1
|
Song B, Tria FDK, Skejo J. Prokaryotic cellulase gene clusters derived from 2,305 metagenomes. Sci Data 2025; 12:218. [PMID: 39910055 PMCID: PMC11799192 DOI: 10.1038/s41597-025-04524-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
Cellulose is a carbon source widespread in nature. However, it is a difficult task for any organism to get carbon atoms from the cellulose as it has a highly complex structure. Only a few taxonomic groups are known to decompose cellulose. They do it by producing cellulases, the various enzymes which break beta-glycosidic bonds in the cellulose. Cellulases were identified in 1,735 metagenomes from 225 bioprojects. The set of 12,837 metagenome-derived cellulases encompass three catalytic functions: exoglucanases (CBH, 1,042), endoglucanases (EG, 5,685), and beta-glucosidases (βG, 6,110). All three enzymatic functions are thought to be necessary for driving cellulase to a cascade of reactions that can make cellulose available as glucose. These metagenome-derived cellulases were clustered into protein families for each EC category individually, resulting in a total of 136 clusters, with the majority observed for EG (97 clusters), followed by βG (19 clusters) and CBH (19 clusters). These clusters provided a useful cellulase dataset for future research on cellulase utilization.
Collapse
Affiliation(s)
- Bing Song
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China.
- Institute of Molecular Evolution, Heinrich-Heine University Düsseldorf, Universitätstraße 1, Düsseldorf, Germany.
| | - Fernando D K Tria
- Institute of Molecular Evolution, Heinrich-Heine University Düsseldorf, Universitätstraße 1, Düsseldorf, Germany
| | - Josip Skejo
- Institute of Molecular Evolution, Heinrich-Heine University Düsseldorf, Universitätstraße 1, Düsseldorf, Germany
- Evolution Lab, Division of Zoology, Department of Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
2
|
Kirsch R, Okamura Y, García-Lozano M, Weiss B, Keller J, Vogel H, Fukumori K, Fukatsu T, Konstantinov AS, Montagna M, Moseyko AG, Riley EG, Slipinski A, Vencl FV, Windsor DM, Salem H, Kaltenpoth M, Pauchet Y. Symbiosis and horizontal gene transfer promote herbivory in the megadiverse leaf beetles. Curr Biol 2025; 35:640-654.e7. [PMID: 39826554 DOI: 10.1016/j.cub.2024.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/01/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
Beetles that feed on the nutritionally depauperate and recalcitrant tissues provided by the leaves, stems, and roots of living plants comprise one-quarter of herbivorous insect species. Among the key adaptations for herbivory are plant cell wall-degrading enzymes (PCWDEs) that break down the fastidious polymers in the cell wall and grant access to the nutritious cell content. While largely absent from the non-herbivorous ancestors of beetles, such PCWDEs were occasionally acquired via horizontal gene transfer (HGT) or by the uptake of digestive symbionts. However, the macroevolutionary dynamics of PCWDEs and their impact on evolutionary transitions in herbivorous insects remained poorly understood. Through genomic and transcriptomic analyses of 74 leaf beetle species and 50 symbionts, we show that multiple independent events of microbe-to-beetle HGT and specialized symbioses drove convergent evolutionary innovations in approximately 21,000 and 13,500 leaf beetle species, respectively. Enzymatic assays indicate that these events significantly expanded the beetles' digestive repertoires and thereby contributed to their adaptation and diversification. Our results exemplify how recurring HGT and symbiont acquisition catalyzed digestive and nutritional adaptations to herbivory and thereby contributed to the evolutionary success of a megadiverse insect taxon.
Collapse
Affiliation(s)
- Roy Kirsch
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| | - Yu Okamura
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Marleny García-Lozano
- Mutualisms Research Group, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Benjamin Weiss
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| | - Jean Keller
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| | - Heiko Vogel
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| | - Kayoko Fukumori
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
| | - Alexander S Konstantinov
- Systematic Entomology Laboratory, USDA, ARS, c/o Smithsonian Institution, National Museum of Natural History, 10th Street & Constitution Avenue, Washington, DC 20560, USA
| | - Matteo Montagna
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (Naples), Italy; Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Via Università 100, 80055 Portici (Naples), Italy
| | - Alexey G Moseyko
- Zoological Institute, Russian Academy of Sciences, Universitetskaya embankment 1, 199034 St. Petersburg, Russia
| | - Edward G Riley
- Department of Entomology, Texas A&M University, 400 Bizzell Street, College Station, TX 77843, USA
| | - Adam Slipinski
- Australian National Insect Collection, CSIRO, Black Mountain Laboratories, Clunies Ross Street, GPO Box 1700, Canberra, ACT, Australia
| | - Fredric V Vencl
- Ecology and Evolution, Stony Brook University, Stony Brook, NY 11790, USA; Entomology, National Museum of Natural History, Smithsonian Institution, 10th Street & Constitution Avenue, Washington, DC 20560, USA
| | - Donald M Windsor
- Smithsonian Tropical Research Institute, Luis Clement Avenue, Bldg. 401 Tupper Ancon, Panama City, Republic of Panama
| | - Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany.
| | - Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| | - Yannick Pauchet
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| |
Collapse
|
3
|
Mokshina N, Sautkina O, Gorshkov O, Mikshina P. A Fresh Look at Celery Collenchyma and Parenchyma Cell Walls Through a Combination of Biochemical, Histochemical, and Transcriptomic Analyses. Int J Mol Sci 2025; 26:738. [PMID: 39859452 PMCID: PMC11765706 DOI: 10.3390/ijms26020738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/20/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Celery (Apium graveolens) can be considered as a model plant for studying pectin-enriched primary cell walls. In addition to parenchyma cells with xyloglucan-deficient walls, celery petioles contain collenchyma, a mechanical tissue with thickened cell walls of similar composition. This study presents a comprehensive analysis of these tissues at both early and late developmental stages, integrating data on polysaccharide yield, composition, localization, and transcriptome analysis. Our results reveal that young collenchyma walls possess distinct polysaccharide compositions, including higher levels of rhamnogalacturonan I (RG-I), branched galactans, esterified homogalacturonan, and xyloglucan, compared to parenchyma cells. A significant number of genes encoding proteins involved in pectin methylesterification and acetylation were upregulated in young collenchyma. Different gene isoforms encoding glycosyltransferases involved in RG-I biosynthesis were activated in both collenchyma and parenchyma, suggesting potential variations in RG-I structure and function across different primary cell walls. We identified a set of potential glycosyltransferases involved in RG-I biosynthesis in collenchyma and proposed synthase complexes for heteromannan and heteroxylan. The transcriptome data not only confirmed known biochemical traits of celery cell walls but also provided deeper insights into the peculiarities of cell wall polysaccharide metabolism, thereby helping to narrow down candidate genes for further molecular genetic studies.
Collapse
Affiliation(s)
- Natalia Mokshina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia; (O.S.); (O.G.); (P.M.)
| | | | | | | |
Collapse
|
4
|
Zhu X, Wang M, Huang Z, Chen M, Xu P, Liao S, Gao Y, Zhao Y, Chen H, He J, Luo Y, Wei X, Zhu L, Liu C, Huang J, Zhao X, Zhao J, Zhang Z, Zhuang C, Liu Z, Zhou H. The OsMYC2-JA feedback loop regulates diurnal flower-opening time via cell wall loosening in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2585-2598. [PMID: 38972041 DOI: 10.1111/tpj.16910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/21/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
Diurnal flower-opening time (DFOT), the time of spikelet opening during the day, is an important trait for hybrid rice (Oryza sativa L.) seed production. Hybrids between indica and japonica rice varieties have strong heterosis, but the parental lines usually have different, nonoverlapping DFOTs. This reduces the success of hybrid seed production in crosses between indica and japonica subspecies, thus hindering the utilization of indica and japonica inter-subspecies heterosis. However, little is known about the molecular mechanisms regulating DFOT in rice. Here, we obtained japonica rice lines with a DFOT 1.5 h earlier than the wild type by overexpressing OsMYC2, a gene encoding a key transcription factor in the jasmonate (JA) signaling pathway. OsMYC2 is activated by JA signaling and directly regulates the transcription of genes related to JA biosynthesis and cell wall metabolism. Overexpressing OsMYC2 led to significantly increased JA contents and decreased cellulose and hemicellulose contents in lodicule cells, as well as the softening of lodicule cell walls. This may facilitate the swelling of lodicules, resulting in early diurnal flower-opening. These results suggest that the OsMYC2-JA feedback loop regulates DFOT in rice via cell wall remodeling. These findings shed light on the understanding of regulatory mechanism of the DFOT of plants, which should promote the development of indica and japonica varieties suitable for hybrid rice breeding.
Collapse
Affiliation(s)
- Xiaopei Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Mumei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
| | - Zhen Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Minghao Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Peng Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shitang Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yannan Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yongzhen Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Huixuan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiahui He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yutong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoying Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Liya Zhu
- Instrumental Analysis and Research Center of South China Agricultural University, Guangzhou, 510642, China
| | - Chuanhe Liu
- Instrumental Analysis and Research Center of South China Agricultural University, Guangzhou, 510642, China
| | - Jilei Huang
- Instrumental Analysis and Research Center of South China Agricultural University, Guangzhou, 510642, China
| | - Xinhui Zhao
- Yahua Seeds Science Academy of Hunan, Changsha, 410119, China
| | - Junliang Zhao
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zemin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
5
|
Shang X, Zhang P, Li X, Wang Y, Wu Z. Key traits influencing the resistance of Eucalyptus camaldulensis to wind damage in coastal areas of South China. FRONTIERS IN PLANT SCIENCE 2024; 15:1433670. [PMID: 39228837 PMCID: PMC11369901 DOI: 10.3389/fpls.2024.1433670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/25/2024] [Indexed: 09/05/2024]
Abstract
Aims China is one of the countries in the world most seriously affected by typhoons, which pose a great threat to the eucalyptus plantation industry. However, few studies have comprehensively accounted for the impact of key traits on the wind damage/resistance of eucalyptus. Methods To identify the key factors affecting the wind resistance of eucalyptus, 20 eucalyptus genotypes were selected; a total of 18 traits, including the wind damage index, growth traits, and wood traits, were measured, and the wind resistance was determined via the tree-pulling test. Results Correlation, principal component, canonical correlation, and path analyses were performed to evaluate these traits. Correlation analysis revealed that the wind resistance of eucalyptus plants was related to the tree height, volume, and duration of stress wave propagation. Principal components and tree-pulling variables were further used for correlation and path analyses. Canonical correlation analysis and the PA-OV model showed that holocellulose and lignin contents and fiber width, as well as growth traits, were important factors affecting the stability of standing trees under typhoon conditions. The key traits influencing the wind resistance of Eucalyptus camaldulensis, which may provide a reference for evaluating the wind resistance of Eucalyptus varieties for forest management, were identified. Conclusion This study provides a knowledge base for forest management and planning in typhoon-prone coastal areas, and provides a theoretical basis for the breeding and genetically improving eucalyptus stocks based on wind resistance characteristics.
Collapse
Affiliation(s)
- Xiuhua Shang
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Peijian Zhang
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Xiaoming Li
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Youshuang Wang
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Zhihua Wu
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, Zhanjiang, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing, China
| |
Collapse
|
6
|
Li K, Barrett K, Agger JW, Zeuner B, Meyer AS. Bioinformatics-based identification of GH12 endoxyloglucanases in citrus-pathogenic Penicillium spp. Enzyme Microb Technol 2024; 178:110441. [PMID: 38574421 DOI: 10.1016/j.enzmictec.2024.110441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Millions of tons of citrus peel waste are produced every year as a byproduct of the juice industry. Citrus peel is rich in pectin and xyloglucan, but while the pectin is extracted for use in the food industry, the xyloglucan is currently not valorized. To target hydrolytic degradation of citrus peel xyloglucan into oligosaccharides, we have used bioinformatics to identify three glycoside hydrolase 12 (GH12) endoxyloglucanases (EC 3.2.1.151) from the citrus fruit pathogens Penicillium italicum GL-Gan1 and Penicillium digitatum Pd1 and characterized them on xyloglucan obtained by alkaline extraction from citrus peel. The enzymes displayed pH-temperature optima of pH 4.6-5.3 and 35-37°C. PdGH12 from P. digitatum and PiGH12A from P. italicum share 84% sequence identity and displayed similar kinetics, although kcat was highest for PdGH12. In contrast, PiGH12B from P. italicum, which has the otherwise conserved Trp in subsite -4 replaced with a Tyr, displayed a 3 times higher KM and a 4 times lower kcat/KM than PiGH12A, but was the most thermostable enzyme of the three Penicillium-derived endoxyloglucanases. The benchmark enzyme AnGH12 from Aspergillus nidulans was more thermally stable and had a higher pH-temperature optimum than the enzymes from Penicillum spp. The difference in structure of the xyloglucan oligosaccharides extracted from citrus peel xyloglucan and tamarind xyloglucan by the new endoxyloglucanases was determined by LC-MS. The inclusion of citrus peel xyloglucan demonstrated that the endoxyloglucanases liberated fucosylated xyloglucan oligomers, implying that these enzymes have the potential to upgrade citrus peel residues to produce oligomers useful as intermediates or bioactive compounds.
