1
|
Li J, Wang J, Wu J, Wang X. Bacillus subtilisbiofilm expansion mediated by the interaction between matrix-producing cells formed "Van Gogh bundles" and other phenotypic cells. Colloids Surf B Biointerfaces 2025; 251:114611. [PMID: 40081257 DOI: 10.1016/j.colsurfb.2025.114611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/25/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
During the expansion of Bacillus subtilis biofilm on a solid MSgg substrate, cells within the biofilm form highly organized structures through interactions, growth and differentiation. This organized structure evolves from an initial single chain to bundles known as "Van Gogh bundles," which guild the biofilm' expansion. In this paper, we present a model for biofilm growth based on cell interaction forces. In this model, cell interactions within Van Gogh bundles are represented by spring connections, and the interactions between Van Gogh bundles and other phenotypic cells are confined to a specific region (repulsive inside the region, attractive outside it). In a single-biofilm system, as nutrients are depleted, increasing numbers of motile cells transform into matrix-producing cells, forming Van Gogh bundles that guide the biofilm expansion towards areas with higher nutrient concentrations, thereby enhancing its expansion ability. In a muti-biofilm system, extreme nutrient depletion leads to the transformation of matrix-producing cells into spores, which affects the number and folding characteristics of Van Gogh bundles, thereby influencing the biofilm expansion. Our study illustrates how the simple organization of cells within a community can provide a significant ecological advantage.
Collapse
Affiliation(s)
- Jin Li
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Jiankun Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jin Wu
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoling Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
2
|
Yang Z, Swingle B. Pseudomonas syringae Socially Induced Swimming Motility Requires the Molybdenum Cofactor. Mol Microbiol 2025. [PMID: 40388651 DOI: 10.1111/mmi.15378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 05/02/2025] [Accepted: 05/05/2025] [Indexed: 05/21/2025]
Abstract
Social interactions among bacteria can induce behaviors that affect their fitness and influence how complex communities assemble. Here we report a new socially induced motility behavior that we refer to as baited expansion in Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), a plant pathogenic bacterium. We found Pst DC3000 displayed strongly induced swimming motility towards nearby colonies of Dickeya dianthicola or Escherichia coli. We developed a controlled system to visualize and characterize the development of baited expansion. Our results provide evidence that baited expansion behavior occurs in response to a chemical gradient established and maintained by the bait colony. We also found this behavior correlated with distinct transcriptional profiles and identified molybdenum cofactor (Moco) and a Moco-utilizing oxidoreductase as crucial factors facilitating the baited expansion behavior.
Collapse
Affiliation(s)
- Zichu Yang
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Bryan Swingle
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, United States Department of Agriculture-Agricultural Research Service, Ithaca, New York, USA
| |
Collapse
|
3
|
Bertolotti P, Gallinardi F, Ghidoli M, Bertarelli C, Lanzani G, Paternò GM. Photocontrol of bacterial membrane potential regulates antibiotic persistence in B. subtilis. EUROPEAN PHYSICAL JOURNAL PLUS 2025; 140:336. [PMID: 40291950 PMCID: PMC12021945 DOI: 10.1140/epjp/s13360-025-06263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025]
Abstract
Bacterial persistence and resistance to antibiotics pose critical challenges in healthcare and environmental contexts. Recent studies revealing that bacteria possess a dynamic electrical membrane potential open new avenues for influencing bacterial behaviour and drug susceptibility. In this work, we present a novel light-responsive strategy to modulate bacterial antibiotic persistence using Ziapin2, an azobenzene photoswitch previously shown to alter bacterial membrane potential. We selected two broad-spectrum antibiotics with distinct modes of action: Kanamycin, which requires cytosolic uptake to inhibit protein synthesis, and Ampicillin, which targets cell wall polymerization at the cell envelope, to probe the role of membrane potential in antibiotic efficacy. Our findings show that when Bacillus subtilis is exposed to Kanamycin and Ziapin2, photoactivation (470 nm) significantly impacts bacterial viability: under illumination, the previously lethal effects of Kanamycin are markedly reduced, suggesting that membrane potential changes drive altered antibiotic uptake or intracellular accumulation. In contrast, Ampicillin-treated samples remain largely unaffected by light-induced membrane modulation, consistent with its action at the external cell envelope. Taken together, these results indicate that membrane potential manipulation can selectively influence the activity of antibiotics whose intracellular uptake is critical to their function. This proof-of-concept study underscores the potential of non-genetic, light-based interventions to modulate bacterial susceptibility in real time. Future work will expand this approach by exploring additional antibiotic classes and novel azobenzene derivatives, ultimately advancing our understanding of bacterial bioelectric regulation and its applications in antimicrobial therapies.
Collapse
Affiliation(s)
- Pietro Bertolotti
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133 Milan, Italy
| | - Federico Gallinardi
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy
- Department of Biotechnology and Bioscience, Università di Milano – Bicocca, Building U3 – BIOS, Piazza della Scienza 2, 20126 Milan, Italy
| | - Marta Ghidoli
- Department of Chemistry, Materials and Chemical Engineering, “Giulio Natta” Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Chiara Bertarelli
- Department of Chemistry, Materials and Chemical Engineering, “Giulio Natta” Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Guglielmo Lanzani
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Giuseppe Maria Paternò
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| |
Collapse
|
4
|
Goyal A, Chure G. Paradox of the Sub-Plankton: Plausible Mechanisms and Open Problems Underlying Strain-Level Diversity in Microbial Communities. Environ Microbiol 2025; 27:e70094. [PMID: 40268300 PMCID: PMC12018069 DOI: 10.1111/1462-2920.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/15/2025] [Accepted: 03/25/2025] [Indexed: 04/25/2025]
Abstract
Microbial communities are often complex and highly diverse, typically with dozens of species sharing spatially-restricted environments. Within these species, genetic and ecological variation often exists at a much finer scale, with closely related strains coexisting and competing. While the coexistence of strains in communities has been heavily explored over the past two decades, we have no self-consistent theory of how this diversity is maintained. This question challenges our conventional understanding of ecological coexistence, typically framed around species with clear phenotypic and ecological differences. In this review, we synthesise plausible mechanisms underlying strain-level diversity (termed microdiversity), focusing on niche-based mechanisms such as nutrient competition, neutral mechanisms such as migration, and evolutionary mechanisms such as horizontal gene transfer. We critically assess the strengths and caveats of these mechanisms, acknowledging key gaps that persist in linking genetic similarity to ecological divergence. Finally, we highlight how the origin and maintenance of microdiversity could pose a major challenge to conventional ecological thinking. We articulate a call-to-arms for a dialogue between well-designed experiments and new theoretical frameworks to address this grand conceptual challenge in understanding microbial biodiversity.
Collapse
Affiliation(s)
- Akshit Goyal
- International Centre for Theoretical SciencesTata Institute of Fundamental ResearchBengaluruIndia
| | - Griffin Chure
- Department of BiologyStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
5
|
Akabuogu E, Carneiro da Cunha Martorelli V, Krašovec R, Roberts IS, Waigh TA. Emergence of ion-channel-mediated electrical oscillations in Escherichia coli biofilms. eLife 2025; 13:RP92525. [PMID: 40117333 PMCID: PMC11928028 DOI: 10.7554/elife.92525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025] Open
Abstract
Bacterial biofilms are communities of bacteria usually attached to solid strata and often differentiated into complex structures. Communication across biofilms has been shown to involve chemical signaling and, more recently, electrical signaling in Gram-positive biofilms. We report for the first time, community-level synchronized membrane potential dynamics in three-dimensional Escherichia coli biofilms. Two hyperpolarization events are observed in response to light stress. The first requires mechanically sensitive ion channels (MscK, MscL, and MscS) and the second needs the Kch-potassium channel. The channels mediated both local spiking of single E. coli biofilms and long-range coordinated electrical signaling in E. coli biofilms. The electrical phenomena are explained using Hodgkin-Huxley and 3D fire-diffuse-fire agent-based models. These data demonstrate that electrical wavefronts based on potassium ions are a mechanism by which signaling occurs in Gram-negative biofilms and as such may represent a conserved mechanism for communication across biofilms.
Collapse
Affiliation(s)
- Emmanuel Akabuogu
- Division of Infection, Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, University of ManchesterManchesterUnited Kingdom
- Biological Physics, Department of Physics and Astronomy, University of ManchesterManchesterUnited Kingdom
| | - Victor Carneiro da Cunha Martorelli
- Division of Infection, Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, University of ManchesterManchesterUnited Kingdom
- Biological Physics, Department of Physics and Astronomy, University of ManchesterManchesterUnited Kingdom
| | - Rok Krašovec
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health University of ManchesterManchesterUnited Kingdom
| | - Ian S Roberts
- Division of Infection, Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, University of ManchesterManchesterUnited Kingdom
| | - Thomas A Waigh
- Biological Physics, Department of Physics and Astronomy, University of ManchesterManchesterUnited Kingdom
| |
Collapse
|
6
|
Roy D, Michalet X, Miller EW, Bharadwaj K, Weiss S. Toward measurements of absolute membrane potential in Bacillus subtilis using fluorescence lifetime. BIOPHYSICAL REPORTS 2025; 5:100196. [PMID: 39798601 PMCID: PMC11835658 DOI: 10.1016/j.bpr.2025.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Membrane potential (MP) changes can provide a simple readout of bacterial functional and metabolic state or stress levels. While several optical methods exist for measuring fast changes in MP in excitable cells, there is a dearth of such methods for absolute and precise measurements of steady-state MPs in bacterial cells. Conventional electrode-based methods for the measurement of MP are not suitable for calibrating optical methods in small bacterial cells. While optical measurement based on Nernstian indicators have been successfully used, they do not provide absolute or precise quantification of MP or its changes. We present a novel, calibrated MP recording approach to address this gap. In this study, we used a fluorescence lifetime-based approach to obtain a single-cell-resolved distribution of the membrane potential and its changes upon extracellular chemical perturbation in a population of bacterial cells for the first time. Our method is based on 1) a unique VoltageFluor (VF) optical transducer, whose fluorescence lifetime varies as a function of MP via photoinduced electron transfer and 2) a quantitative phasor-FLIM analysis for high-throughput readout. This method allows MP changes to be easily visualized, recorded and quantified. By artificially modulating potassium concentration gradients across the membrane using an ionophore, we have obtained a Bacillus subtilis-specific MP versus VF lifetime calibration and estimated the MP for unperturbed B. subtilis cells to be -65 mV (in minimal salts glycerol glutamate [MSgg]), -127 mV (in M9), and that for chemically depolarized cells as -14 mV (in MSgg). We observed a population-level MP heterogeneity of ∼6-10 mV indicating a considerable degree of diversity of physiological and metabolic states among individual cells. Our work paves the way for deeper insights into bacterial electrophysiology and bioelectricity research.
