1
|
Yang F, Ding X, Lv G. Quantitative proteomic analysis based on TMT reveals different responses of Haloxylon ammodendron and Haloxylon persicum to long-term drought. BMC PLANT BIOLOGY 2025; 25:480. [PMID: 40234745 PMCID: PMC11998144 DOI: 10.1186/s12870-025-06513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/07/2025] [Indexed: 04/17/2025]
Abstract
The essence of the plant drought tolerance mechanism lies in determining protein expression patterns, identifying key drought-tolerant proteins, and elucidating their association with specific functions within metabolic pathways. So far, there is limited information on the long-term drought tolerance of Haloxylon ammodendron and Haloxylon persicum grown in natural environments, as analyzed through proteomics. Therefore, this study conducted proteomic research on H. ammodendron and H. persicum grown in natural environments to identify their long-term drought-tolerant protein expression patterns. Totals of 71 and 348 differentially expressed proteins (DEPs) were identified in H. ammodendron and H. persicum, respectively. Bioinformatics analysis of DEPs reveals that H. ammodendron primarily generates a large amount of energy by overexpressing proteins related to carbohydrate metabolism pathways (pyruvate kinase, purple acid phosphatases and chitinase), and simultaneously encodes proteins capable of degrading misfolded/damaged proteins (tam3-transposase, enhancer of mRNA-decapping protein 4, and proteinase inhibitor I3), thus adapting to long-term drought environments. For H. persicum, most DEPs (enolase and UDP-xylose/xylose synthase) involved in metabolic pathways are up-regulated, indicating that it mainly adapts to long-term drought environments through mechanisms related to positive regulation of protein expression. These results offer crucial insights into how desert plants adapt to arid environments over the long term to maintain internal balance. In addition, the identified key drought-tolerant proteins can serve as candidate proteins for molecular breeding in the genus Haloxylon, aiming to develop new germplasm for desert ecosystem restoration.
Collapse
Affiliation(s)
- Fang Yang
- School of Ecology and Environment, Xinjiang University, Urumqi Xinjiang, 830017, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi, 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, 833300, China
| | - Xuelian Ding
- School of Ecology and Environment, Xinjiang University, Urumqi Xinjiang, 830017, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi, 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, 833300, China
| | - Guanghui Lv
- School of Ecology and Environment, Xinjiang University, Urumqi Xinjiang, 830017, China.
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi, 830017, China.
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, 833300, China.
| |
Collapse
|
2
|
Kimberlin AN, Mahmud S, Holtsclaw RE, Walker A, Conrad K, Morley SA, Welti R, Allen DK, Koo AJ. Inducible expression of DEFECTIVE IN ANTHER DEHISCENCE 1 enhances triacylglycerol accumulation and lipid droplet formation in vegetative tissues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70088. [PMID: 40052427 PMCID: PMC11886949 DOI: 10.1111/tpj.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/10/2025]
Abstract
Bioengineering efforts to increase oil in non-storage vegetative tissues, which constitute the majority of plant biomass, are promising sustainable sources of renewable fuels and feedstocks. While plants typically do not accumulate significant amounts of triacylglycerol (TAG) in vegetative tissues, we report here that the expression of a plastid-localized phospholipase A1 protein, DEFECTIVE IN ANTHER DEHISCENCE1 (DAD1), led to a substantial increase in leaf TAG in Arabidopsis. Using an inducible system to control DAD1 expression circumvented growth penalties associated with overexpressing DAD1 and resulted in a rapid burst of TAG within several hours. The increase of TAG was accompanied by the formation of oil bodies in the leaves, petioles, and stems, but not in the roots. Lipid analysis indicated that the increase in TAG was negatively correlated with plastidial galactolipid concentration. The fatty acid (FA) composition of TAG predominantly consisted of 18:3. Expression of DAD1 in the fad3fad7fad8 mutant, devoid of 18:3, resulted in comparable TAG accumulation with 18:2 as the major FA constituent, reflecting the flexible in vivo substrate use of DAD1. The transient expression of either Arabidopsis DAD1 or Nicotiana benthamiana DAD1 (NbDAD1) in N. benthamiana leaves stimulated the accumulation of TAG. Similarly, transgenic soybeans expressing Arabidopsis DAD1 exhibited an accumulation of TAG in the leaves, showcasing the biotechnological potential of this technology. In summary, inducible expression of a plastidial lipase resulted in enhanced oil production in vegetative tissues, extending our understanding of lipid remodeling mediated by DAD1 and offering a valuable tool for metabolic engineering.
Collapse
Affiliation(s)
- Athen N. Kimberlin
- Department of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
- Present address:
Aldevron LLCMadisonWisconsin53719USA
| | - Sakil Mahmud
- Department of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
- Present address:
Department of Agriculture and Environmental SciencesLincoln UniversityJefferson CityMissouri65101USA
| | - Rebekah E. Holtsclaw
- Department of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
- Present address:
Rubi LaboratoriesAlamedaCalifornia94502USA
| | - Alexie Walker
- Department of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
| | - Kristyn Conrad
- Department of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
| | | | - Ruth Welti
- Division of BiologyKansas State UniversityManhattanKansas66506USA
| | - Doug K. Allen
- Donald Danforth Plant Science CenterSt. LouisMissouri63132USA
- USDA‐ARSSt. LouisMissouri63132USA
| | - Abraham J. Koo
- Department of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
| |
Collapse
|
3
|
Johnson BS, Allen DK, Bates PD. Triacylglycerol stability limits futile cycles and inhibition of carbon capture in oil-accumulating leaves. PLANT PHYSIOLOGY 2025; 197:kiae121. [PMID: 38431525 PMCID: PMC11849776 DOI: 10.1093/plphys/kiae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/11/2024] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
Engineering plant vegetative tissue to accumulate triacylglycerols (TAG, e.g. oil) can increase the amount of oil harvested per acre to levels that exceed current oilseed crops. Engineered tobacco (Nicotiana tabacum) lines that accumulate 15% to 30% oil of leaf dry weight resulted in starkly different metabolic phenotypes. In-depth analysis of the leaf lipid accumulation and 14CO2 tracking describe metabolic adaptations to the leaf oil engineering. An oil-for-membrane lipid tradeoff in the 15% oil line (referred to as HO) was surprisingly not further exacerbated when lipid production was enhanced to 30% (LEAFY COTYLEDON 2 (LEC2) line). The HO line exhibited a futile cycle that limited TAG yield through exchange with starch, altered carbon flux into various metabolite pools and end products, and suggested interference of the glyoxylate cycle with photorespiration that limited CO2 assimilation by 50%. In contrast, inclusion of the LEC2 transcription factor in tobacco improved TAG stability, alleviated the TAG-to-starch futile cycle, and recovered CO2 assimilation and plant growth comparable to wild type but with much higher lipid levels in leaves. Thus, the unstable production of storage reserves and futile cycling limit vegetative oil engineering approaches. The capacity to overcome futile cycles and maintain enhanced stable TAG levels in LEC2 demonstrated the importance of considering unanticipated metabolic adaptations while engineering vegetative oil crops.
Collapse
Affiliation(s)
- Brandon S Johnson
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Doug K Allen
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- United States Department of Agriculture–Agriculture Research Service, Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Philip D Bates
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
4
|
Scholz P, Doner NM, Gutbrod K, Herrfurth C, Niemeyer PW, Lim MSS, Blersch KF, Schmitt K, Valerius O, Shanklin J, Feussner I, Dörmann P, Braus GH, Mullen RT, Ischebeck T. Plasticity of the Arabidopsis leaf lipidome and proteome in response to pathogen infection and heat stress. PLANT PHYSIOLOGY 2025; 197:kiae274. [PMID: 38781317 PMCID: PMC11823117 DOI: 10.1093/plphys/kiae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Plants must cope with a variety of stressors during their life cycle, and the adaptive responses to these environmental cues involve all cellular organelles. Among them, comparatively little is known about the contribution of cytosolic lipid droplets (LDs) and their core set of neutral lipids and associated surface proteins to the rewiring of cellular processes in response to stress. Here, we analyzed the changes that occur in the lipidome and proteome of Arabidopsis (Arabidopsis thaliana) leaves after pathogen infection with Botrytis cinerea or Pseudomonas syringae, or after heat stress. Analyses were carried out in wild-type plants and the oil-rich double mutant trigalactosyldiacylglycerol1-1 sugar dependent 1-4 (tgd1-1 sdp1-4) that allowed for an allied study of the LD proteome in stressed leaves. Using liquid chromatography-tandem mass spectrometry-based methods, we showed that a hyperaccumulation of the primary LD core lipid TAG is a general response to stress and that acyl chain and sterol composition are remodeled during cellular adaptation. Likewise, comparative analysis of the LD protein composition in stress-treated leaves highlighted the plasticity of the LD proteome as part of the general stress response. We further identified at least two additional LD-associated proteins, whose localization to LDs in leaves was confirmed by confocal microscopy of fluorescent protein fusions. Taken together, these results highlight LDs as dynamic contributors to the cellular adaptation processes that underlie how plants respond to environmental stress.
Collapse
Affiliation(s)
- Patricia Scholz
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen 37077, Germany
| | - Nathan M Doner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Katharina Gutbrod
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn 53115, Germany
| | - Cornelia Herrfurth
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen 37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen 37077, Germany
| | - Philipp W Niemeyer
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen 37077, Germany
| | - Magdiel S S Lim
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster 48143, Germany
| | - Katharina F Blersch
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster 48143, Germany
| | - Kerstin Schmitt
- Institute for Microbiology and Genetics, Service Unit LCMS Protein Analytics Department for Molecular Microbiology and Genetics, University of Goettingen, Goettingen 37077, Germany
| | - Oliver Valerius
- Institute for Microbiology and Genetics, Service Unit LCMS Protein Analytics Department for Molecular Microbiology and Genetics, University of Goettingen, Goettingen 37077, Germany
| | - John Shanklin
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Ivo Feussner
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen 37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen 37077, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn 53115, Germany
| | - Gerhard H Braus
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen 37077, Germany
- Institute for Microbiology and Genetics, Service Unit LCMS Protein Analytics Department for Molecular Microbiology and Genetics, University of Goettingen, Goettingen 37077, Germany
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Till Ischebeck
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen 37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen 37077, Germany
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster 48143, Germany
| |
Collapse
|
5
|
Zhou L, Du Y, Zhang M, Li J, Zhao Y, Hu X, He K, Cao F, Ye Y. REGULATOR OF FATTY ACID SYNTHESIS proteins regulate de novo fatty acid synthesis by modulating hetACCase distribution. THE PLANT CELL 2024; 37:koae295. [PMID: 39489480 DOI: 10.1093/plcell/koae295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 11/05/2024]
Abstract
In plants, heteromeric acetyl-CoA carboxylase (hetACCase) initiates de novo fatty acid synthesis (FAS) by generating malonyl-CoA in the first committed step of this process. hetACCase activity is precisely regulated to meet the cellular demand for acyl chains during the plant life cycle. In this study, we performed a systematic coexpression analysis of hetACCase and its regulators in Arabidopsis (Arabidopsis thaliana) to better understand the regulatory mechanism of hetACCase. Our analysis uncovered REGULATOR OF FATTY ACID SYNTHESIS 1 (RFS1), whose expression is positively correlated with that of other regulators of hetACCase. The RFS gene family encodes two plastid inner envelope membrane proteins with undiscovered roles. Further analysis revealed that RFS1 colocalizes and directly interacts with CARBOXYLTRANSFERASE INTERACTOR 1 (CTI1). CRISPR/Cas9-mediated knockouts of RFSs exhibit enhanced hetACCase activity, higher FAS rates, and increased fatty acid contents, with particularly marked accumulation of absolute triacylglycerol levels in leaves, similar to cti mutants. The mutations of rfs and cti alter the plastid membrane distribution pattern of α-CT, leading to reduced hetACCase activity on the membrane, which could potentially be the original mechanism through which RFSs restrain hetACCase activity. Thus, we reveal a unique regulatory module that regulates de novo FAS and a genetic locus that may contribute to breeding of improved oil crops.