Collapse
Affiliation(s)
- Kai Li
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, Kgs. Lyngby 2800, Denmark
| | - Kristian Barrett
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, Kgs. Lyngby 2800, Denmark
| | - Jane W Agger
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, Kgs. Lyngby 2800, Denmark
| | - Birgitte Zeuner
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, Kgs. Lyngby 2800, Denmark.
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, Kgs. Lyngby 2800, Denmark
| |
Collapse
|
7
|
Niu J, Shi Y, Gao Z, Sun Z, Tian S, Chen X, Luan M. The β-galactosidase gene AtrBGAL2 regulates Akebia trifoliata fruit cracking. Int J Biol Macromol 2024; 275:133313. [PMID: 38936569 DOI: 10.1016/j.ijbiomac.2024.133313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
Cracking of Akebia trifoliata fruit at maturity is problematic for the cultivation of the horticultural crop, shortening shelf-life quality and compromising commercial value. However, the molecular mechanisms underlying this feature of A. trifoliata are not known. Genes involved in cell wall metabolism were identified by genome and transcriptome sequencing, which may play important roles in fruit cracking. One of the galactose metabolism related genes, β-galactosidase (AtrBGAL2), was identified in A. trifoliata, and overexpression (OE) of AtrBGAL2 resulted in early fruit cracking, higher water-soluble pectin contents, and lower acid-soluble pectin, cellulose, and hemicellulose content compared to the wild type. Whereas silencing of AtrBGAL2 in trifoliata by virus induced gene silencing showed opposite trends. The levels of AtrBGAL2 transcripts were 24.6 and 66.0-fold higher in OE A. trifoliata and tomato fruits, respectively, and the cell wall-related genes were also gradually greater than in control plants during fruit ripening. Whereas the expression levels of AtrBGAL2 was significantly down-regulated by 54.1 % and 73.7 % in gene silenced A. trifoliata and CRISPR/Cas9 tomato mutant plants, respectively, and cell wall-related genes were also significantly reduced. These results demonstrate that AtrBGAL2 plays important roles in regulating fruit cracking during fruit ripening.
Collapse
Affiliation(s)
- Juan Niu
- Jingdezhen University, Jingdezhen 333032, China; Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Key Laboratory of Stem-Fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha 410205, China
| | - Yingying Shi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Key Laboratory of Stem-Fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha 410205, China
| | - Zexin Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Key Laboratory of Stem-Fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha 410205, China
| | - Zhimin Sun
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Key Laboratory of Stem-Fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha 410205, China
| | - Shuang Tian
- Jingdezhen University, Jingdezhen 333032, China.
| | | | - Mingbao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Key Laboratory of Stem-Fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha 410205, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572000, China.
| |
Collapse
|
8
|
de Souza AP, de Oliveira DC, Dalvi VC, Kuster VC. Nutritive tissue rich in reserves in the cell wall and protoplast: the case of Manihot esculenta (Euphorbiaceae) galls induced by Iatrophobia brasiliensis (Diptera, Cecidomyiidae). PROTOPLASMA 2024; 261:513-525. [PMID: 38114665 DOI: 10.1007/s00709-023-01912-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
The galls can offer shelter, protection, and an adequate diet for the gall-inducing organisms. Herein, we evaluated the structure of Manihot esculenta leaves and galls induced by Iatrophobia brasiliensis in order to identify metabolic and cell wall composition changes. We expected to find a complex gall with high primary metabolism in a typical nutritive tissue. Non-galled leaves and galls were subjected to anatomical, histochemical, and immunocytochemical analyses to evaluate the structural features, primary and secondary metabolites, and glycoproteins, pectins, and hemicelluloses in the cell wall. The gall is cylindric, with a uniseriate epidermis, a larval chamber, and a parenchymatic cortex divided into outer and inner compartments. The outer compartment has large cells with intercellular spaces and stocks starch and is designated as storage tissue. Reducing sugars, proteins, phenolic compounds, and alkaloids were detected in the protoplast of inner tissue cells of galls, named nutritive tissue, which presents five layers of compact small cells. Cell walls with esterified homogalacturonans (HGs) occurred in some cells of the galls indicating the continuous biosynthesis of HGs. For both non-galled leaves and galls, galactans and xyloglucans were broadly labeled on the cell walls, indicating a cell growth capacity and cell wall stiffness, respectively. The cell wall of the nutritive tissue had wide labeling for glycoproteins, HGs, heteroxylans, and xyloglucans, which can be used as source for the diet of the galling insect. Manihot esculenta galls have compartments specialized in the protection and feeding of the galling insect, structured by nutritive tissue rich in resource compounds, in the cell walls and protoplast.
Collapse
Affiliation(s)
- Ana Paula de Souza
- Instituto Federal de Educação, Ciências e Tecnologia Goiano, Campus Rio Verde, Rio Verde, Goiás, Brazil
| | - Denis Coelho de Oliveira
- Laboratório de Anatomia, Desenvolvimento Vegetal e Interações, Universidade Federal de Uberlândia (UFU), Instituto de Biologia (INBIO), Campus Umuarama, Uberlândia, Minas Gerais, Brazil
| | - Valdnéa Casagrande Dalvi
- Instituto Federal de Educação, Ciências e Tecnologia Goiano, Campus Rio Verde, Rio Verde, Goiás, Brazil
| | - Vinícius Coelho Kuster
- Instituto de Biociências, Universidade Federal de Jataí, Campus Cidade Universitária, BR 364, Km 195, nº 3800, Jataí, Goiás, Brazil.
| |
Collapse
|
9
|
Nong D, Haviland ZK, Zexer N, Pfaff SA, Cosgrove DJ, Tien M, Anderson CT, Hancock WO. Single-molecule tracking reveals dual front door/back door inhibition of Cel7A cellulase by its product cellobiose. Proc Natl Acad Sci U S A 2024; 121:e2322567121. [PMID: 38648472 PMCID: PMC11067010 DOI: 10.1073/pnas.2322567121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Degrading cellulose is a key step in the processing of lignocellulosic biomass into bioethanol. Cellobiose, the disaccharide product of cellulose degradation, has been shown to inhibit cellulase activity, but the mechanisms underlying product inhibition are not clear. We combined single-molecule imaging and biochemical investigations with the goal of revealing the mechanism by which cellobiose inhibits the activity of Trichoderma reesei Cel7A, a well-characterized exo-cellulase. We find that cellobiose slows the processive velocity of Cel7A and shortens the distance moved per encounter; effects that can be explained by cellobiose binding to the product release site of the enzyme. Cellobiose also strongly inhibits the binding of Cel7A to immobilized cellulose, with a Ki of 2.1 mM. The isolated catalytic domain (CD) of Cel7A was also inhibited to a similar degree by cellobiose, and binding of an isolated carbohydrate-binding module to cellulose was not inhibited by cellobiose, suggesting that cellobiose acts on the CD alone. Finally, cellopentaose inhibited Cel7A binding at micromolar concentrations without affecting the enzyme's velocity of movement along cellulose. Together, these results suggest that cellobiose inhibits Cel7A activity both by binding to the "back door" product release site to slow activity and to the "front door" substrate-binding tunnel to inhibit interaction with cellulose. These findings point to strategies for engineering cellulases to reduce product inhibition and enhance cellulose degradation, supporting the growth of a sustainable bioeconomy.
Collapse
Affiliation(s)
- Daguan Nong
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA16802
| | - Zachary K. Haviland
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA16802
| | - Nerya Zexer
- Department of Biology, Pennsylvania State University, University Park, PA16802
| | - Sarah A. Pfaff
- Department of Biology, Pennsylvania State University, University Park, PA16802
- Intercollege Graduate Degree Program in Plant Biology, Department of Biology, The Pennsylvania State University, University Park, PA16802
| | - Daniel J. Cosgrove
- Department of Biology, Pennsylvania State University, University Park, PA16802
| | - Ming Tien
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA16802
| | - Charles T. Anderson
- Department of Biology, Pennsylvania State University, University Park, PA16802
| | - William O. Hancock
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA16802
- Department of Chemistry, Pennsylvania State University, University Park, PA16802
| |
Collapse
|
10
|
Malacarne G, Lagreze J, Rojas San Martin B, Malnoy M, Moretto M, Moser C, Dalla Costa L. Insights into the cell-wall dynamics in grapevine berries during ripening and in response to biotic and abiotic stresses. PLANT MOLECULAR BIOLOGY 2024; 114:38. [PMID: 38605193 PMCID: PMC11009762 DOI: 10.1007/s11103-024-01437-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 04/13/2024]
Abstract
The cell wall (CW) is the dynamic structure of a plant cell, acting as a barrier against biotic and abiotic stresses. In grape berries, the modifications of pulp and skin CW during softening ensure flexibility during cell expansion and determine the final berry texture. In addition, the CW of grape berry skin is of fundamental importance for winemaking, controlling secondary metabolite extractability. Grapevine varieties with contrasting CW characteristics generally respond differently to biotic and abiotic stresses. In the context of climate change, it is important to investigate the CW dynamics occurring upon different stresses, to define new adaptation strategies. This review summarizes the molecular mechanisms underlying CW modifications during grapevine berry fruit ripening, plant-pathogen interaction, or in response to environmental stresses, also considering the most recently published transcriptomic data. Furthermore, perspectives of new biotechnological approaches aiming at modifying the CW properties based on other crops' examples are also presented.
Collapse
Affiliation(s)
- Giulia Malacarne
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy.
| | - Jorge Lagreze
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
- Centre Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, 38098, Trento, Italy
| | - Barbara Rojas San Martin
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
- Centre Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, 38098, Trento, Italy
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
| | - Marco Moretto
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
| | - Claudio Moser
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
| | - Lorenza Dalla Costa
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
| |
Collapse
|
11
|
Narula K, Sinha A, Choudhary P, Ghosh S, Elagamey E, Sharma A, Sengupta A, Chakraborty N, Chakraborty S. Combining extracellular matrix proteome and phosphoproteome of chickpea and meta-analysis reveal novel proteoforms and evolutionary significance of clade-specific wall-associated events in plant. PLANT DIRECT 2024; 8:e572. [PMID: 38500675 PMCID: PMC10945595 DOI: 10.1002/pld3.572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2023] [Accepted: 02/10/2024] [Indexed: 03/20/2024]
Abstract
Extracellular matrix (ECM) plays central roles in cell architecture, innate defense and cell wall integrity (CWI) signaling. During transition to multicellularity, modular domain structures of ECM proteins and proteoforms have evolved due to continuous adaptation across taxonomic clades under different ecological niche. Although this incredible diversity has to some extent been investigated at protein level, extracellular phosphorylation events and molecular evolution of ECM proteoform families remains unexplored. We developed matrisome proteoform atlas in a grain legume, chickpea and performed meta-analyses of 74 plant matrisomes. MS/MS analysis identified 1,424 proteins and 315 phosphoproteins involved in diverse functions. Cross-species ECM protein network identified proteoforms associated with CWI maintenance system. Phylogenetic characterization of eighteen matrix protein families highlighted the role of taxon-specific paralogs and orthologs. Novel information was acquired on gene expansion and loss, co-divergence, sub functionalization and neofunctionalization during evolution. Modular networks of matrix protein families and hub proteins showed higher diversity across taxonomic clades than among organs. Furthermore, protein families differ in nonsynonymous to synonymous substitution rates. Our study pointed towards the matrix proteoform functionality, sequence divergence variation, interactions between wall remodelers and molecular evolution using a phylogenetic framework. This is the first report on comprehensive matrisome proteoform network illustrating presence of CWI signaling proteins in land plants.
Collapse
Affiliation(s)
- Kanika Narula
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Arunima Sinha
- National Institute of Plant Genome ResearchNew DelhiIndia
| | | | - Sudip Ghosh
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Eman Elagamey
- National Institute of Plant Genome ResearchNew DelhiIndia
- Plant Pathology Research InstituteAgricultural Research Center (ARC)GizaEgypt
| | - Archana Sharma
- National Institute of Plant Genome ResearchNew DelhiIndia
| | | | | | | |
Collapse
|
12
|
Gayathiri E, Prakash P, Pandiaraj S, Ramasubburayan R, Gaur A, Sekar M, Viswanathan D, Govindasamy R. Investigating the ecological implications of nanomaterials: Unveiling plants' notable responses to nano-pollution. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108261. [PMID: 38096734 DOI: 10.1016/j.plaphy.2023.108261] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 02/15/2024]
Abstract
The rapid advancement of nanotechnology has led to unprecedented innovations; however, it is crucial to analyze its environmental impacts carefully. This review thoroughly examines the complex relationship between plants and nanomaterials, highlighting their significant impact on ecological sustainability and ecosystem well-being. This study investigated the response of plants to nano-pollution stress, revealing the complex regulation of defense-related genes and proteins, and highlighting the sophisticated defense mechanisms in nature. Phytohormones play a crucial role in the complex molecular communication network that regulates plant responses to exposure to nanomaterials. The interaction between plants and nano-pollution influences plants' complex defense strategies. This reveals the interconnectedness of systems of nature. Nevertheless, these findings have implications beyond the plant domain. The incorporation of hyperaccumulator plants into pollution mitigation strategies has the potential to create more environmentally sustainable urban landscapes and improve overall environmental resilience. By utilizing these exceptional plants, we can create a future in which cities serve as centers of both innovation and ecological balance. Further investigation is necessary to explore the long-term presence of nanoparticles in the environment, their ability to induce genetic changes in plants over multiple generations, and their overall impact on ecosystems. In conclusion, this review summarizes significant scientific discoveries with broad implications beyond the confines of laboratories. This highlights the importance of understanding the interactions between plants and nanomaterials within the wider scope of environmental health. By considering these insights, we initiated a path towards the responsible utilization of nanomaterials, environmentally friendly management of pollution, and interdisciplinary exploration. We have the responsibility to balance scientific advancement and environmental preservation to create a sustainable future that combines nature's wisdom with human innovation.
