1
|
Mottiar Y, Tschaplinski T, Ralph J, Mansfield S. Suppression of Chorismate Mutase 1 in Hybrid Poplar to Investigate Potential Redundancy in the Supply of Lignin Precursors. PLANT DIRECT 2025; 9:e70053. [PMID: 40084040 PMCID: PMC11897905 DOI: 10.1002/pld3.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
Chorismate is an important branchpoint metabolite in the biosynthesis of lignin and a wide array of metabolites in plants. Chorismate mutase (CM), the enzyme responsible for transforming chorismate into prephenate, is a key regulator of metabolic flux towards the synthesis of aromatic amino acids and onwards to lignin. We examined three CM genes in hybrid poplar (Populus alba × grandidentata; P39, abbreviated as Pa×g) and used RNA interference (RNAi) to suppress the expression of Pa×gCM1, the most highly expressed isoform found in xylem tissue. Although this strategy was successful in disrupting Pa×gCM1 transcripts, there was also an unanticipated increase in lignin content, a shift towards guaiacyl lignin units, and more xylem vessels with smaller lumen areas, at least in the most severely affected transgenic line. This was accompanied by compensatory expression of the other two CM isoforms, Pa×gCM2 and Pa×gCM3, as well as widespread changes in gene expression and metabolism. This study investigates potential redundancy within the CM gene family in the developing xylem of poplar and highlights the pivotal role of chorismate in plant metabolism, development, and physiology.
Collapse
Affiliation(s)
- Yaseen Mottiar
- Department of Wood ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | | | - John Ralph
- Department of BiochemistryUniversity of WisconsinMadisonWisconsinUSA
- Department of Energy Great Lakes Bioenergy Research CenterWisconsin Energy InstituteMadisonWisconsinUSA
| | - Shawn D. Mansfield
- Department of Wood ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Energy Great Lakes Bioenergy Research CenterWisconsin Energy InstituteMadisonWisconsinUSA
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
2
|
Ortega MA, Celoy RM, Chacon F, Yuan Y, Xue LJ, Pandey SP, Drowns MR, Kvitko BH, Tsai CJ. Altering cold-regulated gene expression decouples the salicylic acid-growth trade-off in Arabidopsis. THE PLANT CELL 2024; 36:4293-4308. [PMID: 39056470 PMCID: PMC11448890 DOI: 10.1093/plcell/koae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
In Arabidopsis (Arabidopsis thaliana), overproduction of salicylic acid (SA) increases disease resistance and abiotic stress tolerance but penalizes growth. This growth-defense trade-off has hindered the adoption of SA-based disease management strategies in agriculture. However, investigation of how SA inhibits plant growth has been challenging because many SA-hyperaccumulating Arabidopsis mutants have developmental defects due to the pleiotropic effects of the underlying genes. Here, we heterologously expressed a bacterial SA synthase gene in Arabidopsis and observed that elevated SA levels decreased plant growth and reduced the expression of cold-regulated (COR) genes in a dose-dependent manner. Growth suppression was exacerbated at below-ambient temperatures. Severing the SA-responsiveness of individual COR genes was sufficient to overcome the growth inhibition caused by elevated SA at ambient and below-ambient temperatures while preserving disease- and abiotic-stress-related benefits. Our results show the potential of decoupling SA-mediated growth and defense trade-offs for improving crop productivity.
Collapse
Affiliation(s)
- María A Ortega
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Rhodesia M Celoy
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Francisco Chacon
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Yinan Yuan
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Liang-Jiao Xue
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Saurabh P Pandey
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - MaKenzie R Drowns
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Brian H Kvitko
- Department of Plant Pathology, University of Georgia, Athens, GA 30603, USA
| | - Chung-Jui Tsai
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Yang L. You can have your cake and eat it too: Ectopic expression of COLD-REGULATED genes reshapes the salicylic acid-mediated growth-defense tradeoff. THE PLANT CELL 2024; 36:4270-4271. [PMID: 39139104 PMCID: PMC11449042 DOI: 10.1093/plcell/koae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 08/15/2024]
Affiliation(s)
- Leiyun Yang
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
4
|
Akyuz Turumtay E, Turumtay H, Tian Y, Lin CY, Chai YN, Louie KB, Chen Y, Lipzen A, Harwood T, Satish Kumar K, Bowen BP, Wang Q, Mansfield SD, Blow MJ, Petzold CJ, Northen TR, Mortimer JC, Scheller HV, Eudes A. Expression of dehydroshikimate dehydratase in poplar induces transcriptional and metabolic changes in the phenylpropanoid pathway. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4960-4977. [PMID: 38809816 PMCID: PMC11349870 DOI: 10.1093/jxb/erae251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024]
Abstract
Modification of lignin in feedstocks via genetic engineering aims to reduce biomass recalcitrance to facilitate efficient conversion processes. These improvements can be achieved by expressing exogenous enzymes that interfere with native biosynthetic pathways responsible for the production of the lignin precursors. In planta expression of a bacterial 3-dehydroshikimate dehydratase in poplar trees reduced lignin content and altered the monomer composition, which enabled higher yields of sugars after cell wall polysaccharide hydrolysis. Understanding how plants respond to such genetic modifications at the transcriptional and metabolic levels is needed to facilitate further improvement and field deployment. In this work, we acquired fundamental knowledge on lignin-modified poplar expressing 3-dehydroshikimate dehydratase using RNA-seq and metabolomics. The data clearly demonstrate that changes in gene expression and metabolite abundance can occur in a strict spatiotemporal fashion, revealing tissue-specific responses in the xylem, phloem, or periderm. In the poplar line that exhibited the strongest reduction in lignin, we found that 3% of the transcripts had altered expression levels and ~19% of the detected metabolites had differential abundance in the xylem from older stems. The changes affected predominantly the shikimate and phenylpropanoid pathways as well as secondary cell wall metabolism, and resulted in significant accumulation of hydroxybenzoates derived from protocatechuate and salicylate.
Collapse
Affiliation(s)
- Emine Akyuz Turumtay
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Recep Tayyip Erdogan University, Department of Chemistry, 53100, Rize, Turkiye
| | - Halbay Turumtay
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Karadeniz Technical University, Department of Energy System Engineering, 61830, Trabzon, Turkiye
| | - Yang Tian
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chien-Yuan Lin
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yen Ning Chai
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Katherine B Louie
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yan Chen
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Anna Lipzen
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Thomas Harwood
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kavitha Satish Kumar
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Benjamin P Bowen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Qian Wang
- Department of Wood Science, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, WI 53726, USA
| | - Matthew J Blow
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher J Petzold
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Trent R Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jenny C Mortimer
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
| | - Henrik V Scheller
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Aymerick Eudes
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
5
|
Chen S, Tan S, Jin Z, Wu J, Zhao Y, Xu W, Liu S, Li Y, Huang H, Bao F, Xie J. The transcriptional landscape of Populus pattern/effector-triggered immunity and how PagWRKY18 involved in it. PLANT, CELL & ENVIRONMENT 2024; 47:2074-2092. [PMID: 38409861 DOI: 10.1111/pce.14860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Plants trigger a robust immune response by activating massive transcriptome reprogramming through crosstalk between PTI and ETI. However, how PTI and ETI contribute to the quantitative or/and qualitative output of immunity and how they work together when both are being activated were unclear. In this study, we performed a comprehensive overview of pathogen-triggered transcriptomic reprogramming by analyzing temporal changes in the transcriptome up to 144 h after Colletotrichum gloeosporioides inoculated in Populus. Moreover, we constructed a hierarchical gene regulatory network of PagWRKY18 and its potential target genes to explore the underlying regulatory mechanisms of PagWRKY18 that are not yet clear. Interestingly, we confirmed that PagWRKY18 protein can directly bind the W-box elements in the promoter of a transmembrane leucine-rich repeat receptor-like kinase, PagSOBIR1 gene, to trigger PTI. At the same time, PagWRKY18 functions in disease tolerance by modulation of ROS homeostasis and induction of cell death via directly targeting PagGSTU7 and PagPR4 respectively. Furthermore, PagPR4 can interact with PagWRKY18 to inhibit the expression of PagPR4 genes, forming a negative feedback loop. Taken together, these results suggest that PagWRKY18 may be involved in regulating crosstalk between PTI and ETI to activate a robust immune response and maintain intracellular homeostasis.
Collapse
Affiliation(s)
- Sisi Chen
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Shuxian Tan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Zhelun Jin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Jiadong Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Yiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Weijie Xu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Sijia Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Yue Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Huahong Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Lin'an, China
| | - Fei Bao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Jianbo Xie
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| |
Collapse
|
6
|
Zou Z, Fan Q, Zhou X, Fu X, Jia Y, Li H, Liao Y. Biochemical Pathways of Salicylic Acid Derived from l-Phenylalanine in Plants with Different Basal SA Levels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2898-2910. [PMID: 38197566 DOI: 10.1021/acs.jafc.3c06939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
As a plant hormone, salicylic acid (SA) has diverse regulatory roles in plant growth and stress resistance. Although SA is widely found in plants, there is substantial variation in basal SA among species. Tea plant is an economically important crop containing high contents of SA whose synthesis pathway remains unidentified. The phenylalanine ammonia-lyase (PAL) pathway is responsible for basal SA synthesis in plants. In this study, isotopic tracing and enzymatic assay experiments were used to verify the SA synthesis pathway in tea plants and evaluate the variation in phenylalanine-derived SA formation among 11 plant species with different levels of SA. The results indicated that SA could be synthesized via PAL in tea plants and conversion efficiency from benzoic acid to SA might account for variation in basal SA among plant species. This research lays the foundation for an improved understanding of the molecular regulatory mechanism for SA biosynthesis.
Collapse
Affiliation(s)
- Zeyuan Zou
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Qian Fan
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Xiaochen Zhou
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Xiumin Fu
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Yongxia Jia
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Hanxiang Li
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Yinyin Liao
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| |
Collapse
|
7
|
Yao Y, Xiang D, Wu N, Wang Y, Chen Y, Yuan Y, Ye Y, Hu D, Zheng C, Yan Y, Lv Q, Li X, Chen G, Hu H, Xiong H, Peng S, Xiong L. Control of rice ratooning ability by a nucleoredoxin that inhibits histidine kinase dimerization to attenuate cytokinin signaling in axillary buds. MOLECULAR PLANT 2023; 16:1911-1926. [PMID: 37853691 DOI: 10.1016/j.molp.2023.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/24/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Rice ratooning, the fast outgrowth of dormant buds on stubble, is an important cropping practice in rice production. However, the low ratooning ability (RA) of most rice varieties restricts the application of this cost-efficient system, and the genetic basis of RA remains unknown. In this study, we dissected the genetic architecture of RA by a genome-wide association study in a natural rice population. Rice ratooning ability 3 (RRA3), encoding a hitherto not characterized nucleoredoxin involved in reduction of disulfide bonds, was identified as the causal gene of a major locus controlling RA. Overexpression of RRA3 in rice significantly accelerated leaf senescence and reduced RA, whereas knockout of RRA3 significantly delayed leaf senescence and increased RA and ratoon yield. We demonstrated that RRA3 interacts with Oryza sativa histidine kinase 4 (OHK4), a cytokinin receptor, and inhibits the dimerization of OHK4 through disulfide bond reduction. This inhibition ultimately led to decreased cytokinin signaling and reduced RA. In addition, variations in the RRA3 promoter were identified to be associated with RA. Introgression of a superior haplotype with weak expression of RRA3 into the elite rice variety Guichao 2 significantly increased RA and ratoon yield by 23.8%. Collectively, this study not only uncovers an undocumented regulatory mechanism of cytokinin signaling through de-dimerization of a histidine kinase receptor-but also provides an eximious gene with promising value for ratoon rice breeding.
Collapse
Affiliation(s)
- Yilong Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Denghao Xiang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Nai Wu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yao Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Yuan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Ye
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Chang Zheng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Qingya Lv
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaokai Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Guoxing Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Haiyan Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
8
|
Zhang SY, Zhao BG, Shen Z, Mei YC, Li G, Dong FQ, Zhang J, Chao Q, Wang BC. Integrating ATAC-seq and RNA-seq to identify differentially expressed genes with chromatin-accessible changes during photosynthetic establishment in Populus leaves. PLANT MOLECULAR BIOLOGY 2023; 113:59-74. [PMID: 37634200 DOI: 10.1007/s11103-023-01375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023]
Abstract
Leaves are the primary photosynthetic organs, providing essential substances for tree growth. It is important to obtain an anatomical understanding and regulatory network analysis of leaf development. Here, we studied leaf development in Populus Nanlin895 along a development gradient from the newly emerged leaf from the shoot apex to the sixth leaf (L1 to L6) using anatomical observations and RNA-seq analysis. It indicated that mesophyll cells possess obvious vascular, palisade, and spongy tissue with distinct intercellular spaces after L3. Additionally, vacuoles fuse while epidermal cells expand to form pavement cells. RNA-seq analysis indicated that genes highly expressed in L1 and L2 were related to cell division and differentiation, while those highly expressed in L3 were enriched in photosynthesis. Therefore, we selected L1 and L3 to integrate ATAC-seq and RNA-seq and identified 735 differentially expressed genes (DEGs) with changes in chromatin accessibility regions within their promoters, of which 87 were transcription factors (TFs), such as ABI3VP1, AP-EREBP, MYB, NAC, and GRF. Motif enrichment analysis revealed potential regulatory functions for the DEGs through upstream TFs including TCP, bZIP, HD-ZIP, Dof, BBR-BPC, and MYB. Overall, our research provides a potential molecular foundation for regulatory network exploration in leaf development during photosynthesis establishment.
