1
|
de Souza Coutinho RD, Saint'Pierre TD, Hauser-Davis RA. Blurry eyes and clouded minds: Metal and metalloid contamination of the visual-sensory system of elasmobranchs. MARINE POLLUTION BULLETIN 2025; 213:117681. [PMID: 39954593 DOI: 10.1016/j.marpolbul.2025.117681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Marine metal and metalloid pollution poses significant risks to elasmobranchs, especially in vital organs such as their sensory and visual systems. While contamination studies have traditionally focused on elasmobranch liver and muscle tissues, due to their significance in detoxification processes and human consumption, respectively, the eyes and brain of this group remain largely underexplored in ecotoxicology assessments. Metal and metalloid accumulation in these sensory organs may compromise key elasmobranch functions, impacting crucial survival behaviors, such as foraging and predator evasion. Detecting sublethal cellular effects caused by these contaminants in the eyes and brain employing biomarkers offers a pathway to assess pollutant sensory health effects before they extend to the organismal and population levels, although no studies have been carried out to date in this sense. This review compiles the current knowledge on metal and metalloid contamination in elasmobranch sensory systems, highlighting the need for further research to understand pollutant effects in these animals' ecological roles and inform conservation strategies.
Collapse
Affiliation(s)
- Rebeca Dias de Souza Coutinho
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro 21040-360, Brazil; Programa de Pos-Graduação em Biodiversidade e Saúde, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Tatiana Dillenburg Saint'Pierre
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ CEP 22451-900, Brazil
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro 21040-360, Brazil.
| |
Collapse
|
2
|
Potier M, Savina-Rolland M, Belloeil P, Gascuel D, Robert M. How will the cumulative effects of fishing and climate change affect the health and resilience of the Celtic Sea ecosystem? THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178942. [PMID: 40010253 DOI: 10.1016/j.scitotenv.2025.178942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 02/12/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
Ecosystems are subject to increasing anthropogenic pressures worldwide. Assessing cumulative effects of multiple pressures and their impacts on recovery processes is a daunting scientific and technical challenge due to systems' complexity. However, this is of paramount importance in the context of ecosystem-based management of natural systems. Our study provides major insights into the assessment of cumulative effects on Northeast Atlantic ecosystems. Using an Ecopath with Ecosim (EwE) tropho-dynamic model for the Celtic Sea ecosystem including 53 functional groups, we (1) assess individual and cumulative effects of fishing and climate change and (2) explore the impact of fishing intensity and climate change on ecosystem resilience. Various levels of increasing fishing intensities are simulated over the whole 21st century, by forcing the EwE model with time series of sea temperature, primary production and secondary producer's biomass from the regional POLCOMS-ERSEM climate model, under both RCP4.5 and RCP8.5 scenarios. Cumulative impacts on the ecosystem's health and its capacity to recover after the cessation of fishing activities were assessed through a set of 45 indicators (biomass-based, diversity, trait-based and habitat-based indicators), using a theoretical non-fishing and climate-constant scenario as a reference. Our results reveal climate change impacts on Boreal, pelagic species and on ecosystem stability. Fishing preferentially removes apex predators and is predicted to increase the likelihood of a regime shift by decreasing ecosystems' capacity to recover. Predicted cumulative effects are mainly additive and antagonistic but synergies are observed for high fishing effort levels, and finally climate change had minor impacts on ecosystem recovery to fishing. Fishing is shown to be the main driver of cumulative impacts and of ecosystem resilience over the next decades. Our results suggest that slight reduction in fishing effort is enough to compensate the impact of climate change. Future research should then be directed towards exploring and evaluating ecosystem-based climate-adaptive fisheries management strategies.
Collapse
Affiliation(s)
- M Potier
- DECOD, L'Institut Agro, IFREMER, INRAE, Rennes, France.
| | | | - P Belloeil
- IFREMER, Boulogne-sur-Mer, Nord-Pas de Calais, France
| | - D Gascuel
- DECOD, L'Institut Agro, IFREMER, INRAE, Rennes, France
| | - M Robert
- DECOD, L'Institut Agro, IFREMER, INRAE, Lorient, France
| |
Collapse
|
3
|
Staggl MA, De Gracia C, López-Romero FA, Stumpf S, Villalobos-Segura E, Benton MJ, Kriwet J. The Drivers of Mesozoic Neoselachian Success and Resilience. BIOLOGY 2025; 14:142. [PMID: 40001910 PMCID: PMC11852107 DOI: 10.3390/biology14020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/10/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025]
Abstract
The modern diversity of sharks, skates, and rays (Neoselachii) is the result of various diversification and extinction events during the Mesozoic (252-66 Ma). However, the key drivers of their diversity patterns remain poorly understood despite all the progress that has been accomplished in recent years. Here, we show that the interplay of climatic- and tectonic-linked trajectories, resulting in a high shallow marine habitat availability and lower atmospheric CO2 concentration, were significant drivers and sustainers of Mesozoic neoselachian diversity. We show, for the first time, that higher atmospheric CO2 content negatively affected neoselachian diversity in the past. The recognized gradual faunal changes throughout the Mesozoic and the two major diversification events during the Jurassic and Cretaceous, respectively, ultimately cumulated in an all-time diversity high in the Palaeogene despite the events during the end-Cretaceous extinction event, highlighting their remarkable resilience and adaptability despite severe environmental challenges. We thus provide novel perspectives on the processes underlying neoselachian diversification since the Mesozoic that contribute importantly to a better understanding of the selective forces that have shaped the long-term evolution and diversification of neoselachians. Given their vital role in modern ecosystems, our results provide information about possible future trends in the face of the current climate crisis.
Collapse
Affiliation(s)
- Manuel Andreas Staggl
- Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; (S.S.); (E.V.-S.); (J.K.)
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Carlos De Gracia
- Departamento de Zoología, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panama 0824, Panama;
- Smithsonian Tropical Research Institute, Balboa, Ancon, Panama P.O. Box 0843-03092, Panama
| | - Faviel A. López-Romero
- EvoDevo Research Group, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, UNAM, Puerto Morelos 77580, Quintana Roo, Mexico;
| | - Sebastian Stumpf
- Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; (S.S.); (E.V.-S.); (J.K.)
| | - Eduardo Villalobos-Segura
- Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; (S.S.); (E.V.-S.); (J.K.)
| | - Michael J. Benton
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK;
| | - Jürgen Kriwet
- Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; (S.S.); (E.V.-S.); (J.K.)
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
4
|
Das R, Faruque MH, Sakib S, Ahmad MT, Seba RN, Zahid MA, Yeasmin MN, Islam MM. Assessing the vulnerability of Elasmobranch species in the Bay of Bengal: Insights from Lakkha gill net fishery of Bangladesh. Heliyon 2024; 10:e37331. [PMID: 39296175 PMCID: PMC11408832 DOI: 10.1016/j.heliyon.2024.e37331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
The elasmobranch population is declining in the Bay of Bengal of Bangladesh due to large-mesh gill net fishing, locally known as the Lakkha net, which primarily targets Indian threadfin (Leptomelanosoma indicum). This study was the first attempt to identify megafaunal bycatch in Lakkha fishing and assess its vulnerability using Productivity Susceptibility Analysis. A total of 40 elasmobranch bycatch species were identified, with sharks comprising 13 species from three families, while 27 rays belonged to six families, with the majority belonging to the Myliobatiformes order (60 %). Productivity and susceptibility scores were assigned to all identified species, with values ranging from 1.27 to 2.73 and 1.50 to 2.63, respectively. The target Lakkha fish exhibited the highest susceptibility score, followed by several pelagic sharks and eagle rays. Vulnerability assessment revealed that 31.7 % (n = 13) of species were highly vulnerable, while 43.9 % (n = 18) were classified as moderate, and 24.4 % (n = 10) were considered to have low vulnerability. All the high-risk megafauna species (n = 13) are classified as threatened by the global IUCN Red List. Sensitivity analysis highlighted susceptibility as a major contributor to species' vulnerability. Alterations in susceptibility scores led to significant changes in the vulnerability status of many species. The overall data quality assessment indicated moderate data quality across species, with variability observed between productivity (76 % of species received a poor data quality score) and susceptibility attributes. However, vulnerability of these species can be reduced through adequate gear modification, shorter net deployment periods, adoption of safe discharge techniques, identification of critical habitats, and establishment of marine protected areas within this region. This study provides valuable insights into the species composition and vulnerability of elasmobranchs in the Lakkha gill net fishery, emphasizing the need for conservation measures to mitigate bycatch impacts on threatened species.
Collapse
Affiliation(s)
- Rupesh Das
- Water Quality and Fisheries Management Laboratory, Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Hasan Faruque
- Water Quality and Fisheries Management Laboratory, Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh
- Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Sadman Sakib
- Water Quality and Fisheries Management Laboratory, Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Taslim Ahmad
- Water Quality and Fisheries Management Laboratory, Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rubaia Nishat Seba
- Water Quality and Fisheries Management Laboratory, Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Al Zahid
- Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Most Nilufa Yeasmin
- Water Quality and Fisheries Management Laboratory, Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh
- Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Mazharul Islam
- Marine Fisheries Academy, Chittagong, Bangladesh
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
5
|
Vigo M, Barría C, Nadal M, Pauly M, Colmenero AI, Garcia-Barcelona S, Navarro J. Feeding strategies of the pelagic stingray (Pteroplatytrygon violacea) in the western Mediterranean Sea. MARINE ENVIRONMENTAL RESEARCH 2024; 200:106651. [PMID: 39059121 DOI: 10.1016/j.marenvres.2024.106651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Elasmobranchs play crucial roles as predators in marine ecosystems. Understanding their trophic strategies and interactions is necessary for comprehending food web dynamics and developing ecosystem-based management strategies. Although, feeding strategies can change depending on several factors, including fluctuations in prey availability throughout the year. In this study, we investigated the trophic ecology of the pelagic stingray, Pteroplatytrygon violacea, the only stingray inhabiting the pelagic environment in the western Mediterranean Sea. We found significant temporal differences in diet composition, mostly consuming pelagic zooplankton in spring, whereas benthopelagic teleosts in autumn. After contrasting different studies, P. violacea appears to have a generalist and opportunistic diet consisting of a broad spectrum of pelagic and benthopelagic species, and trophic plasticity in response to environmental fluctuations. Our findings suggest that P. violacea can present different feeding strategies, mainly pelagic, with a relatively low trophic position for a mesopredator compared to other batoids.
Collapse
Affiliation(s)
- Maria Vigo
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Spain; Department of Integrative Ecology, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Lungomare Cristoforo Colombo (complesso Roosevelt), Palermo, Italy.
| | - Claudio Barría
- Association for the Study and Conservation of Elasmobranchs and its Ecosystems (Catsharks), Barcelona, Spain; Department of Animal and Plant Biology and Ecology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Marta Nadal
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Spain
| | - Matxalen Pauly
- Centro Oceanográfico de Málaga (IEO), CSIC, Fuengirola, Spain
| | - Ana I Colmenero
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Spain; Association for the Study and Conservation of Elasmobranchs and its Ecosystems (Catsharks), Barcelona, Spain
| | | | - Joan Navarro
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Spain
| |
Collapse
|
6
|
Leone A, Arnaud-Haond S, Babbucci M, Bargelloni L, Coscia I, Damalas D, Delord C, Franch R, Garibaldi F, Macias D, Mariani S, Martinsohn J, Megalofonou P, Micarelli P, Nikolic N, Prodöhl PA, Sperone E, Stagioni M, Zanzi A, Cariani A, Tinti F. Population Genomics of the Blue Shark, Prionace glauca, Reveals Different Populations in the Mediterranean Sea and the Northeast Atlantic. Evol Appl 2024; 17:e70005. [PMID: 39296540 PMCID: PMC11408569 DOI: 10.1111/eva.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/21/2024] Open
Abstract
Populations of marine top predators have been sharply declining during the past decades, and one-third of chondrichthyans are currently threatened with extinction. Sustainable management measures and conservation plans of large pelagic sharks require knowledge on population genetic differentiation and demographic connectivity. Here, we present the case of the Mediterranean blue shark (Prionace glauca, L. 1758), commonly found as bycatch in longline fisheries and classified by the IUCN as critically endangered. The management of this species suffers from a scarcity of data about population structure and connectivity within the Mediterranean Sea and between this basin and the adjacent Northeast Atlantic. Here, we assessed the genetic diversity and spatial structure of blue shark from different areas of the Mediterranean Sea and the Northeast Atlantic through genome scan analyses. Pairwise genetic differentiation estimates (F ST) on 203 specimens genotyped at 14,713 ddRAD-derived SNPs revealed subtle, yet significant, genetic differences within the Mediterranean sampling locations, and between the Mediterranean Sea and the Northeast Atlantic Ocean. Genetic differentiation suggests some degree of demographic independence between the Western and Eastern Mediterranean blue shark populations. Furthermore, results show limited genetic connectivity between the Mediterranean and the Atlantic basins, supporting the hypothesis of two distinct populations of blue shark separated by the Strait of Gibraltar. Although reproductive interactions may be limited, the faint genetic signal of differentiation suggests a recent common history between these units. Therefore, Mediterranean blue sharks may function akin to a metapopulation relying upon local demographic processes and connectivity dynamics, whereby the limited contemporary gene flow replenishment from the Atlantic may interplay with currently poorly regulated commercial catches and large-scale ecosystem changes. Altogether, these results emphasise the need for revising management delineations applied to these critically endangered sharks.
