature regulation on the timing of cambial reactivation and xylem differentiation in trees, and also highlights recent advances in our understanding of seasonal changes in the cold stability of microtubules in trees. The review also summarizes the present understanding of the relationships between the timing of cambial reactivation, the start of xylem differentiation and changes in levels of storage materials in trees, as well as an attempt to identify the source of energy for cell division and differentiation. A better understanding of the mechanisms that regulate wood formation in trees and the influence of environmental conditions on such mechanisms should help in efforts to improve and enhance the exploitation of wood for commercial applications and to prepare for climatic change.
Collapse
Affiliation(s)
- Shahanara Begum
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | | | | | | | | |
Collapse
|
31
|
Ko JH, Kim HT, Hwang I, Han KH. Tissue-type-specific transcriptome analysis identifies developing xylem-specific promoters in poplar. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:587-96. [PMID: 22405574 DOI: 10.1111/j.1467-7652.2012.00690.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant biotechnology offers a means to create novel phenotypes. However, commercial application of biotechnology in crop improvement programmes is severely hindered by the lack of utility promoters (or freedom to operate the existing ones) that can drive gene expression in a tissue-specific or temporally controlled manner. Woody biomass is gaining popularity as a source of fermentable sugars for liquid fuel production. To improve the quantity and quality of woody biomass, developing xylem (DX)-specific modification of the feedstock is highly desirable. To develop utility promoters that can drive transgene expression in a DX-specific manner, we used the Affymetrix Poplar Genome Arrays to obtain tissue-type-specific transcriptomes from poplar stems. Subsequent bioinformatics analysis identified 37 transcripts that are specifically or strongly expressed in DX cells of poplar. After further confirmation of their DX-specific expression using semi-quantitative PCR, we selected four genes (DX5, DX8, DX11 and DX15) for in vivo confirmation of their tissue-specific expression in transgenic poplars. The promoter regions of the selected DX genes were isolated and fused to a β-glucuronidase (GUS)-reported gene in a binary vector. This construct was used to produce transgenic poplars via Agrobacterium-mediated transformation. The GUS expression patterns of the resulting transgenic plants showed that these promoters were active in the xylem cells at early seedling growth and had strongest expression in the developing xylem cells at later growth stages of poplar. We conclude that these DX promoters can be used as a utility promoter for DX-specific biomass engineering.
Collapse
Affiliation(s)
- Jae-Heung Ko
- Department of Plant and Environmental New Resources, Kyung Hee University, Giheung-Gu, Yongin-Si, Gyeonggi-Do, Korea.
| | | | | | | |
Collapse
|
32
|
Wormit A, Butt M, Chairam I, McKenna J, Nunes-Nesi A, Kjaer L, O’Donnelly K, Fernie A, Woscholski R, Barter L, Hamann T. Osmosensitive changes of carbohydrate metabolism in response to cellulose biosynthesis inhibition. PLANT PHYSIOLOGY 2012; 159:105-17. [PMID: 22422940 PMCID: PMC3375954 DOI: 10.1104/pp.112.195198] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cellulose is the most abundant biopolymer in the world, the main load-bearing element in plant cell walls, and represents a major sink for carbon fixed during photosynthesis. Previous work has shown that photosynthetic activity is partially regulated by carbohydrate sinks. However, the coordination of cellulose biosynthesis with carbohydrate metabolism and photosynthesis is not well understood. Here, we demonstrate that cellulose biosynthesis inhibition (CBI) leads to reductions in transcript levels of genes involved in photosynthesis, the Calvin cycle, and starch degradation in Arabidopsis (Arabidopsis thaliana) seedlings. In parallel, we show that CBI induces changes in carbohydrate distribution and influences Rubisco activase levels. We find that the effects of CBI on gene expression and carbohydrate metabolism can be neutralized by osmotic support in a concentration-dependent manner. However, osmotic support does not suppress CBI-induced metabolic changes in seedlings impaired in mechanoperception (mid1 complementing activity1 [mca1]) and osmoperception (cytokinin receptor1 [cre1]) or reactive oxygen species production (respiratory burst oxidase homolog DF [rbohDF]). These results show that carbohydrate metabolism is responsive to changes in cellulose biosynthesis activity and turgor pressure. The data suggest that MCA1, CRE1, and RBOHDF-derived reactive oxygen species are involved in the regulation of osmosensitive metabolic changes. The evidence presented here supports the notion that cellulose and carbohydrate metabolism may be coordinated via an osmosensitive mechanism.