Collapse
Affiliation(s)
- Lijuan Zhou
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing 210037, China
| | - Ying Du
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing 210037, China
| | - Manqi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing 210037, China
| | - Jincheng Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing 210037, China
| | - Yue Zhao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing 210037, China
| | - Xuechun Hu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing 210037, China
| | - Kunrong He
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing 210037, China
| | - Fuliang Cao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing 210037, China
| | - Yajin Ye
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Fan J, Sah SK, Lemes Jorge G, Blanford J, Xie D, Yu L, Thelen J, Shanklin J, Xu C. Arabidopsis trigalactosyldiacylglycerol1 mutants reveal a critical role for phosphtidylcholine remodeling in lipid homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:788-798. [PMID: 39276345 DOI: 10.1111/tpj.17020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/08/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
Lipid remodeling plays a critical role in plant response to abiotic stress and metabolic perturbations. Key steps in this process involve modifications of phosphatidylcholine (PC) acyl chains mediated by lysophosphatidylcholine: acyl-CoA acyltransferases (LPCATs) and phosphatidylcholine: diacylglycerol cholinephosphotransferase (ROD1). To assess their importance in lipid homeostasis, we took advantage of the trigalactosyldiacylglycerol1 (tgd1) mutant that exhibits marked increases in fatty acid synthesis and fatty acid flux through PC due to a block in inter-organelle lipid trafficking. Here, we showed that the increased fatty acid synthesis in tgd1 is due to posttranslational activation of the plastidic acetyl-coenzyme A carboxylase. Genetic analysis showed that knockout of LPCAT1 and 2 resulted in a lethal phenotype in tgd1. In addition, plants homozygous for lpcat2 and heterozygous for lpcat1 in the tgd1 background showed reduced levels of PC and triacylglycerols (TAG) and alterations in their fatty acid profiles. We further showed that disruption of ROD1 in tgd1 resulted in changes in fatty acid composition of PC and TAG, decreased leaf TAG content and reduced seedling growth. Together, our results reveal a critical role of LPCATs and ROD1 in maintaining cellular lipid homeostasis under conditions, in which fatty acid production largely exceeds the cellular demand for membrane lipid synthesis.
Collapse
Affiliation(s)
- Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Saroj Kumar Sah
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Gabriel Lemes Jorge
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, 1201 E Rollins, Columbia, Missouri, 65211, USA
| | - Jantana Blanford
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Dongling Xie
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Jay Thelen
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, 1201 E Rollins, Columbia, Missouri, 65211, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| |
Collapse
|
7
|
Anaokar S, Liang Y, Yu XH, Cai Y, Cai Y, Shanklin J. The expression of genes encoding novel Sesame oleosin variants facilitates enhanced triacylglycerol accumulation in Arabidopsis leaves and seeds. THE NEW PHYTOLOGIST 2024; 243:271-283. [PMID: 38329350 DOI: 10.1111/nph.19548] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024]
Abstract
Triacylglycerols (TAG), accumulate within lipid droplets (LD), predominantly surrounded by OLEOSINs (OLE), that protect TAG from hydrolysis. We tested the hypothesis that identifying and removing degradation signals from OLE would promote its abundance, preventing TAG degradation and enhancing TAG accumulation. We tested whether mutating potential ubiquitin-conjugation sites in a previously reported improved Sesamum indicum OLE (SiO) variant, o3-3 Cys-OLE (SiCO herein), would stabilize it and increase its lipogenic potential. SiCOv1 was created by replacing all five lysines in SiCO with arginines. Separately, six cysteine residues within SiCO were deleted to create SiCOv2. SiCOv1 and SiCOv2 mutations were combined to create SiCOv3. Transient expression of SiCOv3 in Nicotiana benthamiana increased TAG by two-fold relative to SiCO. Constitutive expression of SiCOv3 or SiCOv5, containing the five predominant TAG-increasing mutations from SiCOv3, in Arabidopsis along with mouse DGAT2 (mD) increased TAG accumulation by 54% in leaves and 13% in seeds compared with control lines coexpressing SiCO and mD. Lipid synthesis rates increased, consistent with an increase in lipid sink strength that sequesters newly synthesized TAG, thereby relieving the constitutive BADC-dependent inhibition of ACCase reported for WT Arabidopsis. These OLE variants represent novel factors for potentially increasing TAG accumulation in a variety of oil crops.
Collapse
Affiliation(s)
- Sanket Anaokar
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Yuanxue Liang
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Xiao-Hong Yu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Yingqi Cai
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Yuanheng Cai
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| |
Collapse
|
8
|
Jia X, Xu M, Tan W, Wang Z, Guo Z, Yang X, Liu C. Proteomic and Transcriptomic Analyses Provide New Insights into the Mechanism Underlying Lipid Deterioration in Pecan Kernels during Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10127-10137. [PMID: 38651754 DOI: 10.1021/acs.jafc.4c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Pecan nuts are rich in lipids that tend to deteriorate during storage. Tandem mass-tag-based quantitative proteomics and transcriptomics were used to investigate the changes in the protein and gene profiles of stored pecan kernels for the first time. Our previous lipidomic data were jointly analyzed to elucidate the coordinated changes in lipid molecules and related proteins/genes. The mechanism underlying lipid deterioration in pecan kernels during storage was revealed by multiomics analyses. Lipid metabolism-related pathways were activated during pecan storage. Phospholipases, triacylglycerol lipases, lipoxygenases, and oil body-related proteins/genes were highly expressed during storage, revealing their involvement in lipid deterioration. These data provide rich information and will be valuable for future genetic or chemical research to alleviate lipid deterioration in pecans.
Collapse
Affiliation(s)
- Xiaodong Jia
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Xuanwu District, Nanjing 210014, Jiangsu, China
| | - Mengyang Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Xuanwu District, Nanjing 210014, Jiangsu, China
| | - Wenyue Tan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Xuanwu District, Nanjing 210014, Jiangsu, China
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Ziyan Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Xuanwu District, Nanjing 210014, Jiangsu, China
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Zhongren Guo
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Xuanwu District, Nanjing 210014, Jiangsu, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, Xinjiang, China
- Yili Botanical Garden, Xinjiang Institute of Ecology and Geography, Xinyuan 835800, Xinjiang, China
| | - Xufeng Yang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Xuanwu District, Nanjing 210014, Jiangsu, China
| | - Chenghang Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Xuanwu District, Nanjing 210014, Jiangsu, China
| |
Collapse
|
9
|
Pan Y, Zhang W, Wang X, Jouhet J, Maréchal E, Liu J, Xia XQ, Hu H. Allele-dependent expression and functionality of lipid enzyme phospholipid:diacylglycerol acyltransferase affect diatom carbon storage and growth. PLANT PHYSIOLOGY 2024; 194:1024-1040. [PMID: 37930282 DOI: 10.1093/plphys/kiad581] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/06/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
In the acyl-CoA-independent pathway of triacylglycerol (TAG) synthesis unique to plants, fungi, and algae, TAG formation is catalyzed by the enzyme phospholipid:diacylglycerol acyltransferase (PDAT). The unique PDAT gene of the model diatom Phaeodactylum tricornutum strain CCMP2561 boasts 47 single nucleotide variants within protein coding regions of the alleles. To deepen our understanding of TAG synthesis, we observed the allele-specific expression of PDAT by the analysis of 87 published RNA-sequencing (RNA-seq) data and experimental validation. The transcription of one of the two PDAT alleles, Allele 2, could be specifically induced by decreasing nitrogen concentrations. Overexpression of Allele 2 in P. tricornutum substantially enhanced the accumulation of TAG by 44% to 74% under nutrient stress; however, overexpression of Allele 1 resulted in little increase of TAG accumulation. Interestingly, a more serious growth inhibition was observed in the PDAT Allele 1 overexpression strains compared with Allele 2 counterparts. Heterologous expression in yeast (Saccharomyces cerevisiae) showed that enzymes encoded by PDAT Allele 2 but not Allele 1 had TAG biosynthetic activity, and 7 N-terminal and 3 C-terminal amino acid variants between the 2 allele-encoded proteins substantially affected enzymatic activity. P. tricornutum PDAT, localized in the innermost chloroplast membrane, used monogalactosyldiacylglycerol and phosphatidylcholine as acyl donors as demonstrated by the increase of the 2 lipids in PDAT knockout lines, which indicated a common origin in evolution with green algal PDATs. Our study reveals unequal roles among allele-encoded PDATs in mediating carbon storage and growth in response to nitrogen stress and suggests an unsuspected strategy toward lipid and biomass improvement for biotechnological purposes.
Collapse
Affiliation(s)
- Yufang Pan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wanting Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaofei Wang
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing 100871, China
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CEA, CNRS, INRA, IRIG-LPCV, Grenoble Cedex 9 38054, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CEA, CNRS, INRA, IRIG-LPCV, Grenoble Cedex 9 38054, France
| | - Jin Liu
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing 100871, China
| | - Xiao-Qin Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanhua Hu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Córdoba SC, Tong H, Burgos A, Zhu F, Alseekh S, Fernie AR, Nikoloski Z. Identification of gene function based on models capturing natural variability of Arabidopsis thaliana lipid metabolism. Nat Commun 2023; 14:4897. [PMID: 37580345 PMCID: PMC10425450 DOI: 10.1038/s41467-023-40644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023] Open
Abstract
Lipids play fundamental roles in regulating agronomically important traits. Advances in plant lipid metabolism have until recently largely been based on reductionist approaches, although modulation of its components can have system-wide effects. However, existing models of plant lipid metabolism provide lumped representations, hindering detailed study of component modulation. Here, we present the Plant Lipid Module (PLM) which provides a mechanistic description of lipid metabolism in the Arabidopsis thaliana rosette. We demonstrate that the PLM can be readily integrated in models of A. thaliana Col-0 metabolism, yielding accurate predictions (83%) of single lethal knock-outs and 75% concordance between measured transcript and predicted flux changes under extended darkness. Genome-wide associations with fluxes obtained by integrating the PLM in diel condition- and accession-specific models identify up to 65 candidate genes modulating A. thaliana lipid metabolism. Using mutant lines, we validate up to 40% of the candidates, paving the way for identification of metabolic gene function based on models capturing natural variability in metabolism.
Collapse
Affiliation(s)
- Sandra Correa Córdoba
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
| | - Hao Tong
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Asdrúbal Burgos
- Department of Zoology and Botany, University of Guadalajara, Guadalajara, Mexico
| | - Feng Zhu
- National R&D Center for Citrus Preservation, Hubei Hongshan Laboratory, National Key Laboratory for Germplasm Innovation and Utilization for Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Saleh Alseekh
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Alisdair R Fernie
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria.
| |
Collapse
|
11
|
Hu W, Ma J, Zhang H, Miu X, Miao X, Deng Y. Integrated lipidomic and transcriptomic analysis reveals diacylglycerol accumulation in olive of Longnan (China). PeerJ 2023; 11:e15724. [PMID: 37583911 PMCID: PMC10424668 DOI: 10.7717/peerj.15724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/18/2023] [Indexed: 08/17/2023] Open
Abstract
Background Olive (Olea europaea L.) oil accumulate more diacylglycerols (DAG) than mostly vegetable oils. Unsaturated fatty acids-enriched DAG consumption enhanced wellness in subjects. However, the mechanism of DAG accumulation is not yet fully understood. Methods In this study, gene network of DAG accumulation and fatty acid composition in the two olive mesocarps ("Chenggu 32" (CG) and "Koroneiki" (QJ)) were investigated by integrating lipidome and transcriptome techniques. Results A total of 1,408 lipid molecules were identified by lipidomic analysis in olive mesocarp, of which DAG (DAG36:3, DAG36:4 and DAG36:5) showed higher content, and triacylglycerols (TAG54:3, TAG54:4) exhibited opposite trend in CG. Specifically, DAG was rich in polyunsaturated fatty acids (especially C18:2) at the sn-2 position, which was inconsistent with TAG at the same positions (Primarily C18:1). Transcriptomic analysis revealed that phospholipase C (NPC, EC 3.1.4.3) were up-regulated relative to QJ, whereas diacylglycerol kinase (ATP) (DGK, EC 2.7.1.107), diacylglycerol acyltransferase (DGAT, EC 2.3.1.20), and phospholipid: diacylglycerol acyltransferase (PDAT, EC 2.3.1.158) were down-regulated. Conclusion We speculated that the non-acyl coenzyme A pathway played a significant role in DAG biosynthesis. Additionally, fatty acyl-ACP thioesterase B (FATB, EC 3.1.2.14), stearoyl [acyl-carrier-protein] 9-desaturase (SAD, EC 1.14.19.2) and omega-6 fatty acid desaturase (FAD2, EC 1.14.19.6) were highly expressed in CG and may be involved in regulating fatty acid composition. Meanwhile, phospholipase A1 (LCAT, EC 3.1.1.32) involved in the acyl editing reaction facilitated PUFA linkage at the sn-2 position of DAG. Our findings provide novel insights to increase the DAG content, improve the fatty acid composition of olive oil, and identify candidate genes for the production of DAG-rich oils.