Collapse
Affiliation(s)
- Agostino Leone
- Department of Biological, Geological and Environmental Sciences (BiGeA), Laboratory of Genetics and Genomics of Marine Resources and Environment University of Bologna Ravenna Italy
- MARBEC - University of Montpellier, CNRS, Ifremer, IRD Sète France
- Department of Earth and Marine Sciences (DiSTeM) University of Palermo Palermo Italy
- NBFC, National Biodiversity Future Center Palermo Italy
| | | | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science University of Padova Legnaro Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science University of Padova Legnaro Italy
| | | | - Dimitrios Damalas
- European Commission, Joint Research Centre, Directorate D - Sustainable Resources Ispra Italy
- Hellenic Centre for Marine Research Institute of Marine Biological Resources & Inland Waters, Former US Base at Gournes Heraklion Crete Greece
| | | | - Rafaella Franch
- Department of Comparative Biomedicine and Food Science University of Padova Legnaro Italy
| | - Fulvio Garibaldi
- Department of Earth, Environmental and Life Sciences University of Genova Genova Italy
| | - David Macias
- Instituto Español de Oceanografía Centro Oceanográfico de Málaga Malaga Spain
| | - Stefano Mariani
- School of Biological and Environmental Sciences Liverpool John Moores University Liverpool UK
| | - Jann Martinsohn
- European Commission, Joint Research Centre, Directorate D - Sustainable Resources Ispra Italy
| | - Persefoni Megalofonou
- Department of Zoology-Marine Biology, Faculty of Biology National and Kapodistrian University of Athens Athens Greece
| | - Primo Micarelli
- Sharks Studies Center-Scientific Institute Massa Marittima Italy
| | | | - Paulo A Prodöhl
- Institute for Global Food Security, School of Biological Sciences Queen's University Belfast Belfast UK
| | - Emilio Sperone
- Department of Biology, Ecology and Earth Sciences University of Calabria Arcavacata di Rende Italy
| | - Marco Stagioni
- Laboratory of Marine Biology and Fisheries, Department of Biological, Geological and Environmental Sciences (BiGeA) University of Bologna Fano Italy
| | - Antonella Zanzi
- European Commission, Joint Research Centre, Directorate D - Sustainable Resources Ispra Italy
| | - Alessia Cariani
- Department of Biological, Geological and Environmental Sciences (BiGeA), Laboratory of Genetics and Genomics of Marine Resources and Environment University of Bologna Ravenna Italy
| | - Fausto Tinti
- Department of Biological, Geological and Environmental Sciences (BiGeA), Laboratory of Genetics and Genomics of Marine Resources and Environment University of Bologna Ravenna Italy
| |
Collapse
|
7
|
Wagner I, Smolina I, Koop MEL, Bal T, Lizano AM, Choo LQ, Hofreiter M, Gennari E, de Sabata E, Shivji MS, Noble LR, Jones CS, Hoarau G. Genome analysis reveals three distinct lineages of the cosmopolitan white shark. Curr Biol 2024; 34:3582-3590.e4. [PMID: 39047735 DOI: 10.1016/j.cub.2024.06.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/22/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
The white shark (Carcharodon carcharias) (Linnaeus, 1758), an iconic apex predator occurring in all oceans,1,2 is classified as Vulnerable globally3-with global abundance having dropped to 63% of 1970s estimates,4-and as Critically Endangered in Europe.5 Identification of evolutionary significant units and their management are crucial for conservation,6 especially as the white shark is facing various but often region-specific anthropogenic threats.7,8,9,10,11 Assessing connectivity in a cosmopolitan marine species requires worldwide sampling and high-resolution genetic markers.12 Both are lacking for the white shark, with studies to date typified by numerous but geographically limited sampling, and analyses relying largely on relatively small numbers of nuclear microsatellites,13,14,15,16,17,18,19 which can be plagued by various genotyping artefacts and thus require cautious interpretation.20 Sequencing and computational advances are finally allowing genomes21,22,23 to be leveraged into population studies,24,25,26,27 with datasets comprising thousands of single-nucleotide polymorphisms (SNPs). Here, combining target gene capture (TGC)28 sequencing (89 individuals, 4,000 SNPs) and whole-genome re-sequencing (17 individuals, 391,000 SNPs) with worldwide sampling across most of the distributional range, we identify three genetically distinct allopatric lineages (North Atlantic, Indo-Pacific, and North Pacific). These diverged 100,000-200,000 years ago during the Penultimate Glaciation, when low sea levels, different ocean currents, and water temperatures produced significant biogeographic barriers. Our results show that without high-resolution genomic analyses of samples representative of a species' range,12 the true extent of diversity, presence of past and contemporary barriers to gene flow, subsequent speciation, and local evolutionary events will remain enigmatic.
Collapse
Affiliation(s)
- Isabel Wagner
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Irina Smolina
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Martina E L Koop
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Thijs Bal
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Apollo M Lizano
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway; Marine Science Institute, University of the Philippines, Diliman Quezon City 1101, Philippines
| | - Le Qin Choo
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway; Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Enrico Gennari
- Oceans Research Institute, Mossel Bay 6500, South Africa
| | | | - Mahmood S Shivji
- Save Our Seas Shark Foundation Research Center and Guy Harvey Research Institute, Nova Southeastern University, Dania Beach, FL 33004, USA
| | - Leslie R Noble
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway; School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland AB24 2TZ, UK.
| | - Catherine S Jones
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland AB24 2TZ, UK.
| | - Galice Hoarau
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway.
| |
Collapse
|
8
|
Leonetti FL, Bottaro M, Giglio G, Sperone E. Studying Chondrichthyans Using Baited Remote Underwater Video Systems: A Review. Animals (Basel) 2024; 14:1875. [PMID: 38997987 PMCID: PMC11240523 DOI: 10.3390/ani14131875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Cartilaginous fish face significant threats due to overfishing and slow reproductive rates, leading to rapid declines in their populations globally. Traditional capture-based surveys, while valuable for gathering ecological information, pose risks to the health and survival of these species. Baited Remote Underwater Video Systems (BRUVS) offer a non-invasive alternative, allowing for standardized surveys across various habitats with minimal disturbance to marine life. This study presents a comprehensive review of BRUVS applications in studying cartilaginous fish, examining 81 peer-reviewed papers spanning from 1990 to 2023. The analysis reveals a significant increase in BRUVS usage over the past three decades, particularly in Australia, South Africa, and Central America. The most common BRUVS configurations include benthic setups, mono-camera systems, and the use of fish from the Clupeidae and Scombridae families as bait. BRUVS have been instrumental in studying 195 chondrichthyan species, providing insights into up to thirteen different aspects of the life histories. Moreover, BRUVS facilitate the monitoring of endangered and data-deficient species, contributing crucial data for conservation efforts. Overall, this study underscores the value of BRUVS as a powerful tool for studying and conserving cartilaginous fish populations worldwide.
Collapse
Affiliation(s)
| | - Massimiliano Bottaro
- Genoa Marine Centre, Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Italian National Institute for Marine Biology, Ecology and Biotechnology, Villa del Principe, Piazza del Principe 4, 16126 Genoa, Italy
| | - Gianni Giglio
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Emilio Sperone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
9
|
Meira A, Byers JE, Sousa R. A global synthesis of predation on bivalves. Biol Rev Camb Philos Soc 2024; 99:1015-1057. [PMID: 38294132 DOI: 10.1111/brv.13057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Predation is a dominant structuring force in ecological communities. In aquatic environments, predation on bivalves has long been an important focal interaction for ecological study because bivalves have central roles as ecosystem engineers, basal components of food webs, and commercial commodities. Studies of bivalves are common, not only because of bivalves' central roles, but also due to the relative ease of studying predatory effects on this taxonomic group. To understand patterns in the interactions of bivalves and their predators we synthesised data from 52 years of peer-reviewed studies on bivalve predation. Using a systematic search, we compiled 1334 studies from 75 countries, comprising 61 bivalve families (N = 2259), dominated by Mytilidae (29% of bivalves), Veneridae (14%), Ostreidae (8%), Unionidae (7%), and Dreissenidae and Tellinidae (6% each). A total of 2036 predators were studied, with crustaceans the most studied predator group (34% of predators), followed by fishes (24%), molluscs (17%), echinoderms (10%) and birds (6%). The majority of studies (86%) were conducted in marine systems, in part driven by the high commercial value of marine bivalves. Studies in freshwater ecosystems were dominated by non-native bivalves and non-native predator species, which probably reflects the important role of biological invasions affecting freshwater biodiversity. In fact, while 81% of the studied marine bivalve species were native, only 50% of the freshwater species were native to the system. In terms of approach, most studies used predation trials, visual analysis of digested contents and exclusion experiments to assess the effects of predation. These studies reflect that many factors influence bivalve predation depending on the species studied, including (i) species traits (e.g. behaviour, morphology, defence mechanisms), (ii) other biotic interactions (e.g. presence of competitors, parasites or diseases), and (iii) environmental context (e.g. temperature, current velocity, beach exposure, habitat complexity). There is a lack of research on the effects of bivalve predation at the population and community and ecosystem levels (only 7% and 0.5% of studies respectively examined impacts at these levels). At the population level, the available studies demonstrate that predation can decrease bivalve density through consumption or the reduction of recruitment. At the community and ecosystem level, predation can trigger effects that cascade through trophic levels or effects that alter the ecological functions bivalves perform. Given the conservation and commercial importance of many bivalve species, studies of predation should be pursued in the context of global change, particularly climate change, acidification and biological invasions.
Collapse
Affiliation(s)
- Alexandra Meira
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
| | - James E Byers
- Odum School of Ecology, University of Georgia, 140 E. Green St, Athens, GA, 30602, USA
| | - Ronaldo Sousa
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
| |
Collapse
|
10
|
Verheijen BHF, Webb EB, Brasher MG, Hagy HM. Long-term changes in autumn-winter harvest distributions vary among duck species, months, and subpopulations. Ecol Evol 2024; 14:e11331. [PMID: 38832139 PMCID: PMC11145621 DOI: 10.1002/ece3.11331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 06/05/2024] Open
Abstract
Our aim was to describe shifts in autumn and winter harvest distributions of three species of dabbling ducks (blue-winged teal [Spatula discors], mallard [Anas platyrhynchos], and northern pintail [Anas acuta]) in the Central and Mississippi flyways of North America during 1960-2019. We measured shifts in band recovery distributions corrected for changes in hunting season dates and zones by using kernel density estimators to calculate 10 distributional metrics. We then assessed interannual and intraspecific variation by comparing species-specific changes in distributional metrics for 4 months (October-January) and three geographically based subpopulations. During 1960-2019, band recovery distributions shifted west- and southwards (blue-winged teal) or east- and northwards (mallard and northern pintail) by one hundred to several hundred kilometers. For all three species, the broad (95% isopleth) and core distributions (50% isopleth) showed widespread decreases in overlap and increases in relative area compared to a 1960-1979 baseline period. Shifts in band recovery distributions varied by month, with southward shifts for blue-winged teal most pronounced in October and northward shifts for mallard and northern pintail greatest during December and January. Finally, distributional metric response varied considerably among mallard subpopulations, including 2-4-fold differences in longitude, latitude, and overlap, whereas differences among subpopulations were minimal for blue-winged teal and northern pintail. Our findings support the popular notion that winter (December-January) distributions of duck species have shifted north; however, the extent and direction of distributional changes vary among species and subpopulations. Long-term distributional changes are therefore complex and summarizing shifts across species, months, or subpopulations could mask underlying finer-scale patterns that are important to habitat conservation and population management. A detailed understanding of how species distributions have changed over time will help quantify important drivers of species occurrence, identify habitat management options, and could inform decisions on where to focus conservation or restoration efforts.
Collapse
Affiliation(s)
- Bram H. F. Verheijen
- Missouri Cooperative Fish and Wildlife Research Unit, School of Natural ResourcesUniversity of MissouriColumbiaMissouriUSA
| | - Elisabeth B. Webb
- U.S. Geological Survey, Missouri Cooperative Fish and Wildlife Research Unit, School of Natural ResourcesUniversity of MissouriColumbiaMissouriUSA
| | | | - Heath M. Hagy
- U.S. Fish and Wildlife Service, Habitat and Population Evaluation TeamBismarckNorth DakotaUSA
| |
Collapse
|
11
|
Henderson CJ, Gilby BL, Turschwell MP, Goodridge Gaines LA, Mosman JD, Schlacher TA, Borland HP, Olds AD. Long term declines in the functional diversity of sharks in the coastal oceans of eastern Australia. Commun Biol 2024; 7:611. [PMID: 38773323 PMCID: PMC11109089 DOI: 10.1038/s42003-024-06308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
Human impacts lead to widespread changes in the abundance, diversity and traits of shark assemblages, altering the functioning of coastal ecosystems. The functional consequences of shark declines are often poorly understood due to the absence of empirical data describing long-term change. We use data from the Queensland Shark Control Program in eastern Australia, which has deployed mesh nets and baited hooks across 80 beaches using standardised methodologies since 1962. We illustrate consistent declines in shark functional richness quantified using both ecological (e.g., feeding, habitat and movement) and morphological (e.g., size, morphology) traits, and this corresponds with declining ecological functioning. We demonstrate a community shift from targeted apex sharks to a greater functional richness of non-target species. Declines in apex shark functional richness and corresponding changes in non-target species may lead to an anthropogenically induced trophic cascade. We suggest that repairing diminished shark populations is crucial for the stability of coastal ecosystems.
Collapse
Affiliation(s)
- Christopher J Henderson
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia.
| | - Ben L Gilby
- School of Science, Technology and Engineering, University of the Sunshine Coast, Petrie, QLD, 4558, Australia
| | - Mischa P Turschwell
- Coastal and Marine Research Centre, Australian Rivers Institute, Griffith University, Nathan, QLD, 4111, Australia
| | - Lucy A Goodridge Gaines
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia
| | - Jesse D Mosman
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia
| | - Thomas A Schlacher
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia
| | - Hayden P Borland
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia
| | - Andrew D Olds
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia
| |
Collapse
|
12
|
Hammerschlag N, Sims DW. Shark conservation requires mortality-limiting regulations amid global change. Trends Ecol Evol 2024; 39:320-322. [PMID: 38494407 DOI: 10.1016/j.tree.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Despite anti-finning laws aimed at conserving sharks, Worm et al. have revealed that global shark mortality rates have surprisingly risen over the past decade, driven in large part by increased demand for meat. Here, we discuss the importance of this study, underscoring the need for broader regulations addressing overall shark mortality amid threats from global change.