Collapse
|
33
|
Cellulose biosynthesis inhibitors: comparative effect on bean cell cultures. Int J Mol Sci 2012; 13:3685-3702. [PMID: 22489176 PMCID: PMC3317736 DOI: 10.3390/ijms13033685] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/05/2012] [Accepted: 03/08/2012] [Indexed: 02/02/2023] Open
Abstract
The variety of bioassays developed to evaluate different inhibition responses for cellulose biosynthesis inhibitors makes it difficult to compare the results obtained. This work aims (i) to test a single inhibitory assay for comparing active concentrations of a set of putative cellulose biosynthesis inhibitors and (ii) to characterize their effect on cell wall polysaccharides biosynthesis following a short-term exposure. For the first aim, dose-response curves for inhibition of dry-weight increase following a 30 days exposure of bean callus-cultured cells to these inhibitors were obtained. The compound concentration capable of inhibiting dry weight increase by 50% compared to control (I50) ranged from subnanomolar (CGA 325′615) to nanomolar (AE F150944, flupoxam, triazofenamide and oxaziclomefone) and micromolar (dichlobenil, quinclorac and compound 1) concentrations. In order to gain a better understanding of the effect of the putative inhibitors on cell wall polysaccharides biosynthesis, the [14C]glucose incorporation into cell wall fractions was determined after a 20 h exposure of cell suspensions to each inhibitor at their I50 value. All the inhibitors tested decreased glucose incorporation into cellulose with the exception of quinclorac, which increased it. In some herbicide treatments, reduction in the incorporation into cellulose was accompanied by an increase in the incorporation into other fractions. In order to appreciate the effect of the inhibitors on cell wall partitioning, a cluster and Principal Component Analysis (PCA) based on the relative contribution of [14C]glucose incorporation into the different cell wall fractions were performed, and three groups of compounds were identified. The first group included quinclorac, which increased glucose incorporation into cellulose; the second group consisted of compound 1, CGA 325′615, oxaziclomefone and AE F150944, which decreased the relative glucose incorporation into cellulose but increased it into tightly-bound cellulose fractions; and the third group, comprising flupoxam, triazofenamide and dichlobenil, decreased the relative glucose incorporation into cellulose and increased it into a pectin rich fraction.
Collapse
|
34
|
Oda Y, Fukuda H. Secondary cell wall patterning during xylem differentiation. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:38-44. [PMID: 22078063 DOI: 10.1016/j.pbi.2011.10.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 10/14/2011] [Accepted: 10/19/2011] [Indexed: 05/08/2023]
Abstract
Xylem cell differentiation involves temporal and spatial regulation of secondary cell wall deposition. The cortical microtubules are known to regulate the spatial pattern of the secondary cell wall by orientating cellulose deposition. However, it is largely unknown how the microtubule arrangement is regulated during secondary wall formation. Recent findings of novel plant microtubule-associated proteins in developing xylem vessels shed new light on the regulation mechanism of the microtubule arrangement leading to secondary wall patterning. In addition, in vitro culture systems allow the dynamics of microtubules and microtubule-associated proteins during secondary cell wall formation to be followed. Therefore, this review focuses on novel aspects of microtubule dynamics leading to secondary cell wall patterning with a focus on microtubule-associated proteins.
Collapse
Affiliation(s)
- Yoshihisa Oda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | |
Collapse
|
35
|
Brabham C, DeBolt S. Chemical genetics to examine cellulose biosynthesis. FRONTIERS IN PLANT SCIENCE 2012; 3:309. [PMID: 23372572 PMCID: PMC3557698 DOI: 10.3389/fpls.2012.00309] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/21/2012] [Indexed: 05/18/2023]
Abstract
Long-term efforts to decode plant cellulose biosynthesis via molecular genetics and biochemical strategies are being enhanced by the ever-expanding scale of omics technologies. An alternative approach to consider are the prospects for inducing change in plant metabolism using exogenously supplied chemical ligands. Cellulose biosynthesis inhibitors (CBIs) have been identified among known herbicides, during diverse combinatorial chemical libraries screens, and natural chemical screens from microbial agents. In this review, we summarize the current knowledge of the inhibitory effects of CBIs and further group them by how they influence fluorescently tagged cellulose synthase A proteins. Additional attention is paid to the continuing development of the CBI toolbox to explore the cell biology and genetic mechanisms underpinning effector molecule activity.
