1
|
Vignesh ER, Gireeshkumar TR, Arya KS, Nair MM, Rakesh PS, Jayadev BS, Asma Shirin PP. Phthalic acid esters as an ecological hazard to the coral reef ecosystems: A case study from the coral reef waters of the Lakshadweep Archipelago, Arabian Sea. MARINE POLLUTION BULLETIN 2025; 215:117866. [PMID: 40157213 DOI: 10.1016/j.marpolbul.2025.117866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
Information regarding the sources, distribution and ecological implications of organic contaminants in the coral reef ecosystems is limited. Phthalic acid esters (PAEs) are toxic contaminants due to their endocrine-disrupting and carcinogenic properties. This study investigated the sources, distribution and ecological risk of PAEs (15 PAE congeners) in dissolved and particulate matter-bound forms present in the coral reefs of the Lakshadweep Archipelago. Samples (water and suspended particulate matter) collected from 24 stations of 4 coral islands (Perumal Par, Bangaram, Agatti and Kavaratti) during January and December 2022 were analysed for 15 PAE congeners. The concentration of PAEs was generally lower in coral reef waters than those reported worldwide. The dissolved PAEs (TDPAEs) ranged from 9.23 to 820.85 ng/L, and the particulate PAEs (TPPAEs) ranged from 642.90 to 28,315.45 ng/g. Principal component analysis (PCA) identified three major clusters: one cluster representing low molecular weight PAEs (cosmetic products), while the other two represented medium to high molecular weight PAEs (plastic products). The study region's risk quotient (RQ) values indicated a moderate to high ecological risk caused by di-isobutyl phthalate (DIBP) and di-n-butyl phthalate (DnBP) to crustaceans and fish and indirectly to human health. Therefore, this study strongly recommends regular, systematic monitoring and pollution assessment to avoid the environmental degradation of these fragile ecosystems. This baseline data on PAEs and their source apportionment can help develop mitigative measures for reducing organic contaminants in the coral reef environment.
Collapse
Affiliation(s)
- E R Vignesh
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682 018, India; Cochin University of Science and Technology, Kerala, India
| | - T R Gireeshkumar
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682 018, India.
| | - K S Arya
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682 018, India; Cochin University of Science and Technology, Kerala, India
| | - Midhun M Nair
- CSIR - National Institute of Oceanography, Regional Centre, Mumbai 400 053, India
| | - P S Rakesh
- CSIR - National Institute of Oceanography, Regional Centre, Mumbai 400 053, India
| | - B S Jayadev
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682 018, India
| | - P P Asma Shirin
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682 018, India
| |
Collapse
|
2
|
Conkling M, Hindle T, Xie Z, Liu W, Moore T, Pomponi SA. An in vitro cellular model for measuring the impact of thermal stress on Florida reef sponges. In Vitro Cell Dev Biol Anim 2025:10.1007/s11626-025-01034-1. [PMID: 40405044 DOI: 10.1007/s11626-025-01034-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/27/2025] [Indexed: 05/24/2025]
Abstract
Coral reefs are threatened by recurrent mortality incidents in their native habitats brought on by natural and anthropogenic stressors. Elevated temperature has been indicated as a major causing factor. Although ongoing research is focused on corals, sponges are an important benthic organism on coral reefs and are often overlooked. An accurate and standardized method is needed to determine the environmental limits and thresholds of sponges commonly found on coral reefs. We established an in vitro sponge cell model and evaluated the effect of elevated temperatures on primary cell cultures of five common Florida reef sponges-Agelas clathrodes, Aplysina fulva, Cliona varians, Geodia neptuni, and Xestospongia muta. Analysis of the results revealed that the impact of increased temperatures had no significant effect at the cellular level, but there are changes at the molecular level. Shifts in the sponges' transcriptomic profiles induced by increased temperatures, trigger processes related to signal transduction, apoptosis, and cell repair pathways. Further elevation of temperature corresponding to local extremes activated the immune response and programmed cell death. The results of the present study are based on both cellular and molecular data obtained from the in vitro cell model which highlight the minimal response of all five species to thermal stress, providing an insight into the mechanisms involved in the adaptive process. Furthermore, they suggest a resilience of these sponges to the current thermal extremes, but a combination of factors could still lead to a loss of sponges on reefs. This study forms the basis for use of in vitro sponge cell models to evaluate other environmental parameters and stressors on additional sponge species.
Collapse
Affiliation(s)
- Megan Conkling
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, FL, 34946, USA.
| | - Tobin Hindle
- Department of Geosciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Zhixiao Xie
- Department of Geosciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Weibo Liu
- Department of Geosciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Timothy Moore
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, FL, 34946, USA
| | - Shirley A Pomponi
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, FL, 34946, USA
| |
Collapse
|
3
|
Ferrara EF, Roik A, Wöhrmann-Zipf F, Ziegler M. Ex Situ Thermal Preconditioning Modulates Coral Physiology and Enhances Heat Tolerance: A Multispecies Perspective for Active Restoration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8527-8540. [PMID: 40279456 PMCID: PMC12060272 DOI: 10.1021/acs.est.4c08640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/27/2025]
Abstract
Global warming threatens reef-building corals by challenging their adaptive capacity. Therefore, interventions such as stress-hardening by thermal preconditioning could become crucial for their survival. This study aimed to systematically assess the effects of distinct thermal preconditioning regimes (stable-high at 29 °C, variable-high at 29 ± 1.5 °C, and stable-ambient control at 26 °C) on the baseline physiology and thermal tolerance of six stony coral species (Galaxea fascicularis, Porites rus, Acropora muricata, Montipora digitata, Pocillopora verrucosa, and Stylophora pistillata) to determine commonalities in the stress-hardening responses that transcend species-specific signatures. For this, we quantified changes in photosynthetic efficiency and bleaching intensity before and after a short-term heat stress assay and up to 30 days later. Stress-hardening was successful in all preconditioned corals, with the variable-high regime slightly outperforming the stable-high regime. Preconditioning reduced the heat stress response by up to 90%, yet species differed in receptiveness. It also improved resilience (survival and recovery), and corals with high inherent thermal tolerance recovered better than susceptible species. Notably, both preconditioning regimes affected baseline physiology, exclusively of the branching species, causing tissue paling and decreased photosynthetic efficiency. We conclude that implementing thermal stress-hardening protocols requires consideration of the species-specific receptiveness and potential physiological trade-offs.
Collapse
Affiliation(s)
- Erik F. Ferrara
- Marine
Holobiomics Lab, Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32 IFZ, 35392 Giessen, Germany
| | - Anna Roik
- Helmholtz
Institute for Functional Marine Biodiversity at the University of
Oldenburg (HIFMB), 26129 Oldenburg, Germany
- Alfred
Wegener Institute, Helmholtz Center for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Franziska Wöhrmann-Zipf
- Marine
Holobiomics Lab, Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32 IFZ, 35392 Giessen, Germany
| | - Maren Ziegler
- Marine
Holobiomics Lab, Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32 IFZ, 35392 Giessen, Germany
| |
Collapse
|
4
|
Wang Y, Zhao Z, Song X, Jiang X, Xiong J, Ru S, Yang L. Responses of coastal phytoplankton communities to herbicide exposure: enhanced resistance coupled with reduced resilience. ENVIRONMENTAL RESEARCH 2025; 279:121734. [PMID: 40324622 DOI: 10.1016/j.envres.2025.121734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/16/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Coastal ecosystems face increasing anthropogenic disturbances, making the survival strategies of phytoplankton communities under stress a critical issue in marine ecology. The community rescue theory suggests that exposure history can enhance phytoplankton's ability to withstand lethal stress, though the mechanisms remain unclear. This study utilized two-phase mesocosm experiments to simulate exposure history and lethal pressures. By combining tolerance and heritability tests, the mechanisms by which exposure history enhanced phytoplankton tolerance were investigated. The results demonstrated that: (1) Exposure history enhanced the community tolerance threshold to atrazine through ecological (the relative abundance of dinoflagellates increased by 13.6-66.4 %) and plastic processes (the EC50 of sensitive populations increased by 12.3-114.9 %). And this enhancement was positively correlated with exposure intensity but accompanied by suppression of community biomass. (2) Rescue was more likely to occur in large-scale communities, suggesting that high biomass was a prerequisite for populations/communities to survive the period of biomass collapse. Our findings aligned with the observation in in situ marine environments: long-term exposure to herbicides enhanced community tolerance (EC50 from 97.19 ± 6.8 nmol L-1 to 115.5 ± 7.8 nmol L-1) and delayed the collapse of communities under lethal pressure. However, this acquired tolerance was not heritable, and rescue still led to the loss of nearly half of rare taxa, potentially hindering the community's ability to withstand other environmental stressors. Our findings elucidate how phytoplankton communities achieve rescue through structural reorganization, providing crucial theoretical underpinnings for disturbance assessment in coastal ecosystems.
Collapse
Affiliation(s)
- Yunsheng Wang
- College of Marine Life Sciences, Ocean University of China, 266101, Qingdao, China
| | - Ziang Zhao
- College of Marine Life Sciences, Ocean University of China, 266101, Qingdao, China
| | - Xiukai Song
- Key Laboratory of Marine Ecological Restoration, Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Marine Resource and Environment Research Institute, 264000, Yantai, China
| | - Xiangyang Jiang
- Key Laboratory of Marine Ecological Restoration, Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Marine Resource and Environment Research Institute, 264000, Yantai, China
| | - Jiuqiang Xiong
- College of Marine Life Sciences, Ocean University of China, 266101, Qingdao, China.
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 266101, Qingdao, China.
| | - Liqiang Yang
- College of Marine Life Sciences, Ocean University of China, 266101, Qingdao, China.
| |
Collapse
|
5
|
Doherty ML, Johnson JV, Goodbody-Gringley G. Widespread coral bleaching and mass mortality during the 2023-2024 marine heatwave in Little Cayman. PLoS One 2025; 20:e0322636. [PMID: 40315251 PMCID: PMC12047782 DOI: 10.1371/journal.pone.0322636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/25/2025] [Indexed: 05/04/2025] Open
Abstract
The increased frequency and intensity of marine heatwaves (MHWs) induced by continued global warming are the greatest threat to tropical coral reefs, causing mass bleaching events and widespread mortality of reef building corals. In 2023, the isolated and well-protected reefs around Little Cayman experienced a MHW of > 17 Degree Heating Weeks (DHW), far exceeding any DHW measure previously captured. During the peak of the heatwave, ~ 80% of all corals were either bleached or showing signs of mortality. On the final survey date ~54% of all corals surveyed were recorded as dead. However, we identified significant differences in bleaching susceptibility and mortality across taxonomic groups, related to different life history strategies. Notably, weedy coral taxa such as Agaricia spp., Porites astreoides, and Porites porites, experienced high bleaching and suffered extensive mortality. Meanwhile, stress-tolerant reef building taxa such as Orbicella spp., experienced bleaching, but suffered low mortality. Given Little Cayman reefs have not been exposed to previous thermal stress events, the highly sensitive weedy taxa disproportionately contributed to coral abundance. Thus, the occurrence of a high magnitude - long duration heatwave resulted in catastrophic mortality of corals in Little Cayman, despite ~57% of the coastal environment being classified as no-take Marine Protected Areas. These findings underscore that the global stressor of global climate change, which drives MHWs, cannot be mitigated by local protection and isolation, thus highlighting the need to directly tackle the cause of coral decline (i.e., global climate change).
Collapse
Affiliation(s)
- Matthew L. Doherty
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Jack V. Johnson
- Reef Ecology and Evolution Lab, Central Caribbean Marine Institute, Little Cayman Island, Cayman Islands
| | - Gretchen Goodbody-Gringley
- Reef Ecology and Evolution Lab, Central Caribbean Marine Institute, Little Cayman Island, Cayman Islands
| |
Collapse
|
6
|
Han T, Li Y, Zhao H, Chen J, He C, Lu Z. In-depth single-cell transcriptomic exploration of the regenerative dynamics in stony coral. Commun Biol 2025; 8:652. [PMID: 40269231 PMCID: PMC12019164 DOI: 10.1038/s42003-025-08089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 04/14/2025] [Indexed: 04/25/2025] Open
Abstract
Coral reef ecosystems face escalating threats from anthropogenic global climate challenges, leading to frequent bleaching events. A key issue in coral transplantation is the inability of fragments to rapidly grow to sizes that can resist environmental pressures. The observation of accelerated growth during the early stages of coral regeneration provides new insights for addressing this challenge. To investigate the underlying molecular mechanisms, we study the fast-growing stony coral Acropora muricata. Using single-cell RNA sequencing, bulk RNA sequencing, and high-resolution micro-computed tomography, we identify a critical regeneration phase around 2-4 weeks post-injury. Single-cell transcriptome analysis reveals 11 function-specific cell clusters. Pseudotime analysis indicates epidermal cell differentiation into calicoblasts. Bulk RNA-seq results highlight a temporal limitation in coral's rapid regeneration. Through integrated multi-omics analysis, this study emphasizes the importance of a comprehensive understanding of coral regeneration, providing insights beyond fundamental knowledge and offering potential protective strategies to promote coral growth.