Collapse
Affiliation(s)
- Ekambaram Gayathiri
- Department of Plant Biology and Plant Biotechnology, Guru Nanak College (Autonomous), Chennai 600042, Tamil Nadu India
| | - Palanisamy Prakash
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem 636011, Tamil Nadu, India
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ramasamy Ramasubburayan
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Arti Gaur
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara-390025, Gujarat, India
| | - Malathy Sekar
- Department of Botany, PG and Research Department of Botany Government Arts College for Men, (autonomous), Nandanam, Chennai 35, Tamilnadu, India
| | - Dhivya Viswanathan
- Centre for Nanobioscience, Department of Orthodontics, Saveetha Dental College, and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077, Tamilnadu, India
| | - Rajakumar Govindasamy
- Centre for Nanobioscience, Department of Orthodontics, Saveetha Dental College, and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077, Tamilnadu, India.
| |
Collapse
|
13
|
Chen C, Li K, Li T, Li J, Liu Q, Yin H. Identification and Characterization of a Novel Mannanase from Klebsiella grimontii. Bioengineering (Basel) 2023; 10:1230. [PMID: 37892960 PMCID: PMC10604067 DOI: 10.3390/bioengineering10101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/07/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Konjac glucomannan (KGM) is a natural polysaccharide derived from konjac, which has been widely used in various fields due to its numerous beneficial properties. However, the high viscosity and water absorption of KGM limit its application. Compared with KGM, Konjac glucomannan oligosaccharides (KGMOS) have higher water solubility and stronger application value. In this paper, a novel mannanase KgManA was cloned from Klebsiella grimontii to develop a new KGMOS-producing enzyme. Bioinformatic analysis shows that the structural similarity between KgManA and other enzymes was less than 18.33%. Phylogenetic analysis shows that KgManA shares different branches with the traditional mannanases containing the CMB35 domain, indicating that it is a novel mannanase. Then, the enzymatic properties were determined and substrate specificity was characterized. Surprisingly, KgManA is stable in a very wide pH range of 3.0 to 10.0; it has a special substrate specificity and seems to be active only for mannans without galactose in the side chain. Additionally, the three-dimensional structure of the enzyme was simulated and molecular docking of the mannotetraose substrate was performed. As far as we know, this is the first report to characterize the enzymatic properties and to simulate the structure of mannanase from K. grimontii. This work will contribute to the development and characterization of novel K. grimontii-derived mannanases. The above results indicate that KgManA is a promising tool for the production of KGMOS.
Collapse
Affiliation(s)
- Changzheng Chen
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Kuikui Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tang Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Junyan Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qishun Liu
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Laboratory of Se-enriched Food Development, Ankang 725000, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
14
|
Dutschei T, Beidler I, Bartosik D, Seeßelberg JM, Teune M, Bäumgen M, Ferreira SQ, Heldmann J, Nagel F, Krull J, Berndt L, Methling K, Hein M, Becher D, Langer P, Delcea M, Lalk M, Lammers M, Höhne M, Hehemann JH, Schweder T, Bornscheuer UT. Marine Bacteroidetes enzymatically digest xylans from terrestrial plants. Environ Microbiol 2023; 25:1713-1727. [PMID: 37121608 DOI: 10.1111/1462-2920.16390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
Marine Bacteroidetes that degrade polysaccharides contribute to carbon cycling in the ocean. Organic matter, including glycans from terrestrial plants, might enter the oceans through rivers. Whether marine bacteria degrade structurally related glycans from diverse sources including terrestrial plants and marine algae was previously unknown. We show that the marine bacterium Flavimarina sp. Hel_I_48 encodes two polysaccharide utilization loci (PULs) which degrade xylans from terrestrial plants and marine algae. Biochemical experiments revealed activity and specificity of the encoded xylanases and associated enzymes of these PULs. Proteomics indicated that these genomic regions respond to glucuronoxylans and arabinoxylans. Substrate specificities of key enzymes suggest dedicated metabolic pathways for xylan utilization. Some of the xylanases were active on different xylans with the conserved β-1,4-linked xylose main chain. Enzyme activity was consistent with growth curves showing Flavimarina sp. Hel_I_48 uses structurally different xylans. The observed abundance of related xylan-degrading enzyme repertoires in genomes of other marine Bacteroidetes indicates similar activities are common in the ocean. The here presented data show that certain marine bacteria are genetically and biochemically variable enough to access parts of structurally diverse xylans from terrestrial plants as well as from marine algal sources.
Collapse
Affiliation(s)
- Theresa Dutschei
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Irena Beidler
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Daniel Bartosik
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology e.V., Greifswald, Germany
| | - Julia-Maria Seeßelberg
- Department of Protein Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Michelle Teune
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Marcus Bäumgen
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Soraia Querido Ferreira
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Julia Heldmann
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Felix Nagel
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Joris Krull
- Institute of Marine Biotechnology e.V., Greifswald, Germany
- Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Leona Berndt
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Karen Methling
- Department of Cellular Biochemistry and Metabolomics, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Martin Hein
- Department of Organic Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Peter Langer
- Department of Organic Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Mihaela Delcea
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Michael Lalk
- Department of Cellular Biochemistry and Metabolomics, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Michael Lammers
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Matthias Höhne
- Department of Protein Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Jan-Hendrik Hehemann
- Institute of Marine Biotechnology e.V., Greifswald, Germany
- Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Thomas Schweder
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology e.V., Greifswald, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany
| |
Collapse
|
15
|
Khamassi A, Dumon C. Enzyme synergy for plant cell wall polysaccharide degradation. Essays Biochem 2023; 67:521-531. [PMID: 37067158 DOI: 10.1042/ebc20220166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 04/18/2023]
Abstract
Valorizing plant cell wall, marine and algal polysaccharides is of utmost importance for the development of the circular bioeconomy. This is because polysaccharides are by far the most abundant organic molecules found in nature with complex chemical structures that require a large set of enzymes for their degradation. Microorganisms produce polysaccharide-specific enzymes that act in synergy when performing hydrolysis. Although discovered since decades enzyme synergy is still poorly understood at the molecular level and thus it is difficult to harness and optimize. In the last few years, more attention has been given to improve and characterize enzyme synergy for polysaccharide valorization. In this review, we summarize literature to provide an overview of the different type of synergy involving carbohydrate modifying enzymes and the recent advances in the field exemplified by plant cell-wall degradation.
Collapse
Affiliation(s)
- Ahmed Khamassi
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Claire Dumon
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
16
|
Novak JK, Gardner JG. Galactomannan utilization by Cellvibrio japonicus relies on a single essential α-galactosidase encoded by the aga27A gene. Mol Microbiol 2023; 119:312-325. [PMID: 36604822 DOI: 10.1111/mmi.15024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023]
Abstract
Plant mannans are a component of lignocellulose that can have diverse compositions in terms of its backbone and side-chain substitutions. Consequently, the degradation of mannan substrates requires a cadre of enzymes for complete reduction to substituent monosaccharides that can include mannose, galactose, and/or glucose. One bacterium that possesses this suite of enzymes is the Gram-negative saprophyte Cellvibrio japonicus, which has 10 predicted mannanases from the Glycoside Hydrolase (GH) families 5, 26, and 27. Here we describe a systems biology approach to identify and characterize the essential mannan-degrading components in this bacterium. The transcriptomic analysis uncovered significant changes in gene expression for most mannanases, as well as many genes that encode carbohydrate active enzymes (CAZymes) when mannan was actively being degraded. A comprehensive mutational analysis characterized 54 CAZyme-encoding genes in the context of mannan utilization. Growth analysis of the mutant strains found that the man26C, aga27A, and man5D genes, which encode a mannobiohydrolase, α-galactosidase, and mannosidase, respectively, were important for the deconstruction of galactomannan, with Aga27A being essential. Our updated model of mannan degradation in C. japonicus proposes that the removal of galactose sidechains from substituted mannans constitutes a crucial step for the complete degradation of this hemicellulose.
Collapse
Affiliation(s)
- Jessica K Novak
- Department of Biological Sciences, University of Maryland - Baltimore County, Baltimore, Maryland, USA
| | - Jeffrey G Gardner
- Department of Biological Sciences, University of Maryland - Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Zhang H, Lin R, Liu Q, Lu J, Qiao G, Huang X. Transcriptomic and proteomic analyses provide insights into host adaptation of a bamboo-feeding aphid. FRONTIERS IN PLANT SCIENCE 2023; 13:1098751. [PMID: 36714746 PMCID: PMC9874943 DOI: 10.3389/fpls.2022.1098751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Salivary glands and their secreted proteins play an important role in the feeding process of sap-sucking aphids. The determination of saliva composition is an important step in understanding host plant adaptation of aphids. Pseudoregma bambucicola is a severe bamboo pest in subtropical areas and the only aphid species that can exclusively feed on hard stalks of bamboos. How this species can penetrate and degrade hard bamboo cell walls and utilize a very specialized niche are important unanswered questions. METHODS In this study, comprehensive analyses based on transcriptome sequencing, RT-qPCR, liquid chromatography-tandem spectrometry (LC-MS/MS) and bioinformatics were conducted on dissected salivary glands and secreted saliva of P. bambucicola to characterize the overall gene expression and salivary protein composition, and to identify putative effector proteins important for aphid-plant interactions. RESULTS AND DISCUSSION Some secretory proteins homologous to known aphid effectors important for aphid-plant interactions, such as digestive enzymes, detoxifying and antioxidant enzymes and some effectors modulating plant defenses, are also detected in salivary gland transcriptome and salivary gland and/or saliva secretomes in P. bambucicola. This indicates that these effectors are probably be essential for enabling P. bambucicola feeding on bamboo host. Although several plant cell wall degrading enzymes (PCWDEs) can be identified from transcriptome, most of the enzymes identified in salivary glands showed low expression levels and they only represent a small fraction of the complete set of enzymes for degrading cellulose and hemicellulose. In addition, our data show that P. bambucicola has no its own ability to produce pectinases. Overall, our analyses indicate that P. bambucicola may lose its own ability to express and secrete key PCWDEs, and its adaptation to unique feeding habit may depend on its symbiotic bacteria.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ruixun Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianjun Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
18
|
Peng J, Liu W, Tang S, Zou S, Zhu Y, Cheng H, Wang Y, Streit WR, Chen Z, Zhou H. Identification and biochemical characterization of a novel GH113 β-mannanase from acid mine drainage metagenome. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
19
|
Butyrate-producing colonic clostridia: picky glycan utilization specialists. Essays Biochem 2022; 67:415-428. [PMID: 36350044 DOI: 10.1042/ebc20220125] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Butyrate-producing human gut microbiota members are recognized for their strong association with a healthy immune-homeostasis and protection from inflammatory disorders and colorectal cancer. These effects are attributed to butyrate, the terminal electron sink of glycan fermentation by prevalent and abundant colonic Firmicutes from the Lachnospiraceae and Oscillospiraceae families. Remarkably, our insight into the glycan utilization mechanisms and preferences of butyrogenic Firmicutes remains very limited as compared with other gut symbionts, especially from the Bacteroides, Bifidobacterium, and Lactobacillus genera. Here, we summarize recent findings on the strategies that colonic butyrate producers have evolved to harvest energy from major dietary fibres, especially plant structural and storage glycans, such as resistant starch, xylans, and mannans. Besides dietary fibre, we also present the unexpected discovery of a conserved protein apparatus that confers the growth of butyrate producers on human milk oligosaccharides (HMOs), which are unique to mother’s milk. The dual dietary fibre/HMO utilization machinery attests the adaptation of this group to both the infant and adult guts. These finding are discussed in relation to the early colonization of butyrogenic bacteria and the maturation of the microbiota during the transition from mother’s milk to solid food. To date, the described butyrogenic Firmicutes are glycan utilization specialists that target only a few glycans in a highly competitive manner relying on co-regulated glycan utilization loci. We describe the common pillars of this machinery, highlighting butyrate producers as a source for discovery of biochemically and structurally novel carbohydrate active enzymes.
