1
|
Chieppa M, De Santis S, Verna G. Winnie Mice: A Chronic and Progressive Model of Ulcerative Colitis. Inflamm Bowel Dis 2025; 31:1158-1167. [PMID: 39912845 PMCID: PMC11985403 DOI: 10.1093/ibd/izaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Indexed: 02/07/2025]
Abstract
Recent trends show a continuous worldwide rise in the incidence of ulcerative colitis (UC), leading to increased interest in its etiology and pathogenesis, which is currently unknown. To gain a better mechanistic understanding of this disease, many mouse models have been developed over the last several years, with variations of dextran sodium sulfate administration representing the most widely employed. The Winnie mouse strain was created through elicited random mutations in Muc2, resulting in a progressive, chronic intestinal inflammation localized to the colon that worsens over time. Moreover, Winnie mice display immunologic and microbiota features that are similar to those that can be found in UC patients. Phenotypically, the presence, albeit rare, of rectal prolapse and other complications impacting quality of life can be observed in Winnie mice, as well as extraintestinal manifestations that are often associated with UC. While Winnie mice are currently less studied compared to other more established models of colitis, much has been discovered in the initial years of its use as a UC-like model. In summary, the use of Winnie mice adds to the growing armamentarium that is required to develop precision-based medicine for its future application in treating complex multifactorial diseases, such as UC.
Collapse
Affiliation(s)
- Marcello Chieppa
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy
| | - Stefania De Santis
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Giulio Verna
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Bayoumy AB, Derijks LJJ, Oldenburg B, de Boer NKH. The Use of Tissue Concentrations of Biological and Small-Molecule Therapies in Clinical Studies of Inflammatory Bowel Diseases. Pharmaceutics 2024; 16:1497. [PMID: 39771479 PMCID: PMC11676153 DOI: 10.3390/pharmaceutics16121497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
The introduction of biological therapies has revolutionized inflammatory bowel disease (IBD) management. A critical consideration in developing these therapies is ensuring adequate drug concentrations at the site of action. While blood-based biomarkers have shown limited utility in optimizing treatment (except for TNF-alpha inhibitors and thiopurines), tissue drug concentrations may offer valuable insights. In antimicrobial therapies, tissue concentration monitoring is standard practice and could provide a new avenue for understanding the pharmacokinetics of biological and small-molecule therapies in IBD. Various methods exist for measuring tissue concentrations, including whole tissue sampling, MALDI-MSI, microdialysis, and fluorescent labeling. These techniques offer unique advantages, such as spatial drug-distribution mapping, continuous sampling, or cellular-level analysis. However, challenges remain, including sampling invasiveness, heterogeneity in tissue compartments, and a lack of standardized bioanalytical guidelines. Drug pharmacokinetics are influenced by multiple factors, including molecular properties, disease-induced changes in the gastrointestinal tract, and the timing of sample collection. For example, drug permeability, solubility, and interaction with transporters may vary between Crohn's disease and ulcerative colitis. Research into the tissue concentrations of drugs like anti-TNF agents, ustekinumab, vedolizumab, and tofacitinib has shown variable correlations with clinical outcomes, suggesting potential roles for tissue concentration monitoring in therapeutic drug management. Although routine clinical application is not yet established, exploring tissue drug concentrations may enhance understanding of IBD pharmacotherapy.