Collapse
Affiliation(s)
- Tingyu Han
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences; Shanxi Key Laboratory of Birth Defect and Cell Regeneration; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Yuanchao Li
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, China
| | - Hongwei Zhao
- School of Ecology, Hainan University, Haikou, 570228, China
| | - Junyuan Chen
- Nanjing Institute of Paleontology and Geology, Nanjing, 210008, China
| | - Chunpeng He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
- National Graduate College for Elite Engineers, Southeast University, Nanjing, 210096, China.
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
7
|
Ma H, Dellisanti W, Hao Chung JT, Pan Y, Liu G, Wu J, Qiu JW, Chan LL, Zhang L. Proteomic insights into the environmental adaptation of the subtropical brain coral host Platygyra carnosa. iScience 2025; 28:112287. [PMID: 40248114 PMCID: PMC12005889 DOI: 10.1016/j.isci.2025.112287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/26/2024] [Accepted: 03/21/2025] [Indexed: 04/19/2025] Open
Abstract
Despite the rapid coral reef decline from climate change, the molecular dynamics underlying coral environmental responses remain elusive. Filling this gap is vital to reef conservation. Here, we investigated the seasonal proteomes of Platygyra carnosa, a stress-tolerant subtropical brain coral, using natural samples across wet and dry seasons with distinct environmental conditions. Over 5,000 coral host proteins were profiled, revealing co-regulated modules related to temperature, pH, dissolved oxygen, salinity, and turbidity. Importantly, these modules formed scale-free networks coordinated by hub proteins that are strongly correlated with environmental drivers, suggesting their key roles in environmental adaptation. Laboratory validation confirmed the temperature-responsive hub proteins, including HSP90B1 and HSPA5 that modulate stress response and protein homeostasis. Our study characterized the brain coral host proteome with unprecedented depth, revealing co-regulated modules underlying environmental adaptation. It sets the stage for proteome-based approaches in promoting coral resilience, leading to more informed conservation and restoration efforts.
Collapse
Affiliation(s)
- Haiying Ma
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong, China
| | - Walter Dellisanti
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Jeffery Tzu Hao Chung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Yilin Pan
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Biochip Technology, Biotech and Health Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Guopan Liu
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Biochip Technology, Biotech and Health Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Jiajun Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Jian-wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Leo Lai Chan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong, China
| | - Liang Zhang
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Biochip Technology, Biotech and Health Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Futian Research Institute, Shenzhen, China
| |
Collapse
|
8
|
Afzal MS, Ishida J, Gomez R, Udo T, Azuma-Malsol MA, Kimura LY, Nakamura T. Spatial and temporal variations in coral reef recovery amid recurring bleaching events in Okinawa Island, Japan. MARINE ENVIRONMENTAL RESEARCH 2025; 205:107033. [PMID: 40023088 DOI: 10.1016/j.marenvres.2025.107033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 01/15/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Climate change is altering coral reefs around the world at an unprecedented rate, with increasing frequency and magnitude of mass bleaching events caused by high sea surface temperatures (SSTs). In this study, we examined coral communities through reef transect surveys at two depth zones (1-5m and 7-12m) across 11 sites on Okinawa Island, Japan. This study focused on trends in coral cover and composition in Okinawa Island, particularly following the thermal stress events of 2017 and 2022 and the high SSTs of 2023. We assessed coral community composition and bleaching incidence across coral genera, sites, years and depths. In 2017, the overall bleaching percentage was 33.28%, whereas by 2022, bleaching incidence was 9.47%. Sensitivity to bleaching varied among coral genera, with those typically exhibiting massive to encrusting growth forms, such as Porites, Montipora, Goniastrea, Favites, and Platygyra, being more impacted compared to branching and tabular species. Bleaching incidence also differed between depth zones, with 36% overall bleached in shallow depths and 27% in deeper depths in 2017. Despite recurrent bleaching events, hard coral cover across Okinawa Island increased from 13.85% in 2017 to 28.47% by 2023, demonstrating recovery potential despite recurrent bleaching events. Our findings indicated that recurrent bleaching events could alter the bleaching susceptibility and abundance of key coral genera over spatial and temporal scales. Considering the current state of the Okinawan reefs, developing and implementing effective management and protection strategies remains critical to reduce the impacts from global and local stressors.
Collapse
Affiliation(s)
- Mariyam Shidha Afzal
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0129, Japan
| | - Junichiro Ishida
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0129, Japan
| | - Rickdane Gomez
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0129, Japan
| | - Tatsuya Udo
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0129, Japan
| | - Meangeldil Ayla Azuma-Malsol
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0129, Japan
| | - Lucas Yutaka Kimura
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0129, Japan
| | - Takashi Nakamura
- Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0129, Japan; Sesoko Station, Tropical Biosphere Research Center (TBRC), University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0129, Japan.
| |
Collapse
|
9
|
Black KL, Bay LK, Matz MV. A Genetic Variant of Delta-9 Desaturase Is Associated With Latitudinal Adaptation in a Coral from the Great Barrier Reef. Mol Ecol 2025; 34:e17634. [PMID: 39717908 DOI: 10.1111/mec.17634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/06/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Coral populations across the Great Barrier Reef (GBR) could rapidly adapt to the warming climate if they have standing genetic variation for thermal tolerance. Here, we describe a locus likely involved in latitudinal adaptation of Acropora millepora. This locus shows a steep latitudinal gradient of derived allele frequency increasing at higher latitudes, and harbours a cluster of eight tandemly repeated Δ9-desaturase genes adjacent to a region in the genome where a hard selective sweep likely occurred. In colonies reciprocally transplanted across 4.5° of latitude, the expression of Δ9-desaturase is upregulated at the high-latitude reef. Furthermore, corals from the low-latitude reef bearing the derived Δ9-desaturase allele express the gene more and grow faster than their peers when transplanted to the high-latitude reef. In other organisms ranging from bacteria to fish, Δ9-desaturase is upregulated under cold conditions to adjust membrane fluidity by introducing double bonds into fatty acid chains of membrane lipids. It is therefore plausible that the signal of latitudinal adaptation at the Δ9-desaturase locus is due to its involvement in adaptation to cooler temperatures at higher latitudes.
Collapse
Affiliation(s)
- Kristina L Black
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Line K Bay
- Reef Recovery, Adaptation, and Restoration, Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Mikhail V Matz
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
10
|
Huang W, Chen J, Yang E, Meng L, Feng Y, Chen Y, Huang Z, Tan R, Xiao Z, Zhou Y, Xu M, Yu K. Heat-tolerant subtropical Porites lutea may be better adapted to future climate change than tropical one in the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178381. [PMID: 39799646 DOI: 10.1016/j.scitotenv.2025.178381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/28/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
Coral reefs are degrading at an accelerating rate owing to climate change. Understanding the heat stress tolerance of corals is vital for their sustainability. However, this tolerance varies substantially geographically, and information regarding coral responses across latitudes is lacking. In this study, we conducted a high temperature (34 °C) stress experiment on Porites lutea from tropical Xisha Islands (XS) and subtropical Daya Bay (DY) in the South China Sea (SCS). We compared physiological levels, antioxidant activities, and transcriptome sequencing to explore heat tolerance mechanisms and adaptive potential. At 34 °C, both XS and DY corals experienced significant bleaching and the physiological/biochemical index decreased, with XS corals exhibiting greater changes than DY corals. Transcriptome analysis revealed that coral hosts respond to heat stress mainly by boosting metabolic activity. The subtle transcriptional responses of zooxanthellae C15 underscored the host's pivotal role in thermal stress responses. DY coral hosts showed lower bleaching, stronger physiological plasticity, and higher temperature tolerance thresholds than XS, indicating superior heat tolerance. This superiority is linked to negative feedback transcriptional regulation strategies, including active environmental stress response and genetic information damage repair. The differences in thermal adaptability between tropical and subtropical P. lutea in the SCS may be attributed to their genetic differences and native habitat environments, suggesting that subtropical P. lutea may have the potential to adapt to future climate change. This study provides novel insights for predicting the fate of corals at different latitudes in terms of global warming and provides instructive guidance for coral reef ecological restoration.
Collapse
Affiliation(s)
- Wen Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Jinlian Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Enguang Yang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Linqing Meng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yi Feng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yinmin Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Zhihua Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Ronghua Tan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Zunyong Xiao
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yupeng Zhou
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Mingpei Xu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|
11
|
Lachs L, Bozec YM, Bythell JC, Donner SD, East HK, Edwards AJ, Golbuu Y, Gouezo M, Guest JR, Humanes A, Riginos C, Mumby PJ. Natural selection could determine whether Acropora corals persist under expected climate change. Science 2024; 386:1289-1294. [PMID: 39607905 DOI: 10.1126/science.adl6480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/15/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024]
Abstract
Marine heatwaves are intensifying under climate change, exposing populations of reef-building corals to mass mortality and intense selective pressure. It remains unknown whether adaptation can keep pace with warming and maintain reef functioning. We have developed an eco-evolutionary metapopulation model for Acropora, an ecologically important yet thermally sensitive coral taxon. We found that, although corals have some adaptation capacity, they will suffer severe heatwave-induced declines over the coming decades. For a future in which emissions lead to ~3°C of global warming, natural selection could allow populations to persist, albeit in severely depleted states with elevated extinction risk and potential loss of ecosystem functioning. Yet, for thermally sensitive coral populations to thrive beyond 2050, there must be rapid reductions of greenhouse gas emissions that limit global warming to 2°C.
Collapse
Affiliation(s)
- Liam Lachs
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
- Department of Geography and Institute of Resources, Environment and Sustainability, University of British Columbia, Vancouver, Canada
| | - Yves-Marie Bozec
- School of the Environment, The University of Queensland, St. Lucia, Australia
| | - John C Bythell
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Simon D Donner
- Department of Geography and Institute of Resources, Environment and Sustainability, University of British Columbia, Vancouver, Canada
| | - Holly K East
- Department of Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Alasdair J Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Yimnang Golbuu
- The Nature Conservancy, Koror, Republic of Palau
- Palau International Coral Reef Center, Koror, Republic of Palau
| | - Marine Gouezo
- Palau International Coral Reef Center, Koror, Republic of Palau
- Faculty of Science and Engineering, Southern Cross University, East Lismore, Australia
| | - James R Guest
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Adriana Humanes
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Cynthia Riginos
- School of the Environment, The University of Queensland, St. Lucia, Australia
- Australian Institute of Marine Science, Townsville, Australia
| | - Peter J Mumby
- School of the Environment, The University of Queensland, St. Lucia, Australia
- Palau International Coral Reef Center, Koror, Republic of Palau
| |
Collapse
|
12
|
Qin Y, Cheng K, Jong MC, Zheng H, Cai Z, Xiao B, Zhou J. Symbiotic bacterial communities and carbon metabolic profiles of Acropora coral with varying health status under thermal stress. MARINE POLLUTION BULLETIN 2024; 209:117116. [PMID: 39418876 DOI: 10.1016/j.marpolbul.2024.117116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Abstract
Thermal-induced coral bleaching has received substantial research attention; however, the dynamics of symbiotic coral-associated bacterial communities are underexplored and the roles of coral with intermediate health status remain unclear. Using high-throughput sequencing and biochemical analyses, we found that the symbiotic zooxanthellae number gradually decreased with the increase of bleaching degree (non-bleached, semi-bleached, and fully-bleached) in the coral Acropora pruinosa. The semi-bleached host exhibited a relatively more complex microbial interaction network. For the carbon metabolic profiles, relatively higher carbon-fixing abilities observed in non-bleached coral symbiotic bacteria, followed by semi-bleached host, and lowest values appeared in fully-bleached coral. Partial least-squares pathway modeling revealed that bacterial community features and carbon metabolic function were directly related with health status, while temperature exerted a strong influence on the bleaching resilience. These findings can help us better understand the coral microecological feature and carbon metabolic potential under changing environment.