Collapse
Affiliation(s)
| | - Seth DeBolt
- *Correspondence: Seth DeBolt, Plant Physiology, Department of Horticulture, University of Kentucky, Lexington, KY, USA. e-mail:
| |
Collapse
|
36
|
Begum S, Shibagaki M, Furusawa O, Nakaba S, Yamagishi Y, Yoshimoto J, Jin HO, Sano Y, Funada R. Cold stability of microtubules in wood-forming tissues of conifers during seasons of active and dormant cambium. PLANTA 2012; 235:165-179. [PMID: 21861112 DOI: 10.1007/s00425-011-1500-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/05/2011] [Indexed: 05/29/2023]
Abstract
The cold stability of microtubules during seasons of active and dormant cambium was analyzed in the conifers Abies firma, Abies sachalinensis and Larix leptolepis by immunofluorescence microscopy. Samples were fixed at room temperature and at a low temperature of 2-3°C to examine the effects of low temperature on the stability of microtubules. Microtubules were visible in cambium, xylem cells and phloem cells after fixation at room temperature during seasons of active and dormant cambium. By contrast, fixation at low temperature depolymerized microtubules in cambial cells, differentiating tracheids, differentiating xylem ray parenchyma and phloem ray parenchyma cells during the active season. However, similar fixation did not depolymerize microtubules during cambial dormancy in winter. Our results indicate that the stability of microtubules in cambial cells and cambial derivatives at low temperature differs between seasons of active and dormant cambium. Moreover, the change in the stability of microtubules that we observed at low temperature might be closely related to seasonal changes in the cold tolerance of conifers. In addition, low-temperature fixation depolymerized microtubules in cambial cells and differentiating cells that had thin primary cell walls, while such low-temperature fixation did not depolymerize microtubules in differentiating secondary xylem ray parenchyma cells and tracheids that had thick secondary cell walls. The stability of microtubules at low temperature appears to depend on the structure of the cell wall, namely, primary or secondary. Therefore, we propose that the secondary cell wall might be responsible for the cold stability of microtubules in differentiating secondary xylem cells of conifers.
Collapse
Affiliation(s)
- Shahanara Begum
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-Tokyo, 183-8509, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
The trafficking and behavior of cellulose synthase and a glimpse of potential cellulose synthesis regulators. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11515-011-1161-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Park S, Szumlanski AL, Gu F, Guo F, Nielsen E. A role for CSLD3 during cell-wall synthesis in apical plasma membranes of tip-growing root-hair cells. Nat Cell Biol 2011; 13:973-80. [PMID: 21765420 DOI: 10.1038/ncb2294] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 06/07/2011] [Indexed: 01/29/2023]
Abstract
In plants, cell shape is defined by the cell wall, and changes in cell shape and size are dictated by modification of existing cell walls and deposition of newly synthesized cell-wall material. In root hairs, expansion occurs by a process called tip growth, which is shared by root hairs, pollen tubes and fungal hyphae. We show that cellulose-like polysaccharides are present in root-hair tips, and de novo synthesis of these polysaccharides is required for tip growth. We also find that eYFP-CSLD3 proteins, but not CESA cellulose synthases, localize to a polarized plasma-membrane domain in root hairs. Using biochemical methods and genetic complementation of a csld3 mutant with a chimaeric CSLD3 protein containing a CESA6 catalytic domain, we provide evidence that CSLD3 represents a distinct (1→4)-β-glucan synthase activity in apical plasma membranes during tip growth in root-hair cells.