Collapse
Affiliation(s)
- Sheng-Ying Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Biligen-Gaowa Zhao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuo Shen
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Ying-Chang Mei
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guo Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng-Qin Dong
- University of Chinese Academy of Sciences, Beijing, 100049, China
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jiao Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Chen YH, Sharma S, Bewg WP, Xue LJ, Gizelbach CR, Tsai CJ. Multiplex Editing of the Nucleoredoxin1 Tandem Array in Poplar: From Small Indels to Translocations and Complex Inversions. CRISPR J 2023; 6:339-349. [PMID: 37307061 PMCID: PMC10460964 DOI: 10.1089/crispr.2022.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/21/2023] [Indexed: 06/13/2023] Open
Abstract
The CRISPR-Cas9 system has been deployed for precision mutagenesis in an ever-growing number of species, including agricultural crops and forest trees. Its application to closely linked genes with extremely high sequence similarities has been less explored. In this study, we used CRISPR-Cas9 to mutagenize a tandem array of seven Nucleoredoxin1 (NRX1) genes spanning ∼100 kb in Populus tremula × Populus alba. We demonstrated efficient multiplex editing with one single guide RNA in 42 transgenic lines. The mutation profiles ranged from small insertions and deletions and local deletions in individual genes to large genomic dropouts and rearrangements spanning tandem genes. We also detected complex rearrangements including translocations and inversions resulting from multiple cleavage and repair events. Target capture sequencing was instrumental for unbiased assessments of repair outcomes to reconstruct unusual mutant alleles. The work highlights the power of CRISPR-Cas9 for multiplex editing of tandemly duplicated genes to generate diverse mutants with structural and copy number variations to aid future functional characterization.
Collapse
Affiliation(s)
- Yen-Ho Chen
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA; College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Shakuntala Sharma
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA; College of Forestry, Nanjing Forestry University, Nanjing, China
| | - William P. Bewg
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA; College of Forestry, Nanjing Forestry University, Nanjing, China
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA; College of Forestry, Nanjing Forestry University, Nanjing, China
- Department of Genetics, University of Georgia, Athens, Georgia, USA; and College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Liang-Jiao Xue
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA; College of Forestry, Nanjing Forestry University, Nanjing, China
- Department of Genetics, University of Georgia, Athens, Georgia, USA; and College of Forestry, Nanjing Forestry University, Nanjing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Cole R. Gizelbach
- Department of Genetics, University of Georgia, Athens, Georgia, USA; and College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Chung-Jui Tsai
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA; College of Forestry, Nanjing Forestry University, Nanjing, China
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA; College of Forestry, Nanjing Forestry University, Nanjing, China
- Department of Genetics, University of Georgia, Athens, Georgia, USA; and College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
10
|
Hossain NI, Tabassum S. A hybrid multifunctional physicochemical sensor suite for continuous monitoring of crop health. Sci Rep 2023; 13:9848. [PMID: 37330620 PMCID: PMC10276867 DOI: 10.1038/s41598-023-37041-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023] Open
Abstract
This work reports a first-of-its-kind hybrid wearable physicochemical sensor suite that we call PlantFit for simultaneous measurement of two key phytohormones, salicylic acid, and ethylene, along with vapor pressure deficit and radial growth of stem in live plants. The sensors are developed using a low-cost and roll-to-roll screen printing technology. A single integrated flexible patch that contains temperature, humidity, salicylic acid, and ethylene sensors, is installed on the leaves of live plants. The strain sensor with in-built pressure correction capability is wrapped around the plant stem to provide pressure-compensated stem diameter measurements. The sensors provide real-time information on plant health under different amounts of water stress conditions. The sensor suite is installed on bell pepper plants for 40 days and measurements of salicylic acid, ethylene, temperature, humidity, and stem diameter are recorded daily. In addition, sensors are installed on different parts of the same plant to investigate the spatiotemporal dynamics of water transport and phytohormone responses. Subsequent correlation and principal component analyses demonstrate the strong association between hormone levels, vapor pressure deficit, and water transport in the plant. Our findings suggest that the mass deployment of PlantFit in agricultural settings will aid growers in detecting water stress/deficiency early and in implementing early intervention measures to reduce stress-induced yield decline.
Collapse
|
11
|
Xu L, Zhao H, Wang J, Wang X, Jia X, Wang L, Xu Z, Li R, Jiang K, Chen Z, Luo J, Xie X, Yi K. AIM1-dependent high basal salicylic acid accumulation modulates stomatal aperture in rice. THE NEW PHYTOLOGIST 2023; 238:1420-1430. [PMID: 36843251 DOI: 10.1111/nph.18842] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
The basal levels of salicylic acid (SA) vary dramatically among plant species. In the shoot, for example, rice contains almost 100 times higher SA levels than Arabidopsis. Despite its high basal levels, neither the biosynthetic pathway nor the biological functions of SA are well understood in rice. Combining with metabolite analysis, physiological, and genetic approaches, we found that the synthesis of basal SA in rice shoot is dependent on OsAIM1, which encodes a beta-oxidation enzyme in the phenylalanine ammonia-lyase (PAL) pathway. Compromised SA accumulation in the Osaim1 mutant led to a lower shoot temperature than wild-type plants. However, this shoot temperature defect resulted from increased transpiration due to elevated steady-state stomatal aperture in the mutant. Furthermore, the high basal SA level is required for sustained expression of OsWRKY45 to modulate the steady-state stomatal aperture and shoot temperature in rice. Taken together, these results provide the direct genetic evidence for the critical role of the PAL pathway in the biosynthesis of high basal level SA in rice, which plays an important role in the regulation of steady-state stomatal aperture to promote fitness under stress conditions.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongyu Zhao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Junbin Wang
- International Joint Center for the Mechanismic Dissection and Genetic Improvement of Crop Stress Tolerance, College of Agriculture & Resources and Environmental Sciences, Tianjin Agricultural University, Tianjin, 300392, China
- College of Basic Sciences, Tianjin Agricultural University, Tianjin, 300392, China
| | - Xuming Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xianqing Jia
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Long Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhuang Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruili Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kun Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang, 310018, China
| | - Zhixiang Chen
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907-2054, USA
| | - Jie Luo
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Xiaodong Xie
- International Joint Center for the Mechanismic Dissection and Genetic Improvement of Crop Stress Tolerance, College of Agriculture & Resources and Environmental Sciences, Tianjin Agricultural University, Tianjin, 300392, China
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
12
|
Ullah C, Chen YH, Ortega MA, Tsai CJ. The diversity of salicylic acid biosynthesis and defense signaling in plants: Knowledge gaps and future opportunities. CURRENT OPINION IN PLANT BIOLOGY 2023; 72:102349. [PMID: 36842224 DOI: 10.1016/j.pbi.2023.102349] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/09/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The phytohormone salicylic acid (SA) is known to regulate plant immunity against pathogens. Plants synthesize SA via the isochorismate synthase (ICS) pathway or the phenylalanine ammonia-lyase (PAL) pathway. The ICS pathway has been fully characterized using Arabidopsis thaliana, a model plant that exhibits pathogen-inducible SA accumulation. Many species including Populus (poplar) depend instead on the partially understood PAL pathway for constitutive as well as pathogen-stimulated SA synthesis. Diversity of SA-mediated defense is also evident in SA accumulation, redox regulation, and interplay with other hormones like jasmonic acid. This review highlights the contrast between Arabidopsis and poplar, discusses potential drivers of SA diversity in plant defenses, and offers future research directions.
Collapse
Affiliation(s)
- Chhana Ullah
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Yen-Ho Chen
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - María A Ortega
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA; School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA; Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Chung-Jui Tsai
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA; School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA; Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
13
|
Hu L, Qi P, Peper A, Kong F, Yao Y, Yang L. Distinct function of SPL genes in age-related resistance in Arabidopsis. PLoS Pathog 2023; 19:e1011218. [PMID: 36947557 PMCID: PMC10069772 DOI: 10.1371/journal.ppat.1011218] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/03/2023] [Accepted: 02/19/2023] [Indexed: 03/23/2023] Open
Abstract
In plants, age-related resistance (ARR) refers to a gain of disease resistance during shoot or organ maturation. ARR associated with vegetative phase change, a transition from juvenile to adult stage, is a widespread agronomic trait affecting resistance against multiple pathogens. How innate immunity in a plant is differentially regulated during successive stages of shoot maturation is unclear. In this work, we found that Arabidopsis thaliana showed ARR against its bacterial pathogen Pseudomonas syringae pv. tomato DC3000 during vegetative phase change. The timing of the ARR activation was associated with a temporal drop of miR156 level. The microRNA miR156 maintains juvenile phase by inhibiting the accumulation and translation of SPL transcripts. A systematic inspection of the loss- and gain-of-function mutants of 11 SPL genes revealed that a subset of SPL genes, notably SPL2, SPL10, and SPL11, activated ARR in adult stage. The immune function of SPL10 was independent of its role in morphogenesis. Furthermore, the SPL10 mediated an age-dependent augmentation of the salicylic acid (SA) pathway partially by direct activation of PAD4. Disrupting SA biosynthesis or signaling abolished the ARR against Pto DC3000. Our work demonstrated that the miR156-SPL10 module in Arabidopsis is deployed to operate immune outputs over developmental timing.
Collapse
Affiliation(s)
- Lanxi Hu
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Peng Qi
- Department of Plant Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Alan Peper
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Feng Kong
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Yao Yao
- Department of Animal and Dairy Sciences, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Li Yang
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
14
|
Tran S, Ison M, Ferreira Dias NC, Ortega MA, Chen YFS, Peper A, Hu L, Xu D, Mozaffari K, Severns PM, Yao Y, Tsai CJ, Teixeira PJPL, Yang L. Endogenous salicylic acid suppresses de novo root regeneration from leaf explants. PLoS Genet 2023; 19:e1010636. [PMID: 36857386 PMCID: PMC10010561 DOI: 10.1371/journal.pgen.1010636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/13/2023] [Accepted: 01/25/2023] [Indexed: 03/02/2023] Open
Abstract
Plants can regenerate new organs from damaged or detached tissues. In the process of de novo root regeneration (DNRR), adventitious roots are frequently formed from the wound site on a detached leaf. Salicylic acid (SA) is a key phytohormone regulating plant defenses and stress responses. The role of SA and its acting mechanisms during de novo organogenesis is still unclear. Here, we found that endogenous SA inhibited the adventitious root formation after cutting. Free SA rapidly accumulated at the wound site, which was accompanied by an activation of SA response. SA receptors NPR3 and NPR4, but not NPR1, were required for DNRR. Wounding-elevated SA compromised the expression of AUX1, and subsequent transport of auxin to the wound site. A mutation in AUX1 abolished the enhanced DNRR in low SA mutants. Our work elucidates a role of SA in regulating DNRR and suggests a potential link between biotic stress and tissue regeneration.
Collapse
Affiliation(s)
- Sorrel Tran
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Madalene Ison
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | | | - Maria Andrea Ortega
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, United States of America
- Department of Plant Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Yun-Fan Stephanie Chen
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Alan Peper
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Lanxi Hu
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Dawei Xu
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Khadijeh Mozaffari
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
| | - Paul M. Severns
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Yao Yao
- Department of Animal and Diary Sciences, College of Agricultural & Environmental Sciences, University of Georgia, Georgia, United States of America
| | - Chung-Jui Tsai
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, United States of America
- Department of Plant Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Paulo José Pereira Lima Teixeira
- Department of Biology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Sao Paulo, Brazil
- * E-mail: (PJPLT); (LY)
| | - Li Yang
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (PJPLT); (LY)
| |
Collapse
|
15
|
Dong H, Zhang W, Li Y, Feng Y, Wang X, Liu Z, Li D, Wen X, Ma S, Zhang X. Overexpression of salicylic acid methyltransferase reduces salicylic acid-mediated pathogen resistance in poplar. FRONTIERS IN PLANT SCIENCE 2022; 13:973305. [PMID: 36388494 PMCID: PMC9660245 DOI: 10.3389/fpls.2022.973305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Salicylic acid (SA) is generally considered to be a critical signal transduction factor in plant defenses against pathogens. It could be converted to methyl salicylate (MeSA) for remote signals by salicylic acid methyltransferase (SAMT) and converted back to SA by SA-binding protein 2 (SABP2). In order to verify the function of SAMT in poplar plants, we isolated the full-length cDNA sequence of PagSAMT from 84K poplar and cultivated PagSAMT overexpression lines (OE-2 isolate) to test its role in SA-mediated defenses against the virulent fungal pathogen Botryosphaeria dothidea. Our results showed that after inoculation with B. dothidea, OE-2 significantly increased MeSA content and reduced SA content which is associated with increased expression of SAMT in both infected and uninfected leaves, when compared against the wild type (WT). Additionally, SAMT overexpression plant lines (OE-2) exhibited higher expression of pathogenesis-related genes PR-1 and PR-5, but were still susceptible to B. dothidea suggesting that in poplar SA might be responsible for resistance against this pathogen. This study expands the current understanding of joint regulation of SAMT and SABP2 and the balance between SA and MeSA in poplar responses to pathogen invasion.