Collapse
Affiliation(s)
- Yuke Qin
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Keke Cheng
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Mui-Choo Jong
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Huina Zheng
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518120, Guangdong Province, PR China
| | - Zhonghua Cai
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Baohua Xiao
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518120, Guangdong Province, PR China.
| | - Jin Zhou
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China.
| |
Collapse
|
13
|
Li X, Donner SD, Martell HA. The Loss of Beneficial Thermal Priming on Global Coral Reefs. GLOBAL CHANGE BIOLOGY 2024; 30:e17592. [PMID: 39625059 PMCID: PMC11613302 DOI: 10.1111/gcb.17592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 12/06/2024]
Abstract
Warm-season marine heatwaves (MHWs) have greatly increased in frequency, severity, and extent over the last few decades, driving more frequent and severe coral bleaching episodes. Given the grave near-term threat to coral reefs imposed by MHWs, it is important to assess the mechanisms by which corals may acquire higher thermal tolerance. Recent field and laboratory studies have demonstrated that exposure to sublethal heat stress, known as "priming," can reduce bleaching susceptibility during a subsequent MHW. Little is known, however, about how often priming conditions occur, and how effective those conditions may be at protecting coral reefs. We employed a global historical coral bleaching database and a high-resolution sea surface temperature dataset to assess the frequency of priming and examine its effect on coral bleaching sensitivity on a global scale. The analysis showed that coral reefs in parts of the western to central tropical Pacific experienced priming on average over twice a decade and had a higher likelihood of priming protection. Mixed-effects regression models indicated that priming conditions could mitigate coral bleaching response by up to 12% in advance of a moderate MHW. However, the protective effect of priming decreased, and even became harmful, with more severe MHWs. We detected spatial variations in priming frequency that could provide insight for conservation planning and explain some variations in bleaching sensitivity to MHWs. Even so, our findings suggest that thermal priming will not be sufficient to protect most coral reefs from MHWs in the future, without substantial efforts to mitigate climate change.
Collapse
Affiliation(s)
- Xinru Li
- Department of GeographyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Simon D. Donner
- Department of Geography and Institute for ResourcesEnvironment and Sustainability, University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Harmony A. Martell
- Department of GeographyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
14
|
Jury CP, Bahr KD, Cros A, Dobson KL, Freel EB, Graham AT, McLachlan RH, Nelson CE, Price JT, Rocha de Souza M, Shizuru L, Smith CM, Sparagon WJ, Squair CA, Timmers MA, Vicente J, Webb MK, Yamase NH, Grottoli AG, Toonen RJ. Experimental coral reef communities transform yet persist under mitigated future ocean warming and acidification. Proc Natl Acad Sci U S A 2024; 121:e2407112121. [PMID: 39471225 PMCID: PMC11551444 DOI: 10.1073/pnas.2407112121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/20/2024] [Indexed: 11/01/2024] Open
Abstract
Coral reefs are among the most sensitive ecosystems affected by ocean warming and acidification, and are predicted to collapse over the next few decades. Reefs are predicted to shift from net accreting calcifier-dominated systems with exceptionally high biodiversity to net eroding algal-dominated systems with dramatically reduced biodiversity. Here, we present a two-year experimental study examining the responses of entire mesocosm coral reef communities to warming (+2 °C), acidification (-0.2 pH units), and combined future ocean (+2 °C, -0.2 pH) treatments. Contrary to modeled projections, we show that under future ocean conditions, these communities shift structure and composition yet persist as novel calcifying ecosystems with high biodiversity. Our results suggest that if climate change is limited to Paris Climate Agreement targets, coral reefs could persist in an altered state rather than collapse.
Collapse
Affiliation(s)
- Christopher P. Jury
- Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96744
| | - Keisha D. Bahr
- Department of Life Sciences, Texas A&M University—Corpus Christi, Corpus Christi, TX78412
| | | | - Kerri L. Dobson
- Marine Biology and Ecology Research Group, School of Ocean and Earth Sciences, University of Southampton, SouthamptonSO14 3ZH, UK
- School of Earth Sciences, College of Arts and Sciences, The Ohio State University, Columbus, OH43210
| | - Evan B. Freel
- Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96744
| | - Andrew T. Graham
- Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96744
| | - Rowan H. McLachlan
- School of Earth Sciences, College of Arts and Sciences, The Ohio State University, Columbus, OH43210
- Department of Microbiology, Oregon State University, Corvallis, OR97331
| | - Craig E. Nelson
- Daniel K. Inouye Center for Microbial Oceanography, Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96822
| | - James T. Price
- School of Earth Sciences, College of Arts and Sciences, The Ohio State University, Columbus, OH43210
| | - Mariana Rocha de Souza
- Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96744
| | - Leah Shizuru
- Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96744
| | - Celia M. Smith
- Department of Biology, School of Life Sciences, College of Natural Sciences, University of Hawai’i at Mānoa, Honolulu, HI96822
- Department of Marine Biology, College of Natural Sciences and School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96822
| | - Wesley J. Sparagon
- Daniel K. Inouye Center for Microbial Oceanography, Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96822
| | - Cheryl A. Squair
- Department of Biology, School of Life Sciences, College of Natural Sciences, University of Hawai’i at Mānoa, Honolulu, HI96822
| | - Molly A. Timmers
- Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96744
- Pristine Seas, National Geographic Society, Washington, DC20036
| | - Jan Vicente
- Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96744
| | - Maryann K. Webb
- Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96744
| | - Nicole H. Yamase
- Department of Marine Biology, College of Natural Sciences and School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96822
| | - Andréa G. Grottoli
- Marine Biology and Ecology Research Group, School of Ocean and Earth Sciences, University of Southampton, SouthamptonSO14 3ZH, UK
| | - Robert J. Toonen
- Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI96744
| |
Collapse
|
15
|
Mellin C, Stuart-Smith RD, Heather F, Oh E, Turak E, Edgar GJ. Coral responses to a catastrophic marine heatwave are decoupled from changes in total coral cover at a continental scale. Proc Biol Sci 2024; 291:20241538. [PMID: 39378994 PMCID: PMC11461067 DOI: 10.1098/rspb.2024.1538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 10/10/2024] Open
Abstract
The services provided by the world's coral reefs are threatened by increasingly frequent and severe marine heatwaves. Heatwave-induced degradation of reefs has often been inferred from the extent of the decline in total coral cover, which overlooks extreme variation among coral taxa in their susceptibility and responses to thermal stress. Here, we provide a continental-scale assessment of coral cover changes at 262 shallow tropical reef sites around Australia, using ecological survey data on 404 coral taxa before and after the 2016 mass bleaching event. A strong spatial structure in coral community composition along large-scale environmental gradients largely dictated how coral communities responded to heat stress. While heat stress variables were the best predictors of change in total coral cover, the pre-heatwave community composition best predicted the temporal beta-diversity index (an indicator of change in community composition over time). Indicator taxa in each coral community differed before and after the heatwave, highlighting potential winners and losers of climate-driven coral bleaching. Our results demonstrate how assessment of change in total cover alone may conceal very different responses in community structure, some of which showed strong regional consistency, and may provide a telling outlook of how coral reefs may reorganize in a warmer future.
Collapse
Affiliation(s)
- Camille Mellin
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia5005, Australia
| | - Rick D. Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Freddie Heather
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Elizabeth Oh
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Emre Turak
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Graham J. Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
16
|
Jury CP, Toonen RJ. Widespread scope for coral adaptation under combined ocean warming and acidification. Proc Biol Sci 2024; 291:20241161. [PMID: 39317315 PMCID: PMC11421923 DOI: 10.1098/rspb.2024.1161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Reef-building coral populations are at serious risk of collapse due to the combined effects of ocean warming and acidification. Nonetheless, many corals show potential to adapt to the changing ocean conditions. Here we examine the broad sense heritability (H2) of coral calcification rates across an ecologically and phylogenetically diverse sampling of eight of the primary reef-building corals across the Indo-Pacific. We show that all eight species exhibit relatively high heritability of calcification rates under combined warming and acidification (0.23-0.56). Furthermore, tolerance to each factor is positively correlated and the two factors do not interact in most of the species, contrary to the idea of trade-offs between temperature and pH sensitivity, and all eight species can co-evolve tolerance to elevated temperature and reduced pH. Using these values together with historical data, we estimate potential increases in thermal tolerance of 1.0-1.7°C over the next 50 years, depending on species. None of these species are probably capable of keeping up with a high global change scenario and climate change mitigation is essential if reefs are to persist. Such estimates are critical for our understanding of how corals may respond to global change, accurately parametrizing modelled responses, and predicting rapid evolution.
Collapse
Affiliation(s)
- Christopher P Jury
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa , Honolulu, HI 96744, USA
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa , Honolulu, HI 96744, USA
| |
Collapse
|
17
|
Scharfenstein HJ, Peplow LM, Alvarez-Roa C, Nitschke MR, Chan WY, Buerger P, van Oppen MJH. Pushing the limits: expanding the temperature tolerance of a coral photosymbiont through differing selection regimes. THE NEW PHYTOLOGIST 2024; 243:2130-2145. [PMID: 39049585 DOI: 10.1111/nph.19996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Coral thermal bleaching resilience can be improved by enhancing photosymbiont thermal tolerance via experimental evolution. While successful for some strains, selection under stable temperatures was ineffective at increasing the thermal threshold of an already thermo-tolerant photosymbiont (Durusdinium trenchii). Corals from environments with fluctuating temperatures tend to have comparatively high heat tolerance. Therefore, we investigated whether exposure to temperature oscillations can raise the upper thermal limit of D. trenchii. We exposed a D. trenchii strain to stable and fluctuating temperature profiles, which varied in oscillation frequency. After 2.1 yr (54-73 generations), we characterised the adaptive responses under the various experimental evolution treatments by constructing thermal performance curves of growth from 21 to 31°C for the heat-evolved and wild-type lineages. Additionally, the accumulation of extracellular reactive oxygen species, photophysiology, photosynthesis and respiration rates were assessed under increasing temperatures. Of the fluctuating temperature profiles investigated, selection under the most frequent oscillations (diurnal) induced the greatest widening of D. trenchii's thermal niche. Continuous selection under elevated temperatures induced the only increase in thermal optimum and a degree of generalism. Our findings demonstrate how differing levels of thermal homogeneity during selection drive unique adaptive responses to heat in a coral photosymbiont.
Collapse
Affiliation(s)
- Hugo J Scharfenstein
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
- Australian Institute of Marine Science, Townsville, Qld, 4810, Australia
| | - Lesa M Peplow
- Australian Institute of Marine Science, Townsville, Qld, 4810, Australia
| | - Carlos Alvarez-Roa
- Australian Institute of Marine Science, Townsville, Qld, 4810, Australia
| | - Matthew R Nitschke
- Australian Institute of Marine Science, Townsville, Qld, 4810, Australia
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - Wing Yan Chan
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| | - Patrick Buerger
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
- Applied BioSciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
- Australian Institute of Marine Science, Townsville, Qld, 4810, Australia
| |
Collapse
|
18
|
Cumming GS, James NL, Chua CM, Huertas V. A framework and review of evidence of the importance of coral reefs for marine birds in tropical ecosystems. Ecol Evol 2024; 14:e70165. [PMID: 39170051 PMCID: PMC11336204 DOI: 10.1002/ece3.70165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/15/2024] [Accepted: 07/21/2024] [Indexed: 08/23/2024] Open
Abstract
As global heating and other anthropogenic influences alter tropical marine environments, it is unclear how marine bird populations will be impacted and whether their current roles in tropical marine ecosystems will change. Although marine birds roost and breed on tropical islands in large numbers, the direct trophic interactions between these birds and their prey across the tropics are poorly documented. We present a first framework for evaluating the dependence on and contributions of marine birds to tropical coral reef ecosystems and use it to examine the evidence for different kinds of interaction, focusing primarily on avian diets. We found 34 publications between 1967 and 2023 that presented a total of 111 data sets with enough detail for quantitative dietary analysis of tropical marine birds. Only two bird species out of 37 (5.4%) had diets of >50% coral reef fishes and only one, the Pacific Reef Egret, appeared to depend almost entirely on reef-based production. Marine birds are also prey for other marine organisms, but insufficient data are available for quantitative analysis. Evidence for indirect effects of birds in tropical marine environments is stronger than for direct dependence on coral reefs, particularly in relation to nutrient concentration and the fertilisation impacts of guano on corals. Dispersal of propagules (e.g. seeds, spores, invertebrate eggs) by bathing, drinking, resting or foraging birds is under-studied and poorly documented. Although the degradation of coral reefs appears unlikely to have a significant direct impact on food availability for most marine bird populations, indirect effects involving marine birds may be disrupted by global environmental change.
Collapse
Affiliation(s)
- Graeme S. Cumming
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Marine Biology and Aquaculture, College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
- Oceans InstituteUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Nicholas L. James
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Marine Biology and Aquaculture, College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | - Chia Miin Chua
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- O2 MarineSouth TownsvilleQueenslandAustralia
| | - Victor Huertas
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Marine Biology and Aquaculture, College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| |
Collapse
|
19
|
Mellin C, Brown S, Cantin N, Klein-Salas E, Mouillot D, Heron SF, Fordham DA. Cumulative risk of future bleaching for the world's coral reefs. SCIENCE ADVANCES 2024; 10:eadn9660. [PMID: 38924396 PMCID: PMC11204209 DOI: 10.1126/sciadv.adn9660] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Spatial and temporal patterns of future coral bleaching are uncertain, hampering global conservation efforts to protect coral reefs against climate change. Our analysis of daily projections of ocean warming establishes the severity, annual duration, and onset of severe bleaching risk for global coral reefs this century, pinpointing vital climatic refugia. We show that low-latitude coral regions are most vulnerable to thermal stress and will experience little reprieve from climate mitigation. By 2080, coral bleaching is likely to start on most reefs in spring, rather than late summer, with year-round bleaching risk anticipated to be high for some low-latitude reefs regardless of global efforts to mitigate harmful greenhouse gasses. By identifying Earth's reef regions that are at lowest risk of accelerated bleaching, our results will prioritize efforts to limit future loss of coral reef biodiversity.