Collapse
Affiliation(s)
- Sungjin Park
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
39
|
Brereton NJB, Pitre FE, Ray MJ, Karp A, Murphy RJ. Investigation of tension wood formation and 2,6-dichlorbenzonitrile application in short rotation coppice willow composition and enzymatic saccharification. BIOTECHNOLOGY FOR BIOFUELS 2011; 4:13. [PMID: 21609446 PMCID: PMC3115855 DOI: 10.1186/1754-6834-4-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 05/24/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND Short rotation coppice willow is a potential lignocellulosic feedstock in the United Kingdom and elsewhere; however, research on optimising willow specifically for bioethanol production has started developing only recently. We have used the feedstock Salix viminalis × Salix schwerinii cultivar 'Olof' in a three-month pot experiment with the aim of modifying cell wall composition and structure within the stem to the benefit of bioethanol production. Trees were treated for 26 or 43 days with tension wood induction and/or with an application of the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile that is specific to secondary cell walls. Reaction wood (tension and opposite wood) was isolated from material that had received the 43-day tension wood induction treatment. RESULTS Glucan content, lignin content and enzymatically released glucose were assayed. All measured parameters were altered without loss of total stem biomass yield, indicating that enzymatic saccharification yield can be enhanced by both alterations to cell wall structure and alterations to absolute contents of either glucan or lignin. CONCLUSIONS Final glucose yields can be improved by the induction of tension wood without a detrimental impact on biomass yield. The increase in glucan accessibility to cell wall degrading enzymes could help contribute to reducing the energy and environmental impacts of the lignocellulosic bioethanol production process.
Collapse
Affiliation(s)
- Nicholas JB Brereton
- Division of Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Plant and Invertebrate Ecology Department, Centre for Bioenergy and Climate Change, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Frederic E Pitre
- Plant and Invertebrate Ecology Department, Centre for Bioenergy and Climate Change, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Michael J Ray
- Division of Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Angela Karp
- Plant and Invertebrate Ecology Department, Centre for Bioenergy and Climate Change, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Richard J Murphy
- Division of Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Institut de recherche en biologie vegetale, University of Montreal, 4101 Sherbrooke East, Montreal, QC H1X 2B2, Canada
| |
Collapse
|
40
|
Abstract
Plant cell walls are complex structures composed of high-molecular-weight polysaccharides, proteins, and lignins. Among the wall polysaccharides, cellulose, a hydrogen-bonded β-1,4-linked glucan microfibril, is the main load-bearing wall component and a key precursor for industrial applications. Cellulose is synthesized by large multi-meric cellulose synthase (CesA) complexes, tracking along cortical microtubules at the plasma membrane. The only known components of these complexes are the cellulose synthase proteins. Recent studies have identified tentative interaction partners for the CesAs and shown that the migratory patterns of the CesA complexes depend on phosphorylation status. These advances may become good platforms for expanding our knowledge about cellulose synthesis in the near future. In addition, our current understanding of cellulose chain polymerization in the context of the CesA complex is discussed.
Collapse
Affiliation(s)
- Anne Endler
- Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | | |
Collapse
|
41
|
|
42
|
Brochu V, Girard-Martel M, Duval I, Lerat S, Grondin G, Domingue O, Beaulieu C, Beaudoin N. Habituation to thaxtomin A in hybrid poplar cell suspensions provides enhanced and durable resistance to inhibitors of cellulose synthesis. BMC PLANT BIOLOGY 2010; 10:272. [PMID: 21143977 PMCID: PMC3016406 DOI: 10.1186/1471-2229-10-272] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 12/10/2010] [Indexed: 05/04/2023]
Abstract
BACKGROUND Thaxtomin A (TA), a phytotoxin produced by the phytopathogen Streptomyces scabies, is essential for the development of potato common scab disease. TA inhibits cellulose synthesis but its actual mode of action is unknown. Addition of TA to hybrid poplar (Populus trichocarpa x Populus deltoides) cell suspensions can activate a cellular program leading to cell death. In contrast, it is possible to habituate hybrid poplar cell cultures to grow in the presence of TA levels that would normally induce cell death. The purpose of this study is to characterize TA-habituated cells and the mechanisms that may be involved in enhancing resistance to TA. RESULTS Habituation to TA was performed by adding increasing levels of TA to cell cultures at the time of subculture over a period of 12 months. TA-habituated cells were then cultured in the absence of TA for more than three years. These cells displayed a reduced size and growth compared to control cells and had fragmented vacuoles filled with electron-dense material. Habituation to TA was associated with changes in the cell wall composition, with a reduction in cellulose and an increase in pectin levels. Remarkably, high level of resistance to TA was maintained in TA-habituated cells even after being cultured in the absence of TA. Moreover, these cells exhibited enhanced resistance to two other inhibitors of cellulose biosynthesis, dichlobenil and isoxaben. Analysis of gene expression in TA-habituated cells using an Affymetrix GeneChip Poplar Genome Array revealed that durable resistance to TA is associated with a major and complex reprogramming of gene expression implicating processes such as cell wall synthesis and modification, lignin and flavonoid synthesis, as well as DNA and chromatin modifications. CONCLUSIONS We have shown that habituation to TA induced durable resistance to the bacterial toxin in poplar cells. TA-habituation also enhanced resistance to two other structurally different inhibitors of cellulose synthesis that were found to target different proteins. Enhanced resistance was associated with major changes in the expression of numerous genes, including some genes that are involved in DNA and chromatin modifications, suggesting that epigenetic changes might be involved in this process.