Collapse
Affiliation(s)
- Ahmed B. Bayoumy
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands;
- Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, 1105 AZ Amsterdam, The Netherlands
| | - Luc J. J. Derijks
- Department of Clinical Pharmacy & Pharmacology, Máxima Medical Centre, 5631 BM Eindhoven, The Netherlands
- Department of Clinical Pharmacy & Toxicology and NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Nanne K. H. de Boer
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands;
- Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
3
|
Guevara-Ramírez P, Cadena-Ullauri S, Paz-Cruz E, Ruiz-Pozo VA, Tamayo-Trujillo R, Cabrera-Andrade A, Zambrano AK. Gut Microbiota Disruption in Hematologic Cancer Therapy: Molecular Insights and Implications for Treatment Efficacy. Int J Mol Sci 2024; 25:10255. [PMID: 39408584 PMCID: PMC11476909 DOI: 10.3390/ijms251910255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Hematologic malignancies (HMs), including leukemia, lymphoma, and multiple myeloma, involve the uncontrolled proliferation of abnormal blood cells, posing significant clinical challenges due to their heterogeneity and varied treatment responses. Despite recent advancements in therapies that have improved survival rates, particularly in chronic lymphocytic leukemia and acute lymphoblastic leukemia, treatments like chemotherapy and stem cell transplantation often disrupt gut microbiota, which can negatively impact treatment outcomes and increase infection risks. This review explores the complex, bidirectional interactions between gut microbiota and cancer treatments in patients with HMs. Gut microbiota can influence drug metabolism through mechanisms such as the production of enzymes like bacterial β-glucuronidases, which can alter drug efficacy and toxicity. Moreover, microbial metabolites like short-chain fatty acids can modulate the host immune response, enhancing treatment effectiveness. However, therapy often reduces the diversity of beneficial bacteria, such as Bifidobacterium and Faecalibacterium, while increasing pathogenic bacteria like Enterococcus and Escherichia coli. These findings highlight the critical need to preserve microbiota diversity during treatment. Future research should focus on personalized microbiome-based therapies, including probiotics, prebiotics, and fecal microbiota transplantation, to improve outcomes and quality of life for patients with hematologic malignancies.
Collapse
Affiliation(s)
- Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Viviana A. Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Alejandro Cabrera-Andrade
- Escuela de Enfermería, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito 170124, Ecuador
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito 170124, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| |
Collapse
|
4
|
Di Rienzo A, Marinelli L, Dimmito MP, Toto EC, Di Stefano A, Cacciatore I. Advancements in Inflammatory Bowel Disease Management: From Traditional Treatments to Monoclonal Antibodies and Future Drug Delivery Systems. Pharmaceutics 2024; 16:1185. [PMID: 39339221 PMCID: PMC11435298 DOI: 10.3390/pharmaceutics16091185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal inflammatory disorder with two main subtypes: ulcerative colitis (UC) and Crohn's disease (CD). The pathogenesis involves genetic predisposition, dysbiosis, and immune dysregulation. Complications include perianal lesions, strictures, fistulas, perforations, and an increased risk of colon cancer. Clinical classification ranges from mild to fulminant and recurrent disease, with common symptoms such as abdominal discomfort, rectal bleeding, diarrhea, and weight loss. Extraintestinal manifestations include arthritis, erythema nodosum, pyoderma gangrenosum, and uveitis. Conventional treatments using aminosalicylates, corticosteroids, and immunomodulators have limitations. Biologics, introduced in the 1990s, offer improved efficacy and specificity, targeting factors like TNF-α, integrins, and cytokines. Monoclonal antibodies play a crucial role in IBD management, aiming to reduce relapses, hospitalizations, and surgeries. In conclusion, this review is aimed at summarizing the latest knowledge, advantages, and drawbacks of IBD therapies, such as small molecules, biologics, and monoclonal antibodies, to provide a basis for further research in the IBD field.
Collapse
Affiliation(s)
| | - Lisa Marinelli
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.D.R.); (M.P.D.); (E.C.T.); (A.D.S.); (I.C.)