Collapse
|
20
|
Zhang F, Fan D, Huang JL, Zuo T. The gut microbiome: linking dietary fiber to inflammatory diseases. MEDICINE IN MICROECOLOGY 2022. [DOI: 10.1016/j.medmic.2022.100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
21
|
Yu L, Yoshimi Y, Cresswell R, Wightman R, Lyczakowski JJ, Wilson LFL, Ishida K, Stott K, Yu X, Charalambous S, Wurman-Rodrich J, Terrett OM, Brown SP, Dupree R, Temple H, Krogh KBRM, Dupree P. Eudicot primary cell wall glucomannan is related in synthesis, structure, and function to xyloglucan. THE PLANT CELL 2022; 34:4600-4622. [PMID: 35929080 PMCID: PMC9614514 DOI: 10.1093/plcell/koac238] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Hemicellulose polysaccharides influence assembly and properties of the plant primary cell wall (PCW), perhaps by interacting with cellulose to affect the deposition and bundling of cellulose fibrils. However, the functional differences between plant cell wall hemicelluloses such as glucomannan, xylan, and xyloglucan (XyG) remain unclear. As the most abundant hemicellulose, XyG is considered important in eudicot PCWs, but plants devoid of XyG show relatively mild phenotypes. We report here that a patterned β-galactoglucomannan (β-GGM) is widespread in eudicot PCWs and shows remarkable similarities to XyG. The sugar linkages forming the backbone and side chains of β-GGM are analogous to those that make up XyG, and moreover, these linkages are formed by glycosyltransferases from the same CAZy families. Solid-state nuclear magnetic resonance indicated that β-GGM shows low mobility in the cell wall, consistent with interaction with cellulose. Although Arabidopsis β-GGM synthesis mutants show no obvious growth defects, genetic crosses between β-GGM and XyG mutants produce exacerbated phenotypes compared with XyG mutants. These findings demonstrate a related role of these two similar but distinct classes of hemicelluloses in PCWs. This work opens avenues to study the roles of β-GGM and XyG in PCWs.
Collapse
Affiliation(s)
- Li Yu
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Yoshihisa Yoshimi
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | | | - Raymond Wightman
- Microscopy Core Facility, Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | | | | | - Konan Ishida
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Katherine Stott
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Xiaolan Yu
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Stephan Charalambous
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | | | - Oliver M Terrett
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Steven P Brown
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Ray Dupree
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Henry Temple
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | | | | |
Collapse
|
22
|
Barcoto MO, Rodrigues A. Lessons From Insect Fungiculture: From Microbial Ecology to Plastics Degradation. Front Microbiol 2022; 13:812143. [PMID: 35685924 PMCID: PMC9171207 DOI: 10.3389/fmicb.2022.812143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Anthropogenic activities have extensively transformed the biosphere by extracting and disposing of resources, crossing boundaries of planetary threat while causing a global crisis of waste overload. Despite fundamental differences regarding structure and recalcitrance, lignocellulose and plastic polymers share physical-chemical properties to some extent, that include carbon skeletons with similar chemical bonds, hydrophobic properties, amorphous and crystalline regions. Microbial strategies for metabolizing recalcitrant polymers have been selected and optimized through evolution, thus understanding natural processes for lignocellulose modification could aid the challenge of dealing with the recalcitrant human-made polymers spread worldwide. We propose to look for inspiration in the charismatic fungal-growing insects to understand multipartite degradation of plant polymers. Independently evolved in diverse insect lineages, fungiculture embraces passive or active fungal cultivation for food, protection, and structural purposes. We consider there is much to learn from these symbioses, in special from the community-level degradation of recalcitrant biomass and defensive metabolites. Microbial plant-degrading systems at the core of insect fungicultures could be promising candidates for degrading synthetic plastics. Here, we first compare the degradation of lignocellulose and plastic polymers, with emphasis in the overlapping microbial players and enzymatic activities between these processes. Second, we review the literature on diverse insect fungiculture systems, focusing on features that, while supporting insects' ecology and evolution, could also be applied in biotechnological processes. Third, taking lessons from these microbial communities, we suggest multidisciplinary strategies to identify microbial degraders, degrading enzymes and pathways, as well as microbial interactions and interdependencies. Spanning from multiomics to spectroscopy, microscopy, stable isotopes probing, enrichment microcosmos, and synthetic communities, these strategies would allow for a systemic understanding of the fungiculture ecology, driving to application possibilities. Detailing how the metabolic landscape is entangled to achieve ecological success could inspire sustainable efforts for mitigating the current environmental crisis.
Collapse
Affiliation(s)
- Mariana O. Barcoto
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Andre Rodrigues
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| |
Collapse
|
23
|
Khalil M, Abdollahi M, Zaefarian F, Chrystal P, Ravindran V. Influence of age and dietary cellulose levels on ileal endogenous energy losses in broiler chickens. Poult Sci 2022; 101:101948. [PMID: 35679675 PMCID: PMC9189197 DOI: 10.1016/j.psj.2022.101948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 11/26/2022] Open
|
24
|
Ye TJ, Huang KF, Ko TP, Wu SH. Synergic action of an inserted carbohydrate-binding module in a glycoside hydrolase family 5 endoglucanase. Acta Crystallogr D Struct Biol 2022; 78:633-646. [PMID: 35503211 PMCID: PMC9063844 DOI: 10.1107/s2059798322002601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
Most known cellulase-associated carbohydrate-binding modules (CBMs) are attached to the N- or C-terminus of the enzyme or are expressed separately and assembled into multi-enzyme complexes (for example to form cellulosomes), rather than being an insertion into the catalytic domain. Here, by solving the crystal structure, it is shown that MtGlu5 from Meiothermus taiwanensis WR-220, a GH5-family endo-β-1,4-glucanase (EC 3.2.1.4), has a bipartite architecture consisting of a Cel5A-like catalytic domain with a (β/α)8 TIM-barrel fold and an inserted CBM29-like noncatalytic domain with a β-jelly-roll fold. Deletion of the CBM significantly reduced the catalytic efficiency of MtGlu5, as determined by isothermal titration calorimetry using inactive mutants of full-length and CBM-deleted MtGlu5 proteins. Conversely, insertion of the CBM from MtGlu5 into TmCel5A from Thermotoga maritima greatly enhanced the substrate affinity of TmCel5A. Bound sugars observed between two tryptophan side chains in the catalytic domains of active full-length and CBM-deleted MtGlu5 suggest an important stacking force. The synergistic action of the catalytic domain and CBM of MtGlu5 in binding to single-chain polysaccharides was visualized by substrate modeling, in which additional surface tryptophan residues were identified in a cross-domain groove. Subsequent site-specific mutagenesis results confirmed the pivotal role of several other tryptophan residues from both domains of MtGlu5 in substrate binding. These findings reveal a way to incorporate a CBM into the catalytic domain of an existing enzyme to make a robust cellulase.
Collapse
Affiliation(s)
- Ting-Juan Ye
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 115, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 115, Taiwan
| |
Collapse
|
25
|
Cardoso V, Brás JLA, Costa IF, Ferreira LMA, Gama LT, Vincentelli R, Henrissat B, Fontes CMGA. Generation of a Library of Carbohydrate-Active Enzymes for Plant Biomass Deconstruction. Int J Mol Sci 2022; 23:ijms23074024. [PMID: 35409382 PMCID: PMC8999789 DOI: 10.3390/ijms23074024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 01/27/2023] Open
Abstract
In nature, the deconstruction of plant carbohydrates is carried out by carbohydrate-active enzymes (CAZymes). A high-throughput (HTP) strategy was used to isolate and clone 1476 genes obtained from a diverse library of recombinant CAZymes covering a variety of sequence-based families, enzyme classes, and source organisms. All genes were successfully isolated by either PCR (61%) or gene synthesis (GS) (39%) and were subsequently cloned into Escherichia coli expression vectors. Most proteins (79%) were obtained at a good yield during recombinant expression. A significantly lower number (p < 0.01) of proteins from eukaryotic (57.7%) and archaeal (53.3%) origin were soluble compared to bacteria (79.7%). Genes obtained by GS gave a significantly lower number (p = 0.04) of soluble proteins while the green fluorescent protein tag improved protein solubility (p = 0.05). Finally, a relationship between the amino acid composition and protein solubility was observed. Thus, a lower percentage of non-polar and higher percentage of negatively charged amino acids in a protein may be a good predictor for higher protein solubility in E. coli. The HTP approach presented here is a powerful tool for producing recombinant CAZymes that can be used for future studies of plant cell wall degradation. Successful production and expression of soluble recombinant proteins at a high rate opens new possibilities for the high-throughput production of targets from limitless sources.
Collapse
Affiliation(s)
- Vânia Cardoso
- Centro de Investigação Interdisciplinar em Sanidade Animal—Faculdade de Medicina Veterinária, Universidade de Lisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (L.M.A.F.); (L.T.G.)
- NZYTech Ltd., Estrada do Paço do Lumiar, Campus do Lumiar, 1649-038 Lisboa, Portugal; (J.L.A.B.); (I.F.C.)
- Correspondence: (V.C.); (C.M.G.A.F.)
| | - Joana L. A. Brás
- NZYTech Ltd., Estrada do Paço do Lumiar, Campus do Lumiar, 1649-038 Lisboa, Portugal; (J.L.A.B.); (I.F.C.)
| | - Inês F. Costa
- NZYTech Ltd., Estrada do Paço do Lumiar, Campus do Lumiar, 1649-038 Lisboa, Portugal; (J.L.A.B.); (I.F.C.)
| | - Luís M. A. Ferreira
- Centro de Investigação Interdisciplinar em Sanidade Animal—Faculdade de Medicina Veterinária, Universidade de Lisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (L.M.A.F.); (L.T.G.)
| | - Luís T. Gama
- Centro de Investigação Interdisciplinar em Sanidade Animal—Faculdade de Medicina Veterinária, Universidade de Lisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (L.M.A.F.); (L.T.G.)
| | - Renaud Vincentelli
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7257, Université Aix-Marseille, 13288 Marseille, France; (R.V.); (B.H.)
- Institut National de la Recherche Agronomique, Unité sous Contrat 1408 Architecture et Fonction des Macromolécules Biologiques, 13288 Marseille, France
| | - Bernard Henrissat
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7257, Université Aix-Marseille, 13288 Marseille, France; (R.V.); (B.H.)
- Institut National de la Recherche Agronomique, Unité sous Contrat 1408 Architecture et Fonction des Macromolécules Biologiques, 13288 Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Carlos M. G. A. Fontes
- Centro de Investigação Interdisciplinar em Sanidade Animal—Faculdade de Medicina Veterinária, Universidade de Lisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (L.M.A.F.); (L.T.G.)
- NZYTech Ltd., Estrada do Paço do Lumiar, Campus do Lumiar, 1649-038 Lisboa, Portugal; (J.L.A.B.); (I.F.C.)
- Correspondence: (V.C.); (C.M.G.A.F.)
| |
Collapse
|
26
|
Singh RP, Bhaiyya R, Thakur R, Niharika J, Singh C, Latousakis D, Saalbach G, Nepogodiev SA, Singh P, Sharma SC, Sengupta S, Juge N, Field RA. Biochemical Basis of Xylooligosaccharide Utilisation by Gut Bacteria. Int J Mol Sci 2022; 23:2992. [PMID: 35328413 PMCID: PMC8954004 DOI: 10.3390/ijms23062992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 01/27/2023] Open
Abstract
Xylan is one of the major structural components of the plant cell wall. Xylan present in the human diet reaches the large intestine undigested and becomes a substrate to species of the gut microbiota. Here, we characterised the capacity of Limosilactobacillus reuteri and Blautia producta strains to utilise xylan derivatives. We showed that L. reuteri ATCC 53608 and B. producta ATCC 27340 produced β-D-xylosidases, enabling growth on xylooligosaccharide (XOS). The recombinant enzymes were highly active on artificial (p-nitrophenyl β-D-xylopyranoside) and natural (xylobiose, xylotriose, and xylotetraose) substrates, and showed transxylosylation activity and tolerance to xylose inhibition. The enzymes belong to glycoside hydrolase family 120 with Asp as nucleophile and Glu as proton donor, as shown by homology modelling and confirmed by site-directed mutagenesis. In silico analysis revealed that these enzymes were part of a gene cluster in L. reuteri but not in Blautia strains, and quantitative proteomics identified other enzymes and transporters involved in B. producta XOS utilisation. Based on these findings, we proposed a model for an XOS metabolism pathway in L. reuteri and B. producta strains. Together with phylogenetic analyses, the data also revealed the extended xylanolytic potential of the gut microbiota.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), SAS Nagar 140306, India; (R.B.); (R.T.); (J.N.); (C.S.)