Collapse
Affiliation(s)
- Camille Mellin
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Stuart Brown
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Neal Cantin
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | | | - David Mouillot
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
- Institut Universitaire de France, IUF, Paris 75231, France
| | - Scott F. Heron
- Physics and Marine Geophysical Laboratory, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Damien A. Fordham
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
20
|
Strand EL, Wong KH, Farraj A, Gray S, McMenamin A, Putnam HM. Coral species-specific loss and physiological legacy effects are elicited by an extended marine heatwave. J Exp Biol 2024; 227:jeb246812. [PMID: 38774956 DOI: 10.1242/jeb.246812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/03/2024] [Indexed: 06/18/2024]
Abstract
Marine heatwaves are increasing in frequency and intensity, with potentially catastrophic consequences for marine ecosystems such as coral reefs. An extended heatwave and recovery time-series that incorporates multiple stressors and is environmentally realistic can provide enhanced predictive capacity for performance under climate change conditions. We exposed common reef-building corals in Hawai'i, Montipora capitata and Pocillopora acuta, to a 2-month period of high temperature and high PCO2 conditions or ambient conditions in a factorial design, followed by 2 months of ambient conditions. High temperature, rather than high PCO2, drove multivariate physiology shifts through time in both species, including decreases in respiration rates and endosymbiont densities. Pocillopora acuta exhibited more significantly negatively altered physiology, and substantially higher bleaching and mortality than M. capitata. The sensitivity of P. acuta appears to be driven by higher baseline rates of photosynthesis paired with lower host antioxidant capacity, creating an increased sensitivity to oxidative stress. Thermal tolerance of M. capitata may be partly due to harboring a mixture of Cladocopium and Durusdinium spp., whereas P. acuta was dominated by other distinct Cladocopium spp. Only M. capitata survived the experiment, but physiological state in heatwave-exposed M. capitata remained significantly diverged at the end of recovery relative to individuals that experienced ambient conditions. In future climate scenarios, particularly marine heatwaves, our results indicate a species-specific loss of corals that is driven by baseline host and symbiont physiological differences as well as Symbiodiniaceae community compositions, with the surviving species experiencing physiological legacies that are likely to influence future stress responses.
Collapse
Affiliation(s)
- Emma L Strand
- Department of Biology, University of Rhode Island, Kingston, RI 02881, USA
- Gloucester Marine Genomics Institute, Gloucester, MA 01930, USA
| | - Kevin H Wong
- Department of Biology, University of Rhode Island, Kingston, RI 02881, USA
- Department of Marine Biology and Ecology, University of Miami Rosenstiel School of Marine and Atmospheric Science, Miami, FL 33149, USA
| | - Alexa Farraj
- Department of Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Sierra Gray
- Department of Biology, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biology, University of Victoria, Victoria, BC, Canada, V8P 5C2
| | - Ana McMenamin
- Department of Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Hollie M Putnam
- Department of Biology, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
21
|
Edmunds PJ, Combosch DJ, Torrado H, Sakai K, Sinniger F, Burgess SC. Latitudinal variation in thermal performance of the common coral Pocillopora spp. J Exp Biol 2024; 227:jeb247090. [PMID: 38699869 DOI: 10.1242/jeb.247090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
Understanding how tropical corals respond to temperatures is important to evaluating their capacity to persist in a warmer future. We studied the common Pacific coral Pocillopora over 44° of latitude, and used populations at three islands with different thermal regimes to compare their responses to temperature using thermal performance curves (TPCs) for respiration and gross photosynthesis. Corals were sampled in the local autumn from Moorea, Guam and Okinawa, where mean±s.d. annual seawater temperature is 28.0±0.9°C, 28.9±0.7°C and 25.1±3.4°C, respectively. TPCs for respiration were similar among latitudes, the thermal optimum (Topt) was above the local maximum temperature at all three islands, and maximum respiration was lowest at Okinawa. TPCs for gross photosynthesis were wider, implying greater thermal eurytopy, with a higher Topt in Moorea versus Guam and Okinawa. Topt was above the maximum temperature in Moorea, but was similar to daily temperatures over 13% of the year in Okinawa and 53% of the year in Guam. There was greater annual variation in daily temperatures in Okinawa than Guam or Moorea, which translated to large variation in the supply of metabolic energy and photosynthetically fixed carbon at higher latitudes. Despite these trends, the differences in TPCs for Pocillopora spp. were not profoundly different across latitudes, reducing the likelihood that populations of these corals could better match their phenotypes to future more extreme temperatures through migration. Any such response would place a premium on high metabolic plasticity and tolerance of large seasonal variations in energy budgets.
Collapse
Affiliation(s)
- P J Edmunds
- Department of Biology, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330-8303, USA
| | - D J Combosch
- Marine Laboratory, University of Guam, 303 University Drive, Mangilao, 96923 Guam, USA
| | - H Torrado
- Marine Laboratory, University of Guam, 303 University Drive, Mangilao, 96923 Guam, USA
| | - K Sakai
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, 905-0227 Okinawa, Japan
| | - F Sinniger
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, 905-0227 Okinawa, Japan
| | - S C Burgess
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
22
|
Castillo KD, Bove CB, Hughes AM, Powell ME, Ries JB, Davies SW. Gene expression plasticity facilitates acclimatization of a long-lived Caribbean coral across divergent reef environments. Sci Rep 2024; 14:7859. [PMID: 38570591 PMCID: PMC10991280 DOI: 10.1038/s41598-024-57319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/17/2024] [Indexed: 04/05/2024] Open
Abstract
Local adaptation can increase fitness under stable environmental conditions. However, in rapidly changing environments, compensatory mechanisms enabled through plasticity may better promote fitness. Climate change is causing devastating impacts on coral reefs globally and understanding the potential for adaptive and plastic responses is critical for reef management. We conducted a four-year, three-way reciprocal transplant of the Caribbean coral Siderastrea siderea across forereef, backreef, and nearshore populations in Belize to investigate the potential for environmental specialization versus plasticity in this species. Corals maintained high survival within forereef and backreef environments, but transplantation to nearshore environments resulted in high mortality, suggesting that nearshore environments present strong environmental selection. Only forereef-sourced corals demonstrated evidence of environmental specialization, exhibiting the highest growth in the forereef. Gene expression profiling 3.5 years post-transplantation revealed that transplanted coral hosts exhibited profiles more similar to other corals in the same reef environment, regardless of their source location, suggesting that transcriptome plasticity facilitates acclimatization to environmental change in S. siderea. In contrast, algal symbiont (Cladocopium goreaui) gene expression showcased functional variation between source locations that was maintained post-transplantation. Our findings suggest limited acclimatory capacity of some S. siderea populations under strong environmental selection and highlight the potential limits of coral physiological plasticity in reef restoration.
Collapse
Affiliation(s)
- Karl D Castillo
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Environment, Ecology and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Colleen B Bove
- Environment, Ecology and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biology, Boston University, Boston, MA, USA.
| | | | - Maya E Powell
- Environment, Ecology and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Justin B Ries
- Department of Marine and Environmental Sciences, Marine Sciences Center, Northeastern University, Nahant, MA, USA
| | - Sarah W Davies
- Environment, Ecology and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
23
|
Quigley KM. Breeding and Selecting Corals Resilient to Global Warming. Annu Rev Anim Biosci 2024; 12:209-332. [PMID: 37931139 DOI: 10.1146/annurev-animal-021122-093315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Selective breeding of resilient organisms is an emerging topic in marine conservation. It can help us predict how species will adapt in the future and how we can help restore struggling populations effectively in the present. Scleractinian corals represent a potential tractable model system given their widescale phenotypic plasticity across fitness-related traits and a reproductive life history based on mass synchronized spawning. Here, I explore the justification for breeding in corals, identify underutilized pathways of acclimation, and highlight avenues for quantitative targeted breeding from the coral host and symbiont perspective. Specifically, the facilitation of enhanced heat tolerance by targeted breeding of plasticity mechanisms is underutilized. Evidence from theoretical genetics identifies potential pitfalls, including inattention to physical and genetic characteristics of the receiving environment. Three criteria for breeding emerge from this synthesis: selection from warm, variable reefs that have survived disturbance. This information will be essential to protect what we have and restore what we can.
Collapse
Affiliation(s)
- K M Quigley
- The Minderoo Foundation, Perth, Western Australia, Australia;
- James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
24
|
Yu X, Yu K, Chen B, Liao Z, Liang J, Qin Z, Gao X. Metabolic and immune costs balance during natural acclimation of corals in fluctuating environments. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106284. [PMID: 38048660 DOI: 10.1016/j.marenvres.2023.106284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023]
Abstract
Epigenetic modifications based on DNA methylation can rapidly improve the potential of corals to adapt to environmental pressures by increasing their phenotypic plasticity, a factor important for scleractinian corals to adapt to future global warming. However, the extent to which corals develop similar adaptive mechanisms and their specific adaptation processes remain unclear. Here, to reveal the regulatory mechanism by which DNA methylation improves thermal tolerance in Pocillopora damicornis under fluctuating environments, we analyzed genome-wide DNA methylation signatures in P. damicornis and compared the differences in the methylation and transcriptional responses of P. damicornis from fluctuating and stable environments using whole-genome bisulfite sequencing and nanopore-based RNA sequencingtranscriptome sequencing. We discovered low methylation levels in P. damicornis (average methylation 4.14%), with CpG accounting for 74.88%, CHH for 13.27%, and CHG for 11.85% of this methylation. However, methylation levels did not change between coral samples from the fluctuating and stable environments. The varied methylation levels in different regions of the gene revealed that the overall methylation level of the gene body was relatively high and showed a bimodal methylation pattern. Methylation occurs primarily in exons rather than introns within the gene body In P. damicornis, there was only a weak correlation between methylation and transcriptional changes at the individual gene level, and the methylation and gene expression levels generally exhibited a bell-shaped relationship, which we speculate may be due to the specificity of cnidarian species. Correlation analysis between methylation levels and the transcriptome revealed that the highest proportion of the top 20 enriched KEGG pathways was related to immunity. Additionally, P. damicornis collected from a high-temperature pool had a lower metabolic rate than those collected from a low-temperature pool. We hypothesize that the dynamic balance of energy-expenditure costs between immunity and metabolism is an important strategy for increasing P. damicornis tolerance. The fluctuating environment of high-temperature pools may increase the heat tolerance in corals by increasing their immunity and thus lowering their metabolism.
Collapse
Affiliation(s)
- Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Xu Gao
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
25
|
Morais J, Tebbett SB, Morais RA, Bellwood DR. Hot spots of bleaching in massive Porites coral colonies. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106276. [PMID: 38016301 DOI: 10.1016/j.marenvres.2023.106276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
Coral bleaching events have become more frequent and severe due to ocean warming. While the large-scale impacts of bleaching events are well-known, there is growing recognition of the importance of small-scale spatial variation in bleaching and survival probability of individual coral colonies. By quantifying bleaching in 108 massive Porites colonies spread across Lizard Island, Great Barrier Reef, during the 2016 bleaching event, we investigated how hydrodynamic exposure levels and colony size contribute to local variability in bleaching prevalence and extent. Our results revealed that exposed locations were the least impacted by bleaching, while lagoonal areas exhibited the highest prevalence of bleaching and colony-level bleaching extents. Such patterns of bleaching could be due to prolonged exposure to warm water in the lagoon. These findings highlight the importance of considering location-specific factors when assessing coral health and emphasize the vulnerability of corals in lagoonal habitats to rapid and/or prolonged elevated temperatures.