Collapse
Affiliation(s)
- Neil Hammerschlag
- Shark Research Foundation Inc, Boutiliers Point, Nova Scotia, Canada, B3Z 0M9; Atlantic Shark Expeditions Ltd, Boutiliers Point, Nova Scotia, Canada, B3Z 0M9.
| | - David W Sims
- Marine Biological Association, Plymouth PL1 2PB, UK; University of Southampton, Southampton SO14 3ZH, UK
| |
Collapse
|
13
|
Hernández-Andreu R, Félix-Hackradt FC, Schiavetti A, S Texeira JL, Hackradt CW. Marine protected areas are a useful tool to protect coral reef fishes but not representative to conserve their functional role. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119656. [PMID: 38042082 DOI: 10.1016/j.jenvman.2023.119656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 12/04/2023]
Abstract
Anthropogenic actions have direct and indirect impacts on natural systems, leading to significant alterations in marine ecosystems worldwide. One of the most notable problems is species loss, as the disappearance of species from an area can compromise ecological functions. This is at the core of a severe biodiversity crisis. To address and reverse these processes, marine protected areas (MPAs) have been utilized as a crucial tool to mitigate species loss, increase biomass, and serve as a fisheries management tool. However, there is a lack of information assessing MPAs from the perspective of their contribution to maintaining ecological functions. In recent decades, functional diversity (FD) indices have been widely used to assess ecosystem functioning. In this paper, we conducted an assessment using a global database of reef fish abundance to analyze the effect of No-Take Zones (NTZ) on the FD and "true" diversity (TD) indices of tropical reef fish assemblages in seven tropical biogeographic regions. We found a significant protective effect for some indices, although these responses were dependent on the bioregion. At the bioregional level, NTZs included lower numbers of species and functional entities than open access areas. Consequently, the functional richness protected within these zones partially represented the functional diversity in each biogeographic province. However, smaller-scale functional diversity indices responded to NTZ protection depending on the bioregion. Therefore, these results reinforce that the assessed NTZs are responsive to the protection of functional diversity, although they are not sufficient for safeguarding ecosystem functions in tropical reefs. This highlights the importance of expanding the number of protection entities worldwide with management strategies focused on coral reef fish functionality, as well as effective local/regional assessments. Thus, a new paradigm is necessary in the planning and creation of MPAs to safeguard ecosystem functions, with a priority given to the protection of ecosystem functions and habitats.
Collapse
Affiliation(s)
- Ramón Hernández-Andreu
- Marine Ecology and Conservation Lab. Centre for Environmental Sciences, Universidade Federal do Sul da Bahia, Campus Sosígenes Costa, Rod. Joel Maers, BR 367, km 10, CEP: 45810-000, Porto Seguro, BA, Brazil; Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rod Ilhéus/Itabuna Km-16 s/n, CEP: 45662-000, Ilhéus, BA, Brazil; Ethnoconservation and Protected Areas Laboratory, Department of Agrarian and Environmental Sciences, Universidade Estadual de Santa Cruz, Rod Ilhéus/Itabuna Km-16 s/n, CEP: 45662-000, Ilhéus, BA, Brazil.
| | - Fabiana C Félix-Hackradt
- Marine Ecology and Conservation Lab. Centre for Environmental Sciences, Universidade Federal do Sul da Bahia, Campus Sosígenes Costa, Rod. Joel Maers, BR 367, km 10, CEP: 45810-000, Porto Seguro, BA, Brazil
| | - Alexandre Schiavetti
- Ethnoconservation and Protected Areas Laboratory, Department of Agrarian and Environmental Sciences, Universidade Estadual de Santa Cruz, Rod Ilhéus/Itabuna Km-16 s/n, CEP: 45662-000, Ilhéus, BA, Brazil
| | - Jessyca L S Texeira
- Marine Ecology and Conservation Lab. Centre for Environmental Sciences, Universidade Federal do Sul da Bahia, Campus Sosígenes Costa, Rod. Joel Maers, BR 367, km 10, CEP: 45810-000, Porto Seguro, BA, Brazil; Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rod Ilhéus/Itabuna Km-16 s/n, CEP: 45662-000, Ilhéus, BA, Brazil
| | - Carlos W Hackradt
- Marine Ecology and Conservation Lab. Centre for Environmental Sciences, Universidade Federal do Sul da Bahia, Campus Sosígenes Costa, Rod. Joel Maers, BR 367, km 10, CEP: 45810-000, Porto Seguro, BA, Brazil
| |
Collapse
|
14
|
Pimiento C, Albouy C, Silvestro D, Mouton TL, Velez L, Mouillot D, Judah AB, Griffin JN, Leprieur F. Functional diversity of sharks and rays is highly vulnerable and supported by unique species and locations worldwide. Nat Commun 2023; 14:7691. [PMID: 38001077 PMCID: PMC10673927 DOI: 10.1038/s41467-023-43212-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Elasmobranchs (sharks, rays and skates) are among the most threatened marine vertebrates, yet their global functional diversity remains largely unknown. Here, we use a trait dataset of >1000 species to assess elasmobranch functional diversity and compare it against other previously studied biodiversity facets (taxonomic and phylogenetic), to identify species- and spatial- conservation priorities. We show that threatened species encompass the full extent of functional space and disproportionately include functionally distinct species. Applying the conservation metric FUSE (Functionally Unique, Specialised, and Endangered) reveals that most top-ranking species differ from the top Evolutionarily Distinct and Globally Endangered (EDGE) list. Spatial analyses further show that elasmobranch functional richness is concentrated along continental shelves and around oceanic islands, with 18 distinguishable hotspots. These hotspots only marginally overlap with those of other biodiversity facets, reflecting a distinct spatial fingerprint of functional diversity. Elasmobranch biodiversity facets converge with fishing pressure along the coast of China, which emerges as a critical frontier in conservation. Meanwhile, several components of elasmobranch functional diversity fall in high seas and/or outside the global network of marine protected areas. Overall, our results highlight acute vulnerability of the world's elasmobranchs' functional diversity and reveal global priorities for elasmobranch functional biodiversity previously overlooked.
Collapse
Affiliation(s)
- Catalina Pimiento
- Department of Paleontology, University of Zurich, Zurich, Switzerland.
- Department of Biosciences, Swansea University, Swansea, UK.
- Smithsonian Tropical Research Institute, Balboa, Panama.
| | - Camille Albouy
- Ecosystem and Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Unit of Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Daniele Silvestro
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Fribourg, Switzerland
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Théophile L Mouton
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- International Union for Conservation of Nature Species Survival Commission Shark Specialist Group, P.O. Box 29588, Dubai, United Arab Emirates
| | - Laure Velez
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - David Mouillot
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Aaron B Judah
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - John N Griffin
- Department of Biosciences, Swansea University, Swansea, UK
| | - Fabien Leprieur
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| |
Collapse
|
15
|
Le Croizier G, Lorrain A, Hoyos-Padilla M, Ketchum JT, Amezcua-Martínez F, Le Loc'h F, Munaron JM, Schaal G, Point D. Do marine protected areas influence mercury exposure? Insights from a shark community in the tropical Northeast Pacific. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122352. [PMID: 37562525 DOI: 10.1016/j.envpol.2023.122352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/12/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023]
Abstract
Biomass depletion caused by overfishing is likely to alter the structure of food webs and impact mercury transfer to marine predators. Although marine protected areas (MPAs) are spared from fishing pressure, their influence on biota mercury levels is poorly understood. Here, we used carbon and nitrogen stable isotope compositions as well as mercury concentrations in fin clips to characterize foraging habitat and mercury exposure of a shark community composed of migratory and resident species of the Revillagigedo archipelago, an offshore MPA in the Northeast Pacific off Mexico. We found that the probability of finding migratory sharks in the isotopic niche of Revillagigedo-resident sharks was low, likely reflecting the use of habitats outside the archipelago by highly mobile species. Community-wide variations in mercury were primarily explained by shark length, revealing that bioaccumulation was the main driver of Hg concentrations. We failed to detect a clear effect of foraging habitat on shark mercury exposure, which may be related to migratory species using both exploited and protected areas when moving outside the Revillagigedo MPA. More similar studies on the potential mitigation of Hg contamination by MPAs are needed in the future if fishing pressure increases to satisfy the growing global human population.
Collapse
Affiliation(s)
- Gaël Le Croizier
- Instituto de Ciencias Del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Joel Montes Camarena S/N, Mazatlán, Sin, 82040, Mexico.
| | - Anne Lorrain
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Mauricio Hoyos-Padilla
- Pelagios-Kakunjá A.C, Sinaloa 1540, Col. Las Garzas, C.P. 23070, La Paz, B.C.S., Mexico; Fins Attached: Marine Research and Conservation, 19675 Still Glen Drive, Colorado Springs, CO 80908, USA
| | - James T Ketchum
- Pelagios-Kakunjá A.C, Sinaloa 1540, Col. Las Garzas, C.P. 23070, La Paz, B.C.S., Mexico; MigraMar, Bodega Bay, CA, USA; Centro de Investigaciones Biológicas Noroeste (CIBNOR), La Paz, B.C.S., Mexico
| | - Felipe Amezcua-Martínez
- Instituto de Ciencias Del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Joel Montes Camarena S/N, Mazatlán, Sin, 82040, Mexico
| | | | | | - Gauthier Schaal
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - David Point
- UMR Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), 14 Avenue Edouard Belin, 31400, Toulouse, France
| |
Collapse
|
16
|
Cooper JA, Griffin JN, Kindlimann R, Pimiento C. Are shark teeth proxies for functional traits? A framework to infer ecology from the fossil record. JOURNAL OF FISH BIOLOGY 2023; 103:798-814. [PMID: 36651356 DOI: 10.1111/jfb.15326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Modern sharks have an evolutionary history of at least 250 million years and are known to play key roles in marine systems, from controlling prey populations to connecting habitats across oceans. These ecological roles can be quantified based on their functional traits, which are typically morphological (e.g., body size) or behavioural (e.g., feeding and diet). Nonetheless, the understanding of such roles of extinct sharks is limited due to the inherent incompleteness of their fossil record, which consists mainly of isolated teeth. As such, establishing links between tooth morphology and ecological traits in living sharks could provide a useful framework to infer sharks' ecology from the fossil record. Here, based on extant sharks from which morphological and behavioural characteristics are known, the authors assess the extent to which isolated teeth can serve as proxies for functional traits. To do so, they first review the scientific literature on extant species to evaluate the use of shark dental characters as proxies for ecology to then perform validation analyses based on an independent data set collected from museum collections. Their results reveal that 12 dental characters have been used in shark literature as proxies for three functional traits: body size, prey preference and feeding mechanism. From all dental characters identified, tooth size and cutting edge are the most widely used. Validation analyses suggest that seven dental characters - crown height, crown width, cutting edge, lateral cusplets, curvature, longitudinal outline and cross-section outline - are the best proxies for the three functional traits. In particular, tooth size (crown height and width) was found to be a reliable proxy of all three traits; the presence of serrations on the cutting edge was one of the best proxies for prey preference; and tooth shape (longitudinal outline) and the presence of lateral cusplets were among the best indicators of feeding mechanism. Overall, the authors' results suggest that in the absence of directly measurable traits in the fossil record, these seven dental characters (and different combinations of them) can be used to quantify the ecological roles of extinct sharks. This information has the potential to provide key insights into how shark functional diversity has changed through time, including their ecological responses to extinction events.
Collapse
Affiliation(s)
- Jack A Cooper
- Department of Biosciences, Swansea University, Swansea, UK
| | - John N Griffin
- Department of Biosciences, Swansea University, Swansea, UK
| | - René Kindlimann
- Haimuseum und Sammlung R. Kindlimann, Aathal-Seegräben, Switzerland
| | - Catalina Pimiento
- Department of Biosciences, Swansea University, Swansea, UK
- Paleontological Institute and Museum, University of Zurich, Zurich, Switzerland
- Smithsonian Tropical Research Institute, Balboa, Panama
| |
Collapse
|
17
|
Poulsen JR, Maicher V, Malinowski H, DeSisto C. Situating defaunation in an operational framework to advance biodiversity conservation. Bioscience 2023; 73:721-727. [PMID: 37854893 PMCID: PMC10580966 DOI: 10.1093/biosci/biad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Anthropogenic pressures are causing the widespread loss of wildlife species and populations, with adverse consequences for ecosystem functioning. This phenomenon has been widely but inconsistently referred to as defaunation. A cohesive, quantitative framework for defining and evaluating defaunation is necessary for advancing biodiversity conservation. Likening defaunation to deforestation, we propose an operational framework for defaunation that defines it and related terms, situates defaunation relative to intact communities and faunal degradation, and encourages quantitative, ecologically reasonable, and equitable measurements. We distinguish between defaunation, the conversion of an ecosystem from having wild animals to not having wild animals, and faunal degradation, the process of losing animals or species from an animal community. The quantification of context-relevant defaunation boundaries or baselines is necessary to compare faunal communities over space and time. Situating a faunal community on the degradation curve can promote Global Biodiversity Framework targets, advancing the 2050 Vision for Biodiversity.
Collapse
Affiliation(s)
- John R Poulsen
- The Nature Conservancy, Boulder, Colorado, United States
- Duke University, Durham, North Carolina, United States
| | - Vincent Maicher
- CAFI Forest Research and Monitoring for The Nature Conservancy, Gabon
| | | | - Camille DeSisto
- Nicholas School of the Environment, Duke University, United States
| |
Collapse
|
18
|
Gong Y, Huang X, Li Z, Shen Y, Li Y, Zhu J, Wu F. Plastic ingestion and trophic transfer in an endangered top predator, the longfin mako shark (Isurus paucus), from the tropical western Pacific Ocean. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107365-107370. [PMID: 36710310 DOI: 10.1007/s11356-023-25532-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023]
Abstract
Plastic pollution has become a global environmental problem of major concern. However, the plastic contamination in the marine top predators, particularly in endangered species, is incompletely understood because of the limited amount of data on their presence in the digestive system and prey. This study investigated the stomach contents of an endangered but poorly known shark species, the longfin mako shark (Isurus paucus), found in the tropical western Pacific Ocean. We examined the plastics in this female specimen (1.22-m fork length) and her prey to assess the potential for trophic transfer of microplastics. Polypropylene bottle cap and lollipop packaging, longnose lancetfish (Alepisaurus ferox), and squid were found in the stomach of I. paucus, while no apparent internal injuries were noted. The microplastic fragments and granules, confirmed by laser direct infrared spectroscopy, were found in the digestive system of the intact squid ingested by I. paucus, suggesting that trophic transfer may occur between shark and prey. These results indicate that I. paucus is vulnerable to plastic ingestion and provide evidence of trophic transfer of microplastics in shark species. Our study emphasizes the need to evaluate the potential ecotoxicological consequences of increasing plastic pollution to endangered marine top predators.
Collapse
Affiliation(s)
- Yi Gong
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China.
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai, China.
- National Engineering Research Centre for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China.
- Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai, China.
| | - Xuemin Huang
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Zezheng Li
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Yongfu Shen
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Yunkai Li
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai, China
- National Engineering Research Centre for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Jiangfeng Zhu
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai, China
- National Engineering Research Centre for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Feng Wu
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai, China
- National Engineering Research Centre for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai, China
| |
Collapse
|
19
|
Shukla I, Gaynor KM, Worm B, Darimont CT. The diversity of animals identified as keystone species. Ecol Evol 2023; 13:e10561. [PMID: 37818247 PMCID: PMC10560868 DOI: 10.1002/ece3.10561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 10/12/2023] Open
Abstract
Although the keystone species concept was conceived of over 50 years ago, contemporary efforts to synthesize related literature have been limited. Our objective was to create a list of keystone animal species identified in the literature and to examine the variation in the traits of species and the ecosystem influences they elicit. We documented 230 species considered keystones. A clustering analysis classified them into five archetypes based on combinations of their taxonomic class, body size, trophic level, and role (consumers, modifiers, or prey). Although conservation and public perception of keystones primarily focuses on large vertebrate consumers, our analysis reveals that researchers have defined a wide diversity of keystone species, with large variation in associated ecosystem processes. Future research may confront ambiguity in the definition of keystone status, as well as clarify the type, abundance, and quality of data required to assign the term. Identifying keystones with increased rigor would not only enrich the literature but also inform intervention to safeguard threatened keystones and their associated influences on ecosystems.
Collapse
Affiliation(s)
- Ishana Shukla
- Department of GeographyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Kaitlyn M. Gaynor
- Departments of Botany and ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Boris Worm
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Chris T. Darimont
- Department of GeographyUniversity of VictoriaVictoriaBritish ColumbiaCanada
- Raincoast Conservation FoundationDenny IslandBritish ColumbiaCanada
| |
Collapse
|
20
|
McCormack J, Karnes M, Haulsee D, Fox D, Kim SL. Shark teeth zinc isotope values document intrapopulation foraging differences related to ontogeny and sex. Commun Biol 2023; 6:711. [PMID: 37433835 DOI: 10.1038/s42003-023-05085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
Trophic ecology and resource use are challenging to discern in migratory marine species, including sharks. However, effective management and conservation strategies depend on understanding these life history details. Here we investigate whether dental enameloid zinc isotope (δ66Znen) values can be used to infer intrapopulation differences in foraging ecology by comparing δ66Znen with same-tooth collagen carbon and nitrogen (δ13Ccoll, δ15Ncoll) values from critically endangered sand tiger sharks (Carcharias taurus) from Delaware Bay (USA). We document ontogeny and sex-related isotopic differences indicating distinct diet and habitat use at the time of tooth formation. Adult females have the most distinct isotopic niche, likely feeding on higher trophic level prey in a distinct habitat. This multi-proxy approach characterises an animal's isotopic niche in greater detail than traditional isotope analysis alone and shows that δ66Znen analysis can highlight intrapopulation dietary variability thereby informing conservation management and, due to good δ66Znen fossil tooth preservation, palaeoecological reconstructions.
Collapse
Affiliation(s)
- Jeremy McCormack
- Institute of Geosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany.
| | - Molly Karnes
- Department of Life and Environmental Sciences, University of California Merced, Merced, CA, 95343, USA
- Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, IN, USA
| | - Danielle Haulsee
- Department of Biology, Stanford University, Pacific Grove, CA, USA
- Hubbs-Seaworld Research Institute, San Diego, CA, 92109, USA
| | - Dewayne Fox
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE, USA
| | - Sora L Kim
- Department of Life and Environmental Sciences, University of California Merced, Merced, CA, 95343, USA
| |
Collapse
|
21
|
Willert MS, France CAM, Baldwin CC, Hay ME. Historic trophic decline in New England's coastal marine ecosystem. Oecologia 2023:10.1007/s00442-023-05410-0. [PMID: 37335365 DOI: 10.1007/s00442-023-05410-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Overfishing is a worldwide occurrence that simplifies marine food webs, changes trophic patterns, and alters community structure, affecting not only the density of harvested species but also their trophic function. The northwestern Atlantic has a history of heavy fishing, and over the past century has also experienced destructive bottom fishing and harmful mobile fishing gear. After confirming that preservation solvent did not alter the nitrogen stable isotopes of preserved samples, we used museum specimens and modern samples to analyze nitrogen stable isotopes in tissues of two common demersal fishes pre-1950 (1850 to 1950) compared to 2021 to assess changes in trophic positions of coastal New England consumers over this time period. Both the mesopredator Centropristis striata (black sea bass) and the benthivore Stenotomus chrysops (scup) experienced significant declines in trophic position during this time. C. striata declined almost a full trophic level, S. chrysops declined half a trophic level, and these species are now occupying almost the same trophic position. Heavy fishing activities potentially shorten food chains, simplify trophic complexity, lessen the separation of trophic niches, and generally flatten food webs. The consequences of these within-species shifts are poorly investigated but could generate underappreciated cascading impacts on community structure and function. Archived natural-history collections are an invaluable resource for investigating ecological changes in natural communities through time. The evaluation of changing trophic positions via stable isotope analysis may allow fisheries managers to quantify large-scale effects of fishing on ecosystems and food webs over time.
Collapse
Affiliation(s)
- Madison S Willert
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA, 30332-0230, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| | - Christine A M France
- Smithsonian Museum Conservation Institute, 4210 Silver Hill Rd., Suitland, MD, 20746, USA
| | - Carole C Baldwin
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| | - Mark E Hay
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA, 30332-0230, USA.
| |
Collapse
|
22
|
Maioli F, Weigel B, Chiarabelli E, Manfredi C, Anibaldi A, Isailović I, Vrgoč N, Casini M. Influence of ecological traits on spatio-temporal dynamics of an elasmobranch community in a heavily exploited basin. Sci Rep 2023; 13:9596. [PMID: 37311785 DOI: 10.1038/s41598-023-36038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/28/2023] [Indexed: 06/15/2023] Open
Abstract
Elasmobranchs, which include sharks and batoids, play critical roles in maintaining the integrity and stability of marine food webs. However, these cartilaginous fish are among the most threatened vertebrate lineages due to their widespread depletion. Consequently, understanding dynamics and predicting changes of elasmobranch communities are major research topics in conservation ecology. Here, we leverage long-term catch data from a standardized bottom trawl survey conducted from 1996 to 2019, to evaluate the spatio-temporal dynamics of the elasmobranch community in the heavily exploited Adriatic Sea, where these fish have historically been depleted. We use joint species distribution modeling to quantify the responses of the species to environmental variation while also including important traits such as species age at first maturity, reproductive mode, trophic level, and phylogenetic information. We present spatio-temporal changes in the species community and associated modification of the trait composition, highlighting strong spatial and depth-mediated patterning. We observed an overall increase in the abundance of the dominant elasmobranch species, except for spurdog, which has shown a continued decline. However, our results showed that the present community displays lower age at first maturity and a smaller fraction of viviparous species compared to the earlier observed community due to changes in species' relative abundance. The selected traits contributed considerably to explaining community patterns, suggesting that the integration of trait-based approaches in elasmobranch community analyses can aid efforts to conserve this important lineage of fish.
Collapse
Affiliation(s)
- Federico Maioli
- Department of Biological, Geological, and Environmental Sciences, Laboratory of Marine Biology and Fisheries, University of Bologna, 61032, Fano, Italy.
| | - Benjamin Weigel
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, Research Centre for Ecological Change, University of Helsinki, 00100, Helsinki, Finland
- EABX, INRAE, 33612, Cestas, France
| | - Elettra Chiarabelli
- Department of Biological, Geological, and Environmental Sciences, Laboratory of Marine Biology and Fisheries, University of Bologna, 61032, Fano, Italy
- CoNISMa, 00196, Rome, Italy
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Chiara Manfredi
- Department of Biological, Geological, and Environmental Sciences, Laboratory of Marine Biology and Fisheries, University of Bologna, 61032, Fano, Italy
| | - Alessandra Anibaldi
- Department of Biological, Geological, and Environmental Sciences, Laboratory of Marine Biology and Fisheries, University of Bologna, 61032, Fano, Italy
- CoNISMa, 00196, Rome, Italy
| | - Igor Isailović
- Institute of Oceanography and Fisheries, 21000, Split, Croatia
| | - Nedo Vrgoč
- Institute of Oceanography and Fisheries, 21000, Split, Croatia
| | - Michele Casini
- Department of Biological, Geological, and Environmental Sciences, Laboratory of Marine Biology and Fisheries, University of Bologna, 61032, Fano, Italy.
- Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, 45330, Lysekil, Sweden.
| |
Collapse
|
23
|
Hodapp D, Roca IT, Fiorentino D, Garilao C, Kaschner K, Kesner-Reyes K, Schneider B, Segschneider J, Kocsis ÁT, Kiessling W, Brey T, Froese R. Climate change disrupts core habitats of marine species. GLOBAL CHANGE BIOLOGY 2023; 29:3304-3317. [PMID: 36789726 DOI: 10.1111/gcb.16612] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/20/2022] [Indexed: 05/16/2023]
Abstract
Driven by climate change, marine biodiversity is undergoing a phase of rapid change that has proven to be even faster than changes observed in terrestrial ecosystems. Understanding how these changes in species composition will affect future marine life is crucial for conservation management, especially due to increasing demands for marine natural resources. Here, we analyse predictions of a multiparameter habitat suitability model covering the global projected ranges of >33,500 marine species from climate model projections under three CO2 emission scenarios (RCP2.6, RCP4.5, RCP8.5) up to the year 2100. Our results show that the core habitat area will decline for many species, resulting in a net loss of 50% of the core habitat area for almost half of all marine species in 2100 under the high-emission scenario RCP8.5. As an additional consequence of the continuing distributional reorganization of marine life, gaps around the equator will appear for 8% (RCP2.6), 24% (RCP4.5), and 88% (RCP8.5) of marine species with cross-equatorial ranges. For many more species, continuous distributional ranges will be disrupted, thus reducing effective population size. In addition, high invasion rates in higher latitudes and polar regions will lead to substantial changes in the ecosystem and food web structure, particularly regarding the introduction of new predators. Overall, our study highlights that the degree of spatial and structural reorganization of marine life with ensued consequences for ecosystem functionality and conservation efforts will critically depend on the realized greenhouse gas emission pathway.
Collapse
Affiliation(s)
- Dorothee Hodapp
- Helmholtz-Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
- Alfred-Wegener-Institute, Helmholtz-Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Irene T Roca
- Helmholtz-Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
- Alfred-Wegener-Institute, Helmholtz-Centre for Polar and Marine Research, Bremerhaven, Germany
- Laboratoire interdisciplinaire de simulation socio-écologique (LISSÉ), Université de Québec en Outaouais (UQO), Gatineau, Canada
| | - Dario Fiorentino
- Helmholtz-Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
- Alfred-Wegener-Institute, Helmholtz-Centre for Polar and Marine Research, Bremerhaven, Germany
- Thünen Institute of Sea Fisheries, Bremerhaven, Germany
| | | | - Kristin Kaschner
- Department of Biometry and Environmental Systems Analysis, Albert-Ludwigs University, Freiburg im Breisgau, Germany
| | | | - Birgit Schneider
- Institute of Geosciences, Christian-Albrechts University of Kiel, Kiel, Germany
| | | | - Ádám T Kocsis
- GeoZentrum Nordbayern, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Kiessling
- GeoZentrum Nordbayern, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brey
- Helmholtz-Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
- Alfred-Wegener-Institute, Helmholtz-Centre for Polar and Marine Research, Bremerhaven, Germany
- University of Bremen, Bremen, Germany
| | - Rainer Froese
- GEOMAR Helmholtz-Centre for Ocean Research, Kiel, Germany
| |
Collapse
|
24
|
Ribas MP, García-Ulloa M, Espunyes J, Cabezón O. Improving the assessment of ecosystem and wildlife health: microbiome as an early indicator. Curr Opin Biotechnol 2023; 81:102923. [PMID: 36996728 DOI: 10.1016/j.copbio.2023.102923] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/29/2023]
Abstract
Human activities are causing dramatic declines in ecosystem health, compromising the functioning of the life-support system, economic activity, and animal and human health. In this context, monitoring the health of ecosystems and wildlife populations is crucial for determining ecological dynamics and assessing management interventions. A growing body of evidence indicates that microbiome provides a meaningful early indicator of ecosystem and wildlife health. Microbiome is ubiquitous and both environmental and host-associated microbiomes rapidly reflect anthropogenic disturbances. However, we still need to overcome current limitations such as nucleic acid degradation, sequencing depth, and the establishment of baseline data to maximize the potential of microbiome studies.
Collapse
|
25
|
Nicholls CR, Peters KJ, Cagnazzi D, Hanf D, Parra GJ. Incidence of shark-inflicted bite injuries on Australian snubfin ( Orcaella heinsohni) and Australian humpback ( Sousa sahulensis) dolphins in coastal waters off east Queensland, Australia. Ecol Evol 2023; 13:e10026. [PMID: 37153022 PMCID: PMC10156446 DOI: 10.1002/ece3.10026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/26/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
The ecology and evolution of prey populations are influenced by predation and predation risk. Our understanding of predator-prey relationships between sharks and dolphins is incomplete due to the difficulties in observing predatory events directly. Shark-inflicted wounds are often seen on dolphin bodies, which can provide an indirect measure of predation pressure. We used photographs of Australian humpback and snubfin dolphins from north, central, and south Queensland to assess the incidence of shark-inflicted bite injuries and to examine interspecific differences in bite injuries and their relationship with group sizes, habitat features, and geographical locations characteristic of where these individuals occurred. The incidence of shark-inflicted scarring did not differ between species (χ 2 = 0.133, df = 1, p = .715), with 33.3% of snubfin and 24.1% of humpback dolphins showing evidence of shark bites when data were pooled across all three study sites. Generalized additive models indicated that dolphins closer to the coast, with greater photographic coverage, and in north Queensland were more likely to have a shark-inflicted bite injury. The similar incidence of shark-inflicted wounds found on snubfin and humpback dolphins suggests both are subject to comparable predation pressure from sharks in the study region. Results highlight the importance that habitat features such as distance to the coast and geographical location could have in predation risk of dolphins from sharks, as well as the importance of considering photographic coverage when assessing the incidence of shark-inflicted bites on dolphins or other marine animals. This study serves as a baseline for future studies on shark-dolphin interactions in Queensland and into how predation may influence dolphin habitat usage, group living, and behavior.