Collapse
Affiliation(s)
- Wei Hu
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, China
| | - Junyi Ma
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, China
| | - Hongjie Zhang
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, China
| | - Xin Miu
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, China
| | - Xin Miao
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, China
| | - Yu Deng
- Institute of Olive, Longnan Academy of Economic Forestry, Wudu, Gansu, China
| |
Collapse
|
12
|
Klińska-Bąchor S, Kędzierska S, Demski K, Banaś A. Phospholipid:diacylglycerol acyltransferase1-overexpression stimulates lipid turnover, oil production and fitness in cold-grown plants. BMC PLANT BIOLOGY 2023; 23:370. [PMID: 37491206 PMCID: PMC10369929 DOI: 10.1186/s12870-023-04379-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Extensive population growth and climate change accelerate the search for alternative ways of plant-based biomass, biofuel and feed production. Here, we focus on hitherto unknow, new promising cold-stimulated function of phospholipid:diacylglycerol acyltransferase1 (PDAT1) - an enzyme catalyzing the last step of triacylglycerol (TAG) biosynthesis. RESULT Overexpression of AtPDAT1 boosted seed yield by 160% in Arabidopsis plants exposed to long-term cold compared to standard conditions. Such seeds increased both their weight and acyl-lipids content. This work also elucidates PDAT1's role in leaves, which was previously unclear. Aerial parts of AtPDAT1-overexpressing plants were characterized by accelerated growth at early and vegetative stages of development and by biomass weighing three times more than control. Overexpression of PDAT1 increased the expression of SUGAR-DEPENDENT1 (SDP1) TAG lipase and enhanced lipid remodeling, driving lipid turnover and influencing biomass increment. This effect was especially pronounced in cold conditions, where the elevated synergistic expression of PDAT1 and SDP1 resulted in double biomass increase compared to standard conditions. Elevated phospholipid remodeling also enhanced autophagy flux in AtPDAT1-overexpresing lines subjected to cold, despite the overall diminished autophagy intensity in cold conditions. CONCLUSIONS Our data suggest that PDAT1 promotes greater vitality in cold-exposed plants, stimulates their longevity and boosts oilseed oil production at low temperature.
Collapse
Affiliation(s)
- Sylwia Klińska-Bąchor
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, 80-307, Poland.
| | - Sara Kędzierska
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, 80-307, Poland
| | - Kamil Demski
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Box 190, 234 22, Sweden
| | - Antoni Banaś
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, 80-307, Poland
| |
Collapse
|
13
|
Ma W, Zhu K, Zhao J, Chen M, Wei L, Qiao Z, Tan P, Peng F. Genome-Wide Identification, Characterization, and Expression Analysis of Long-Chain Acyl-CoA Synthetases in Carya illinoinensis under Different Treatments. Int J Mol Sci 2023; 24:11558. [PMID: 37511313 PMCID: PMC10380667 DOI: 10.3390/ijms241411558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
As crucial enzymes in the lipid metabolic network, long-chain acyl-CoA synthases (LACSs) are members of the acyl-activated enzyme superfamily and play a crucial role in epidermal wax synthesis, plant lipid anabolic metabolism, and stress tolerance. In this study, 11 pecan LACS genes were identified and categorized into five groups and located on nine chromosomes. The significant degree of conservation in the AtLACS and CiLACS protein sequences was demonstrated by multiple sequence alignment and conserved motif analysis. Cis-acting element analysis identified numerous stress-responsive and hormone-inducible elements in the promoter regions of CiLACS genes. The expression levels of CiLACS9 and CiLACS9-1 were considerably up-regulated under salt and drought stress, according to the qRT-RCR study. Treatment with ABA also led to increased expression levels of CiLACS1, CiLACS1-1, CiLACS2, and CiLACS9-1. Notably, CiLACS4, CiLACS4-1, CiLACS9, and CiLACS9-1 exhibited peak expression levels at 135 days after anthesis and are likely to have been crucial in the accumulation of seed kernel oil. Moreover, the CiLACS9 gene was shown to be located in the cytoplasm. These findings offer a theoretical framework for clarifying the roles of LACS genes in the processes of pecan kernel oil synthesis and response to abiotic stressors.
Collapse
Affiliation(s)
- Wenjuan Ma
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Kaikai Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Juan Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Mengyun Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Lu Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenbing Qiao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Pengpeng Tan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Fangren Peng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
14
|
Bansal S, Sundararajan S, Shekhawat PK, Singh S, Soni P, Tripathy MK, Ram H. Rice lipases: a conundrum in rice bran stabilization: a review on their impact and biotechnological interventions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:985-1003. [PMID: 37649880 PMCID: PMC10462582 DOI: 10.1007/s12298-023-01343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Rice is a primary food and is one of the most important constituents of diets all around the world. Rice bran is a valuable component of rice, containing many oil-soluble vitamins, minerals, and oil. It is known for its ability to improve the economic value of rice. Further, it contains substantial quantities of minerals like potassium, calcium, magnesium, iron and antioxidants like tocopherols, tocotrienols, and γ-oryzanol, indicating that rice bran can be utilized effectively against several life-threatening disorders. It is difficult to fully utilize the necessary nutrients due to the presence of lipases in rice bran. These lipases break down lipids, specifically Triacylglycerol, into free fatty acids and glycerol. This review discusses physicochemical properties, mechanism of action, distribution, and activity of lipases in various components of rice seeds. The phylogenetic and gene expression analysis helped to understand the differential expression pattern of lipase genes at different growth phases of rice plant. Further, this review discusses various genetic and biotechnological approaches to decrease lipase activity in rice and other plants, which could potentially prevent the degradation of bran oil. The goal is to establish whether lipases are a major contributor to this issue and to develop rice varieties with improved bran stability. This information sets the stage for upcoming molecular research in this area. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01343-3.
Collapse
Affiliation(s)
- Sakshi Bansal
- National Agri-Food Biotechnology Institute, Sector 81, Mohali, 140306 India
| | - Sathish Sundararajan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | | | - Shivangi Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Praveen Soni
- Department of Botany, University of Rajasthan, JLN Marg, Jaipur, 302004 India
| | - Manas K. Tripathy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Hasthi Ram
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
15
|
Bouchnak I, Coulon D, Salis V, D’Andréa S, Bréhélin C. Lipid droplets are versatile organelles involved in plant development and plant response to environmental changes. FRONTIERS IN PLANT SCIENCE 2023; 14:1193905. [PMID: 37426978 PMCID: PMC10327486 DOI: 10.3389/fpls.2023.1193905] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/23/2023] [Indexed: 07/11/2023]
Abstract
Since decades plant lipid droplets (LDs) are described as storage organelles accumulated in seeds to provide energy for seedling growth after germination. Indeed, LDs are the site of accumulation for neutral lipids, predominantly triacylglycerols (TAGs), one of the most energy-dense molecules, and sterol esters. Such organelles are present in the whole plant kingdom, from microalgae to perennial trees, and can probably be found in all plant tissues. Several studies over the past decade have revealed that LDs are not merely simple energy storage compartments, but also dynamic structures involved in diverse cellular processes like membrane remodeling, regulation of energy homeostasis and stress responses. In this review, we aim to highlight the functions of LDs in plant development and response to environmental changes. In particular, we tackle the fate and roles of LDs during the plant post-stress recovery phase.
Collapse
Affiliation(s)
- Imen Bouchnak
- Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, Laboratoire de Biogenèse Membranaire UMR5200, Villenave d’Ornon, France
| | - Denis Coulon
- Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, Laboratoire de Biogenèse Membranaire UMR5200, Villenave d’Ornon, France
| | - Vincent Salis
- Université Paris-Saclay, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Sabine D’Andréa
- Université Paris-Saclay, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Claire Bréhélin
- Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, Laboratoire de Biogenèse Membranaire UMR5200, Villenave d’Ornon, France
| |
Collapse
|
16
|
Luzarowska U, Ruß AK, Joubès J, Batsale M, Szymański J, P Thirumalaikumar V, Luzarowski M, Wu S, Zhu F, Endres N, Khedhayir S, Schumacher J, Jasinska W, Xu K, Correa Cordoba SM, Weil S, Skirycz A, Fernie AR, Li-Beisson Y, Fusari CM, Brotman Y. Hello darkness, my old friend: 3-KETOACYL-COENZYME A SYNTHASE4 is a branch point in the regulation of triacylglycerol synthesis in Arabidopsis thaliana. THE PLANT CELL 2023; 35:1984-2005. [PMID: 36869652 DOI: 10.1093/plcell/koad059] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 05/30/2023]
Abstract
Plant lipids are important as alternative sources of carbon and energy when sugars or starch are limited. Here, we applied combined heat and darkness or extended darkness to a panel of ∼300 Arabidopsis (Arabidopsis thaliana) accessions to study lipid remodeling under carbon starvation. Natural allelic variation at 3-KETOACYL-COENZYME A SYNTHASE4 (KCS4), a gene encoding an enzyme involved in very long chain fatty acid (VLCFA) synthesis, underlies the differential accumulation of polyunsaturated triacylglycerols (puTAGs) under stress. Ectopic expression of KCS4 in yeast and plants proved that KCS4 is a functional enzyme localized in the endoplasmic reticulum with specificity for C22 and C24 saturated acyl-CoA. Allelic mutants and transient overexpression in planta revealed the differential role of KCS4 alleles in VLCFA synthesis and leaf wax coverage, puTAG accumulation, and biomass. Moreover, the region harboring KCS4 is under high selective pressure and allelic variation at KCS4 correlates with environmental parameters from the locales of Arabidopsis accessions. Our results provide evidence that KCS4 plays a decisive role in the subsequent fate of fatty acids released from chloroplast membrane lipids under carbon starvation. This work sheds light on both plant response mechanisms and the evolutionary events shaping the lipidome under carbon starvation.
Collapse
Affiliation(s)
- Urszula Luzarowska
- Department of Life Sciences, Ben Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Anne-Kathrin Ruß
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jérôme Joubès
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, University Bordeaux, F-33140 Villenave d'Ornon, France
| | - Marguerite Batsale
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, University Bordeaux, F-33140 Villenave d'Ornon, France
| | - Jędrzej Szymański
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, 06466 Seeland, Germany
- IBG-4 Bioinformatics, Forschungszentrum Jülich, 52428 Jülich, Germany
| | | | - Marcin Luzarowski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Si Wu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Feng Zhu
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Niklas Endres
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Sarah Khedhayir
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Julia Schumacher
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - Weronika Jasinska
- Department of Life Sciences, Ben Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Ke Xu
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | | - Simy Weil
- Department of Life Sciences, Ben Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair Robert Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Yonghua Li-Beisson
- CEA, CNRS, BIAM, Institute de Biosciences et Biotechnologies Aix-Marseille, Aix Marseille Univ., F-13108 Saint Paul-Lez-Durance, France
| | - Corina M Fusari
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET-UNR), Suipacha 570, S2000LRJ Rosario, Argentina
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| |
Collapse
|
17
|
Nguyen VC, Nakamura Y. Distinctly localized lipid phosphate phosphatases mediate endoplasmic reticulum glycerolipid metabolism in Arabidopsis. THE PLANT CELL 2023; 35:1548-1571. [PMID: 36718530 PMCID: PMC10118277 DOI: 10.1093/plcell/koad021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Inter-organelle communication is an integral subcellular process in cellular homeostasis. In plants, cellular membrane lipids are synthesized in the plastids and endoplasmic reticulum (ER). However, the crosstalk between these organelles in lipid biosynthesis remains largely unknown. Here, we show that a pair of lipid phosphate phosphatases (LPPs) with differential subcellular localizations is required for ER glycerolipid metabolism in Arabidopsis (Arabidopsis thaliana). LPPα2 and LPPε1, which function as phosphatidic acid phosphatases and thus catalyze the core reaction in glycerolipid metabolism, were differentially localized at ER and chloroplast outer envelopes despite their similar tissue expression pattern. No mutant phenotype was observed in single knockout mutants; however, genetic suppression of these LPPs affected pollen growth and ER phospholipid biosynthesis in mature siliques and seeds with compromised triacylglycerol biosynthesis. Although chloroplast-localized, LPPε1 was localized close to the ER and ER-localized LPPα2. This proximal localization is functionally relevant, because overexpression of chloroplastic LPPε1 enhanced ER phospholipid and triacylglycerol biosynthesis similar to the effect of LPPα2 overexpression in mature siliques and seeds. Thus, ER glycerolipid metabolism requires a chloroplast-localized enzyme in Arabidopsis, representing the importance of inter-organelle communication in membrane lipid homeostasis.