Collapse
Affiliation(s)
- Juliano Morais
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia.
| | - Sterling B Tebbett
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Renato A Morais
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia; Paris Sciences et Lettres Université, École Pratique des Hautes Études, EPHE-UPVD-CNRS, USR 3278 CRIOBE, University of Perpignan, 66860, Perpignan, France
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
26
|
Glass BH, Jones KG, Ye AC, Dworetzky AG, Barott KL. Acute heat priming promotes short-term climate resilience of early life stages in a model sea anemone. PeerJ 2023; 11:e16574. [PMID: 38077426 PMCID: PMC10704996 DOI: 10.7717/peerj.16574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Across diverse taxa, sublethal exposure to abiotic stressors early in life can lead to benefits such as increased stress tolerance upon repeat exposure. This phenomenon, known as hormetic priming, is largely unexplored in early life stages of marine invertebrates, which are increasingly threatened by anthropogenic climate change. To investigate this phenomenon, larvae of the sea anemone and model marine invertebrate Nematostella vectensis were exposed to control (18 °C) or elevated (24 °C, 30 °C, 35 °C, or 39 °C) temperatures for 1 h at 3 days post-fertilization (DPF), followed by return to control temperatures (18 °C). The animals were then assessed for growth, development, metabolic rates, and heat tolerance at 4, 7, and 11 DPF. Priming at intermediately elevated temperatures (24 °C, 30 °C, or 35 °C) augmented growth and development compared to controls or priming at 39 °C. Indeed, priming at 39 °C hampered developmental progression, with around 40% of larvae still in the planula stage at 11 DPF, in contrast to 0% for all other groups. Total protein content, a proxy for biomass, and respiration rates were not significantly affected by priming, suggesting metabolic resilience. Heat tolerance was quantified with acute heat stress exposures, and was significantly higher for animals primed at intermediate temperatures (24 °C, 30 °C, or 35 °C) compared to controls or those primed at 39 °C at all time points. To investigate a possible molecular mechanism for the observed changes in heat tolerance, the expression of heat shock protein 70 (HSP70) was quantified at 11 DPF. Expression of HSP70 significantly increased with increasing priming temperature, with the presence of a doublet band for larvae primed at 39 °C, suggesting persistent negative effects of priming on protein homeostasis. Interestingly, primed larvae in a second cohort cultured to 6 weeks post-fertilization continued to display hormetic growth responses, whereas benefits for heat tolerance were lost; in contrast, negative effects of short-term exposure to extreme heat stress (39 °C) persisted. These results demonstrate that some dose-dependent effects of priming waned over time while others persisted, resulting in heterogeneity in organismal performance across ontogeny following priming. Overall, these findings suggest that heat priming may augment the climate resilience of marine invertebrate early life stages via the modulation of key developmental and physiological phenotypes, while also affirming the need to limit further anthropogenic ocean warming.
Collapse
Affiliation(s)
- Benjamin H. Glass
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katelyn G. Jones
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Angela C. Ye
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Anna G. Dworetzky
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katie L. Barott
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
27
|
Zhang Y, Gantt SE, Keister EF, Elder H, Kolodziej G, Aguilar C, Studivan MS, Williams DE, Kemp DW, Manzello DP, Enochs IC, Kenkel CD. Performance of Orbicella faveolata larval cohorts does not align with previously observed thermal tolerance of adult source populations. GLOBAL CHANGE BIOLOGY 2023; 29:6591-6605. [PMID: 37846617 DOI: 10.1111/gcb.16977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/18/2023]
Abstract
Orbicella faveolata, commonly known as the mountainous star coral, is a dominant reef-building species in the Caribbean, but populations have suffered sharp declines since the 1980s due to repeated bleaching and disease-driven mortality. Prior research has shown that inshore adult O. faveolata populations in the Florida Keys are able to maintain high coral cover and recover from bleaching faster than their offshore counterparts. However, whether this origin-specific variation in thermal resistance is heritable remains unclear. To address this knowledge gap, we produced purebred and hybrid larval crosses from O. faveolata gametes collected at two distinct reefs in the Upper Florida Keys, a nearshore site (Cheeca Rocks, CR) and an offshore site (Horseshoe Reef, HR), in two different years (2019, 2021). We then subjected these aposymbiotic larvae to severe (36°C) and moderate (32°C) heat challenges to quantify their thermal tolerance. Contrary to our expectation based on patterns of adult thermal tolerance, HR purebred larvae survived better and exhibited gene expression profiles that were less driven by stress response under elevated temperature compared to purebred CR and hybrid larvae. One potential explanation could be the compromised reproductive output of CR adult colonies due to repeated summer bleaching events in 2018 and 2019, as gametes originating from CR in 2019 contained less storage lipids than those from HR. These findings provide an important counter-example to the current selective breeding paradigm, that more tolerant parents will yield more tolerant offspring, and highlight the importance of adopting a holistic approach when evaluating larval quality for conservation and restoration purposes.
Collapse
Affiliation(s)
- Yingqi Zhang
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Shelby E Gantt
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Elise F Keister
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Holland Elder
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Graham Kolodziej
- University of Miami, Cooperative Institute for Marine and Atmospheric Studies, Miami, Florida, USA
- Ocean Chemistry and Ecosystems Division, NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida, USA
| | - Catalina Aguilar
- University of Miami, Cooperative Institute for Marine and Atmospheric Studies, Miami, Florida, USA
- Ocean Chemistry and Ecosystems Division, NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida, USA
| | - Michael S Studivan
- University of Miami, Cooperative Institute for Marine and Atmospheric Studies, Miami, Florida, USA
- Ocean Chemistry and Ecosystems Division, NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida, USA
| | - Dana E Williams
- Population and Ecosystem Monitoring Division, NOAA Southeast Fisheries Science Center, Miami, Florida, USA
| | - Dustin W Kemp
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Derek P Manzello
- Coral Reef Watch, Satellite Oceanography and Climatology Division, Center for Satellite Applications and Research, U.S. National Oceanic and Atmospheric Administration, College Park, Maryland, USA
| | - Ian C Enochs
- Ocean Chemistry and Ecosystems Division, NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida, USA
| | - Carly D Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
28
|
Khen A, Wall CB, Smith JE. Standardization of in situ coral bleaching measurements highlights the variability in responses across genera, morphologies, and regions. PeerJ 2023; 11:e16100. [PMID: 37810774 PMCID: PMC10552771 DOI: 10.7717/peerj.16100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023] Open
Abstract
Marine heatwaves and regional coral bleaching events have become more frequent and severe across the world's oceans over the last several decades due to global climate change. Observational studies have documented spatiotemporal variation in the responses of reef-building corals to thermal stress within and among taxa across geographic scales. Although many tools exist for predicting, detecting, and quantifying coral bleaching, it remains difficult to compare bleaching severity (e.g., percent cover of bleached surface areas) among studies and across species or regions. For this review, we compiled over 2,100 in situ coral bleaching observations representing 87 reef-building coral genera and 250 species of common morphological groups from a total of 74 peer-reviewed scientific articles, encompassing three broad geographic regions (Atlantic, Indian, and Pacific Oceans). While bleaching severity was found to vary by region, genus, and morphology, we found that both genera and morphologies responded differently to thermal stress across regions. These patterns were complicated by (i) inconsistent methods and response metrics across studies; (ii) differing ecological scales of observations (i.e., individual colony-level vs. population or community-level); and (iii) temporal variability in surveys with respect to the onset of thermal stress and the chronology of bleaching episodes. To improve cross-study comparisons, we recommend that future surveys prioritize measuring bleaching in the same individual coral colonies over time and incorporate the severity and timing of warming into their analyses. By reevaluating and standardizing the ways in which coral bleaching is quantified, researchers will be able to track responses to marine heatwaves with increased rigor, precision, and accuracy.
Collapse
Affiliation(s)
- Adi Khen
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States of America
| | - Christopher B. Wall
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Jennifer E. Smith
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
29
|
Dellaert Z, Putnam HM. Reconciling the variability in the biological response of marine invertebrates to climate change. J Exp Biol 2023; 226:jeb245834. [PMID: 37655544 DOI: 10.1242/jeb.245834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
As climate change increases the rate of environmental change and the frequency and intensity of disturbance events, selective forces intensify. However, given the complicated interplay between plasticity and selection for ecological - and thus evolutionary - outcomes, understanding the proximate signals, molecular mechanisms and the role of environmental history becomes increasingly critical for eco-evolutionary forecasting. To enhance the accuracy of our forecasting, we must characterize environmental signals at a level of resolution that is relevant to the organism, such as the microhabitat it inhabits and its intracellular conditions, while also quantifying the biological responses to these signals in the appropriate cells and tissues. In this Commentary, we provide historical context to some of the long-standing challenges in global change biology that constrain our capacity for eco-evolutionary forecasting using reef-building corals as a focal model. We then describe examples of mismatches between the scales of external signals relative to the sensors and signal transduction cascades that initiate and maintain cellular responses. Studying cellular responses at this scale is crucial because these responses are the basis of acclimation to changing environmental conditions and the potential for environmental 'memory' of prior or historical conditions through molecular mechanisms. To challenge the field, we outline some unresolved questions and suggest approaches to align experimental work with an organism's perception of the environment; these aspects are discussed with respect to human interventions.
Collapse
Affiliation(s)
- Zoe Dellaert
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Rd, Kingston, RI 02881, USA
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Rd, Kingston, RI 02881, USA
| |
Collapse
|
30
|
Lachs L, Donner SD, Mumby PJ, Bythell JC, Humanes A, East HK, Guest JR. Emergent increase in coral thermal tolerance reduces mass bleaching under climate change. Nat Commun 2023; 14:4939. [PMID: 37607913 PMCID: PMC10444816 DOI: 10.1038/s41467-023-40601-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023] Open
Abstract
Recurrent mass bleaching events threaten the future of coral reefs. To persist under climate change, corals will need to endure progressively more intense and frequent marine heatwaves, yet it remains unknown whether their thermal tolerance can keep pace with warming. Here, we reveal an emergent increase in the thermal tolerance of coral assemblages at a rate of 0.1 °C/decade for a remote Pacific coral reef system. This led to less severe bleaching impacts than would have been predicted otherwise, indicating adaptation, acclimatisation or shifts in community structure. Using future climate projections, we show that if thermal tolerance continues to rise over the coming century at the most-likely historic rate, substantial reductions in bleaching trajectories are possible. High-frequency bleaching can be fully mitigated at some reefs under low-to-middle emissions scenarios, yet can only be delayed under high emissions scenarios. Collectively, our results indicate a potential ecological resilience to climate change, but still highlight the need for reducing carbon emissions in line with Paris Agreement commitments to preserve coral reefs.
Collapse
Affiliation(s)
- Liam Lachs
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.
- Institute of Resources, Environment and Sustainability, and Department of Geography, University of British Columbia, Vancouver, BC, Canada.
| | - Simon D Donner
- Institute of Resources, Environment and Sustainability, and Department of Geography, University of British Columbia, Vancouver, BC, Canada
| | - Peter J Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
- Palau International Coral Reef Center, Koror, Palau
| | - John C Bythell
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Adriana Humanes
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Holly K East
- Department of Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - James R Guest
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
31
|
Starko S, Fifer JE, Claar DC, Davies SW, Cunning R, Baker AC, Baum JK. Marine heatwaves threaten cryptic coral diversity and erode associations among coevolving partners. SCIENCE ADVANCES 2023; 9:eadf0954. [PMID: 37566650 PMCID: PMC10421036 DOI: 10.1126/sciadv.adf0954] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 07/12/2023] [Indexed: 08/13/2023]
Abstract
Climate change-amplified marine heatwaves can drive extensive mortality in foundation species. However, a paucity of longitudinal genomic datasets has impeded understanding of how these rapid selection events alter cryptic genetic structure. Heatwave impacts may be exacerbated in species that engage in obligate symbioses, where the genetics of multiple coevolving taxa may be affected. Here, we tracked the symbiotic associations of reef-building corals for 6 years through a prolonged heatwave, including known survivorship for 79 of 315 colonies. Coral genetics strongly predicted survival of the ubiquitous coral, Porites (massive growth form), with variable survival (15 to 61%) across three morphologically indistinguishable-but genetically distinct-lineages. The heatwave also disrupted strong associations between these coral lineages and their algal symbionts (family Symbiodiniaceae), with symbiotic turnover in some colonies, resulting in reduced specificity across lineages. These results highlight how heatwaves can threaten cryptic genotypes and decouple otherwise tightly coevolved relationships between hosts and symbionts.
Collapse
Affiliation(s)
- Samuel Starko
- Department of Biology, University of Victoria, PO Box 1700 Station CSC, Victoria, British Columbia V8W 2Y2, Canada
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - James E. Fifer
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Danielle C. Claar
- Department of Biology, University of Victoria, PO Box 1700 Station CSC, Victoria, British Columbia V8W 2Y2, Canada
- Washington Department of Natural Resources, Olympia, WA 98504, USA
| | - Sarah W. Davies
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Ross Cunning
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, 1200 South Lake Shore Drive, Chicago, IL 60605, USA
| | - Andrew C. Baker
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| | - Julia K. Baum
- Department of Biology, University of Victoria, PO Box 1700 Station CSC, Victoria, British Columbia V8W 2Y2, Canada
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| |
Collapse
|
32
|
Richards TJ, McGuigan K, Aguirre JD, Humanes A, Bozec YM, Mumby PJ, Riginos C. Moving beyond heritability in the search for coral adaptive potential. GLOBAL CHANGE BIOLOGY 2023; 29:3869-3882. [PMID: 37310164 DOI: 10.1111/gcb.16719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 06/14/2023]
Abstract
Global environmental change is happening at unprecedented rates. Coral reefs are among the ecosystems most threatened by global change. For wild populations to persist, they must adapt. Knowledge shortfalls about corals' complex ecological and evolutionary dynamics, however, stymie predictions about potential adaptation to future conditions. Here, we review adaptation through the lens of quantitative genetics. We argue that coral adaptation studies can benefit greatly from "wild" quantitative genetic methods, where traits are studied in wild populations undergoing natural selection, genomic relationship matrices can replace breeding experiments, and analyses can be extended to examine genetic constraints among traits. In addition, individuals with advantageous genotypes for anticipated future conditions can be identified. Finally, genomic genotyping supports simultaneous consideration of how genetic diversity is arrayed across geographic and environmental distances, providing greater context for predictions of phenotypic evolution at a metapopulation scale.