Collapse
Affiliation(s)
- Huixia Dong
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Wei Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yongxia Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yuqian Feng
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xuan Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhenkai Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Dongzhen Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiaojian Wen
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Shuai Ma
- Resources Management, Chinese Academy of Forestry, Beijing, China
| | - Xingyao Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
16
|
Zhang S, Yu Y, Song T, Zhang M, Li N, Yu M, Zhou H, Yang Y, Guo S, Xu C, Tu Y, Xiang J, Zhang X. Genome-wide identification of foxtail millet's TRX family and a functional analysis of SiNRX1 in response to drought and salt stresses in transgenic Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:946037. [PMID: 36226299 PMCID: PMC9549295 DOI: 10.3389/fpls.2022.946037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/02/2022] [Indexed: 06/01/2023]
Abstract
Thioredoxins (TRXs) are small-molecule proteins with redox activity that play very important roles in the growth, development, and stress resistance of plants. Foxtail millet (Setaria italica) gradually became a model crop for stress resistance research because of its advantages such as its resistance to sterility and its small genome. To date, the thioredoxin (TRX) family has been identified in Arabidopsis thaliana, rice and wheat. However, studies of the TRX family in foxtail millet have not been reported, and the biological function of this family remains unclear. In this study, 35 SiTRX genes were identified in the whole genome of foxtail millet through bioinformatic analysis. According to phylogenetic analysis, 35 SiTRXs can be divided into 13 types. The chromosome distribution, gene structure, cis-elements and conserved protein motifs of 35 SiTRXs were characterized. Three nucleoredoxin (NRX) members were further identified by a structural analysis of TRX family members. The expression patterns of foxtail millet's SiNRX members under abiotic stresses showed that they have different stress-response patterns. In addition, subcellular localization revealed that SiNRXs were localized to the nucleus, cytoplasm and membrane. Further studies demonstrated that the overexpression of SiNRX1 enhanced Arabidopsis' tolerance to drought and salt stresses, resulting in a higher survival rate and better growth performance. Moreover, the expression levels of several known stress-related genes were generally higher in overexpressed lines than in the wild-type. Thus, this study provides a general picture of the TRX family in foxtail millet and lay a foundation for further research on the mechanism of the action of TRX proteins on abiotic stresses.
Collapse
Affiliation(s)
| | - Yang Yu
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Tianqi Song
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Mingfei Zhang
- Academy of Agricultural Sciences, Key Laboratory of Agro-Ecological Protection and Exploitation and Utilization of Animal and Plant Resources in Eastern Inner Mongolia, Chifeng University, Chifeng, China
| | - Nan Li
- Academy of Agricultural Sciences, Key Laboratory of Agro-Ecological Protection and Exploitation and Utilization of Animal and Plant Resources in Eastern Inner Mongolia, Chifeng University, Chifeng, China
| | - Ming Yu
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Hongwei Zhou
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Yanning Yang
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Sihai Guo
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Chunhong Xu
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Yongle Tu
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Jishan Xiang
- Academy of Agricultural Sciences, Key Laboratory of Agro-Ecological Protection and Exploitation and Utilization of Animal and Plant Resources in Eastern Inner Mongolia, Chifeng University, Chifeng, China
| | - Xiaoke Zhang
- College of Agronomy, Northwest A&F University, Xianyang, China
| |
Collapse
|
17
|
Harding SA, Tuma TT, Aulakh K, Ortega MA, Ci D, Ou Y, Tsai CJ. Tonoplast Sucrose Trafficking Modulates Starch Utilization and Water Deficit Behavior in Poplar Leaves. PLANT & CELL PHYSIOLOGY 2022; 63:1117-1129. [PMID: 35727111 PMCID: PMC9381566 DOI: 10.1093/pcp/pcac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 06/08/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Leaf osmotic adjustment by the active accrual of compatible organic solutes (e.g. sucrose) contributes to drought tolerance throughout the plant kingdom. In Populus tremula x alba, PtaSUT4 encodes a tonoplast sucrose-proton symporter, whose downregulation by chronic mild drought or transgenic manipulation is known to increase leaf sucrose and turgor. While this may constitute a single drought tolerance mechanism, we now report that other adjustments which can occur during a worsening water deficit are damped when PtaSUT4 is constitutively downregulated. Specifically, we report that starch use and leaf relative water content (RWC) dynamics were compromised when plants with constitutively downregulated PtaSUT4 were subjected to a water deficit. Leaf RWC decreased more in wild-type and vector control lines than in transgenic PtaSUT4-RNAi (RNA-interference) or CRISPR (clustered regularly interspersed short palindromic repeats) knockout (KO) lines. The control line RWC decrease was accompanied by increased PtaSUT4 transcript levels and a mobilization of sucrose from the mesophyll-enriched leaf lamina into the midvein. The findings suggest that changes in SUT4 expression can increase turgor or decrease RWC as different tolerance mechanisms to reduced water availability. Evidence is presented that PtaSUT4-mediated sucrose partitioning between the vacuole and the cytosol is important not only for overall sucrose abundance and turgor, but also for reactive oxygen species (ROS) and antioxidant dynamics. Interestingly, the reduced capacity for accelerated starch breakdown under worsening water-deficit conditions was correlated with reduced ROS in the RNAi and KO lines. A role for PtaSUT4 in the orchestration of ROS, antioxidant, starch utilization and RWC dynamics during water stress and its importance in trees especially, with their high hydraulic resistances, is considered.
Collapse
Affiliation(s)
| | - Trevor T Tuma
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, Athens, GA 30602, USA
| | - Kavita Aulakh
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Maria A Ortega
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, Athens, GA 30602, USA
| | - Dong Ci
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Bioscience and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yongbin Ou
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Biotechnology, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Chung-Jui Tsai
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, Athens, GA 30602, USA
| |
Collapse
|
18
|
Gordon H, Fellenberg C, Lackus ND, Archinuk F, Sproule A, Nakamura Y, K�llner TG, Gershenzon J, Overy DP, Constabel CP. CRISPR/Cas9 disruption of UGT71L1 in poplar connects salicinoid and salicylic acid metabolism and alters growth and morphology. THE PLANT CELL 2022; 34:2925-2947. [PMID: 35532172 PMCID: PMC9338807 DOI: 10.1093/plcell/koac135] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/28/2022] [Indexed: 05/11/2023]
Abstract
Salicinoids are salicyl alcohol-containing phenolic glycosides with strong antiherbivore effects found only in poplars and willows. Their biosynthesis is poorly understood, but recently a UDP-dependent glycosyltransferase, UGT71L1, was shown to be required for salicinoid biosynthesis in poplar tissue cultures. UGT71L1 specifically glycosylates salicyl benzoate, a proposed salicinoid intermediate. Here, we analyzed transgenic CRISPR/Cas9-generated UGT71L1 knockout plants. Metabolomic analyses revealed substantial reductions in the major salicinoids, confirming the central role of the enzyme in salicinoid biosynthesis. Correspondingly, UGT71L1 knockouts were preferred to wild-type by white-marked tussock moth (Orgyia leucostigma) larvae in bioassays. Greenhouse-grown knockout plants showed substantial growth alterations, with decreased internode length and smaller serrated leaves. Reinserting a functional UGT71L1 gene in a transgenic rescue experiment demonstrated that these effects were due only to the loss of UGT71L1. The knockouts contained elevated salicylate (SA) and jasmonate (JA) concentrations, and also had enhanced expression of SA- and JA-related genes. SA is predicted to be released by UGT71L1 disruption, if salicyl salicylate is a pathway intermediate and UGT71L1 substrate. This idea was supported by showing that salicyl salicylate can be glucosylated by recombinant UGT71L1, providing a potential link of salicinoid metabolism to SA and growth impacts. Connecting this pathway with growth could imply that salicinoids are under additional evolutionary constraints beyond selective pressure by herbivores.
Collapse
Affiliation(s)
- Harley Gordon
- Department of Biology, Centre for Forest Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Christin Fellenberg
- Department of Biology, Centre for Forest Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Nathalie D Lackus
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Finn Archinuk
- Department of Biology, Centre for Forest Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Amanda Sproule
- Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada
| | - Yoko Nakamura
- Department of Nuclear Magnetic Resonance, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Tobias G K�llner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - David P Overy
- Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada
| | | |
Collapse
|
19
|
Li N, Wang Z, Wang B, Wang J, Xu R, Yang T, Huang S, Wang H, Yu Q. Identification and Characterization of Long Non-coding RNA in Tomato Roots Under Salt Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:834027. [PMID: 35865296 PMCID: PMC9295719 DOI: 10.3389/fpls.2022.834027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
As one of the most important vegetable crops in the world, the production of tomatoes was restricted by salt stress. Therefore, it is of great interest to analyze the salt stress tolerance genes. As the non-coding RNAs (ncRNAs) with a length of more than 200 nucleotides, long non-coding RNAs (lncRNAs) lack the ability of protein-coding, but they can play crucial roles in plant development and response to abiotic stresses by regulating gene expression. Nevertheless, there are few studies on the roles of salt-induced lncRNAs in tomatoes. Therefore, we selected wild tomato Solanum pennellii (S. pennellii) and cultivated tomato M82 to be materials. By high-throughput sequencing, 1,044 putative lncRNAs were identified here. Among them, 154 and 137 lncRNAs were differentially expressed in M82 and S. pennellii, respectively. Through functional analysis of target genes of differentially expressed lncRNAs (DE-lncRNAs), some genes were found to respond positively to salt stress by participating in abscisic acid (ABA) signaling pathway, brassinosteroid (BR) signaling pathway, ethylene (ETH) signaling pathway, and anti-oxidation process. We also construct a salt-induced lncRNA-mRNA co-expression network to dissect the putative mechanisms of high salt tolerance in S. pennellii. We analyze the function of salt-induced lncRNAs in tomato roots at the genome-wide levels for the first time. These results will contribute to understanding the molecular mechanisms of salt tolerance in tomatoes from the perspective of lncRNAs.
Collapse
Affiliation(s)
- Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Zhongyu Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Ruiqiang Xu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Shaoyong Huang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| |
Collapse
|
20
|
Ullah C, Schmidt A, Reichelt M, Tsai CJ, Gershenzon J. Lack of antagonism between salicylic acid and jasmonate signalling pathways in poplar. THE NEW PHYTOLOGIST 2022; 235:701-717. [PMID: 35489087 DOI: 10.1111/nph.18148] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Salicylic acid (SA) and jasmonic acid (JA) often play distinct roles in plant defence against pathogens. Research from Arabidopsis thaliana has established that SA- and JA-mediated defences are more effective against biotrophs and necrotrophs, respectively. These two hormones often interact antagonistically in response to particular attackers, with the induction of one leading to suppression of the other. Here, we report a contrasting pattern in the woody perennial Populus: positive SA-JA interplay. Using genetically engineered high SA lines of black poplar and wild-type lines after exogenous hormone application, we quantified SA and JA metabolites, signalling gene transcripts, antifungal flavonoids and resistance to rust (Melampsora larici-populina). Salicylic acid and JA metabolites were induced concurrently upon rust infection in poplar genotypes with varying resistance levels. Analysis of SA-hyperaccumulating transgenic poplar lines showed increased jasmonate levels, elevated flavonoid content and enhanced rust resistance, but no discernible reduction in growth. Exogenous application of either SA or JA triggered the accumulation of the other hormone. Expression of pathogenesis-related (PR) genes, frequently used as markers for SA signalling, was not correlated with SA content, but rather activated in proportion to pathogen infection. We conclude that SA and JA pathways interact positively in poplar resulting in the accumulation of flavonoid phytoalexins.
Collapse
Affiliation(s)
- Chhana Ullah
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Chung-Jui Tsai
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
- School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| |
Collapse
|
21
|
Iqbal S, Wang X, Mubeen I, Kamran M, Kanwal I, Díaz GA, Abbas A, Parveen A, Atiq MN, Alshaya H, Zin El-Abedin TK, Fahad S. Phytohormones Trigger Drought Tolerance in Crop Plants: Outlook and Future Perspectives. FRONTIERS IN PLANT SCIENCE 2022; 12:799318. [PMID: 35095971 PMCID: PMC8792739 DOI: 10.3389/fpls.2021.799318] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/27/2021] [Indexed: 05/20/2023]
Abstract
In the past and present, human activities have been involved in triggering global warming, causing drought stresses that affect animals and plants. Plants are more defenseless against drought stress; and therefore, plant development and productive output are decreased. To decrease the effect of drought stress on plants, it is crucial to establish a plant feedback mechanism of resistance to drought. The drought reflex mechanisms include the physical stature physiology and biochemical, cellular, and molecular-based processes. Briefly, improving the root system, leaf structure, osmotic-balance, comparative water contents and stomatal adjustment are considered as most prominent features against drought resistance in crop plants. In addition, the signal transduction pathway and reactive clearance of oxygen are crucial mechanisms for coping with drought stress via calcium and phytohormones such as abscisic acid, salicylic acid, jasmonic acid, auxin, gibberellin, ethylene, brassinosteroids and peptide molecules. Furthermore, microorganisms, such as fungal and bacterial organisms, play a vital role in increasing resistance against drought stress in plants. The number of characteristic loci, transgenic methods and the application of exogenous substances [nitric oxide, (C28H48O6) 24-epibrassinolide, proline, and glycine betaine] are also equally important for enhancing the drought resistance of plants. In a nutshell, the current review will mainly focus on the role of phytohormones and related mechanisms involved in drought tolerance in various crop plants.