Collapse
Affiliation(s)
- Caitlin R. Nicholls
- Cetacean Ecology, Behaviour and Evolution Lab, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Katharina J. Peters
- School of Earth, Atmospheric and Life SciencesUniversity of WollongongWollongongNew South WalesAustralia
- School of Earth and EnvironmentUniversity of CanterburyChristchurchNew Zealand
| | - Daniele Cagnazzi
- Marine Ecology Research Centre, Faculty of Science and EngineeringSouthern Cross UniversityLismoreNew South WalesAustralia
| | - Daniella Hanf
- Cetacean Ecology, Behaviour and Evolution Lab, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
- O2 MarineBusseltonWestern AustraliaAustralia
- Centre for Sustainable Aquatic EcosystemsHarry Butler Institute, Murdoch UniversityMurdochWestern AustraliaAustralia
| | - Guido J. Parra
- Cetacean Ecology, Behaviour and Evolution Lab, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| |
Collapse
|
26
|
Carreiro AR, Ramos JA, Mata VA, Almeida NM, Rodrigues I, Dos Santos I, Matos DM, Araújo PM, Militão T, González-Sólis J, Paiva VH, Lopes RJ. DNA metabarcoding to assess prey overlap between tuna and seabirds in the Eastern tropical Atlantic: Implications for an ecosystem-based management. MARINE ENVIRONMENTAL RESEARCH 2023; 187:105955. [PMID: 37003079 DOI: 10.1016/j.marenvres.2023.105955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/08/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Overfishing has been drastically changing food webs in marine ecosystems, and it is pivotal to quantify these changes at the ecosystem level. This is especially important for ecosystems with a high diversity of top predators such as the Eastern Atlantic marine region. In this work we used high-throughput sequencing methods to describe the diet of the two most abundant tuna species, the Skipjack tuna (Katsuwonus pelamis) and the Yellowfin tuna (Thunnus albacares), highly targeted by fisheries off west Africa. We also explored prey diversity overlap between these tuna species and the seabird species breeding in Cabo Verde that are most likely to share prey preferences and suffer from bycatch, the Brown booby (Sula leucogaster) and Cape Verde shearwater (Calonectris edwardsii). Overall, the diet of both tuna species was more diverse than that of seabirds. Skipjack tuna diet was dominated by prey from lower trophic levels, such as krill, anchovies, and siphonophores, while the Yellowfin tuna diet was mainly based on epipelagic fish such as flying and halfbeak fishes. Some of the most abundant prey families detected in the Yellowfin tuna diet were shared with both seabird species, resulting in a high prey diversity overlap between this tuna species and seabirds These results have implications for the management of tuna fisheries in the Eastern Tropical Atlantic, because a large decrease of both tuna species might have cascading effects on both primary and secondary consumer levels, and the decrease of these underwater predators may have implications on the viability of tropical seabird populations.
Collapse
Affiliation(s)
- Ana Rita Carreiro
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal; CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal.
| | - Jaime A Ramos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Vanessa A Mata
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | | | | | - Ivo Dos Santos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Diana M Matos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Pedro M Araújo
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal; CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Teresa Militão
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), 08028, Barcelona, Spain; Dept Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biología, Universitat de Barcelona (UB), 08028, Barcelona, Spain
| | - Jacob González-Sólis
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), 08028, Barcelona, Spain; Dept Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biología, Universitat de Barcelona (UB), 08028, Barcelona, Spain
| | - Vitor H Paiva
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Ricardo Jorge Lopes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal; MHNC-UP, Natural History and Science Museum of the University of Porto, 4099-002, Porto, Portugal.
| |
Collapse
|
27
|
Espino-Ruano A, Castro JJ, Guerra-Marrero A, Couce-Montero L, Meyers EKM, Santana-Del-Pino A, Jimenez-Alvarado D. Aggregative Behaviour of Spiny Butterfly Rays ( Gymnura altavela, Linnaeus, 1758) in the Shallow Coastal Zones of Gran Canaria in the Eastern Central Atlantic. Animals (Basel) 2023; 13:ani13091455. [PMID: 37174492 PMCID: PMC10177045 DOI: 10.3390/ani13091455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
The presence of spiny butterfly rays, Gymnura altavela, in waters less than 20 m deep off the Canary Islands shows marked seasonality, with relatively high abundances in the summer and autumn. Large aggregations of sometimes hundreds of individuals, primarily females, appear in specific shallow areas of the archipelago and seem to be associated with the seasonal variation in water temperature. This seasonal pattern of presence or absence in shallow areas suggests that spiny butterfly rays migrate into deeper waters or other unknown areas during the rest of the year. G. altavela shows sexual dimorphism; in our study, females were larger and more abundant than males, with a sex ratio of 1:18.9. The species' estimated asymptotic length, L∞, was 183.75 cm and thus close to the common length reported for the species (200 cm). The von Bertalanffy growth constant (k) oscillated between 0.210 and 0.310 year-1, as similarly described for the species in the Western North Atlantic off the U.S. coast. From June to November, the seawater temperature oscillated between 19 and 24 °C, and massive aggregations of females occurred at 22-24 °C and in a few specific sandy beaches on the islands. Spiny butterfly rays, mostly females, show a preference for aggregating in shallow waters during summertime, probably conditionate to mating or breeding behaviour.
Collapse
Affiliation(s)
- Ana Espino-Ruano
- Biodiversidad y Conservación, IU-ECOAQUA, University of Las Palmas de Gran Canaria, Edf. Ciencias Básicas, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Spain
| | - Jose J Castro
- Biodiversidad y Conservación, IU-ECOAQUA, University of Las Palmas de Gran Canaria, Edf. Ciencias Básicas, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Spain
| | - Airam Guerra-Marrero
- Biodiversidad y Conservación, IU-ECOAQUA, University of Las Palmas de Gran Canaria, Edf. Ciencias Básicas, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Spain
| | - Lorena Couce-Montero
- Biodiversidad y Conservación, IU-ECOAQUA, University of Las Palmas de Gran Canaria, Edf. Ciencias Básicas, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Spain
| | - Eva K M Meyers
- Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
| | - Angelo Santana-Del-Pino
- Department of Mathematics, University of Las Palmas of Gran Canaria, 35018 Las Palmas, Spain
| | - David Jimenez-Alvarado
- Biodiversidad y Conservación, IU-ECOAQUA, University of Las Palmas de Gran Canaria, Edf. Ciencias Básicas, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
28
|
Asunsolo-Rivera A, Lester E, Langlois T, Vaughan B, McCormick MI, Simpson SD, Meekan MG. Behaviour of mesopredatory coral reef fishes in response to threats from sharks and humans. Sci Rep 2023; 13:6714. [PMID: 37185796 PMCID: PMC10130163 DOI: 10.1038/s41598-023-33415-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Both sharks and humans present a potentially lethal threat to mesopredatory fishes in coral reef systems, with implications for both population dynamics and the role of mesopredatory fishes in reef ecosystems. This study quantifies the antipredator behaviours mesopredatory fishes exhibit towards the presence of large coral reef carnivores and compares these behavioural responses to those elicited by the presence of snorkelers. Here, we used snorkelers and animated life-size models of the blacktip reef shark (Carcharhinus melanopterus) to simulate potential predatory threats to mesopredatory reef fishes (lethrinids, lutjanids, haemulids and serranids). The responses of these reef fishes to the models and the snorkelers were compared to those generated by three non-threatening controls (life-size models of a green turtle [Chelonia mydas], a PVC-pipe [an object control] and a Perspex shape [a second object control]). A Remote Underwater Stereo-Video System (Stereo-RUV) recorded the approach of the different treatments and controls and allowed accurate measurement of Flight Initiation Distance (FID) and categorization of the type of flight response by fishes. We found that mesopredatory reef fishes had greater FIDs in response to the approach of threatening models (1402 ± 402-1533 ± 171 mm; mean ± SE) compared to the controls (706 ± 151-896 ± 8963 mm). There was no significant difference in FID of mesopredatory fishes between the shark model and the snorkeler, suggesting that these treatments provoked similar levels of predator avoidance behaviour. This has implications for researchers monitoring behaviour in situ or using underwater census as a technique to estimate the abundance of reef fishes. Our study suggests that, irrespective of the degree to which sharks actually consume these mesopredatory reef fishes, they still elicit a predictable and consistent antipredator response that has the potential to create risk effects.
Collapse
Affiliation(s)
- A Asunsolo-Rivera
- School of Biological Sciences, The University of Western Australia Oceans Institute, University of Western Australia, Crawley, WA, Australia.
- Australian Institute of Marine Science, The University of Western Australia Oceans Institute, University of Western Australia, Crawley, WA, Australia.
| | - E Lester
- School of Biological Sciences, The University of Western Australia Oceans Institute, University of Western Australia, Crawley, WA, Australia
- Australian Institute of Marine Science, The University of Western Australia Oceans Institute, University of Western Australia, Crawley, WA, Australia
| | - T Langlois
- School of Biological Sciences, The University of Western Australia Oceans Institute, University of Western Australia, Crawley, WA, Australia
| | - B Vaughan
- Australian Institute of Marine Science, The University of Western Australia Oceans Institute, University of Western Australia, Crawley, WA, Australia
| | - M I McCormick
- Coastal Marine Field Station, School of Science, University of Waikato, Tauranga, New Zealand
| | - S D Simpson
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - M G Meekan
- School of Biological Sciences, The University of Western Australia Oceans Institute, University of Western Australia, Crawley, WA, Australia
- Australian Institute of Marine Science, The University of Western Australia Oceans Institute, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
29
|
Scacco U, Di Crescenzo S, Sbrana A. Exploring fishing threat at fleet segment and subregional scale: Least expert knowledge and a resilience versus disturbance-based approach as conservation's tools for cartilaginous fish. Ecol Evol 2023; 13:e9881. [PMID: 36950373 PMCID: PMC10025082 DOI: 10.1002/ece3.9881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 03/21/2023] Open
Abstract
Based on an explorative but rigorous elicitation framework, we obtained the bycatch fishing probability at the fishing fleet segment level using expert estimates. Based on the knowledge of three scientific experts, we developed a new and creative structured method for smart and fast fishery-related risk assessments for species of high conservation concern. In order to test the method here propose, we applied it to 76 cartilaginous fish species (included in the IUCN Red Lists) and on five different fishing segments at both Italian and Mediterranean scale. The method produced qualitative results specific to the threat posed by fishing for each species and each segment with information between and within the segments. Based on the interpretation of resilience-disturbance interactions developed for ecological systems, the quantitative results provided reliable cumulative metrics, measuring the extinction risk due to fishing and the response to overfishing for the species considered. Additionally, the results highlight that the method perform best on a small geographic scale. Therefore, the application of this new method on other subregional or local scales where very few data are available (e.g., fishing effort) could be a valuable tool for the preliminary assessment for species of conservation concern. In fact, despite the absence of detailed catch data at local geographic scales, the flexibility of this method could help to highlight potential fishery-related conservation problems and thus redirect conservation strategies for threatened marine species such as many sharks and rays species.
Collapse
Affiliation(s)
- Umberto Scacco
- National Centre of Laboratories‐BiologyItalian Institute for Environmental Protection and Research (ISPRA)RomeItaly
- Department of Bio Ecological SciencesUniversity of TusciaViterboItaly
| | - Simone Di Crescenzo
- Department of Life and Environmental SciencesUniversity of CagliariCagliariItaly
| | - Alice Sbrana
- Department of BiologyUniversity of Rome Tor VergataRomeItaly
- PhD program in Evolutionary Biology and EcologyUniversity of Rome Tor VergataRomeItaly
| |
Collapse
|
30
|
She W, Gu J, Holyoak M, Yan C, Qi J, Wan X, Liu S, Xu L, Roberts NJ, Zhang Z, Jiang G. Impacts of top predators and humans on the mammal communities of recovering temperate forest regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160812. [PMID: 36493822 DOI: 10.1016/j.scitotenv.2022.160812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Top predators are important drivers in shaping ecological community structure via top-down effects. However, the ecological consequences and mechanisms of top predator loss under accelerated human impacts have rarely been quantitatively assessed due to the limited availability of long-term community data. With increases in top predator populations in northern China over the past two decades, forests with varying densities of top predators and humans provide an opportunity to study their ecological effects on mammal communities. We hypothesized a priori of conceptual models and tested these using structural equation models (SEMs) with multi-year camera trap data, aiming to reveal the underlying independent ecological effects of top predators (tigers, bears, and leopards) and humans on mammal communities. We used random forest models and correlations among species pairs to validate results. We found that top predator reduction could be related to augmented populations of large ungulates ("large ungulate release") and mesopredators ("mesopredator release"), consistent with observations of mammal communities in other ecosystems. Additionally, top predator reduction could be related to reduced small mammal abundance. Hierarchical SEMs identified three bottom-up pathways from forest quality to human activities, large ungulates, and some small mammals, and five top-down pathways from human activities and top predators to some small mammals, large ungulates, and mesopredators. Furthermore, our results suggest that humans showed predominant top-down effects on multiple functional groups, partially replacing the role of top predators, rather than be mediated by them; effects of humans and top predators appeared largely independent. Effects of humans on top predators were non-significant. This study provides novel insights into the effects of top predators and humans as super-predators on mammal communities in forest ecosystems and presents cues of bottom-up effects that can be translated into actionable management plans for improving forest quality, thereby supporting top predator recovery and work/life activities of local people.
Collapse
Affiliation(s)
- Wen She
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China
| | - Jiayin Gu
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China
| | - Marcel Holyoak
- Department of Environmental Science and Policy, University of California, Davis, CA 95616, USA
| | - Chuan Yan
- Institute of Innovation Ecology, Lanzhou University, Lanzhou 730000, China
| | - Jinzhe Qi
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China
| | - Xinru Wan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuyan Liu
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China
| | - Lei Xu
- Vanke School of Public Health, Tsinghua University, Beijing 100083, China
| | - Nathan James Roberts
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guangshun Jiang
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
31
|
De la Llata Quiroga E, Arauz R, Tripp Valdez A, Porras Murillo L, Parallada MS, Sánchez-Murillo R, Chávez EJ. Trophic ecology of juvenile bull sharks (Carcharhinus leucas) in the Coyote estuary, Costa Rica. JOURNAL OF FISH BIOLOGY 2023; 102:669-679. [PMID: 36633535 DOI: 10.1111/jfb.15313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Bull shark (Carcharhinus leucas) is a near-threatened elasmobranch species capable of moving between the fresh and salty waters of tropical and subtropical coastal areas, for which we still lack important ecological information. During their first years of life, bull sharks use estuarine systems as nursery areas, making them highly susceptible to environmental and anthropogenic pressures. We studied the trophic ecology of juveniles found in the Coyote estuary, a potential nursery area in Costa Rica, to understand the potential impact of further bull shark declines and gain knowledge that could aid in their conservation. We analysed the trophic ecology of juvenile bull sharks [81-103 cm total length (TL)] in the Coyote estuary, Costa Rica, using stable isotopes of δ15 N and δ13 C. Since one problem using this technique in juveniles is the confounding effect of the maternal signature, we sampled different tissues (muscle and plasma), verified the status of the shark's umbilical scar and identified the size at which the isotope signature is a result of the animal's current diet. The isotopic values of the muscle tissue reflected the maternal isotopic signature. In contrast, plasma values reflected the diet of juvenile bull sharks >95 cm TL and with a closed umbilical scar. Juvenile bull sharks fed primarily on teleost fishes of the order Anguilliformes and Siluriformes, and have a high trophic position (≥4.0) in the Coyote estuary. Our findings suggest that this estuary is an important feeding site for juvenile bull sharks of the Pacific of Costa Rica. Thus, the protection of essential habitats such as the Coyote estuary will benefit not only bull shark conservation, but also the conservation of an array of fish species that also use this habitat as a rookery, many of which are of commercial interest.