| | | | | | | | | |
Collapse
|
5
|
Xu J, Han J, Jin S, Yu B, Li X, Ma X, Sun L, Li C, Zhao L, Ni X. Modulation of mercaptopurine intestinal toxicity and pharmacokinetics by gut microbiota. Biomed Pharmacother 2024; 177:116975. [PMID: 38925017 DOI: 10.1016/j.biopha.2024.116975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/04/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
The interaction between the gut microbiota and mercaptopurine (6-MP), a crucial drug used in pediatric acute lymphoblastic leukemia (ALL) treatment, has not been extensively studied. Here we reveal the significant perturbation of gut microbiota after 2-week 6-MP treatment in beagles and mice followed by the functional prediction that showed impairment of SCFAs production and altered amino acid synthesis. And the targeted metabolomics in plasma also showed changes in amino acids. Additionally, targeted metabolomics analysis of feces showed changes in amino acids and SCFAs. Furthermore, ablating the intestinal microbiota by broad-spectrum antibiotics exacerbated the imbalance of amino acids, particularly leading to a significant decrease in the concentration of S-adenosylmethionine (SAM). Importantly, the depletion of gut microbiota worsened the damage of small intestine caused by 6-MP, resulting in increased intestinal permeability. Considering the relationship between toxicity and 6-MP metabolites, we conducted a pharmacokinetic study in pseudo germ-free rats to confirm that gut microbiota depletion altered the methylation metabolites of 6-MP. Specifically, the concentration of MeTINs, a secondary methylation metabolite, showed a negative correlation with SAM, the pivotal methyl donor. Additionally, we observed a strong correlation between Alistipes and SAM levels in both feces and plasma. In conclusion, our study demonstrates that 6-MP disrupts the gut microbiota, and depleting the gut microbiota exacerbates 6-MP-induced intestinal toxicity. Moreover, SAM derived from microbiota plays a crucial role in influencing plasma SAM and the methylation of 6-MP. These findings underscore the importance of comprehending the role of the gut microbiota in 6-MP metabolism and toxicity.
Collapse
Affiliation(s)
- Jiamin Xu
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China; Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Jiaqi Han
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Siyao Jin
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Boran Yu
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Xiaona Li
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Xiangyu Ma
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | | | | | - Libo Zhao
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China; Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China.
| | - Xin Ni
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China.
| |
Collapse
|
6
|
Mu H, Ye L, Wang B. Detailed resume of S-methyltransferases: Categories, structures, biological functions and research advancements in related pathophysiology and pharmacotherapy. Biochem Pharmacol 2024; 226:116361. [PMID: 38876259 DOI: 10.1016/j.bcp.2024.116361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Methylation is a vital chemical reaction in the metabolism of many drugs, neurotransmitters, hormones, and exogenous compounds. Among them, S-methylation plays a significant role in the biotransformation of sulfur-containing compounds, particularly chemicals with sulfhydryl groups. Currently, only three S-methyltransferases have been reported: thiopurine methyltransferase (TPMT), thiol methyltransferase (TMT), and thioether methyltransferase (TEMT). These enzymes are involved in various biological processes such as gene regulation, signal transduction, protein repair, tumor progression, and biosynthesis and degradation reactions in animals, plants, and microorganisms. Furthermore, they play pivotal roles in the metabolic pathways of essential drugs and contribute to the advancement of diseases such as tumors. This paper reviews the research progress on relevant structural features, metabolic mechanisms, inhibitor development, and influencing factors (gene polymorphism, S-adenosylmethionine level, race, sex, age, and disease) of S-methyltransferases. We hope that a better comprehension of S-methyltransferases will help to provide a reference for the development of novel strategies for related disorders and improve long-term efficacy.
Collapse
Affiliation(s)
- Hongfei Mu
- Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Lisha Ye
- Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Baolian Wang
- Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
7
|
Wang C, Gu Y, Chu Q, Wang X, Ding Y, Qin X, Liu T, Wang S, Liu X, Wang B, Cao H. Gut microbiota and metabolites as predictors of biologics response in inflammatory bowel disease: A comprehensive systematic review. Microbiol Res 2024; 282:127660. [PMID: 38442454 DOI: 10.1016/j.micres.2024.127660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Nonresponse to biologic agents in patients with inflammatory bowel disease (IBD) poses a significant public health burden, and the prediction of response to biologics offers valuable insights for IBD management. Given the pivotal role of gut microbiota and their endogenous metabolites in IBD, we conducted a systematic review to investigate the potential of fecal microbiota and mucosal microbiota and endogenous metabolomic markers as predictors for biotherapy response in IBD patients. A total of 38 studies were included in the review. Following anti-TNF-α treatment, the bacterial community characteristics of IBD patients exhibited a tendency to resemble those observed in healthy controls, indicating an improved clinical response. The levels of endogenous metabolites butyrate and deoxycholic acid were significantly associated with clinical remission following anti-TNF-α therapy. IBD patients who responded well to vedolizumab treatment had higher levels of specific bacteria that produce butyrate, along with increased levels of metabolites such as butyrate, branched-chain amino acids and acetamide following vedolizumab treatment. Crohn's disease patients who responded positively to ustekinumab treatment showed higher levels of Faecalibacterium and lower levels of Escherichia/Shigella. In conclusion, fecal microbiota and mucosal microbiota as well as their endogenous metabolites could provide a predictive tool for assessing the response of IBD patients to various biological agents and serve as a valuable reference for precise drug selection in clinical IBD patients.
