1
|
Sepp A, Stader F, Derbalah A, Liu C, Zyla A, Gardner I, Jamei M. The physiological limits of bispecific monoclonal antibody tissue targeting specificity. MAbs 2025; 17:2492236. [PMID: 40223272 PMCID: PMC12005452 DOI: 10.1080/19420862.2025.2492236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/24/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025] Open
Abstract
Bispecific monoclonal antibodies (bsmAbs) are expected to provide targeted drug delivery that overcomes the dose-limiting toxicities often accompanying antibody-drug conjugates (ADC) in clinical practice. Much attention has been paid in the past to target selection, mAb affinities and the payload linker design, but challenges remain. Here, we demonstrate, by physiologically based pharmacokinetic (PBPK) in silico modeling and simulation, that the tissue-targeting accuracy of mono- and bispecific antibody therapeutics is substantially limited by normal physiological characteristics like organ volumes, blood flow rates, lymphatic circulation, and rates of extravasation. Only a small fraction of blood flows through solid tumor, where the diffusion-driven extravasation is relatively slow compared with many other organs. EGFR and HER2 are used as model antigens based on their experimentally measured tissue and tumor expression levels, but the approach is generic and can account for the cellular expression variation of targets. The model confirms experimental observations that only about 0.1-1% of the dosed mAb is likely to reach the tumor, while the rest ends up in healthy tissues due to target-mediated internalization and nonspecific uptake. The model suggests that the dual-positive tumor cell targeting specificity with bispecific antibodies is likely to be higher at lower drug concentrations and doses. However, this can be offset by elevated drug exposure in more accessible healthy tissues, primarily endothelium. The balance of exposure can be shifted toward tumor cells by using higher doses, albeit at the expense of more extensive target engagement elsewhere in the body, suggesting the need to adapt the toxicity of the payload if ADCs are considered. We suggest that PBPK modeling can guide and support biologics and bsmAb development, from target evaluation and drug optimization to therapeutic dose selection.
Collapse
Affiliation(s)
- Armin Sepp
- Certara Predictive Technologies division, Certara UK Ltd, Sheffield, UK
| | - Felix Stader
- Certara Predictive Technologies division, Certara UK Ltd, Sheffield, UK
| | - Abdallah Derbalah
- Certara Predictive Technologies division, Certara UK Ltd, Sheffield, UK
| | - Cong Liu
- Certara Predictive Technologies division, Certara UK Ltd, Sheffield, UK
| | - Adriana Zyla
- Certara Predictive Technologies division, Certara UK Ltd, Sheffield, UK
| | - Iain Gardner
- Certara Predictive Technologies division, Certara UK Ltd, Sheffield, UK
| | - Masoud Jamei
- Certara Predictive Technologies division, Certara UK Ltd, Sheffield, UK
| |
Collapse
|
2
|
Mustafa H, Daud S, Sheraz S, Bibi M, Ahmad T, Sardar A, Fazal T, Khan A, Abid OUR. The Chemistry and Bioactivity of Mefenamic Acid Derivatives: A Review of Recent Advances. Arch Pharm (Weinheim) 2025; 358:e70004. [PMID: 40376734 DOI: 10.1002/ardp.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 05/18/2025]
Abstract
Mefenamic acid (MA) represents an efficient nonsteroidal anti-inflammatory drug (NSAID) for treatment in many circumstances of painful conditions and inflammation, but its poor water solubility and gastrointestinal side effects often obstruct its clinical application. Consequently, researchers have been conducting studies on the synthesis of prodrugs and heterocyclic compounds as MA derivatives for the improvement of their pharmacological profile. This review discusses an overview of recent developments in the synthesis and biological applications of MA derivatives. It covers several strategies used to modify the chemical structure of MA to pursue pharmacokinetic improvement, solubility, and targeting features, among which are heterocyclic moieties and prodrug design. Following the many synthetically produced derivatives of MA, mainly proposed between classic organic synthesis and more recent methodologies, such as microwave-assisted synthesis and green chemistry protocols, this review will consider how different structural variations are able to influence the assumed pharmacological actions: analgesic, anti-inflammatory, and anticancer. The findings demonstrate significant progress toward the development of safer and more effective NSAID therapies; thus, they support, in a broad and unprecedented way, the potential of MA derivatives and prodrugs in transforming the state of pain management and inflammation treatment.
Collapse
Affiliation(s)
- Hifza Mustafa
- Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Saima Daud
- Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Sabahat Sheraz
- Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Maria Bibi
- Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Tauseef Ahmad
- Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Asma Sardar
- Department of Chemistry, Fatima Jinnah Woman University, Rawalpindi, Pakistan
| | - Tanzeela Fazal
- Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Asma Khan
- Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | | |
Collapse
|
3
|
Fiala O, Buti S, Fujita K, de Liaño AG, Fukuokaya W, Kimura T, Yanagisawa T, Giannatempo P, Angel M, Mennitto A, Molina-Cerrillo J, Bourlon MT, Soares A, Takeshita H, Calabrò F, Ortega C, Kucharz J, Milella M, Seront E, Park SH, Tural D, Benedetti G, Ürün Y, Battelli N, Melichar B, Poprach A, Buchler T, Kopecký J, Conteduca V, Monteiro FSM, Massari F, Gupta S, Santoni M. Concomitant medications in patients with metastatic urothelial carcinoma receiving enfortumab vedotin: real-world data from the ARON-2 EV study. Clin Exp Metastasis 2025; 42:18. [PMID: 39976819 PMCID: PMC11842414 DOI: 10.1007/s10585-025-10335-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
Patients with metastatic urothelial carcinoma (mUC) are typically elderly and often have other comorbidities that require the use of concomitant medications. In our study we evaluated the association of concomitant use of antibiotics (ATBs), proton pump inhibitors (PPIs), corticosteroids, statins, metformin and insulin with patient outcomes and we validated the prognostic role of a concomitant drug score in mUC patients treated with enfortumab vedotin (EV) monotherapy. Data from 436 patients enrolled in the ARON-2EV retrospective study were analyzed according to the concomitant medications used at baseline. Finally, the patients were stratified into three risk groups according to the concomitant drug score based on ATBs, corticosteroids and PPIs. Statistical analysis involved Fisher exact test, Kaplan-Meier method, log-rank test, and univariate/multivariate Cox proportional hazard regression models. Inferior survival outcomes were observed in ATB users compared to non-users (OS: 7.3 months, 95%CI 5.0 - 12.3 vs 13.7 months, 95%CI 12.2 - 47.3, p = 0.001; PFS: 5.1 months 95%CI 3.3 - 17.7 vs 8.3 months, 95%CI 7.1 - 47.3, p = 0.001) and also in corticosteroid users compared to non-users (OS: 8.4 months, 95%CI 6.6 - 10.0 vs 14.2 months, 95%CI 12.7 - 47.3, p < 0.001; PFS: 6.0 months 95%CI 4.6 - 7.9 vs 8.9 months, 95%CI 7.2 - 47.3, p = 0.004). In the Cox multivariate analysis, the concomitant drug score was a significant factor predicting both OS (HR = 1.32 [95% CI 1.03 - 1.68], p = 0.026) and PFS (HR = 1.23 [95% CI 1.01 - 1.51], p = 0.044). Our findings suggest detrimental impact of concomitant use of ATBs and corticosteroids on survival outcomes and the prognostic utility of the concomitant drug score in previously treated mUC patients receiving EV.
Collapse
Affiliation(s)
- Ondřej Fiala
- Department of Oncology and Radiotherapeutics, Faculty of Medicine and University Hospital in Pilsen, Charles University Prague, Alej Svobody 80, 304 60, Pilsen, Czech Republic.
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| | - Sebastiano Buti
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Kazutoshi Fujita
- Department of Urology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Alfonso Gómez de Liaño
- Department of Medical Oncology, Complejo Hospitalario Universitario Insular-Materno Infantil, Las Palmas, Spain
| | - Wataru Fukuokaya
- Department of Urology, The Jikei University School of Medicine, 3-19-18 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8471, Japan
| | - Takahiro Kimura
- Department of Urology, The Jikei University School of Medicine, 3-19-18 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8471, Japan
| | - Takafumi Yanagisawa
- Department of Urology, The Jikei University School of Medicine, 3-19-18 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8471, Japan
| | - Patrizia Giannatempo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Giacomo Venezian 1, Milan, Italy
| | - Martin Angel
- Clinical Oncology, Genitourinary Oncology Unit, Alexander Fleming Institute, Buenos Aires, Argentina
| | - Alessia Mennitto
- Department of Medical Oncology, Azienda Ospedaliera Universitaria "Maggiore Della Carit", Novara, Italy
| | | | - Maria T Bourlon
- Department of Hemato-Oncology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Escuela de Medicina, Mexico-Universidad Panamericana, Mexico City, Mexico
| | - Andrey Soares
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Latin American Cooperative Oncology Group-LACOG, Porto Alegre, Brazil
| | - Hideki Takeshita
- Department of Urology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Fabio Calabrò
- Medical Oncology 1-IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Cinzia Ortega
- Dipartimento di Oncologia, Ospedale Michele E Pietro Ferrero-Verduno (CN) ASLCN2 Alba E, Bra, Italy
| | - Jakub Kucharz
- Department of Uro-Oncology, Maria Sklodowska-Curie National Research Institute of Oncology Warsaw, Warsaw, Poland
| | - Michele Milella
- Section of Innovation Biomedicine-Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University and Hospital Trust (AOUI) of Verona, 37134, Verona, Italy
| | - Emmanuel Seront
- Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Se Hoon Park
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Deniz Tural
- Department of Medical Oncology, Koc University Medical Faculty, Istanbul, Türkiye
| | | | - Yüksel Ürün
- Department of Medical Oncology, Ankara University Faculty of Medicine, 06620, Ankara, Türkiye
| | | | - Bohuslav Melichar
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Alexandr Poprach
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 656 53, Brno, Czech Republic
- Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Tomas Buchler
- Department of Oncology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Úvalu 84, 150 06, Prague, Czech Republic
| | - Jindřich Kopecký
- Department of Oncology, University Hospital in Hradec Králové, Sokolská 581, 50005, Hradec Králové, Czech Republic
| | - Vincenza Conteduca
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | | | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Shilpa Gupta
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Matteo Santoni
- Medical Oncology Unit, Macerata Hospital, Macerata, Italy
| |
Collapse
|
4
|
Mishra A, Sharma AK, Gupta K, Banka DR, Johnson BA, Hoffman-Censits J, Huang P, McConkey DJ, Nimmagadda S. NECTIN-4 PET FOR OPTIMIZING ENFORTUMAB VEDOTIN DOSE-RESPONSE IN UROTHELIAL CARCINOMA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.25.630315. [PMID: 39763905 PMCID: PMC11703263 DOI: 10.1101/2024.12.25.630315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The optimization of dosing strategies is critical for maximizing efficacy and minimizing toxicity in drug development, particularly for drugs with narrow therapeutic windows such as antibody-drug conjugates (ADCs). This study demonstrates the utility of Nectin-4-targeted positron emission tomography (PET) imaging using [68Ga]AJ647 as a non-invasive tool for real-time assessment of target engagement in enfortumab vedotin (EV) therapy for urothelial carcinoma (UC). By leveraging the specificity of [68Ga]AJ647 for Nectin-4, we quantified dynamic changes in target engagement across preclinical models and established its correlation with therapeutic outcomes. PET imaging revealed dose-dependent variations in Nectin-4 engagement, with suboptimal EV doses resulting in incomplete Nectin-4 engagement and reduced tumor growth. Importantly, target engagement measured by PET emerged as a more reliable predictor of therapeutic efficacy than dose or baseline Nectin-4 expression alone. Receiver operating characteristic (ROC) analysis identified a target engagement threshold that is determinant of response, providing a quantitative benchmark for dose optimization. Furthermore, PET imaging measures provide a promising framework to account for key challenges in ADC development, including tumor heterogeneity, declining drug-to-antibody ratios over time, and limitations of systemic pharmacokinetic measurements to account for tumor-drug interactions. These findings underscore the transformative potential of integrating PET pharmacodynamic measures as early biomarkers to refine dosing strategies, improve patient outcomes, and accelerate the clinical translation of next-generation targeted therapeutics.
Collapse
Affiliation(s)
- Akhilesh Mishra
- The Russell H. Morgan Department of Radiology and Radiological Science
| | - Ajay Kumar Sharma
- The Russell H. Morgan Department of Radiology and Radiological Science
| | - Kuldeep Gupta
- The Russell H. Morgan Department of Radiology and Radiological Science
| | - Dhanush R. Banka
- The Russell H. Morgan Department of Radiology and Radiological Science
| | - Burles A. Johnson
- The Johns Hopkins Greenberg Bladder Cancer Institute
- The James Buchanan Brady Urological Institute, Sidney Kimmel Comprehensive Cancer center
| | - Jeannie Hoffman-Censits
- The Johns Hopkins Greenberg Bladder Cancer Institute
- The James Buchanan Brady Urological Institute, Sidney Kimmel Comprehensive Cancer center
| | - Peng Huang
- Department of Biostatistics
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center and the Bloomberg–Kimmel Institute for Cancer Immunotherapy
| | - David J. McConkey
- The Johns Hopkins Greenberg Bladder Cancer Institute
- The James Buchanan Brady Urological Institute, Sidney Kimmel Comprehensive Cancer center
| | - Sridhar Nimmagadda
- The Russell H. Morgan Department of Radiology and Radiological Science
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center and the Bloomberg–Kimmel Institute for Cancer Immunotherapy
- Department of Pharmacology and Molecular Sciences
- Division of Clinical Pharmacology, Department of Medicine Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| |
Collapse
|
5
|
Martin JA, Czeskis B, Urva S, Cassidy KC. Absorption, distribution, metabolism, and excretion of tirzepatide in humans, rats, and monkeys. Eur J Pharm Sci 2024; 202:106895. [PMID: 39243911 DOI: 10.1016/j.ejps.2024.106895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Tirzepatide is a once-weekly GIP/GLP-1 receptor agonist used for treatment of type 2 diabetes (T2D) in adults and was recently approved for treatment of obesity. To determine the absorption, distribution, metabolism, and excretion (ADME) of tirzepatide, [14C]-radiolabeled tirzepatide was investigated in both humans and preclinical species. [14C]-Tirzepatide was prepared by incorporating four 14C's in the linker region between the amino acid backbone and the di-acid moiety. Healthy male participants received a single subcutaneous dose of approximately 2.9 mg tirzepatide containing approximately 100 μCi of [14C]-tirzepatide. Preclinical studies were conducted in male Sprague Dawley and Long Evans rats administered a single dose of 3 mg kg-1 (133 µCi/kg) of [14C]-tirzepatide, and male cynomolgus monkeys administered a single dose of 0.5 mg kg-1 (20 µCi/kg) of [14C]-tirzepatide. Following a single SC dose of [14C]-tirzepatide in humans, the majority of the excreted dose was recovered within 480 h. Renal excretion was identified as a principal route of elimination in all species with approximately 66 % of the administered radioactivity recovered in urine, while approximately 33 % was eliminated in feces in humans. Metabolite analysis of tirzepatide revealed the parent drug was the major circulating component in human, rat, and monkey plasma. Metabolites identified in human plasma were similar to circulating metabolites found in rats and monkeys with no circulating metabolites representing >10 % of the total radioactive drug-related exposure. Intact tirzepatide was not observed in urine or feces in any species. Tirzepatide was primarily metabolized via proteolytic cleavage of the amino acid backbone, β-oxidation of the C20 diacid moiety, and amide hydrolysis. ClinicalTrials.gov identifier: NCT 04,311,424.