Collapse
Affiliation(s)
- Debjit Roy
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, California; Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California
| | - Xavier Michalet
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California; California Nano Systems Institute, University of California at Los Angeles, Los Angeles, California.
| | - Evan W Miller
- Departments of Chemistry, Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, California
| | - Kiran Bharadwaj
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, California; Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California
| | - Shimon Weiss
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, California; Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California; Department of Physiology, University of California at Los Angeles, Los Angeles, California; California Nano Systems Institute, University of California at Los Angeles, Los Angeles, California; Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
7
|
De la Fuente IM, Cortes JM, Malaina I, Pérez-Yarza G, Martinez L, López JI, Fedetz M, Carrasco-Pujante J. The main sources of molecular organization in the cell. Atlas of self-organized and self-regulated dynamic biostructures. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:167-191. [PMID: 39805422 DOI: 10.1016/j.pbiomolbio.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
One of the most important goals of contemporary biology is to understand the principles of the molecular order underlying the complex dynamic architecture of cells. Here, we present an overview of the main driving forces involved in the cellular molecular complexity and in the emergent functional dynamic structures, spanning from the most basic molecular organization levels to the complex emergent integrative systemic behaviors. First, we address the molecular information processing which is essential in many complex fundamental mechanisms such as the epigenetic memory, alternative splicing, regulation of transcriptional system, and the adequate self-regulatory adaptation to the extracellular environment. Next, we approach the biochemical self-organization, which is central to understand the emergency of metabolic rhythms, circadian oscillations, and spatial traveling waves. Such a complex behavior is also fundamental to understand the temporal compartmentalization of the cellular metabolism and the dynamic regulation of many physiological activities. Numerous examples of biochemical self-organization are considered here, which show that practically all the main physiological processes in the cell exhibit this type of dynamic molecular organization. Finally, we focus on the biochemical self-assembly which, at a primary level of organization, is a basic but important mechanism for the order in the cell allowing biomolecules in a disorganized state to form complex aggregates necessary for a plethora of essential structures and physiological functions. In total, more than 500 references have been compiled in this review. Due to these main sources of order, systemic functional structures emerge in the cell, driving the metabolic functionality towards the biological complexity.
Collapse
Affiliation(s)
- Ildefonso M De la Fuente
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain.
| | - Jesus M Cortes
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain; Biobizkaia Health Research Institute, Barakaldo, 48903, Spain; IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Gorka Pérez-Yarza
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Luis Martinez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - José I López
- Biobizkaia Health Research Institute, Barakaldo, 48903, Spain
| | - Maria Fedetz
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, 18016, Spain
| | - Jose Carrasco-Pujante
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| |
Collapse
|
8
|
Levin M. The Multiscale Wisdom of the Body: Collective Intelligence as a Tractable Interface for Next-Generation Biomedicine. Bioessays 2025; 47:e202400196. [PMID: 39623868 PMCID: PMC11848127 DOI: 10.1002/bies.202400196] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 02/25/2025]
Abstract
The dominant paradigm in biomedicine focuses on genetically-specified components of cells and their biochemical dynamics, emphasizing bottom-up emergence of complexity. Here, I explore the biomedical implications of a complementary emerging field: diverse intelligence. Using tools from behavioral science and multiscale neuroscience, we can study development, regenerative repair, and cancer suppression as behaviors of a collective intelligence of cells navigating the spaces of possible morphologies and transcriptional and physiological states. A focus on the competencies of living material-from molecular to organismal scales-reveals a new landscape for interventions. Such top-down approaches take advantage of the memories and homeodynamic goal-seeking behavior of cells and tissues, offering the same massive advantages in biomedicine and bioengineering that reprogrammable hardware has provided information technologies. The bioelectric networks that bind individual cells toward large-scale anatomical goals are an especially tractable interface to organ-level plasticity, and tools to modulate them already exist. This suggests a research program to understand and tame the software of life for therapeutic gain by understanding the many examples of basal cognition that operate throughout living bodies.
Collapse
Affiliation(s)
- Michael Levin
- Biology DepartmentAllen Discovery Center at Tufts UniversityMedfordMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| |
Collapse
|
9
|
Berg SZ, Berg J. Microbes, macrophages, and melanin: a unifying theory of disease as exemplified by cancer. Front Immunol 2025; 15:1493978. [PMID: 39981299 PMCID: PMC11840190 DOI: 10.3389/fimmu.2024.1493978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/03/2024] [Indexed: 02/22/2025] Open
Abstract
It is widely accepted that cancer mostly arises from random spontaneous mutations triggered by environmental factors. Our theory challenges the idea of the random somatic mutation theory (SMT). The SMT does not fit well with Charles Darwin's theory of evolution in that the same relatively few mutations would occur so frequently and that these mutations would lead to death rather than survival of the fittest. However, it would fit well under the theory of evolution, if we were to look at it from the vantage point of pathogens and their supporting microbial communities colonizing humans and mutating host cells for their own benefit, as it does give them an evolutionary advantage and they are capable of selecting genes to mutate and of inserting their own DNA or RNA into hosts. In this article, we provide evidence that tumors are actually complex microbial communities composed of various microorganisms living within biofilms encapsulated by a hard matrix; that these microorganisms are what cause the genetic mutations seen in cancer and control angiogenesis; that these pathogens spread by hiding in tumor cells and M2 or M2-like macrophages and other phagocytic immune cells and traveling inside them to distant sites camouflaged by platelets, which they also reprogram, and prepare the distant site for metastasis; that risk factors for cancer are sources of energy that pathogens are able to utilize; and that, in accordance with our previous unifying theory of disease, pathogens utilize melanin for energy for building and sustaining tumors and metastasis. We propose a paradigm shift in our understanding of what cancer is, and, thereby, a different trajectory for avenues of treatment and prevention.
Collapse
Affiliation(s)
- Stacie Z. Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| | - Jonathan Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| |
Collapse
|
10
|
Floriach P, Garcia-Ojalvo J, Clusella P. From chimeras to extensive chaos in networks of heterogeneous Kuramoto oscillator populations. CHAOS (WOODBURY, N.Y.) 2025; 35:023115. [PMID: 39899579 DOI: 10.1063/5.0243379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/16/2025] [Indexed: 02/05/2025]
Abstract
Populations of coupled oscillators can exhibit a wide range of complex dynamical behavior, from complete synchronization to chimera and chaotic states. We can, thus, expect complex dynamics to arise in networks of such populations. Here, we analyze the dynamics of networks of populations of heterogeneous mean-field coupled Kuramoto-Sakaguchi oscillators and show that the instability that leads to chimera states in a simple two-population model also leads to extensive chaos in large networks of coupled populations. Formally, the system consists of a complex network of oscillator populations whose mesoscopic behavior evolves according to the Ott-Antonsen equations. By considering identical parameters across populations, the system contains a manifold of homogeneous solutions where all populations behave identically. Stability analysis of these homogeneous states provided by the master stability function formalism shows that non-trivial dynamics might emerge on a wide region of the parameter space for arbitrary network topologies. As examples, we first revisit the two-population case and provide a complete bifurcation diagram. Then, we investigate the emergent dynamics in large ring and Erdös-Rényi networks. In both cases, transverse instabilities lead to extensive space-time chaos, i.e., irregular regimes whose complexity scales linearly with the system size. Our work provides a unified analytical framework to understand the emergent dynamics of networks of oscillator populations, from chimera states to robust high-dimensional chaos.
Collapse
Affiliation(s)
- Pol Floriach
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Jordi Garcia-Ojalvo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Pau Clusella
- EPSEM, Departament de Matemàtiques, Universitat Politècnica de Catalunya, Manresa 08242, Spain
| |
Collapse
|
11
|
Wittig C, Wagner M, Vallon R, Crouzier T, van der Wijngaart W, Horn H, Bagheri S. The role of fluid friction in streamer formation and biofilm growth. NPJ Biofilms Microbiomes 2025; 11:17. [PMID: 39814763 PMCID: PMC11735801 DOI: 10.1038/s41522-024-00633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 12/06/2024] [Indexed: 01/18/2025] Open
Abstract
Biofilms constitute one of the most common forms of living matter, playing an increasingly important role in technology, health, and ecology. While it is well established that biofilm growth and morphology are highly dependent on the external flow environment, the precise role of fluid friction has remained elusive. We grew Bacillus subtilis biofilms on flat surfaces of a channel in a laminar flow at wall shear stresses spanning one order of magnitude (τw = 0.068 Pa to τw = 0.67 Pa). By monitoring the three-dimensional distribution of biofilm over seven days, we found that the biofilms consist of smaller microcolonies, shaped like leaning pillars, many of which feature a streamer in the form of a thin filament that originates near the tip of the pillar. While the shape, size, and distribution of these microcolonies depend on the imposed shear stress, the same structural features appear consistently for all shear stress values. The formation of streamers occurs after the development of a base structure, suggesting that the latter induces a secondary flow that triggers streamer formation. Moreover, we observed that the biofilm volume grows approximately linearly over seven days for all shear stress values, with a growth rate inversely proportional to the wall shear stress. We develop a scaling model, providing insight into the mechanisms by which friction limits biofilm growth.
Collapse
Affiliation(s)
- Cornelius Wittig
- FLOW, Department of Engineering Mechanics, KTH, Stockholm, Sweden.
| | - Michael Wagner
- Institute of Biological Interfaces (IBG-1), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Romain Vallon
- FLOW, Department of Engineering Mechanics, KTH, Stockholm, Sweden
| | - Thomas Crouzier
- Department of Health Technology, DTU, Kongens Lyngby, Denmark
| | | | - Harald Horn
- Engler-Bunte-Institut, Karlsruhe Institute of Technology, Water Chemistry and Water Technology, Karlsruhe, Germany
| | - Shervin Bagheri
- FLOW, Department of Engineering Mechanics, KTH, Stockholm, Sweden
| |
Collapse
|
12
|
McCaig CD. Long-Distance Electron Transport in Unicellular Organisms and Biofilms. Rev Physiol Biochem Pharmacol 2025; 187:29-38. [PMID: 39838005 DOI: 10.1007/978-3-031-68827-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Electrical forces are widespread in single-celled organisms and underpin sophisticated communication systems. Bacterial biofilm colonies, for example, attract new members electrically. Bacteria also join together end to end and engage in long-distance electron transport along bacterial filaments over centimetres. This transport of electrons across around 10,000 cells separates life-essential redox reactions spatially and keeps "colleagues breathing" in otherwise challenging aquatic sediments.
Collapse
Affiliation(s)
- Colin D McCaig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|
13
|
Shukla S, Comerci CJ, Süel GM, Jahed Z. Bioelectronic tools for understanding the universal language of electrical signaling across species and kingdoms. Biosens Bioelectron 2025; 267:116843. [PMID: 39426280 DOI: 10.1016/j.bios.2024.116843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/10/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Modern bioelectronic tools are rapidly advancing to detect electric potentials within networks of electrogenic cells, such as cardiomyocytes, neurons, and pancreatic beta cells. However, it is becoming evident that electrical signaling is not limited to the animal kingdom but may be a universal form of cell-cell communication. In this review, we discuss the existing evidence of, and tools used to collect, subcellular, single-cell and network-level electrical signals across kingdoms, including bacteria, plants, fungi, and even viruses. We discuss how cellular networks employ altered electrical "circuitry" and intercellular mechanisms across kingdoms, and we assess the functionality and scalability of cutting-edge nanobioelectronics to collect electrical signatures regardless of cell size, shape, or function. Researchers today aim to design micro- and nano-topographic structures which harness mechanosensitive membrane and cytoskeletal pathways that enable tight electrical coupling to subcellular compartments within high-throughput recording systems. Finally, we identify gaps in current knowledge of inter-species and inter-kingdom electrical signaling and propose critical milestones needed to create a central theory of electrical signaling across kingdoms. Our discussion demonstrates the need for high resolution, high throughput tools which can probe multiple, diverse cell types at once in their native or experimentally-modeled environments. These advancements will not only reveal the underlying biophysical laws governing the universal language of electrical communication, but can enable bidirectional electrical communication and manipulation of biological systems.