Collapse
Affiliation(s)
- Chen Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yu Gu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qiao Chu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xin Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yiyun Ding
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiali Qin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiang Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| |
Collapse
|
8
|
Trotta MC, Gesualdo C, Lepre CC, Russo M, Ferraraccio F, Panarese I, Marano E, Grieco P, Petrillo F, Hermenean A, Simonelli F, D’Amico M, Bucolo C, Lazzara F, De Nigris F, Rossi S, Platania CBM. Ocular pharmacological and biochemical profiles of 6-thioguanine: a drug repurposing study. Front Pharmacol 2024; 15:1375805. [PMID: 38590636 PMCID: PMC10999531 DOI: 10.3389/fphar.2024.1375805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction The purine analog 6-thioguanine (6TG), an old drug approved in the 60s to treat acute myeloid leukemia (AML), was tested in the diabetic retinopathy (DR) experimental in vivo setting along with a molecular modeling approach. Methods A computational analysis was performed to investigate the interaction of 6TG with MC1R and MC5R. This was confirmed in human umbilical vein endothelial cells (HUVECs) exposed to high glucose (25 mM) for 24 h. Cell viability in HUVECs exposed to high glucose and treated with 6TG (0.05-0.5-5 µM) was performed. To assess tube formation, HUVECs were treated for 24 h with 6TG 5 µM and AGRP (0.5-1-5 µM) or PG20N (0.5-1-5-10 µM), which are MC1R and MC5R antagonists, respectively. For the in vivo DR setting, diabetes was induced in C57BL/6J mice through a single streptozotocin (STZ) injection. After 2, 6, and 10 weeks, diabetic and control mice received 6TG intravitreally (0.5-1-2.5 mg/kg) alone or in combination with AGRP or PG20N. Fluorescein angiography (FA) was performed after 4 and 14 weeks after the onset of diabetes. After 14 weeks, mice were euthanized, and immunohistochemical analysis was performed to assess retinal levels of CD34, a marker of endothelial progenitor cell formation during neo-angiogenesis. Results The computational analysis evidenced a more stable binding of 6TG binding at MC5R than MC1R. This was confirmed by the tube formation assay in HUVECs exposed to high glucose. Indeed, the anti-angiogenic activity of 6TG was eradicated by a higher dose of the MC5R antagonist PG20N (10 µM) compared to the MC1R antagonist AGRP (5 µM). The retinal anti-angiogenic effect of 6TG was evident also in diabetic mice, showing a reduction in retinal vascular alterations by FA analysis. This effect was not observed in diabetic mice receiving 6TG in combination with AGRP or PG20N. Accordingly, retinal CD34 staining was reduced in diabetic mice treated with 6TG. Conversely, it was not decreased in diabetic mice receiving 6TG combined with AGRP or PG20N. Conclusion 6TG evidenced a marked anti-angiogenic activity in HUVECs exposed to high glucose and in mice with DR. This seems to be mediated by MC1R and MC5R retinal receptors.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Carlo Gesualdo
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Caterina Claudia Lepre
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Marina Russo
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Franca Ferraraccio
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Iacopo Panarese
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ernesto Marano
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Paolo Grieco
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Francesco Petrillo
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Francesca Simonelli
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Filomena De Nigris
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| |
Collapse
|
9
|
Zhu M, Cheng Y, Tang Y, Li S, Rao P, Zhang G, Xiao L, Liu J. Nanoparticles alleviate non-alcoholic steatohepatitis via ER stress sensor-mediated intestinal barrier damage and gut dysbiosis. Front Microbiol 2024; 14:1271835. [PMID: 38516345 PMCID: PMC10956414 DOI: 10.3389/fmicb.2023.1271835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/11/2023] [Indexed: 03/23/2024] Open