Collapse
Affiliation(s)
- Viviane Brochu
- Centre SÈVE, Département de biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1
| | - Marie Girard-Martel
- Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, BC, Canada V8Z 1M5
| | - Isabelle Duval
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, Canada G1V 4C7
| | - Sylvain Lerat
- Centre SÈVE, Département de biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1
| | - Gilles Grondin
- Centre SÈVE, Département de biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1
| | - Olivier Domingue
- Centre SÈVE, Département de biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1
| | - Carole Beaulieu
- Centre SÈVE, Département de biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1
| | - Nathalie Beaudoin
- Centre SÈVE, Département de biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1
| |
Collapse
|
43
|
Mélida H, Encina A, Alvarez J, Acebes JL, Caparrós-Ruiz D. Unraveling the biochemical and molecular networks involved in maize cell habituation to the cellulose biosynthesis inhibitor dichlobenil. MOLECULAR PLANT 2010; 3:842-53. [PMID: 20534772 DOI: 10.1093/mp/ssq027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The biochemical and molecular processes involved in the habituation of maize cells to growth in the presence of the cellulose biosynthesis inhibitor dichlobenil (DCB) were investigated. DCB affects the synthesis of cellulose both in active and stationary growth phases and alters the expression of several CesA genes. Of these, ZmCesA5 and ZmCesA7 seem to play a major role in habituating cells to growth in the presence of DCB. As a consequence of the reduction in cellulose, the expression of several genes involved in the synthesis of hydroxycinnamates is increased, resulting in cell walls with higher levels of ferulic and p-coumaric acids. A proteomic analysis revealed that habituation to DCB is linked to modifications in several metabolic pathways. Finally, habituated cells present a reduction in glutathione S-transferase detoxifying activity and antioxidant activities. Plant cell adaptation to the disturbance of such a crucial process as cellulose biosynthesis requires changes in several metabolic networks, in order to modify cell wall architecture and metabolism, and survive in the presence of the inhibitor. Some of these modifications are described in this paper.
Collapse
Affiliation(s)
- Hugo Mélida
- Area de Fisiología Vegetal, Facultad de CC. Biológicas y Ambientales, Universidad de León, E-24071 León, Spain
| | | | | | | | | |
Collapse
|
44
|
Harris D, Bulone V, Ding SY, DeBolt S. Tools for cellulose analysis in plant cell walls. PLANT PHYSIOLOGY 2010; 153:420-6. [PMID: 20304970 PMCID: PMC2879802 DOI: 10.1104/pp.110.154203] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/16/2010] [Indexed: 05/18/2023]
|
45
|
Abstract
The potential for using cellulosic biomass as a source of fuel has renewed interest into how the large cellulose synthase complex deposits cellulose within the woody secondary walls of plants. This complex sits within the plasma membrane where it synthesizes numerous glucan chains which bond together to form the strong cellulose microfibril. The maintenance and guidance of the complex at the plasma membrane and its delivery to sites of secondary wall formation require the involvement of the cytoskeleton. In the present paper, we discuss the dynamics of the complex at the cell cortex and what is known about its assembly and trafficking.