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR47UH, UK; (G.S.); (S.A.N.)
| | - Raja Bhaiyya
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), SAS Nagar 140306, India; (R.B.); (R.T.); (J.N.); (C.S.)
| | - Raksha Thakur
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), SAS Nagar 140306, India; (R.B.); (R.T.); (J.N.); (C.S.)
| | - Jayashree Niharika
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), SAS Nagar 140306, India; (R.B.); (R.T.); (J.N.); (C.S.)
| | - Chandrajeet Singh
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), SAS Nagar 140306, India; (R.B.); (R.T.); (J.N.); (C.S.)
| | - Dimitrios Latousakis
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (D.L.); (N.J.)
| | - Gerhard Saalbach
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR47UH, UK; (G.S.); (S.A.N.)
| | - Sergey A. Nepogodiev
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR47UH, UK; (G.S.); (S.A.N.)
| | - Praveen Singh
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India; (P.S.); (S.S.)
| | - Sukesh Chander Sharma
- Department of Biochemistry, South Campus, Panjab University, Chandigarh 160014, India;
| | - Shantanu Sengupta
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India; (P.S.); (S.S.)
| | - Nathalie Juge
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (D.L.); (N.J.)
| | - Robert A. Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR47UH, UK; (G.S.); (S.A.N.)
| |
Collapse
|
27
|
Shang X, Zhang P, Liu G, Zhan N, Wu Z. Comparative transcriptomics analysis of contrasting varieties of Eucalyptus camaldulensis reveals wind resistance genes. PeerJ 2022; 10:e12954. [PMID: 35233295 PMCID: PMC8882336 DOI: 10.7717/peerj.12954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/27/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Wind, an important abiotic stress factor, affects forests in coastal areas, causes tree damage and timber loss. METHODS Two genotypes of Eucalyptus camaldulensis-strong wind-resistant CA5 and weak wind-resistant C037 were used for RNA-seq analysis to screen for candidate wind-resistance genes and transcription factors (TFs) by comparing the transcriptome analysis of the two varieties in response to wind stress. RESULTS It showed that 7061 differentially expressed unigenes could be annotated including 4,110 up-regulated unigenes and 2,951 down-regulated unigenes. Gene Ontology (GO) analysis revealed that six cellulose pathways were involved in response to wind stress. The unigenes in phenylpropanoid biosynthesis, phenylalanine metabolism, and flavonoid biosynthesis pathways were found to be differentially expressed based on Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Moreover, 37 differentially expressed genes were functionally annotated to be involved in the secondary metabolism of phenylalanine (ko00940). Seventy-eight TFs related to the regulating cellulose and lignin synthesis were expressed differently from the various treatments. The expressions of C3H, POX, MYB, NAC, Gene008307, and Gene011799 were significantly upregulated in CA5. Overall, the main response of Eucalyptus to wind stress was associated with cell wall biosynthesis; key genes of cellulose and lignin biosynthesis pathways and related TFs were involved in the tree response to wind stress.
Collapse
Affiliation(s)
- Xiuhua Shang
- China Eucalypt Research Centre, Chinese Academy of Forestry, Zhanjiang, Guangdong, China
| | - Peijian Zhang
- China Eucalypt Research Centre, Chinese Academy of Forestry, Zhanjiang, Guangdong, China
| | - Guo Liu
- China Eucalypt Research Centre, Chinese Academy of Forestry, Zhanjiang, Guangdong, China
| | - Ni Zhan
- China Eucalypt Research Centre, Chinese Academy of Forestry, Zhanjiang, Guangdong, China
| | - Zhihua Wu
- China Eucalypt Research Centre, Chinese Academy of Forestry, Zhanjiang, Guangdong, China
| |
Collapse
|
28
|
Kurotani KI, Huang C, Okayasu K, Suzuki T, Ichihashi Y, Shirasu K, Higashiyama T, Niwa M, Notaguchi M. Interfamily grafting capacity of petunia. HORTICULTURE RESEARCH 2022; 9:uhab056. [PMID: 35048114 PMCID: PMC8969063 DOI: 10.1093/hr/uhab056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/25/2021] [Indexed: 05/27/2023]
Abstract
In grafting, an agricultural technique for propagating flower species and fruit trees, two plants are combined to exploit their beneficial characteristics, such as rootstock disease tolerance and vigor. Grafting incompatibility has been observed, however, between distantly related plant combinations, which limits the availability of plant resources. A high grafting capacity has been found in Nicotiana, belonging to Solanaceae, but not in Ipomoea nil, a Convolvulaceae species. Here, we found that Petunia hybrida, another solanaceous species, has similar ability of interfamily grafting, which indicates that interfamily grafting capability in Solanaceae is not limited to the genus Nicotiana. RNA sequencing-based comparative time-series transcriptomic analyses of Nicotiana benthamiana, I. nil, and P. hybrida revealed that N. benthamiana and P. hybrida share a common gene expression pattern, with continued elevated expression of the β-1,4-glucanase subclade gene GH9B3 observed after interfamily grafting. During self-grafting, GH9B3 expression in each species was similarly elevated, thus suggesting that solanaceous plants have altered regulatory mechanisms for GH9B3 gene expression that allow tissue fusion even with other species. Finally, we tested the effect of the β-1,4-glucanase inhibitor D-glucono-1,5-lactone, using glucose as a control, on the interfamily grafting usability of P. hybrida with Arabidopsis rootstock. Strong inhibition of graft establishment was observed only with D-glucono-1,5-lactone, thus suggesting the important role of GH9B3 in P. hybrida grafting. The newly discovered grafting compatibility of Petunia with different families enhances the propagation techniques and the production of flower plants.
Collapse
Affiliation(s)
- Ken-ichi Kurotani
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Chaokun Huang
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Koji Okayasu
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Matsumoto-cho, Kasugai 487-8501, Japan
| | - Yasunori Ichihashi
- Center for Sustainable Resource Science, RIKEN, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Ken Shirasu
- Center for Sustainable Resource Science, RIKEN, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Science, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tetsuya Higashiyama
- Graduate School of Science, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Masaki Niwa
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- GRA&GREEN Inc., Incubation Facility, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Michitaka Notaguchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- GRA&GREEN Inc., Incubation Facility, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
29
|
Pathogenic Fungi Diversity of ‘CuiXiang’ Kiwifruit Black Spot Disease during Storage. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae8010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Kiwifruit black spot disease has become increasingly widespread in many ‘CuiXiang’ kiwifruit plantings regions. This research was aimed at the pathogenic microorganisms of black spot of the ‘CuiXiang’ cultivar. Physiological, morphological and transcriptional characteristics between black spot fruit and healthy fruits were evaluated. Then, it applied a high-throughput internal transcribed spacer (ITS) sequencing to analyze the black spot disease microbial community. The cell structure showed that mycelium was attached to the surface of the kiwifruit through black spot, and that consequently the mitochondria were damaged, starch particles were reduced, and shelf life was shortened. Transcriptome revealed that different genes in kiwifruit with black spot disease were involved in cell wall modification, pathogen perception, and signal transduction. ITS sequencing results described the disease-causing fungi and found that the microbial diversity of black spot-diseased fruit was lower than that of healthy fruit. We predict that candidate pathogenic fungi Cladosporium cladosporioides, Diaporthe phaseolorum, Alternaria alternata, and Trichothecium roseum may cause black spot. This study was to explore the pathogenic fungal community of ‘CuiXiang’ kiwifruit black spot disease and to provide essential information for field prevention.
Collapse
|
30
|
Das S, Nadar SS, Rathod VK. Integrated strategies for enzyme assisted extraction of bioactive molecules: A review. Int J Biol Macromol 2021; 191:899-917. [PMID: 34534588 DOI: 10.1016/j.ijbiomac.2021.09.060] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022]
Abstract
Conventional methods of extracting bioactive molecules are gradually losing pace due to their numerous disadvantages, such as product degradation, lower efficiency, and toxicity. Thus, in light of the rising demand for these bioactive, enzymes have garnered much attention for their efficiency in extraction. However, enzyme-assisted extraction is also plagued with a high capital cost that cannot justify the extraction yields obtained. In order to mitigate these problems, enzyme-assisted extraction can be consorted with non-conventional methods. This review includes current progress concerning the combined approaches while converging the recent advancements in the field that outperformed conventional extraction processes. It also highlights the design of biocatalyst and key parameters involved in the effective extraction of bioactive molecules. An integrated approach for efficiently extracting polyphenols, essential oils, pigments, and vitamins has been comprehensively reviewed. Furthermore, the different immobilization strategies have been discussed for large-scale implementation of enzymes for extraction. The integration of advanced non-conventional methods with enzyme-assisted extraction will open new avenues to enhance the overall extraction efficiency.
Collapse
Affiliation(s)
- Srija Das
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E) Mumbai 400019, India
| | - Shamraja S Nadar
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E) Mumbai 400019, India
| | - Virendra K Rathod
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E) Mumbai 400019, India.
| |
Collapse
|
31
|
Ali A, Ellinger B, Brandt SC, Betzel C, Rühl M, Wrenger C, Schlüter H, Schäfer W, Brognaro H, Gand M. Genome and Secretome Analysis of Staphylotrichum longicolleum DSM105789 Cultured on Agro-Residual and Chitinous Biomass. Microorganisms 2021; 9:1581. [PMID: 34442660 PMCID: PMC8398502 DOI: 10.3390/microorganisms9081581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
Staphylotrichum longicolleum FW57 (DSM105789) is a prolific chitinolytic fungus isolated from wood, with a chitinase activity of 0.11 ± 0.01 U/mg. We selected this strain for genome sequencing and annotation, and compiled its growth characteristics on four different chitinous substrates as well as two agro-industrial waste products. We found that the enzymatic mixture secreted by FW57 was not only able to digest pre-treated sugarcane bagasse, but also untreated sugarcane bagasse and maize leaves. The efficiency was comparable to a commercial enzymatic cocktail, highlighting the potential of the S. longicolleum enzyme mixture as an alternative pretreatment method. To further characterize the enzymes, which efficiently digested polymers such as cellulose, hemicellulose, pectin, starch, and lignin, we performed in-depth mass spectrometry-based secretome analysis using tryptic peptides from in-gel and in-solution digestions. Depending on the growth conditions, we were able to detect from 442 to 1092 proteins, which were annotated to identify from 134 to 224 putative carbohydrate-active enzymes (CAZymes) in five different families: glycoside hydrolases, auxiliary activities, carbohydrate esterases, polysaccharide lyases, glycosyl transferases, and proteins containing a carbohydrate-binding module, as well as combinations thereof. The FW57 enzyme mixture could be used to replace commercial enzyme cocktails for the digestion of agro-residual substrates.
Collapse
Affiliation(s)
- Arslan Ali
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Martin Luther King Platz 6, 20146 Hamburg, Germany; (A.A.); (C.B.); (C.W.); (H.S.); (H.B.)
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, University Road, Karachi 75270, Pakistan
- Institute of Clinical Chemistry and Laboratory Medicine, Diagnostic Center, Section Mass Spectrometry & Proteomics, Campus Research, Martinistr. 2, N27, Medical Center Hamburg-Eppendorf, Universität Hamburg, 20246 Hamburg, Germany
| | - Bernhard Ellinger
- Department ScreeningPort, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, 22525 Hamburg, Germany;
| | - Sophie C. Brandt
- Department of Molecular Phytopathology, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany; (S.C.B.); (W.S.)
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Martin Luther King Platz 6, 20146 Hamburg, Germany; (A.A.); (C.B.); (C.W.); (H.S.); (H.B.)
| | - Martin Rühl
- Institute of Food Chemistry and Food Biotechnology, Department Biology and Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Gießen, Germany;
| | - Carsten Wrenger
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Martin Luther King Platz 6, 20146 Hamburg, Germany; (A.A.); (C.B.); (C.W.); (H.S.); (H.B.)
- Biomedical Science Institute, University of São Paulo, Av. Lineu Prestes, 2415, São Paulo CEP 05508-900, Brazil
| | - Hartmut Schlüter
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Martin Luther King Platz 6, 20146 Hamburg, Germany; (A.A.); (C.B.); (C.W.); (H.S.); (H.B.)
- Institute of Clinical Chemistry and Laboratory Medicine, Diagnostic Center, Section Mass Spectrometry & Proteomics, Campus Research, Martinistr. 2, N27, Medical Center Hamburg-Eppendorf, Universität Hamburg, 20246 Hamburg, Germany
| | - Wilhelm Schäfer
- Department of Molecular Phytopathology, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany; (S.C.B.); (W.S.)
| | - Hévila Brognaro
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Martin Luther King Platz 6, 20146 Hamburg, Germany; (A.A.); (C.B.); (C.W.); (H.S.); (H.B.)
- Biomedical Science Institute, University of São Paulo, Av. Lineu Prestes, 2415, São Paulo CEP 05508-900, Brazil
| | - Martin Gand
- Department of Molecular Phytopathology, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany; (S.C.B.); (W.S.)