Collapse
|
6
|
Rudolph B, Davis JA, Hainzl D, Walles M. A general perspective for the conduct of radiolabelled distribution, metabolism, and excretion studies for antibody-drug conjugates. Xenobiotica 2024; 54:521-532. [PMID: 39329287 DOI: 10.1080/00498254.2024.2336576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 09/28/2024]
Abstract
Antibody-drug conjugates (ADCs) are a class of biopharmaceuticals that combine the specificity of monoclonal antibodies (mAbs) with the cytotoxicity of small molecule drugs. 15 ADCs have been approved by regulatory authorities up to now, mainly for indications in oncology, however, this review paper will only focus on the 13 ADCs that have been approved by either the FDA or EMA.ADME (Absorption, Distribution, Metabolism, and Excretion) studies are essential for the development of small molecule drugs to evaluate their disposition properties. These studies help to select drug candidates, determine the optimal dosing regimen and help to identify potential safety concerns for the drug of interest in human. Tissue distribution studies are also important as they facilitate the understanding of the efficacy and safety for parent drug and its metabolites in preclinical and clinical studies.For biologics, ADME studies are usually not required. In this paper, we review the existing approval packages and literature for approved ADCs to determine the extent of ADME studies performed as part of ADC registration packages.We conclude that ADME studies are recommended for the development of ADCs if new linkers and payloads are used that have never been used in humans before as these studies provide valuable information on the pharmacokinetic properties, optimal dosing regimen, and potential safety concerns. However, for the development of ADCs with established linker payload combinations, radiolabelled ADME studies may not be necessary if the distribution, metabolism and excretion properties have been described before. Clinical radiolabelled ADME studies are not recommended where patients are treated for life threating diseases like for indications in oncology.
Collapse
Affiliation(s)
- Bettina Rudolph
- Pharmacokinetic Sciences, Biomedical Research, Novartis Pharma, Basel, Switzerland
| | - John A Davis
- Pharmacokinetic Sciences, Biomedical Research, Novartis Pharma, Cambridge, Massachusetts, USA
| | - Dominik Hainzl
- Pharmacokinetic Sciences, Biomedical Research, Novartis Pharma, Cambridge, Massachusetts, USA
| | - Markus Walles
- Pharmacokinetic Sciences, Biomedical Research, Novartis Pharma, Basel, Switzerland
| |
Collapse
|
7
|
Datta-Mannan A, Choi H, Jin Z, Liu L, Lu J, Stokell DJ, Murphy AT, Dunn KW, Martinez MM, Feng Y. Reducing target binding affinity improves the therapeutic index of anti-MET antibody-drug conjugate in tumor bearing animals. PLoS One 2024; 19:e0293703. [PMID: 38630694 PMCID: PMC11023234 DOI: 10.1371/journal.pone.0293703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/17/2023] [Indexed: 04/19/2024] Open
Abstract
Many oncology antibody-drug conjugates (ADCs) have failed to demonstrate efficacy in clinic because of dose-limiting toxicity caused by uptake into healthy tissues. We developed an approach that harnesses ADC affinity to broaden the therapeutic index (TI) using two anti-mesenchymal-epithelial transition factor (MET) monoclonal antibodies (mAbs) with high affinity (HAV) or low affinity (LAV) conjugated to monomethyl auristatin E (MMAE). The estimated TI for LAV-ADC was at least 3 times greater than the HAV-ADC. The LAV- and HAV-ADCs showed similar levels of anti-tumor activity in the xenograft model, while the 111In-DTPA studies showed similar amounts of the ADCs in HT29 tumors. Although the LAV-ADC has ~2-fold slower blood clearance than the HAV-ADC, higher liver toxicity was observed with HAV-ADC. While the SPECT/CT 111In- and 124I- DTPA findings showed HAV-ADC has higher accumulation and rapid clearance in normal tissues, intravital microscopy (IVM) studies confirmed HAV mAb accumulates within hepatic sinusoidal endothelial cells while the LAV mAb does not. These results demonstrated that lowering the MET binding affinity provides a larger TI for MET-ADC. Decreasing the affinity of the ADC reduces the target mediated drug disposition (TMDD) to MET expressed in normal tissues while maintaining uptake/delivery to the tumor. This approach can be applied to multiple ADCs to improve the clinical outcomes.
Collapse
Affiliation(s)
- Amita Datta-Mannan
- Exploratory Medicine and Pharmacology, Lilly Corporate Center, Indianapolis, IN, United States of America
| | - Hiuwan Choi
- Bioproduct Research & Development, Lilly Technology Center North, Indianapolis, IN, United States of America
| | - Zhaoyan Jin
- Drug Disposition/Commercialization, Lilly Corporate Center, Indianapolis, IN, United States of America
| | - Ling Liu
- Biotechnology Discovery Research, Lilly Technology Center North, Indianapolis, IN, United States of America
| | - Jirong Lu
- Biotechnology Discovery Research, Lilly Technology Center North, Indianapolis, IN, United States of America
| | - David J. Stokell
- Biotechnology Discovery Research, Lilly Technology Center North, Indianapolis, IN, United States of America
| | - Anthony T. Murphy
- Drug Disposition/Commercialization, Lilly Corporate Center, Indianapolis, IN, United States of America
| | - Kenneth W. Dunn
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Michelle M. Martinez
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Yiqing Feng
- Biotechnology Discovery Research, Lilly Technology Center North, Indianapolis, IN, United States of America
| |
Collapse
|
8
|
Tang M, Garg A, Bonate PL, Rosenberg JE, Matsangou M, Kadokura T, Yamada A, Choules M, Pavese J, Nagata M, Tenmizu D, Koibuchi A, Heo N, Wang L, Wojtkowski T, Hanley WD, Poondru S. Clinical Pharmacology of the Antibody-Drug Conjugate Enfortumab Vedotin in Advanced Urothelial Carcinoma and Other Malignant Solid Tumors. Clin Pharmacokinet 2024; 63:423-438. [PMID: 38609704 PMCID: PMC11052883 DOI: 10.1007/s40262-024-01369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 04/14/2024]
Abstract
Enfortumab vedotin is an antibody-drug conjugate comprised of a human monoclonal antibody directed to Nectin-4 and monomethyl auristatin E (MMAE), a microtubule-disrupting agent. The objectives of this review are to summarize the clinical pharmacology of enfortumab vedotin monotherapy and demonstrate that the appropriate dose has been selected for clinical use. Pharmacokinetics (PK) of enfortumab vedotin (antibody-drug conjugate and total antibody) and free MMAE were evaluated in five clinical trials of patients with locally advanced or metastatic urothelial carcinoma (n = 748). Intravenous enfortumab vedotin 0.5-1.25 mg/kg on days 1, 8, and 15 of a 28-day cycle showed linear, dose-proportional PK. No significant differences in exposure or safety of enfortumab vedotin and free MMAE were observed in mild, moderate, or severe renal impairment versus normal renal function. Patients with mildly impaired versus normal hepatic function had a 37% increase in area under the concentration-time curve (0-28 days), a 31% increase in maximum concentration of free MMAE, and a similar adverse event profile. No clinically significant PK differences were observed based on race/ethnicity with weight-based dosing, and no clinically meaningful QT prolongation was observed. Concomitant use with dual P-glycoprotein and strong cytochrome P450 3A4 inhibitors may increase MMAE exposure and the risk of adverse events. Approximately 3% of patients developed antitherapeutic antibodies against enfortumab vedotin 1.25 mg/kg. These findings support enfortumab vedotin 1.25 mg/kg monotherapy on days 1, 8, and 15 of a 28-day cycle. No dose adjustments are required for patients with renal impairment or mild hepatic impairment, or by race/ethnicity.
Collapse
Affiliation(s)
- Mei Tang
- Clinical Pharmacology and Exploratory Development, Astellas Pharma Global Development Inc., 2375 Waterview Drive, Northbrook, IL, 60062-6111, USA
| | - Amit Garg
- Clinical Pharmacology Oncology, Pfizer Inc., 181 Oyster Point Boulevard, South San Francisco, CA, 94080, USA.
| | - Peter L Bonate
- Clinical Pharmacology and Exploratory Development, Astellas Pharma Global Development Inc., 2375 Waterview Drive, Northbrook, IL, 60062-6111, USA
| | - Jonathan E Rosenberg
- Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Matsangou
- Therapeutic Area-Oncology, Astellas Pharma Global Development, Astellas Pharma, Inc., Northbrook, IL, USA
| | - Takeshi Kadokura
- Clinical Pharmacology and Exploratory Development, Astellas Pharma Inc., Tokyo, Japan
| | - Akihiro Yamada
- Clinical Pharmacology and Exploratory Development, Astellas Pharma Inc., Tokyo, Japan
| | - Mary Choules
- Clinical Pharmacology and Exploratory Development, Astellas Pharma Global Development Inc., 2375 Waterview Drive, Northbrook, IL, 60062-6111, USA
| | - Janet Pavese
- Clinical Pharmacology and Exploratory Development, Astellas Pharma Global Development Inc., 2375 Waterview Drive, Northbrook, IL, 60062-6111, USA
| | - Masanori Nagata
- Analysis and Pharmacokinetics Research Laboratories, Drug Discovery Research, Astellas Pharma, Inc, Tsukuba, Japan
| | - Daisuke Tenmizu
- Analysis and Pharmacokinetics Research Laboratories, Drug Discovery Research, Astellas Pharma, Inc, Tsukuba, Japan
| | - Akira Koibuchi
- Clinical Pharmacology and Exploratory Development, Astellas Pharma Inc., Tokyo, Japan
| | - Nakyo Heo
- Clinical Pharmacology and Exploratory Development, Astellas Pharma Global Development Inc., 2375 Waterview Drive, Northbrook, IL, 60062-6111, USA
| | - Lu Wang
- Statistical and Real-World Data Science, Astellas Pharma Global Development Inc, Northbrook, IL, USA
| | - Tomasz Wojtkowski
- Data Science Development, Astellas Pharma Global Development Inc., Northbrook, IL, USA
| | - William D Hanley
- Clinical Pharmacology Oncology, Pfizer Inc., 181 Oyster Point Boulevard, South San Francisco, CA, 94080, USA
| | - Srinivasu Poondru
- Clinical Pharmacology and Exploratory Development, Astellas Pharma Global Development Inc., 2375 Waterview Drive, Northbrook, IL, 60062-6111, USA.
| |
Collapse
|
9
|
Salih AK, Dominguez Garcia M, Raheem SJ, Ahiahonu WK, Price EW. DFO-Km: A Modular Chelator as a New Chemical Tool for the Construction of Zirconium-89-Based Radiopharmaceuticals. Inorg Chem 2023; 62:20806-20819. [PMID: 37751491 DOI: 10.1021/acs.inorgchem.3c02714] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Zirconium-89-labeled monoclonal antibodies and other large macromolecules such as nanoparticles hold great promise as positron emission tomography imaging agents. In general, zirconium-89 is an ideal radionuclide for long-circulating vectors such as antibodies or nanoparticles. It is also a promising radionuclide for theranostic radiopharmaceuticals due to its suitable match in half-life with actinium-225, thorium-227, lutetium-177, and others. As such, demand for new and optimized bifunctional chelators for zirconium-89 continues to grow. Herein, we present the modular chelator DFO-Km, which is octadentate and features lysine as a modular amino acid linker. The modular amino acid linker can be changed to other natural or unnatural amino acids to access different bioconjugation chemistries, while the chelating portion is unchanged thus retaining identical metal ion coordination properties to DFO-Km. The epsilon-amine in the DFO-Km linker (lysine) was used to complete synthesis of a bifunctional derivative bearing a p-SCN-Ph moiety. The chelator DFO-Km includes a redesigned hydroxamic acid, which provides more flexibility for metal ion coordination relative to the monomer used in the previously published DFO-Em. Moreover, a set of comprehensive DFT calculations were performed to model and evaluate 16 geometric isomers of Zr-(DFO-Km), which suggested the complex would form the optimum cic-cis-trans-trans octadentate Zr(IV) coordination geometry with no aqua or hydroxide ligands present. The bifunctional derivative p-SCN-Ph-DFO-Km was compared directly with the commercially available p-SCN-Ph-DFO, and both underwent efficient conjugation to a nonspecific human serum antibody (IgG) to yield two model immunoconjugates. The behavior of [89Zr]Zr-DFO-Km-IgG was studied in healthy mice for 2 weeks and compared to an equivalent cohort injected with [89Zr]Zr-DFO-IgG as a clinical "gold standard" control. PET-CT and biodistribution results revealed higher stability of [89Zr]Zr-(DFO-Km)-IgG in vivo over [89Zr]Zr-DFO-IgG, as demonstrated by the significant reduction of zirconium-89 in the whole skeleton as visualized and quantified by PET-CT at 1, 3, 7, and 14 days post-injection. Using CT-gated regions of interest over these PET-CT images, the whole skeleton was selected and uptake values were measured at 14 days post-injection of 3.6 ± 0.9 (DFO) vs 1.9 ± 0.1 (DFO-Km) %ID/g (n = 4, * p = 0.02), which represents a ∼48% reduction in bone uptake with DFO-Km relative to DFO. Biodistribution experiments performed on these same mice following the 14 day imaging time point revealed bone (both tibia) uptake values of 3.7 ± 1.3 (DFO) vs 2.0 ± 0.6 (DFO-Km) %ID/g (n = 6, * p < 0.05), with the tibia uptake values in close agreement with whole-skeleton ROI PET-CT data. These results indicate that DFO-Km is an improved chelator for [89Zr]Zr4+ applications relative to DFO. The bifunctional chelator p-SCN-Ph-DFO-Km shows potential as a new chemical tool for creating bioconjugates using targeting vectors such as antibodies, peptides, and nanoparticles.
Collapse
Affiliation(s)
- Akam K Salih
- Radiopharmacology, Mariana Oncology, Woburn, Massachusetts 01801, United States
| | - Moralba Dominguez Garcia
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N-5C9, Canada
| | - Shvan J Raheem
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N-5C9, Canada
| | - William K Ahiahonu
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N-5C9, Canada
| | - Eric W Price
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N-5C9, Canada
| |
Collapse
|
10
|
Hejmady S, Pradhan R, Kumari S, Pandey M, Dubey SK, Taliyan R. Pharmacokinetics and toxicity considerations for antibody-drug conjugates: an overview. Bioanalysis 2023; 15:1193-1202. [PMID: 37724472 DOI: 10.4155/bio-2023-0104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023] Open
Abstract
Antibody-drug conjugates (ADCs) is one of the fastest-growing drug-delivery systems. It involves a monoclonal antibody conjugated with payload via a ligand that directly targets the expressive protein of diseased cell. Hence, it reduces systemic exposure and provides site-specific delivery along with reduced toxicity. Because of this advantage, researchers have gained interest in this novel system. ADCs have displayed great promise in drug delivery and biomedical applications. However, a lack of understanding exists on their mechanisms of biodistribution, metabolism and side effects. To gain a better understanding of the therapeutics, careful consideration of the pharmacokinetics and toxicity needs to be undertaken. In this review, different pharmacokinetics parameters including distribution, bioanalysis and heterogeneity are discussed for developing novel therapeutics.