Collapse
Affiliation(s)
- Edna De la Llata Quiroga
- Instituto Internacional en Conservación y Manejo de Vida Silvestre, Universidad Nacional, Costa Rica, Heredia, Costa Rica
| | - Randall Arauz
- Marine Watch International, San Francisco, California, United States
| | - Arturo Tripp Valdez
- Instituto Politécnico Nacional-Centro Interdisciplinario de Ciencias Marinas, La Paz, Mexico
| | - Laura Porras Murillo
- Instituto Internacional en Conservación y Manejo de Vida Silvestre, Universidad Nacional, Costa Rica, Heredia, Costa Rica
| | - Manuel Spinola Parallada
- Instituto Internacional en Conservación y Manejo de Vida Silvestre, Universidad Nacional, Costa Rica, Heredia, Costa Rica
| | - Ricardo Sánchez-Murillo
- Department of Earth and Environmental Sciences, University of Texas at Arlington, Arlington, Texas, USA
| | - Elpis J Chávez
- Centro Rescate de Especies Marinas Amenazadas, Tibás, Costa Rica
| |
Collapse
|
32
|
Gradients of Variation in the At-Vessel Mortality Rate between Twelve Species of Sharks and Skates Sampled through a Fishery-Independent Trawl Survey in the Asinara Gulf (NW Mediterranean Sea). BIOLOGY 2023; 12:biology12030363. [PMID: 36979055 PMCID: PMC10044918 DOI: 10.3390/biology12030363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023]
Abstract
Elasmobranchs are priority species for conservation due to their rapid decline determined by the unbalanced struggle between a fragile bio-ecology and strong anthropogenic impacts, such as bycatch from professional fishing. In this context, measuring species resistance to catch of poorly selective gear is of paramount importance. During June–October 2022, five experimental fishing campaigns were carried out in the Asinara Gulf (northern Sardinia) through 35 geographically and bathymetrically representative hauls of an area between 30 and 600 m in depth. Skates prevailed over sharks in the number of species, with seven and five species, respectively. We first evaluated the status of each individual with respect to stress due to the trawl’s catch using a three-graded scale. We also recorded individual biometrics (total and disk length, weight and sex, and maturity for males) on board by implementing the best practices in manipulating individuals for physiological recovery and release at sea. After capture, skates resulted in generally better conditions than sharks, although deepwater species of both groups exhibited a worse state than coastal species. The estimated vitality rates also depended on the size of the individuals. This work provides standardized data on the intermingled effect of size, species type, and inhabited depth on the resistance response of some elasmobranch species against capture by trawl fishery activities.
Collapse
|
33
|
Amadori M, Solonin SV, Vodorezov AV, Shell R, Niedźwiedzki R, Kriwet J. The extinct shark, Ptychodus (Elasmobranchii, Ptychodontidae) in the Upper Cretaceous of central-western Russia-The road to easternmost peri-Tethyan seas. JOURNAL OF VERTEBRATE PALEONTOLOGY 2023; 42:e2162909. [PMID: 37559798 PMCID: PMC7614918 DOI: 10.1080/02724634.2022.2162909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/28/2022] [Accepted: 11/17/2022] [Indexed: 08/11/2023]
Abstract
Isolated teeth belonging to the genus Ptychodus Agassiz, 1834 (Chondrichthyes; Elasmobranchii) from the Upper Cretaceous of the Ryazan and Moscow Oblast regions (European Russia) are described and discussed in detail herein. The taxonomic composition of the Ptychodus assemblage from the Ryazan region is very diverse including the first records of the cuspidate species P. altior and P. anonymus, which thus is largely consistent with those from other contemporaneous European localities. Ptychodus ubiquitously inhabited epicontinental seas of Europe during most of the Cretaceous with the most diverse assemblages coming from southern England, northern Italy, Belgium, and European Russia. Additionally, the material documented here from the Cenomanian of Varavinsky ravine area (Moscow Oblast) represents the northernmost occurrence of Ptychodus hitherto reported from Europe. It is evident that the Late Cretaceous shallow seas of the Russian platform represented a crucial pathway for the dispersal of Ptychodus from the European peri-Tethys to the eastern margins of the Neo-Tethyan Ocean. The Albian-Campanian records of Ptychodus from Europe indicate that its dominance in the peri-Tethys persisted for most of its evolutionary history. A local temperature drop across most of the European shallow seas probably contributed to the narrowing of its geographic range in the peri-Tethyan seas towards the end of the Mesozoic Era. The fossil remains of Ptychodus documented herein are accordingly of utmost importance for better understanding the taxonomic composition of Russian fossil ichthyofaunas and also inform about the dispersal of Ptychodus towards western and eastern peri-Tethyan seas during the Late Cretaceous.
Collapse
Affiliation(s)
- Manuel Amadori
- University of Vienna, Department of Palaeontology, UZAII, Geozentrum, Josef-Holaubek-Platz 2, Vienna, 1090, Austria
| | - Sergey V. Solonin
- Department of Geography, Ecology and Natural Management, Ryazan State University named for S. Yesenin, Ryazan, 390000, Russia
| | - Alexey V. Vodorezov
- Department of Geography, Ecology and Natural Management, Ryazan State University named for S. Yesenin, Ryazan, 390000, Russia
| | - Ryan Shell
- Department of Vertebrate Paleontology, Cincinnati Museum Center, Cincinnati, 45203, U.S.A
| | - Robert Niedźwiedzki
- Institute of Geological Sciences, University of Wrocław, Wrocław, 50-204, Poland
| | - Jürgen Kriwet
- University of Vienna, Department of Palaeontology, UZAII, Geozentrum, Josef-Holaubek-Platz 2, Vienna, 1090, Austria
| |
Collapse
|
34
|
Grainger R, Raoult V, Peddemors VM, Machovsky-Capuska GE, Gaston TF, Raubenheimer D. Integrating isotopic and nutritional niches reveals multiple dimensions of individual diet specialisation in a marine apex predator. J Anim Ecol 2023; 92:514-534. [PMID: 36421071 PMCID: PMC10107186 DOI: 10.1111/1365-2656.13852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/23/2022] [Indexed: 11/27/2022]
Abstract
Dietary specialisations are important determinants of ecological structure, particularly in species with high per-capita trophic influence like marine apex predators. These species are, however, among the most challenging in which to establish spatiotemporally integrated diets. We introduce a novel integration of stable isotopes with a multidimensional nutritional niche framework that addresses the challenges of establishing spatiotemporally integrated nutritional niches in wild populations, and apply the framework to explore individual diet specialisation in a marine apex predator, the white shark Carcharodon carcharias. Sequential tooth files were sampled from juvenile white sharks to establish individual isotopic (δ-space; δ13 C, δ15 N, δ34 S) niche specialisation. Bayesian mixing models were then used to reveal individual-level prey (p-space) specialisation, and further combined with nutritional geometry models to quantify the nutritional (N-space) dimensions of individual specialisation, and their relationships to prey use. Isotopic and mixing model analyses indicated juvenile white sharks as individual specialists within a broader, generalist, population niche. Individual sharks differed in their consumption of several important mesopredator species, which suggested among-individual variance in trophic roles in either pelagic or benthic food webs. However, variation in nutrient intakes was small and not consistently correlated with differences in prey use, suggesting white sharks as nutritional specialists and that individuals could use functionally and nutritionally different prey as complementary means to achieve a common nutritional goal. We identify how degrees of individual specialisation can differ between niche spaces (δ-, p- or N-space), the physiological and ecological implications of this, and argue that integrating nutrition can provide stronger, mechanistic links between diet specialisation and its intrinsic (fitness/performance) and extrinsic (ecological) outcomes. Our time-integrated framework is adaptable for examining the nutritional consequences and drivers of food use variation at the individual, population or species level.
Collapse
Affiliation(s)
- Richard Grainger
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Vincent Raoult
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, New South Wales, Australia
| | - Victor M Peddemors
- New South Wales Department of Primary Industries, Fisheries, Sydney Institute of Marine Science, Mosman, New South Wales, Australia
| | - Gabriel E Machovsky-Capuska
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Nutri Lens, East Ryde, New South Wales, Australia
| | - Troy F Gaston
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, New South Wales, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
35
|
Bregman G, Lalzar M, Livne L, Bigal E, Zemah-Shamir Z, Morick D, Tchernov D, Scheinin A, Meron D. Preliminary study of shark microbiota at a unique mix-species shark aggregation site, in the Eastern Mediterranean Sea. Front Microbiol 2023; 14:1027804. [PMID: 36910211 PMCID: PMC9996248 DOI: 10.3389/fmicb.2023.1027804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/16/2023] [Indexed: 02/25/2023] Open
Abstract
Sharks, as apex predators, play an essential ecological role in shaping the marine food web and maintaining healthy and balanced marine ecosystems. Sharks are sensitive to environmental changes and anthropogenic pressure and demonstrate a clear and rapid response. This designates them a "keystone" or "sentinel" group that may describe the structure and function of the ecosystem. As a meta-organism, sharks offer selective niches (organs) for microorganisms that can provide benefits for their hosts. However, changes in the microbiota (due to physiological or environmental changes) can turn the symbiosis into a dysbiosis and may affect the physiology, immunity and ecology of the host. Although the importance of sharks within the ecosystem is well known, relatively few studies have focused on the microbiome aspect, especially with long-term sampling. Our study was conducted at a site of coastal development in Israel where a mixed-species shark aggregation (November-May) is observed. The aggregation includes two shark species, the dusky (Carcharhinus obscurus) and sandbar (Carcharhinus plumbeus) which segregate by sex (females and males, respectively). In order to characterize the bacterial profile and examine the physiological and ecological aspects, microbiome samples were collected from different organs (gills, skin, and cloaca) from both shark species over 3 years (sampling seasons: 2019, 2020, and 2021). The bacterial composition was significantly different between the shark individuals and the surrounding seawater and between the shark species. Additionally, differences were apparent between all the organs and the seawater, and between the skin and gills. The most dominant groups for both shark species were Flavobacteriaceae, Moraxellaceae, and Rhodobacteraceae. However, specific microbial biomarkers were also identified for each shark. An unexpected difference in the microbiome profile and diversity between the 2019-2020 and 2021 sampling seasons, revealed an increase in the potential pathogen Streptococcus. The fluctuations in the relative abundance of Streptococcus between the months of the third sampling season were also reflected in the seawater. Our study provides initial information on shark microbiome in the Eastern Mediterranean Sea. In addition, we demonstrated that these methods were also able to describe environmental episodes and the microbiome is a robust measure for long-term ecological research.
Collapse
Affiliation(s)
- Goni Bregman
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Maya Lalzar
- Bioinformatics Services Unit, University of Haifa, Haifa, Israel
| | - Leigh Livne
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Eyal Bigal
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Ziv Zemah-Shamir
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Danny Morick
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Dan Tchernov
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Aviad Scheinin
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Dalit Meron
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
36
|
Vidal A, Cardador L, Garcia-Barcelona S, Macias D, Druon JN, Coll M, Navarro J. The relative importance of biological and environmental factors on the trophodynamics of a pelagic marine predator, the blue shark (Prionace glauca). MARINE ENVIRONMENTAL RESEARCH 2023; 183:105808. [PMID: 36403409 DOI: 10.1016/j.marenvres.2022.105808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Marine ecosystems have been significantly altered by the cumulative impacts of human activities. Pelagic sharks have become vulnerable to increases in mortality rates caused by fishing. The decrease in number of these top predators could have substantial cascading effects on wider marine communities. Concerns about these potential impacts, and the critical need for effective management, have led to an increased interest in assessing the trophic ecology of sharks. While stable isotope analyses have been used to provide relevant insights about the trophic ecology of sharks, the causal factors leading to trophic variation between individuals has been largely overlooked. Here, we investigated the relative effect of biological factors, geographic location, and environmental factors on the spatial trophodynamics of the blue shark (Prionace glauca). Specifically, stable isotope values of δ15N and δ13C, and the estimated trophic position (TP) were analysed for 180 blue sharks collected from south of the Canary Islands in the Atlantic Ocean, to the north-western Mediterranean Sea. The results showed that models which included combined variables explained the variation in δ15N, TP and δ13C values better than models which considered only stand-alone predictors. The independent contributions of environmental variables and biological factors seemed to be more important than geographic location for δ15N and TP. δ15N and TP increased in a curvilinear fashion with body size, and TP was higher for females. In the case of δ13C values, only an effect from sex was observed. Among environmental variables, chlorophyll-a, pelagic productivity, and sea-surface temperature proved to be reliable predictors, particularly for δ15N and TP, most likely due to their relationship with productivity and prey availability. This study provides new information on ranking the factors that influence the trophodynamics of the blue shark, namely the environment, the geographic location, and the biological factors of the species.