- Institute of Food Chemistry and Food Biotechnology, Department Biology and Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Gießen, Germany;
| |
Collapse
|
32
|
Effect of Exogenous Auxin Treatment on Cell Wall Polymers of Strawberry Fruit. Int J Mol Sci 2021; 22:ijms22126294. [PMID: 34208198 PMCID: PMC8230797 DOI: 10.3390/ijms22126294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 01/24/2023] Open
Abstract
The role of auxin in the fruit-ripening process during the early developmental stages of commercial strawberry fruits (Fragaria x ananassa) has been previously described, with auxin production occurring in achenes and moving to the receptacle. Additionally, fruit softening is a consequence of the depolymerization and solubilization of cell wall components produced by the action of a group of proteins and enzymes. The aim of this study was to compare the effect of exogenous auxin treatment on the physiological properties of the cell wall-associated polysaccharide contents of strawberry fruits. We combined thermogravimetric (TG) analysis with analyses of the mRNA abundance, enzymatic activity, and physiological characteristics related to the cell wall. The samples did not show a change in fruit firmness at 48 h post-treatment; by contrast, we showed changes in the cell wall stability based on TG and differential thermogravimetric (DTG) analysis curves. Less degradation of the cell wall polymers was observed after auxin treatment at 48 h post-treatment. The results of our study indicate that auxin treatment delays the cell wall disassembly process in strawberries.
Collapse
|
33
|
Feng S, Jian Y, Jin L, Tang S, Li Z. Complete Genome Sequence Data of Rare Actinomycetes Strain Saccharothrix texasensis 6-C, a Biological Control Agent for Potato Late Blight. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:571-574. [PMID: 33591813 DOI: 10.1094/mpmi-10-20-0300-a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A rare actinomycetes strain of Saccharothrix texasensis, strain 6-C, has been isolated from the potato rhizosphere and it was shown to act as a biological control agent to potato late blight. It is also the first report on Saccharothrix spp. inhibiting Phytophthora infestans. Here, we present the complete genome data of S. texasensis strain 6-C, assembled by sequencing reads obtained by both PacBio and Illumina technologies with annotation. The final assembled genome length is 9,045,220 bp, without gaps and plasmid, and its GC content is 72.39%. Nine nonribosomal peptides synthetase, five type I polyketide synthase, four terpene, and three lanthipeptide gene clusters were identified in the genome, which would be likely to encode lots of antimicrobial active substances to help host plants against disease. This genome sequence could contribute to investigations of the molecular basis underlying the biocontrol activity of this Saccharothrix strain.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Shun Feng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yongfei Jian
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Liang Jin
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
- School of Biological Engineering, Chongqing University, Chongqing 401331, China
| | - Shicai Tang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
34
|
Microbial responses to herbivory-induced vegetation changes in a high-Arctic peatland. Polar Biol 2021. [DOI: 10.1007/s00300-021-02846-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
Herbivory by barnacle geese (Branta leucopsis) alters the vegetation cover and reduces ecosystem productivity in high-Arctic peatlands, limiting the carbon sink strength of these ecosystems. Here we investigate how herbivory-induced vegetation changes affect the activities of peat soil microbiota using metagenomics, metatranscriptomics and targeted metabolomics in a comparison of fenced exclosures and nearby grazed sites. Our results show that a different vegetation with a high proportion of vascular plants developed due to reduced herbivory, resulting in a larger and more diverse input of polysaccharides to the soil at exclosed study sites. This coincided with higher sugar and amino acid concentrations in the soil at this site as well as the establishment of a more abundant and active microbiota, including saprotrophic fungi with broad substrate ranges, like Helotiales (Ascomycota) and Agaricales (Basidiomycota). A detailed description of fungal transcriptional profiles revealed higher gene expression for cellulose, hemicellulose, pectin, lignin and chitin degradation at herbivory-exclosed sites. Furthermore, we observed an increase in the number of genes and transcripts for predatory eukaryotes such as Entomobryomorpha (Arthropoda). We conclude that in the absence of herbivory, the development of a vascular vegetation alters the soil polysaccharide composition and supports larger and more active populations of fungi and predatory eukaryotes.
Collapse
|
35
|
Brandt SC, Brognaro H, Ali A, Ellinger B, Maibach K, Rühl M, Wrenger C, Schlüter H, Schäfer W, Betzel C, Janssen S, Gand M. Insights into the genome and secretome of Fusarium metavorans DSM105788 by cultivation on agro-residual biomass and synthetic nutrient sources. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:74. [PMID: 33743779 PMCID: PMC7981871 DOI: 10.1186/s13068-021-01927-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The transition to a biobased economy involving the depolymerization and fermentation of renewable agro-industrial sources is a challenge that can only be met by achieving the efficient hydrolysis of biomass to monosaccharides. In nature, lignocellulosic biomass is mainly decomposed by fungi. We recently identified six efficient cellulose degraders by screening fungi from Vietnam. RESULTS We characterized a high-performance cellulase-producing strain, with an activity of 0.06 U/mg, which was identified as a member of the Fusarium solani species complex linkage 6 (Fusarium metavorans), isolated from mangrove wood (FW16.1, deposited as DSM105788). The genome, representing nine potential chromosomes, was sequenced using PacBio and Illumina technology. In-depth secretome analysis using six different synthetic and artificial cellulose substrates and two agro-industrial waste products identified 500 proteins, including 135 enzymes assigned to five different carbohydrate-active enzyme (CAZyme) classes. The F. metavorans enzyme cocktail was tested for saccharification activity on pre-treated sugarcane bagasse, as well as untreated sugarcane bagasse and maize leaves, where it was complemented with the commercial enzyme mixture Accellerase 1500. In the untreated sugarcane bagasse and maize leaves, initial cell wall degradation was observed in the presence of at least 196 µg/mL of the in-house cocktail. Increasing the dose to 336 µg/mL facilitated the saccharification of untreated sugarcane biomass, but had no further effect on the pre-treated biomass. CONCLUSION Our results show that F. metavorans DSM105788 is a promising alternative pre-treatment for the degradation of agro-industrial lignocellulosic materials. The enzyme cocktail promotes the debranching of biopolymers surrounding the cellulose fibers and releases reduced sugars without process disadvantages or loss of carbohydrates.
Collapse
Affiliation(s)
- Sophie C Brandt
- Faculty of Mathematics, Computer Science and Natural Science, Department of Biology, Biozentrum Klein Flottbek, Molecular Phytopathology, University of Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Hévila Brognaro
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, CEP, 05508-000, Brazil
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Martin Luther King Platz 6, 20146, Hamburg, Germany
| | - Arslan Ali
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Martin Luther King Platz 6, 20146, Hamburg, Germany
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, University Road, Karachi, 75270, Pakistan
- Institute of Clinical Chemistry and Laboratory Medicine Diagnostic Center, Campus Research. Martinistr. 52, N27, 20246, Hamburg, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Department ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Katharina Maibach
- Department Biology and Chemistry, Algorithmic Bioinformatics, Justus Liebig University Giessen, Heinrich-Buff-Ring 58, 35392, Gießen, Germany
| | - Martin Rühl
- Department Biology and Chemistry, Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Gießen, Germany
| | - Carsten Wrenger
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, CEP, 05508-000, Brazil
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Martin Luther King Platz 6, 20146, Hamburg, Germany
| | - Hartmut Schlüter
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Martin Luther King Platz 6, 20146, Hamburg, Germany
- Institute of Clinical Chemistry and Laboratory Medicine Diagnostic Center, Campus Research. Martinistr. 52, N27, 20246, Hamburg, Germany
| | - Wilhelm Schäfer
- Faculty of Mathematics, Computer Science and Natural Science, Department of Biology, Biozentrum Klein Flottbek, Molecular Phytopathology, University of Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Martin Luther King Platz 6, 20146, Hamburg, Germany
| | - Stefan Janssen
- Department Biology and Chemistry, Algorithmic Bioinformatics, Justus Liebig University Giessen, Heinrich-Buff-Ring 58, 35392, Gießen, Germany
| | - Martin Gand
- Faculty of Mathematics, Computer Science and Natural Science, Department of Biology, Biozentrum Klein Flottbek, Molecular Phytopathology, University of Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany.
- Department Biology and Chemistry, Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Gießen, Germany.
| |
Collapse
|
36
|
Villalba JJ, Ates S, MacAdam JW. Non-fiber Carbohydrates in Forages and Their Influence on Beef Production Systems. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.566338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Forages can provide a complete diet for ruminant animals, increasing the sustainability of beef production systems worldwide while reducing competition with humans for agricultural land or grain crops. Much of the emphasis on the nutritional characteristics of forages has been on the fiber, sugars, starch, and protein they supply to the rumen, despite the fact that other less-explored constituents, i.e., neutral detergent soluble fiber (NDSF) and other non-structural or non-fiber carbohydrates (NFC) also play a key role in the nutrition of ruminants. This paper explores the less investigated potential of temperate legumes to accumulate levels of NFC comparable to corn silage or beet pulp in cool, dry environments under irrigation, and its implications for forage-based beef production systems. We conclude that genetic or managerial interventions (i.e., breeding programs, defoliation frequency) or ecological conditions (i.e., climate, elevation) that increase concentrations of NFC in legumes can enhance beef production, meat quality, and the efficiency of nitrogen utilization by ruminants while reducing environmental impacts.
Collapse
|
37
|
Insect derived extra oral GH32 plays a role in susceptibility of wheat to Hessian fly. Sci Rep 2021; 11:2081. [PMID: 33483565 PMCID: PMC7822839 DOI: 10.1038/s41598-021-81481-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 01/04/2021] [Indexed: 11/12/2022] Open
Abstract
The Hessian fly is an obligate parasite of wheat causing significant economic damage, and triggers either a resistant or susceptible reaction. However, the molecular mechanisms of susceptibility leading to the establishment of the larvae are unknown. Larval survival on the plant requires the establishment of a steady source of readily available nutrition. Unlike other insect pests, the Hessian fly larvae have minute mandibles and cannot derive their nutrition by chewing tissue or sucking phloem sap. Here, we show that the virulent larvae produce the glycoside hydrolase MdesGH32 extra-orally, that localizes within the leaf tissue being fed upon. MdesGH32 has strong inulinase and invertase activity aiding in the breakdown of the plant cell wall inulin polymer into monomers and converting sucrose, the primary transport sugar in plants, to glucose and fructose, resulting in the formation of a nutrient-rich tissue. Our finding elucidates the molecular mechanism of nutrient sink formation and establishment of susceptibility.
Collapse
|
38
|
Dong S, Liu YJ, Zhou H, Xiao Y, Xu J, Cui Q, Wang X, Feng Y. Structural insight into a GH1 β-glucosidase from the oleaginous microalga, Nannochloropsis oceanica. Int J Biol Macromol 2020; 170:196-206. [PMID: 33347927 DOI: 10.1016/j.ijbiomac.2020.12.128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/28/2022]
Abstract
Marine microalgae are promising sources of novel glycoside hydrolases (GHs), which have great value in biotechnical and industrial applications. Although many GH1 family β-glucosidases have been extensively studied, studies on β-glucosidases from microalgae are rare, and no structure of algal GH1 β-glucosidase has been reported. Here, we report the biochemical and structural study of a GH1 β-glucosidase BGLN1 from Nannochloropsis oceanica, an oleaginous microalga. Phylogenetic analysis of BGLN1, together with the known structures of GH1 β-glucosidases, has indicated that BGLN1 is branched at the root of the eukaryotic part of the phylogenetic tree. BGLN1 showed higher activity against laminaribiose compared to cello-oligosaccharides. Unlike most of the other GH1 β-glucosidases, BGLN1 is partially inhibited by metal ions. The crystal structure of BGLN1 revealed that BGLN1 adopts a typical (α/β)8-barrel fold with variations in loops and N-terminal regions. BGLN1 contains extra residues at the N-terminus, which are essential for maintaining protein stability. BGLN1 has a more acidic substrate-binding pocket than other β-glucosidases, and the variations beyond the conserved -1 site determine the substrate specificity. These results indicate that GH enzymes from microalgae may have unique structural and functional features, which will provide new insight into carbohydrate synthesis and metabolism in marine microalgae.
Collapse
Affiliation(s)
- Sheng Dong
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haixia Zhou
- Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Xiao
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Xu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xinquan Wang
- Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
39
|
McGregor NGS, Turkenburg JP, Mørkeberg Krogh KBR, Nielsen JE, Artola M, Stubbs KA, Overkleeft HS, Davies GJ. Structure of a GH51 α-L-arabinofuranosidase from Meripilus giganteus: conserved substrate recognition from bacteria to fungi. Acta Crystallogr D Struct Biol 2020; 76:1124-1133. [PMID: 33135683 PMCID: PMC7604909 DOI: 10.1107/s205979832001253x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/14/2020] [Indexed: 03/17/2023] Open
Abstract
α-L-Arabinofuranosidases from glycoside hydrolase family 51 use a stereochemically retaining hydrolytic mechanism to liberate nonreducing terminal α-L-arabinofuranose residues from plant polysaccharides such as arabinoxylan and arabinan. To date, more than ten fungal GH51 α-L-arabinofuranosidases have been functionally characterized, yet no structure of a fungal GH51 enzyme has been solved. In contrast, seven bacterial GH51 enzyme structures, with low sequence similarity to the fungal GH51 enzymes, have been determined. Here, the crystallization and structural characterization of MgGH51, an industrially relevant GH51 α-L-arabinofuranosidase cloned from Meripilus giganteus, are reported. Three crystal forms were grown in different crystallization conditions. The unliganded structure was solved using sulfur SAD data collected from a single crystal using the I23 in vacuo diffraction beamline at Diamond Light Source. Crystal soaks with arabinose, 1,4-dideoxy-1,4-imino-L-arabinitol and two cyclophellitol-derived arabinose mimics reveal a conserved catalytic site and conformational itinerary between fungal and bacterial GH51 α-L-arabinofuranosidases.