Collapse
Affiliation(s)
- Siddhanth Hejmady
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Rajesh Pradhan
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Shobha Kumari
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Meghna Pandey
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Sunil K Dubey
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Pilani Campus, Rajasthan, 333031, India
- Medical Research, R&D Healthcare Division, Emami Ltd, Kolkata 700056, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Pilani Campus, Rajasthan, 333031, India
| |
Collapse
|
11
|
Yin L, Xu A, Zhao Y, Gu J. Bioanalytical Assays for Pharmacokinetic and Biodistribution Study of Antibody-Drug Conjugates. Drug Metab Dispos 2023; 51:1324-1331. [PMID: 37290939 DOI: 10.1124/dmd.123.001313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are produced by the chemical linkage of cytotoxic agents and monoclonal antibodies. The complexity and heterogeneity of ADCs and the low concentration of cytotoxic agent released in vivo poses big challenges to their bioanalysis. Understanding the pharmacokinetic behavior, exposure-safety, and exposure-efficacy relationships of ADCs is needed for their successful development. Accurate analytical methods are required to evaluate intact ADCs, total antibody, released small molecule cytotoxins, and related metabolites. The selection of appropriate bioanalysis methods for comprehensive analysis of ADCs is mainly dependent on the properties of cytotoxic agents, the chemical linker, and the attachment sites. The quality of the information about the whole pharmacokinetic profile of ADCs has been improved due to the development and improvement of analytical strategies for detection of ADCs, such as ligand-binding assays and mass spectrometry-related techniques. In this article, we will focus on the bioanalytical assays that have been used in the pharmacokinetic study of ADCs and discuss their advantages, current limitations, and potential challenges. SIGNIFICANCE STATEMENT: This article describes bioanalysis methods which have been used in pharmacokinetic study of ADCs and discusses the advantages, disadvantages and potential challenges of these assays. This review is useful and helpful and will provide insights and reference for bioanalysis and development of ADCs.
Collapse
Affiliation(s)
- Lei Yin
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun, 130012, PR China (L.Y., A.X., Y.Z., J.G.) and School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, PR China (L.Y.)
| | - Aiyun Xu
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun, 130012, PR China (L.Y., A.X., Y.Z., J.G.) and School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, PR China (L.Y.)
| | - Yumeng Zhao
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun, 130012, PR China (L.Y., A.X., Y.Z., J.G.) and School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, PR China (L.Y.)
| | - Jingkai Gu
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun, 130012, PR China (L.Y., A.X., Y.Z., J.G.) and School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, PR China (L.Y.)
| |
Collapse
|
12
|
Cai T, Shi L, Guo H, Li R, Cao W, Shen L, Zhu M, Tao Y. Detection and Characterization of In Vitro Payload-Containing Catabolites of Noncleavable Antibody-Drug Conjugates by High-Resolution Mass Spectrometry and Multiple Data Mining Tools. Drug Metab Dispos 2023; 51:591-598. [PMID: 36707253 DOI: 10.1124/dmd.122.001135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
The formation and accumulation of payload-containing catabolites (PCCs) from a noncleavable antibody-drug conjugate (ADC) in targeted and normal tissues are directly associated with the therapeutic effect and toxicity of the ADC, respectively. Understanding the PCC formation is important for supporting the payload design and facilitating preclinical evaluation of ADCs. However, detection and identification of PCCs of a noncleavable ADC are challenging due to their low concentrations and unknown structures. The main objective of this study was to develop and apply a generic liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method for profiling PCCs in vitro. Noncleavable ADCs, ado-trastuzumab emtansine (T-DM1) and ADC-1, were incubated in liver lysosomes, liver S9, and/or cancer cells followed by data acquisition using LC-HRMS. Profiling PCCs mainly relied on processing LC-HRMS datasets using untargeted precise and thorough background subtraction (PATBS) processing and targeted product ion filtering (PIF). As a result, 12 PCCs of T-DM1 were detected and structurally characterized in human liver lysosomal incubation, a majority of which consisted of 4-[N-maleimidomethyl]cyclohexane-1-carboxylate (MCC)-DM1 and a few amino acids. Additionally, the incubation of ADC-1 in human, rat, and monkey liver S9 and cancer cells generated one major and three very minor PCCs, verifying the payload design. The results demonstrate that PATBS enabled the comprehensive profiling of PCCs regardless of their molecular weights, charge states, and fragmentations. As a complementary tool, PIF detected specific PCCs with superior sensitivity. The combination of the in vitro metabolism systems and the LC-HRMS method is a useful approach to profiling in vitro PCCs of noncleavable ADCs in support of drug discovery programs. SIGNIFICANCE STATEMENT: Profiling in vitro payload-containing catabolites (PCCs) of a noncleavable antibody-drug conjugate (ADC) is important for optimization of the payload design and preclinical evaluation of ADC. However, currently used analytical approaches often fail to quickly provide reliable PCC profiling results. The work introduces a new liquid chromatography high resolution mass spectrometry method for comprehensive and rapid detection and characterization of PCCs released from a noncleavable ADC in liver lysosomes and S9 incubations.
Collapse
Affiliation(s)
- Tingting Cai
- Drug Metabolism and Pharmacokinetic Services, WuXi AppTec, Nanjing, Jiangsu, China (T.C.); Drug Metabolism and Pharmacokinetic Services, WuXi AppTec, Shanghai, China (L.S., R.L., W.C., L.S., Y.T.); Hangzhou DAC Biotechnology Co., Ltd., Hangzhou, China (H.G.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Liqi Shi
- Drug Metabolism and Pharmacokinetic Services, WuXi AppTec, Nanjing, Jiangsu, China (T.C.); Drug Metabolism and Pharmacokinetic Services, WuXi AppTec, Shanghai, China (L.S., R.L., W.C., L.S., Y.T.); Hangzhou DAC Biotechnology Co., Ltd., Hangzhou, China (H.G.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Huihui Guo
- Drug Metabolism and Pharmacokinetic Services, WuXi AppTec, Nanjing, Jiangsu, China (T.C.); Drug Metabolism and Pharmacokinetic Services, WuXi AppTec, Shanghai, China (L.S., R.L., W.C., L.S., Y.T.); Hangzhou DAC Biotechnology Co., Ltd., Hangzhou, China (H.G.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Ruixing Li
- Drug Metabolism and Pharmacokinetic Services, WuXi AppTec, Nanjing, Jiangsu, China (T.C.); Drug Metabolism and Pharmacokinetic Services, WuXi AppTec, Shanghai, China (L.S., R.L., W.C., L.S., Y.T.); Hangzhou DAC Biotechnology Co., Ltd., Hangzhou, China (H.G.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Weiqun Cao
- Drug Metabolism and Pharmacokinetic Services, WuXi AppTec, Nanjing, Jiangsu, China (T.C.); Drug Metabolism and Pharmacokinetic Services, WuXi AppTec, Shanghai, China (L.S., R.L., W.C., L.S., Y.T.); Hangzhou DAC Biotechnology Co., Ltd., Hangzhou, China (H.G.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Liang Shen
- Drug Metabolism and Pharmacokinetic Services, WuXi AppTec, Nanjing, Jiangsu, China (T.C.); Drug Metabolism and Pharmacokinetic Services, WuXi AppTec, Shanghai, China (L.S., R.L., W.C., L.S., Y.T.); Hangzhou DAC Biotechnology Co., Ltd., Hangzhou, China (H.G.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Mingshe Zhu
- Drug Metabolism and Pharmacokinetic Services, WuXi AppTec, Nanjing, Jiangsu, China (T.C.); Drug Metabolism and Pharmacokinetic Services, WuXi AppTec, Shanghai, China (L.S., R.L., W.C., L.S., Y.T.); Hangzhou DAC Biotechnology Co., Ltd., Hangzhou, China (H.G.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Yi Tao
- Drug Metabolism and Pharmacokinetic Services, WuXi AppTec, Nanjing, Jiangsu, China (T.C.); Drug Metabolism and Pharmacokinetic Services, WuXi AppTec, Shanghai, China (L.S., R.L., W.C., L.S., Y.T.); Hangzhou DAC Biotechnology Co., Ltd., Hangzhou, China (H.G.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| |
Collapse
|
13
|
Beaumont K, Pike A, Davies M, Savoca A, Vasalou C, Harlfinger S, Ramsden D, Ferguson D, Hariparsad N, Jones O, McGinnity D. ADME and DMPK considerations for the discovery and development of antibody drug conjugates (ADCs). Xenobiotica 2022; 52:770-785. [PMID: 36314242 DOI: 10.1080/00498254.2022.2141667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The therapeutic concept of antibody drug conjugates (ADCs) is to selectively target tumour cells with small molecule cytotoxic drugs to maximise cell kill benefit and minimise healthy tissue toxicity.An ADC generally consists of an antibody that targets a protein on the surface of tumour cells chemically linked to a warhead small molecule cytotoxic drug.To deliver the warhead to the tumour cell, the antibody must bind to the target protein and in general be internalised into the cell. Following internalisation, the cytotoxic agent can be released in the endosomal or lysosomal compartment (via different mechanisms). Diffusion or transport out of the endosome or lysosome allows the cytotoxic drug to express its cell-killing pharmacology. Alternatively, some ADCs (e.g. EDB-ADCs) rely on extracellular cleavage releasing membrane permeable warheads.One potentially important aspect of the ADC mechanism is the 'bystander effect' whereby the cytotoxic drug released in the targeted cell can diffuse out of that cell and into other (non-target expressing) tumour cells to exert its cytotoxic effect. This is important as solid tumours tend to be heterogeneous and not all cells in a tumour will express the targeted protein.The combination of large and small molecule aspects in an ADC poses significant challenges to the disposition scientist in describing the ADME properties of the entire molecule.This article will review the ADC landscape and the ADME properties of successful ADCs, with the aim of outlining best practice and providing a perspective of how the field can further facilitate the discovery and development of these important therapeutic modalities.
Collapse
Affiliation(s)
- Kevin Beaumont
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, Cambridge, UK
| | - Andy Pike
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, Cambridge, UK
| | - Michael Davies
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, Cambridge, UK
| | - Adriana Savoca
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, Cambridge, UK
| | - Christina Vasalou
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, AstraZeneca, Boston, MA, USA
| | - Steffi Harlfinger
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, Cambridge, UK
| | - Diane Ramsden
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, AstraZeneca, Boston, MA, USA
| | - Douglas Ferguson
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, AstraZeneca, Boston, MA, USA
| | - Niresh Hariparsad
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, AstraZeneca, Boston, MA, USA
| | - Owen Jones
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, Cambridge, UK
| | - Dermot McGinnity
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, Cambridge, UK
| |
Collapse
|
14
|
Ball K, Bruin G, Escandón E, Funk C, Pereira JNS, Yang TY, Yu H. Characterizing the Pharmacokinetics and Biodistribution of Therapeutic Proteins: An Industry White Paper. Drug Metab Dispos 2022; 50:858-866. [PMID: 35149542 DOI: 10.1124/dmd.121.000463] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022] Open
Abstract
Characterization of the pharmacokinetics and biodistribution of therapeutic proteins (TPs) is a hot topic within the pharmaceutical industry, particularly with an ever-increasing catalog of novel modality TPs. Here, we review the current practices, and provide a summary of extensive cross-company discussions as well as a survey completed by International Consortium for Innovation and Quality members on this theme. A wide variety of in vitro, in vivo and in silico techniques are currently used to assess pharmacokinetics and biodistribution of TPs, and we discuss the relevance of these from an industry perspective, focusing on pharmacokinetic/pharmacodynamic understanding at the preclinical stage of development, and translation to human. We consider that the 'traditional in vivo biodistribution study' is becoming insufficient as a standalone tool, and thorough characterization of the interaction of the TP with its target(s), target biology, and off-target interactions at a microscopic scale are key to understand the overall biodistribution on a full-body scale. Our summary of the current challenges and our recommendations to address these issues could provide insight into the implementation of best practices in this area of drug development, and continued cross-company collaboration will be of tremendous value. SIGNIFICANCE STATEMENT: The Innovation and Quality Consortium Translational and ADME Sciences Leadership Group working group for the absorption, distribution, metabolism, and excretion of therapeutic proteins evaluates the current practices and challenges in characterizing the pharmacokinetics and biodistribution of therapeutic proteins during drug development, and proposes recommendations to address these issues. Incorporating the in vitro, in vivo and in silico approaches discussed herein may provide a pragmatic framework to increase early understanding of pharmacokinetic/pharmacodynamic relationships, and aid translational modeling for first-in-human dose predictions.