Collapse
Affiliation(s)
- Van C Nguyen
- RIKEN Center for Sustainable Resource Science (CSRS), Yokohama 230-0045, Japan
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Nankang, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yuki Nakamura
- RIKEN Center for Sustainable Resource Science (CSRS), Yokohama 230-0045, Japan
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Nankang, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei 11529, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
- Graduate School of Science, The University of Tokyo, Tokyo 113-8654, Japan
| |
Collapse
|
18
|
Maghoumi M, Amodio ML, Cisneros-Zevallos L, Colelli G. Prevention of Chilling Injury in Pomegranates Revisited: Pre- and Post-Harvest Factors, Mode of Actions, and Technologies Involved. Foods 2023; 12:foods12071462. [PMID: 37048282 PMCID: PMC10093716 DOI: 10.3390/foods12071462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
The storage life of pomegranate fruit (Punica granatum L.) is limited by decay, chilling injury, weight loss, and husk scald. In particular, chilling injury (CI) limits pomegranate long-term storage at chilling temperatures. CI manifests as skin browning that expands randomly with surface spots, albedo brown discoloration, and changes in aril colors from red to brown discoloration during handling or storage (6-8 weeks) at <5-7 °C. Since CI symptoms affect external and internal appearance, it significantly reduces pomegranate fruit marketability. Several postharvest treatments have been proposed to prevent CI, including atmospheric modifications (MA), heat treatments (HT), coatings, use of polyamines (PAs), salicylic acid (SA), jasmonates (JA), melatonin and glycine betaine (GB), among others. There is no complete understanding of the etiology and biochemistry of CI, however, a hypothetical model proposed herein indicates that oxidative stress plays a key role, which alters cell membrane functionality and integrity and alters protein/enzyme biosynthesis associated with chilling injury symptoms. This review discusses the hypothesized mechanism of CI based on recent research, its association to postharvest treatments, and their possible targets. It also indicates that the proposed mode of action model can be used to combine treatments in a hurdle synergistic or additive approach or as the basis for novel technological developments.
Collapse
Affiliation(s)
- Mahshad Maghoumi
- Dipartimento di Scienze Agrarie, Degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Maria Luisa Amodio
- Dipartimento di Scienze Agrarie, Degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Giancarlo Colelli
- Dipartimento di Scienze Agrarie, Degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy
| |
Collapse
|
19
|
Korte P, Unzner A, Damm T, Berger S, Krischke M, Mueller MJ. High triacylglycerol turnover is required for efficient opening of stomata during heat stress in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36976526 DOI: 10.1111/tpj.16210] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/04/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Heat stress triggers the accumulation of triacylglycerols in Arabidopsis leaves, which increases basal thermotolerance. However, how triacylglycerol synthesis is linked to thermotolerance remains unclear and the mechanisms involved remain to be elucidated. It has been shown that triacylglycerol and starch degradation are required to provide energy for stomatal opening induced by blue light at dawn. To investigate whether triacylglycerol turnover is involved in heat-induced stomatal opening during the day, we performed feeding experiments with labeled fatty acids. Heat stress strongly induced both triacylglycerol synthesis and degradation to channel fatty acids destined for peroxisomal ß-oxidation through the triacylglycerol pool. Analysis of mutants defective in triacylglycerol synthesis or peroxisomal fatty acid uptake revealed that triacylglycerol turnover and fatty acid catabolism are required for heat-induced stomatal opening in illuminated leaves. We show that triacylglycerol turnover is continuous (1.2 mol% per min) in illuminated leaves even at 22°C. The ß-oxidation of triacylglycerol-derived fatty acids generates C2 carbon units that are channeled into the tricarboxylic acid pathway in the light. In addition, carbohydrate catabolism is required to provide oxaloacetate as an acceptor for peroxisomal acetyl-CoA and maintain the tricarboxylic acid pathway for energy and amino acid production during the day.
Collapse
Affiliation(s)
- Pamela Korte
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Amelie Unzner
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Theresa Damm
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Susanne Berger
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Markus Krischke
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Martin J Mueller
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| |
Collapse
|
20
|
Wu YL, Chen YL, Wei L, Fan XW, Dong MY, Li YZ. MeGATAs, functional generalists in interactions between cassava growth and development, and abiotic stresses. AOB PLANTS 2023; 15:plac057. [PMID: 36654987 PMCID: PMC9840210 DOI: 10.1093/aobpla/plac057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The proteins with DNA-binding preference to the consensus DNA sequence (A/T) GATA (A/G) belong to a GATA transcription factor family, with a wide array of biological processes in plants. Cassava (Manihot esculenta) is an important food crop with high production of starch in storage roots. Little was however known about cassava GATA domain-containing genes (MeGATAs). Thirty-six MeGATAs, MeGATA1 to MeGATA36, were found in this study. Some MeGATAs showed a collinear relationship with orthologous genes of Arabidopsis, poplar and potato, rice, maize and sorghum. Eight MeGATA-encoded proteins (MeGATAs) analysed were all localized in the nucleus. Some MeGATAs had potentials of binding ligands and/or enzyme activity. One pair of tandem-duplicated MeGATA17-MeGATA18 and 30 pairs of whole genome-duplicated MeGATAs were found. Fourteen MeGATAs showed low or no expression in the tissues. Nine analysed MeGATAs showed expression responses to abiotic stresses and exogenous phytohormones. Three groups of MeGATA protein interactions were found. Fifty-three miRNAs which can target 18 MeGATAs were identified. Eight MeGATAs were found to target other 292 cassava genes, which were directed to radial pattern formation and phyllome development by gene ontology enrichment, and autophagy by Kyoto Encyclopaedia of Genes and Genomes enrichment. These data suggest that MeGATAs are functional generalists in interactions between cassava growth and development, abiotic stresses and starch metabolism.
Collapse
Affiliation(s)
| | | | - Li Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, P.R. China
| | - Xian-Wei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, P.R. China
| | | | - You-Zhi Li
- Corresponding authors’ e-mail addresses: ;
| |
Collapse
|
21
|
Sahoo S, Dehury B, Narang PK, Raina V, Misra N, Suar M. Comprehensive sequence and structure analysis of algal lipid catabolic enzyme Triacylglycerol lipase: an in silico study to vitalize the development of optimum engineered strains with high lipid productivity. J Biomol Struct Dyn 2022; 40:11989-12007. [PMID: 34415234 DOI: 10.1080/07391102.2021.1967194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microalgae as an alternative renewable resource for biofuel production have captured much significance. Nonetheless, its economic viability is a field of major concern for researchers. Unraveling the lipid catabolic pathway and gaining insights into the sequence-structural features of its primary functioning enzyme, Triacylglycerol lipase, will impart valuable information to target microalgae for augmented lipid content. In the present study, a genome-wide comparative study on putative Triacylglycerol lipase (TAGL) enzyme from algal species belonging to varied phylogenetic lineages was performed. The comprehensive sequence analysis revealed that TAGL comprises of three distinct conserved domains, such as, Patatin, Class III Lipase, and Abhydro_lipase, and also confirmed the ubiquitous presence of GXSXG motif in the sequences analyzed. In the absence of a crystal structure of algal TAGL till date, we developed the first 3D model of patatin domain of TAGL from an oleaginous microalga, Phaedactylum tricornutum, employing homology modeling, docking and molecular dynamic simulations methods. The domain-substrate complex having the low-ranking docking score revealed the binding of palmitic acid to the TAGL patatin domain surface with strong hydrogen bond interactions. The simulation results implied that the substrate-complexed patatin domain and the free enzyme adopted a more stable conformation after 40 ns. This is the first ever attempt to provide in-silico insights into the structural and dynamical insights on catalytic mechanism of the TAGL patatin domain. Subsequently, these findings aided our understanding on their structural stability, folding mechanism and protein-substrate interactions, which could be further utilized to design site-specific mutagenic experiments for engineering microalgal strains.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Susrita Sahoo
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Budheswar Dehury
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Parminder Kaur Narang
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India.,SGTB Khalsa College, Delhi University, Delhi, India
| | - Vishakha Raina
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India.,KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India.,KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| |
Collapse
|
22
|
Cai Y, Yu XH, Shanklin J. A toolkit for plant lipid engineering: Surveying the efficacies of lipogenic factors for accumulating specialty lipids. FRONTIERS IN PLANT SCIENCE 2022; 13:1064176. [PMID: 36589075 PMCID: PMC9795026 DOI: 10.3389/fpls.2022.1064176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Plants produce energy-dense lipids from carbohydrates using energy acquired via photosynthesis, making plant oils an economically and sustainably attractive feedstock for conversion to biofuels and value-added bioproducts. A growing number of strategies have been developed and optimized in model plants, oilseed crops and high-biomass crops to enhance the accumulation of storage lipids (mostly triacylglycerols, TAGs) for bioenergy applications and to produce specialty lipids with increased uses and value for chemical feedstock and nutritional applications. Most successful metabolic engineering strategies involve heterologous expression of lipogenic factors that outperform those from other sources or exhibit specialized functionality. In this review, we summarize recent progress in engineering the accumulation of triacylglycerols containing - specialized fatty acids in various plant species and tissues. We also provide an inventory of specific lipogenic factors (including accession numbers) derived from a wide variety of organisms, along with their reported efficacy in supporting the accumulation of desired lipids. A review of previously obtained results serves as a foundation to guide future efforts to optimize combinations of factors to achieve further enhancements to the production and accumulation of desired lipids in a variety of plant tissues and species.
Collapse
Affiliation(s)
- Yingqi Cai
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Xiao-Hong Yu
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| |
Collapse
|
23
|
Guo J, Cao P, Yuan L, Xia G, Zhang H, Li J, Wang F. Revealing the contribution of GbPR10.5D1 to resistance against Verticillium dahliae and its regulation for structural defense and immune signaling. THE PLANT GENOME 2022; 15:e20271. [PMID: 36281215 DOI: 10.1002/tpg2.20271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
As an important family of pathogenesis-related (PR) proteins, the functional diversification and roles of PR10s in biotic stress have been well documented. However, the molecular basis of PR10s in plant defense responses against pathogens remains to be further understood. In the present study, we analyzed the phylogenetic relationship and function of a novel PR10 named GbPR10.5D1 in Sea-Island (or Pima or Egyptian) cotton (Gossypium barbadense L.), which has been identified as a Verticillium dahliae Kleb.-induced protein in a previous proteomics study. Phylogenetic analysis revealed that GbPR10.5D1, located on chromosome 2, is a unique member of GbPR10. The expression of GbPR10.5D1 was preferably in the root and induced upon V. dahliae infection. GbPR10.5D1 proteins were distributed in both nucleus and cytoplasm. GbPR10.5D1-virus-induced gene-silencing (VIGS) cotton plants were more susceptible to infection by V. dahliae, whereas overexpression (OE) of GbPR10.5D1 in cotton enhanced the resistance. By comparative transcriptome analysis between GbPR10.5D1-OE and wild-type (WT) plants and quantitative real-time polymerase chain reaction (qRT-PCR) verification, we found transcriptional activation of genes involved in cutin, suberine, and wax biosynthesis and mitogen-activated protein kinase (MAPK) signaling under normal conditions. Upon pathogen infection, defense signaling, fatty acid degradation, and glycerolipid metabolism were specifically activated in GbPR10.5D1-OE plants; biological processes (BPs), including glycolysis and gluconeogenesis, DNA replication, and cell wall organization, were specifically repressed in WT plants. Collectively, we proposed that GbPR10.5D1 possibly mediated lipid metabolism pathway to strengthen structural defense and activate defense signaling, which largely released the repression of cell growth caused by V. dahliae infection.
Collapse
Affiliation(s)
- Jin Guo
- College of Life Sciences, Hebei Univ., Baoding, 071002, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, China
| | - Peihua Cao
- College of Life Sciences, Hebei Univ., Baoding, 071002, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, China
| | - Leitian Yuan
- College of Life Sciences, Hebei Univ., Baoding, 071002, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, China
| | - Guixian Xia
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huanyang Zhang
- Institute of Cotton Research, Shanxi Academy of Agricultural Sciences, Yuncheng, Shanxi, 044000, China
| | - Jing Li
- Institute of Cotton Research, Shanxi Academy of Agricultural Sciences, Yuncheng, Shanxi, 044000, China
| | - Fuxin Wang
- College of Life Sciences, Hebei Univ., Baoding, 071002, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, China
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
24
|
Cohen M, Hertweck K, Itkin M, Malitsky S, Dassa B, Fischer AM, Fluhr R. Enhanced proteostasis, lipid remodeling, and nitrogen remobilization define barley flag leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6816-6837. [PMID: 35918065 DOI: 10.1093/jxb/erac329] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Leaf senescence is a developmental process allowing nutrient remobilization to sink organs. We characterized flag leaf senescence at 7, 14, and 21 d past anthesis in two near-isogenic barley lines varying in the allelic state of the HvNAM1 transcription factor gene, which influences senescence timing. Metabolomics and microscopy indicated that, as senescence progressed, thylakoid lipids were transiently converted to neutral lipids accumulating in lipid droplets. Senescing leaves also exhibited an accumulation of sugars including glucose, while nitrogen compounds (nucleobases, nucleotides, and amino acids) decreased. RNA-Seq analysis suggested lipid catabolism via β-oxidation and the glyoxylate cycle, producing carbon skeletons and feeding respiration as a replacement of the diminished carbon supply from photosynthesis. Comparison of the two barley lines highlighted a more prominent up-regulation of heat stress transcription factor- and chaperone-encoding genes in the late-senescing line, suggesting a role for these genes in the control of leaf longevity. While numerous genes with putative roles in nitrogen remobilization were up-regulated in both lines, several peptidases, nucleases, and nitrogen transporters were more highly induced in the early-senescing line; this finding identifies processes and specific candidates which may affect nitrogen remobilization from senescing barley leaves, downstream of the HvNAM1 transcription factor.