Collapse
Affiliation(s)
- Shehzad Iqbal
- Faculty of Agriculture Sciences, Universidad De Talca, Talca, Chile
| | - Xiukang Wang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an, China
| | - Iqra Mubeen
- Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Muhammad Kamran
- School of Agriculture, Food, and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Iqra Kanwal
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Gonzalo A. Díaz
- Faculty of Agriculture Sciences, Universidad De Talca, Talca, Chile
| | - Aqleem Abbas
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aasma Parveen
- Department of Soil Science, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Nauman Atiq
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huda Alshaya
- Cell and Molecular Biology, University of Arkansas, Fayetteville, NC, United States
| | - Tarek K. Zin El-Abedin
- Department of Agriculture and Biosystems Engineering, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Department of Agronomy, The University of Haripur, Haripur, Pakistan
| |
Collapse
|
22
|
Xiao L, Du Q, Fang Y, Quan M, Lu W, Wang D, Si J, El-Kassaby YA, Zhang D. Genetic architecture of the metabolic pathway of salicylic acid biosynthesis in Populus. TREE PHYSIOLOGY 2021; 41:2198-2215. [PMID: 33987676 DOI: 10.1093/treephys/tpab068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Salicylic acid (SA) is a vital hormone for adaptive responses to biotic and abiotic stresses, which facilitates growth-immunity trade-offs in plants. However, the genetic regulatory networks underlying the metabolic pathway of SA biosynthesis in perennial species remain unclear. Here, we integrated genome-wide association study (GWAS) with metabolite and expression profiling methodologies to dissect the genetic architecture of SA biosynthesis in Populus. First, we quantified nine intermediate metabolites of SA biosynthesis in 300 unrelated Populus tomentosa Carr. individuals. Then, we used a systematic genetic strategy to identify candidate genes for constructing the genetic regulatory network of SA biosynthesis. We focused on WRKY70, an efficient transcription factor, as the key causal gene in the regulatory network, and combined the novel genes coordinating the accumulation of SA. Finally, we identified eight GWAS signals and eight expression quantitative trait loci situated in a selective sweep, and showed the presence of large allele frequency differences among the three geographic populations, revealing that candidate genes subject to selection were involved in SA biosynthesis. This study provides an integrated strategy for dissecting the genetic architecture of the metabolic pathway of SA biosynthesis in Populus, thereby enhancing our understanding of genetic regulation of SA biosynthesis in trees, and accelerating marker-assisted breeding efforts toward high-resistance elite varieties of Populus.
Collapse
Affiliation(s)
- Liang Xiao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Yuanyuan Fang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Mingyang Quan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Wenjie Lu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Dan Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Jingna Si
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| |
Collapse
|
23
|
Chlorogenic acid induces ROS-dependent apoptosis in Fusarium fujikuroi and decreases the postharvest rot of cherry tomato. World J Microbiol Biotechnol 2021; 37:93. [PMID: 33948741 DOI: 10.1007/s11274-021-03062-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Chlorogenic acid is a plant polyphenol with antioxidant and antimicrobial activities. Fusarium fujikuroi is a fungal pathogen that causes many vegetables and fruits, including tomato, to rot. The effects of chlorogenic acid on the development of Fusarium rot of cherry tomato fruit were examined in the present study. Results showed that conidial germination, germ tube elongation, cell viability, and mycelial growth of F. fujikuroi were all significantly inhibited by chlorogenic acid. Chlorogenic acid stimulated the accumulation of reactive oxygen species (ROS), leading to cell apoptosis in F. fujikuroi. The addition of N-acetylcysteine partially recovered the mycelial growth, implying the antifungal activity of chlorogenic acid is related to a ROS burst. The application of chlorogenic acid decreased disease incidence and severity in cherry tomato fruit in a concentration-dependent manner. Taken together, these results suggest that chlorogenic acid inhibits the postharvest rot of cherry tomato fruit caused by F. fujikuroi by inducing cellular oxidative stress in the pathogen.
Collapse
|
24
|
Scartazza A, Fambrini M, Mariotti L, Picciarelli P, Pugliesi C. Energy conversion processes and related gene expression in a sunflower mutant with altered salicylic acid metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:122-132. [PMID: 31958679 DOI: 10.1016/j.plaphy.2020.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/27/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Salicylic acid (SA) is involved in several responses associated with plant development and defence against biotic and abiotic stress, but its role on photosynthetic regulation is still under debate. This work investigated energy conversion processes and related gene expression in the brachytic mutant of sunflower lingering hope (linho). This mutant was characterized by a higher ratio between the free SA form and its conjugate form SA O-β-D-glucoside (SAG) compared to wild type (WT), without significant changes in the endogenous level of abscisic acid and hydrogen peroxide. The mutant showed an inhibition of photosynthesis due to a combination of both stomatal and non-stomatal limitations, although the latter seemed to play a major role. The reduced carboxylation efficiency was associated with a down-regulation of the gene expression for both the large and small subunits of Rubisco and the Rubisco activase enzyme. Moreover, linho showed an alteration of photosystem II (PSII) functionality, with reduced PSII photochemistry, increased PSII excitation pressure and decreased thermal energy dissipation of excessive light energy. These responses were associated with a lower photosynthetic pigments concentration and a reduced expression of genes encoding for light-harvesting chlorophyll a/b binding proteins (i.e. HaLhcA), chlorophyll binding subunits of PSII proteins (i.e. HaPsbS and HaPsbX), phytoene synthase enzyme and a different expression level for genes related to PSII repair cycle, such as HaPsbA and HaPsbD. The concomitant stimulation of respiratory metabolism, suggests that linho activated a coordinate modulation of chloroplast and mitochondria activities to compensate the energy imbalance and regulate energy conversion processes.
Collapse
Affiliation(s)
- Andrea Scartazza
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Moruzzi 1, I-56124, Pisa, Italy.
| | - Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Lorenzo Mariotti
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy.
| | - Piero Picciarelli
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| |
Collapse
|
25
|
Veach AM, Morris R, Yip DZ, Yang ZK, Engle NL, Cregger MA, Tschaplinski TJ, Schadt CW. Rhizosphere microbiomes diverge among Populus trichocarpa plant-host genotypes and chemotypes, but it depends on soil origin. MICROBIOME 2019; 7:76. [PMID: 31103040 PMCID: PMC6525979 DOI: 10.1186/s40168-019-0668-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/20/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Plants have developed defense strategies for phytopathogen and herbivore protection via coordinated metabolic mechanisms. Low-molecular weight metabolites produced within plant tissues, such as salicylic acid, represent one such mechanism which likely mediates plant - microbe interactions above and below ground. Salicylic acid is a ubiquitous phytohormone at low levels in most plants, yet are concentrated defense compounds in Populus, likely acting as a selective filter for rhizosphere microbiomes. We propagated twelve Populus trichocarpa genotypes which varied an order of magnitude in salicylic acid (SA)-related secondary metabolites, in contrasting soils from two different origins. After four months of growth, plant properties (leaf growth, chlorophyll content, and net photosynthetic rate) and plant root metabolomics specifically targeting SA metabolites were measured via GC-MS. In addition, rhizosphere microbiome composition was measured via Illumina MiSeq sequencing of 16S and ITS2 rRNA-genes. RESULTS Soil origin was the primary filter causing divergence in bacterial/archaeal and fungal communities with plant genotype secondarily influential. Both bacterial/archaeal and fungal evenness varied between soil origins and bacterial/archaeal diversity and evenness correlated with at least one SA metabolite (diversity: populin; evenness: total phenolics). The production of individual salicylic acid derivatives that varied by host genotype resulted in compositional differences for bacteria /archaea (tremuloidin) and fungi (salicylic acid) within one soil origin (Clatskanie) whereas soils from Corvallis did not illicit microbial compositional changes due to salicylic acid derivatives. Several dominant bacterial (e.g., Betaproteobacteria, Acidobacteria, Verrucomicrobia, Chloroflexi, Gemmatimonadete, Firmicutes) and one fungal phyla (Mortierellomycota) also correlated with specific SA secondary metabolites; bacterial phyla exhibited more negative interactions (declining abundance with increasing metabolite concentration) than positive interactions. CONCLUSIONS These results indicate microbial communities diverge most among soil origin. However, within a soil origin, bacterial/archaeal communities are responsive to plant SA production within greenhouse-based rhizosphere microbiomes. Fungal microbiomes are impacted by root SA-metabolites, but overall to a lesser degree within this experimental context. These results suggest plant defense strategies, such as SA and its secondary metabolites, may partially drive patterns of both bacterial/archaeal and fungal taxa-specific colonization and assembly.
Collapse
Affiliation(s)
- Allison M. Veach
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831-6038 USA
| | - Reese Morris
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831-6038 USA
| | - Daniel Z. Yip
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831-6038 USA
| | - Zamin K. Yang
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831-6038 USA
| | - Nancy L. Engle
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831-6038 USA
| | - Melissa A. Cregger
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831-6038 USA
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831-6038 USA
| | - Christopher W. Schadt
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831-6038 USA
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996 USA
| |
Collapse
|
26
|
Eberl F, Uhe C, Unsicker SB. Friend or foe? The role of leaf-inhabiting fungal pathogens and endophytes in tree-insect interactions. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Yan X, Liu J, Kim H, Liu B, Huang X, Yang Z, Lin YCJ, Chen H, Yang C, Wang JP, Muddiman DC, Ralph J, Sederoff RR, Li Q, Chiang VL. CAD1 and CCR2 protein complex formation in monolignol biosynthesis in Populus trichocarpa. THE NEW PHYTOLOGIST 2019; 222:244-260. [PMID: 30276825 DOI: 10.1111/nph.15505] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/20/2018] [Indexed: 05/18/2023]
Abstract
Lignin is the major phenolic polymer in plant secondary cell walls and is polymerized from monomeric subunits, the monolignols. Eleven enzyme families are implicated in monolignol biosynthesis. Here, we studied the functions of members of the cinnamyl alcohol dehydrogenase (CAD) and cinnamoyl-CoA reductase (CCR) families in wood formation in Populus trichocarpa, including the regulatory effects of their transcripts and protein activities on monolignol biosynthesis. Enzyme activity assays from stem-differentiating xylem (SDX) proteins showed that RNAi suppression of PtrCAD1 in P. trichocarpa transgenics caused a reduction in SDX CCR activity. RNAi suppression of PtrCCR2, the only CCR member highly expressed in SDX, caused a reciprocal reduction in SDX protein CAD activities. The enzyme assays of mixed and coexpressed recombinant proteins supported physical interactions between PtrCAD1 and PtrCCR2. Biomolecular fluorescence complementation and pull-down/co-immunoprecipitation experiments supported a hypothesis of PtrCAD1/PtrCCR2 heterodimer formation. These results provide evidence for the formation of PtrCAD1/PtrCCR2 protein complexes in monolignol biosynthesis in planta.
Collapse
Affiliation(s)
- Xiaojing Yan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jie Liu
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Hoon Kim
- Department of Biochemistry and DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, 53726, USA
| | - Baoguang Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- Department of Forestry, Beihua University, Jilin, 132013, China
| | - Xiong Huang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zhichang Yang
- W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Ying-Chung Jimmy Lin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- Department of Life Sciences, Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Hao Chen
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Chenmin Yang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jack P Wang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - David C Muddiman
- W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - John Ralph
- Department of Biochemistry and DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, 53726, USA
| | - Ronald R Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Vincent L Chiang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
28
|
Chao Q, Gao Z, Zhang D, Zhao B, Dong F, Fu C, Liu L, Wang B. The developmental dynamics of the Populus stem transcriptome. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:206-219. [PMID: 29851301 PMCID: PMC6330540 DOI: 10.1111/pbi.12958] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/23/2018] [Accepted: 05/27/2018] [Indexed: 05/20/2023]
Abstract
The Populus shoot undergoes primary growth (longitudinal growth) followed by secondary growth (radial growth), which produces biomass that is an important source of energy worldwide. We adopted joint PacBio Iso-Seq and RNA-seq analysis to identify differentially expressed transcripts along a developmental gradient from the shoot apex to the fifth internode of Populus Nanlin895. We obtained 87 150 full-length transcripts, including 2081 new isoforms and 62 058 new alternatively spliced isoforms, most of which were produced by intron retention, that were used to update the Populus annotation. Among these novel isoforms, there are 1187 long non-coding RNAs and 356 fusion genes. Using this annotation, we found 15 838 differentially expressed transcripts along the shoot developmental gradient, of which 1216 were transcription factors (TFs). Only a few of these genes were reported previously. The differential expression of these TFs suggests that they may play important roles in primary and secondary growth. AP2, ARF, YABBY and GRF TFs are highly expressed in the apex, whereas NAC, bZIP, PLATZ and HSF TFs are likely to be important for secondary growth. Overall, our findings provide evidence that long-read sequencing can complement short-read sequencing for cataloguing and quantifying eukaryotic transcripts and increase our understanding of the vital and dynamic process of shoot development.