Collapse
Affiliation(s)
- Kathryn Ball
- Clinical Pharmacology & Quantitative Pharmacology, CPSS, R&D, AstraZeneca, Cambridge, United Kingdom (K.B.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland (G.B.); PPDM ADME Biologics, Merck & Co., Inc., South San Francisco, California (E.E.); Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (C.F.); Discovery & Development Technologies, Drug Disposition & Design, Merck Healthcare KGaA, Darmstadt, Germany (J.N.S.P.); Janssen BioTherapeutics, Janssen R&D, LLC, Spring House, Pennsylvania (T.-Y.Y.); and Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (H.Y.)
| | - Gerard Bruin
- Clinical Pharmacology & Quantitative Pharmacology, CPSS, R&D, AstraZeneca, Cambridge, United Kingdom (K.B.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland (G.B.); PPDM ADME Biologics, Merck & Co., Inc., South San Francisco, California (E.E.); Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (C.F.); Discovery & Development Technologies, Drug Disposition & Design, Merck Healthcare KGaA, Darmstadt, Germany (J.N.S.P.); Janssen BioTherapeutics, Janssen R&D, LLC, Spring House, Pennsylvania (T.-Y.Y.); and Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (H.Y.)
| | - Enrique Escandón
- Clinical Pharmacology & Quantitative Pharmacology, CPSS, R&D, AstraZeneca, Cambridge, United Kingdom (K.B.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland (G.B.); PPDM ADME Biologics, Merck & Co., Inc., South San Francisco, California (E.E.); Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (C.F.); Discovery & Development Technologies, Drug Disposition & Design, Merck Healthcare KGaA, Darmstadt, Germany (J.N.S.P.); Janssen BioTherapeutics, Janssen R&D, LLC, Spring House, Pennsylvania (T.-Y.Y.); and Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (H.Y.)
| | - Christoph Funk
- Clinical Pharmacology & Quantitative Pharmacology, CPSS, R&D, AstraZeneca, Cambridge, United Kingdom (K.B.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland (G.B.); PPDM ADME Biologics, Merck & Co., Inc., South San Francisco, California (E.E.); Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (C.F.); Discovery & Development Technologies, Drug Disposition & Design, Merck Healthcare KGaA, Darmstadt, Germany (J.N.S.P.); Janssen BioTherapeutics, Janssen R&D, LLC, Spring House, Pennsylvania (T.-Y.Y.); and Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (H.Y.)
| | - Joao N S Pereira
- Clinical Pharmacology & Quantitative Pharmacology, CPSS, R&D, AstraZeneca, Cambridge, United Kingdom (K.B.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland (G.B.); PPDM ADME Biologics, Merck & Co., Inc., South San Francisco, California (E.E.); Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (C.F.); Discovery & Development Technologies, Drug Disposition & Design, Merck Healthcare KGaA, Darmstadt, Germany (J.N.S.P.); Janssen BioTherapeutics, Janssen R&D, LLC, Spring House, Pennsylvania (T.-Y.Y.); and Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (H.Y.)
| | - Tong-Yuan Yang
- Clinical Pharmacology & Quantitative Pharmacology, CPSS, R&D, AstraZeneca, Cambridge, United Kingdom (K.B.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland (G.B.); PPDM ADME Biologics, Merck & Co., Inc., South San Francisco, California (E.E.); Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (C.F.); Discovery & Development Technologies, Drug Disposition & Design, Merck Healthcare KGaA, Darmstadt, Germany (J.N.S.P.); Janssen BioTherapeutics, Janssen R&D, LLC, Spring House, Pennsylvania (T.-Y.Y.); and Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (H.Y.)
| | - Hongbin Yu
- Clinical Pharmacology & Quantitative Pharmacology, CPSS, R&D, AstraZeneca, Cambridge, United Kingdom (K.B.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland (G.B.); PPDM ADME Biologics, Merck & Co., Inc., South San Francisco, California (E.E.); Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (C.F.); Discovery & Development Technologies, Drug Disposition & Design, Merck Healthcare KGaA, Darmstadt, Germany (J.N.S.P.); Janssen BioTherapeutics, Janssen R&D, LLC, Spring House, Pennsylvania (T.-Y.Y.); and Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (H.Y.)
| |
Collapse
|
15
|
Bolleddula J, Brady K, Bruin G, Lee A, Martin JA, Walles M, Xu K, Yang TY, Zhu X, Yu H. Absorption, Distribution, Metabolism, and Excretion of Therapeutic Proteins: Current Industry Practices and Future Perspectives. Drug Metab Dispos 2022; 50:837-845. [PMID: 35149541 DOI: 10.1124/dmd.121.000461] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022] Open
Abstract
Therapeutic proteins (TPs) comprise a variety of modalities, including antibody-based drugs, coagulation factors, recombinant cytokines, enzymes, growth factors, and hormones. TPs usually cannot traverse cellular barriers and exert their pharmacological activity by interacting with targets on the exterior membrane of cells or with soluble ligands in the tissue interstitial fluid/blood. Due to their large size, lack of cellular permeability, variation in metabolic fate, and distinct physicochemical characteristics, TPs are subject to different absorption, distribution, metabolism, and excretion (ADME) processes as compared with small molecules. Limited regulatory guidance makes it challenging to determine the most relevant ADME data required for regulatory submissions. The TP ADME working group was sponsored by the Translational and ADME Sciences Leadership Group within the Innovation and Quality (IQ) consortium with objectives to: (1) better understand the current practices of ADME data generated for TPs across IQ member companies, (2) learn about their regulatory strategies and interaction experiences, and (3) provide recommendations on best practices for conducting ADME studies for TPs. To understand current ADME practices and regulatory strategies, an industry-wide survey was conducted within IQ member companies. In addition, ADME data submitted to the U.S. Food and Drug Administration was also collated by reviewing regulatory submission packages of TPs approved between 2011 and 2020. This article summarizes the key learnings from the survey and an overview of ADME data presented in biologics license applications along with future perspectives and recommendations for conducting ADME studies for internal decision-making as well as regulatory submissions for TPs. SIGNIFICANCE STATEMENT: This article provides comprehensive assessment of the current practices of absorption, distribution, metabolism, and excretion (ADME) data generated for therapeutic proteins (TPs) across the Innovation and Quality participating companies and the utility of the data in discovery, development, and regulatory submissions. The TP ADME working group also recommends the best practices for condu-cting ADME studies for internal decision-making and regulatory submissions.
Collapse
Affiliation(s)
- Jayaprakasam Bolleddula
- Quantitative Pharmacology, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (J.B.); Quantitative Pharmacology & DMPK, UCB Pharma S.A., Slough, United Kingdom (K.B.); Pharmacokinetic Science, Novartis Institutes for Biomedical Research, Basel, Switzerland (G.B., M.W.); Quantitative Pharmacology and Disposition, Seagen Inc., Bothell, Washington (A.L.); Drug Disposition, Eli Lilly and Company, Indianapolis, Indiana (J.A.M); BioAnalytical Sciences, Genentech, South San Francisco, California (K.X.); Preclinical Sciences and Translational Safety, Janssen R&D, LLC, Spring House, Pennsylvania (T.-Y.Y.); Drug Metabolism and Pharmacokinetics, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts (X.Z.); and Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (H.Y.)
| | - Kevin Brady
- Quantitative Pharmacology, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (J.B.); Quantitative Pharmacology & DMPK, UCB Pharma S.A., Slough, United Kingdom (K.B.); Pharmacokinetic Science, Novartis Institutes for Biomedical Research, Basel, Switzerland (G.B., M.W.); Quantitative Pharmacology and Disposition, Seagen Inc., Bothell, Washington (A.L.); Drug Disposition, Eli Lilly and Company, Indianapolis, Indiana (J.A.M); BioAnalytical Sciences, Genentech, South San Francisco, California (K.X.); Preclinical Sciences and Translational Safety, Janssen R&D, LLC, Spring House, Pennsylvania (T.-Y.Y.); Drug Metabolism and Pharmacokinetics, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts (X.Z.); and Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (H.Y.)
| | - Gerard Bruin
- Quantitative Pharmacology, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (J.B.); Quantitative Pharmacology & DMPK, UCB Pharma S.A., Slough, United Kingdom (K.B.); Pharmacokinetic Science, Novartis Institutes for Biomedical Research, Basel, Switzerland (G.B., M.W.); Quantitative Pharmacology and Disposition, Seagen Inc., Bothell, Washington (A.L.); Drug Disposition, Eli Lilly and Company, Indianapolis, Indiana (J.A.M); BioAnalytical Sciences, Genentech, South San Francisco, California (K.X.); Preclinical Sciences and Translational Safety, Janssen R&D, LLC, Spring House, Pennsylvania (T.-Y.Y.); Drug Metabolism and Pharmacokinetics, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts (X.Z.); and Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (H.Y.)
| | - Anthony Lee
- Quantitative Pharmacology, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (J.B.); Quantitative Pharmacology & DMPK, UCB Pharma S.A., Slough, United Kingdom (K.B.); Pharmacokinetic Science, Novartis Institutes for Biomedical Research, Basel, Switzerland (G.B., M.W.); Quantitative Pharmacology and Disposition, Seagen Inc., Bothell, Washington (A.L.); Drug Disposition, Eli Lilly and Company, Indianapolis, Indiana (J.A.M); BioAnalytical Sciences, Genentech, South San Francisco, California (K.X.); Preclinical Sciences and Translational Safety, Janssen R&D, LLC, Spring House, Pennsylvania (T.-Y.Y.); Drug Metabolism and Pharmacokinetics, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts (X.Z.); and Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (H.Y.)
| | - Jennifer A Martin
- Quantitative Pharmacology, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (J.B.); Quantitative Pharmacology & DMPK, UCB Pharma S.A., Slough, United Kingdom (K.B.); Pharmacokinetic Science, Novartis Institutes for Biomedical Research, Basel, Switzerland (G.B., M.W.); Quantitative Pharmacology and Disposition, Seagen Inc., Bothell, Washington (A.L.); Drug Disposition, Eli Lilly and Company, Indianapolis, Indiana (J.A.M); BioAnalytical Sciences, Genentech, South San Francisco, California (K.X.); Preclinical Sciences and Translational Safety, Janssen R&D, LLC, Spring House, Pennsylvania (T.-Y.Y.); Drug Metabolism and Pharmacokinetics, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts (X.Z.); and Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (H.Y.)
| | - Markus Walles
- Quantitative Pharmacology, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (J.B.); Quantitative Pharmacology & DMPK, UCB Pharma S.A., Slough, United Kingdom (K.B.); Pharmacokinetic Science, Novartis Institutes for Biomedical Research, Basel, Switzerland (G.B., M.W.); Quantitative Pharmacology and Disposition, Seagen Inc., Bothell, Washington (A.L.); Drug Disposition, Eli Lilly and Company, Indianapolis, Indiana (J.A.M); BioAnalytical Sciences, Genentech, South San Francisco, California (K.X.); Preclinical Sciences and Translational Safety, Janssen R&D, LLC, Spring House, Pennsylvania (T.-Y.Y.); Drug Metabolism and Pharmacokinetics, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts (X.Z.); and Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (H.Y.)
| | - Keyang Xu
- Quantitative Pharmacology, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (J.B.); Quantitative Pharmacology & DMPK, UCB Pharma S.A., Slough, United Kingdom (K.B.); Pharmacokinetic Science, Novartis Institutes for Biomedical Research, Basel, Switzerland (G.B., M.W.); Quantitative Pharmacology and Disposition, Seagen Inc., Bothell, Washington (A.L.); Drug Disposition, Eli Lilly and Company, Indianapolis, Indiana (J.A.M); BioAnalytical Sciences, Genentech, South San Francisco, California (K.X.); Preclinical Sciences and Translational Safety, Janssen R&D, LLC, Spring House, Pennsylvania (T.-Y.Y.); Drug Metabolism and Pharmacokinetics, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts (X.Z.); and Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (H.Y.)
| | - Tong-Yuan Yang
- Quantitative Pharmacology, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (J.B.); Quantitative Pharmacology & DMPK, UCB Pharma S.A., Slough, United Kingdom (K.B.); Pharmacokinetic Science, Novartis Institutes for Biomedical Research, Basel, Switzerland (G.B., M.W.); Quantitative Pharmacology and Disposition, Seagen Inc., Bothell, Washington (A.L.); Drug Disposition, Eli Lilly and Company, Indianapolis, Indiana (J.A.M); BioAnalytical Sciences, Genentech, South San Francisco, California (K.X.); Preclinical Sciences and Translational Safety, Janssen R&D, LLC, Spring House, Pennsylvania (T.-Y.Y.); Drug Metabolism and Pharmacokinetics, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts (X.Z.); and Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (H.Y.)
| | - Xiaochun Zhu
- Quantitative Pharmacology, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (J.B.); Quantitative Pharmacology & DMPK, UCB Pharma S.A., Slough, United Kingdom (K.B.); Pharmacokinetic Science, Novartis Institutes for Biomedical Research, Basel, Switzerland (G.B., M.W.); Quantitative Pharmacology and Disposition, Seagen Inc., Bothell, Washington (A.L.); Drug Disposition, Eli Lilly and Company, Indianapolis, Indiana (J.A.M); BioAnalytical Sciences, Genentech, South San Francisco, California (K.X.); Preclinical Sciences and Translational Safety, Janssen R&D, LLC, Spring House, Pennsylvania (T.-Y.Y.); Drug Metabolism and Pharmacokinetics, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts (X.Z.); and Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (H.Y.)
| | - Hongbin Yu
- Quantitative Pharmacology, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (J.B.); Quantitative Pharmacology & DMPK, UCB Pharma S.A., Slough, United Kingdom (K.B.); Pharmacokinetic Science, Novartis Institutes for Biomedical Research, Basel, Switzerland (G.B., M.W.); Quantitative Pharmacology and Disposition, Seagen Inc., Bothell, Washington (A.L.); Drug Disposition, Eli Lilly and Company, Indianapolis, Indiana (J.A.M); BioAnalytical Sciences, Genentech, South San Francisco, California (K.X.); Preclinical Sciences and Translational Safety, Janssen R&D, LLC, Spring House, Pennsylvania (T.-Y.Y.); Drug Metabolism and Pharmacokinetics, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts (X.Z.); and Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (H.Y.)
| |
Collapse
|
16
|
Walles M, Berna M, Jian W, Hauri S, Hengel S, King L, Tran JC, Wei C, Xu K, Zhu X. A Cross Company Perspective on the Assessment of Therapeutic Protein Biotransformation. Drug Metab Dispos 2022; 50:846-857. [PMID: 35306476 DOI: 10.1124/dmd.121.000462] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/02/2022] [Indexed: 02/13/2025] Open
Abstract
Unlike with new chemical entities, the biotransformation of therapeutic proteins (TPs) has not been routinely investigated or included in regulatory filings. Nevertheless, there is an expanding pool of evidence suggesting that a more in-depth understanding of biotransformation could better aid the discovery and development of increasingly diverse modalities. For instance, such biotransformation analysis of TPs affords important information on molecular stability, which in turn may shed light on any potential impact on binding affinity, potency, pharmacokinetics, efficacy, safety, or bioanalysis. This perspective summarizes the current practices in studying biotransformation of TPs and related findings in the biopharmaceutical industry. Various TP case studies are discussed, and a fit-for-purpose approach is recommended when investigating their biotransformation. In addition, we provide a decision tree to guide the biotransformation characterization for selected modalities. By raising the awareness of this important topic, which remains relatively underexplored in the development of TPs (Bolleddula et al., 2022), we hope that current and developing practices can pave the way for establishing a consensus on the biotransformation assessment of TPs. SIGNIFICANCE STATEMENT: This article provides a comprehensive perspective of the current practices for exploring the biotransformation of therapeutic proteins across the drug development industry. We, the participants of the Innovation and Quality therapeutic protein absorption distribution metabolism excretion working group, recommend and summarize appropriate approaches for conducting biotransformation studies to support internal decision making based on the data generated in discovery and development.