Collapse
|
46
|
|
47
|
Harris D, DeBolt S. Synthesis, regulation and utilization of lignocellulosic biomass. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:244-62. [PMID: 20070874 DOI: 10.1111/j.1467-7652.2009.00481.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Increasing the range of fuels and bioproducts that are derived from lignocellulosic biomass and the efficiency at which they are produced hinges on a detailed understanding of the cell wall biosynthetic process. Herein, we review the structure and biosynthesis of lignocellulosic biomass and also highlight recent breakthroughs that demonstrate a complex regulatory system of transcription factors, small interfering RNAs and phosphorylation that ultimately dictate the development of the polyalaminate cell wall. Finally, we provide an update on cases where plant biotechnology has been used to improve lignocellulosic biomass utilization as a second-generation biofuel source.
Collapse
Affiliation(s)
- Darby Harris
- Department of Horticulture, Plant Physiology/Biochemistry and Molecular Biology Program, University of Kentucky, N-318 Agricultural Science Center, North Lexington, KY, USA
| | | |
Collapse
|
48
|
Guerriero G, Fugelstad J, Bulone V. What do we really know about cellulose biosynthesis in higher plants? JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:161-75. [PMID: 20377678 DOI: 10.1111/j.1744-7909.2010.00935.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cellulose biosynthesis is one of the most important biochemical processes in plant biology. Despite the considerable progress made during the last decade, numerous fundamental questions related to this key process in plant development are outstanding. Numerous models have been proposed through the years to explain the detailed molecular events of cellulose biosynthesis. Almost all models integrate solid experimental data with hypotheses on several of the steps involved in the process. Speculative models are most useful to stimulate further research investigations and bring new exciting ideas to the field. However, it is important to keep their hypothetical nature in mind and be aware of the risk that some undemonstrated hypotheses may progressively become admitted. In this review, we discuss the different steps required for cellulose formation and crystallization, and highlight the most important specific aspects that are supported by solid experimental data.
Collapse
Affiliation(s)
- Gea Guerriero
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| | | | | |
Collapse
|
49
|
Ogawa K, Sato M, Ashihara H, Kaneko TS. Evidence for Deposition of Cellulose Prior to Dark-starvation Treatment During Spherulation in Physarum microplasmodia. CYTOLOGIA 2010. [DOI: 10.1508/cytologia.75.397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kyoko Ogawa
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University
| | - Mamiko Sato
- Laboratory of Electron Microscope, Japan Women's University
| | - Hiroshi Ashihara
- Department of Biological Sciences, Graduate School of Humanities and Sciences, Ochanomizu University
| | | |
Collapse
|
50
|
Krupková E, Schmülling T. Developmental consequences of the tumorous shoot development1 mutation, a novel allele of the cellulose-synthesizing KORRIGAN1 gene. PLANT MOLECULAR BIOLOGY 2009; 71:641-55. [PMID: 19826767 DOI: 10.1007/s11103-009-9546-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 08/28/2009] [Indexed: 05/15/2023]
Abstract
This work describes the further characterization of the tumorous shoot development1 (tsd1) mutant of Arabidopsis thaliana, which develops disorganized tumorous-like shoot tissue instead of organized leaves and stems. Map-based cloning revealed that tsd1 is a novel strong allele of the KOR1 gene, encoding a membrane-bound endo-1,4-beta-D-glucanase involved in cellulose synthesis. To study developmental changes accompanying the aberrant growth of the tsd1 mutant, patterning in the meristems and the hormonal status were analysed by marker genes. Expression of key regulators of meristem maintenance, the CLV3 and STM genes, indicated the presence of numerous meristems in the tsd1 shoot callus. Expression of the LFY::GUS marker supported the ability of the tsd1 callus to form organ primordia, which however failed to develop further. An epidermal marker showed that the L1 layer was maintained only in distinct areas of the tsd1 callus, which could be a reason of disorganized shoot growth. In the tsd1 root meristem, quiescent center activity was lost early after germination, which caused differentiation of the root meristem. The spatial expression of genes reporting the auxin and cytokinin status was altered in the tsd1 mutant. Modifying the endogenous levels of these hormones partially rescued shoot and root development of the tsd1 mutant. Together, the work shows that TSD1/KOR1 is required for maintaining a correct meristematic pattern and organ growth as well as for a normal hormonal response.
Collapse
Affiliation(s)
- Eva Krupková
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | | |
Collapse
|