Collapse
Affiliation(s)
- Qing Chao
- Key Laboratory of PhotobiologyPhotosynthesis Research CenterInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Zhi‐Fang Gao
- Key Laboratory of PhotobiologyPhotosynthesis Research CenterInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Dong Zhang
- Biomarker Technologies CorporationBeijingChina
| | - Biligen‐Gaowa Zhao
- Key Laboratory of PhotobiologyPhotosynthesis Research CenterInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Feng‐Qin Dong
- The Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Chun‐Xiang Fu
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoShandongChina
| | - Li‐Jun Liu
- College of ForestryShandong Agricultural UniversityTai‐AnShandongChina
| | - Bai‐Chen Wang
- Key Laboratory of PhotobiologyPhotosynthesis Research CenterInstitute of BotanyChinese Academy of SciencesBeijingChina
| |
Collapse
|
29
|
Ullah C, Tsai C, Unsicker SB, Xue L, Reichelt M, Gershenzon J, Hammerbacher A. Salicylic acid activates poplar defense against the biotrophic rust fungus Melampsora larici-populina via increased biosynthesis of catechin and proanthocyanidins. THE NEW PHYTOLOGIST 2019; 221:960-975. [PMID: 30168132 PMCID: PMC6585937 DOI: 10.1111/nph.15396] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/10/2018] [Indexed: 05/14/2023]
Abstract
Poplar trees synthesize flavan-3-ols (catechin and proanthocyanidins) as a defense against foliar rust fungi, but the regulation of this defense response is poorly understood. Here, we investigated the role of hormones in regulating flavan-3-ol accumulation in poplar during rust infection. We profiled levels of defense hormones, signaling genes, and flavan-3-ol metabolites in black poplar leaves at different stages of rust infection. Hormone levels were manipulated by external sprays, genetic engineering, and drought to reveal their role in rust fungal defenses. Levels of salicylic acid (SA), jasmonic acid, and abscisic acid increased in rust-infected leaves and activated downstream signaling, with SA levels correlating closely with those of flavan-3-ols. Pretreatment with the SA analog benzothiadiazole increased flavan-3-ol accumulation by activating the MYB-bHLH-WD40 complex and reduced rust proliferation. Furthermore, transgenic poplar lines overproducing SA exhibited higher amounts of flavan-3-ols constitutively via the same transcriptional activation mechanism. These findings suggest a strong association among SA, flavan-3-ol biosynthesis, and rust resistance in poplars. Abscisic acid also promoted poplar defense against rust infection, but likely through stomatal immunity independent of flavan-3-ols. Jasmonic acid did not confer any apparent defense responses to the fungal pathogen. We conclude that SA activates flavan-3-ol biosynthesis in poplar against rust infection.
Collapse
Affiliation(s)
- Chhana Ullah
- Department of BiochemistryMax Planck Institute for Chemical EcologyHans‐Knöll‐Straße 807745JenaGermany
| | - Chung‐Jui Tsai
- School of Forestry and Natural ResourcesDepartment of GeneticsDepartment of Plant BiologyUniversity of GeorgiaAthensGA30602USA
| | - Sybille B. Unsicker
- Department of BiochemistryMax Planck Institute for Chemical EcologyHans‐Knöll‐Straße 807745JenaGermany
| | - Liangjiao Xue
- Key Laboratory of Forest Genetics and BiotechnologyCo‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingJiangsu210037China
| | - Michael Reichelt
- Department of BiochemistryMax Planck Institute for Chemical EcologyHans‐Knöll‐Straße 807745JenaGermany
| | - Jonathan Gershenzon
- Department of BiochemistryMax Planck Institute for Chemical EcologyHans‐Knöll‐Straße 807745JenaGermany
| | - Almuth Hammerbacher
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPrivate Bag X20Pretoria0028South Africa
| |
Collapse
|
30
|
Ullah C, Unsicker SB, Reichelt M, Gershenzon J, Hammerbacher A. Accumulation of Catechin and Proanthocyanidins in Black Poplar Stems After Infection by Plectosphaerella populi: Hormonal Regulation, Biosynthesis and Antifungal Activity. FRONTIERS IN PLANT SCIENCE 2019; 10:1441. [PMID: 31803202 PMCID: PMC6873352 DOI: 10.3389/fpls.2019.01441] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/16/2019] [Indexed: 05/08/2023]
Abstract
Flavan-3-ols including the monomeric catechin and the polymeric proanthocyanidins (PAs) are abundant phenolic metabolites in poplar (Populus spp.) previously described to protect leaves against pathogen infection. However, it is not known whether stems are also defended in this way. Here we investigated flavan-3-ol accumulation, activity, and the regulation of formation in black poplar (P. nigra) stems after infection by a newly described fungal stem pathogen, Plectosphaerella populi, which forms canker-like lesions in stems. We showed that flavan-3-ol contents increased in P. populi-infected black poplar stems over the course of infection compared to non-infected controls. Transcripts of leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR) genes involved in the last steps of flavan-3-ol biosynthesis were also upregulated upon fungal infection indicating de novo biosynthesis. Amending culture medium with catechin and PAs reduced the mycelial growth of P. populi, suggesting that these metabolites act as anti-pathogen defenses in poplar in vivo. Among the hormones, salicylic acid (SA) was higher in P. populi-infected tissues compared to the non-infected controls over the course of infection studied, while jasmonic acid (JA) and JA-isoleucine (JA-Ile) levels were higher than controls only at the early stages of infection. Interestingly, cytokinins (CKs) were also upregulated in P. populi-infected stems. Poplar saplings treated with CK showed decreased levels of flavan-3-ols and SA in stems suggesting a negative association between CK and flavan-3-ol accumulation. Taken together, the sustained upregulation of SA in correlation with catechin and PA accumulation suggests that this is the dominant hormone inducing the formation of antifungal flavan-3-ols during P. populi infection of poplar stems.
Collapse
Affiliation(s)
- Chhana Ullah
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- *Correspondence: Chhana Ullah,
| | - Sybille B. Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Almuth Hammerbacher
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
31
|
Eberl F, Hammerbacher A, Gershenzon J, Unsicker SB. Leaf rust infection reduces herbivore-induced volatile emission in black poplar and attracts a generalist herbivore. THE NEW PHYTOLOGIST 2018; 220:760-772. [PMID: 28418581 DOI: 10.1111/nph.14565] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 03/02/2017] [Indexed: 05/09/2023]
Abstract
Plants release complex volatile blends after separate attack by herbivores and pathogens, which play many roles in interactions with other organisms. Large perennials are often attacked by multiple enemies, but the effect of combined attacks on volatile emission is rarely studied, particularly in trees. We infested Populus nigra trees with a pathogen, the rust fungus Melampsora larici-populina, and Lymantria dispar caterpillars alone and in combination. We investigated poplar volatile emission and its regulation, as well as the behavior of the caterpillars towards volatiles from rust-infected and uninfected trees. Both the rust fungus and the caterpillars alone induced volatile emission from poplar trees. However, the herbivore-induced volatile emission was significantly reduced when trees were under combined attack by the herbivore and the fungus. Herbivory induced terpene synthase transcripts as well as jasmonate concentrations, but these increases were suppressed when the tree was additionally infected with rust. Caterpillars preferred volatiles from rust-infected over uninfected trees. Our results suggest a defense hormone crosstalk upon combined herbivore-pathogen attack in poplar trees which results in lowered emission of herbivore-induced volatiles. This influences the preference of herbivores, and might have other far-reaching consequences for the insect and pathogen communities in natural poplar forests.
Collapse
Affiliation(s)
- Franziska Eberl
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Almuth Hammerbacher
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Sybille B Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| |
Collapse
|
32
|
Bernacki MJ, Czarnocka W, Witoń D, Rusaczonek A, Szechyńska-Hebda M, Ślesak I, Dąbrowska-Bronk J, Karpiński S. ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) affects development, photosynthesis, and hormonal homeostasis in hybrid aspen (Populus tremula L. × P. tremuloides). JOURNAL OF PLANT PHYSIOLOGY 2018; 226:91-102. [PMID: 29730441 DOI: 10.1016/j.jplph.2018.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/08/2018] [Accepted: 04/23/2018] [Indexed: 05/23/2023]
Abstract
ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) was first described as a protein involved in salicylic acid (SA)-, ethylene-, and reactive oxygen species (ROS)-dependent defense and acclimation responses. It is a molecular regulator of biotic and abiotic stress-induced programmed cell death. Its role is relatively well known in annual plants, such as Arabidopsis thaliana or Nicotiana benthamiana. However, little is known about its functions in woody plants. Therefore, in this study, we aimed to characterize the function of EDS1 in the Populus tremula L. × P. tremuloides hybrid grown for several seasons in the natural environment. We used two transgenic lines, eds1-7 and eds1-12, with decreased EDS1 expression levels in this study. The observed changes in physiological and biochemical parameters corresponded with the EDS1 silencing level. Both transgenic lines produced more lateral shoots in comparison to the wild-type (WT) plants, which resulted in the modification of tree morphology. Photosynthetic parameters, such as quantum yield of photosystem II (ϕPSII), photochemical and non-photochemical quenching (qP and NPQ, respectively), as well as chlorophyll content were found to be increased in both transgenic lines, which resulted in changes in photosynthetic efficiency. Our data also revealed lower foliar concentrations of SA and ROS, the latter resulting most probably from more efficient antioxidant system in both transgenic lines. In addition, our data indicated significantly decreased rate of leaf senescence during several autumn seasons. Transcriptomic analysis revealed deregulation of 2215 and 376 genes in eds1-12 and eds1-7, respectively, and also revealed 207 genes that were commonly deregulated in both transgenic lines. The deregulation was primarily observed in the genes involved in photosynthesis, signaling, hormonal metabolism, and development, which was found to agree with the results of biochemical and physiological tests. In general, our data proved that poplar EDS1 affects tree morphology, photosynthetic efficiency, ROS and SA metabolism, as well as leaf senescence.
Collapse
Affiliation(s)
- Maciej Jerzy Bernacki
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland
| | - Weronika Czarnocka
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland; Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland
| | - Damian Witoń
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland
| | - Anna Rusaczonek
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland
| | - Magdalena Szechyńska-Hebda
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek Street 21, 30-001 Cracow, Poland; Plant Breeding and Acclimatization Institute, 05-870 Błonie, Radzików, Poland
| | - Ireneusz Ślesak
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland; The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek Street 21, 30-001 Cracow, Poland
| | - Joanna Dąbrowska-Bronk
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland.
| |
Collapse
|
33
|
Zhu Y, Song D, Xu P, Sun J, Li L. A HD-ZIP III gene, PtrHB4, is required for interfascicular cambium development in Populus. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:808-817. [PMID: 28905477 PMCID: PMC5814583 DOI: 10.1111/pbi.12830] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/26/2017] [Accepted: 08/31/2017] [Indexed: 05/07/2023]
Abstract
Wood production is dependent on the activity of the vascular cambium, which develops from the fascicular and interfascicular cambia. However, little is known about the mechanisms controlling how the vascular cambium is developed in woody species. Here, we show that PtrHB4, belonging to the Populus HD-ZIP III family, plays a critical role in the process of vascular cambium development. PtrHB4 was specifically expressed in shoot tip and stem vascular tissue at an early developmental stage. Repression of PtrHB4 caused defects in the development of the secondary vascular system due to failures in interfascicular cambium formation. By contrast, overexpression of PtrHB4 induced cambium activity and xylem differentiation during secondary vascular development. Transcriptional analysis of PtrHB4 repressed plants indicated that auxin response and cell proliferation were affected in the formation of the interfascicular cambium. Taken together, these results suggest that PtrHB4 is required for interfascicular cambium formation to develop the vascular cambium in woody species.