Collapse
Affiliation(s)
- Nicholas G. S. McGregor
- York Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Johan P. Turkenburg
- York Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, United Kingdom
| | | | - Jens Erik Nielsen
- Protein Biochemistry and Stability, Novozymes A/S, Krogshøjvej 36, 2880 Bagsvaerd, Denmark
| | - Marta Artola
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Keith A. Stubbs
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Gideon J. Davies
- York Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
40
|
Kalam S, Basu A, Ahmad I, Sayyed RZ, El-Enshasy HA, Dailin DJ, Suriani NL. Recent Understanding of Soil Acidobacteria and Their Ecological Significance: A Critical Review. Front Microbiol 2020; 11:580024. [PMID: 33193209 PMCID: PMC7661733 DOI: 10.3389/fmicb.2020.580024] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/08/2020] [Indexed: 11/13/2022] Open
Abstract
Acidobacteria represents an underrepresented soil bacterial phylum whose members are pervasive and copiously distributed across nearly all ecosystems. Acidobacterial sequences are abundant in soils and represent a significant fraction of soil microbial community. Being recalcitrant and difficult-to-cultivate under laboratory conditions, holistic, polyphasic approaches are required to study these refractive bacteria extensively. Acidobacteria possesses an inventory of genes involved in diverse metabolic pathways, as evidenced by their pan-genomic profiles. Because of their preponderance and ubiquity in the soil, speculations have been made regarding their dynamic roles in vital ecological processes viz., regulation of biogeochemical cycles, decomposition of biopolymers, exopolysaccharide secretion, and plant growth promotion. These bacteria are expected to have genes that might help in survival and competitive colonization in the rhizosphere, leading to the establishment of beneficial relationships with plants. Exploration of these genetic attributes and more in-depth insights into the belowground mechanics and dynamics would lead to a better understanding of the functions and ecological significance of this enigmatic phylum in the soil-plant environment. This review is an effort to provide a recent update into the diversity of genes in Acidobacteria useful for characterization, understanding ecological roles, and future biotechnological perspectives.
Collapse
Affiliation(s)
- Sadaf Kalam
- Department of Biochemistry, St. Ann's College for Women, Hyderabad, India
| | - Anirban Basu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, India
| | - R Z Sayyed
- Department of Microbiology, PSGVP Mandal's, Arts, Science and Commerce College, Shahada, India
| | - Hesham Ali El-Enshasy
- Institute of Bioproduct Development, Universiti Teknologi Malaysia (UTM), Skudai, Malaysia.,School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Malaysia.,City of Scientific Research and Technological Applications, New Borg El-Arab, Egypt
| | - Daniel Joe Dailin
- Institute of Bioproduct Development, Universiti Teknologi Malaysia (UTM), Skudai, Malaysia.,School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Malaysia
| | - Ni Luh Suriani
- Biology Department, Faculty of Mathematics and Natural Science, Udayana University, Bali, Indonesia
| |
Collapse
|
41
|
Gálvez EJC, Iljazovic A, Amend L, Lesker TR, Renault T, Thiemann S, Hao L, Roy U, Gronow A, Charpentier E, Strowig T. Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe 2020; 28:838-852.e6. [PMID: 33113351 DOI: 10.1016/j.chom.2020.09.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/07/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022]
Abstract
Prevotella spp. are a dominant bacterial genus within the human gut. Multiple Prevotella spp. co-exist in some individuals, particularly those consuming plant-based diets. Additionally, Prevotella spp. exhibit variability in the utilization of diverse complex carbohydrates. To investigate the relationship between Prevotella competition and diet, we isolated Prevotella species from the mouse gut, analyzed their genomes and transcriptomes in vivo, and performed competition experiments between species in mice. Diverse dominant Prevotella species compete for similar metabolic niches in vivo, which is linked to the upregulation of specific polysaccharide utilization loci (PULs). Complex plant-derived polysaccharides are required for Prevotella spp. expansion, with arabinoxylans having a prominent impact on species abundance. The most dominant Prevotella species encodes a specific tandem-repeat trsusC/D PUL that enables arabinoxylan utilization and is conserved in human Prevotella copri strains, particularly among those consuming a vegan diet. These findings suggest that efficient (arabino)xylan-utilization is a factor contributing to Prevotella dominance.
Collapse
Affiliation(s)
- Eric J C Gálvez
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany; Hannover Medical School, Hannover, Germany; Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Aida Iljazovic
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lena Amend
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Till Robin Lesker
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thibaud Renault
- Max Planck Unit for the Science of Pathogens, Berlin, Germany; CNRS/University of Bordeaux, UMR 5234, Microbiologie Fondamentale et Pathogénicité, France; Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac, France
| | - Sophie Thiemann
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lianxu Hao
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Urmi Roy
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Achim Gronow
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Emmanuelle Charpentier
- Max Planck Unit for the Science of Pathogens, Berlin, Germany; Institute for Biology, Humboldt University, Berlin, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany; Hannover Medical School, Hannover, Germany; Centre for Individualized Infection Medicine, Hannover, Germany.
| |
Collapse
|
42
|
Matsuyama K, Kondo T, Igarashi K, Sakamoto T, Ishimaru M. Substrate-recognition mechanism of tomato β-galactosidase 4 using X-ray crystallography and docking simulation. PLANTA 2020; 252:72. [PMID: 33011862 DOI: 10.1007/s00425-020-03481-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
TBG4 recognize multiple linkage types substrates due to having a spatially wide subsite + 1. This feature allows the degradation of AGI, AGII, and AGP leading to the fruit ripening. β-galactosidase (EC 3. 2. 1. 23) catalyzes the hydrolysis of β-galactan and release of D-galactose. Tomato has at least 17 β-galactosidases (TBGs), of which, TBG 4 is responsible for fruit ripening. TBG4 hydrolyzes not only β-1,4-bound galactans, but also β-1,3- and β-1,6-galactans. In this study, we compared each enzyme-substrate complex using X-ray crystallography, ensemble refinement, and docking simulation to understand the broad substrate-specificity of TBG4. In subsite - 1, most interactions were conserved across each linkage type of galactobioses; however, some differences were seen in subsite + 1, owing to the huge volume of catalytic pocket. In addition to this, docking simulation indicated TBG4 to possibly have more positive subsites to recognize and hydrolyze longer galactans. Taken together, our results indicated that during tomato fruit ripening, TBG4 plays an important role by degrading arabinogalactan I (AGI), arabinogalactan II (AGII), and the carbohydrate moiety of arabinogalactan protein (AGP).
Collapse
Affiliation(s)
- Kaori Matsuyama
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Bunkyo-ku, Tokyo, 113-8657, Japan
- Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan
| | - Tatsuya Kondo
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuencho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Kiyohiko Igarashi
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tatsuji Sakamoto
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuencho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Megumi Ishimaru
- Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan.
| |
Collapse
|
43
|
Brandt SC, Ellinger B, van Nguyen T, Harder S, Schlüter H, Hahnke RL, Rühl M, Schäfer W, Gand M. Aspergillus sydowii: Genome Analysis and Characterization of Two Heterologous Expressed, Non-redundant Xylanases. Front Microbiol 2020; 11:2154. [PMID: 33071998 PMCID: PMC7531221 DOI: 10.3389/fmicb.2020.573482] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/14/2020] [Indexed: 12/28/2022] Open
Abstract
A prerequisite for the transition toward a biobased economy is the identification and development of efficient enzymes for the usage of renewable resources as raw material. Therefore, different xylanolytic enzymes are important for efficient enzymatic hydrolysis of xylan-heteropolymers. A powerful tool to overcome the limited enzymatic toolbox lies in exhausting the potential of unexplored habitats. By screening a Vietnamese fungal culture collection of 295 undiscovered fungal isolates, 12 highly active xylan degraders were identified. One of the best xylanase producing strains proved to be an Aspergillus sydowii strain from shrimp shell (Fsh102), showing a specific activity of 0.6 U/mg. Illumina dye sequencing was used to identify our Fsh102 strain and determine differences to the A. sydowii CBS 593.65 reference strain. With activity based in-gel zymography and subsequent mass spectrometric identification, three potential proteins responsible for xylan degradation were identified. Two of these proteins were cloned from the cDNA and, furthermore, expressed heterologously in Escherichia coli and characterized. Both xylanases, were entirely different from each other, including glycoside hydrolases (GH) families, folds, substrate specificity, and inhibition patterns. The specific enzyme activity applying 0.1% birch xylan of both purified enzymes were determined with 181.1 ± 37.8 or 121.5 ± 10.9 U/mg for xylanase I and xylanase II, respectively. Xylanase I belongs to the GH11 family, while xylanase II is member of the GH10 family. Both enzymes showed typical endo-xylanase activity, the main products of xylanase I are xylobiose, xylotriose, and xylohexose, while xylobiose, xylotriose, and xylopentose are formed by xylanase II. Additionally, xylanase II showed remarkable activity toward xylotriose. Xylanase I is stable when stored up to 30°C and pH value of 9, while xylanase II started to lose significant activity stored at pH 9 after exceeding 3 days of storage. Xylanase II displayed about 40% activity when stored at 50°C for 24 h. The enzymes are tolerant toward mesophilic temperatures, while acting in a broad pH range. With site directed mutagenesis, the active site residues in both enzymes were confirmed. The presented activity and stability justify the classification of both xylanases as highly interesting for further development.
Collapse
Affiliation(s)
- Sophie C. Brandt
- Department of Molecular Phytopathology, University of Hamburg, Hamburg, Germany
| | - Bernhard Ellinger
- Department ScreeningPort, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Hamburg, Germany
| | - Thuat van Nguyen
- Department of Molecular Phytopathology, University of Hamburg, Hamburg, Germany
| | - Sönke Harder
- Mass Spectrometric Proteomics Group, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartmut Schlüter
- Mass Spectrometric Proteomics Group, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Richard L. Hahnke
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Martin Rühl
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| | - Wilhelm Schäfer
- Department of Molecular Phytopathology, University of Hamburg, Hamburg, Germany
| | - Martin Gand
- Department of Molecular Phytopathology, University of Hamburg, Hamburg, Germany
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
44
|
Albonico F, Barelli C, Albanese D, Manica M, Partel E, Rosso F, Ripellino S, Pindo M, Donati C, Zecconi A, Mortarino M, Hauffe HC. Raw milk and fecal microbiota of commercial Alpine dairy cows varies with herd, fat content and diet. PLoS One 2020; 15:e0237262. [PMID: 32760129 PMCID: PMC7410245 DOI: 10.1371/journal.pone.0237262] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022] Open
Abstract
The factors that influence the diversity and composition of raw milk and fecal microbiota in healthy commercial dairy herds are not fully understood, partially because the majority of metataxonomic studies involve experimental farms and/or single factors. We analyzed the raw milk and fecal microbiota of 100 healthy cows from 10 commercial alpine farms from the Province of Trento, Italy, using metataxonomics and applied statistical modelling to investigate which extrinsic and intrinsic parameters (e.g. herd, diet and milk characteristics) correlated with microbiota richness and composition in these relatively small traditional farms. We confirmed that Firmicutes, Ruminococcaceae and Lachnospiraceae families dominated the fecal and milk samples of these dairy cows, but in addition, we found an association between the number of observed OTUs and Shannon entropy on each farm that indicates higher microbiota richness is associated with increased microbiota stability. Modelling showed that herd was the most significant factor affecting the variation in both milk and fecal microbiota composition. Furthermore, the most important predictors explaining the variation of microbiota richness were milk characteristics (i.e. percentage fat) and diet for milk and fecal samples, respectively. We discuss how high intra-herd variation could affect the development of treatments based on microbiota manipulation.