Collapse
Affiliation(s)
- Alba Vidal
- Institut de Ciències Del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta 37, 08003, Barcelona, Spain; Ecological and Forestry Applications Research Centre, Campus de Bellaterra (UAB), Edifici C, 08193, Cerdanyola Del Vallès, Spain
| | - Laura Cardador
- Ecological and Forestry Applications Research Centre, Campus de Bellaterra (UAB), Edifici C, 08193, Cerdanyola Del Vallès, Spain
| | | | - David Macias
- Centro Oceanográfico de Málaga (IEO-CSIC), Puerto Pesquero, s/n, 29640, Fuengirola, Spain
| | - Jean-Noel Druon
- Joint Research Centre (JRC), European Commission, Ispra, Italy
| | - Marta Coll
- Institut de Ciències Del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta 37, 08003, Barcelona, Spain
| | - Joan Navarro
- Institut de Ciències Del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta 37, 08003, Barcelona, Spain.
| |
Collapse
|
37
|
Queiroz APN, Araújo MLG, Hussey NE, Lessa RPT. Trophic ecology of three stingrays (Myliobatoidei: Dasyatidae) off the Brazilian north-eastern coast: Habitat use and resource partitioning. JOURNAL OF FISH BIOLOGY 2023; 102:27-43. [PMID: 36153814 DOI: 10.1111/jfb.15226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Understanding the ecological role of species with overlapping distributions is central to inform ecosystem management. Here we describe the diet, trophic level and habitat use of three sympatric stingrays, Hypanus guttatus, H. marianae and H. berthalutzae, through combined stomach content and stable isotope (δ13 C and δ15 N) analyses. Our integrated approach revealed that H. guttatus is a mesopredator that feeds on a diverse diet of benthic and epibenthic marine and estuarine organisms, principally bivalve molluscs, Alpheus shrimp and teleost fishes. Isotopic data supported movement of this species between marine and estuarine environments. H. berthalutzae is also a marine generalist feeder, but feeds primarily on teleost fishes and cephalopods, and consequently occupies a higher trophic level. In contrast, H. marianae is a mesopredator specialized on shrimps and polychaetas occurring only in the marine environment and occupying a low niche breadth. While niche overlap occurred, the three stingrays utilized the same prey resources at different rates and occupied distinct trophic niches, potentially limiting competition for resources and promoting coexistence. These combined data demonstrate that these three mesopredators perform different ecological roles in the ecosystems they occupy, limiting functional redundancy.
Collapse
Affiliation(s)
- Aristóteles Philippe Nunes Queiroz
- Programa de Pós-graduação em Biologia Animal, Universidade Federal de Pernambuco, Recife, Brazil
- Laboratório de Dinâmica de Populações Marinhas - DIMAR, Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Maria Lúcia Góes Araújo
- Laboratório de Dinâmica de Populações Marinhas - DIMAR, Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Nigel E Hussey
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | - Rosângela P T Lessa
- Laboratório de Dinâmica de Populações Marinhas - DIMAR, Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Brazil
| |
Collapse
|
38
|
Fanelli E, Da Ros Z, Martino I, Azzurro E, Bargione G, Donato F, Lucchetti A. Crowding in the middle of marine food webs: A focus on Raja asterias and other mediterranean batoids. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105830. [PMID: 36435173 DOI: 10.1016/j.marenvres.2022.105830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The Mediterranean Sea is among the three biodiversity hotspots of the world where elasmobranchs are severely threatened. Elasmobranchs act as apex or meso-predators within marine food webs and the loss/decline of apex predators determines the mesopredator release, leading in turn to increased predation on smaller prey. However, also several mesopredators (including rays, skates and small sharks) are intensively fished, being of commercial interest, or by-caught, and thus mesopredators increase could not be so evident. We analysed the trophic ecology of an endemic Mediterranean ray, the starry ray Raja asterias, at a seasonal scale from the Adriatic basin, one of the most intensively exploited area of the Mediterranean, by means of stomach contents and stable isotopes analyses. Our results evidenced that starry rays rely on benthic sources including species of local commercial values, such as swimming crabs, small cephalopods, and stomatopods and share the same trophic position with other elasmobranchs (rays, skates, and small sharks) and other mesopredators (e.g., common soles, Norway lobsters and mullets). As all mesopredators are overexploited, as well as their benthic prey are affected by intense trawl-fishing, the whole food webs are disrupted and neither the classical trophic cascade nor the mesopredator release hypothesis could be verified. Conservation measures for these species, such as the release after capture or the application of exclusion grids to the net, should be applied in areas where populations are strongly impacted by trawling.
Collapse
Affiliation(s)
- E Fanelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Z Da Ros
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - I Martino
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - E Azzurro
- Stazione Zoologica Anton Dohrn, Naples, Italy; Institute for Biological Resources and Marine Biotechnologies, National Research Council, Ancona, Italy
| | - G Bargione
- Institute for Biological Resources and Marine Biotechnologies, National Research Council, Ancona, Italy
| | - F Donato
- Institute for Biological Resources and Marine Biotechnologies, National Research Council, Ancona, Italy
| | - A Lucchetti
- Institute for Biological Resources and Marine Biotechnologies, National Research Council, Ancona, Italy
| |
Collapse
|
39
|
Lesturgie P, Braun CD, Clua E, Mourier J, Thorrold SR, Vignaud T, Planes S, Mona S. Like a rolling stone: Colonization and migration dynamics of the gray reef shark ( Carcharhinus amblyrhynchos). Ecol Evol 2023; 13:e9746. [PMID: 36644707 PMCID: PMC9831972 DOI: 10.1002/ece3.9746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023] Open
Abstract
Designing appropriate management plans requires knowledge of both the dispersal ability and what has shaped the current distribution of the species under consideration. Here, we investigated the evolutionary history of the endangered gray reef shark (Carcharhinus amblyrhynchos) across its range by sequencing thousands of RADseq loci in 173 individuals in the Indo-Pacific (IP). We first bring evidence of the occurrence of a range expansion (RE) originating close to the Indo-Australian Archipelago (IAA) where two stepping-stone waves (east and westward) colonized almost the entire IP. Coalescent modeling additionally highlighted a homogenous connectivity (Nm ~ 10 per generation) throughout the range, and isolation by distance model suggested the absence of barriers to dispersal despite the affinity of C. amblyrhynchos to coral reefs. This coincides with long-distance swims previously recorded, suggesting that the strong genetic structure at the IP scale (F ST ~ 0.56 between its ends) is the consequence of its broad current distribution and organization in a large number of demes. Our results strongly suggest that management plans for the gray reef shark should be designed on a range-wide rather than a local scale due to its continuous genetic structure. We further contrasted these results with those obtained previously for the sympatric but strictly lagoon-associated Carcharhinus melanopterus, known for its restricted dispersal ability. Carcharhinus melanopterus exhibits a similar RE dynamic but is characterized by a stronger genetic structure and a nonhomogeneous connectivity largely dependent on local coral reefs availability. This sheds new light on shark evolution, emphasizing the roles of IAA as source of biodiversity and of life-history traits in shaping the extent of genetic structure and diversity.
Collapse
Affiliation(s)
- Pierre Lesturgie
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, EPHE‐PSLUniversité PSL, CNRS, SU, UAParisFrance
| | - Camrin D. Braun
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Eric Clua
- Laboratoire d'Excellence CORAILPapetoaiFrench Polynesia
- EPHE, PSL Research UniversityParisFrance
| | - Johann Mourier
- Laboratoire d'Excellence CORAILPapetoaiFrench Polynesia
- Université de Corse Pasquale Paoli, UMS 3514 Plateforme Marine Stella MareBigugliaFrance
| | - Simon R. Thorrold
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | | | - Serge Planes
- Laboratoire d'Excellence CORAILPapetoaiFrench Polynesia
- EPHE, PSL Research UniversityParisFrance
| | - Stefano Mona
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, EPHE‐PSLUniversité PSL, CNRS, SU, UAParisFrance
- EPHE, PSL Research UniversityParisFrance
| |
Collapse
|
40
|
Sguotti C, Bischoff A, Conversi A, Mazzoldi C, Möllmann C, Barausse A. Stable landings mask irreversible community reorganizations in an overexploited Mediterranean ecosystem. J Anim Ecol 2022; 91:2465-2479. [PMID: 36415049 DOI: 10.1111/1365-2656.13831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022]
Abstract
Cumulative human pressures and climate change can induce nonlinear discontinuous dynamics in ecosystems, known as regime shifts. Regime shifts typically imply hysteresis, a lacking or delayed system response when pressures are reverted, which can frustrate restoration efforts. Here, we investigate whether the northern Adriatic Sea fish and macroinvertebrate community, as depicted by commercial fishery landings, has undergone regime shifts over the last 40 years, and the reversibility of such changes. We use a stochastic cusp model to show that, under the interactive effect of fishing pressure and water warming, the community reorganized through discontinuous changes. We found that part of the community has now reached a new stable state, implying that a recovery towards previous baselines might be impossible. Interestingly, total landings remained constant across decades, masking the low resilience of the community. Our study reveals the importance of carefully assessing regime shifts and resilience in marine ecosystems under cumulative pressures and advocates for their inclusion into management.
Collapse
Affiliation(s)
- Camilla Sguotti
- Institute for Marine Ecosystem and Fisheries Science (IFM), Center for Earth System Research and Sustainability (CEN), University of Hamburg, Hamburg, Germany.,Department of Biology, University of Padova, Padova, Italy
| | - Aurelia Bischoff
- Institute for Marine Ecosystem and Fisheries Science (IFM), Center for Earth System Research and Sustainability (CEN), University of Hamburg, Hamburg, Germany
| | - Alessandra Conversi
- National Research Council of Italy, Marine Science Institute, CNR - ISMAR - LERICI, Forte Santa Teresa, Lerici, SP, Italy
| | - Carlotta Mazzoldi
- Department of Biology, University of Padova, Padova, Italy.,CoNISMa, National Inter-University Consortium for Marine Sciences, Rome, Italy
| | - Christian Möllmann
- Institute for Marine Ecosystem and Fisheries Science (IFM), Center for Earth System Research and Sustainability (CEN), University of Hamburg, Hamburg, Germany
| | - Alberto Barausse
- Department of Biology, University of Padova, Padova, Italy.,CoNISMa, National Inter-University Consortium for Marine Sciences, Rome, Italy
| |
Collapse
|
41
|
Rocha CMC, Sampaio CLS. A review of the knowledge of reef fish in the Southwest Atlantic. MARINE ENVIRONMENTAL RESEARCH 2022; 182:105769. [PMID: 36272222 DOI: 10.1016/j.marenvres.2022.105769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Reef environments are rapidly transforming worldwide, and these changes are causing major impacts to the reef ecosystem. Scientific knowledge is strategic for marine conservation and management in these scenarios. Aiming to contribute to this subject, a systematic review from 1967 to 2020 was conducted, in order to identify gaps in studies regarding reef fish species, ecosystem components and processes. Multidisciplinary sciences concerning reef fish have been rising, mainly in the fields of basic biology and ecology. Besides that, phase shifts and ecosystem services were absent terms in the analyzes of co-occurrence. Research in the ethnosciences needs to be increased, and will improve access to local ecological knowledge, which can be used as a tool to address issues in reef environments. Socio-ecological systems are components of this landscape that has had few publications. The participation in the elaboration of public policies can be a new avenue to foster the biodiversity of reef environments.
Collapse
Affiliation(s)
- Cacilda M C Rocha
- Programa de Pós-Graduação em Diversidade Biológica e Conservação nos Trópicos, Instituto de Biologia e Ciências da Saúde, Universidade Federal de Alagoas. Av. Lourival Melo Mota - Tabuleiro do Martins, Maceió, 57072-900, AL, Brazil; Laboratório de Ictiologia e Conservação, Universidade Federal de Alagoas. Av. Beira Rio, Centro Histórico, Penedo, 57200-000, AL, Brazil.
| | - Cláudio L S Sampaio
- Programa de Pós-Graduação em Diversidade Biológica e Conservação nos Trópicos, Instituto de Biologia e Ciências da Saúde, Universidade Federal de Alagoas. Av. Lourival Melo Mota - Tabuleiro do Martins, Maceió, 57072-900, AL, Brazil; Laboratório de Ictiologia e Conservação, Universidade Federal de Alagoas. Av. Beira Rio, Centro Histórico, Penedo, 57200-000, AL, Brazil.
| |
Collapse
|
42
|
Rogers AD, Appeltans W, Assis J, Ballance LT, Cury P, Duarte C, Favoretto F, Hynes LA, Kumagai JA, Lovelock CE, Miloslavich P, Niamir A, Obura D, O'Leary BC, Ramirez-Llodra E, Reygondeau G, Roberts C, Sadovy Y, Steeds O, Sutton T, Tittensor DP, Velarde E, Woodall L, Aburto-Oropeza O. Discovering marine biodiversity in the 21st century. ADVANCES IN MARINE BIOLOGY 2022; 93:23-115. [PMID: 36435592 DOI: 10.1016/bs.amb.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We review the current knowledge of the biodiversity of the ocean as well as the levels of decline and threat for species and habitats. The lack of understanding of the distribution of life in the ocean is identified as a significant barrier to restoring its biodiversity and health. We explore why the science of taxonomy has failed to deliver knowledge of what species are present in the ocean, how they are distributed and how they are responding to global and regional to local anthropogenic pressures. This failure prevents nations from meeting their international commitments to conserve marine biodiversity with the results that investment in taxonomy has declined in many countries. We explore a range of new technologies and approaches for discovery of marine species and their detection and monitoring. These include: imaging methods, molecular approaches, active and passive acoustics, the use of interconnected databases and citizen science. Whilst no one method is suitable for discovering or detecting all groups of organisms many are complementary and have been combined to give a more complete picture of biodiversity in marine ecosystems. We conclude that integrated approaches represent the best way forwards for accelerating species discovery, description and biodiversity assessment. Examples of integrated taxonomic approaches are identified from terrestrial ecosystems. Such integrated taxonomic approaches require the adoption of cybertaxonomy approaches and will be boosted by new autonomous sampling platforms and development of machine-speed exchange of digital information between databases.