Collapse
Affiliation(s)
- Thomas J Richards
- School of Biological Sciences, The University of Queensland, Queensland, St Lucia, Australia
| | - Katrina McGuigan
- School of Biological Sciences, The University of Queensland, Queensland, St Lucia, Australia
| | - J David Aguirre
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | - Adriana Humanes
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Yves-Marie Bozec
- School of Biological Sciences, The University of Queensland, Queensland, St Lucia, Australia
| | - Peter J Mumby
- School of Biological Sciences, The University of Queensland, Queensland, St Lucia, Australia
| | - Cynthia Riginos
- School of Biological Sciences, The University of Queensland, Queensland, St Lucia, Australia
| |
Collapse
|
33
|
Contardi M, Fadda M, Isa V, Louis YD, Madaschi A, Vencato S, Montalbetti E, Bertolacci L, Ceseracciu L, Seveso D, Lavorano S, Galli P, Athanassiou A, Montano S. Biodegradable Zein-Based Biocomposite Films for Underwater Delivery of Curcumin Reduce Thermal Stress Effects in Corals. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37376819 PMCID: PMC10360034 DOI: 10.1021/acsami.3c01166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Massive coral bleaching episodes induced by thermal stress are one of the first causes of coral death worldwide. Overproduction of reactive oxygen species (ROS) has been identified as one of the potential causes of symbiosis breakdown between polyps and algae in corals during extreme heat wave events. Here, we propose a new strategy for mitigating heat effects by delivering underwater an antioxidant to the corals. We fabricated zein/polyvinylpyrrolidone (PVP)-based biocomposite films laden with the strong and natural antioxidant curcumin as an advanced coral bleaching remediation tool. Biocomposites' mechanical, water contact angle (WCA), swelling, and release properties can be tuned thanks to different supramolecular rearrangements that occur by varying the zein/PVP weight ratio. Following immersion in seawater, the biocomposites became soft hydrogels that did not affect the coral's health in the short (24 h) and long periods (15 days). Laboratory bleaching experiments at 29 and 33 °C showed that coral colonies of Stylophora pistillata coated with the biocomposites had ameliorated conditions in terms of morphological aspects, chlorophyll content, and enzymatic activity compared to untreated colonies and did not bleach. Finally, biochemical oxygen demand (BOD) confirmed the full biodegradability of the biocomposites, showing a low potential environmental impact in the case of open-field application. These insights may pave the way for new frontiers in mitigating extreme coral bleaching events by combining natural antioxidants and biocomposites.
Collapse
Affiliation(s)
- Marco Contardi
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Marta Fadda
- Smart Materials, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Valerio Isa
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Yohan D Louis
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Andrea Madaschi
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Sara Vencato
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Enrico Montalbetti
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Laura Bertolacci
- Smart Materials, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Luca Ceseracciu
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Davide Seveso
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Silvia Lavorano
- Costa Edutainment SpA - Acquario di Genova, Genova 16128, Italy
| | - Paolo Galli
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
- Dubai Business School, University of Dubai, Dubai 14143, United Arab Emirates
| | | | - Simone Montano
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| |
Collapse
|
34
|
Ashraf N, Anas A, Sukumaran V, Gopinath G, Idrees Babu KK, Dinesh Kumar PK. Recent advancements in coral health, microbiome interactions and climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163085. [PMID: 36996987 DOI: 10.1016/j.scitotenv.2023.163085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 05/13/2023]
Abstract
Corals are the visible indicators of the disasters induced by global climate change and anthropogenic activities and have become a highly vulnerable ecosystem on the verge of extinction. Multiple stressors could act individually or synergistically which results in small to large scale tissue degradation, reduced coral covers, and makes the corals vulnerable to various diseases. The coralline diseases are like the Chicken pox in humans because they spread hastily throughout the coral ecosystem and can devastate the coral cover formed over centuries in an abbreviated time. The extinction of the entire reef ecosystem will alter the ocean and earth's amalgam of biogeochemical cycles causing a threat to the entire planet. The current manuscript provides an overview of the recent advancement in coral health, microbiome interactions and climate change. Culture dependent and independent approaches in studying the microbiome of corals, the diseases caused by microorganisms, and the reservoirs of coral pathogens are also discussed. Finally, we discuss the possibilities of protecting the coral reefs from diseases through microbiome transplantation and the capabilities of remote sensing in monitoring their health status.
Collapse
Affiliation(s)
- Nizam Ashraf
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682018, India
| | - Abdulaziz Anas
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682018, India.
| | - Vrinda Sukumaran
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682018, India
| | - Girish Gopinath
- Department of Climate Variability and Aquatic Ecosystems, Kerala University of Fisheries and Ocean Studies (KUFOS), Puduvypu Campus, Kochi 682 508, India
| | - K K Idrees Babu
- Department of Science and Technology, Kavaratti, Lakshadweep 682555, India
| | - P K Dinesh Kumar
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682018, India
| |
Collapse
|
35
|
de Souza MR, Caruso C, Ruiz-Jones L, Drury C, Gates RD, Toonen RJ. Importance of depth and temperature variability as drivers of coral symbiont composition despite a mass bleaching event. Sci Rep 2023; 13:8957. [PMID: 37268692 DOI: 10.1038/s41598-023-35425-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 05/17/2023] [Indexed: 06/04/2023] Open
Abstract
Coral reefs are iconic examples of climate change impacts because climate-induced heat stress causes the breakdown of the coral-algal symbiosis leading to a spectacular loss of color, termed 'coral bleaching'. To examine the fine-scale dynamics of this process, we re-sampled 600 individually marked Montipora capitata colonies from across Kāne'ohe Bay, Hawai'i and compared the algal symbiont composition before and after the 2019 bleaching event. The relative proportion of the heat-tolerant symbiont Durusdinium in corals increased in most parts of the bay following the bleaching event. Despite this widespread increase in abundance of Durusdinium, the overall algal symbiont community composition was largely unchanged, and hydrodynamically defined regions of the bay retained their distinct pre-bleaching compositions. We explain ~ 21% of the total variation, of which depth and temperature variability were the most significant environmental drivers of Symbiodiniaceae community composition by site regardless of bleaching intensity or change in relative proportion of Durusdinium. We hypothesize that the plasticity of symbiont composition in corals may be constrained to adaptively match the long-term environmental conditions surrounding the holobiont, despite an individual coral's stress and bleaching response.
Collapse
Affiliation(s)
- Mariana Rocha de Souza
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA.
| | - Carlo Caruso
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Lupita Ruiz-Jones
- Chaminade University of Honolulu, 3140 Waialae Ave, Honolulu, HI, 96816, USA
| | - Crawford Drury
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Ruth D Gates
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| |
Collapse
|
36
|
Hazraty-Kari S, Morita M, Tavakoli-Kolour P, Harii S. Response of resistant larvae of the coral Acropora tenuis to future thermal stress. MARINE POLLUTION BULLETIN 2023; 192:115060. [PMID: 37207392 DOI: 10.1016/j.marpolbul.2023.115060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
Seawater temperatures are rising rapidly and severely due to climate change, negatively affecting coral reef communities. The persistence of coral populations depends on their success during the early life stages. Thermal conditioning during the larval stage can increase coral larvae's ability to tolerate high temperatures in subsequent stages. We studied the response of resistant larvae of Acropora tenuis to thermal stress to increase their thermal tolerance during the juvenile stage. Larvae were exposed to ambient (∼26 °C) and thermal stress (∼31 °C) temperatures. Then, settlement success on preconditioned tiles was determined. After 28 days at ambient temperature, the juveniles were exposed to thermal stress for 14 days, and their survival was assessed. Our results showed that thermal stress in the larval stage did not alter the thermal tolerance of juveniles, and they could not acclimate to heat stress. As a result, the summer's heat waves could potentially threaten their resilience.
Collapse
Affiliation(s)
- Sanaz Hazraty-Kari
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.
| | - Masaya Morita
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | | | - Saki Harii
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.
| |
Collapse
|
37
|
Shlesinger T, van Woesik R. Oceanic differences in coral-bleaching responses to marine heatwaves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162113. [PMID: 36773903 DOI: 10.1016/j.scitotenv.2023.162113] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Anomalously high ocean temperatures have increased in frequency, intensity, and duration over the last several decades because of greenhouse gas emissions that cause global warming and marine heatwaves. Reef-building corals are sensitive to such temperature anomalies that commonly lead to coral bleaching, mortality, and changes in community structure. Yet, despite these overarching effects, there are geographical differences in thermal regimes, evolutionary histories, and past disturbances that may lead to different bleaching responses of corals within and among oceans. Here we examined the overall bleaching responses of corals in the Atlantic, Indian, and Pacific Oceans, using both a spatially explicit Bayesian mixed-effects model and a deep-learning neural-network model. We used a 40-year global dataset encompassing 23,288 coral-reef surveys at 11,058 sites in 88 countries, from 1980 to 2020. Focusing on ocean-wide differences we assessed the relationships between the percentage of bleached corals and different temperature-related metrics alongside a suite of environmental variables. We found that while high sea-surface temperatures were consistently, and strongly, related to coral bleaching within all oceans, there were clear geographical differences in the relationships between coral bleaching and most environmental variables. For instance, there was an increase in coral bleaching with depth in the Atlantic Ocean whereas the opposite was observed in the Indian Ocean, and no clear trend could be seen in the Pacific Ocean. The standard deviation of thermal-stress anomalies was negatively related to coral bleaching in the Atlantic and Pacific Oceans, but not in the Indian Ocean. Globally, coral bleaching has progressively occurred at higher temperatures over the last four decades within the Atlantic, Indian, and Pacific Oceans, although, again, there were differences among the three oceans. Together, such patterns highlight that historical circumstances and geographical differences in oceanographic conditions play a central role in contemporary coral-bleaching responses.
Collapse
Affiliation(s)
- Tom Shlesinger
- Institute for Global Ecology, Florida Institute of Technology, Melbourne 32901, FL, USA
| | - Robert van Woesik
- Institute for Global Ecology, Florida Institute of Technology, Melbourne 32901, FL, USA.
| |
Collapse
|
38
|
Burn D, Hoey AS, Matthews S, Harrison HB, Pratchett MS. Differential bleaching susceptibility among coral taxa and colony sizes, relative to bleaching severity across Australia's Great Barrier Reef and Coral Sea Marine Parks. MARINE POLLUTION BULLETIN 2023; 191:114907. [PMID: 37080018 DOI: 10.1016/j.marpolbul.2023.114907] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
Climate-induced coral bleaching represents the foremost threat to coral assemblages globally, however bleaching susceptibility varies among and within coral taxa. We compared bleaching susceptibility among 10 coral morpho-taxa and two colony size classes relative to reef-scale bleaching severity at 33 reefs across the Great Barrier Reef and Coral Sea Marine Parks in February-March 2020. Colony size and bleaching severity caused the hierarchy of bleaching susceptibility among taxa to change considerably. Notably, massive Porites shifted from being among the least likely taxa to exhibit bleaching, to among the most susceptible as overall bleaching severity increased. Juvenile corals (≤5 cm diameter) were generally more resistant to bleaching, except for Montipora and Pocillopora colonies, which were more likely to bleach than adults (>5 cm). These findings suggest that colony size and reef-scale bleaching severity are important determinants of bleaching susceptibility among taxa and provide insights into possible shifts in the structure of coral assemblages caused by bleaching events.
Collapse
Affiliation(s)
- D Burn
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| | - A S Hoey
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - S Matthews
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - H B Harrison
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - M S Pratchett
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
39
|
Hazraty-Kari S, Morita M, Tavakoli-Kolour P, Nakamura T, Harii S. Reactions of juvenile coral to three years of consecutive thermal stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:161227. [PMID: 36586691 DOI: 10.1016/j.scitotenv.2022.161227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/06/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
As global temperatures continue to rise, corals are being exposed to increasing heat stress throughout their early life stages; however, the impact of this phenomenon is poorly understood. We exposed the reef-building coral Acropora tenuis juveniles to ∼26-28 °C (control) and ∼ 31 °C (heat stress) for one week per year over three consecutive years. In the first year of heat stress, >96 % of juveniles survived despite symbiotic algal densities in juvenile corals declining. In comparison, survival rates in the third year of heat stress declined to 50 %. Survival rates under natural conditions after stress also gradually decreased in the stressed groups. The rate in the reduction of survivorship was prominent in the consecutive thermally stressed groups (juveniles stressed twice in two years). Symbiotic algal density and photosynthetic activity (Fv/Fm) also declined in stressed juvenile groups. However, heat stress did not significantly affect the growth of juveniles. In the third year of heat stress, temperature negatively affected the physiology of juveniles in terms of survivorship, brightness (an indicator of bleaching), symbiotic algal density, and photosynthetic efficiency. Stress across consecutive years appeared to cause the survivorship of juvenile corals to decline, with three years of stress contributing to the severe decline of a reef. In conclusion, A. tenuis juveniles are not able to acclimatize to heat stress, with successive heat waves of <7 days in the summer potentially negatively affecting resilience.