Collapse
Affiliation(s)
- Yingying Zhu
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Dongliang Song
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Peng Xu
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
- Present address:
Warnell School of Forestry and Natural Resources and Department of GeneticsUniversity of GeorgiaAthensGA30602USA
| | - Jiayan Sun
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| |
Collapse
|
34
|
Eudes A, Berthomieu R, Hao Z, Zhao N, Benites VT, Baidoo EEK, Loqué D. Production of muconic acid in plants. Metab Eng 2018; 46:13-19. [PMID: 29474840 DOI: 10.1016/j.ymben.2018.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 01/06/2018] [Accepted: 02/13/2018] [Indexed: 12/16/2022]
Abstract
Muconic acid (MA) is a dicarboxylic acid used for the production of industrially relevant chemicals such as adipic acid, terephthalic acid, and caprolactam. Because the synthesis of these polymer precursors generates toxic intermediates by utilizing petroleum-derived chemicals and corrosive catalysts, the development of alternative strategies for the bio-based production of MA has garnered significant interest. Plants produce organic carbon skeletons by harvesting carbon dioxide and energy from the sun, and therefore represent advantageous hosts for engineered metabolic pathways towards the manufacturing of chemicals. In this work, we engineered Arabidopsis to demonstrate that plants can serve as green factories for the bio-manufacturing of MA. In particular, dual expression of plastid-targeted bacterial salicylate hydroxylase (NahG) and catechol 1,2-dioxygenase (CatA) resulted in the conversion of the endogenous salicylic acid (SA) pool into MA via catechol. Sequential increase of SA derived from the shikimate pathway was achieved by expressing plastid-targeted versions of bacterial salicylate synthase (Irp9) and feedback-resistant 3-deoxy-D-arabino-heptulosonate synthase (AroG). Introducing this SA over-producing strategy into engineered plants that co-express NahG and CatA resulted in a 50-fold increase in MA titers. Considering that MA was easily recovered from senesced plant biomass after harvest, we envision the phytoproduction of MA as a beneficial option to add value to bioenergy crops.
Collapse
Affiliation(s)
- Aymerick Eudes
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| | - Roland Berthomieu
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Ecole Polytechnique, Université Paris-Saclay, Palaiseau 91120, France
| | - Zhangying Hao
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Nanxia Zhao
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Department of Bioengineering, Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Veronica Teixeira Benites
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Dominique Loqué
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis St, 4th Floor, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; Université Lyon 1, INSA de Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 rue Raphaël Dubois, F-69622, Villeurbanne, France.
| |
Collapse
|
35
|
Su H, Song S, Yan X, Fang L, Zeng B, Zhu Y. Endogenous salicylic acid shows different correlation with baicalin and baicalein in the medicinal plant Scutellaria baicalensis Georgi subjected to stress and exogenous salicylic acid. PLoS One 2018; 13:e0192114. [PMID: 29438420 PMCID: PMC5810995 DOI: 10.1371/journal.pone.0192114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/18/2018] [Indexed: 12/20/2022] Open
Abstract
Salicylic acid (SA) is synthesized via the phenylalanine lyase (PAL) and isochorismate synthase (ICS) pathways and can influence the stress response in plants by regulating certain secondary metabolites. However, the association between SA and particular secondary metabolites in the Chinese medicinal plant Scutellaria baicalensis Georgi is unclear. To elucidate the association between SA and the secondary metabolites baicalin and baicalein, which constitute the primary effective components of S. baicalensis, we subjected seedlings to drought and salt stress and exogenous SA treatment in a laboratory setting and tested the expression of PAL and ICS, as well as the content of free SA (FSA), total SA (TSA), baicalin, and baicalein. We also assessed the correlation of FSA and TSA with PAL and ICS, and with baicalin and baicalein accumulation, respectively. The results indicated that both FSA and TSA were positively correlated with PAL, ICS, and baicalin, but negatively correlated with baicalein. The findings of this study improve our understanding of the manner in which SA regulates secondary metabolites in S. baicalensis.
Collapse
Affiliation(s)
- Hu Su
- Life Science Department, Nanchang University, Nanchang, Jiangxi Province, China
- Life Science Department, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province, China
| | - Shurui Song
- Life Science Department, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province, China
| | - Xin Yan
- Life Science Department, Nanchang University, Nanchang, Jiangxi Province, China
| | - Limin Fang
- Life Science Department, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province, China
| | - Bin Zeng
- Life Science Department, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province, China
| | - Youlin Zhu
- Life Science Department, Nanchang University, Nanchang, Jiangxi Province, China
- * E-mail:
| |
Collapse
|
36
|
Filiz E, Vatansever R, Ozyigit II, Uras ME, Sen U, Anjum NA, Pereira E. Genome-wide identification and expression profiling of EIL gene family in woody plant representative poplar (Populus trichocarpa). Arch Biochem Biophys 2017. [PMID: 28625764 DOI: 10.1016/j.abb.2017.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study aimed to improve current understanding on ethylene-insensitive 3-like (EIL) members, least explored in woody plants such as poplar (Populus trichocarpa Torr. & Grey). Herein, seven putative EIL members were identified in P. trichocarpa genome and were roughly annotated either as EIN3-like sequence associated with ethylene pathway or EIL3-like sequences related with sulfur (S)-pathway. Motif-distribution pattern of proteins also corroborated this annotation. They were distributed on six chromosomes (chr1, 3, 4 and 8-10), and were revealed to encode a protein of 509-662 residues with nuclear localization. The presence of ethylene insensitive 3 (EIN3; PF04873) domain (covering first 80-280 residues from N-terminus) was confirmed by Hidden Markov Model-based search. The first half of EIL proteins (∼80-280 residues including EIN3 domain) was substantially conserved. The second half (∼300-600 residues) was considerably diverged. Additionally, first half of proteins harbored acidic, proline-rich and glutamine-rich sites, and supported the essentiality of these regions in the transcriptional-activation and protein-function. Moreover, identified six segmental and one-tandem duplications demonstrated the negative or purifying selective nature of mutations. Furthermore, expression profile analysis indicated the possibility of a crosstalk between EIN3- and EIL3-like genes, and co-expression networks implicated their interactions with very diverse panels of biological molecules.
Collapse
Affiliation(s)
- Ertugrul Filiz
- Duzce University, Department of Crop and Animal Production, Cilimli Vocational School, 81750, Cilimli, Duzce, Turkey.
| | - Recep Vatansever
- Marmara University, Faculty of Science and Arts, Department of Biology, 34722, Goztepe, Istanbul, Turkey
| | - Ibrahim Ilker Ozyigit
- Marmara University, Faculty of Science and Arts, Department of Biology, 34722, Goztepe, Istanbul, Turkey
| | - Mehmet Emin Uras
- Marmara University, Faculty of Science and Arts, Department of Biology, 34722, Goztepe, Istanbul, Turkey
| | - Ugur Sen
- Marmara University, Faculty of Science and Arts, Department of Biology, 34722, Goztepe, Istanbul, Turkey
| | - Naser A Anjum
- CESAM-Centre for Environmental & Marine Studies and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Eduarda Pereira
- CESAM-Centre for Environmental & Marine Studies and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
37
|
Xu L, Zhao H, Ruan W, Deng M, Wang F, Peng J, Luo J, Chen Z, Yi K. ABNORMAL INFLORESCENCE MERISTEM1 Functions in Salicylic Acid Biosynthesis to Maintain Proper Reactive Oxygen Species Levels for Root Meristem Activity in Rice. THE PLANT CELL 2017; 29:560-574. [PMID: 28298519 PMCID: PMC5385951 DOI: 10.1105/tpc.16.00665] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 02/28/2017] [Accepted: 03/10/2017] [Indexed: 05/18/2023]
Abstract
Root meristem activity determines root growth and root architecture and consequently affects water and nutrient uptake in plants. However, our knowledge about the regulation of root meristem activity in crop plants is very limited. Here, we report the isolation and characterization of a short root mutant in rice (Oryza sativa) with reduced root meristem activity. This root growth defect is caused by a mutation in ABNORMAL INFLORESCENCE MERISTEM1 (AIM1), which encodes a 3-hydroxyacyl-CoA dehydrogenase, an enzyme involved in β-oxidation. The reduced root meristem activity of aim1 results from reduced salicylic acid (SA) levels and can be rescued by SA application. Furthermore, reduced SA levels are associated with reduced levels of reactive oxygen species (ROS) in aim1, likely due to increased expression of redox and ROS-scavenging-related genes, whose increased expression is (at least in part) caused by reduced expression of the SA-inducible transcriptional repressors WRKY62 and WRKY76. Like SA, ROS application substantially increased root length and root meristem activity in aim1 These results suggest that AIM1 is required for root growth in rice due to its critical role in SA biosynthesis: SA maintains root meristem activity through promoting ROS accumulation by inducing the activity of WRKY transcriptional repressors, which repress the expression of redox and ROS-scavenging genes.
Collapse
Affiliation(s)
- Lei Xu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Hongyu Zhao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Wenyuan Ruan
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Minjuan Deng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fang Wang
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jinrong Peng
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Luo
- College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhixiang Chen
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Keke Yi
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 10081, China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
38
|
Xue LJ, Frost CJ, Tsai CJ, Harding SA. Drought response transcriptomes are altered in poplar with reduced tonoplast sucrose transporter expression. Sci Rep 2016; 6:33655. [PMID: 27641356 PMCID: PMC5027551 DOI: 10.1038/srep33655] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/30/2016] [Indexed: 12/23/2022] Open
Abstract
Transgenic Populus tremula x alba (717-1B4) plants with reduced expression of a tonoplast sucrose efflux transporter, PtaSUT4, exhibit reduced shoot growth compared to wild type (WT) under sustained mild drought. The present study was undertaken to determine whether SUT4-RNAi directly or indirectly altered poplar predisposition and/or response to changes in soil water availability. While sucrose and hexose levels were constitutively elevated in shoot organs, expression responses to drought were most altered in the root tips of SUT4-RNAi plants. Prior to any drought treatment, constitutively elevated transcript levels of abscisic acid biosynthetic genes and bark/vegetative storage proteins suggested altered metabolism in root tips of RNAi plants. Stronger drought-stimulation of stress-inducible genes encoding late-embryogenesis-abundant proteins in transgenic roots was consistent with increased vulnerability to soil drying. Transcript evidence suggested an RNAi effect on intercellular water trafficking by aquaporins in stem xylem during soil drying and recovery. Co-expression network analysis predicted altered integration of abscisic acid sensing/signaling with ethylene and jasmonate sensing/signaling in RNAi compared to WT roots. The overall conclusion is that steepened shoot-root sugar gradient in RNAi plants increased sensitivity of root tips to decreasing soil water availability.
Collapse
Affiliation(s)
- Liang-Jiao Xue
- Warnell School of Forestry and Natural Resources and Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Christopher J. Frost
- Warnell School of Forestry and Natural Resources and Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Chung-Jui Tsai
- Warnell School of Forestry and Natural Resources and Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Scott A. Harding
- Warnell School of Forestry and Natural Resources and Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
39
|
Zandalinas SI, Rivero RM, Martínez V, Gómez-Cadenas A, Arbona V. Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. BMC PLANT BIOLOGY 2016; 16:105. [PMID: 27121193 PMCID: PMC4848825 DOI: 10.1186/s12870-016-0791-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/20/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND In natural environments, several adverse environmental conditions occur simultaneously constituting a unique stress factor. In this work, physiological parameters and the hormonal regulation of Carrizo citrange and Cleopatra mandarin, two citrus genotypes, in response to the combined action of high temperatures and water deprivation were studied. The objective was to characterize particular responses to the stress combination. RESULTS Experiments indicated that Carrizo citrange is more tolerant to the stress combination than Cleopatra mandarin. Furthermore, an experimental design spanning 24 h stress duration, heat stress applied alone induced higher stomatal conductance and transpiration in both genotypes whereas combined water deprivation partially counteracted this response. Comparing both genotypes, Carrizo citrange showed higher phostosystem-II efficiency and lower oxidative damage than Cleopatra mandarin. Hormonal profiling in leaves revealed that salicylic acid (SA) accumulated in response to individual stresses but to a higher extent in samples subjected to the combination of heat and drought (showing an additive response). SA accumulation correlated with the up-regulation of pathogenesis-related gene 2 (CsPR2), as a downstream response. On the contrary, abscisic acid (ABA) accumulation was higher in water-stressed plants followed by that observed in plants under stress combination. ABA signaling in these plants was confirmed by the expression of responsive to ABA-related gene 18 (CsRAB18). Modulation of ABA levels was likely carried out by the induction of 9-neoxanthin cis-epoxicarotenoid dioxygenase (CsNCED) and ABA 8'-hydroxylase (CsCYP707A) while conversion to ABA-glycosyl ester (ABAGE) was a less prominent process despite the strong induction of ABA O-glycosyl transferase (CsAOG). CONCLUSIONS Cleopatra mandarin is more susceptible to the combination of high temperatures and water deprivation than Carrizo citrange. This is likely a result of a higher transpiration rate in Carrizo that could allow a more efficient cooling of leaf surface ensuring optimal CO2 intake. Hence, SA induction in Cleopatra was not sufficient to protect PSII from photoinhibition, resulting in higher malondialdehyde (MDA) build-up. Inhibition of ABA accumulation during heat stress and combined stresses was achieved primarily through the up-regulation of CsCYP707A leading to phaseic acid (PA) and dehydrophaseic acid (DPA) production. To sum up, data indicate that specific physiological responses to the combination of heat and drought exist in citrus. In addition, these responses are differently modulated depending on the particular stress tolerance of citrus genotypes.