Collapse
Affiliation(s)
- Shivani Shukla
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States
| | - Colin J Comerci
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Gürol M Süel
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Zeinab Jahed
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
14
|
Gyllingberg L, Tian Y, Sumpter DJT. A minimal model of cognition based on oscillatory and current-based reinforcement processes. J R Soc Interface 2025; 22:rsif20240402. [PMID: 39837485 PMCID: PMC11750385 DOI: 10.1098/rsif.2024.0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/18/2024] [Accepted: 11/06/2024] [Indexed: 01/23/2025] Open
Abstract
Building mathematical models of brains is difficult because of the sheer complexity of the problem. One potential starting point is basal cognition, which gives an abstract representation of a range of organisms without central nervous systems, including fungi, slime moulds and bacteria. We propose one such model, demonstrating how a combination of oscillatory and current-based reinforcement processes can be used to couple resources in an efficient manner, mimicking the way these organisms function. A key ingredient in our model, not found in previous basal cognition models, is that we explicitly model oscillations in the number of particles (i.e. the nutrients, chemical signals or similar, which make up the biological system) and the flow of these particles within the modelled organisms. Using this approach, our model builds efficient solutions, provided the environmental oscillations are sufficiently out of phase. We further demonstrate that amplitude differences can promote efficient solutions and that the system is robust to frequency differences. In the context of these findings, we discuss connections between our model and basal cognition in biological systems and slime moulds, in particular, how oscillations might contribute to self-organized problem-solving by these organisms.
Collapse
Affiliation(s)
- Linnéa Gyllingberg
- Department of Mathematics, University of California, Los Angeles, CA, USA
- Department of Mathematics, Uppsala University, Uppsala, Sweden
| | - Yu Tian
- Nordita, Stockholm University and KTH Royal Institute of Technology, Stockholm, Sweden
| | | |
Collapse
|
15
|
Roy D, Michalet X, Miller EW, Bharadwaj K, Weiss S. Towards measurements of absolute membrane potential in Bacillus subtilis using fluorescence lifetime. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598880. [PMID: 38915670 PMCID: PMC11195253 DOI: 10.1101/2024.06.13.598880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Membrane potential (MP) changes can provide a simple readout of bacterial functional and metabolic state or stress levels. While several optical methods exist for measuring fast changes in MP in excitable cells, there is a dearth of such methods for absolute and precise measurements of steady-state membrane potentials (MPs) in bacterial cells. Conventional electrode-based methods for the measurement of MP are not suitable for calibrating optical methods in small bacterial cells. While optical measurement based on Nernstian indicators have been successfully used, they do not provide absolute or precise quantification of MP or its changes. We present a novel, calibrated MP recording approach to address this gap. In this study, we used a fluorescence lifetime-based approach to obtain a single-cell resolved distribution of the membrane potential and its changes upon extracellular chemical perturbation in a population of bacterial cells for the first time. Our method is based on (i) a unique VoltageFluor (VF) optical transducer, whose fluorescence lifetime varies as a function of MP via photoinduced electron transfer (PeT) and (ii) a quantitative phasor-FLIM analysis for high-throughput readout. This method allows MP changes to be easily visualized, recorded and quantified. By artificially modulating potassium concentration gradients across the membrane using an ionophore, we have obtained a Bacillus subtilis-specific MP versus VF lifetime calibration and estimated the MP for unperturbed B. subtilis cells to be -65 mV (in MSgg), 127 mV (in M9) and that for chemically depolarized cells as -14 mV (in MSgg). We observed a population level MP heterogeneity of ~6-10 mV indicating a considerable degree of diversity of physiological and metabolic states among individual cells. Our work paves the way for deeper insights into bacterial electrophysiology and bioelectricity research.
Collapse
Affiliation(s)
- Debjit Roy
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Xavier Michalet
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
- California Nano Systems Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Evan W. Miller
- Departments of Chemistry, Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California at Berkeley, CA 94720, USA
| | - Kiran Bharadwaj
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Shimon Weiss
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Department of Physiology, University of California at Los Angeles, Los Angeles, CA 90095, USA
- California Nano Systems Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
16
|
Mulder OJ, Kostman MP, Almodaimegh A, Edge MD, Larkin JW. An Agent-Based Model of Metabolic Signaling Oscillations in Bacillus subtilis Biofilms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629727. [PMID: 39763919 PMCID: PMC11702635 DOI: 10.1101/2024.12.20.629727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Microbes of nearly every species can form biofilms, communities of cells bound together by a self-produced matrix. It is not understood how variation at the cellular level impacts putatively beneficial, colony-level behaviors, such as cell-to-cell signaling. Here we investigate this problem with an agent-based computational model of metabolically driven electrochemical signaling in Bacillus subtilis biofilms. In this process, glutamate-starved interior cells release potassium, triggering a depolarizing wave that spreads to exterior cells and limits their glutamate uptake. More nutrients diffuse to the interior, temporarily reducing glutamate stress and leading to oscillations. In our model, each cell has a membrane potential coupled to metabolism. As a simulated biofilm grows, collective membrane potential oscillations arise spontaneously as cells deplete nutrients and trigger potassium release, reproducing experimental observations. We further validate our model by comparing spatial signaling patterns and cellular signaling rates with those observed experimentally. By oscillating external glutamate and potassium, we find that biofilms synchronize to external potassium more strongly than to glutamate, providing a potential mechanism for previously observed biofilm synchronization. By tracking cellular glutamate concentrations, we find that oscillations evenly distribute nutrients in space: non-oscillating biofilms have an external layer of well-fed cells surrounding a starved core, whereas oscillating biofilms exhibit a relatively uniform distribution of glutamate. Our work shows the potential of agent-based models to connect cellular properties to collective phenomena and facilitates studies of how inheritance of cellular traits can affect the evolution of group behaviors.
Collapse
Affiliation(s)
- Obadiah J. Mulder
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | | | | | - Michael D. Edge
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Joseph W. Larkin
- Departments of Biology and Physics, Boston University, Boston, MA, USA
| |
Collapse
|
17
|
Mougkogiannis P, Nikolaidou A, Adamatzky A. On Emergence of Spontaneous Oscillations in Kombucha and Proteinoids. BIONANOSCIENCE 2024; 15:65. [PMID: 39980746 PMCID: PMC11835939 DOI: 10.1007/s12668-024-01678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 02/22/2025]
Abstract
An important part of studying living systems is figuring out the complicated steps that lead to order from chaos. Spontaneous oscillations are a key part of self-organisation in many biological and chemical networks, including kombucha and proteinoids. This study examines the spontaneous oscillations in kombucha and proteinoids, specifically exploring their potential connection to the origin of life. As a community of bacteria and yeast work together, kombucha shows remarkable spontaneous oscillations in its biochemical parts. This system can keep a dynamic balance and organise itself thanks to metabolic processes and complex chemical reactions. Similarly, proteinoids, which may have been primitive forms of proteins, undergo spontaneous fluctuations in their structure and function periodically. Because these oscillations happen on their own, they may play a very important part in the development of early life forms. This paper highlights the fundamental principles governing the transition from chaos to order in living systems by examining the key factors that influence the frequency and characteristics of spontaneous oscillations in kombucha and proteinoids. Looking into these rhythms not only helps us understand where life came from but also shows us ways to make self-organising networks in synthetic biology and biotechnology. There is significant discussion over the emergence of biological order from chemical disorder. This article contributes to the ongoing discussion by examining at the theoretical basis, experimental proof, and implications of spontaneous oscillations. The results make it clear that random oscillations are an important part of the change from nonliving to living matter. They also give us important information about what life is all about.
Collapse
Affiliation(s)
| | - Anna Nikolaidou
- Unconventional Computing Laboratory, University of the West of England, Bristol, BS16 1QY UK
| | - Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West of England, Bristol, BS16 1QY UK
| |
Collapse
|
18
|
Lander SM, Fisher G, Everett BA, Tran P, Prindle A. Secreted nucleases reclaim extracellular DNA during biofilm development. NPJ Biofilms Microbiomes 2024; 10:103. [PMID: 39375363 PMCID: PMC11458576 DOI: 10.1038/s41522-024-00575-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024] Open
Abstract
DNA is the genetic code found inside all living cells and its molecular stability can also be utilized outside the cell. While extracellular DNA (eDNA) has been identified as a structural polymer in bacterial biofilms, whether it persists stably throughout development remains unclear. Here, we report that eDNA is temporarily invested in the biofilm matrix before being reclaimed later in development. Specifically, by imaging eDNA dynamics within undomesticated Bacillus subtilis biofilms, we found eDNA is produced during biofilm establishment before being globally degraded in a spatiotemporally coordinated pulse. We identified YhcR, a secreted Ca2+-dependent nuclease, as responsible for eDNA degradation in pellicle biofilms. YhcR cooperates with two other nucleases, NucA and NucB, to reclaim eDNA for its phosphate content in colony biofilms. Our results identify extracellular nucleases that are crucial for eDNA reclamation during biofilm development and we therefore propose a new role for eDNA as a dynamic metabolic reservoir.
Collapse
Affiliation(s)
- Stephen M Lander
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, 60611, IL, USA
- Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, 60611, IL, USA
| | - Garth Fisher
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, 60611, IL, USA
| | - Blake A Everett
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, 60611, IL, USA
| | - Peter Tran
- Center for Synthetic Biology, Northwestern University, Evanston, 60208, IL, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, 60208, IL, USA
| | - Arthur Prindle
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, 60611, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, 60208, IL, USA.
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, 60208, IL, USA.
- Department of Microbiology-Immunology, Feinberg School of Medicine, Chicago, 60611, IL, USA.
- Chan Zuckerberg Biohub Chicago, Chicago, IL, 60642, USA.
| |
Collapse
|
19
|
Prakash P, Jiang X, Richards L, Schofield Z, Schäfer P, Polin M, Soyer OS, Asally M. Emergence of synchronized growth oscillations in filamentous fungi. J R Soc Interface 2024; 21:20240574. [PMID: 39471871 PMCID: PMC11521610 DOI: 10.1098/rsif.2024.0574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 11/01/2024] Open
Abstract
Many species of soil fungi grow in the form of branched networks that enable long-range communication and mass flow of nutrient. These networks play important roles in the soil ecosystem as a major decomposer of organic materials. While there have been investigations on the branching of the fungal networks, their long-term growth dynamics in space and time is still not very well understood. In this study, we monitor the spatio-temporal growth dynamics of the plant-promoting filamentous fungus Serendipita indica for several days in a controlled environment within a microfluidic chamber. We find that S. indica cells display synchronized growth oscillations with the onset of sporulation and at a period of 3 h. Quantifying this experimental synchronization of oscillatory dynamics, we show that the synchronization can be recapitulated by the nearest neighbour Kuramoto model with a millimetre-scale cell-cell coupling. The microfluidic set-up presented in this work may aid the future characterization of the molecular mechanisms of the cell-cell communication, which could lead to biophysical approaches for controlling fungi growth and reproductive sporulation in soil and plant health management.