Collapse
Affiliation(s)
- Maja Cohen
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Kendra Hertweck
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Maxim Itkin
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Andreas M Fischer
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Robert Fluhr
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
25
|
Cai Y, Zhai Z, Blanford J, Liu H, Shi H, Schwender J, Xu C, Shanklin J. Purple acid phosphatase2 stimulates a futile cycle of lipid synthesis and degradation, and mitigates the negative growth effects of triacylglycerol accumulation in vegetative tissues. THE NEW PHYTOLOGIST 2022; 236:1128-1139. [PMID: 35851483 DOI: 10.1111/nph.18392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Storage lipids (mostly triacylglycerols, TAGs) serve as an important energy and carbon reserve in plants, and hyperaccumulation of TAG in vegetative tissues can have negative effects on plant growth. Purple acid phosphatase2 (PAP2) was previously shown to affect carbon metabolism and boost plant growth. However, the effects of PAP2 on lipid metabolism remain unknown. Here, we demonstrated that PAP2 can stimulate a futile cycle of fatty acid (FA) synthesis and degradation, and mitigate negative growth effects associated with high accumulation of TAG in vegetative tissues. Constitutive expression of PAP2 in Arabidopsis thaliana enhanced both lipid synthesis and degradation in leaves and led to a substantial increase in seed oil yield. Suppressing lipid degradation in a PAP2-overexpressing line by disrupting sugar-dependent1 (SDP1), a predominant TAG lipase, significantly elevated vegetative TAG content and improved plant growth. Diverting FAs from membrane lipids to TAGs in PAP2-overexpressing plants by constitutively expressing phospholipid:diacylglycerol acyltransferase1 (PDAT1) greatly increased TAG content in vegetative tissues without compromising biomass yield. These results highlight the potential of combining PAP2 with TAG-promoting factors to enhance carbon assimilation, FA synthesis and allocation to TAGs for optimized plant growth and storage lipid accumulation in vegetative tissues.
Collapse
Affiliation(s)
- Yingqi Cai
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Zhiyang Zhai
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jantana Blanford
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Hui Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Hai Shi
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jorg Schwender
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| |
Collapse
|
26
|
Winichayakul S, Macknight R, Le Lievre L, Beechey-Gradwell Z, Lee R, Cooney L, Xue H, Crowther T, Anderson P, Richardson K, Zou X, Maher D, Bryan G, Roberts N. Insight into the regulatory networks underlying the high lipid perennial ryegrass growth under different irradiances. PLoS One 2022; 17:e0275503. [PMID: 36227922 PMCID: PMC9560171 DOI: 10.1371/journal.pone.0275503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/18/2022] [Indexed: 11/19/2022] Open
Abstract
Under favourable conditions, perennial ryegrass (Lolium perenne) engineered to accumulated high lipid (HL) carbon sink in their leaves was previously shown to also enhance photosynthesis and growth. The greater aboveground biomass was found to be diminished in a dense canopy compared to spaced pots. Besides, the underlying genetic regulatory network linking between leaf lipid sinks and these physiological changes remains unknown. In this study, we demonstrated that the growth advantage was not displayed in HL Lolium grown in spaced pots under low lights. Under standard lights, analysis of differentiating transcripts in HL Lolium reveals that the plants had elevated transcripts involved in lipid metabolism, light capturing, photosynthesis, and sugar signalling while reduced expression of genes participating in sugar biosynthesis and transportation. The plants also had altered several transcripts involved in mitochondrial oxidative respiration and redox potential. Many of the above upregulated or downregulated transcript levels were found to be complemented by growing the plants under low light. Overall, this study emphasizes the importance of carbon and energy homeostatic regulatory mechanisms to overall productivity of the HL Lolium through photosynthesis, most of which are significantly impacted by low irradiances.
Collapse
Affiliation(s)
| | - Richard Macknight
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Liam Le Lievre
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | - Robyn Lee
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Luke Cooney
- AgResearch Ltd., Palmerston North, New Zealand
| | - Hong Xue
- AgResearch Ltd., Palmerston North, New Zealand
| | | | | | | | - Xiuying Zou
- AgResearch Ltd., Palmerston North, New Zealand
| | | | | | - Nick Roberts
- AgResearch Ltd., Palmerston North, New Zealand
- * E-mail: (SW); (NR)
| |
Collapse
|
27
|
Huang L, Liu Y, Wang X, Jiang C, Zhao Y, Lu M, Zhang J. Peroxisome-Mediated Reactive Oxygen Species Signals Modulate Programmed Cell Death in Plants. Int J Mol Sci 2022; 23:ijms231710087. [PMID: 36077484 PMCID: PMC9456327 DOI: 10.3390/ijms231710087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Peroxisomes are a class of simple organelles that play an important role in plant reactive oxygen species (ROS) metabolism. Experimental evidence reveals the involvement of ROS in programmed cell death (PCD) in plants. Plant PCD is crucial for the regulation of plant growth, development and environmental stress resistance. However, it is unclear whether the ROS originated from peroxisomes participated in cellular PCD. Enzymes involved in the peroxisomal ROS metabolic pathways are key mediators to figure out the relationship between peroxisome-derived ROS and PCD. Here, we summarize the peroxisomal ROS generation and scavenging pathways and explain how peroxisome-derived ROS participate in PCD based on recent progress in the functional study of enzymes related to peroxisomal ROS generation or scavenging. We aimed to elucidate the role of the peroxisomal ROS regulatory system in cellular PCD to show its potential in terms of accurate PCD regulation, which contribute to environmental stress resistance.
Collapse
|
28
|
Luo G, Cao VD, Kannan B, Liu H, Shanklin J, Altpeter F. Metabolic engineering of energycane to hyperaccumulate lipids in vegetative biomass. BMC Biotechnol 2022; 22:24. [PMID: 36042455 PMCID: PMC9425976 DOI: 10.1186/s12896-022-00753-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background The metabolic engineering of high-biomass crops for lipid production in their vegetative biomass has recently been proposed as a strategy to elevate energy density and lipid yields for biodiesel production. Energycane and sugarcane are highly polyploid, interspecific hybrids between Saccharum officinarum and Saccharum spontaneum that differ in the amount of ancestral contribution to their genomes. This results in greater biomass yield and persistence in energycane, which makes it the preferred target crop for biofuel production. Results Here, we report on the hyperaccumulation of triacylglycerol (TAG) in energycane following the overexpression of the lipogenic factors Diacylglycerol acyltransferase1-2 (DGAT1-2) and Oleosin1 (OLE1) in combination with RNAi suppression of SUGAR-DEPENDENT1 (SDP1) and Trigalactosyl diacylglycerol1 (TGD1). TAG accumulated up to 1.52% of leaf dry weight (DW,) a rate that was 30-fold that of non-modified energycane, in addition to almost doubling the total fatty acid content in leaves to 4.42% of its DW. Pearson’s correlation analysis showed that the accumulation of TAG had the highest correlation with the expression level of ZmDGAT1-2, followed by the level of RNAi suppression for SDP1. Conclusions This is the first report on the metabolic engineering of energycane and demonstrates that this resilient, high-biomass crop is an excellent target for the further optimization of the production of lipids from vegetative tissues. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-022-00753-7.
Collapse
Affiliation(s)
- Guangbin Luo
- Plant Molecular and Cellular Biology Program, Agronomy Department, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA
| | - Viet Dang Cao
- Plant Molecular and Cellular Biology Program, Agronomy Department, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA
| | - Baskaran Kannan
- Plant Molecular and Cellular Biology Program, Agronomy Department, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA
| | - Hui Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA.
| | - Fredy Altpeter
- Plant Molecular and Cellular Biology Program, Agronomy Department, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA.
| |
Collapse
|
29
|
Chen G, Harwood JL, Lemieux MJ, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: Properties, physiological roles, metabolic engineering and intentional control. Prog Lipid Res 2022; 88:101181. [PMID: 35820474 DOI: 10.1016/j.plipres.2022.101181] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the last reaction in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG). DGAT activity resides mainly in membrane-bound DGAT1 and DGAT2 in eukaryotes and bifunctional wax ester synthase-diacylglycerol acyltransferase (WSD) in bacteria, which are all membrane-bound proteins but exhibit no sequence homology to each other. Recent studies also identified other DGAT enzymes such as the soluble DGAT3 and diacylglycerol acetyltransferase (EaDAcT), as well as enzymes with DGAT activities including defective in cuticular ridges (DCR) and steryl and phytyl ester synthases (PESs). This review comprehensively discusses research advances on DGATs in prokaryotes and eukaryotes with a focus on their biochemical properties, physiological roles, and biotechnological and therapeutic applications. The review begins with a discussion of DGAT assay methods, followed by a systematic discussion of TAG biosynthesis and the properties and physiological role of DGATs. Thereafter, the review discusses the three-dimensional structure and insights into mechanism of action of human DGAT1, and the modeled DGAT1 from Brassica napus. The review then examines metabolic engineering strategies involving manipulation of DGAT, followed by a discussion of its therapeutic applications. DGAT in relation to improvement of livestock traits is also discussed along with DGATs in various other eukaryotic organisms.
Collapse
Affiliation(s)
- Guanqun Chen
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Membrane Protein Disease Research Group, Edmonton T6G 2H7, Canada
| | - Scot J Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Randall J Weselake
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| |
Collapse
|
30
|
Li F, Han X, Guan H, Xu MC, Dong YX, Gao XQ. PALD encoding a lipid droplet-associated protein is critical for the accumulation of lipid droplets and pollen longevity in Arabidopsis. THE NEW PHYTOLOGIST 2022; 235:204-219. [PMID: 35348222 DOI: 10.1111/nph.18123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Pollen longevity is critical for plant pollination and hybrid seed production, but few studies have focused on pollen longevity. In this study, we identified an Arabidopsis thaliana gene, Protein associated with lipid droplets (PALD), which is strongly expressed in pollen and critical for the regulation of pollen longevity. PALD was expressed specifically in mature pollen grains and the pollen tube, and its expression was upregulated under dry conditions. PALD encoded a lipid droplet (LD)-associated protein and its N terminus was critical for the LD localization of PALD. The number of LDs and diameter were reduced in pollen grains of the loss-of-function PALD mutants. The viability and germination of the mature pollen grains of the pald mutants were comparable with those of the wild-type, but after the pollen grains were stored under dry conditions, pollen germination and male transmission of the mutant were compromised compared with those of the wild-type. Our study suggests that PALD was required for the maintenance of LD quality in mature pollen grains and regulation of pollen longevity.
Collapse
Affiliation(s)
- Fei Li
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xiao Han
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Huan Guan
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Mei Chen Xu
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Yu Xiu Dong
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xin-Qi Gao
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
31
|
Yang J, Liu J, Pan Y, Maréchal E, Amato A, Liu M, Gong Y, Li Y, Hu H. PDAT regulates PE as transient carbon sink alternative to triacylglycerol in Nannochloropsis. PLANT PHYSIOLOGY 2022; 189:1345-1362. [PMID: 35385114 PMCID: PMC9237688 DOI: 10.1093/plphys/kiac160] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 05/21/2023]
Abstract
Triacylglycerols (TAGs) are the main storage lipids in photosynthetic organisms under stress. In the oleaginous alga Nannochloropsis oceanica, while multiple acyl CoA:diacylglycerol (DAG) acyltransferases (NoDGATs) are involved in TAG production, the role of the unique phospholipid:DAG acyltransferase (NoPDAT) remains unknown. Here, we performed a functional complementation assay in TAG-deficient yeast (Saccharomyces cerevisiae) and an in vitro assay to probe the acyltransferase activity of NoPDAT. Subcellular localization, overexpression, and knockdown (KD) experiments were also conducted to elucidate the role of NoPDAT in N. oceanica. NoPDAT, residing at the outermost plastid membrane, does not phylogenetically fall into the clades of algae or plants and uses phosphatidylethanolamine (PE) and phosphatidylglycerol with 16:0, 16:1, and 18:1 at position sn-2 as acyl-donors in vivo. NoPDAT KD, not triggering any compensatory mechanism via DGATs, led to an ∼30% decrease of TAG content, accompanied by a vast accumulation of PEs rich in 16:0, 16:1, and 18:1 fatty acids (referred to as "LU-PE") that was positively associated with CO2 availability. We conclude that the NoPDAT pathway is parallel to and independent of the NoDGAT pathway for oil production. LU-PE can serve as an alternative carbon sink for photosynthetically assimilated carbon in N. oceanica when PDAT-mediated TAG biosynthesis is compromised or under stress in the presence of high CO2 levels.