Collapse
Affiliation(s)
- Markus Walles
- Pharmacokinetic Science, Novartis Institutes for Biomedical Research, Basel, Switzerland (M.W.); Biotechnology Discovery Research-ADME, Eli Lilly and Company, Indianapolis, Indiana (M.B.); Drug Metabolism and Pharmacokinetics, Janssen Research & Development, Spring House, Pennsylvania (W.J.); Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (S.Ha.); Quantitative Pharmacology and Disposition, Seagen, Inc., Bothell, Washington (S.He.); Drug Metabolism and Pharmacokinetics, UCB Biopharma, Slough, UK (L.K.); Bioanalytical Sciences (K.X.) and Biochemical and Cellular Pharmacology (J.C.T.), Genentech, South San Francisco, California; Drug Metabolism and Pharmacokinetics, Biogen, Inc., Cambridge, Massachusetts (C.W.); and Drug Metabolism and Pharmacokinetics, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts (X.Z.)
| | - Michael Berna
- Pharmacokinetic Science, Novartis Institutes for Biomedical Research, Basel, Switzerland (M.W.); Biotechnology Discovery Research-ADME, Eli Lilly and Company, Indianapolis, Indiana (M.B.); Drug Metabolism and Pharmacokinetics, Janssen Research & Development, Spring House, Pennsylvania (W.J.); Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (S.Ha.); Quantitative Pharmacology and Disposition, Seagen, Inc., Bothell, Washington (S.He.); Drug Metabolism and Pharmacokinetics, UCB Biopharma, Slough, UK (L.K.); Bioanalytical Sciences (K.X.) and Biochemical and Cellular Pharmacology (J.C.T.), Genentech, South San Francisco, California; Drug Metabolism and Pharmacokinetics, Biogen, Inc., Cambridge, Massachusetts (C.W.); and Drug Metabolism and Pharmacokinetics, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts (X.Z.)
| | - Wenying Jian
- Pharmacokinetic Science, Novartis Institutes for Biomedical Research, Basel, Switzerland (M.W.); Biotechnology Discovery Research-ADME, Eli Lilly and Company, Indianapolis, Indiana (M.B.); Drug Metabolism and Pharmacokinetics, Janssen Research & Development, Spring House, Pennsylvania (W.J.); Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (S.Ha.); Quantitative Pharmacology and Disposition, Seagen, Inc., Bothell, Washington (S.He.); Drug Metabolism and Pharmacokinetics, UCB Biopharma, Slough, UK (L.K.); Bioanalytical Sciences (K.X.) and Biochemical and Cellular Pharmacology (J.C.T.), Genentech, South San Francisco, California; Drug Metabolism and Pharmacokinetics, Biogen, Inc., Cambridge, Massachusetts (C.W.); and Drug Metabolism and Pharmacokinetics, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts (X.Z.)
| | - Simon Hauri
- Pharmacokinetic Science, Novartis Institutes for Biomedical Research, Basel, Switzerland (M.W.); Biotechnology Discovery Research-ADME, Eli Lilly and Company, Indianapolis, Indiana (M.B.); Drug Metabolism and Pharmacokinetics, Janssen Research & Development, Spring House, Pennsylvania (W.J.); Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (S.Ha.); Quantitative Pharmacology and Disposition, Seagen, Inc., Bothell, Washington (S.He.); Drug Metabolism and Pharmacokinetics, UCB Biopharma, Slough, UK (L.K.); Bioanalytical Sciences (K.X.) and Biochemical and Cellular Pharmacology (J.C.T.), Genentech, South San Francisco, California; Drug Metabolism and Pharmacokinetics, Biogen, Inc., Cambridge, Massachusetts (C.W.); and Drug Metabolism and Pharmacokinetics, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts (X.Z.)
| | - Shawna Hengel
- Pharmacokinetic Science, Novartis Institutes for Biomedical Research, Basel, Switzerland (M.W.); Biotechnology Discovery Research-ADME, Eli Lilly and Company, Indianapolis, Indiana (M.B.); Drug Metabolism and Pharmacokinetics, Janssen Research & Development, Spring House, Pennsylvania (W.J.); Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (S.Ha.); Quantitative Pharmacology and Disposition, Seagen, Inc., Bothell, Washington (S.He.); Drug Metabolism and Pharmacokinetics, UCB Biopharma, Slough, UK (L.K.); Bioanalytical Sciences (K.X.) and Biochemical and Cellular Pharmacology (J.C.T.), Genentech, South San Francisco, California; Drug Metabolism and Pharmacokinetics, Biogen, Inc., Cambridge, Massachusetts (C.W.); and Drug Metabolism and Pharmacokinetics, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts (X.Z.)
| | - Lloyd King
- Pharmacokinetic Science, Novartis Institutes for Biomedical Research, Basel, Switzerland (M.W.); Biotechnology Discovery Research-ADME, Eli Lilly and Company, Indianapolis, Indiana (M.B.); Drug Metabolism and Pharmacokinetics, Janssen Research & Development, Spring House, Pennsylvania (W.J.); Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (S.Ha.); Quantitative Pharmacology and Disposition, Seagen, Inc., Bothell, Washington (S.He.); Drug Metabolism and Pharmacokinetics, UCB Biopharma, Slough, UK (L.K.); Bioanalytical Sciences (K.X.) and Biochemical and Cellular Pharmacology (J.C.T.), Genentech, South San Francisco, California; Drug Metabolism and Pharmacokinetics, Biogen, Inc., Cambridge, Massachusetts (C.W.); and Drug Metabolism and Pharmacokinetics, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts (X.Z.)
| | - John C Tran
- Pharmacokinetic Science, Novartis Institutes for Biomedical Research, Basel, Switzerland (M.W.); Biotechnology Discovery Research-ADME, Eli Lilly and Company, Indianapolis, Indiana (M.B.); Drug Metabolism and Pharmacokinetics, Janssen Research & Development, Spring House, Pennsylvania (W.J.); Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (S.Ha.); Quantitative Pharmacology and Disposition, Seagen, Inc., Bothell, Washington (S.He.); Drug Metabolism and Pharmacokinetics, UCB Biopharma, Slough, UK (L.K.); Bioanalytical Sciences (K.X.) and Biochemical and Cellular Pharmacology (J.C.T.), Genentech, South San Francisco, California; Drug Metabolism and Pharmacokinetics, Biogen, Inc., Cambridge, Massachusetts (C.W.); and Drug Metabolism and Pharmacokinetics, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts (X.Z.)
| | - Cong Wei
- Pharmacokinetic Science, Novartis Institutes for Biomedical Research, Basel, Switzerland (M.W.); Biotechnology Discovery Research-ADME, Eli Lilly and Company, Indianapolis, Indiana (M.B.); Drug Metabolism and Pharmacokinetics, Janssen Research & Development, Spring House, Pennsylvania (W.J.); Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (S.Ha.); Quantitative Pharmacology and Disposition, Seagen, Inc., Bothell, Washington (S.He.); Drug Metabolism and Pharmacokinetics, UCB Biopharma, Slough, UK (L.K.); Bioanalytical Sciences (K.X.) and Biochemical and Cellular Pharmacology (J.C.T.), Genentech, South San Francisco, California; Drug Metabolism and Pharmacokinetics, Biogen, Inc., Cambridge, Massachusetts (C.W.); and Drug Metabolism and Pharmacokinetics, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts (X.Z.)
| | - Keyang Xu
- Pharmacokinetic Science, Novartis Institutes for Biomedical Research, Basel, Switzerland (M.W.); Biotechnology Discovery Research-ADME, Eli Lilly and Company, Indianapolis, Indiana (M.B.); Drug Metabolism and Pharmacokinetics, Janssen Research & Development, Spring House, Pennsylvania (W.J.); Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (S.Ha.); Quantitative Pharmacology and Disposition, Seagen, Inc., Bothell, Washington (S.He.); Drug Metabolism and Pharmacokinetics, UCB Biopharma, Slough, UK (L.K.); Bioanalytical Sciences (K.X.) and Biochemical and Cellular Pharmacology (J.C.T.), Genentech, South San Francisco, California; Drug Metabolism and Pharmacokinetics, Biogen, Inc., Cambridge, Massachusetts (C.W.); and Drug Metabolism and Pharmacokinetics, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts (X.Z.)
| | - Xiaochun Zhu
- Pharmacokinetic Science, Novartis Institutes for Biomedical Research, Basel, Switzerland (M.W.); Biotechnology Discovery Research-ADME, Eli Lilly and Company, Indianapolis, Indiana (M.B.); Drug Metabolism and Pharmacokinetics, Janssen Research & Development, Spring House, Pennsylvania (W.J.); Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (S.Ha.); Quantitative Pharmacology and Disposition, Seagen, Inc., Bothell, Washington (S.He.); Drug Metabolism and Pharmacokinetics, UCB Biopharma, Slough, UK (L.K.); Bioanalytical Sciences (K.X.) and Biochemical and Cellular Pharmacology (J.C.T.), Genentech, South San Francisco, California; Drug Metabolism and Pharmacokinetics, Biogen, Inc., Cambridge, Massachusetts (C.W.); and Drug Metabolism and Pharmacokinetics, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts (X.Z.)
| |
Collapse
|
17
|
Mu R, Yuan J, Huang Y, Meissen JK, Mou S, Liang M, Rosenbaum AI. Bioanalytical Methods and Strategic Perspectives Addressing the Rising Complexity of Novel Bioconjugates and Delivery Routes for Biotherapeutics. BioDrugs 2022; 36:181-196. [PMID: 35362869 PMCID: PMC8972746 DOI: 10.1007/s40259-022-00518-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 12/20/2022]
Abstract
In recent years, an increase in the discovery and development of biotherapeutics employing new modalities, such as bioconjugates or novel routes of delivery, has created bioanalytical challenges. The inherent complexity of conjugated molecular structures means that quantification of the bioconjugate and its multiple components is critical for preclinical/clinical studies to inform drug discovery and development. Moreover, bioconjugates involve additional multifactorial complexity because of the potential for in vivo catabolism and biotransformation, which may require thorough investigations in multiple biological matrices. Furthermore, excipients that enhance absorption are frequently evaluated and employed for the development of oral and inhaled biotherapeutics. Risk-benefit assessments are required for novel or existing excipients that utilize dosages above previously approved levels. Bioanalytical methods that can measure both excipients and potential drug metabolites in biological matrices are highly relevant to these emerging bioanalysis challenges. We discuss the bioanalytical strategies for analyzing bioconjugates such as antibody-drug conjugates and antibody-oligonucleotide conjugates and review recent advances in bioanalytical methods for the quantification and characterization of novel bioconjugates. We also discuss bioanalytical considerations for both biotherapeutics and excipients through novel administration routes and review analyses in various biological matrices, from the extensively studied serum or plasma to tissue biopsy in the context of preclinical and clinical studies from both technical and regulatory perspectives.
Collapse
Affiliation(s)
- Ruipeng Mu
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA
| | - Jiaqi Yuan
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA
| | - Yue Huang
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA
| | - John K Meissen
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA
| | - Si Mou
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA
| | - Meina Liang
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA
| | - Anton I Rosenbaum
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA.
| |
Collapse
|
18
|
Anami Y, Xiong W, Yamaguchi A, Yamazaki CM, Zhang N, An Z, Tsuchikama K. Homogeneous antibody-angiopep 2 conjugates for effective brain targeting. RSC Adv 2022; 12:3359-3364. [PMID: 35425350 PMCID: PMC8979263 DOI: 10.1039/d1ra08131d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Antibody-based therapy has shown great success in the treatment of many diseases, including cancers. While antibodies and antibody-drug conjugates (ADCs) have also been evaluated for central nervous system (CNS) disorders as well as brain tumors, their therapeutic efficacy can be substantially limited due to low permeability across the blood-brain barrier (BBB). Thus, improving BBB permeability of therapeutic antibodies is critical in establishing this drug class as a reliable clinical option for CNS diseases. Here, we report that, compared with a conventional heterogeneous conjugation, homogeneous conjugation of the synthetic BBB shuttle peptide angiopep-2 (Ang2) to a monoclonal antibody (mAb) provides improved binding affinity for brain microvascular endothelial cells in vitro and accumulation into normal brain tissues in vivo. In a mouse model, we also demonstrate that the homogeneous anti-EGFR mAb-Ang2 conjugate administered intravenously efficiently accumulates in intracranial tumors. These findings suggest that homogeneous conjugation of BBB shuttle peptides such as Ang2 is a promising approach to enhancing the therapeutic efficacy of antibody agents for CNS diseases.
Collapse
Affiliation(s)
- Yasuaki Anami
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Center at Houston Houston Texas 77054 USA
| | - Wei Xiong
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Center at Houston Houston Texas 77054 USA
| | - Aiko Yamaguchi
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Center at Houston Houston Texas 77054 USA
| | - Chisato M Yamazaki
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Center at Houston Houston Texas 77054 USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Center at Houston Houston Texas 77054 USA
| | - Zhiqiang An
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Center at Houston Houston Texas 77054 USA
| | - Kyoji Tsuchikama
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Center at Houston Houston Texas 77054 USA
| |
Collapse
|
19
|
Chang HP, Li Z, Shah DK. Development of a Physiologically-Based Pharmacokinetic Model for Whole-Body Disposition of MMAE Containing Antibody-Drug Conjugate in Mice. Pharm Res 2022; 39:1-24. [PMID: 35044590 DOI: 10.1007/s11095-021-03162-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE To quantitate and mathematically characterize the whole-body pharmacokinetics (PK) of different ADC analytes following administration of an MMAE-conjugated ADC in tumor-bearing mice. METHODS The PK of different ADC analytes (total antibody, total drug, unconjugated drug) was measured following administration of an MMAE-conjugated ADC in tumor-bearing mice. The PK of ADC analytes was compared with the whole-body PK of the antibody and drug obtained following administration of these molecules alone. An ADC PBPK model was developed by linking antibody PBPK model with small-molecule PBPK model, where the drug was assumed to deconjugate in DAR-dependent manner. RESULTS Comparison of antibody biodistribution coefficient (ABC) values for total antibody suggests that conjugation of drug did not significantly affect the PK of antibody. Comparison of tissue:plasma AUC ratio (T/P) for the conjugated drug and total antibody suggests that in certain tissues (e.g., spleen) ADC may demonstrate higher deconjugation. It was observed that the tissue distribution profile of the drug can be altered following its conjugation to antibody. For example, MMAE distribution to the liver was found to increase while its distribution to the heart was found to decrease upon conjugation to antibody. MMAE exposure in the tumor was found to increase by ~20-fold following administration as conjugate (i.e., ADC). The PBPK model was able to a priori predict the PK of all three ADC analytes in plasma, tissues, and tumor reasonably well. CONCLUSIONS The ADC PBPK model developed here serves as a platform for translational and clinical investigations of MMAE containing ADCs.
Collapse
Affiliation(s)
- Hsuan-Ping Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Zhe Li
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA.
| |
Collapse
|
20
|
Aoyama M, Tada M, Yokoo H, Demizu Y, Ishii-Watabe A. Fcγ Receptor-Dependent Internalization and Off-Target Cytotoxicity of Antibody-Drug Conjugate Aggregates. Pharm Res 2021; 39:89-103. [PMID: 34961908 PMCID: PMC8837541 DOI: 10.1007/s11095-021-03158-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/16/2021] [Indexed: 11/09/2022]
Abstract
Purpose Antibody-drug conjugates (ADCs), which are monoclonal antibodies (mAbs) conjugated with highly toxic payloads, achieve high tumor killing efficacy due to the specific delivery of payloads in accordance with mAbs’ function. On the other hand, the conjugation of payloads often increases the hydrophobicity of mAbs, resulting in reduced stability and increased aggregation. It is considered that mAb aggregates have potential risk for activating Fcγ receptors (FcγRs) on immune cells, and are internalized into cells via FcγRs. Based on the mechanism of action of ADCs, the internalization of ADCs into target-negative cells may cause the off-target toxicity. However, the impacts of aggregation on the safety of ADCs including off-target cytotoxicity have been unclear. In this study, we investigated the cytotoxicity of ADC aggregates in target-negative cells. Methods The ADC aggregates were generated by stirring stress or thermal stress. The off-target cytotoxicity of ADC aggregates was evaluated in several target-negative cell lines, and FcγR-activation properties of ADC aggregates were characterized using a reporter cell assay. Results Aggregation of ADCs enhanced the off-target cytotoxicity in several target-negative cell lines compared with non-stressed ADCs. Notably, ADC aggregates with FcγR-activation properties showed dramatically enhanced cytotoxicity in FcγR-expressing cells. The FcγR-mediated off-target cytotoxicity of ADC aggregates was reduced by using a FcγR-blocking antibody or Fc-engineering for silencing Fc-mediated effector functions. Conclusions These results indicated that FcγRs play an important role for internalization of ADC aggregates into non-target cells, and the aggregation of ADCs increases the potential risk for off-target toxicity. Supplementary Information The online version contains supplementary material available at 10.1007/s11095-021-03158-x.