Collapse
Affiliation(s)
- Praneet Prakash
- School of Life Sciences, University of Warwick, Coventry, UK
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Xue Jiang
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Luke Richards
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Zoe Schofield
- School of Life Sciences, University of Warwick, Coventry, UK
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Patrick Schäfer
- School of Life Sciences, University of Warwick, Coventry, UK
- Department of Phytopathology, Justus Liebig University, Giessen, Germany
| | - Marco Polin
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA UIB-CSIC, Esporles, Spain
- Department of Physics, University of Warwick, Coventry, UK
| | - Orkun S. Soyer
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Munehiro Asally
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
20
|
Monk T, Dennler N, Ralph N, Rastogi S, Afshar S, Urbizagastegui P, Jarvis R, van Schaik A, Adamatzky A. Electrical Signaling Beyond Neurons. Neural Comput 2024; 36:1939-2029. [PMID: 39141803 DOI: 10.1162/neco_a_01696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/21/2024] [Indexed: 08/16/2024]
Abstract
Neural action potentials (APs) are difficult to interpret as signal encoders and/or computational primitives. Their relationships with stimuli and behaviors are obscured by the staggering complexity of nervous systems themselves. We can reduce this complexity by observing that "simpler" neuron-less organisms also transduce stimuli into transient electrical pulses that affect their behaviors. Without a complicated nervous system, APs are often easier to understand as signal/response mechanisms. We review examples of nonneural stimulus transductions in domains of life largely neglected by theoretical neuroscience: bacteria, protozoans, plants, fungi, and neuron-less animals. We report properties of those electrical signals-for example, amplitudes, durations, ionic bases, refractory periods, and particularly their ecological purposes. We compare those properties with those of neurons to infer the tasks and selection pressures that neurons satisfy. Throughout the tree of life, nonneural stimulus transductions time behavioral responses to environmental changes. Nonneural organisms represent the presence or absence of a stimulus with the presence or absence of an electrical signal. Their transductions usually exhibit high sensitivity and specificity to a stimulus, but are often slow compared to neurons. Neurons appear to be sacrificing the specificity of their stimulus transductions for sensitivity and speed. We interpret cellular stimulus transductions as a cell's assertion that it detected something important at that moment in time. In particular, we consider neural APs as fast but noisy detection assertions. We infer that a principal goal of nervous systems is to detect extremely weak signals from noisy sensory spikes under enormous time pressure. We discuss neural computation proposals that address this goal by casting neurons as devices that implement online, analog, probabilistic computations with their membrane potentials. Those proposals imply a measurable relationship between afferent neural spiking statistics and efferent neural membrane electrophysiology.
Collapse
Affiliation(s)
- Travis Monk
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Nik Dennler
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
- Biocomputation Group, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, U.K.
| | - Nicholas Ralph
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Shavika Rastogi
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
- Biocomputation Group, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, U.K.
| | - Saeed Afshar
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Pablo Urbizagastegui
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Russell Jarvis
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - André van Schaik
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West of England, Bristol BS16 1QY, U.K.
| |
Collapse
|
21
|
Gaizer T, Juhász J, Pillér B, Szakadáti H, Pongor CI, Csikász-Nagy A. Integrative analysis of yeast colony growth. Commun Biol 2024; 7:511. [PMID: 38684888 PMCID: PMC11058853 DOI: 10.1038/s42003-024-06218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
Yeast colonies are routinely grown on agar plates in everyday experimental settings to understand basic molecular processes, produce novel drugs, improve health, and so on. Standardized conditions ensure these colonies grow in a reproducible fashion, while in nature microbes are under a constantly changing environment. Here we combine the power of computational simulations and laboratory experiments to investigate the impact of non-standard environmental factors on colony growth. We present the developement and parameterization of a quantitative agent-based model for yeast colony growth to reproduce measurements on colony size and cell number in a colony at non-standard environmental conditions. Specifically, we establish experimental conditions that mimic the effects of humidity changes and nutrient gradients. Our results show how colony growth is affected by moisture changes, nutrient availability, and initial colony inoculation conditions. We show that initial colony spread, not initial cell number have higher impact on the final size and cell number of colonies. Parameters of the model were identified by fitting these experiments and the fitted model gives guidance to establish conditions which enable unlimited growth of yeast colonies.
Collapse
Affiliation(s)
- Tünde Gaizer
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - János Juhász
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
- Semmelweis University, Institute of Medical Microbiology, Budapest, Hungary
| | - Bíborka Pillér
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Helga Szakadáti
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Csaba I Pongor
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Attila Csikász-Nagy
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary.
| |
Collapse
|
22
|
McMillen P, Levin M. Collective intelligence: A unifying concept for integrating biology across scales and substrates. Commun Biol 2024; 7:378. [PMID: 38548821 PMCID: PMC10978875 DOI: 10.1038/s42003-024-06037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/11/2024] [Indexed: 04/01/2024] Open
Abstract
A defining feature of biology is the use of a multiscale architecture, ranging from molecular networks to cells, tissues, organs, whole bodies, and swarms. Crucially however, biology is not only nested structurally, but also functionally: each level is able to solve problems in distinct problem spaces, such as physiological, morphological, and behavioral state space. Percolating adaptive functionality from one level of competent subunits to a higher functional level of organization requires collective dynamics: multiple components must work together to achieve specific outcomes. Here we overview a number of biological examples at different scales which highlight the ability of cellular material to make decisions that implement cooperation toward specific homeodynamic endpoints, and implement collective intelligence by solving problems at the cell, tissue, and whole-organism levels. We explore the hypothesis that collective intelligence is not only the province of groups of animals, and that an important symmetry exists between the behavioral science of swarms and the competencies of cells and other biological systems at different scales. We then briefly outline the implications of this approach, and the possible impact of tools from the field of diverse intelligence for regenerative medicine and synthetic bioengineering.
Collapse
Affiliation(s)
- Patrick McMillen
- Department of Biology, Tufts University, Medford, MA, 02155, USA
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Michael Levin
- Department of Biology, Tufts University, Medford, MA, 02155, USA.
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
23
|
Akabuogu E, Zhang L, Krašovec R, Roberts IS, Waigh TA. Electrical Impedance Spectroscopy with Bacterial Biofilms: Neuronal-like Behavior. NANO LETTERS 2024; 24:2234-2241. [PMID: 38320294 PMCID: PMC10885197 DOI: 10.1021/acs.nanolett.3c04446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/08/2024]
Abstract
Negative capacitance at low frequencies for spiking neurons was first demonstrated in 1941 (K. S. Cole) by using extracellular electrodes. The phenomenon subsequently was explained by using the Hodgkin-Huxley model and is due to the activity of voltage-gated potassium ion channels. We show that Escherichia coli (E. coli) biofilms exhibit significant stable negative capacitances at low frequencies when they experience a small DC bias voltage in electrical impedance spectroscopy experiments. Using a frequency domain Hodgkin-Huxley model, we characterize the conditions for the emergence of this feature and demonstrate that the negative capacitance exists only in biofilms containing living cells. Furthermore, we establish the importance of the voltage-gated potassium ion channel, Kch, using knock-down mutants. The experiments provide further evidence for voltage-gated ion channels in E. coli and a new, low-cost method to probe biofilm electrophysiology, e.g., to understand the efficacy of antibiotics. We expect that the majority of bacterial biofilms will demonstrate negative capacitances.
Collapse
Affiliation(s)
- Emmanuel
U. Akabuogu
- Division
of Infection, Lydia Becker Institute of Immunology and Inflammation,
School of Biological Sciences, University
of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
- Biological
Physics, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Lin Zhang
- Biological
Physics, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Rok Krašovec
- Division
of Evolution, Infection and Genomics, School of Biological Sciences,
Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United
Kingdom
| | - Ian S. Roberts
- Division
of Infection, Lydia Becker Institute of Immunology and Inflammation,
School of Biological Sciences, University
of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Thomas A. Waigh
- Biological
Physics, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Photon
Science Institute, Alan
Turing Building, Oxford Road, Manchester, M13 9PY, United
Kingdom
| |
Collapse
|
24
|
Tung A, Sperry MM, Clawson W, Pavuluri A, Bulatao S, Yue M, Flores RM, Pai VP, McMillen P, Kuchling F, Levin M. Embryos assist morphogenesis of others through calcium and ATP signaling mechanisms in collective teratogen resistance. Nat Commun 2024; 15:535. [PMID: 38233424 PMCID: PMC10794468 DOI: 10.1038/s41467-023-44522-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/17/2023] [Indexed: 01/19/2024] Open
Abstract
Information for organismal patterning can come from a variety of sources. We investigate the possibility that instructive influences for normal embryonic development are provided not only at the level of cells within the embryo, but also via interactions between embryos. To explore this, we challenge groups of embryos with disruptors of normal development while varying group size. Here, we show that Xenopus laevis embryos are much more sensitive to a diverse set of chemical and molecular-biological perturbations when allowed to develop alone or in small groups, than in large groups. Keeping per-embryo exposure constant, we find that increasing the number of exposed embryos in a cohort increases the rate of survival while incidence of defects decreases. This inter-embryo assistance effect is mediated by short-range diffusible signals and involves the P2 ATP receptor. Our data and computational model emphasize that morphogenesis is a collective phenomenon not only at the level of cells, but also of whole bodies, and that cohort size is a crucial variable in studies of ecotoxicology, teratogenesis, and developmental plasticity.
Collapse
Affiliation(s)
- Angela Tung
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Megan M Sperry
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Wesley Clawson
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Ananya Pavuluri
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Sydney Bulatao
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Michelle Yue
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Ramses Martinez Flores
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Vaibhav P Pai
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Patrick McMillen
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Franz Kuchling
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
25
|
Phan TV, Mattingly HH, Vo L, Marvin JS, Looger LL, Emonet T. Direct measurement of dynamic attractant gradients reveals breakdown of the Patlak-Keller-Segel chemotaxis model. Proc Natl Acad Sci U S A 2024; 121:e2309251121. [PMID: 38194458 PMCID: PMC10801886 DOI: 10.1073/pnas.2309251121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024] Open
Abstract
Chemotactic bacteria not only navigate chemical gradients, but also shape their environments by consuming and secreting attractants. Investigating how these processes influence the dynamics of bacterial populations has been challenging because of a lack of experimental methods for measuring spatial profiles of chemoattractants in real time. Here, we use a fluorescent sensor for aspartate to directly measure bacterially generated chemoattractant gradients during collective migration. Our measurements show that the standard Patlak-Keller-Segel model for collective chemotactic bacterial migration breaks down at high cell densities. To address this, we propose modifications to the model that consider the impact of cell density on bacterial chemotaxis and attractant consumption. With these changes, the model explains our experimental data across all cell densities, offering insight into chemotactic dynamics. Our findings highlight the significance of considering cell density effects on bacterial behavior, and the potential for fluorescent metabolite sensors to shed light on the complex emergent dynamics of bacterial communities.