Collapse
Affiliation(s)
- Alex D Rogers
- REV Ocean, Lysaker, Norway; Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom.
| | - Ward Appeltans
- Intergovernmental Oceanographic Commission of UNESCO, Oostende, Belgium
| | - Jorge Assis
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Lisa T Ballance
- Marine Mammal Institute, Oregon State University, Newport, OR, United States
| | | | - Carlos Duarte
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), Thuwal, Kingdom of Saudi Arabia
| | - Fabio Favoretto
- Autonomous University of Baja California Sur, La Paz, Baja California Sur, Mexico
| | - Lisa A Hynes
- Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom
| | - Joy A Kumagai
- Senckenberg Biodiversity and Climate Research Institute, Frankfurt am Main, Germany
| | - Catherine E Lovelock
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Patricia Miloslavich
- Scientific Committee on Oceanic Research (SCOR), College of Earth, Ocean and Environment, University of Delaware, Newark, DE, United States; Departamento de Estudios Ambientales, Universidad Simón Bolívar, Venezuela & Scientific Committee for Oceanic Research (SCOR), Newark, DE, United States
| | - Aidin Niamir
- Senckenberg Biodiversity and Climate Research Institute, Frankfurt am Main, Germany
| | | | - Bethan C O'Leary
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom; Department of Environment and Geography, University of York, York, United Kingdom
| | - Eva Ramirez-Llodra
- REV Ocean, Lysaker, Norway; Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom
| | - Gabriel Reygondeau
- Yale Center for Biodiversity Movement and Global Change, Yale University, New Haven, CT, United States; Nippon Foundation-Nereus Program, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - Callum Roberts
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Yvonne Sadovy
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong
| | - Oliver Steeds
- Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom
| | - Tracey Sutton
- Nova Southeastern University, Halmos College of Natural Sciences and Oceanography, Dania Beach, FL, United States
| | | | - Enriqueta Velarde
- Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana, Veracruz, Mexico
| | - Lucy Woodall
- Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom; Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
43
|
Monteforte KIP, Butcher PA, Morris SG, Kelaher BP. The Relative Abundance and Occurrence of Sharks off Ocean Beaches of New South Wales, Australia. BIOLOGY 2022; 11:biology11101456. [PMID: 36290360 PMCID: PMC9599013 DOI: 10.3390/biology11101456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/15/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
There is still limited information about the diversity, distribution, and abundance of sharks in and around the surf zones of ocean beaches. We used long-term and large-scale drone surveying techniques to test hypotheses about the relative abundance and occurrence of sharks off ocean beaches of New South Wales, Australia. We quantified sharks in 36,384 drone flights across 42 ocean beaches from 2017 to 2021. Overall, there were 347 chondrichthyans recorded, comprising 281 (81.0%) sharks, with observations occurring in <1% of flights. Whaler sharks (Carcharhinus spp.) had the highest number of observations (n = 158) recorded. There were 34 individuals observed for both white sharks (Carcharodon carcharias) and critically endangered greynurse sharks (Carcharias taurus). Bull sharks (Carcharhinus leucas), leopard sharks (Stegostoma tigrinum) and hammerhead species (Sphyrna spp.) recorded 29, eight and three individuals, respectively. Generalised additive models were used to identify environmental drivers for detection probability of white, bull, greynurse, and whaler sharks. Distances to the nearest estuary, headland, and island, as well as water temperature and wave height, were significant predictors of shark occurrence; however, this varied among species. Overall, we provide valuable information for evidence-based species-specific conservation and management strategies for coastal sharks.
Collapse
Affiliation(s)
- Kim I. P. Monteforte
- National Marine Science Centre, Southern Cross University, Coffs Harbour, NSW 2450, Australia
- Correspondence:
| | - Paul A. Butcher
- National Marine Science Centre, Southern Cross University, Coffs Harbour, NSW 2450, Australia
- NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, NSW 2450, Australia
| | - Stephen G. Morris
- NSW Department of Primary Industries, Wollongbar, NSW 2477, Australia
| | - Brendan P. Kelaher
- National Marine Science Centre, Southern Cross University, Coffs Harbour, NSW 2450, Australia
| |
Collapse
|
44
|
Invasiveness of a Growth-Migration System in a Two-dimensional Percolation cluster: A Stochastic Mathematical Approach. Bull Math Biol 2022; 84:104. [DOI: 10.1007/s11538-022-01056-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/20/2022] [Indexed: 11/02/2022]
|
45
|
Elasmobranchs from Indonesian Waters: Feeding Ecology and Trypanorhynch Cestode Fauna Composition to Support Efforts in Shark and Ray Conservation. Acta Parasitol 2022; 67:1612-1625. [PMID: 36074239 DOI: 10.1007/s11686-022-00593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/01/2022] [Indexed: 11/01/2022]
Abstract
PURPOSE The stomachs and spiral valves of sharks and rays were examined for their trypanorhynch (Cestoda) parasite fauna and dietary items to infer feeding ecology. In Indonesia, sharks and rays have been experiencing increasing awareness and conservation in the recent years due to high fisheries activities and to avoid future species extinction. METHODS The samples were collected in 2009 from two different sampling sites at the southern coasts of Java and Bali in Indonesia. The parasite fauna was studied for 41 elasmobranch fishes. Amongst these, three shark species, Carcharhinus sorrah, Carcharhinus sp. I and Squalus megalops and seven ray species, Brevitrygon heterura, B. cf. heterura, Gymnura zonura, Maculabatis gerrardi, Mobula kuhlii, Neotrygon cauruleopuncatata and Rhinobatos penggali were studied. Four additional specimens, belonging to the shark species Carcharhinus sp. II and Mustelus cf. manazo and the ray species Maculabatis gerrardi were studied from the waters of South Bali. RESULTS Analyses of the feeding ecology of the ray M. gerrardi revealed distinct differences between both sampling sites, indicating the presence of ecological differences between the geographically independent regions. A total of 11 different trypanorhynch species/taxa belonging to the five families Eutetrarhynchidae (5), Gilquiniidae (1), Lacistorhynchidae (1), Pterobothriidae (1) and Tentaculariidae (3) were found. Ten trypanorhynch species from Penyu Bay and four species from South Bali could be identified. Two taxa that might represent new species were collected: Dollfusiella sp. from Brevitrygon heterura and Prochristianella sp. from Maculabatis gerrardi. CONCLUSIONS The present paper gives insights in using the trypanorhynch cestode community in combination with feeding ecology analyses to support conservation of elasmobranchs in Indonesian waters.
Collapse
|
46
|
Cooper JA, Hutchinson JR, Bernvi DC, Cliff G, Wilson RP, Dicken ML, Menzel J, Wroe S, Pirlo J, Pimiento C. The extinct shark Otodus megalodon was a transoceanic superpredator: Inferences from 3D modeling. SCIENCE ADVANCES 2022; 8:eabm9424. [PMID: 35977007 PMCID: PMC9385135 DOI: 10.1126/sciadv.abm9424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Although shark teeth are abundant in the fossil record, their bodies are rarely preserved. Thus, our understanding of the anatomy of the extinct Otodus megalodon remains rudimentary. We used an exceptionally well-preserved fossil to create the first three-dimensional model of the body of this giant shark and used it to infer its movement and feeding ecology. We estimate that an adult O. megalodon could cruise at faster absolute speeds than any shark species today and fully consume prey the size of modern apex predators. A dietary preference for large prey potentially enabled O. megalodon to minimize competition and provided a constant source of energy to fuel prolonged migrations without further feeding. Together, our results suggest that O. megalodon played an important ecological role as a transoceanic superpredator. Hence, its extinction likely had large impacts on global nutrient transfer and trophic food webs.
Collapse
Affiliation(s)
- Jack A. Cooper
- Department of Biosciences, Swansea University, Swansea SA2 8PP, UK
| | - John R. Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK
| | - David C. Bernvi
- KwaZulu-Natal Sharks Board, Umhlanga Rocks 4320, South Africa
| | - Geremy Cliff
- KwaZulu-Natal Sharks Board, Umhlanga Rocks 4320, South Africa
- School of Life Sciences, University of KwaZulu-Natal, Durban, KZN, South Africa
| | - Rory P. Wilson
- Department of Biosciences, Swansea University, Swansea SA2 8PP, UK
| | - Matt L. Dicken
- KwaZulu-Natal Sharks Board, Umhlanga Rocks 4320, South Africa
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Jan Menzel
- JanMenzelArt, Stellenbosch 7600, South Africa
| | - Stephen Wroe
- Function, Evolution, and Anatomy Research Lab, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Jeanette Pirlo
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Department of Biological Sciences, California State University Stanislaus, Turlock, CA 95382, USA
| | - Catalina Pimiento
- Department of Biosciences, Swansea University, Swansea SA2 8PP, UK
- Paleontological Institute and Museum, University of Zurich, Zurich CH-8006, Switzerland
- Smithsonian Tropical Research Institution, Balboa, Panama
| |
Collapse
|
47
|
Villate-Moreno M, Cubillos-M JC, Stibor H, Crawford AJ, Straube N. Molecular identification and first demographic insights of sharks based on artisanal fisheries bycatch in the Pacific Coast of Colombia: implications for conservation. PeerJ 2022; 10:e13478. [PMID: 35945934 PMCID: PMC9357375 DOI: 10.7717/peerj.13478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/01/2022] [Indexed: 01/17/2023] Open
Abstract
The Pacific coast of Colombia is characterized by mangrove ecosystems which play a crucial role as possible nurseries for juvenile sharks. However, trophic food webs from coastal ecosystems are heavily disturbed by increased fishing pressure, which affects numerous shark species. In this region of the Eastern Tropical Pacific (ETP), fisheries' data from coastal areas are scarce and unspecific, as most sharks from artisanal fisheries are landed decapitated and finless, making their morphological identification difficult. For the establishment and implementation of effective regional conservation and management policies, information on the diversity and population dynamics of shark species is crucial. We therefore sequenced the mitochondrial NADH2 gene of 696 samples taken from fishermen's landings of shark's bycatch along the Colombian north Pacific coast. We were able to identify 14 species of sharks, two of the most abundant species were Sphyrna lewini and Carcharhinus falciformis, both evaluated on IUCN the Red List of Threatened species (Critically Endangered and Vulnerable) and CITES regulated. We found low genetic diversity in the sampled area increasing the concern for both species in the region, even more considering that the majority of individuals were juveniles. Our results showed the importance of genetic markers for first population genetic insights as a complementary tool during the decision-making process in management plans. For this specific region, strategies such as the delimitation of conservation priority areas or the regulation of fishing gears could help improve the sustainability of shark populations in the Colombian Pacific.
Collapse
Affiliation(s)
- Melany Villate-Moreno
- Fundación MarAdentro, Bahía Solano, Colombia,Aquatic Ecology, Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany,SNSB- Bavarian State Collection of Zoology, Munich, Germany
| | - Juan Camilo Cubillos-M
- Ecological Genomics Group, Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Herwig Stibor
- Aquatic Ecology, Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Andrew J. Crawford
- Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - Nicolas Straube
- SNSB- Bavarian State Collection of Zoology, Munich, Germany,Department of Natural History, University Museum of Bergen, Bergen, Norway
| |
Collapse
|
48
|
Shark Fishing vs. Conservation: Analysis and Synthesis. SUSTAINABILITY 2022. [DOI: 10.3390/su14159548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The expanding shark fin market has resulted in intensive global shark fishing and with 90% of teleost fish stocks over-exploited, sharks have become the most lucrative target. As predators, they have high ecological value, are sensitive to fishing pressure, and are in decline, but the secretive nature of the fin trade and difficulties obtaining relevant data, obscure their true status. In consumer countries, shark fin is a luxury item and rich consumers pay high prices with little interest in sustainability or legal trade. Thus, market demand will continue to fuel the shark hunt and those accessible to fishing fleets are increasingly endangered. Current legal protections are not working, as exemplified by the case of the shortfin mako shark, and claims that sharks can be sustainably fished under these circumstances are shown to be misguided. In the interests of averting a catastrophic collapse across the planet’s aquatic ecosystems, sharks and their habitats must be given effective protection. We recommend that all sharks, chimaeras, manta rays, devil rays, and rhino rays be protected from international trade through an immediate CITES Appendix I listing. However, a binding international agreement for the protection of biodiversity in general is what is needed.
Collapse
|
49
|
Dale JJ, Brodie S, Carlisle AB, Castleton M, Hazen EL, Bograd SJ, Block BA. Global habitat loss of a highly migratory predator, the blue marlin (
Makaira nigricans
). DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Jonathan J. Dale
- Department of Biology Hopkins Marine Station of Stanford University Pacific Grove California USA
| | - Stephanie Brodie
- Institute of Marine Science, Fisheries Collaborative Program University of California Santa Cruz Monterey California USA
- Environmental Research Division Southwest Fisheries Science Centre, National Marine Fisheries Service, National Oceanic and Atmospheric Administration Monterey California USA
| | - Aaron B. Carlisle
- School of Marine Science and Policy University of Delaware Lewes Delaware USA
| | - Michael Castleton
- Department of Biology Hopkins Marine Station of Stanford University Pacific Grove California USA
| | - Elliott L. Hazen
- Department of Biology Hopkins Marine Station of Stanford University Pacific Grove California USA
- Institute of Marine Science, Fisheries Collaborative Program University of California Santa Cruz Monterey California USA
- Environmental Research Division Southwest Fisheries Science Centre, National Marine Fisheries Service, National Oceanic and Atmospheric Administration Monterey California USA
| | - Steven J. Bograd
- Institute of Marine Science, Fisheries Collaborative Program University of California Santa Cruz Monterey California USA
- Environmental Research Division Southwest Fisheries Science Centre, National Marine Fisheries Service, National Oceanic and Atmospheric Administration Monterey California USA
| | - Barbara A. Block
- Department of Biology Hopkins Marine Station of Stanford University Pacific Grove California USA
| |
Collapse
|
50
|
Ogilvy C, Constantine R, Bury SJ, Carroll EL. Diet variation in a critically endangered marine predator revealed with stable isotope analysis. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220470. [PMID: 35991335 PMCID: PMC9382206 DOI: 10.1098/rsos.220470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Understanding the foraging ecology of animals gives insights into their trophic relationships and habitat use. We used stable isotope analysis to understand the foraging ecology of a critically endangered marine predator, the Māui dolphin. We analysed carbon and nitrogen isotope ratios of skin samples (n = 101) collected from 1993 to 2021 to investigate temporal changes in diet and niche space. Genetic monitoring associated each sample with a DNA profile which allowed us to assess individual and population level changes in diet. Potential prey and trophic level indicator samples were also collected (n = 166; 15 species) and incorporated in Bayesian mixing models to estimate importance of prey types to Māui dolphin diet. We found isotopic niche space had decreased over time, particularly since the 2008 implementation of a Marine Mammal Sanctuary. We observed a decreasing trend in ∂13C and ∂15N values, but this was not linear and several fluctuations in isotope values occurred over time. The largest variation in isotope values occurred during an El Niño event, suggesting that prey is influenced by climate-driven oceanographic variables. Mixing models indicated relative importance of prey remained constant since 2008. The isotopic variability observed here is not consistent with individual specialization, rather it occurs at the population level.
Collapse
Affiliation(s)
- Courtney Ogilvy
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Rochelle Constantine
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Institute of Marine Science, University of Auckland, Auckland 1010, New Zealand
| | - Sarah J. Bury
- National Institute of Water and Atmospheric Research, Greta Point, Wellington 6021, New Zealand
| | - Emma L. Carroll
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|