Collapse
Affiliation(s)
| | | | - Yufang Pan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CEA, CNRS, INRA, IRIG‐LPCV, 38054 Grenoble Cedex 9, France
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CEA, CNRS, INRA, IRIG‐LPCV, 38054 Grenoble Cedex 9, France
| | - Meijing Liu
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing 100871, China
| | - Yangmin Gong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yantao Li
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science and University of Maryland Baltimore County, Baltimore, Maryland 21202, USA
| | | |
Collapse
|
32
|
Xu C, Fan J. Links between autophagy and lipid droplet dynamics. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2848-2858. [PMID: 35560198 DOI: 10.1093/jxb/erac003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/06/2022] [Indexed: 06/15/2023]
Abstract
Autophagy is a catabolic process in which cytoplasmic components are delivered to vacuoles or lysosomes for degradation and nutrient recycling. Autophagy-mediated degradation of membrane lipids provides a source of fatty acids for the synthesis of energy-rich, storage lipid esters such as triacylglycerol (TAG). In eukaryotes, storage lipids are packaged into dynamic subcellular organelles, lipid droplets. In times of energy scarcity, lipid droplets can be degraded via autophagy in a process termed lipophagy to release fatty acids for energy production via fatty acid β-oxidation. On the other hand, emerging evidence suggests that lipid droplets are required for the efficient execution of autophagic processes. Here, we review recent advances in our understanding of metabolic interactions between autophagy and TAG storage, and discuss mechanisms of lipophagy. Free fatty acids are cytotoxic due to their detergent-like properties and their incorporation into lipid intermediates that are toxic at high levels. Thus, we also discuss how cells manage lipotoxic stresses during autophagy-mediated mobilization of fatty acids from lipid droplets and organellar membranes for energy generation.
Collapse
Affiliation(s)
- Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
33
|
Choi YJ, Zaikova K, Yeom SJ, Kim YS, Lee DW. Biogenesis and Lipase-Mediated Mobilization of Lipid Droplets in Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:1243. [PMID: 35567244 PMCID: PMC9105935 DOI: 10.3390/plants11091243] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Cytosolic lipid droplets (LDs) derived from the endoplasmic reticulum (ER) mainly contain neutral lipids, such as triacylglycerols (TAGs) and sterol esters, which are considered energy reserves. The metabolic pathways associated with LDs in eukaryotic species are involved in diverse cellular functions. TAG synthesis in plants is mediated by the sequential involvement of two subcellular organelles, i.e., plastids - plant-specific organelles, which serve as the site of lipid synthesis, and the ER. TAGs and sterol esters synthesized in the ER are sequestered to form LDs through the cooperative action of several proteins, such as SEIPINs, LD-associated proteins, LDAP-interacting proteins, and plant-specific proteins such as oleosins. The integrity and stability of LDs are highly dependent on oleosins, especially in the seeds, and oleosin degradation is critical for efficient mobilization of the TAGs of plant LDs. As the TAGs mobilize in LDs during germination and post-germinative growth, a plant-specific lipase-sugar-dependent 1 (SDP1)-plays a major role, through the inter-organellar communication between the ER and peroxisomes. In this review, we briefly recapitulate the different processes involved in the biogenesis and degradation of plant LDs, followed by a discussion of future perspectives in this field.
Collapse
Affiliation(s)
- Yun Ju Choi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (Y.J.C.); (K.Z.)
| | - Kseniia Zaikova
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (Y.J.C.); (K.Z.)
| | - Soo-Jin Yeom
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea;
| | - Yeong-Su Kim
- Wild Plants Industrialization Research Division, Baekdudaegan National Arboretum, Bonghwa 36209, Korea
| | - Dong Wook Lee
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (Y.J.C.); (K.Z.)
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
- Bio-Energy Research Center, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
34
|
Specific Changes in Arabidopsis thaliana Rosette Lipids during Freezing Can Be Associated with Freezing Tolerance. Metabolites 2022; 12:metabo12050385. [PMID: 35629889 PMCID: PMC9145600 DOI: 10.3390/metabo12050385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 01/21/2023] Open
Abstract
While the roles of a few specific lipids in plant freezing tolerance are understood, the effect of many plant lipids remains to be determined. Acclimation of plants to non-freezing cold before exposure to freezing temperatures improves the outcome of plants, compared to plants exposed to freezing without acclimation. Arabidopsis thaliana plants were subjected to one of three treatments: (1) "control", i.e., growth at 21 °C, (2) "non-acclimated", i.e., 3 days at 21 °C, 2 h at -8 °C, and 24 h recovery at 21 °C, and (3) "acclimated", i.e., 3 days at 4 °C, 2 h at -8 °C, and 24 h recovery at 21 °C. Plants were harvested at seven time points during the treatments, and lipid levels were measured by direct-infusion electrospray ionization tandem mass spectrometry. Ion leakage was measured at the same time points. To examine the function of lipid species in relation to freezing tolerance, the lipid levels in plants immediately following the freezing treatment were correlated with the outcome, i.e., ion leakage 24-h post-freezing. Based on the correlations, hypotheses about the functions of specific lipids were generated. Additionally, analysis of the lipid levels in plants with mutations in genes encoding patatin-like phospholipases, lipoxygenases, and 12-oxophytodienoic acid reductase 3 (opr3), under the same treatments as the wild-type plants, identified only the opr3-2 mutant as having major lipid compositional differences compared to wild-type plants.
Collapse
|
35
|
Perlikowski D, Lechowicz K, Skirycz A, Michaelis Ä, Pawłowicz I, Kosmala A. The Role of Triacylglycerol in the Protection of Cells against Lipotoxicity under Drought in Lolium multiflorum/Festucaarundinacea Introgression Forms. PLANT & CELL PHYSIOLOGY 2022; 63:353-368. [PMID: 34994787 DOI: 10.1093/pcp/pcac003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Triacylglycerol is a key lipid compound involved in maintaining homeostasis of both membrane lipids and free fatty acids (FFA) in plant cells under adverse environmental conditions. However, its role in the process of lipid remodeling has not been fully recognized, especially in monocots, including grass species. For our study, two closely related introgression forms of Lolium multiflorum (Italian ryegrass) and Festuca arundinacea (tall fescue), distinct in their level of drought tolerance, were selected as plant models to study rearrangements in plant lipidome under water deficit and further re-watering. The low drought tolerant (LDT) form revealed an elevated level of cellular membrane damage accompanied by an increased content of polyunsaturated FFA and triacylglycerol under water deficit, compared with the high drought tolerant (HDT) form. However, the LDT introgression form demonstrated also the ability to regenerate its membranes after stress cessation. The obtained results clearly indicated that accumulation of triacylglycerol under advanced drought in the LDT form could serve as a cellular protective mechanism against overaccumulation of toxic polyunsaturated FFA and other lipid intermediates. Furthermore, accumulation of triacylglycerol under drought conditions could serve also as storage of substrates required for further regeneration of membranes after stress cessation. The rearrangements in triacylglycerol metabolism were supported by the upregulation of several genes, involved in a biosynthesis of triacylglycerol. With respect to this process, diacylglycerol O-acyltransferase DGAT2 seems to play the most important role in the analyzed grasses.
Collapse
Affiliation(s)
- Dawid Perlikowski
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland
| | - Katarzyna Lechowicz
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland
| | - Aleksandra Skirycz
- Department of Molecular Physiology, Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Boyce Thompson Institute, 533 Tower Rd., Ithaca, NY 14853, USA
| | - Änna Michaelis
- Department of Molecular Physiology, Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Izabela Pawłowicz
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland
| | - Arkadiusz Kosmala
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland
| |
Collapse
|
36
|
Chu KL, Koley S, Jenkins LM, Bailey SR, Kambhampati S, Foley K, Arp JJ, Morley SA, Czymmek KJ, Bates PD, Allen DK. Metabolic flux analysis of the non-transitory starch tradeoff for lipid production in mature tobacco leaves. Metab Eng 2022; 69:231-248. [PMID: 34920088 PMCID: PMC8761171 DOI: 10.1016/j.ymben.2021.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/12/2021] [Accepted: 12/11/2021] [Indexed: 12/19/2022]
Abstract
The metabolic plasticity of tobacco leaves has been demonstrated via the generation of transgenic plants that can accumulate over 30% dry weight as triacylglycerols. In investigating the changes in carbon partitioning in these high lipid-producing (HLP) leaves, foliar lipids accumulated stepwise over development. Interestingly, non-transient starch was observed to accumulate with plant age in WT but not HLP leaves, with a drop in foliar starch concurrent with an increase in lipid content. The metabolic carbon tradeoff between starch and lipid was studied using 13CO2-labeling experiments and isotopically nonstationary metabolic flux analysis, not previously applied to the mature leaves of a crop. Fatty acid synthesis was investigated through assessment of acyl-acyl carrier proteins using a recently derived quantification method that was extended to accommodate isotopic labeling. Analysis of labeling patterns and flux modeling indicated the continued production of unlabeled starch, sucrose cycling, and a significant contribution of NADP-malic enzyme to plastidic pyruvate production for the production of lipids in HLP leaves, with the latter verified by enzyme activity assays. The results suggest an inherent capacity for a developmentally regulated carbon sink in tobacco leaves and may in part explain the uniquely successful leaf lipid engineering efforts in this crop.
Collapse
Affiliation(s)
- Kevin L Chu
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Somnath Koley
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Lauren M Jenkins
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Sally R Bailey
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA; United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | | | - Kevin Foley
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Jennifer J Arp
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Stewart A Morley
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA; United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Kirk J Czymmek
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Philip D Bates
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, USA
| | - Doug K Allen
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA; United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA.
| |
Collapse
|
37
|
Rehman NU, Zeng P, Mo Z, Guo S, Liu Y, Huang Y, Xie Q. Conserved and Diversified Mechanism of Autophagy between Plants and Animals upon Various Stresses. Antioxidants (Basel) 2021; 10:1736. [PMID: 34829607 PMCID: PMC8615172 DOI: 10.3390/antiox10111736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 01/01/2023] Open
Abstract
Autophagy is a highly conserved degradation mechanism in eukaryotes, executing the breakdown of unwanted cell components and subsequent recycling of cellular material for stress relief through vacuole-dependence in plants and yeast while it is lysosome-dependent in animal manner. Upon stress, different types of autophagy are stimulated to operate certain biological processes by employing specific selective autophagy receptors (SARs), which hijack the cargo proteins or organelles to the autophagy machinery for subsequent destruction in the vacuole/lysosome. Despite recent advances in autophagy, the conserved and diversified mechanism of autophagy in response to various stresses between plants and animals still remain a mystery. In this review, we intend to summarize and discuss the characterization of the SARs and their corresponding processes, expectantly advancing the scope and perspective of the evolutionary fate of autophagy between plants and animals.