Collapse
Affiliation(s)
- Trung V. Phan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
| | | | - Lam Vo
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
| | - Jonathan S. Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA20147
| | - Loren L. Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA20147
- HHMI, University of California, San Diego, CA92093
- Department of Neurosciences, University of California, San Diego, CA92093
| | - Thierry Emonet
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
- Department of Physics, Yale University, New Haven, CT06511
| |
Collapse
|
26
|
Zhang N, Ye F, Wang Y, Liu R, Huang Z, Chen C, Liu L, Kang X, Dong S, Rajaofera MJN, Zhu C, Zhang L, Zhou Y, Xiong Y, Xia Q. Role of type VI secretion system protein TssJ-3 in virulence and intracellular survival of Burkholderia pseudomallei. Biochem Biophys Res Commun 2023; 682:397-406. [PMID: 37852065 DOI: 10.1016/j.bbrc.2023.09.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023]
Abstract
TssJ-3 is an outer-membrane lipoprotein and is one of the key components of the type VI secretion system in Burkholderia pseudomallei. TssJ translocates effector proteins to target cells to induce innate immune response in the host. However, the tssJ gene has not been identified in B. pseudomallei and its function in this bacterium has not yet been characterized. tssJ-3 knockout and tssJ-3-complemented B. pseudomallei strains were constructed to determine the effects of tssJ-3 on bacterial growth, biofilm formation, flagellum synthesis, motility, host cell infection, and gene expression in B. pseudomallei. We found that the ΔtssJ-3 mutant strain of B. pseudomallei showed significantly suppressed biofilm formation, flagellum synthesis, bacterial growth, motility, and bacterial invasion into host cells (A549 cells). Furthermore, the ΔtssJ-3 mutation downregulated multiple key genes, including biofilm and flagellum-related genes in B. pseudomallei and induced interleukin-8 gene expression in host cells. These results suggest that tssJ-3, an important gene controlling TssJ-3 protein expression, has regulatory effects on biofilm formation and flagellum synthesis in B. pseudomallei. In addition, B. pseudomallei-derived tssJ-3 contributes to cell infiltration and intracellular replication. This study provides a molecular basis of tssJ-3 for developing therapeutic strategies against B. pseudomallei infections.
Collapse
Affiliation(s)
- Nan Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Fengqin Ye
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Yanshuang Wang
- The Second Affiliated Hospital of Hainan Medical University, China
| | - Rui Liu
- The Second Affiliated Hospital of Hainan Medical University, China
| | - Zhenyan Huang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Chuizhe Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Lin Liu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Xun Kang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Sufang Dong
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Mamy Jayne Nelly Rajaofera
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Chuanlong Zhu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Liyuan Zhang
- The Second Affiliated Hospital of Hainan Medical University, China
| | - Yanling Zhou
- Department of Pediatrics, The Fourth People's Hospital of Haikou City, China.
| | - Yu Xiong
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China.
| | - Qianfeng Xia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China.
| |
Collapse
|
27
|
Ishikawa T, Pedley TJ. 50-year history and perspective on biomechanics of swimming microorganisms: Part II. Collective behaviours. J Biomech 2023; 160:111802. [PMID: 37778279 DOI: 10.1016/j.jbiomech.2023.111802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Abstract
The paired review papers in Parts I and II describe the 50-year history of research on the biomechanics of swimming microorganisms and its prospects in the next 50 years. Parts I and II are divided not by the period covered, but by the content of the research: Part I explains the behaviours of individual microorganisms, and Part II explains collective behaviour. In the 1990s, the description of microbial suspensions as a continuum progressed, and macroscopic flow structures such as bioconvection were analysed. The continuum model was later extended to analyse various phenomena such as flow induced trapping of microorganisms and accumulation of cells at interfaces. In the 2000s, the collective behaviour of swimming microorganisms came into the limelight, and physicists as well as biomechanics researchers carried out many studies probing microorganism collectivity. In particular, research on the turbulence-like flow structure of dense bacterial suspensions has led to dramatic developments in the field of microbial biomechanics. Efforts to bridge the cellular scale to the macroscopic scale by extracting macroscopic physical quantities from the microstructure of cell suspensions are also underway. This Part II reviews these collective behaviours of swimming microorganisms and discusses future prospects of the field.
Collapse
Affiliation(s)
- Takuji Ishikawa
- Department of Biomedical Engineering, Tohoku University, 6-6-01, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| | - T J Pedley
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK
| |
Collapse
|
28
|
Martínez-Calvo A, Trenado-Yuste C, Lee H, Gore J, Wingreen NS, Datta SS. Interfacial morphodynamics of proliferating microbial communities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563665. [PMID: 37961366 PMCID: PMC10634769 DOI: 10.1101/2023.10.23.563665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In microbial communities, various cell types often coexist by occupying distinct spatial domains. What determines the shape of the interface between such domains-which in turn influences the interactions between cells and overall community function? Here, we address this question by developing a continuum model of a 2D spatially-structured microbial community with two distinct cell types. We find that, depending on the balance of the different cell proliferation rates and substrate friction coefficients, the interface between domains is either stable and smooth, or unstable and develops finger-like protrusions. We establish quantitative principles describing when these different interfacial behaviors arise, and find good agreement both with the results of previous experimental reports as well as new experiments performed here. Our work thus helps to provide a biophysical basis for understanding the interfacial morphodynamics of proliferating microbial communities, as well as a broader range of proliferating active systems.
Collapse
|
29
|
Simpson K, L'Homme A, Keymer J, Federici F. Spatial biology of Ising-like synthetic genetic networks. BMC Biol 2023; 21:185. [PMID: 37667283 PMCID: PMC10478219 DOI: 10.1186/s12915-023-01681-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/11/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Understanding how spatial patterns of gene expression emerge from the interaction of individual gene networks is a fundamental challenge in biology. Developing a synthetic experimental system with a common theoretical framework that captures the emergence of short- and long-range spatial correlations (and anti-correlations) from interacting gene networks could serve to uncover generic scaling properties of these ubiquitous phenomena. RESULTS Here, we combine synthetic biology, statistical mechanics models, and computational simulations to study the spatial behavior of synthetic gene networks (SGNs) in Escherichia coli quasi-2D colonies growing on hard agar surfaces. Guided by the combined mechanisms of the contact process lattice simulation and two-dimensional Ising model (CPIM), we describe the spatial behavior of bi-stable and chemically coupled SGNs that self-organize into patterns of long-range correlations with power-law scaling or short-range anti-correlations. These patterns, resembling ferromagnetic and anti-ferromagnetic configurations of the Ising model near critical points, maintain their scaling properties upon changes in growth rate and cell shape. CONCLUSIONS Our findings shed light on the spatial biology of coupled and bistable gene networks in growing cell populations. This emergent spatial behavior could provide insights into the study and engineering of self-organizing gene patterns in eukaryotic tissues and bacterial consortia.
Collapse
Affiliation(s)
- Kevin Simpson
- ANID - Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Alfredo L'Homme
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Keymer
- Institute for Advanced Studies, Shenzhen X-Institute, Shenzhen, China.
- Schools of Physics and Biology, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Department of Natural Sciences and Technology, Universidad de Aysén, Coyhaique, Chile.
| | - Fernán Federici
- ANID - Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago, Chile.
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
- FONDAP Center for Genome Regulation - Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
30
|
Muñoz-Rodríguez D, Bourqqia-Ramzi M, García-Esteban MT, Murciano-Cespedosa A, Vian A, Lombardo-Hernández J, García-Pérez P, Conejero F, Mateos González Á, Geuna S, Herrera-Rincon C. Bioelectrical State of Bacteria Is Linked to Growth Dynamics and Response to Neurotransmitters: Perspectives for the Investigation of the Microbiota-Brain Axis. Int J Mol Sci 2023; 24:13394. [PMID: 37686197 PMCID: PMC10488255 DOI: 10.3390/ijms241713394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Inter-cellular communication is mediated by a sum of biochemical, biophysical, and bioelectrical signals. This might occur not only between cells belonging to the same tissue and/or animal species but also between cells that are, from an evolutionary point of view, far away. The possibility that bioelectrical communication takes place between bacteria and nerve cells has opened exciting perspectives in the study of the gut microbiota-brain axis. The aim of this paper is (i) to establish a reliable method for the assessment of the bioelectrical state of two bacterial strains: Bacillus subtilis (B. subtilis) and Limosilactobacillus reuteri (L. reuteri); (ii) to monitor the bacterial bioelectrical profile throughout its growth dynamics; and (iii) to evaluate the effects of two neurotransmitters (glutamate and γ-aminobutyric acid-GABA) on the bioelectrical signature of bacteria. Our results show that membrane potential (Vmem) and the proliferative capacity of the population are functionally linked in B. subtilis in each phase of the cell cycle. Remarkably, we demonstrate that bacteria respond to neural signals by changing Vmem properties. Finally, we show that Vmem changes in response to neural stimuli are present also in a microbiota-related strain L. reuteri. Our proof-of-principle data reveal a new methodological approach for the better understanding of the relation between bacteria and the brain, with a special focus on gut microbiota. Likewise, this approach will open exciting perspectives in the study of the inter-cellular mechanisms which regulate the bi-directional communication between bacteria and neurons and, ultimately, for designing gut microbiota-brain axis-targeted treatments for neuropsychiatric diseases.