Collapse
Affiliation(s)
- Francesca Albonico
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Department of Veterinary Medicine, Universiy of Milan, Milan, Italy
| | - Claudia Barelli
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Department of Biology, University of Florence, Sesto Fiorentino, Firenze, Italy
| | - Davide Albanese
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Mattia Manica
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Erika Partel
- Technology Transfer Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Fausta Rosso
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Silvia Ripellino
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Massimo Pindo
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all’ Adige (TN), Trento, Italy
| | - Claudio Donati
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Alfonso Zecconi
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Heidi C. Hauffe
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| |
Collapse
|
45
|
Kurotani KI, Wakatake T, Ichihashi Y, Okayasu K, Sawai Y, Ogawa S, Cui S, Suzuki T, Shirasu K, Notaguchi M. Host-parasite tissue adhesion by a secreted type of β-1,4-glucanase in the parasitic plant Phtheirospermum japonicum. Commun Biol 2020; 3:407. [PMID: 32733024 PMCID: PMC7393376 DOI: 10.1038/s42003-020-01143-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/10/2020] [Indexed: 01/10/2023] Open
Abstract
Tissue adhesion between plant species occurs both naturally and artificially. Parasitic plants establish intimate relationship with host plants by adhering tissues at roots or stems. Plant grafting, on the other hand, is a widely used technique in agriculture to adhere tissues of two stems. Here we found that the model Orobanchaceae parasitic plant Phtheirospermum japonicum can be grafted on to interfamily species. To understand molecular basis of tissue adhesion between distant plant species, we conducted comparative transcriptome analyses on both infection and grafting by P. japonicum on Arabidopsis. Despite different organs, we identified the shared gene expression profile, where cell proliferation- and cell wall modification-related genes are up-regulated. Among genes commonly induced in tissue adhesion between distant species, we showed a gene encoding a secreted type of β-1,4-glucanase plays an important role for plant parasitism. Our data provide insights into the molecular commonality between parasitism and grafting in plants.
Collapse
Affiliation(s)
- Ken-Ichi Kurotani
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Takanori Wakatake
- Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
- Center for Sustainable Resource Science, RIKEN, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Biocenter, Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, 97082, Würzburg, Germany
| | - Yasunori Ichihashi
- Center for Sustainable Resource Science, RIKEN, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Koji Okayasu
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Yu Sawai
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Satoshi Ogawa
- Center for Sustainable Resource Science, RIKEN, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Songkui Cui
- Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Matsumoto-cho, Kasugai, 487-8501, Japan
| | - Ken Shirasu
- Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
- Center for Sustainable Resource Science, RIKEN, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| | - Michitaka Notaguchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
46
|
Haeger W, Henning J, Heckel DG, Pauchet Y, Kirsch R. Direct evidence for a new mode of plant defense against insects via a novel polygalacturonase-inhibiting protein expression strategy. J Biol Chem 2020; 295:11833-11844. [PMID: 32611768 DOI: 10.1074/jbc.ra120.014027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
Plant cell wall-associated polygalacturonase-inhibiting proteins (PGIPs) are widely distributed in the plant kingdom. They play a crucial role in plant defense against phytopathogens by inhibiting microbial polygalacturonases (PGs). PGs hydrolyze the cell wall polysaccharide pectin and are among the first enzymes to be secreted during plant infection. Recent studies demonstrated that herbivorous insects express their own PG multi-gene families, raising the question whether PGIPs also inhibit insect PGs and protect plants from herbivores. Preliminary evidence suggested that PGIPs may negatively influence larval growth of the leaf beetle Phaedon cochleariae (Coleoptera: Chrysomelidae) and identified BrPGIP3 from Chinese cabbage (Brassica rapa ssp. pekinensis) as a candidate. PGIPs are predominantly studied in planta because their heterologous expression in microbial systems is problematic and instability and aggregation of recombinant PGIPs has complicated in vitro inhibition assays. To minimize aggregate formation, we heterologously expressed BrPGIP3 fused to a glycosylphosphatidylinositol (GPI) membrane anchor, immobilizing it on the extracellular surface of insect cells. We demonstrated that BrPGIP3_GPI inhibited several P. cochleariae PGs in vitro, providing the first direct evidence of an interaction between a plant PGIP and an animal PG. Thus, plant PGIPs not only confer resistance against phytopathogens, but may also aid in defense against herbivorous beetles.
Collapse
Affiliation(s)
- Wiebke Haeger
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jana Henning
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Roy Kirsch
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
47
|
Enjalbert T, De La Mare M, Roblin P, Badruna L, Vernet T, Dumon C, Montanier CY. Characterisation of the Effect of the Spatial Organisation of Hemicellulases on the Hydrolysis of Plant Biomass Polymer. Int J Mol Sci 2020; 21:ijms21124360. [PMID: 32575393 PMCID: PMC7353053 DOI: 10.3390/ijms21124360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 01/21/2023] Open
Abstract
Synergism between enzymes is of crucial importance in cell metabolism. This synergism occurs often through a spatial organisation favouring proximity and substrate channelling. In this context, we developed a strategy for evaluating the impact of the geometry between two enzymes involved in nature in the recycling of the carbon derived from plant cell wall polymers. By using an innovative covalent association process using two protein fragments, Jo and In, we produced two bi-modular chimeric complexes connecting a xylanase and a xylosidase, involved in the deconstruction of xylose-based plant cell wall polymer. We first show that the intrinsic activity of the individual enzymes was preserved. Small Angle X-rays Scattering (SAXS) analysis of the complexes highlighted two different spatial organisations in solution, affecting both the distance between the enzymes (53 Å and 28 Å) and the distance between the catalytic pockets (94 Å and 75 Å). Reducing sugar and HPAEC-PAD analysis revealed different behaviour regarding the hydrolysis of Beechwood xylan. After 24 h of hydrolysis, one complex was able to release a higher amount of reducing sugar compare to the free enzymes (i.e., 15,640 and 14,549 µM of equivalent xylose, respectively). However, more interestingly, the two complexes were able to release variable percentages of xylooligosaccharides compared to the free enzymes. The structure of the complexes revealed some putative steric hindrance, which impacted both enzymatic efficiency and the product profile. This report shows that controlling the spatial geometry between two enzymes would help to better investigate synergism effect within complex multi-enzymatic machinery and control the final product.
Collapse
Affiliation(s)
- Thomas Enjalbert
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France; (T.E.); (L.B.); (C.D.)
| | - Marion De La Mare
- Toulouse White Biotechnology, UMS INRA 1337, UMS CNRS 3582, Institut National des Sciences Appliquées de Toulouse, 31077 Toulouse, France;
| | - Pierre Roblin
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31077 Toulouse, France;
| | - Louise Badruna
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France; (T.E.); (L.B.); (C.D.)
| | - Thierry Vernet
- Institut de Biologie Structurale, Univ., Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France;
| | - Claire Dumon
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France; (T.E.); (L.B.); (C.D.)
| | - Cédric Y. Montanier
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France; (T.E.); (L.B.); (C.D.)
- Correspondence: ; Tel.: +33-(0)5-61-55-97-13
| |
Collapse
|
48
|
Nutho B, Pengthaisong S, Tankrathok A, Lee VS, Ketudat Cairns JR, Rungrotmongkol T, Hannongbua S. Structural Basis of Specific Glucoimidazole and Mannoimidazole Binding by Os3BGlu7. Biomolecules 2020; 10:biom10060907. [PMID: 32549280 PMCID: PMC7356692 DOI: 10.3390/biom10060907] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 01/07/2023] Open
Abstract
β-Glucosidases and β-mannosidases hydrolyze substrates that differ only in the epimer of the nonreducing terminal sugar moiety, but most such enzymes show a strong preference for one activity or the other. Rice Os3BGlu7 and Os7BGlu26 β-glycosidases show a less strong preference, but Os3BGlu7 and Os7BGlu26 prefer glucosides and mannosides, respectively. Previous studies of crystal structures with glucoimidazole (GIm) and mannoimidazole (MIm) complexes and metadynamic simulations suggested that Os7BGlu26 hydrolyzes mannosides via the B2,5 transition state (TS) conformation preferred for mannosides and glucosides via their preferred 4H3/4E TS conformation. However, MIm is weakly bound by both enzymes. In the present study, we found that MIm was not bound in the active site of crystallized Os3BGlu7, but GIm was tightly bound in the -1 subsite in a 4H3/4E conformation via hydrogen bonds with the surrounding residues. One-microsecond molecular dynamics simulations showed that GIm was stably bound in the Os3BGlu7 active site and the glycone-binding site with little distortion. In contrast, MIm initialized in the B2,5 conformation rapidly relaxed to a E3/4H3 conformation and moved out into a position in the entrance of the active site, where it bound more stably despite making fewer interactions. The lack of MIm binding in the glycone site in protein crystals and simulations implies that the energy required to distort MIm to the B2,5 conformation for optimal active site residue interactions is sufficient to offset the energy of those interactions in Os3BGlu7. This balance between distortion and binding energy may also provide a rationale for glucosidase versus mannosidase specificity in plant β-glycosidases.
Collapse
Affiliation(s)
- Bodee Nutho
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Salila Pengthaisong
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (S.P.); (A.T.)
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Anupong Tankrathok
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (S.P.); (A.T.)
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - James R. Ketudat Cairns
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (S.P.); (A.T.)
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Correspondence: (J.R.K.C.); (T.R.); (S.H.); Tel.: +66-4422-4304 (J.R.K.C.); +66-2218-5426 (T.R.); +66-2218-7602 (S.H.)
| | - Thanyada Rungrotmongkol
- Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (J.R.K.C.); (T.R.); (S.H.); Tel.: +66-4422-4304 (J.R.K.C.); +66-2218-5426 (T.R.); +66-2218-7602 (S.H.)
| | - Supot Hannongbua
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Correspondence: (J.R.K.C.); (T.R.); (S.H.); Tel.: +66-4422-4304 (J.R.K.C.); +66-2218-5426 (T.R.); +66-2218-7602 (S.H.)
| |
Collapse
|
49
|
Shi L, Liu B, Wei Q, Ge B, Zhang K. Genome-wide transcriptomic analysis of the response of Botrytis cinerea to wuyiencin. PLoS One 2020; 15:e0224643. [PMID: 32348310 PMCID: PMC7190121 DOI: 10.1371/journal.pone.0224643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/26/2020] [Indexed: 11/19/2022] Open
Abstract
Grey mould is caused by the ascomycetes Botrytis cinerea in a range of crop hosts. As a biological control agent, the nucleoside antibiotic wuyiencin has been industrially produced and widely used as an effective fungicide. To elucidate the effects of wuyiencin on the transcriptional regulation in B. cinerea, we, for the first time, report a genome-wide transcriptomic analysis of B. cinerea treated with wuyiencin. 2067 genes were differentially expressed, of them, 886 and 1181 genes were significantly upregulated and downregulated, respectively. Functional categorization indicated that transcript levels of genes involved in amino acid metabolism and those encoding putative secreted proteins were altered in response to wuyiencin treatment. Moreover, the expression of genes involved in protein synthesis and energy metabolism (oxidative phosphorylation) and of those encoding ATP-binding cassette transporters was markedly upregulated, whereas that of genes participating in DNA replication, cell cycle, and stress response was downregulated. Furthermore, wuyiencin resulted in mycelial malformation and negatively influenced cell growth rate and conidial yield in B. cinerea. Our results suggest that this nucleoside antibiotic regulates all aspects of cell growth and differentiation in B. cinerea. To summarize, some new candidate pathways and target genes that may related to the protective and antagonistic mechanisms in B. cinerea were identified underlying the action of biological control agents.
Collapse
Affiliation(s)
- Liming Shi
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Binghua Liu
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Qiuhe Wei
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Beibei Ge
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
- * E-mail: (KZ); (BG)
| | - Kecheng Zhang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
- * E-mail: (KZ); (BG)
| |
Collapse
|
50
|
Neotropical termite microbiomes as sources of novel plant cell wall degrading enzymes. Sci Rep 2020; 10:3864. [PMID: 32123275 PMCID: PMC7052144 DOI: 10.1038/s41598-020-60850-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/24/2019] [Indexed: 11/08/2022] Open
Abstract
In this study, we used shotgun metagenomic sequencing to characterise the microbial metabolic potential for lignocellulose transformation in the gut of two colonies of Argentine higher termite species with different feeding habits, Cortaritermes fulviceps and Nasutitermes aquilinus. Our goal was to assess the microbial community compositions and metabolic capacity, and to identify genes involved in lignocellulose degradation. Individuals from both termite species contained the same five dominant bacterial phyla (Spirochaetes, Firmicutes, Proteobacteria, Fibrobacteres and Bacteroidetes) although with different relative abundances. However, detected functional capacity varied, with C. fulviceps (a grass-wood-feeder) gut microbiome samples containing more genes related to amino acid metabolism, whereas N. aquilinus (a wood-feeder) gut microbiome samples were enriched in genes involved in carbohydrate metabolism and cellulose degradation. The C. fulviceps gut microbiome was enriched specifically in genes coding for debranching- and oligosaccharide-degrading enzymes. These findings suggest an association between the primary food source and the predicted categories of the enzymes present in the gut microbiomes of each species. To further investigate the termite microbiomes as sources of biotechnologically relevant glycosyl hydrolases, a putative GH10 endo-β-1,4-xylanase, Xyl10E, was cloned and expressed in Escherichia coli. Functional analysis of the recombinant metagenome-derived enzyme showed high specificity towards beechwood xylan (288.1 IU/mg), with the optimum activity at 50 °C and a pH-activity range from 5 to 10. These characteristics suggest that Xy110E may be a promising candidate for further development in lignocellulose deconstruction applications.
Collapse
|