Collapse
Affiliation(s)
- Michihiko Aoyama
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan.
| | - Minoru Tada
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Hidetomo Yokoo
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Akiko Ishii-Watabe
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| |
Collapse
|
21
|
Exploiting mesothelin in thymic carcinoma as a drug delivery target for anetumab ravtansine. Br J Cancer 2021; 126:754-763. [PMID: 34876673 DOI: 10.1038/s41416-021-01658-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/30/2021] [Accepted: 11/24/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Thymic epithelial tumours (TETs) are rare tumours comprised of thymomas and thymic carcinoma. Novel therapies are needed, especially in thymic carcinoma where the 5-year survival rate hovers at 30%. Mesothelin (MSLN), a surface glycoprotein that is cleaved to produce mature MSLN (mMSLN) and megakaryocyte potentiating factor (MPF), is expressed in limited tissues. However, its expression is present in various cancers, including thymic carcinoma, where it is expressed in 79% of cases. METHODS We utilised flow cytometry, in vitro cytotoxicity assays, and an in vivo xenograft model in order to demonstrate the ability of the MSLN targeting antibody-drug conjugate (ADC) anetumab ravtansine (ARav) in inhibiting the growth of thymic carcinoma. RESULTS Thymoma and thymic carcinoma cell lines express MSLN, and anetumab, the antibody moiety of ARav, was capable of binding MSLN expressing thymic carcinoma cells and internalising. ARav was effective at inhibiting the growth of thymic carcinoma cells stably transfected with mMSLN in vitro. In vivo, 15 mg/kg ARav inhibited T1889 xenograft tumour growth, while combining 7.5 mg/kg ARav with 4 mg/kg cisplatin yielded an additive effect on inhibiting tumour growth. CONCLUSIONS These data demonstrate that anetumab ravtansine inhibits the growth of MSLN positive thymic carcinoma cells in vitro and in vivo.
Collapse
|
22
|
Challenges with development of a pharmacokinetics assay to measure a variably glycosylated fusion protein. Bioanalysis 2021; 14:7-18. [PMID: 34789009 DOI: 10.4155/bio-2021-0186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Development of recombinant fusion proteins as drugs poses unique challenges for bioanalysis. This paper describes a case study of a glycosylated fusion protein, where variable glycosylation, matrix interference and high sensitivity needs posed unique challenges. Results: Six different assay configurations, across four different platforms were evaluated for measurement of drug concentrations. Two platforms that achieved the assay requirements were Simoa HD-1 and immune-capture LC-MS/MS-based assay. Conclusion: Both, Simoa HD-1 and the mass spectrometry-based methods were able to detect total drug by providing the adequate matrix tolerance, required sensitivity and detection of all the various glycosylated fusion proteins to support clinical sample analysis. The mass spectrometry-based method was selected due to robustness and ease of method transfer.
Collapse
|
23
|
Lucas AT, Moody A, Schorzman AN, Zamboni WC. Importance and Considerations of Antibody Engineering in Antibody-Drug Conjugates Development from a Clinical Pharmacologist's Perspective. Antibodies (Basel) 2021; 10:30. [PMID: 34449544 PMCID: PMC8395454 DOI: 10.3390/antib10030030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/04/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Antibody-drug conjugates (ADCs) appear to be in a developmental boom, with five FDA approvals in the last two years and a projected market value of over $4 billion by 2024. Major advancements in the engineering of these novel cytotoxic drug carriers have provided a few early success stories. Although the use of these immunoconjugate agents are still in their infancy, valuable lessons in the engineering of these agents have been learned from both preclinical and clinical failures. It is essential to appreciate how the various mechanisms used to engineer changes in ADCs can alter the complex pharmacology of these agents and allow the ADCs to navigate the modern-day therapeutic challenges within oncology. This review provides a global overview of ADC characteristics which can be engineered to alter the interaction with the immune system, pharmacokinetic and pharmacodynamic profiles, and therapeutic index of ADCs. In addition, this review will highlight some of the engineering approaches being explored in the creation of the next generation of ADCs.
Collapse
Affiliation(s)
- Andrew T. Lucas
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.T.L.); (A.N.S.)
- Carolina Center of Cancer Nanotechnology Excellence, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Amber Moody
- Carolina Center of Cancer Nanotechnology Excellence, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Allison N. Schorzman
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.T.L.); (A.N.S.)
| | - William C. Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.T.L.); (A.N.S.)
- Carolina Center of Cancer Nanotechnology Excellence, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Glolytics, LLC, Chapel Hill, NC 27517, USA
| |
Collapse
|
24
|
Anderson TS, Wooster AL, La-Beck NM, Saha D, Lowe DB. Antibody-drug conjugates: an evolving approach for melanoma treatment. Melanoma Res 2021; 31:1-17. [PMID: 33165241 DOI: 10.1097/cmr.0000000000000702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Melanoma continues to be an aggressive and deadly form of skin cancer while therapeutic options are continuously developing in an effort to provide long-term solutions for patients. Immunotherapeutic strategies incorporating antibody-drug conjugates (ADCs) have seen varied levels of success across tumor types and represent a promising approach for melanoma. This review will explore the successes of FDA-approved ADCs to date compared to the ongoing efforts of melanoma-targeting ADCs. The challenges and opportunities for future therapeutic development are also examined to distinguish how ADCs may better impact individuals with malignancies such as melanoma.
Collapse
Affiliation(s)
| | | | - Ninh M La-Beck
- Departments of Immunotherapeutics and Biotechnology
- Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas, USA
| | | | - Devin B Lowe
- Departments of Immunotherapeutics and Biotechnology
| |
Collapse
|
25
|
Kawakatsu S, Bruno R, Kågedal M, Li C, Girish S, Joshi A, Wu B. Confounding factors in exposure-response analyses and mitigation strategies for monoclonal antibodies in oncology. Br J Clin Pharmacol 2020; 87:2493-2501. [PMID: 33217012 DOI: 10.1111/bcp.14662] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 12/29/2022] Open
Abstract
Dose selection and optimization is an important topic in drug development to maximize treatment benefits for all patients. While exposure-response (E-R) analysis is a useful method to inform dose-selection strategy, in oncology, special considerations for prognostic factors are needed due to their potential to confound the E-R analysis for monoclonal antibodies. The current review focuses on 3 different approaches to mitigate the confounding effects for monoclonal antibodies in oncology: (i) Cox-proportional hazards modelling and case-matching; (ii) tumour growth inhibition-overall survival modelling; and (iii) multiple dose level study design. In the presence of confounding effects, studying multiple dose levels may be required to reveal the true E-R relationship. However, it is impractical for pivotal trials in oncology drug development programmes. Therefore, the strengths and weaknesses of the other 2 approaches are considered, and the favourable utility of tumour growth inhibition-overall survival modelling to address confounding in E-R analyses is described. In the broader scope of oncology drug development, this review discusses the downfall of the current emphasis on E-R analyses using data from single dose level trials and proposes that development programmes be designed to study more dose levels in earlier trials.
Collapse
Affiliation(s)
- Sonoko Kawakatsu
- Clinical Pharmacology, Development Sciences, gRED, Genentech/Roche, South San Francisco, CA, USA.,Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, USA
| | - René Bruno
- Clinical Pharmacology, Development Sciences, gRED, Genentech/Roche, South San Francisco, CA, USA
| | - Matts Kågedal
- Clinical Pharmacology, Development Sciences, gRED, Genentech/Roche, South San Francisco, CA, USA
| | - Chunze Li
- Clinical Pharmacology, Development Sciences, gRED, Genentech/Roche, South San Francisco, CA, USA
| | - Sandhya Girish
- Clinical Pharmacology, Development Sciences, gRED, Genentech/Roche, South San Francisco, CA, USA
| | - Amita Joshi
- Clinical Pharmacology, Development Sciences, gRED, Genentech/Roche, South San Francisco, CA, USA
| | - Benjamin Wu
- Clinical Pharmacology, Development Sciences, gRED, Genentech/Roche, South San Francisco, CA, USA
| |
Collapse
|
26
|
Graham JC, Hillegass J, Schulze G. Considerations for setting occupational exposure limits for novel pharmaceutical modalities. Regul Toxicol Pharmacol 2020; 118:104813. [PMID: 33144077 PMCID: PMC7605856 DOI: 10.1016/j.yrtph.2020.104813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/13/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022]
Abstract
In order to develop new and effective medicines, pharmaceutical companies must be modality agnostic. As science reveals an enhanced understanding of biological processes, new therapeutic modalities are becoming important in developing breakthrough therapies to treat both rare and common diseases. As these new modalities progress, concern and uncertainty arise regarding their safe handling by the researchers developing them, employees manufacturing them and nurses administering them. This manuscript reviews the available literature for emerging modalities (including oligonucleotides, monoclonal antibodies, fusion proteins and bispecific antibodies, antibody-drug conjugates, peptides, vaccines, genetically modified organisms, and several others) and provides considerations for occupational health and safety-oriented hazard identification and risk assessments to enable timely, consistent and well-informed hazard identification, hazard communication and risk-management decisions. This manuscript also points out instances where historical exposure control banding systems may not be applicable (e.g. oncolytic viruses, biologics) and where other occupational exposure limit systems are more applicable (e.g. Biosafety Levels, Biologic Control Categories). Review of toxicology and pharmacology information for novel therapeutic modalities. Identification of occupational hazards associated with novel therapeutic modalities. Occupational hazards and exposure risks differ across pharmaceutical modalities. Occupational exposure control banding systems are not one size fits all. Banding system variations offer benefits while enabling proper exposure controls.
Collapse
Affiliation(s)
- Jessica C Graham
- Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ, 08903, USA.
| | - Jedd Hillegass
- Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ, 08903, USA
| | - Gene Schulze
- Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ, 08903, USA
| |
Collapse
|
27
|
Camus V, Tilly H. Polatuzumab vedotin, an anti-CD79b antibody-drug conjugate for the treatment of relapsed/refractory diffuse large B-cell lymphoma. Future Oncol 2020; 17:127-135. [PMID: 32954807 DOI: 10.2217/fon-2020-0675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Refractory/relapsed diffuse large B-cell lymphoma remains a major unmet medical need with poor outcome, especially for patients considered ineligible for stem cell transplant. Polatuzumab vedotin (PV) is a first-in-class anti-CD79b antibody-drug conjugate that contains the microtubule inhibitor monomethyl auristatin E. The development of PV is currently very active. This drug was US FDA approved in 2019 in combination with bendamustine and rituximab for the treatment of refractory/relapsed diffuse large B-cell lymphoma in third line and more, after demonstrating relevant efficacy and acceptable safety in a pivotal randomized Phase II trial. This review summarizes the features of this new drug with the primary focus on the clinical work supporting efficacy, relevance and tolerability of PV.
Collapse
Affiliation(s)
- Vincent Camus
- INSERM U1245 & Department of Clinical Hematology, Centre Henri Becquerel, University of Rouen, Rouen, France
| | - Hervé Tilly
- INSERM U1245 & Department of Clinical Hematology, Centre Henri Becquerel, University of Rouen, Rouen, France
| |
Collapse
|
28
|
Singh R, Kozhich A, Pan C, Lee F, Cardarelli P, Vangipuram R, Iyer R, Marathe P. A novel semi-mechanistic tumor growth fraction model for translation of preclinical efficacy of anti-glypican 3 antibody drug conjugate to human. Biopharm Drug Dispos 2020; 41:319-333. [PMID: 32678919 DOI: 10.1002/bdd.2249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/28/2020] [Accepted: 07/01/2020] [Indexed: 11/06/2022]
Abstract
The growing fraction (GF) of tumor has been reported as one of the predictive markers of the efficacy of chemotherapeutics. Therefore, a semi-mechanistic model has been developed that describes tumor growth on the basis of cell cycle, allowing the incorporation of the GF of a tumor in pharmacokinetic/pharmacodynamic (PK/PD) modeling. Efficacy data of anti-glypican 3 (GPC3) antibody drug conjugate (ADC) in a hepatocellular carcinoma (HCC) patient derived xenograft (PDX) model was used for evaluation of this proposed model. Our model was able to describe the kinetics of growth inhibition of HCC PDX models following treatment with anti-GPC3 ADC remarkably well. The estimated tumurostatic concentrations were used in tandem with human PKs translated from cynomolgus monkey for prediction of the efficacious dose. The projected efficacious human dose of anti-GPC3 ADC was in the range 0.20-0.63 mg/kg for the Q3W dosing regimen, with a median dose of 0.50 mg/kg. This publication is the first step in evaluating the applicability of GF in PK/PD modeling of ADCs. The authors are hopeful that incorporation of GF will result in an improved translation of the preclinical efficacy of ADCs to clinical settings and thereby better prediction of the efficacious human dose.
Collapse
Affiliation(s)
- Renu Singh
- Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Lawrenceville, New Jersey, USA
| | - Alexander Kozhich
- Bioanalytical Sciences, Bristol-Myers Squibb, Lawrenceville, New Jersey, USA
| | - Chin Pan
- Biologics Discovery California, Bristol-Myers Squibb, Redwood City, California, USA
| | - Francis Lee
- Oncology Biology, Bristol-Myers Squibb, Lawrenceville, New Jersey, USA
| | - Pina Cardarelli
- Biologics Discovery California, Bristol-Myers Squibb, Redwood City, California, USA
| | - Rangan Vangipuram
- Biologics Discovery California, Bristol-Myers Squibb, Redwood City, California, USA
| | - Rama Iyer
- Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Lawrenceville, New Jersey, USA
| | - Punit Marathe
- Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Lawrenceville, New Jersey, USA
| |
Collapse
|
29
|
Källsten M, Ghorasaini M, Hartmann R, Lehmann F, Bergquist J, Kovac L, Lind SB. Magnetic Beads for Desalting of Monoclonal Antibodies and Antibody-Drug Conjugates. Anal Chem 2020; 92:9001-9007. [PMID: 32441508 DOI: 10.1021/acs.analchem.0c01106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Characterization of antibody-drug conjugates (ADCs) using mass spectrometry (MS) is important in drug discovery and formulation development and as part of the quality control processes. To facilitate electrospray ionization (ESI) and produce high-quality mass spectra, common components of storage solutions for monoclonal antibodies (mAbs) and ADCs, such as nonvolatile phosphate-buffered saline (PBS), should be replaced before analysis. Centrifugal spin-type kits are extensively used for the desalting or buffer-exchange of mAbs and ADCs samples. The commercially available kits commonly require at least 100 μL of a sample at 1 mg/mL for optimal recovery. However, most ESI-MS based analyses require no more than 25 μg of protein for triplicate injection. In this study, we present a novel method for desalting of ADCs and mAbs building on the SP3 approach with nonfunctionalized carboxylate coated magnetic beads without affinity ligands. The analytes bind to the hydrophilic beads upon the addition of organic solvent, and various solutions of volatile salts or acids can be used in the elution step. The optimized protocol allowed for 88% recovery of ADC at a 25 μL sample volume and 90% recovery at 100 μL. More than 90% of the salts were removed using a process of 20 min. The intra- and interday precision showed little variation with an RSD of 1% and 2%, respectively. The compatibility of this new workflow with low sample volumes is highly valuable since a smaller fraction of the sample is wasted for analysis of the expensive analytes, without compromising recovery.