Collapse
Affiliation(s)
- Sara I. Zandalinas
- />Department Ciències Agràries i del Medi Natural, Universitat Jaume I, E-12071 Castelló de la Plana, Spain
| | - Rosa M. Rivero
- />Departament de Nutrición Vegetal, Centro de Edafología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, 30100 Murcia, Spain
| | - Vicente Martínez
- />Departament de Nutrición Vegetal, Centro de Edafología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, 30100 Murcia, Spain
| | - Aurelio Gómez-Cadenas
- />Department Ciències Agràries i del Medi Natural, Universitat Jaume I, E-12071 Castelló de la Plana, Spain
| | - Vicent Arbona
- />Department Ciències Agràries i del Medi Natural, Universitat Jaume I, E-12071 Castelló de la Plana, Spain
| |
Collapse
|
40
|
Mason CM, Bowsher AW, Crowell BL, Celoy RM, Tsai CJ, Donovan LA. Macroevolution of leaf defenses and secondary metabolites across the genus Helianthus. THE NEW PHYTOLOGIST 2016; 209:1720-33. [PMID: 26583880 DOI: 10.1111/nph.13749] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 10/06/2015] [Indexed: 05/13/2023]
Abstract
Leaf defenses are widely recognized as key adaptations and drivers of plant evolution. Across environmentally diverse habitats, the macroevolution of leaf defenses can be predicted by the univariate trade-off model, which predicts that defenses are functionally redundant and thus trade off, and the resource availability hypothesis, which predicts that defense investment is determined by inherent growth rate and that higher defense will evolve in lower resource environments. Here, we examined the evolution of leaf physical and chemical defenses and secondary metabolites in relation to environmental characteristics and leaf economic strategy across 28 species of Helianthus (the sunflowers). Using a phylogenetic comparative approach, we found few evolutionary trade-offs among defenses and no evidence for defense syndromes. We also found that leaf defenses are strongly related to leaf economic strategy, with higher defense in more resource-conservative species, although there is little support for the evolution of higher defense in low-resource habitats. A wide variety of physical and chemical defenses predict resistance to different insect herbivores, fungal pathogens, and a parasitic plant, suggesting that most sunflower defenses are not redundant in function and that wild Helianthus represents a rich source of variation for the improvement of crop sunflower.
Collapse
Affiliation(s)
- Chase M Mason
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Alan W Bowsher
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Breanna L Crowell
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Rhodesia M Celoy
- Warnell School of Forestry and Natural Resources, and Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Chung-Jui Tsai
- Warnell School of Forestry and Natural Resources, and Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Lisa A Donovan
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
41
|
Delorme-Hinoux V, Bangash SAK, Meyer AJ, Reichheld JP. Nuclear thiol redox systems in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 243:84-95. [PMID: 26795153 DOI: 10.1016/j.plantsci.2015.12.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 05/18/2023]
Abstract
Thiol-disulfide redox regulation is essential for many cellular functions in plants. It has major roles in defense mechanisms, maintains the redox status of the cell and plays structural, with regulatory roles for many proteins. Although thiol-based redox regulation has been extensively studied in subcellular organelles such as chloroplasts, it has been much less studied in the nucleus. Thiol-disulfide redox regulation is dependent on the conserved redox proteins, glutathione/glutaredoxin (GRX) and thioredoxin (TRX) systems. We first focus on the functions of glutathione in the nucleus and discuss recent data concerning accumulation of glutathione in the nucleus. We also provide evidence that glutathione reduction is potentially active in the nucleus. Recent data suggests that the nucleus is enriched in specific GRX and TRX isoforms. We discuss the biochemical and molecular characteristics of these isoforms and focus on genetic evidences for their potential nuclear functions. Finally, we make an overview of the different thiol-based redox regulated proteins in the nucleus. These proteins are involved in various pathways including transcriptional regulation, metabolism and signaling.
Collapse
Affiliation(s)
- Valérie Delorme-Hinoux
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France; Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France.
| | - Sajid A K Bangash
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France; Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France.
| |
Collapse
|
42
|
Bowsher AW, Ali R, Harding SA, Tsai CJ, Donovan LA. Evolutionary Divergences in Root Exudate Composition among Ecologically-Contrasting Helianthus Species. PLoS One 2016; 11:e0148280. [PMID: 26824236 PMCID: PMC4733055 DOI: 10.1371/journal.pone.0148280] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/16/2016] [Indexed: 11/18/2022] Open
Abstract
Plant roots exude numerous metabolites into the soil that influence nutrient availability. Although root exudate composition is hypothesized to be under selection in low fertility soils, few studies have tested this hypothesis in a phylogenetic framework. In this study, we examined root exudates of three pairs of Helianthus species chosen as phylogenetically-independent contrasts with respect to native soil nutrient availability. Under controlled environmental conditions, seedlings were grown to the three-leaf-pair stage, then transferred to either high or low nutrient treatments. After five days of nutrient treatments, we used gas chromatography-mass spectrometry for analysis of root exudates, and detected 37 metabolites across species. When compared in the high nutrient treatment, species native to low nutrient soils exhibited overall higher exudation than their sister species native to high nutrient soils in all three species pairs, providing support for repeated evolutionary shifts in response to native soil fertility. Species native to low nutrient soils and those native to high nutrient soils responded similarly to low nutrient treatments with increased exudation of organic acids (fumaric, citric, malic acids) and glucose, potentially as a mechanism to enhance nutrition acquisition. However, species native to low nutrient soils also responded to low nutrient treatments with a larger decrease in exudation of amino acids than species native to high nutrient soils in all three species pairs. This indicates that species native to low nutrient soils have evolved a unique sensitivity to changes in nutrient availability for some, but not all, root exudates. Overall, these repeated evolutionary divergences between species native to low nutrient soils and those native to high nutrient soils provide evidence for the adaptive value of root exudation, and its plasticity, in contrasting soil environments.
Collapse
Affiliation(s)
- Alan W. Bowsher
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Rifhat Ali
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, United States of America
| | - Scott A. Harding
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
| | - Chung-Jui Tsai
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
| | - Lisa A. Donovan
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
43
|
Turner MF, Heuberger AL, Kirkwood JS, Collins CC, Wolfrum EJ, Broeckling CD, Prenni JE, Jahn CE. Non-targeted Metabolomics in Diverse Sorghum Breeding Lines Indicates Primary and Secondary Metabolite Profiles Are Associated with Plant Biomass Accumulation and Photosynthesis. FRONTIERS IN PLANT SCIENCE 2016; 7:953. [PMID: 27462319 PMCID: PMC4939745 DOI: 10.3389/fpls.2016.00953] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/15/2016] [Indexed: 05/02/2023]
Abstract
Metabolomics is an emerging method to improve our understanding of how genetic diversity affects phenotypic variation in plants. Recent studies have demonstrated that genotype has a major influence on biochemical variation in several types of plant tissues, however, the association between metabolic variation and variation in morphological and physiological traits is largely unknown. Sorghum bicolor (L.) is an important food and fuel crop with extensive genetic and phenotypic variation. Sorghum lines have been bred for differing phenotypes beneficial for production of grain (food), stem sugar (food, fuel), and cellulosic biomass (forage, fuel), and these varying phenotypes are the end products of innate metabolic programming which determines how carbon is allocated during plant growth and development. Further, sorghum has been adapted among highly diverse environments. Because of this geographic and phenotypic variation, the sorghum metabolome is expected to be highly divergent; however, metabolite variation in sorghum has not been characterized. Here, we utilize a phenotypically diverse panel of sorghum breeding lines to identify associations between leaf metabolites and morpho-physiological traits. The panel (11 lines) exhibited significant variation for 21 morpho-physiological traits, as well as broader trends in variation by sorghum type (grain vs. biomass types). Variation was also observed for cell wall constituents (glucan, xylan, lignin, ash). Non-targeted metabolomics analysis of leaf tissue showed that 956 of 1181 metabolites varied among the lines (81%, ANOVA, FDR adjusted p < 0.05). Both univariate and multivariate analyses determined relationships between metabolites and morpho-physiological traits, and 384 metabolites correlated with at least one trait (32%, p < 0.05), including many secondary metabolites such as glycosylated flavonoids and chlorogenic acids. The use of metabolomics to explain relationships between two or more morpho-physiological traits was explored and showed chlorogenic and shikimic acid to be associated with photosynthesis, early plant growth and final biomass measures in sorghum. Taken together, this study demonstrates the integration of metabolomics with morpho-physiological datasets to elucidate links between plant metabolism, growth, and architecture.
Collapse
Affiliation(s)
- Marie F. Turner
- Department of Bioagricultural Sciences and Pest Management, Colorado State UniversityFort Collins, CO, USA
| | - Adam L. Heuberger
- Department of Horticulture and Landscape Architecture, Colorado State UniversityFort Collins, CO, USA
| | - Jay S. Kirkwood
- Department of Bioagricultural Sciences and Pest Management, Colorado State UniversityFort Collins, CO, USA
- Proteomics and Metabolomics Facility, Colorado State UniversityFort Collins, CO, USA
| | - Carl C. Collins
- Department of Bioagricultural Sciences and Pest Management, Colorado State UniversityFort Collins, CO, USA
| | - Edward J. Wolfrum
- National Renewable Energy Laboratory, National Bioenergy CenterGolden, CO, USA
| | - Corey D. Broeckling
- Proteomics and Metabolomics Facility, Colorado State UniversityFort Collins, CO, USA
| | - Jessica E. Prenni
- Proteomics and Metabolomics Facility, Colorado State UniversityFort Collins, CO, USA
| | - Courtney E. Jahn
- Department of Bioagricultural Sciences and Pest Management, Colorado State UniversityFort Collins, CO, USA
- *Correspondence: Courtney E. Jahn
| |
Collapse
|
44
|
Camañes G, Scalschi L, Vicedo B, González-Bosch C, García-Agustín P. An untargeted global metabolomic analysis reveals the biochemical changes underlying basal resistance and priming in Solanum lycopersicum, and identifies 1-methyltryptophan as a metabolite involved in plant responses to Botrytis cinerea and Pseudomonas syringae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:125-39. [PMID: 26270176 DOI: 10.1111/tpj.12964] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 07/12/2015] [Accepted: 07/24/2015] [Indexed: 05/03/2023]
Abstract
In this study, we have used untargeted global metabolomic analysis to determine and compare the chemical nature of the metabolites altered during the infection of tomato plants (cv. Ailsa Craig) with Botrytis cinerea (Bot) or Pseudomonas syringae pv. tomato DC3000 (Pst), pathogens that have different invasion mechanisms and lifestyles. We also obtained the metabolome of tomato plants primed using the natural resistance inducer hexanoic acid and then infected with these pathogens. By contrasting the metabolomic profiles of infected, primed, and primed + infected plants, we determined not only the processes or components related directly to plant defense responses, but also inferred the metabolic mechanisms by which pathogen resistance is primed. The data show that basal resistance and hexanoic acid-induced resistance to Bot and Pst are associated with a marked metabolic reprogramming. This includes significant changes in amino acids, sugars and free fatty acids, and in primary and secondary metabolism. Comparison of the metabolic profiles of the infections indicated clear differences, reflecting the fact that the plant's chemical responses are highly adapted to specific attackers. The data also indicate involvement of signaling molecules, including pipecolic and azelaic acids, in response to Pst and, interestingly, to Bot. The compound 1-methyltryptophan was shown to be associated with the tomato-Pst and tomato-Bot interactions as well as with hexanoic acid-induced resistance. Root application of this Trp-derived metabolite also demonstrated its ability to protect tomato plants against both pathogens.
Collapse
Affiliation(s)
- Gemma Camañes
- Grup de Bioquímica i Biotecnología, Àrea de Fisiologa Vegetal, Departament de Ciències Agràries y del Medi Natural, Escola Superior de Tecnología i Ciències Experimentals, Universitat Jaume I, Castelló, Spain
| | - Loredana Scalschi
- Grup de Bioquímica i Biotecnología, Àrea de Fisiologa Vegetal, Departament de Ciències Agràries y del Medi Natural, Escola Superior de Tecnología i Ciències Experimentals, Universitat Jaume I, Castelló, Spain
| | - Begonya Vicedo
- Grup de Bioquímica i Biotecnología, Àrea de Fisiologa Vegetal, Departament de Ciències Agràries y del Medi Natural, Escola Superior de Tecnología i Ciències Experimentals, Universitat Jaume I, Castelló, Spain
| | - Carmen González-Bosch
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Instituto de Agroquímica y Tecnología de los Alimentos-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Pilar García-Agustín
- Grup de Bioquímica i Biotecnología, Àrea de Fisiologa Vegetal, Departament de Ciències Agràries y del Medi Natural, Escola Superior de Tecnología i Ciències Experimentals, Universitat Jaume I, Castelló, Spain
| |
Collapse
|
45
|
Vega-Sánchez ME, Loqué D, Lao J, Catena M, Verhertbruggen Y, Herter T, Yang F, Harholt J, Ebert B, Baidoo EEK, Keasling JD, Scheller HV, Heazlewood JL, Ronald PC. Engineering temporal accumulation of a low recalcitrance polysaccharide leads to increased C6 sugar content in plant cell walls. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:903-14. [PMID: 25586315 DOI: 10.1111/pbi.12326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 11/11/2014] [Accepted: 12/10/2014] [Indexed: 05/10/2023]
Abstract
Reduced cell wall recalcitrance and increased C6 monosaccharide content are desirable traits for future biofuel crops, as long as these biomass modifications do not significantly alter normal growth and development. Mixed-linkage glucan (MLG), a cell wall polysaccharide only present in grasses and related species among flowering plants, is comprised of glucose monomers linked by both β-1,3 and β-1,4 bonds. Previous data have shown that constitutive production of MLG in barley (Hordeum vulgare) severely compromises growth and development. Here, we used spatio-temporal strategies to engineer Arabidopsis thaliana plants to accumulate significant amounts of MLG in the cell wall by expressing the rice CslF6 MLG synthase using secondary cell wall and senescence-associated promoters. Results using secondary wall promoters were suboptimal. When the rice MLG synthase was expressed under the control of a senescence-associated promoter, we obtained up to four times more glucose in the matrix cell wall fraction and up to a 42% increase in saccharification compared to control lines. Importantly, these plants grew and developed normally. The induction of MLG deposition at senescence correlated with an increase of gluconic acid in cell wall extracts of transgenic plants in contrast to the other approaches presented in this study. MLG produced in Arabidopsis has an altered structure compared to the grass glucan, which likely affects its solubility, while its molecular size is unaffected. The induction of cell wall polysaccharide biosynthesis in senescing tissues offers a novel engineering alternative to enhance cell wall properties of lignocellulosic biofuel crops.