Collapse
Affiliation(s)
- David Muñoz-Rodríguez
- Biomathematics Unit, Data Analysis & Computational Tools for Biology Research Group, Department of Biodiversity, Ecology & Evolution, and Modeling, Complutense University of Madrid, 28040 Madrid, Spain
- Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Marwane Bourqqia-Ramzi
- Biomathematics Unit, Data Analysis & Computational Tools for Biology Research Group, Department of Biodiversity, Ecology & Evolution, and Modeling, Complutense University of Madrid, 28040 Madrid, Spain
- Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Maria Teresa García-Esteban
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, 28040 Madrid, Spain (A.V.)
| | - Antonio Murciano-Cespedosa
- Biomathematics Unit, Data Analysis & Computational Tools for Biology Research Group, Department of Biodiversity, Ecology & Evolution, and Modeling, Complutense University of Madrid, 28040 Madrid, Spain
- Neuro-Computing and Neuro-Robotics Research Group, Neural Plasticity Research Group Instituto Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain
| | - Alejandro Vian
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, 28040 Madrid, Spain (A.V.)
| | - Juan Lombardo-Hernández
- Biomathematics Unit, Data Analysis & Computational Tools for Biology Research Group, Department of Biodiversity, Ecology & Evolution, and Modeling, Complutense University of Madrid, 28040 Madrid, Spain
- Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Pablo García-Pérez
- Biomathematics Unit, Data Analysis & Computational Tools for Biology Research Group, Department of Biodiversity, Ecology & Evolution, and Modeling, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco Conejero
- Biomathematics Unit, Data Analysis & Computational Tools for Biology Research Group, Department of Biodiversity, Ecology & Evolution, and Modeling, Complutense University of Madrid, 28040 Madrid, Spain
| | - Álvaro Mateos González
- NYU-ECNU Institute of Mathematical Sciences, Shanghai New York University, Shanghai 200122, China;
| | - Stefano Geuna
- Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Celia Herrera-Rincon
- Biomathematics Unit, Data Analysis & Computational Tools for Biology Research Group, Department of Biodiversity, Ecology & Evolution, and Modeling, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
31
|
Xiong LI, Garfinkel A. Are physiological oscillations physiological? J Physiol 2023. [PMID: 37622389 DOI: 10.1113/jp285015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Despite widespread and striking examples of physiological oscillations, their functional role is often unclear. Even glycolysis, the paradigm example of oscillatory biochemistry, has seen questions about its oscillatory function. Here, we take a systems approach to argue that oscillations play critical physiological roles, such as enabling systems to avoid desensitization, to avoid chronically high and therefore toxic levels of chemicals, and to become more resistant to noise. Oscillation also enables complex physiological systems to reconcile incompatible conditions such as oxidation and reduction, by cycling between them, and to synchronize the oscillations of many small units into one large effect. In pancreatic β-cells, glycolytic oscillations synchronize with calcium and mitochondrial oscillations to drive pulsatile insulin release, critical for liver regulation of glucose. In addition, oscillation can keep biological time, essential for embryonic development in promoting cell diversity and pattern formation. The functional importance of oscillatory processes requires a re-thinking of the traditional doctrine of homeostasis, holding that physiological quantities are maintained at constant equilibrium values, a view that has largely failed in the clinic. A more dynamic approach will initiate a paradigm shift in our view of health and disease. A deeper look into the mechanisms that create, sustain and abolish oscillatory processes requires the language of nonlinear dynamics, well beyond the linearization techniques of equilibrium control theory. Nonlinear dynamics enables us to identify oscillatory ('pacemaking') mechanisms at the cellular, tissue and system levels.
Collapse
Affiliation(s)
- Lingyun Ivy Xiong
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Alan Garfinkel
- Departments of Medicine (Cardiology) and Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| |
Collapse
|
32
|
Meyer CT, Kralj JM. Cell-autonomous diversification in bacteria arises from calcium dynamics self-organizing at a critical point. SCIENCE ADVANCES 2023; 9:eadg3028. [PMID: 37540744 PMCID: PMC10403213 DOI: 10.1126/sciadv.adg3028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/03/2023] [Indexed: 08/06/2023]
Abstract
How dynamic bacterial calcium is regulated, with kinetics faster than typical mechanisms of cellular adaptation, is unknown. We discover bacterial calcium fluctuations are temporal-fractals resulting from a property known as self-organized criticality (SOC). SOC processes are poised at a phase transition separating ordered and chaotic dynamical regimes and are observed in many natural and anthropogenic systems. SOC in bacterial calcium emerges due to calcium channel coupling mediated via membrane voltage. Environmental or genetic perturbations modify calcium dynamics and the critical exponent suggesting a continuum of critical attractors. Moving along this continuum alters the collective information capacity of bacterial populations. We find that the stochastic transition from motile to sessile lifestyle is partially mediated by SOC-governed calcium fluctuations through the regulation of c-di-GMP. In summary, bacteria co-opt the physics of phase transitions to maintain dynamic calcium equilibrium, and this enables cell-autonomous population diversification during surface colonization by leveraging the stochasticity inherent at a boundary between phases.
Collapse
|
33
|
Benyamin MS, Perisin MP, Hellman CA, Schwalm ND, Jahnke JP, Sund CJ. Modeling control and transduction of electrochemical gradients in acid-stressed bacteria. iScience 2023; 26:107140. [PMID: 37404371 PMCID: PMC10316662 DOI: 10.1016/j.isci.2023.107140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/05/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
Transmembrane electrochemical gradients drive solute uptake and constitute a substantial fraction of the cellular energy pool in bacteria. These gradients act not only as "homeostatic contributors," but also play a dynamic and keystone role in several bacterial functions, including sensing, stress response, and metabolism. At the system level, multiple gradients interact with ion transporters and bacterial behavior in a complex, rapid, and emergent manner; consequently, experiments alone cannot untangle their interdependencies. Electrochemical gradient modeling provides a general framework to understand these interactions and their underlying mechanisms. We quantify the generation, maintenance, and interactions of electrical, proton, and potassium potential gradients under lactic acid-stress and lactic acid fermentation. Further, we elucidate a gradient-mediated mechanism for intracellular pH sensing and stress response. We demonstrate that this gradient model can yield insights on the energetic limitations of membrane transport, and can predict bacterial behavior across changing environments.
Collapse
Affiliation(s)
- Marcus S. Benyamin
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| | - Matthew P. Perisin
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| | - Caleb A. Hellman
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| | - Nathan D. Schwalm
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| | - Justin P. Jahnke
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| | - Christian J. Sund
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| |
Collapse
|
34
|
Guo XK, Wang J, van Hensbergen VP, Liu J, Xu H, Hu X. Interactions between host and intestinal crypt-resided biofilms are controlled by epithelial fucosylation. Cell Rep 2023; 42:112754. [PMID: 37405914 DOI: 10.1016/j.celrep.2023.112754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/30/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
As highly organized consortia of bacteria, biofilms have long been implicated in aggravating inflammation. However, our understanding regarding in vivo host-biofilm interactions in the complex tissue environments remains limited. Here, we show a unique pattern of crypt occupation by mucus-associated biofilms during the early stage of colitis, which is genetically dependent on bacterial biofilm-forming capacity and restricted by host epithelial α1,2-fucosylation. α1,2-Fucosylation deficiency leads to markedly augmented crypt occupation by biofilms originated from pathogenic Salmonella Typhimurium or indigenous Escherichia coli, resulting in exacerbated intestinal inflammation. Mechanistically, α1,2-fucosylation-mediated restriction of biofilms relies on interactions between bacteria and liberated fucose from biofilm-occupied mucus. Fucose represses biofilm formation and biofilm-related genes in vitro and in vivo. Finally, fucose administration ameliorates experimental colitis, suggesting therapeutic potential of fucose for biofilm-related disorders. This work illustrates host-biofilm interactions during gut inflammation and identifies fucosylation as a physiological strategy for restraining biofilm formation.
Collapse
Affiliation(s)
- Xue-Kun Guo
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China.
| | - Jiali Wang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China
| | - Vincent P van Hensbergen
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China
| | - Jintao Liu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 10084, China
| | - Huji Xu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; School of Clinical Medicine and School of Medicine, Tsinghua University, Beijing 100084, China; Department of Rheumatology and Immunology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Xiaoyu Hu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
35
|
Fuss MF, Wieferig JP, Corey RA, Hellmich Y, Tascón I, Sousa JS, Stansfeld PJ, Vonck J, Hänelt I. Cyclic di-AMP traps proton-coupled K + transporters of the KUP family in an inward-occluded conformation. Nat Commun 2023; 14:3683. [PMID: 37344476 DOI: 10.1038/s41467-023-38944-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Cyclic di-AMP is the only known essential second messenger in bacteria and archaea, regulating different proteins indispensable for numerous physiological processes. In particular, it controls various potassium and osmolyte transporters involved in osmoregulation. In Bacillus subtilis, the K+/H+ symporter KimA of the KUP family is inactivated by c-di-AMP. KimA sustains survival at potassium limitation at low external pH by mediating potassium ion uptake. However, at elevated intracellular K+ concentrations, further K+ accumulation would be toxic. In this study, we reveal the molecular basis of how c-di-AMP binding inhibits KimA. We report cryo-EM structures of KimA with bound c-di-AMP in detergent solution and reconstituted in amphipols. By combining structural data with functional assays and molecular dynamics simulations we reveal how c-di-AMP modulates transport. We show that an intracellular loop in the transmembrane domain interacts with c-di-AMP bound to the adjacent cytosolic domain. This reduces the mobility of transmembrane helices at the cytosolic side of the K+ binding site and therefore traps KimA in an inward-occluded conformation.
Collapse
Affiliation(s)
- Michael F Fuss
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jan-Philip Wieferig
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, Oxford, UK
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Yvonne Hellmich
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Igor Tascón
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Joana S Sousa
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- UCB Pharma, UCB Biopharma UK, Slough, SL1 3WE, UK
| | - Phillip J Stansfeld
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| | - Inga Hänelt
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
36
|
Stein N, Goswami A, Goel R. Anoxic granular activated sludge process for simultaneous removal of hazardous perchlorate and nitrate. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131809. [PMID: 37343405 DOI: 10.1016/j.jhazmat.2023.131809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
An airtight, anoxic bubble-column sequencing batch reactor (SBR) was developed for the rapid cultivation of perchlorate (ClO4-) and nitrate (NO3-) reducing granular sludge (GS) in this study. Feast/famine conditions and shear force selection pressures in tandem with a short settling time (2-min) as a hydraulic section pressure resulted in the accelerated formation of anoxic granular activated sludge (AxGS). ClO4- and NO3- were efficiently (>99.9%) reduced over long-term (>500-d) steady-state operation. Specific NO3- reduction, ClO4- reduction, chloride production, and non-purgeable dissolved organic carbon (DOC) oxidation rates of 5.77 ± 0.54 mg NO3--N/g VSS·h, 8.13 ± 0.74 mg ClO4-/g VSS·h, 2.40 ± 0.40 mg Cl-/g VSS·h, and 16.0 ± 0.06 mg DOC/g VSS·h were recorded within the reactor under steady-state conditions, respectively. The AxGS biomass cultivated in this study exhibited faster specific ClO4- reduction, NO3- reduction, and DOC oxidation rates than flocculated biomass cultivated under similar conditions and AxGS biomass operated in an up-flow anaerobic sludge blank (UASB) bioreactor receiving the same influent loading. EPS peptide identification revealed a suite of extracellular catabolic enzymes. Dechloromonas species were present in high abundance throughout the entirety of this study. This is one of the initial studies on anoxic granulation to simultaneously treat hazardous chemicals and adds to the science of the granular activated sludge process.
Collapse
Affiliation(s)
- Nathan Stein
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Anjan Goswami
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
37
|
Phan TV, Mattingly HH, Vo L, Marvin JS, Looger LL, Emonet T. Direct measurement of dynamic attractant gradients reveals breakdown of the Patlak-Keller-Segel chemotaxis model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543315. [PMID: 37333331 PMCID: PMC10274659 DOI: 10.1101/2023.06.01.543315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Chemotactic bacteria not only navigate chemical gradients, but also shape their environments by consuming and secreting attractants. Investigating how these processes influence the dynamics of bacterial populations has been challenging because of a lack of experimental methods for measuring spatial profiles of chemoattractants in real time. Here, we use a fluorescent sensor for aspartate to directly measure bacterially generated chemoattractant gradients during collective migration. Our measurements show that the standard Patlak-Keller-Segel model for collective chemotactic bacterial migration breaks down at high cell densities. To address this, we propose modifications to the model that consider the impact of cell density on bacterial chemotaxis and attractant consumption. With these changes, the model explains our experimental data across all cell densities, offering new insight into chemotactic dynamics. Our findings highlight the significance of considering cell density effects on bacterial behavior, and the potential for fluorescent metabolite sensors to shed light on the complex emergent dynamics of bacterial communities.