Collapse
Affiliation(s)
- Naveed Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (P.Z.); (Z.M.); (S.G.)
| | - Peichun Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (P.Z.); (Z.M.); (S.G.)
| | - Zulong Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (P.Z.); (Z.M.); (S.G.)
| | - Shaoying Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (P.Z.); (Z.M.); (S.G.)
| | - Yunfeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences and Technology, Guangxi University, Nanning 530004, China;
| | - Yifeng Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310001, China
| | - Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (P.Z.); (Z.M.); (S.G.)
| |
Collapse
|
38
|
Hu Q, Cui H, Ma C, Li Y, Yang C, Wang K, Sun Y. Lipidomic metabolism associated with acetic acid priming-induced salt tolerance in Carex rigescens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:665-677. [PMID: 34488152 DOI: 10.1016/j.plaphy.2021.08.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/17/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Acetic acid priming may mitigate salt stress to plants by modulating lipid metabolism. Carex rigescens is a stress-tolerant turfgrass species with a widespread distribution in north China. The objective of this study was to figure out whether modification of lipid profiles, including the contents, compositions and saturation levels of leaf lipids, may contribute to acetic acid modulated salt tolerance in C. rigescens. Plants of C. rigescens were primed with or without acetic acid (30 mM) and subsequently exposed to salt stress (300 mM NaCl) for 15 days. Salt stress affected the physiological performance of C. rigescens, while acetic acid-primed plants showed significantly lower malondialdehyde content, proline content, and electrolyte leakage than non-primed plants under salt stress. Acetic acid priming enhanced the contents of phospholipids and glycolipids involved in membrane stabilization and stress signaling (phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, digalactosyl diacylglycerol, monogalactosyl diacylglycerol, and sulfoquinovosyldiacylglycerol), reduced the content of toxic lipid intermediates (free fatty acids) during subsequent exposure to salt stress. Furthermore, expression levels of genes involved in lipid metabolism such as CK and PLDα changed due to acetic acid priming. These results demonstrated that acetic acid priming could enhance salt tolerance of C. rigescens by regulating lipid metabolism. The lipids could be used as biomarkers to select for salt-tolerant grass germplasm.
Collapse
Affiliation(s)
- Qiannan Hu
- Department of Turfgrass Science and Engineering, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| | - Huiting Cui
- Department of Turfgrass Science and Engineering, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| | - Chengze Ma
- Department of Turfgrass Science and Engineering, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| | - Yue Li
- Department of Turfgrass Science and Engineering, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| | - Chunhua Yang
- Department of Turfgrass Science and Engineering, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| | - Kehua Wang
- Department of Turfgrass Science and Engineering, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| | - Yan Sun
- Department of Turfgrass Science and Engineering, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
39
|
Tracing Key Molecular Regulators of Lipid Biosynthesis in Tuber Development of Cyperus esculentus Using Transcriptomics and Lipidomics Profiling. Genes (Basel) 2021; 12:genes12101492. [PMID: 34680888 PMCID: PMC8535953 DOI: 10.3390/genes12101492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022] Open
Abstract
Cyperus esculentus is widely representing one of the important oil crops around the world, which provides valuable resources of edible tubers called tiger nut. The chemical composition and high ability to produce fats emphasize the role of tiger nut in promoting oil crop productivity. However, the underlying molecular mechanism of the production and accumulation of lipids in tiger nut development still remains unclear. Here, we conducted comprehensive transcriptomics and lipidomics analyses at different developmental stages of tuber in Cyperus esculentus. Lipidomic analyses confirmed that the accumulation of lipids including glycolipids, phospholipids, and glycerides were significantly enriched during tuber development from early to mature stage. The proportion of phosphatidylcholines (PC) declined during all stages and phosphatidyl ethanolamine (PE) was significantly declined in early and middle stages. These findings implied that PC is actively involved in triacylglycerol (TAG) biosynthesis during the tubers development, whereas PE may participate in TAG metabolism during early and middle stages. Comparative transcriptomics analyses indicated several genomic and metabolic pathways associated with lipid metabolism during tuber development in tiger nut. The Pearson correlation analysis showed that TAG synthesis in different developmental stages was attributed to 37 candidate transcripts including CePAH1. The up-regulation of diacylglycerol (DAG) and oil content in yeast, resulted from the inducible expression of exogenous CePAH1 confirmed the central role of this candidate gene in lipid metabolism. Our results demonstrated the foundation of an integrative metabolic model for understanding the molecular mechanism of tuber development in tiger nut, in which lipid biosynthesis plays a central role.
Collapse
|
40
|
Zheng Y, Yang Y, Wang M, Hu S, Wu J, Yu Z. Differences in lipid homeostasis and membrane lipid unsaturation confer differential tolerance to low temperatures in two Cycas species. BMC PLANT BIOLOGY 2021; 21:377. [PMID: 34399687 PMCID: PMC8369737 DOI: 10.1186/s12870-021-03158-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND C. panzhihuaensis is more tolerant to freezing than C. bifida but the mechanisms underlying the different freezing tolerance are unclear. Photosynthesis is one of the most temperature-sensitive processes. Lipids play important roles in membrane structure, signal transduction and energy storage, which are closely related to the stress responses of plants. In this study, the chlorophyll fluorescence parameters and lipid profiles of the two species were characterized to explore the changes in photosynthetic activity and lipid metabolism following low-temperature exposure and subsequent recovery. RESULTS Photosynthetic activity significantly decreased in C. bifida with the decrease of temperatures and reached zero after recovery. Photosynthetic activity, however, was little affected in C. panzhihuaensis. The lipid composition of C. bifida was more affected by cold and freezing treatments than C. panzhihuaensis. Compared with the control, the proportions of all the lipid categories recovered to the original level in C. panzhihuaensis, but the proportions of most lipid categories changed significantly in C. bifida after 3 d of recovery. In particular, the glycerophospholipids and prenol lipids degraded severely during the recovery period of C. bifida. Changes in acyl chain length and double bond index (DBI) occurred in more lipid classes immediately after low-temperature exposure in C. panzhihuaensis compare with those in C. bifida. DBI of the total main membrane lipids of C. panzhihuaensis was significantly higher than that of C. bifida following all temperature treatments. CONCLUSIONS The results of chlorophyll fluorescence parameters confirmed that the freezing tolerance of C. panzhihuaensis was greater than that of C. bifida. The lipid metabolism of the two species had differential responses to low temperatures. The homeostasis and plastic adjustment of lipid metabolism and the higher level of DBI of the main membrane lipids may contribute to the greater tolerance of C. panzhihuaensis to low temperatures.
Collapse
Affiliation(s)
- Yanling Zheng
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650233 Yunnan China
| | - Yongqiong Yang
- Administration Bureau of Panzhihua Cycas National Nature Reserve, Panzhihua, 617000 Sichuan China
| | - Meng Wang
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650233 Yunnan China
| | - Shijun Hu
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650233 Yunnan China
| | - Jianrong Wu
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650233 Yunnan China
| | - Zhixiang Yu
- Administration Bureau of Panzhihua Cycas National Nature Reserve, Panzhihua, 617000 Sichuan China
| |
Collapse
|
41
|
Yu L, Zhou C, Fan J, Shanklin J, Xu C. Mechanisms and functions of membrane lipid remodeling in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:37-53. [PMID: 33853198 DOI: 10.1111/tpj.15273] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 05/20/2023]
Abstract
Lipid remodeling, defined herein as post-synthetic structural modifications of membrane lipids, play crucial roles in regulating the physicochemical properties of cellular membranes and hence their many functions. Processes affected by lipid remodeling include lipid metabolism, membrane repair, cellular homeostasis, fatty acid trafficking, cellular signaling and stress tolerance. Glycerolipids are the major structural components of cellular membranes and their composition can be adjusted by modifying their head groups, their acyl chain lengths and the number and position of double bonds. This review summarizes recent advances in our understanding of mechanisms of membrane lipid remodeling with emphasis on the lipases and acyltransferases involved in the modification of phosphatidylcholine and monogalactosyldiacylglycerol, the major membrane lipids of extraplastidic and photosynthetic membranes, respectively. We also discuss the role of triacylglycerol metabolism in membrane acyl chain remodeling. Finally, we discuss emerging data concerning the functional roles of glycerolipid remodeling in plant stress responses. Illustrating the molecular basis of lipid remodeling may lead to novel strategies for crop improvement and other biotechnological applications such as bioenergy production.
Collapse
Affiliation(s)
- Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Chao Zhou
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| |
Collapse
|
42
|
Cooney LJ, Beechey-Gradwell Z, Winichayakul S, Richardson KA, Crowther T, Anderson P, Scott RW, Bryan G, Roberts NJ. Changes in Leaf-Level Nitrogen Partitioning and Mesophyll Conductance Deliver Increased Photosynthesis for Lolium perenne Leaves Engineered to Accumulate Lipid Carbon Sinks. FRONTIERS IN PLANT SCIENCE 2021; 12:641822. [PMID: 33897730 PMCID: PMC8063613 DOI: 10.3389/fpls.2021.641822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Diacylglycerol acyl-transferase (DGAT) and cysteine oleosin (CO) expression confers a novel carbon sink (of encapsulated lipid droplets) in leaves of Lolium perenne and has been shown to increase photosynthesis and biomass. However, the physiological mechanism by which DGAT + CO increases photosynthesis remains unresolved. To evaluate the relationship between sink strength and photosynthesis, we examined fatty acids (FA), water-soluble carbohydrates (WSC), gas exchange parameters and leaf nitrogen for multiple DGAT + CO lines varying in transgene accumulation. To identify the physiological traits which deliver increased photosynthesis, we assessed two important determinants of photosynthetic efficiency, CO2 conductance from atmosphere to chloroplast, and nitrogen partitioning between different photosynthetic and non-photosynthetic pools. We found that DGAT + CO accumulation increased FA at the expense of WSC in leaves of L. perenne and for those lines with a significant reduction in WSC, we also observed an increase in photosynthesis and photosynthetic nitrogen use efficiency. DGAT + CO L. perenne displayed no change in rubisco content or Vcmax but did exhibit a significant increase in specific leaf area (SLA), stomatal and mesophyll conductance, and leaf nitrogen allocated to photosynthetic electron transport. Collectively, we showed that increased carbon demand via DGAT+CO lipid sink accumulation can induce leaf-level changes in L. perenne which deliver increased rates of photosynthesis and growth. Carbon sinks engineered within photosynthetic cells provide a promising new strategy for increasing photosynthesis and crop productivity.
Collapse
|
43
|
Yu L, Fan J, Zhou C, Xu C. Chloroplast lipid biosynthesis is fine-tuned to thylakoid membrane remodeling during light acclimation. PLANT PHYSIOLOGY 2021; 185:94-107. [PMID: 33631801 PMCID: PMC8133659 DOI: 10.1093/plphys/kiaa013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/21/2020] [Indexed: 05/29/2023]
Abstract
Reprogramming metabolism, in addition to modifying the structure and function of the photosynthetic machinery, is crucial for plant acclimation to changing light conditions. One of the key acclimatory responses involves reorganization of the photosynthetic membrane system including changes in thylakoid stacking. Glycerolipids are the main structural component of thylakoids and their synthesis involves two main pathways localized in the plastid and the endoplasmic reticulum (ER); however, the role of lipid metabolism in light acclimation remains poorly understood. We found that fatty acid synthesis, membrane lipid content, the plastid lipid biosynthetic pathway activity, and the degree of thylakoid stacking were significantly higher in plants grown under low light compared with plants grown under normal light. Plants grown under high light, on the other hand, showed a lower rate of fatty acid synthesis, a higher fatty acid flux through the ER pathway, higher triacylglycerol content, and thylakoid membrane unstacking. We additionally demonstrated that changes in rates of fatty acid synthesis under different growth light conditions are due to post-translational regulation of the plastidic acetyl-CoA carboxylase activity. Furthermore, Arabidopsis mutants defective in one of the two glycerolipid biosynthetic pathways displayed altered growth patterns and a severely reduced ability to remodel thylakoid architecture, particularly under high light. Overall, this study reveals how plants fine-tune fatty acid and glycerolipid biosynthesis to cellular metabolic needs in response to long-term changes in light conditions, highlighting the importance of lipid metabolism in light acclimation.
Collapse
Affiliation(s)
- Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Chao Zhou
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
44
|
Chen GQ, Kim WN, Johnson K, Park ME, Lee KR, Kim HU. Transcriptome Analysis and Identification of Lipid Genes in Physaria lindheimeri, a Genetic Resource for Hydroxy Fatty Acids in Seed Oil. Int J Mol Sci 2021; 22:ijms22020514. [PMID: 33419225 PMCID: PMC7825617 DOI: 10.3390/ijms22020514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Hydroxy fatty acids (HFAs) have numerous industrial applications but are absent in most vegetable oils. Physaria lindheimeri accumulating 85% HFA in its seed oil makes it a valuable resource for engineering oilseed crops for HFA production. To discover lipid genes involved in HFA synthesis in P. lindheimeri, transcripts from developing seeds at various stages, as well as leaf and flower buds, were sequenced. Ninety-seven percent clean reads from 552,614,582 raw reads were assembled to 129,633 contigs (or transcripts) which represented 85,948 unique genes. Gene Ontology analysis indicated that 60% of the contigs matched proteins involved in biological process, cellular component or molecular function, while the remaining matched unknown proteins. We identified 42 P. lindheimeri genes involved in fatty acid and seed oil biosynthesis, and 39 of them shared 78-100% nucleotide identity with Arabidopsis orthologs. We manually annotated 16 key genes and 14 of them contained full-length protein sequences, indicating high coverage of clean reads to the assembled contigs. A detailed profiling of the 16 genes revealed various spatial and temporal expression patterns. The further comparison of their protein sequences uncovered amino acids conserved among HFA-producing species, but these varied among non-HFA-producing species. Our findings provide essential information for basic and applied research on HFA biosynthesis.