Collapse
Affiliation(s)
- Miguel E Vega-Sánchez
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Dominique Loqué
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jeemeng Lao
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michela Catena
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yves Verhertbruggen
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Thomas Herter
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Fan Yang
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jesper Harholt
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Berit Ebert
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Edward E K Baidoo
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jay D Keasling
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemical and Biomolecular Engineering, and Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Henrik V Scheller
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Joshua L Heazlewood
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Pamela C Ronald
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, USA
| |
Collapse
|
46
|
Cetin D, Hacımuftuoglu A, Tatar A, Turkez H, Togar B. The in vitro protective effect of salicylic acid against paclitaxel and cisplatin-induced neurotoxicity. Cytotechnology 2015. [PMID: 26199062 DOI: 10.1007/s10616-015-9896-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Paclitaxel (PAC) and cisplatin (CIS) are two established chemotherapeutic drugs used in combination for the treatment of various solid tumors. However, the usage of PAC and CIS are limited because of the incidence of their moderate or severe neurotoxic side effects. In this study, we aimed to assess the protective role of salicylic acid (SA) against neurotoxicity caused by PAC and CIS. For this purpose, newborn Sprague Dawley rats were decapitated in sterile atmosphere and primary cortex neuron cultures were established. On the 10th day SA was added into culture plates. PAC and CIS were added on the 12th day. The cytotoxicity was determined by using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. Oxidative alterations were assessed using total antioxidant capacity and total oxidative stress assays in rat primary neuron cell cultures. It was shown that both concentrations of PAC and CIS treatments caused neurotoxicity. Although SA decreased the neurotoxicity by CIS and PAC, it was more effective against the toxicity caused by CIS rather than the toxicity caused by PAC. In conclusion it was clearly revealed that SA decreased the neurotoxic effect of CIS and PAC in vitro.
Collapse
Affiliation(s)
- Damla Cetin
- Department of Medical Pharmacology, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Ahmet Hacımuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey.
| | - Abdulgani Tatar
- Department of Medical Genetics, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Hasan Turkez
- Department of Molecular Biology and Genetics, Faculty of Sciences, Erzurum Technical University, Erzurum, Turkey.,Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Basak Togar
- Department of Biology, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
47
|
Szalonek M, Sierpien B, Rymaszewski W, Gieczewska K, Garstka M, Lichocka M, Sass L, Paul K, Vass I, Vankova R, Dobrev P, Szczesny P, Marczewski W, Krusiewicz D, Strzelczyk-Zyta D, Hennig J, Konopka-Postupolska D. Potato Annexin STANN1 Promotes Drought Tolerance and Mitigates Light Stress in Transgenic Solanum tuberosum L. Plants. PLoS One 2015; 10:e0132683. [PMID: 26172952 PMCID: PMC4501783 DOI: 10.1371/journal.pone.0132683] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 06/18/2015] [Indexed: 11/18/2022] Open
Abstract
Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L.) during drought. Nine potential potato annexins were identified and their expression characterized in response to drought treatment. STANN1 mRNA was constitutively expressed at a high level and drought treatment strongly increased transcription levels. Therefore, STANN1 was selected for overexpression analysis. Under drought conditions, transgenic potato plants ectopically expressing STANN1 were more tolerant to water deficit in the root zone, preserved more water in green tissues, maintained chloroplast functions, and had higher accumulation of chlorophyll b and xanthophylls (especially zeaxanthin) than wild type (WT). Drought-induced reductions in the maximum efficiency and the electron transport rate of photosystem II (PSII), as well as the quantum yield of photosynthesis, were less pronounced in transgenic plants overexpressing STANN1 than in the WT. This conferred more efficient non-photochemical energy dissipation in the outer antennae of PSII and probably more efficient protection of reaction centers against photooxidative damage in transgenic plants under drought conditions. Consequently, these plants were able to maintain effective photosynthesis during drought, which resulted in greater productivity than WT plants despite water scarcity. Although the mechanisms underlying this stress protection are not yet clear, annexin-mediated photoprotection is probably linked to protection against light-induced oxidative stress.
Collapse
Affiliation(s)
- Michal Szalonek
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Barbara Sierpien
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Wojciech Rymaszewski
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | | | - Maciej Garstka
- Department of Metabolic Regulation, University of Warsaw, Warsaw, Poland
| | - Malgorzata Lichocka
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Laszlo Sass
- Laboratory of Molecular Stress and Photobiology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Kenny Paul
- Laboratory of Molecular Stress and Photobiology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Imre Vass
- Laboratory of Molecular Stress and Photobiology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Praha, Czech Republic
| | - Peter Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Praha, Czech Republic
| | - Pawel Szczesny
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Waldemar Marczewski
- Department of Potato Genetics and Parental Lines, Plant Breeding and Acclimatization Institute—National Research Institute, Mlochow, Poland
| | - Dominika Krusiewicz
- Department of Potato Genetics and Parental Lines, Plant Breeding and Acclimatization Institute—National Research Institute, Mlochow, Poland
| | - Danuta Strzelczyk-Zyta
- Department of Potato Genetics and Parental Lines, Plant Breeding and Acclimatization Institute—National Research Institute, Mlochow, Poland
| | - Jacek Hennig
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Dorota Konopka-Postupolska
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
- * E-mail:
| |
Collapse
|
48
|
Xu E, Vaahtera L, Hõrak H, Hincha DK, Heyer AG, Brosché M. Quantitative trait loci mapping and transcriptome analysis reveal candidate genes regulating the response to ozone in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2015; 38:1418-33. [PMID: 25496229 DOI: 10.1111/pce.12499] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
As multifaceted molecules, reactive oxygen species (ROS) are known to accumulate in response to various stresses. Ozone (O3 ) is an air pollutant with detrimental effect on plants and O3 can also be used as a tool to study the role of ROS in signalling. Genetic variation of O3 sensitivity in different Arabidopsis accessions highlights the complex genetic architecture of plant responses to ROS. To investigate the genetic basis of O3 sensitivity, a recombinant inbred line (RIL) population between two Arabidopsis accessions with distinct O3 sensitivity, C24 (O3 tolerant) and Te (O3 sensitive) was used for quantitative trait loci (QTL) mapping. Through analysis of QTL mapping combined with transcriptome changes in response to O3 , we identified three causal QTLs and several potential candidate genes regulating the response to O3 . Based on gene expression data, water loss and stomatal conductance measurement, we found that a combination of relatively low stomatal conductance and constitutive activation of salicylic acid (SA)-mediated defence signalling were responsible for the O3 tolerance in C24. Application of exogenous SA prior to O3 exposure can mimic the constitutive SA signalling in C24 and could attenuate O3 -induced leaf damage in the sensitive Arabidopsis accessions Te and Cvi-0.
Collapse
Affiliation(s)
- Enjun Xu
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, FI-00014, Finland
| | - Lauri Vaahtera
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, FI-00014, Finland
| | - Hanna Hõrak
- Institute of Technology, University of Tartu, Tartu, 50411, Estonia
| | - Dirk K Hincha
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, D-14476, Germany
| | - Arnd G Heyer
- Department of Plant Biotechnology, Institute of Biology, University of Stuttgart, Stuttgart, D-70569, Germany
| | - Mikael Brosché
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, FI-00014, Finland
- Institute of Technology, University of Tartu, Tartu, 50411, Estonia
| |
Collapse
|
49
|
Chen HY, Babst BA, Nyamdari B, Hu H, Sykes R, Davis MF, Harding SA, Tsai CJ. Ectopic expression of a loblolly pine class II 4-coumarate:CoA ligase alters soluble phenylpropanoid metabolism but not lignin biosynthesis in Populus. PLANT & CELL PHYSIOLOGY 2014; 55:1669-78. [PMID: 25016610 DOI: 10.1093/pcp/pcu098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
4-Coumarate:CoA ligase (4CL) catalyzes the formation of hydroxycinnamoyl-CoA esters for phenylpropanoid biosynthesis. Phylogenetically distinct Class I and Class II 4CL isoforms occur in angiosperms, and support lignin and non-lignin phenylpropanoid biosynthesis, respectively. In contrast, the few experimentally characterized gymnosperm 4CLs are associated with lignin biosynthesis and belong to the conifer-specific Class III. Here we report a new Pinus taeda isoform Pinta4CL3 that is phylogenetically more closely related to Class II angiosperm 4CLs than to Class III Pinta4CL1. Like angiosperm Class II 4CLs, Pinta4CL3 transcript levels were detected in foliar and root tissues but were absent in xylem, and recombinant Pinta4CL3 exhibited a substrate preference for 4-coumaric acid. Constitutive expression of Pinta4CL3 in transgenic Populus led to significant increases of hydroxycinnamoyl-quinate esters at the expense of hydroxycinnamoyl-glucose esters in green tissues. In particular, large increases of cinnamoyl-quinate in transgenic leaves suggested in vivo utilization of cinnamic acid by Pinta4CL3. Lignin was unaffected in transgenic Populus, consistent with Pinta4CL3 involvement in biosynthesis of non-structural phenylpropanoids. We discuss the in vivo cinnamic acid utilization activity of Pinta4CL3 and its adaptive significance in conifer defense. Together with phylogenetic inference, our data support an ancient origin of Class II 4CLs that pre-dates the angiosperm-gymnosperm split.
Collapse
Affiliation(s)
- Han-Yi Chen
- School of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, MI 49931, USA Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
| | - Benjamin A Babst
- School of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, MI 49931, USA Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Present address: Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Batbayar Nyamdari
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Hao Hu
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Robert Sykes
- National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Mark F Davis
- National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Scott A Harding
- School of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, MI 49931, USA Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Chung-Jui Tsai
- School of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, MI 49931, USA Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
50
|
Babst BA, Chen HY, Wang HQ, Payyavula RS, Thomas TP, Harding SA, Tsai CJ. Stress-responsive hydroxycinnamate glycosyltransferase modulates phenylpropanoid metabolism in Populus. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4191-200. [PMID: 24803501 PMCID: PMC4112628 DOI: 10.1093/jxb/eru192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The diversity of phenylpropanoids offers a rich inventory of bioactive chemicals that can be exploited for plant improvement and human health. Recent evidence suggests that glycosylation may play a role in the partitioning of phenylpropanoid precursors for a variety of downstream uses. This work reports the functional characterization of a stress-responsive glycosyltransferase, GT1-316 in Populus. GT1-316 belongs to the UGT84A subfamily of plant glycosyltransferase family 1 and is designated UGT84A17. Recombinant protein analysis showed that UGT84A17 is a hydroxycinnamate glycosyltransferase and able to accept a range of unsubstituted and substituted cinnamic and benzoic acids as substrates in vitro. Overexpression of GT1-316 in transgenic Populus led to plant-wide increases of hydroxycinnamoyl-glucose esters, which were further elevated under N-limiting conditions. Levels of the two most abundant flavonoid glycosides, rutin and kaempferol-3-O-rutinoside, decreased, while levels of other less abundant flavonoid and phenylpropanoid conjugates increased in leaves of the GT1-316-overexpressing plants. Transcript levels of representative phenylpropanoid pathway genes were unchanged in transgenic plants, supporting a glycosylation-mediated redirection of phenylpropanoid carbon flow as opposed to enhanced phenylpropanoid pathway flux. The metabolic response of N-replete transgenic plants overlapped with that of N-stressed wild types, as the majority of phenylpropanoid derivatives significantly affected by GT1-316 overexpression were also significantly changed by N stress in the wild types. These results suggest that UGT84A17 plays an important role in phenylpropanoid metabolism by modulating biosynthesis of hydroxycinnamoyl-glucose esters and their derivatives in response to developmental and environmental cues.
Collapse
Affiliation(s)
- Benjamin A Babst
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Han-Yi Chen
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
| | - Hong-Qiang Wang
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Raja S Payyavula
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
| | - Tina P Thomas
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Scott A Harding
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Chung-Jui Tsai
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|