Collapse
Affiliation(s)
- Trung V. Phan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT
| | | | - Lam Vo
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT
| | | | - Loren L. Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
- Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Thierry Emonet
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT
- Quantitative Biology Institute, Yale University, New Haven, CT
- Department of Physics, Yale University, New Haven, CT
| |
Collapse
|
38
|
Ricci-Tam C, Kuipa S, Kostman MP, Aronson MS, Sgro AE. Microbial models of development: Inspiration for engineering self-assembled synthetic multicellularity. Semin Cell Dev Biol 2023; 141:50-62. [PMID: 35537929 DOI: 10.1016/j.semcdb.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
Abstract
While the field of synthetic developmental biology has traditionally focused on the study of the rich developmental processes seen in metazoan systems, an attractive alternate source of inspiration comes from microbial developmental models. Microbes face unique lifestyle challenges when forming emergent multicellular collectives. As a result, the solutions they employ can inspire the design of novel multicellular systems. In this review, we dissect the strategies employed in multicellular development by two model microbial systems: the cellular slime mold Dictyostelium discoideum and the biofilm-forming bacterium Bacillus subtilis. Both microbes face similar challenges but often have different solutions, both from metazoan systems and from each other, to create emergent multicellularity. These challenges include assembling and sustaining a critical mass of participating individuals to support development, regulating entry into development, and assigning cell fates. The mechanisms these microbial systems exploit to robustly coordinate development under a wide range of conditions offer inspiration for a new toolbox of solutions to the synthetic development community. Additionally, recreating these phenomena synthetically offers a pathway to understanding the key principles underlying how these behaviors are coordinated naturally.
Collapse
Affiliation(s)
- Chiara Ricci-Tam
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Sophia Kuipa
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Maya Peters Kostman
- Biological Design Center, Boston University, Boston, MA 02215, USA; Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA 02215, USA
| | - Mark S Aronson
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Allyson E Sgro
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA; Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
39
|
Zhang Y, Cai Y, Chen Z. Community-specific diffusion characteristics determine resistance of biofilms to oxidative stress. SCIENCE ADVANCES 2023; 9:eade2610. [PMID: 36961890 DOI: 10.1126/sciadv.ade2610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Biofilms are multicellular communities with a spatial structure. Different from single-cell scale diffusion in planktonic systems, the diffusion distance becomes the dimension of multicellular clusters in a biofilm. Such differences in diffusion behavior affect the tolerance and response to exogenous stress. Here, we found that at the same doses of exogenous hydrogen peroxide (H2O2), planktonic Escherichia coli were completely killed within two hours, whereas the biofilm resumed growth in six hours by building a catalase barrier to block H2O2 penetration, despite the growth burden. Unexpectedly, when we changed the carbon source from glucose to glycerol, H2O2 instantly counterintuitively boosted biofilm growth due to supplemental oxygen, which was the growth-limiting factor. We further demonstrated that the energy metabolism modes determined the growth-limiting factor, which then determined the two patterns of biofilms resistances to H2O2.
Collapse
Affiliation(s)
- Yuzhen Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yumin Cai
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhaoyuan Chen
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315020, China
| |
Collapse
|
40
|
Bongard J, Levin M. There's Plenty of Room Right Here: Biological Systems as Evolved, Overloaded, Multi-Scale Machines. Biomimetics (Basel) 2023; 8:110. [PMID: 36975340 PMCID: PMC10046700 DOI: 10.3390/biomimetics8010110] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
The applicability of computational models to the biological world is an active topic of debate. We argue that a useful path forward results from abandoning hard boundaries between categories and adopting an observer-dependent, pragmatic view. Such a view dissolves the contingent dichotomies driven by human cognitive biases (e.g., a tendency to oversimplify) and prior technological limitations in favor of a more continuous view, necessitated by the study of evolution, developmental biology, and intelligent machines. Form and function are tightly entwined in nature, and in some cases, in robotics as well. Thus, efforts to re-shape living systems for biomedical or bioengineering purposes require prediction and control of their function at multiple scales. This is challenging for many reasons, one of which is that living systems perform multiple functions in the same place at the same time. We refer to this as "polycomputing"-the ability of the same substrate to simultaneously compute different things, and make those computational results available to different observers. This ability is an important way in which living things are a kind of computer, but not the familiar, linear, deterministic kind; rather, living things are computers in the broad sense of their computational materials, as reported in the rapidly growing physical computing literature. We argue that an observer-centered framework for the computations performed by evolved and designed systems will improve the understanding of mesoscale events, as it has already done at quantum and relativistic scales. To develop our understanding of how life performs polycomputing, and how it can be convinced to alter one or more of those functions, we can first create technologies that polycompute and learn how to alter their functions. Here, we review examples of biological and technological polycomputing, and develop the idea that the overloading of different functions on the same hardware is an important design principle that helps to understand and build both evolved and designed systems. Learning to hack existing polycomputing substrates, as well as to evolve and design new ones, will have massive impacts on regenerative medicine, robotics, and computer engineering.
Collapse
Affiliation(s)
- Joshua Bongard
- Department of Computer Science, University of Vermont, Burlington, VT 05405, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Ave., Suite 4600, Medford, MA 02155, USA
| |
Collapse
|
41
|
de Souza‐Guerreiro TC, Bondelli G, Grobas I, Donini S, Sesti V, Bertarelli C, Lanzani G, Asally M, Paternò GM. Membrane Targeted Azobenzene Drives Optical Modulation of Bacterial Membrane Potential. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205007. [PMID: 36710255 PMCID: PMC10015841 DOI: 10.1002/advs.202205007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/17/2023] [Indexed: 05/29/2023]
Abstract
Recent studies have shown that bacterial membrane potential is dynamic and plays signaling roles. Yet, little is still known about the mechanisms of membrane potential dynamics regulation-owing to a scarcity of appropriate research tools. Optical modulation of bacterial membrane potential could fill this gap and provide a new approach for studying and controlling bacterial physiology and electrical signaling. Here, the authors show that a membrane-targeted azobenzene (Ziapin2) can be used to photo-modulate the membrane potential in cells of the Gram-positive bacterium Bacillus subtilis. It is found that upon exposure to blue-green light (λ = 470 nm), isomerization of Ziapin2 in the bacteria membrane induces hyperpolarization of the potential. To investigate the origin of this phenomenon, ion-channel-deletion strains and ion channel blockers are examined. The authors found that in presence of the chloride channel blocker idanyloxyacetic acid-94 (IAA-94) or in absence of KtrAB potassium transporter, the hyperpolarization response is attenuated. These results reveal that the Ziapin2 isomerization can induce ion channel opening in the bacterial membrane and suggest that Ziapin2 can be used for studying and controlling bacterial electrical signaling. This new optical tool could contribute to better understand various microbial phenomena, such as biofilm electric signaling and antimicrobial resistance.
Collapse
Affiliation(s)
| | - Gaia Bondelli
- Center for Nanoscience and TechnologyIstituto Italiano di TeconologiaMilano20133Italy
| | - Iago Grobas
- Physical and Theoretical Chemistry LaboratoryOxfordOX1 3QZUK
| | - Stefano Donini
- Center for Nanoscience and TechnologyIstituto Italiano di TeconologiaMilano20133Italy
| | - Valentina Sesti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” Politecnico di MilanoMilano20133Italy
| | - Chiara Bertarelli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” Politecnico di MilanoMilano20133Italy
| | - Guglielmo Lanzani
- Center for Nanoscience and TechnologyIstituto Italiano di TeconologiaMilano20133Italy
- Department of PhysicsPolitecnico di MilanoMilano20133Italy
| | - Munehiro Asally
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
| | - Giuseppe Maria Paternò
- Center for Nanoscience and TechnologyIstituto Italiano di TeconologiaMilano20133Italy
- Department of PhysicsPolitecnico di MilanoMilano20133Italy
| |
Collapse
|
42
|
Dal Co A, Ackermann M, van Vliet S. Spatial self-organization of metabolism in microbial systems: A matter of enzymes and chemicals. Cell Syst 2023; 14:98-108. [PMID: 36796335 DOI: 10.1016/j.cels.2022.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/14/2022] [Accepted: 12/21/2022] [Indexed: 02/17/2023]
Abstract
Most bacteria live in dense, spatially structured communities such as biofilms. The high density allows cells to alter the local microenvironment, whereas the limited mobility can cause species to become spatially organized. Together, these factors can spatially organize metabolic processes within microbial communities so that cells in different locations perform different metabolic reactions. The overall metabolic activity of a community depends both on how metabolic reactions are arranged in space and on how they are coupled, i.e., how cells in different regions exchange metabolites. Here, we review mechanisms that lead to the spatial organization of metabolic processes in microbial systems. We discuss factors that determine the length scales over which metabolic activities are arranged in space and highlight how the spatial organization of metabolic processes affects the ecology and evolution of microbial communities. Finally, we define key open questions that we believe should be the main focus of future research.
Collapse
Affiliation(s)
- Alma Dal Co
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Martin Ackermann
- Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland; Department of Environmental Microbiology, Eawag, 8600 Duebendorf, Switzerland.
| | | |
Collapse
|
43
|
Colombo EH, López C, Hernández-García E. Pulsed Interaction Signals as a Route to Biological Pattern Formation. PHYSICAL REVIEW LETTERS 2023; 130:058401. [PMID: 36800461 DOI: 10.1103/physrevlett.130.058401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
We identify a mechanism for biological spatial pattern formation arising when the signals that mediate interactions between individuals in a population have pulsed character. Our general population-signal framework shows that while for a slow signal-dynamics limit no pattern formation is observed for any values of the model parameters, for a fast limit, on the contrary, pattern formation can occur. Furthermore, at these limits, our framework reduces, respectively, to reaction-diffusion and spatially nonlocal models, thus bridging these approaches.
Collapse
Affiliation(s)
- Eduardo H Colombo
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey 08901, USA
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC), CSIC-UIB, Campus Universitat Illes Balears, 07122 Palma de Mallorca, Spain
| | - Cristóbal López
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC), CSIC-UIB, Campus Universitat Illes Balears, 07122 Palma de Mallorca, Spain
| | - Emilio Hernández-García
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC), CSIC-UIB, Campus Universitat Illes Balears, 07122 Palma de Mallorca, Spain
| |
Collapse
|
44
|
Makino D, Ueki A, Matsumoto H, Nagamine K. Minimally invasive current-controlled electrical stimulation system for bacteria using highly capacitive conducting polymer-modified electrodes. Bioelectrochemistry 2023; 149:108290. [DOI: 10.1016/j.bioelechem.2022.108290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
|
45
|
Alnahhas RN, Dunlop MJ. Advances in linking single-cell bacterial stress response to population-level survival. Curr Opin Biotechnol 2023; 79:102885. [PMID: 36641904 PMCID: PMC9899315 DOI: 10.1016/j.copbio.2022.102885] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 01/14/2023]
Abstract
Stress response mechanisms can allow bacteria to survive a myriad of challenges, including nutrient changes, antibiotic encounters, and antagonistic interactions with other microbes. Expression of these stress response pathways, in addition to other cell features such as growth rate and metabolic state, can be heterogeneous across cells and over time. Collectively, these single-cell-level phenotypes contribute to an overall population-level response to stress. These include diversifying actions, which can be used to enable bet-hedging, and coordinated actions, such as biofilm production, horizontal gene transfer, and cross-feeding. Here, we highlight recent results and emerging technologies focused on both single-cell and population-level responses to stressors, and we draw connections about the combined impact of these effects on survival of bacterial communities.