Collapse
Affiliation(s)
- Sanaz Hazraty-Kari
- Graduate School of Engineering and Science, University of the Ryukyus, Okinawa, Japan.
| | - Masaya Morita
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | | | - Takashi Nakamura
- Graduate School of Engineering and Science, University of the Ryukyus, Okinawa, Japan; Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Saki Harii
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.
| |
Collapse
|
40
|
Thirukanthan CS, Azra MN, Lananan F, Sara’ G, Grinfelde I, Rudovica V, Vincevica-Gaile Z, Burlakovs J. The Evolution of Coral Reef under Changing Climate: A Scientometric Review. Animals (Basel) 2023; 13:ani13050949. [PMID: 36899805 PMCID: PMC10000160 DOI: 10.3390/ani13050949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
In this scientometric review, we employ the Web of Science Core Collection to assess current publications and research trends regarding coral reefs in relation to climate change. Thirty-seven keywords for climate change and seven keywords for coral reefs were used in the analysis of 7743 articles on coral reefs and climate change. The field entered an accelerated uptrend phase in 2016, and it is anticipated that this phase will last for the next 5 to 10 years of research publication and citation. The United States and Australia have produced the greatest number of publications in this field. A cluster (i.e., focused issue) analysis showed that coral bleaching dominated the literature from 2000 to 2010, ocean acidification from 2010 to 2020, and sea-level rise, as well as the central Red Sea (Africa/Asia), in 2021. Three different types of keywords appear in the analysis based on which are the (i) most recent (2021), (ii) most influential (highly cited), and (iii) mostly used (frequently used keywords in the article) in the field. The Great Barrier Reef, which is found in the waters of Australia, is thought to be the subject of current coral reef and climate change research. Interestingly, climate-induced temperature changes in "ocean warming" and "sea surface temperature" are the most recent significant and dominant keywords in the coral reef and climate change area.
Collapse
Affiliation(s)
- Chandra Segaran Thirukanthan
- Institute of Marine Biotechnology (IMB), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21030, Terengganu, Malaysia
| | - Mohamad Nor Azra
- Institute of Marine Biotechnology (IMB), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21030, Terengganu, Malaysia
- Research Center for Marine and Land Bioindustry, Earth Sciences and Maritime Organization, National Research and Innovation Agency (BRIN), Pemenang 83352, Indonesia
- Correspondence: (M.N.A.); (J.B.); Tel.: +609-6683785 (M.N.A.)
| | - Fathurrahman Lananan
- East Coast Environmental Research Institute, Universiti Sultan Zainal Abidin (UniSZA), Gong Badak Campus, Kuala Nerus 21300, Terengganu, Malaysia
| | - Gianluca Sara’
- Laboratory of Ecology, Earth and Marine Sciences Department, University of Palermo, 90133 Palermo, Italy
| | - Inga Grinfelde
- Laboratory of Forest and Water Resources, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia
| | - Vite Rudovica
- Department of Analytical Chemistry, University of Latvia, LV-1004 Riga, Latvia
| | | | - Juris Burlakovs
- Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, 31-261 Krakow, Poland
- Correspondence: (M.N.A.); (J.B.); Tel.: +609-6683785 (M.N.A.)
| |
Collapse
|
41
|
Singh T, Sakai K, Ishida-Castañeda J, Iguchi A. Short-term improvement of heat tolerance in naturally growing Acropora corals in Okinawa. PeerJ 2023; 11:e14629. [PMID: 36627918 PMCID: PMC9826613 DOI: 10.7717/peerj.14629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/02/2022] [Indexed: 01/06/2023] Open
Abstract
Mass bleaching and subsequent mortality of reef corals by heat stress has increased globally since the late 20th century, due to global warming. Some experimental studies have reported that corals may increase heat tolerance for short periods, but only a few such studies have monitored naturally-growing colonies. Therefore, we monitored the survival, growth, and bleaching status of Acropora corals in fixed plots by distinguishing individual colonies on a heat-sensitive reef flat in Okinawa, Japan. The level of heat stress, assessed by the modified version of degree heating week duration in July and August, when the seawater temperature was the highest, was minimally but significantly higher in 2017 than in 2016; however, the same colonies exhibited less bleaching and mortality in 2017 than in 2016. Another study conducted at the same site showed that the dominant unicellular endosymbiotic algal species did not change before and after the 2016 bleaching, indicating that shifting and switching of the Symbiodiniaceae community did not contribute to improved heat tolerance. Colonies that suffered from partial mortality in 2016 were completely bleached at higher rates in 2017 than those without partial mortality in 2016. The present results suggest that either genetic or epigenetic changes in coral hosts and/or algal symbionts, or the shifting or switching of microbes other than endosymbionts, may have improved coral holobiont heat tolerance.
Collapse
Affiliation(s)
- Tanya Singh
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Motobu, Okinawa, Japan
| | - Kazuhiko Sakai
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Motobu, Okinawa, Japan
| | - Jun Ishida-Castañeda
- Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan,Research Laboratory on Environmentally-Conscious Developments and Technologies [E-code], National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| |
Collapse
|
42
|
Marzonie MR, Bay LK, Bourne DG, Hoey AS, Matthews S, Nielsen JJV, Harrison HB. The effects of marine heatwaves on acute heat tolerance in corals. GLOBAL CHANGE BIOLOGY 2023; 29:404-416. [PMID: 36285622 PMCID: PMC10092175 DOI: 10.1111/gcb.16473] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/16/2022] [Accepted: 09/16/2022] [Indexed: 05/19/2023]
Abstract
Scleractinian coral populations are increasingly exposed to conditions above their upper thermal limits due to marine heatwaves, contributing to global declines of coral reef ecosystem health. However, historic mass bleaching events indicate there is considerable inter- and intra-specific variation in thermal tolerance whereby species, individual coral colonies and populations show differential susceptibility to exposure to elevated temperatures. Despite this, we lack a clear understanding of how heat tolerance varies across large contemporary and historical environmental gradients, or the selective pressures that underpin this variation. Here we conducted standardised acute heat stress experiments to identify variation in heat tolerance among species and isolated reefs spanning a large environmental gradient across the Coral Sea Marine Park. We quantified the photochemical yield (Fv /Fm ) of coral samples in three coral species, Acropora cf humilis, Pocillopora meandrina, and Pocillopora verrucosa, following exposure to four temperature treatments (local ambient temperatures, and + 3°C, +6°C and + 9°C above local maximum monthly mean). We quantified the temperature at which Fv /Fm decreased by 50% (termed ED50) and used derived values to directly compare acute heat tolerance across reefs and species. The ED50 for Acropora was 0.4-0.7°C lower than either Pocillopora species, with a 0.3°C difference between the two Pocillopora species. We also recorded 0.9°C to 1.9°C phenotypic variation in heat tolerance among reefs within species, indicating spatial heterogeneity in heat tolerance across broad environmental gradients. Acute heat tolerance had a strong positive relationship to mild heatwave exposure over the past 35 years (since 1986) but was negatively related to recent severe heatwaves (2016-2020). Phenotypic variation associated with mild thermal history in local environments provides supportive evidence that marine heatwaves are selecting for tolerant individuals and populations; however, this adaptive potential may be compromised by the exposure to recent severe heatwaves.
Collapse
Affiliation(s)
- Magena R. Marzonie
- Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- AIMS@JCUTownsvilleQueenslandAustralia
| | - Line K. Bay
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- AIMS@JCUTownsvilleQueenslandAustralia
| | - David G. Bourne
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | - Andrew S. Hoey
- Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Samuel Matthews
- Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Josephine J. V. Nielsen
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- AIMS@JCUTownsvilleQueenslandAustralia
- College of Public Health, Medical and Veterinary SciencesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Hugo B. Harrison
- Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- AIMS@JCUTownsvilleQueenslandAustralia
| |
Collapse
|
43
|
Brown KT, Barott KL. The Costs and Benefits of Environmental Memory for Reef-Building Corals Coping with Recurring Marine Heatwaves. Integr Comp Biol 2022; 62:1748-1755. [PMID: 35661887 DOI: 10.1093/icb/icac074] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 01/05/2023] Open
Abstract
Marine heatwaves are occurring more frequently as climate change intensifies, resulting in global mass coral bleaching events several times per decade. Despite the time between marine heatwaves decreasing, there is evidence that reef-building corals can develop increased bleaching resistance across repetitive marine heatwaves. This phenomenon of acclimatization via environmental memory may be an important strategy to ensure coral persistence; however, we still understand very little about the apparent acclimatization or, conversely, sensitization (i.e., stress accumulation or weakening) of reef-building corals to consecutive heatwaves and its implications for the trajectory and resilience of coral reefs. Here, we highlight that not only will some corals become stress hardened via marine heatwaves, but many other individuals will suffer sensitization during repeat heatwaves that further exacerbates their stress response during repeat events and depresses fitness. Under current and predicted climate change, it is necessary to gain a better understanding of the acclimatization vs. sensitization trajectories of different species and individuals on the reef, as well as identify whether changes in bleaching susceptibility relates to physiological acclimatization, trade-offs with other biological processes, and ultimately coral persistence in the Anthropocene.
Collapse
Affiliation(s)
- Kristen T Brown
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.,School of Biological Sciences, University of Queensland, St. Lucia , QLD 4072, Australia
| | - Katie L Barott
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
44
|
Novi L, Bracco A. Machine learning prediction of connectivity, biodiversity and resilience in the Coral Triangle. Commun Biol 2022; 5:1359. [PMID: 36496519 PMCID: PMC9741626 DOI: 10.1038/s42003-022-04330-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Even optimistic climate scenarios predict catastrophic consequences for coral reef ecosystems by 2100. Understanding how reef connectivity, biodiversity and resilience are shaped by climate variability would improve chances to establish sustainable management practices. In this regard, ecoregionalization and connectivity are pivotal to designating effective marine protected areas. Here, machine learning algorithms and physical intuition are applied to sea surface temperature anomaly data over a twenty-four-year period to extract ecoregions and assess connectivity and bleaching recovery potential in the Coral Triangle and surrounding oceans. Furthermore, the impacts of the El Niño Southern Oscillation (ENSO) on biodiversity and resilience are quantified. We find that resilience is higher for reefs north of the Equator and that the extraordinary biodiversity of the Coral Triangle is dynamic in time and space, and benefits from ENSO. The large-scale exchange of genetic material is enhanced between the Indian Ocean and the Coral Triangle during La Niña years, and between the Coral Triangle and the central Pacific in neutral conditions. Through machine learning the outstanding biodiversity of the Coral Triangle, its evolution and the increase of species richness are contextualized through geological times, while offering new hope for monitoring its future.
Collapse
Affiliation(s)
- Lyuba Novi
- grid.213917.f0000 0001 2097 4943School of Earth and Atmospheric Sciences and Program in Ocean Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Annalisa Bracco
- grid.213917.f0000 0001 2097 4943School of Earth and Atmospheric Sciences and Program in Ocean Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| |
Collapse
|
45
|
McLeod IM, Hein MY, Babcock R, Bay L, Bourne DG, Cook N, Doropoulos C, Gibbs M, Harrison P, Lockie S, van Oppen MJH, Mattocks N, Page CA, Randall CJ, Smith A, Smith HA, Suggett DJ, Taylor B, Vella KJ, Wachenfeld D, Boström-Einarsson L. Coral restoration and adaptation in Australia: The first five years. PLoS One 2022; 17:e0273325. [PMID: 36449458 PMCID: PMC9710771 DOI: 10.1371/journal.pone.0273325] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
While coral reefs in Australia have historically been a showcase of conventional management informed by research, recent declines in coral cover have triggered efforts to innovate and integrate intervention and restoration actions into management frameworks. Here we outline the multi-faceted intervention approaches that have developed in Australia since 2017, from newly implemented in-water programs, research to enhance coral resilience and investigations into socio-economic perspectives on restoration goals. We describe in-water projects using coral gardening, substrate stabilisation, coral repositioning, macro-algae removal, and larval-based restoration techniques. Three areas of research focus are also presented to illustrate the breadth of Australian research on coral restoration, (1) the transdisciplinary Reef Restoration and Adaptation Program (RRAP), one of the world's largest research and development programs focused on coral reefs, (2) interventions to enhance coral performance under climate change, and (3) research into socio-cultural perspectives. Together, these projects and the recent research focus reflect an increasing urgency for action to confront the coral reef crisis, develop new and additional tools to manage coral reefs, and the consequent increase in funding opportunities and management appetite for implementation. The rapid progress in trialling and deploying coral restoration in Australia builds on decades of overseas experience, and advances in research and development are showing positive signs that coral restoration can be a valuable tool to improve resilience at local scales (i.e., high early survival rates across a variety of methods and coral species, strong community engagement with local stakeholders). RRAP is focused on creating interventions to help coral reefs at multiple scales, from micro scales (i.e., interventions targeting small areas within a specific reef site) to large scales (i.e., interventions targeting core ecosystem function and social-economic values at multiple select sites across the Great Barrier Reef) to resist, adapt to and recover from the impacts of climate change. None of these interventions aim to single-handedly restore the entirety of the Great Barrier Reef, nor do they negate the importance of urgent climate change mitigation action.