Collapse
Affiliation(s)
- Malin Källsten
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Box 599, Husargatan 3, SE-75124 Uppsala, Sweden.,Recipharm OT Chemistry AB, Virdings Allé 18, SE-754 50 Uppsala, Sweden
| | - Mohan Ghorasaini
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Box 599, Husargatan 3, SE-75124 Uppsala, Sweden
| | - Rafael Hartmann
- Department of Medicinal Chemistry, Uppsala University, Box 574, Husargatan 3, SE-751 23 Uppsala, Sweden
| | - Fredrik Lehmann
- Oncopeptides AB, Västra Trädgårdsgatan 15, 111 53 Stockholm, Sweden
| | - Jonas Bergquist
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Box 599, Husargatan 3, SE-75124 Uppsala, Sweden
| | - Lucia Kovac
- Recipharm OT Chemistry AB, Virdings Allé 18, SE-754 50 Uppsala, Sweden
| | - Sara Bergström Lind
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Box 599, Husargatan 3, SE-75124 Uppsala, Sweden
| |
Collapse
|
30
|
Shou WZ. Current status and future directions of high-throughput ADME screening in drug discovery. J Pharm Anal 2020; 10:201-208. [PMID: 32612866 PMCID: PMC7322755 DOI: 10.1016/j.jpha.2020.05.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
During the last decade high-throughput in vitro absorption, distribution, metabolism and excretion (HT-ADME) screening has become an essential part of any drug discovery effort of synthetic molecules. The conduct of HT-ADME screening has been "industrialized" due to the extensive development of software and automation tools in cell culture, assay incubation, sample analysis and data analysis. The HT-ADME assay portfolio continues to expand in emerging areas such as drug-transporter interactions, early soft spot identification, and ADME screening of peptide drug candidates. Additionally, thanks to the very large and high-quality HT-ADME data sets available in many biopharma companies, in silico prediction of ADME properties using machine learning has also gained much momentum in recent years. In this review, we discuss the current state-of-the-art practices in HT-ADME screening including assay portfolio, assay automation, sample analysis, data processing, and prediction model building. In addition, we also offer perspectives in future development of this exciting field.
Collapse
Affiliation(s)
- Wilson Z. Shou
- Bristol-Myers Squibb, PO Box 4000, Princeton, NJ, 08540, USA
| |
Collapse
|
31
|
Zhu X, Huo S, Xue C, An B, Qu J. Current LC-MS-based strategies for characterization and quantification of antibody-drug conjugates. J Pharm Anal 2020; 10:209-220. [PMID: 32612867 PMCID: PMC7322744 DOI: 10.1016/j.jpha.2020.05.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 01/28/2023] Open
Abstract
The past few years have witnessed enormous progresses in the development of antibody-drug conjugates (ADCs). Consequently, comprehensive analysis of ADCs in biological systems is critical in supporting discovery, development and evaluation of these agents. Liquid chromatography-mass spectrometry (LC-MS) has emerged as a promising and versatile tool for ADC analysis across a wide range of scenarios, owing to its multiplexing ability, rapid method development, as well as the capability of analyzing a variety of targets ranging from small-molecule payloads to the intact protein with a high, molecular resolution. However, despite this tremendous potential, challenges persist due to the high complexity in both the ADC molecules and the related biological systems. This review summarizes the up-to-date LC-MS-based strategies in ADC analysis and discusses the challenges and opportunities in this rapidly-evolving field.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, 14203, USA
| | - Shihan Huo
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, 14203, USA
| | - Chao Xue
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, 14203, USA
- Department of Chemical and Biological Engineering, School of Engineering and Applied Science, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Bo An
- Exploratory Biomarker, In-vitro/In-vivo Translation, R&D Research, GlaxoSmithKline Pharmaceuticals, 1250 South Collegeville Rd, Collegeville, PA, 19426, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, 14203, USA
| |
Collapse
|
32
|
Simmons JK, Burke PJ, Cochran JH, Pittman PG, Lyon RP. Reducing the antigen-independent toxicity of antibody-drug conjugates by minimizing their non-specific clearance through PEGylation. Toxicol Appl Pharmacol 2020; 392:114932. [DOI: 10.1016/j.taap.2020.114932] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 11/24/2022]
|
33
|
Shemesh CS, Agarwal P, Lu T, Lee C, Dere RC, Li X, Li C, Jin JY, Girish S, Miles D, Lu D. Pharmacokinetics of polatuzumab vedotin in combination with R/G-CHP in patients with B-cell non-Hodgkin lymphoma. Cancer Chemother Pharmacol 2020; 85:831-842. [PMID: 32222808 PMCID: PMC7188703 DOI: 10.1007/s00280-020-04054-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/03/2020] [Indexed: 12/22/2022]
Abstract
Purpose The phase Ib/II open-label study (NCT01992653) evaluated the antibody-drug conjugate polatuzumab vedotin (pola) plus rituximab/obinutuzumab, cyclophosphamide, doxorubicin, and prednisone (R/G-CHP) as first-line therapy for B-cell non-Hodgkin lymphoma (B-NHL). We report the pharmacokinetics (PK) and drug–drug interaction (DDI) for pola. Methods Six or eight cycles of pola 1.0–1.8 mg/kg were administered intravenously every 3 weeks (q3w) with R/G-CHP. Exposures of pola [including antibody-conjugated monomethyl auristatin E (acMMAE) and unconjugated MMAE] and R/G-CHP were assessed by non-compartmental analysis and/or descriptive statistics with cross-cycle comparisons to cycle 1 and/or after multiple cycles. Pola was evaluated as a potential victim and perpetrator of a PK drug–drug interaction with R/G-CHP. Population PK (popPK) analysis assessed the impact of prior treatment status (naïve vs. relapsed/refractory) on pola PK. Results Pola PK was similar between treatment arms and independent of line of therapy. Pola PK was dose proportional from 1.0 to 1.8 mg/kg with R/G-CHP. Geometric mean volume of distribution and clearance of acMMAE ranged from 57.3 to 95.6 mL/kg and 12.7 to 18.2 mL/kg/day, respectively. acMMAE exhibited multi-exponential decay (elimination half-life ~ 1 week). Unconjugated MMAE exhibited formation rate-limited kinetics. Exposures of pola with R/G-CHP were similar to those in the absence of CHP; exposures of R/G-CHP in the presence of pola were comparable to those in the absence of pola. Conclusions Pola PK was well characterized with no clinically meaningful DDIs with R/G-CHP. Findings are consistent with previous studies of pola + R/G, and support pola + R/G-CHP use in previously untreated diffuse large B-cell lymphoma. Electronic supplementary material The online version of this article (10.1007/s00280-020-04054-8) contains supplementary material, which is available to authorized users.
Collapse
MESH Headings
- Administration, Intravenous
- Adult
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/pharmacokinetics
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics
- Cyclophosphamide/administration & dosage
- Cyclophosphamide/adverse effects
- Cyclophosphamide/pharmacokinetics
- Dose-Response Relationship, Drug
- Doxorubicin/administration & dosage
- Doxorubicin/adverse effects
- Doxorubicin/pharmacokinetics
- Drug Administration Schedule
- Drug Interactions
- Drug Monitoring/methods
- Female
- Humans
- Immunoconjugates/administration & dosage
- Immunoconjugates/adverse effects
- Immunoconjugates/pharmacokinetics
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/pathology
- Male
- Maximum Tolerated Dose
- Prednisone/administration & dosage
- Prednisone/adverse effects
- Prednisone/pharmacokinetics
- Rituximab/administration & dosage
- Rituximab/adverse effects
- Rituximab/pharmacokinetics
- Treatment Outcome
- Vincristine/administration & dosage
- Vincristine/adverse effects
- Vincristine/pharmacokinetics
Collapse
Affiliation(s)
- Colby S Shemesh
- Department of Clinical Pharmacology Oncology, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Priya Agarwal
- Department of Clinical Pharmacology Oncology, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Tong Lu
- Department of Clinical Pharmacology Oncology, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Calvin Lee
- Clinical Science, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Randall C Dere
- Bioanalytical Science, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Xiaobin Li
- Department of Clinical Pharmacology Oncology, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Chunze Li
- Department of Clinical Pharmacology Oncology, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jin Y Jin
- Department of Clinical Pharmacology Oncology, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Sandhya Girish
- Department of Clinical Pharmacology Oncology, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Dale Miles
- Department of Clinical Pharmacology Oncology, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Dan Lu
- Department of Clinical Pharmacology Oncology, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
34
|
Liu H, Bolleddula J, Nichols A, Tang L, Zhao Z, Prakash C. Metabolism of bioconjugate therapeutics: why, when, and how? Drug Metab Rev 2020; 52:66-124. [PMID: 32045530 DOI: 10.1080/03602532.2020.1716784] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioconjugation of therapeutic agents has been used as a selective drug delivery platform for many therapeutic areas. Bioconjugates are prepared by the covalent linkage of active compounds (small or large molecule) to a carrier molecule (lipids, proteins, peptides, carbohydrates, and polymers) through a chemical linker. The linkage of the active component to a carrier molecule enhances the therapeutic window through a targeted delivery and by reducing toxicity. Bioconjugates also possess improved pharmacokinetic properties such as a long half-life, increased stability, and cleavage by intracellular enzymes/environment. However, premature cleavage of the bioconjugates and the resulting metabolites/catabolites may produce undesirable toxic effects and, hence, it is critical to understand cleavage mechanisms, metabolism of bioconjugates, and translatability to human in the discovery stages. This article provides a comprehensive overview of linker cleavage pathways and catabolism/metabolism of antibody-drug conjugates, glycoconjugates, polymer-drug conjugates, lipid-drug conjugates, folate-targeted small molecule-drug conjugates, and drug-drug conjugates.
Collapse
Affiliation(s)
- Hanlan Liu
- KSQ Therapeutics Inc., Cambridge, MA, USA
| | | | | | | | | | | |
Collapse
|
35
|
Meyer DW, Bou LB, Shum S, Jonas M, Anderson ME, Hamilton JZ, Hunter JH, Wo SW, Wong AO, Okeley NM, Lyon RP. An in Vitro Assay Using Cultured Kupffer Cells Can Predict the Impact of Drug Conjugation on in Vivo Antibody Pharmacokinetics. Mol Pharm 2020; 17:802-809. [DOI: 10.1021/acs.molpharmaceut.9b00991] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- David W Meyer
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| | - Lauren B Bou
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| | - Sara Shum
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| | - Mechthild Jonas
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| | - Martha E Anderson
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| | - Joe Z Hamilton
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| | - Joshua H Hunter
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| | - Serena W Wo
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| | - Abbie O Wong
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| | - Nicole M Okeley
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| | - Robert P Lyon
- Seattle Genetics, Inc., 21823 30th Dr SE Bothell, Washington 98021, United States
| |
Collapse
|
36
|
Antibody Conjugates-Recent Advances and Future Innovations. Antibodies (Basel) 2020; 9:antib9010002. [PMID: 31936270 PMCID: PMC7148502 DOI: 10.3390/antib9010002] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/18/2022] Open
Abstract
Monoclonal antibodies have evolved from research tools to powerful therapeutics in the past 30 years. Clinical success rates of antibodies have exceeded expectations, resulting in heavy investment in biologics discovery and development in addition to traditional small molecules across the industry. However, protein therapeutics cannot drug targets intracellularly and are limited to soluble and cell-surface antigens. Tremendous strides have been made in antibody discovery, protein engineering, formulation, and delivery devices. These advances continue to push the boundaries of biologics to enable antibody conjugates to take advantage of the target specificity and long half-life from an antibody, while delivering highly potent small molecule drugs. While the "magic bullet" concept produced the first wave of antibody conjugates, these entities were met with limited clinical success. This review summarizes the advances and challenges in the field to date with emphasis on antibody conjugation, linker-payload chemistry, novel payload classes, absorption, distribution, metabolism, and excretion (ADME), and product developability. We discuss lessons learned in the development of oncology antibody conjugates and look towards future innovations enabling other therapeutic indications.
Collapse
|
37
|
Abstract
Lysine-conjugated antibody-drug conjugates (ADCs) are formed by attaching cytotoxic drugs to reactive lysine residues of monoclonal antibodies (mAbs) through chemical linkers. During production, the payloads are conjugated nonspecifically to lysine residues in mAbs, resulting in a heterogeneous mixture of ADCs with both different number and conjugation sites of drug payloads per mAb. On account of the drug conjugation sites and levels that both have significant influences on physical and pharmaceutical properties of ADCs, a reliable and straightforward approach for conjugation site analysis for ADCs is highly demanded. Herein, we used a lysine-conjugated ADC, Trastuzumab-MCC-DM1 (T-DM1), as a model ADC, and described an integrative strategy that combines the signature ion fingerprinting method for rapid and reliable filtering of DM1-conjugated peptides, and the normalized area quantitation approach for accurately gauging the conjugation levels for each identified site. This approach is believed to be readily applicable to other maytansinoid derivatives-modified ADCs, and more importantly, universally applicable to lysine-conjugated ADCs for both the recognition of conjugation sites and the measurement of conjugation levels.
Collapse
Affiliation(s)
- Hua Sang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China
| | - Ning Wan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China
| | - Gaoyuan Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China
| | - Yang Tian
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China
| | - Hui Ye
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
38
|
Goulet DR, Atkins WM. Considerations for the Design of Antibody-Based Therapeutics. J Pharm Sci 2020; 109:74-103. [PMID: 31173761 PMCID: PMC6891151 DOI: 10.1016/j.xphs.2019.05.031] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/02/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
Antibody-based proteins have become an important class of biologic therapeutics, due in large part to the stability, specificity, and adaptability of the antibody framework. Indeed, antibodies not only have the inherent ability to bind both antigens and endogenous immune receptors but also have proven extremely amenable to protein engineering. Thus, several derivatives of the monoclonal antibody format, including bispecific antibodies, antibody-drug conjugates, and antibody fragments, have demonstrated efficacy for treating human disease, particularly in the fields of immunology and oncology. Reviewed here are considerations for the design of antibody-based therapeutics, including immunological context, therapeutic mechanisms, and engineering strategies. First, characteristics of antibodies are introduced, with emphasis on structural domains, functionally important receptors, isotypic and allotypic differences, and modifications such as glycosylation. Then, aspects of therapeutic antibody design are discussed, including identification of antigen-specific variable regions, choice of expression system, use of multispecific formats, and design of antibody derivatives based on fragmentation, oligomerization, or conjugation to other functional moieties. Finally, strategies to enhance antibody function through protein engineering are reviewed while highlighting the impact of fundamental biophysical properties on protein developability.
Collapse
Affiliation(s)
- Dennis R Goulet
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195.