Collapse
Affiliation(s)
- Razan N Alnahhas
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States; Biological Design Center, Boston University, Boston, MA 02215, United States
| | - Mary J Dunlop
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States; Biological Design Center, Boston University, Boston, MA 02215, United States.
| |
Collapse
|
46
|
Santos IB, Ferreira AUC, Rabelo MD, Anholeto LA, Sousa GA, Gaínza YA, Figueiredo A, Esteves SN, Chagas ACS. Portable near-infrared spectroscopy: A rapid and accurate blood test for diagnosis of Haemonchus contortus infection and for targeted selective treatment of sheep. Int J Parasitol 2023; 53:119-127. [PMID: 36657611 DOI: 10.1016/j.ijpara.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 01/18/2023]
Abstract
Haemonchus contortus is the most prevalent and important gastrointestinal nematode (GIN) in small ruminants. Since it reduces the packed cell volume (PCV), causing anemia, early diagnosis can be used for targeted selective treatment (TST) of sheep, reducing antiparasitic drug use and anthelmintic resistance. This study aimed to predict PCV values through near-infrared spectroscopy (NIRS) and to develop a classification and diagnosis model of H. contortus infection using PCV values, eggs per gram of feces (EPG) counts and mean daily weight gain (DWG). A total of 1728 spectra were collected from blood samples of 216 lambs with a portable NIR spectroscope. In parallel, other parameters indicative of infection were measured: PCV by hematocrit, FAffa MAlan CHArt (FAMACHA) scores, EPG and DWG. To evaluate the relationship between NIRS spectra and the evaluated parameters, principal component analysis (PCA) was used for an exploratory analysis, regression by the partial least squares method (PLS) for the prediction of PCV values via NIRS, and PCA linear discriminant analysis (PCA-LDA) as a classification model for diagnosis. The absorption peaks in the NIRS region associated with the excitation of overtones of nitrogen-hydrogen (N-H) functional groups of proteins had a strong impact on the principal components (PCs), indicating that blood proteins, especially hemoglobin, can be estimated by the NIRS technique. The model for predicting PCV by PLS presented a standard error of prediction of 2.53, root-mean-square error of 2.48, and coefficient of determination of 0.84, indicating good correlation between the PCV values predicted by the model and the PCV obtained by hematocrit. The PCA-LDA model presented 93.33% sensitivity and 82.18% accuracy, both higher than those of the FAMACHA method, as was expected for resilient Morada Nova lambs. The multivariate models associated with the NIRS technique reported here can be used in the future as a quick and versatile tool for H. contortus infection diagnosis and TST application in lambs.
Collapse
Affiliation(s)
- Isabella B Santos
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Rod. Prof. Paulo Donato Castellane, 14884-900 Jaboticabal, São Paulo, Brazil
| | - Avelardo U C Ferreira
- Embrapa Pecuária Sudeste, Rodovia Washington Luiz, Km 234, 13560-970 São Carlos, SP, Brazil
| | - Márcio D Rabelo
- Embrapa Pecuária Sudeste, Rodovia Washington Luiz, Km 234, 13560-970 São Carlos, SP, Brazil
| | - Luís Adriano Anholeto
- Embrapa Pecuária Sudeste, Rodovia Washington Luiz, Km 234, 13560-970 São Carlos, SP, Brazil
| | - Gustavo A Sousa
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Rod. Prof. Paulo Donato Castellane, 14884-900 Jaboticabal, São Paulo, Brazil
| | - Yousmel A Gaínza
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Rod. Prof. Paulo Donato Castellane, 14884-900 Jaboticabal, São Paulo, Brazil
| | - Amanda Figueiredo
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Rod. Prof. Paulo Donato Castellane, 14884-900 Jaboticabal, São Paulo, Brazil
| | - Sérgio N Esteves
- Embrapa Pecuária Sudeste, Rodovia Washington Luiz, Km 234, 13560-970 São Carlos, SP, Brazil
| | - Ana Carolina S Chagas
- Embrapa Pecuária Sudeste, Rodovia Washington Luiz, Km 234, 13560-970 São Carlos, SP, Brazil.
| |
Collapse
|
47
|
Hennes M, Bender N, Cronenberg T, Welker A, Maier B. Collective polarization dynamics in bacterial colonies signify the occurrence of distinct subpopulations. PLoS Biol 2023; 21:e3001960. [PMID: 36652440 PMCID: PMC9847958 DOI: 10.1371/journal.pbio.3001960] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023] Open
Abstract
Membrane potential in bacterial systems has been shown to be dynamic and tightly related to survivability at the single-cell level. However, little is known about spatiotemporal patterns of membrane potential in bacterial colonies and biofilms. Here, we discovered a transition from uncorrelated to collective dynamics within colonies formed by the human pathogen Neisseria gonorrhoeae. In freshly assembled colonies, polarization is heterogeneous with instances of transient and uncorrelated hyper- or depolarization of individual cells. As colonies reach a critical size, the polarization behavior transitions to collective dynamics: A hyperpolarized shell forms at the center, travels radially outward, and halts several micrometers from the colony periphery. Once the shell has passed, we detect an influx of potassium correlated with depolarization. Transient hyperpolarization also demarks the transition from volume to surface growth. By combining simulations and the use of an alternative electron acceptor for the respiratory chain, we provide strong evidence that local oxygen gradients shape the collective polarization dynamics. Finally, we show that within the hyperpolarized shell, tolerance against aminoglycoside antibiotics increases. These findings highlight that the polarization pattern can signify the differentiation into distinct subpopulations with different growth rates and antibiotic tolerance.
Collapse
Affiliation(s)
- Marc Hennes
- Institute for Biological Physics, and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- * E-mail: (MH); (BM)
| | - Niklas Bender
- Institute for Biological Physics, and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Tom Cronenberg
- Institute for Biological Physics, and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Anton Welker
- Institute for Biological Physics, and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Berenike Maier
- Institute for Biological Physics, and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- * E-mail: (MH); (BM)
| |
Collapse
|
48
|
Jing X, Chen S, Liu X, Yang Y, Rensing C, Zhou S. Potassium channel mediates electroactive biofilm formation via recruiting planktonic Geobacter cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158035. [PMID: 35981588 DOI: 10.1016/j.scitotenv.2022.158035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/31/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Potassium (K+)-channel-based electrical signaling can coordinate microbial actions at a distance that provides an evolutionary advantage to cell communities. Electroactive cells are usually cultured surrounded by an electric field which provided stronger electrical signaling than the K+-mediated electrical signaling. Whether the K+ signaling also plays a role in coordinating the behavior of electroactive microorganisms has not been accurately demonstrated. Thus, we constructed a K+-channel-deficient strain ΔgsuK of Geobacter sulfurreducens to directly investigate roles of K+ signaling in electroactive biofilm formation for the first time. The ΔgsuK strain exhibited significantly inferior biofilm formation (i.e., biomass, thickness and component) and consequently showed weaker electrical performance (i.e., start-up time, current output, electrochemical catalytic behavior and charge transfer resistance) than the wild-type strain. Individual electric generation capacity and the expression of genes involved in biofilm formation and electrical performance in the single cell did not significantly change with the deletion of gsuK, indicating that K+ signaling indeed influenced the recruiting behavior of planktonic cell but not the functioning of the single cell related to biofilm formation or electric generation. This study is intended to provide an in-depth understanding of electroactive biofilm formation and serve as a basis for optimizing its electrical performance via strengthening the recruitment behavior.
Collapse
Affiliation(s)
- Xianyue Jing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shanshan Chen
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xing Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuting Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
49
|
Abstract
The morphogenesis of two-dimensional bacterial colonies has been well studied. However, little is known about the colony morphologies of bacteria growing in three dimensions, despite the prevalence of three-dimensional environments (e.g., soil, inside hosts) as natural bacterial habitats. Using experiments on bacteria in granular hydrogel matrices, we find that dense multicellular colonies growing in three dimensions undergo a common morphological instability and roughen, adopting a characteristic broccoli-like morphology when they exceed a critical size. Analysis of a continuum “active fluid” model of the expanding colony reveals that this behavior originates from an interplay of competition for nutrients with growth-driven colony expansion, both of which vary spatially. These results shed light on the fundamental biophysical principles underlying growth in three dimensions. How do growing bacterial colonies get their shapes? While colony morphogenesis is well studied in two dimensions, many bacteria grow as large colonies in three-dimensional (3D) environments, such as gels and tissues in the body or subsurface soils and sediments. Here, we describe the morphodynamics of large colonies of bacteria growing in three dimensions. Using experiments in transparent 3D granular hydrogel matrices, we show that dense colonies of four different species of bacteria generically become morphologically unstable and roughen as they consume nutrients and grow beyond a critical size—eventually adopting a characteristic branched, broccoli-like morphology independent of variations in the cell type and environmental conditions. This behavior reflects a key difference between two-dimensional (2D) and 3D colonies; while a 2D colony may access the nutrients needed for growth from the third dimension, a 3D colony inevitably becomes nutrient limited in its interior, driving a transition to unstable growth at its surface. We elucidate the onset of the instability using linear stability analysis and numerical simulations of a continuum model that treats the colony as an “active fluid” whose dynamics are driven by nutrient-dependent cellular growth. We find that when all dimensions of the colony substantially exceed the nutrient penetration length, nutrient-limited growth drives a 3D morphological instability that recapitulates essential features of the experimental observations. Our work thus provides a framework to predict and control the organization of growing colonies—as well as other forms of growing active matter, such as tumors and engineered living materials—in 3D environments.
Collapse
|
50
|
Zhang Y, Cai Y, Zeng L, Liu P, Ma LZ, Liu J. A Microfluidic Approach for Quantitative Study of Spatial Heterogeneity in Bacterial Biofilms. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Yuzhen Zhang
- Center for Infectious Disease Research School of Medicine Tsinghua University Beijing 100084 China
- Tsinghua-Peking Center for Life Sciences Beijing 100084 China
| | - Yumin Cai
- Center for Infectious Disease Research School of Medicine Tsinghua University Beijing 100084 China
| | - Lingbin Zeng
- Center for Infectious Disease Research School of Medicine Tsinghua University Beijing 100084 China
| | - Peng Liu
- Department of Biomedical Engineering School of Medicine Tsinghua University Beijing 100084 China
| | - Luyan Z. Ma
- State Key Laboratory of Microbial Resources Institute of Microbiology Chinese Academy of Sciences Beijing 100101 China
| | - Jintao Liu
- Center for Infectious Disease Research School of Medicine Tsinghua University Beijing 100084 China
- Tsinghua-Peking Center for Life Sciences Beijing 100084 China
| |
Collapse
|