Collapse
Affiliation(s)
- Grace Q. Chen
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA 94710, USA;
- Correspondence: (G.Q.C.); (H.U.K.)
| | - Won Nyeong Kim
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul 05006, Korea;
| | - Kumiko Johnson
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA 94710, USA;
| | - Mid-Eum Park
- Department of Molecular Biology, Graduate School, Sejong University, Seoul 05006, Korea;
| | - Kyeong-Ryeol Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54974, Korea;
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul 05006, Korea;
- Department of Molecular Biology, Graduate School, Sejong University, Seoul 05006, Korea;
- Correspondence: (G.Q.C.); (H.U.K.)
| |
Collapse
|
45
|
Hernández ML, Moretti S, Sicardo MD, García Ú, Pérez A, Sebastiani L, Martínez-Rivas JM. Distinct Physiological Roles of Three Phospholipid:Diacylglycerol Acyltransferase Genes in Olive Fruit with Respect to Oil Accumulation and the Response to Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:751959. [PMID: 34868139 PMCID: PMC8632719 DOI: 10.3389/fpls.2021.751959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/21/2021] [Indexed: 05/13/2023]
Abstract
Three different cDNA sequences, designated OepPDAT1-1, OepPDAT1-2, and OepPDAT2, encoding three phospholipid:diacylglycerol acyltransferases (PDAT) have been isolated from olive (Olea europaea cv. Picual). Sequence analysis showed the distinctive features typical of the PDAT family and together with phylogenetic analysis indicated that they encode PDAT. Gene expression analysis in different olive tissues showed that transcript levels of these three PDAT genes are spatially and temporally regulated and suggested that, in addition to acyl-CoA:diacylglycerol acyltransferase, OePDAT1-1 may contribute to the biosynthesis of triacylglycerols in the seed, whereas OePDAT1-2 could be involved in the triacylglycerols content in the mesocarp and, therefore, in the olive oil. The relative contribution of PDAT and acyl-CoA:diacylglycerol acyltransferase enzymes to the triacylglycerols content in olive appears to be tissue-dependent. Furthermore, water regime, temperature, light, and wounding regulate PDAT genes at transcriptional level in the olive fruit mesocarp, indicating that PDAT could be involved in the response to abiotic stresses. Altogether, this study represents an advance in our knowledge on the regulation of oil accumulation in oil fruit.
Collapse
Affiliation(s)
- M. Luisa Hernández
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (IG-CSIC), Campus Universidad Pablo de Olavide, Seville, Spain
| | - Samuele Moretti
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (IG-CSIC), Campus Universidad Pablo de Olavide, Seville, Spain
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - M. Dolores Sicardo
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (IG-CSIC), Campus Universidad Pablo de Olavide, Seville, Spain
| | - Úrsula García
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (IG-CSIC), Campus Universidad Pablo de Olavide, Seville, Spain
| | - Ana Pérez
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (IG-CSIC), Campus Universidad Pablo de Olavide, Seville, Spain
| | - Luca Sebastiani
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - José M. Martínez-Rivas
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (IG-CSIC), Campus Universidad Pablo de Olavide, Seville, Spain
- *Correspondence: José M. Martínez-Rivas,
| |
Collapse
|
46
|
Xu C, Fan J, Shanklin J. Metabolic and functional connections between cytoplasmic and chloroplast triacylglycerol storage. Prog Lipid Res 2020; 80:101069. [DOI: 10.1016/j.plipres.2020.101069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022]
|
47
|
The Phospholipid:Diacylglycerol Acyltransferase-Mediated Acyl-Coenzyme A-Independent Pathway Efficiently Diverts Fatty Acid Flux from Phospholipid into Triacylglycerol in Escherichia coli. Appl Environ Microbiol 2020; 86:AEM.00999-20. [PMID: 32680871 DOI: 10.1128/aem.00999-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/06/2020] [Indexed: 11/20/2022] Open
Abstract
Researchers have long endeavored to accumulate triacylglycerols (TAGs) or their derivatives in easily managed microbes. The attempted production of TAGs in Escherichia coli has revealed barriers to the broad applications of this technology, including low TAG productivity and slow cell growth. We have demonstrated that an acyl-CoA-independent pathway can divert phospholipid flux into TAG formation in E. coli mediated by Chlamydomonas reinhardtii phospholipid:diacylglycerol acyltransferase (CrPDAT) without interfering with membrane functions. We then showed the synergistic effect on TAG accumulation via the acyl-CoA-independent pathway mediated by PDAT and the acyl-CoA-dependent pathway mediated by wax ester synthase/acyl-CoA:diacylglycerol acyltransferase (WS/DGAT). Furthermore, CrPDAT led to synchronous TAG accumulation during cell growth, and this could be enhanced by supplementation of arbutin. We also showed that rationally mutated CrPDAT was capable of decreasing TAG lipase activity without impairing PDAT activity. Finally, ScPDAT from Saccharomyces cerevisiae exhibited similar activities as CrPDAT in E. coli Our results suggest that the improvement in accumulation of TAGs and their derivatives can be achieved by fine-tuning of phospholipid metabolism in E. coli Understanding the roles of PDAT in the conversion of phospholipids into TAGs during the logarithmic growth phase may enable a novel strategy for the production of microbial oils.IMPORTANCE Although phospholipid:diacylglycerol acyltransferase (PDAT) activity is presumed to exist in prokaryotic oleaginous bacteria, the corresponding gene has not been identified yet. In this article, we have demonstrated that an acyl-CoA-independent pathway can divert phospholipid flux into TAG formation in Escherichia coli mediated by exogenous CrPDAT from Chlamydomonas reinhardtii without interfering with membrane functions. In addition, the acyl-CoA-independent pathway and the acyl-CoA-dependent pathway had the synergistic effect on TAG accumulation. Overexpression of CrPDAT led to synchronous TAG accumulation during cell growth. In particular, CrPDAT possessed multiple catalytic activities, and the rational mutation of CrPDAT led to the decrease of TAG lipase activity without impairing acyltransferase activity. The present findings suggested that applying PDAT in E. coli or other prokaryotic microbes may be a promising strategy for accumulation of TAGs and their derivatives.
Collapse
|
48
|
Falarz LJ, Xu Y, Caldo KMP, Garroway CJ, Singer SD, Chen G. Characterization of the diversification of phospholipid:diacylglycerol acyltransferases in the green lineage. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2025-2038. [PMID: 32538516 DOI: 10.1111/tpj.14880] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 05/03/2023]
Abstract
Triacylglycerols have important physiological roles in photosynthetic organisms, and are widely used as food, feed and industrial materials in our daily life. Phospholipid:diacylglycerol acyltransferase (PDAT) is the pivotal enzyme catalyzing the acyl-CoA-independent biosynthesis of triacylglycerols, which is unique in plants, algae and fungi, but not in animals, and has essential functions in plant and algal growth, development and stress responses. Currently, this enzyme has yet to be examined in an evolutionary context at the level of the green lineage. Some fundamental questions remain unanswered, such as how PDATs evolved in photosynthetic organisms and whether the evolution of terrestrial plant PDATs from a lineage of charophyte green algae diverges in enzyme function. As such, we used molecular evolutionary analysis and biochemical assays to address these questions. Our results indicated that PDAT underwent divergent evolution in the green lineage: PDATs exist in a wide range of plants and algae, but not in cyanobacteria. Although PDATs exhibit the conservation of several features, phylogenetic and selection-pressure analyses revealed that overall they evolved to be highly divergent, driven by different selection constraints. Positive selection, as one major driving force, may have resulted in enzymes with a higher functional importance in land plants than green algae. Further structural and mutagenesis analyses demonstrated that some amino acid sites under positive selection are critically important to PDAT structure and function, and may be central in lecithin:cholesterol acyltransferase family enzymes in general.
Collapse
Affiliation(s)
- Lucas J Falarz
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Kristian Mark P Caldo
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Colin J Garroway
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Stacy D Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| |
Collapse
|
49
|
Correa SM, Alseekh S, Atehortúa L, Brotman Y, Ríos-Estepa R, Fernie AR, Nikoloski Z. Model-assisted identification of metabolic engineering strategies for Jatropha curcas lipid pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:76-95. [PMID: 33001507 DOI: 10.1111/tpj.14906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Efficient approaches to increase plant lipid production are necessary to meet current industrial demands for this important resource. While Jatropha curcas cell culture can be used for in vitro lipid production, scaling up the system for industrial applications requires an understanding of how growth conditions affect lipid metabolism and yield. Here we present a bottom-up metabolic reconstruction of J. curcas supported with labeling experiments and biomass characterization under three growth conditions. We show that the metabolic model can accurately predict growth and distribution of fluxes in cell cultures and use these findings to pinpoint energy expenditures that affect lipid biosynthesis and metabolism. In addition, by using constraint-based modeling approaches we identify network reactions whose joint manipulation optimizes lipid production. The proposed model and computational analyses provide a stepping stone for future rational optimization of other agronomically relevant traits in J. curcas.
Collapse
Affiliation(s)
- Sandra M Correa
- Genetics of Metabolic Traits Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- Grupo de Biotecnología, Departamento de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Saleh Alseekh
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- Centre for Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Lucía Atehortúa
- Grupo de Biotecnología, Departamento de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Yariv Brotman
- Genetics of Metabolic Traits Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Rigoberto Ríos-Estepa
- Grupo de Bioprocesos, Departamento de Ingeniería Química, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- Centre for Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Zoran Nikoloski
- Centre for Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, 14476, Germany
- Systems Biology and Mathematical Modelling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| |
Collapse
|
50
|
Lechowicz K, Pawłowicz I, Perlikowski D, Arasimowicz-Jelonek M, Blicharz S, Skirycz A, Augustyniak A, Malinowski R, Rapacz M, Kosmala A. Adjustment of Photosynthetic and Antioxidant Activities to Water Deficit Is Crucial in the Drought Tolerance of Lolium multiflorum/Festuca arundinacea Introgression Forms. Int J Mol Sci 2020; 21:ijms21165639. [PMID: 32781659 PMCID: PMC7460672 DOI: 10.3390/ijms21165639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 01/03/2023] Open
Abstract
Lolium multiflorum/Festuca arundinacea introgression forms have been proved several times to be good models to identify key components of grass metabolism involved in the mechanisms of tolerance to water deficit. Here, for the first time, a relationship between photosynthetic and antioxidant capacities with respect to drought tolerance of these forms was analyzed in detail. Two closely related L. multiflorum/F. arundinacea introgression forms distinct in their ability to re-grow after cessation of prolonged water deficit in the field were selected and subjected to short-term drought in pots to dissect precisely mechanisms of drought tolerance in this group of plants. The studies revealed that the form with higher drought tolerance was characterized by earlier and higher accumulation of abscisic acid, more stable cellular membranes, and more balanced reactive oxygen species metabolism associated with a higher capacity of the antioxidant system under drought conditions. On the other hand, both introgression forms revealed the same levels of stomatal conductance, CO2 assimilation, and consequently, intrinsic water use efficiency under drought and recovery conditions. However, simultaneous higher adjustment of the Calvin cycle to water deficit and reduced CO2 availability, with respect to the accumulation and activity of plastid fructose-1,6-bisphosphate aldolase, were clearly visible in the form with higher drought tolerance.
Collapse
Affiliation(s)
- Katarzyna Lechowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (K.L.); (D.P.); (S.B.); (A.A.); (R.M.); (A.K.)
| | - Izabela Pawłowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (K.L.); (D.P.); (S.B.); (A.A.); (R.M.); (A.K.)
- Correspondence:
| | - Dawid Perlikowski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (K.L.); (D.P.); (S.B.); (A.A.); (R.M.); (A.K.)
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Sara Blicharz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (K.L.); (D.P.); (S.B.); (A.A.); (R.M.); (A.K.)
| | - Aleksandra Skirycz
- Department of Molecular Physiology, Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany;
| | - Adam Augustyniak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (K.L.); (D.P.); (S.B.); (A.A.); (R.M.); (A.K.)
| | - Robert Malinowski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (K.L.); (D.P.); (S.B.); (A.A.); (R.M.); (A.K.)
| | - Marcin Rapacz
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Kraków, Podłużna 3, 30-239 Kraków, Poland;
| | - Arkadiusz Kosmala
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (K.L.); (D.P.); (S.B.); (A.A.); (R.M.); (A.K.)
| |
Collapse
|