Collapse
Affiliation(s)
- Ian M. McLeod
- TropWATER (Centre for Tropical Water and Aquatic Ecosystem Research), James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Margaux Y. Hein
- TropWATER (Centre for Tropical Water and Aquatic Ecosystem Research), James Cook University, Townsville, Queensland, Australia
- MER Research and Consulting, The Office, Monaco, Monaco
- * E-mail:
| | - Russ Babcock
- CSIRO Oceans & Atmosphere, St Lucia, Queensland, Australia
| | - Line Bay
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - David G. Bourne
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Australia
| | - Nathan Cook
- TropWATER (Centre for Tropical Water and Aquatic Ecosystem Research), James Cook University, Townsville, Queensland, Australia
- Reef Ecologic, Townsville, Queensland, Australia
| | | | - Mark Gibbs
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Peter Harrison
- Marine Ecology Research Centre, Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Stewart Lockie
- The Cairns Institute, James Cook University, Cairns, Queensland, Australia
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Neil Mattocks
- Great Barrier Reef Marine Park Authority, Townsville, Queensland, Australia
| | - Cathie A. Page
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Carly J. Randall
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Adam Smith
- TropWATER (Centre for Tropical Water and Aquatic Ecosystem Research), James Cook University, Townsville, Queensland, Australia
- Reef Ecologic, Townsville, Queensland, Australia
| | - Hillary A. Smith
- College of Science and Engineering, James Cook University, Townsville, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Randwick, New South Wales, Australia
| | - David J. Suggett
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Bruce Taylor
- Land & Water, Commonwealth Scientific and Industrial Research Organisation, Dutton Park, Queensland, Australia
| | - Karen J. Vella
- School of Architecture and Built Environment, Queensland University of Technology, Brisbane, Australia
| | - David Wachenfeld
- Great Barrier Reef Marine Park Authority, Townsville, Queensland, Australia
| | - Lisa Boström-Einarsson
- TropWATER (Centre for Tropical Water and Aquatic Ecosystem Research), James Cook University, Townsville, Queensland, Australia
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, United Kingdom
| |
Collapse
|
46
|
Brown KT, Eyal G, Dove SG, Barott KL. Fine-scale heterogeneity reveals disproportionate thermal stress and coral mortality in thermally variable reef habitats during a marine heatwave. CORAL REEFS (ONLINE) 2022; 42:131-142. [PMID: 36415309 PMCID: PMC9672654 DOI: 10.1007/s00338-022-02328-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED Increasing ocean temperatures threaten coral reefs globally, but corals residing in habitats that experience high thermal variability are thought to be better adapted to survive climate-induced heat stress. Here, we used long-term ecological observations and in situ temperature data from Heron Island, southern Great Barrier Reef to investigate how temperature dynamics within various thermally variable vs. thermally stable reef habitats change during a marine heatwave and the resulting consequences for coral community survival. During the heatwave, thermally variable habitats experienced larger surges in daily mean and maxima temperatures compared to stable sites, including extreme hourly incursions up to 36.5 °C. The disproportionate increase in heat stress in variable habitats corresponded with greater subsequent declines in hard coral cover, including a three-times greater decline within the thermally variable Reef Flat (70%) and Deep Lagoon (83%) than within thermally stable habitats along sheltered and exposed areas of the reef slope (0.3-19%). Interestingly, the thermally variable Reef Crest experienced comparatively small declines (26%), avoiding the most severe tidal ponding and resultant heat stress likely due to proximity to the open ocean equating to lower seawater residence times, greater mixing, and/or increased flow. These results highlight that variable thermal regimes, and any acclimatization or adaptation to elevated temperatures that may lead to, do not necessarily equate to protection against bleaching and mortality during marine heatwaves. Instead, thermally stable habitats that have greater seawater exchange with the open ocean may offer the most protection to corals during the severe marine heatwaves that accompany a changing climate. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00338-022-02328-6.
Collapse
Affiliation(s)
- Kristen T. Brown
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104 USA
- School of Biological Sciences and ARC Centre of Excellence for Coral Reef Studies, University of Queensland, St. Lucia, QLD 4072 Australia
| | - Gal Eyal
- School of Biological Sciences and ARC Centre of Excellence for Coral Reef Studies, University of Queensland, St. Lucia, QLD 4072 Australia
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002 Ramat Gan, Israel
| | - Sophie G. Dove
- School of Biological Sciences and ARC Centre of Excellence for Coral Reef Studies, University of Queensland, St. Lucia, QLD 4072 Australia
| | - Katie L. Barott
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
47
|
Pei JY, Yu WF, Zhang JJ, Kuo TH, Chung HH, Hu JJ, Hsu CC, Yu KF. Mass spectrometry-based metabolomic signatures of coral bleaching under thermal stress. Anal Bioanal Chem 2022; 414:7635-7646. [PMID: 36059041 DOI: 10.1007/s00216-022-04294-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022]
Abstract
Coral bleaching caused by climate change has resulted in large-scale coral reef decline worldwide. However, the knowledge of physiological response mechanisms of scleractinian corals under high-temperature stress is still challenging. Here, untargeted mass spectrometry-based metabolomics combining with Global Natural Product Social Molecular Networking (GNPS) was utilized to investigate the physiological response of the coral species Pavona decussata under thermal stress. A wide variety of metabolites (including lipids, fatty acids, amino acids, peptides, osmolytes) were identified as the potential biomarkers and subjected to metabolic pathway enrichment analysis. We discovered that, in the thermal-stressed P. decussata coral holobiont, (1) numerous metabolites in classes of lipids and amino acids significantly decreased, indicating an enhanced lipid hydrolysis and aminolysis that contributed to up-regulation in gluconeogenesis to meet energy demand for basic survival; (2) pantothenate and panthenol, two essential intermediates in tricarboxylic acid (TCA) cycle, were up-regulated, implying enhanced efficiency in energy production; (3) small peptides (e.g., Glu-Leu and Glu-Glu-Glu-Glu) and lyso-platelet-activating factor (lysoPAF) possibly implicated a strengthened coral immune response; (4) the down-regulation of betaine and trimethylamine N-oxide (TMAO), known as osmolyte compounds for maintaining holobiont homeostasis, might be the result of disruption of coral holobiont.
Collapse
Affiliation(s)
- Ji-Ying Pei
- Coral Reef Research Center of China, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China
| | - Wen-Feng Yu
- Coral Reef Research Center of China, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China
| | - Jing-Jing Zhang
- Coral Reef Research Center of China, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China
| | - Ting-Hao Kuo
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Hsin-Hsiang Chung
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Jun-Jie Hu
- Coral Reef Research Center of China, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Ke-Fu Yu
- Coral Reef Research Center of China, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong, 519080, People's Republic of China.
| |
Collapse
|
48
|
Yang F, Wei Z, Long L. Response mechanisms to ocean warming exposure in Effrenium voratum (Symbiodiniaceae). MARINE POLLUTION BULLETIN 2022; 182:114032. [PMID: 35969902 DOI: 10.1016/j.marpolbul.2022.114032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Ocean warming is an extreme environment event that has profound and lasting impacts on Symbiodiniaceae. However, their response mechanisms to elevated temperature exposure are poorly understood. In this study, the physiological and transcriptional responses of Effrenium voratum (Symbiodiniaceae) to ocean warming were examined. After exposure to 30 °C, no significant variations in growth, chlorophyll a, or photosynthetic and respiration rates were observed, while a higher temperature (34 °C) significantly reduced these physiological measurements. Meanwhile, lipid content and fatty acid composition were altered at high temperature (i.e., elevated degree of fatty acid saturation). Such biochemical constituents likely contributed to the mitigation of the negative effects of elevated temperatures. Furthermore, higher expression levels of genes related to the synthesis and elongation of fatty acids were detected at high temperature. The adjustment of lipids and fatty acid composition may be a potential mechanism by which E. voratum may survive under future global warming. ONE SENTENCE SUMMARY: The adjustment of lipids and fatty acid composition may be a potential mechanism by which E. voratum acclimate to future global warming.
Collapse
Affiliation(s)
- Fangfang Yang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Zhangliang Wei
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Lijuan Long
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| |
Collapse
|
49
|
Drury C, Dilworth J, Majerová E, Caruso C, Greer JB. Expression plasticity regulates intraspecific variation in the acclimatization potential of a reef-building coral. Nat Commun 2022; 13:4790. [PMID: 35970904 PMCID: PMC9378650 DOI: 10.1038/s41467-022-32452-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/01/2022] [Indexed: 11/09/2022] Open
Abstract
Phenotypic plasticity is an important ecological and evolutionary response for organisms experiencing environmental change, but the ubiquity of this capacity within coral species and across symbiont communities is unknown. We exposed ten genotypes of the reef-building coral Montipora capitata with divergent symbiont communities to four thermal pre-exposure profiles and quantified gene expression before stress testing 4 months later. Here we show two pre-exposure profiles significantly enhance thermal tolerance despite broadly different expression patterns and substantial variation in acclimatization potential based on coral genotype. There was no relationship between a genotype's basal thermal sensitivity and ability to acquire heat tolerance, including in corals harboring naturally tolerant symbionts, which illustrates the potential for additive improvements in coral response to climate change. These results represent durable improvements from short-term stress hardening of reef-building corals and substantial cryptic complexity in the capacity for plasticity.
Collapse
Affiliation(s)
| | - Jenna Dilworth
- Hawai'i Institute of Marine Biology, Kāne'ohe, HI, USA
- University of Southern California, Los Angeles, CA, USA
| | - Eva Majerová
- Hawai'i Institute of Marine Biology, Kāne'ohe, HI, USA
| | - Carlo Caruso
- Hawai'i Institute of Marine Biology, Kāne'ohe, HI, USA
| | - Justin B Greer
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| |
Collapse
|
50
|
Jackson R, Gabric A. Climate Change Impacts on the Marine Cycling of Biogenic Sulfur: A Review. Microorganisms 2022; 10:1581. [PMID: 36013999 PMCID: PMC9412504 DOI: 10.3390/microorganisms10081581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
A key component of the marine sulfur cycle is the climate-active gas dimethylsulfide (DMS), which is synthesized by a range of organisms from phytoplankton to corals, and accounts for up to 80% of global biogenic sulfur emissions. The DMS cycle starts with the intracellular synthesis of the non-gaseous precursor dimethylsulfoniopropionate (DMSP), which is released to the water column by various food web processes such as zooplankton grazing. This dissolved DMSP pool is rapidly turned over by microbially mediated conversion using two known pathways: demethylation (releasing methanethiol) and cleavage (producing DMS). Some of the formed DMS is ventilated to the atmosphere, where it undergoes rapid oxidation and contributes to the formation of sulfate aerosols, with the potential to affect cloud microphysics, and thus the regional climate. The marine phase cycling of DMS is complex, however, as heterotrophs also contribute to the consumption of the newly formed dissolved DMS. Interestingly, due to microbial consumption and other water column sinks such as photolysis, the amount of DMS that enters the atmosphere is currently thought to be a relatively minor fraction of the total amount cycled through the marine food web-less than 10%. These microbial processes are mediated by water column temperature, but the response of marine microbial assemblages to ocean warming is poorly characterized, although bacterial degradation appears to increase with an increase in temperature. This review will focus on the potential impact of climate change on the key microbially mediated processes in the marine cycling of DMS. It is likely that the impact will vary across different biogeographical regions from polar to tropical. For example, in the rapidly warming polar oceans, microbial communities associated with the DMS cycle will likely change dramatically during the 21st century with the decline in sea ice. At lower latitudes, where corals form an important source of DMS (P), shifts in the microbiome composition have been observed during thermal stress with the potential to alter the DMS cycle.
Collapse
Affiliation(s)
- Rebecca Jackson
- Coasts and Ocean Research, Oceans and Atmosphere, CSIRO, Canberra, ACT 2601, Australia
| | - Albert Gabric
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|