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195
| |
Collapse
|
39
|
Abstract
A critical component of antibody-drug conjugate (ADC) development is identification or verification of the active released entity upon cellular uptake and exposure to lysosomal enzymes. Coupled with LC/MS, commercial human lysosomal preparations can be used as an in vitro tool to explore the release characteristics of new ADCs, and gain information on potential metabolic or chemical liabilities of new payload structures. A general method for approaching this is described for cathepsin B-cleavable as well as non-cleavable ADCs, and opportunities for tailoring the method to specific cases are indicated.
Collapse
|
40
|
Pegram MD, Miles D, Tsui CK, Zong Y. HER2-Overexpressing/Amplified Breast Cancer as a Testing Ground for Antibody-Drug Conjugate Drug Development in Solid Tumors. Clin Cancer Res 2019; 26:775-786. [PMID: 31582515 DOI: 10.1158/1078-0432.ccr-18-1976] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/17/2019] [Accepted: 09/30/2019] [Indexed: 11/16/2022]
Abstract
Efficacy data from the KATHERINE clinical trial, comparing the HER2-directed antibody-drug conjugate (ADC) ado-trastuzumab emtansine (T-DM1) to trastuzumab in patients with early-stage HER2-amplified/overexpressing breast cancer with residual disease after neoadjuvant therapy, demonstrates superiority of T-DM1 (HR for invasive disease or death, 0.50; P < 0.001). This establishes foundational precedent for ADCs as effective therapy for treatment of subclinical micrometastasis in an adjuvant (or post-neoadjuvant) early-stage solid tumor setting. Despite this achievement, general principles from proposed systems pharmacokinetic modeling for intracellular processing of ADCs indicate potential shortcomings of T-DM1: (i) C max limited by toxicities; (ii) slow internalization rate; (iii) resistance mechanisms due to defects in intracellular trafficking [loss of lysosomal transporter solute carrier family 46 member 3, (SLC46A3)], and increased expression of drug transporters MDR1 and MRP1; and (iv) lack of payload bystander effects limiting utility in tumors with heterogeneous HER2 expression. These handicaps may explain the inferiority of T-DM1-based therapy in the neoadjuvant and first-line metastatic HER2+ breast cancer settings, and lack of superiority to chemotherapy in HER2+ advanced gastric cancer. In this review, we discuss how each of these limitations is being addressed by manipulating internalization and trafficking using HER2:HER2 bispecific or biparatopic antibody backbones, using site-specific, fixed DAR conjugation chemistry, and payload swapping to exploit alternative intracellular targets and to promote bystander effects. Newer HER2-directed ADCs have impressive clinical activity even against tumors with lower levels of HER2 receptor expression. Finally, we highlight ongoing clinical efforts to combine HER2 ADCs with other treatment modalities, including chemotherapy, molecularly targeted therapies, and immunotherapy.
Collapse
Affiliation(s)
- Mark D Pegram
- Stanford Comprehensive Cancer Institute, Stanford University School of Medicine, Stanford, California.
| | - David Miles
- Mount Vernon Cancer Centre, Mount Vernon Hospital, Northwood, London, United Kingdom
| | - C Kimberly Tsui
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Yu Zong
- Stanford Comprehensive Cancer Institute, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
41
|
Rock BM, Foti RS. Pharmacokinetic and Drug Metabolism Properties of Novel Therapeutic Modalities. Drug Metab Dispos 2019; 47:1097-1099. [PMID: 31399505 DOI: 10.1124/dmd.119.088708] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022] Open
Abstract
The discovery and development of novel pharmaceutical therapies is rapidly transitioning from a small molecule-dominated focus to a more balanced portfolio consisting of small molecules, monoclonal antibodies, engineered proteins (modified endogenous proteins, bispecific antibodies, and fusion proteins), oligonucleotides, and gene-based therapies. This commentary, and the special issue as a whole, aims to highlight these emerging modalities and the efforts underway to better understand their unique pharmacokinetic and absorption, disposition, metabolism, and excretion (ADME) properties. The articles highlighted herein can be broadly grouped into those focusing on the ADME properties of novel therapeutics, those exploring targeted-delivery strategies, and finally, those discussing oligonucleotide therapies. It is also evident that whereas the field in general continues to progress toward new and more complex molecules, a significant amount of effort is still being placed on antibody-drug conjugates. As therapeutic molecules become increasingly complex, a parallel demand for advancements in experimental and analytical tools will become increasingly evident, both to increase the speed and efficiency of identifying safe and efficacious molecules and simultaneously decreasing our dependence on in vivo studies in preclinical species. The research and commentary included in this special issue will provide researchers, clinicians, and the patients we serve more options in the ongoing fight against grievous illnesses and unmet medical needs. SIGNIFICANCE STATEMENT: Recent trends in drug discovery and development suggest a shift away from a small molecule-dominated approach to a more balanced portfolio that includes small molecules, monoclonal antibodies, engineered proteins, and gene therapies. The research presented in this special issue of Drug Metabolism and Disposition will serve to highlight advancements in the understanding of the mechanisms that govern the pharmacokinetic and drug metabolism properties of the novel therapeutic modalities.
Collapse
Affiliation(s)
- Brooke M Rock
- Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (B.M.R.) and Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F.)
| | - Robert S Foti
- Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (B.M.R.) and Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F.)
| |
Collapse
|
42
|
Mahalingaiah PK, Ciurlionis R, Durbin KR, Yeager RL, Philip BK, Bawa B, Mantena SR, Enright BP, Liguori MJ, Van Vleet TR. Potential mechanisms of target-independent uptake and toxicity of antibody-drug conjugates. Pharmacol Ther 2019; 200:110-125. [DOI: 10.1016/j.pharmthera.2019.04.008] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/19/2019] [Indexed: 12/13/2022]
|
43
|
Lee DS, Suh MI, Kang SY, Hwang DW. Physiologic constraints of using exosomes in vivo as systemic delivery vehicles. PRECISION NANOMEDICINE 2019. [DOI: 10.33218/prnano2(3)070819.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Systemic delivery of exosomes meets hurdles which had not been elucidated using live molecular imaging for their biodistribution. Production and uptake of endogenous exosomes are expected to be nonspecific and specific, respectively, where external stimuli of production of exosomes and their quantitative degree of productions are not understood. Despite this lack of understanding of basic physiology of in vivo behavior of exosomes including their possible paracrine or endocrine actions, many engineering efforts are taken to develop therapeutic vehicles. Especially, the fraction of exosomes’ taking the routes of waste disposal and exerting target actions are not characterized after systemic administration. Here, we reviewed the literature about in vivo distribution and disposal/excretion of exogenous or endogenous exosomes and, from these limited resources of knowledge currently available, summarized the knowledge and the uncertainties of exosomes on physiologic standpoints. An eloquent example of the investigations to understand the roles and confounders of exosomes’ action in the brain was highlighted with emphasis on the recent discovery of brain lymphatics and hypothesis of glymphatic/lymphatic clearance pathways in diseases as well as in physiologic processes. The possibility of delivering therapeutic exosomes through the systemic circulation, across blood-brain barriers and finally to target cells such as microglia, astrocytes and/or neurons is a good testbed in which the investigators can formulate problems to solve for both understanding (science) and application (engineering).
Collapse
Affiliation(s)
- Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - MInseok Suh
- 2Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University,
| | - Seo Young Kang
- Department of Nuclear Medicine, Ewha Womans University Medical Center, Seoul,
| | - Do Won Hwang
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
44
|
Beck A, D’Atri V, Ehkirch A, Fekete S, Hernandez-Alba O, Gahoual R, Leize-Wagner E, François Y, Guillarme D, Cianférani S. Cutting-edge multi-level analytical and structural characterization of antibody-drug conjugates: present and future. Expert Rev Proteomics 2019; 16:337-362. [DOI: 10.1080/14789450.2019.1578215] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alain Beck
- Biologics CMC and Developability, IRPF - Centre d’Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Valentina D’Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| | - Anthony Ehkirch
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| | - Rabah Gahoual
- Unité de Technologies Biologiques et Chimiques pour la Santé (UTCBS), Paris 5-CNRS UMR8258 Inserm U1022, Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Emmanuel Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140, Université de Strasbourg, CNRS, Strasbourg, France
| | - Yannis François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140, Université de Strasbourg, CNRS, Strasbourg, France
| | - Davy Guillarme
- Biologics CMC and Developability, IRPF - Centre d’Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| |
Collapse
|
45
|
Wang J, Zhang W, Salter R, Lim HK. Reductive Desulfuration as an Important Tool in Detection of Small Molecule Modifications to Payload of Antibody Drug Conjugates. Anal Chem 2019; 91:2368-2375. [DOI: 10.1021/acs.analchem.8b05134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jianyao Wang
- Department of Drug Metabolism and Pharmacokinetics, Janssen Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Wei Zhang
- Department of Drug Metabolism and Pharmacokinetics, Janssen Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Rhys Salter
- Department of Drug Metabolism and Pharmacokinetics, Janssen Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Heng-Keang Lim
- Department of Drug Metabolism and Pharmacokinetics, Janssen Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
46
|
Mecklenburg L. A Brief Introduction to Antibody-Drug Conjugates for Toxicologic Pathologists. Toxicol Pathol 2018; 46:746-752. [PMID: 30295169 DOI: 10.1177/0192623318803059] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Antibody-drug conjugates (ADCs) are an emerging class of anticancer therapeutics, delivering highly cytotoxic molecules directly to cancer cells. ADCs are composed of an antibody, a small molecule drug, and a linker attaching one to another. Antibodies are directed to a large variety of antigens overexpressed on tumor cells, tumor vasculature, or tumor-supporting stroma. After internalization, the ADC is transferred to lysosomes where the cytotoxic component is released, finally killing the target cell. All ADCs are administered via intravenous injection. Once in the circulation, linker stability in plasma is of high importance. In vivo studies in animals address the release of payload over time and typically measure total antibody, conjugated ADC, and free drug. ADC development is driven by ICH (International Council for Harmonisation) guidelines S6(R1) and S9. Dose-limiting toxicities of current ADCs are mainly associated with the payload and correlate well between clinical trials and nonclinical studies in rodents and nonrodents. This mini review is intended to provide general information about ADCs in oncology and shall assist the toxicologic pathologist in correctly interpreting morphological findings acquired in toxicity studies with this entity.
Collapse
|
47
|
Bioanalytical workflow for novel scaffold protein–drug conjugates: quantitation of total Centyrin protein, conjugated Centyrin and free payload for Centyrin–drug conjugate in plasma and tissue samples using liquid chromatography–tandem mass spectrometry. Bioanalysis 2018; 10:1651-1665. [DOI: 10.4155/bio-2018-0201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: Alternative scaffold proteins have emerged as novel platforms for development of therapeutic applications. One such application is in protein–drug conjugates (PDCs), which are analogous to antibody–drug conjugates. Methodology: Liquid chromatography–mass spectrometry methods for quantitation of total protein, conjugate and free payload for a PDC based on Centyrin scaffold were developed. Tryptic peptides generated from a region of the Centyrin that does not contain a conjugation site, and another that has the conjugation site with the linker-payload attached were used as surrogates of the total and conjugated Centyrin, respectively. Conclusion: The methods were successfully applied to analysis of samples from mice to quantify the plasma and tissue concentrations. This same workflow can potentially be applied to other PDCs and site-specific antibody–drug conjugates.
Collapse
|
48
|
Datta-Mannan A, Choi H, Stokell D, Tang J, Murphy A, Wrobleski A, Feng Y. The Properties of Cysteine-Conjugated Antibody-Drug Conjugates Are Impacted by the IgG Subclass. AAPS JOURNAL 2018; 20:103. [DOI: 10.1208/s12248-018-0263-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/06/2018] [Indexed: 01/11/2023]
|
49
|
Beaumont M, Tomazela D, Hodges D, Ermakov G, Hsieh E, Figueroa I, So OY, Song Y, Ma H, Antonenko S, Mengesha W, Zhang YW, Zhang S, Hseih S, Ayanoglu G, Du X, Rimmer E, Judo M, Vives F, Yearley JH, Moon C, Manibusan A, Knudsen N, Beck A, Bresson D, Gately D, Neupane D, Escandón E. Antibody-drug conjugates: integrated bioanalytical and biodisposition assessments in lead optimization and selection. AAPS OPEN 2018. [DOI: 10.1186/s41120-018-0026-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
50
|
Snyder JT, Malinao MC, Dugal-Tessier J, Atkinson JE, Anand BS, Okada A, Mendelsohn BA. Metabolism of an Oxime-Linked Antibody Drug Conjugate, AGS62P1, and Characterization of Its Identified Metabolite. Mol Pharm 2018; 15:2384-2390. [PMID: 29757653 DOI: 10.1021/acs.molpharmaceut.8b00225] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AGS62P1 is an antibody drug conjugate (ADC) composed of a human IgG1κ monoclonal antibody against FLT3 (FMS-like tyrosine kinase 3) with a p-acetyl phenylalanine (pAF) residue inserted at position 124 of each heavy chain linked to the proprietary microtubule disrupting agent AGL-0182-30 via an alkoxyamine linker that forms an oxime upon conjugation to the antibody. AGS62P1 is currently in Phase I human clinical trials for acute myelogenous leukemia (AML). The identified primary metabolite of an oxime-linked ADC is presented for the first time. AGS62P1 metabolism was assessed in xenograft tumor-bearing mice and rats treated with the ADC using liquid chromatography and mass spectrometry-based methods described herein. In this study, we identified the metabolite of AGS62P1 as pAF-AGL-0185-30, which contains a fragment resulting from the catabolism of the antibody component of the ADC and hydrolysis of the terminal amide portion of the linker-payload. We demonstrated that the metabolite of AGS62P1 is tolerated in rats above 1.5 mg/kg and above 0.334 mg/kg in cynomolgus monkeys when given as a single dose. Furthermore, we established in vitro that pAF-AGL-0185-30 does not significantly inhibit hERG or cytochrome P450 family enzymes (CYPs).
Collapse
Affiliation(s)
- Josh T Snyder
- Agensys Inc. an Affiliate of Astellas Pharma Inc. , 1800 Stewart Street , Santa Monica , California 90404 , United States
| | - Maria-Christina Malinao
- Agensys Inc. an Affiliate of Astellas Pharma Inc. , 1800 Stewart Street , Santa Monica , California 90404 , United States
| | - Julien Dugal-Tessier
- Agensys Inc. an Affiliate of Astellas Pharma Inc. , 1800 Stewart Street , Santa Monica , California 90404 , United States
| | - John E Atkinson
- Agensys Inc. an Affiliate of Astellas Pharma Inc. , 1800 Stewart Street , Santa Monica , California 90404 , United States
| | - Banmeet S Anand
- Agensys Inc. an Affiliate of Astellas Pharma Inc. , 1800 Stewart Street , Santa Monica , California 90404 , United States
| | - Akihiro Okada
- Agensys Inc. an Affiliate of Astellas Pharma Inc. , 1800 Stewart Street , Santa Monica , California 90404 , United States
| | - Brian A Mendelsohn
- Agensys Inc. an Affiliate of Astellas Pharma Inc. , 1800 Stewart Street , Santa Monica , California 90404 , United States
| |
Collapse
|