Abstract
Introduction The gut microbiota plays an important role in the development of non-alcoholic steatohepatitis (NASH), but the underlying mechanism is unclear. It has been found that the transcription factor XBP1s plays an important role in regulating inflammation and lipid metabolism and maintaining the integrity of intestinal barrier. However, whether XBP1s modulates the development of NASH by regulating the integrity of the intestinal barrier and altering the composition of the gut microbiota remains unknown. Methods Mice fed with a fat-, fructose-, cholesterol-rich (FFC) diet for 24 weeks successfully established the NASH model, as demonstrated by significant hepatic steatosis, inflammation, hepatocyte injury and fibrosis. The profile of gut microbiota dynamically changed with the different stages of NAFLD via 16S rDNA sequencing the feces from mice fed with FFC diet for 0, 12, or 24 weeks or NASH mice treated with siRNA-loaded folic acid-modified TPGS (hereafter named FT@XBP1). Results NASH mice had significantly higher abundance of Firmicutes, Blautia and Bacteroides, and lower abundance of Bifidobacterium and GCA-900066575. FT@XBP1 supplementation had a significantly attenuated effect on FFC diet-induced weight gain, hepatic fat accumulation, dyslipidemia, inflammatory cytokines, ER stress and fibrosis. In particularly, FT@XBP1 modulates the composition of the intestinal flora; for example, NASH mice demonstrated higher abundance of Blautia and Bacteroides, and lower abundance of Actinobacteriota, Muribaculaceae and Bifidobacterium, which were partially restored by FT@XBP1 treatment. Mechanistically, FT@XBP1 increased the expression of ZO-1 in the intestine and had the potential to restore intestinal barrier integrity and improve antimicrobial defense to alleviate enterogenic endotoxemia and activation of inflammatory signaling pathways. Discussion Regulation of the key transcription factor XBP1s can partially restore the intestinal microbiota structure, maintain the integrity of intestinal mucosal barrier, and prevent the progression of NASH, providing new evidence for treating NASH.
Collapse
Affiliation(s)
- Manman Zhu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yong Cheng
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yue Tang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Shuojiao Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Peng Rao
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Lei Xiao
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiatao Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
10
|
Tan J, Fu B, Zhao X, Ye L. Novel Techniques and Models for Studying the Role of the Gut Microbiota in Drug Metabolism. Eur J Drug Metab Pharmacokinet 2024; 49:131-147. [PMID: 38123834 DOI: 10.1007/s13318-023-00874-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The gut microbiota, known as the second human genome, plays a vital role in modulating drug metabolism, significantly impacting therapeutic outcomes and adverse effects. Emerging research has elucidated that the microbiota mediates a range of modifications of drugs, leading to their activation, inactivation, or even toxication. In diverse individuals, variations in the gut microbiota can result in differences in microbe-drug interactions, underscoring the importance of personalized approaches in pharmacotherapy. However, previous studies on drug metabolism in the gut microbiota have been hampered by technical limitations. Nowadays, advances in biotechnological tools, such as microbially derived metabolism screening and microbial gene editing, have provided a deeper insight into the mechanism of drug metabolism by gut microbiota, moving us toward personalized therapeutic interventions. Given this situation, our review summarizes recent advances in the study of gut-microbiota-mediated drug metabolism and showcases techniques and models developed to navigate the challenges posed by the microbial involvement in drug action. Therefore, we not only aim at understanding the complex interaction between the gut microbiota and drugs and outline the development of research techniques and models, but we also summarize the specific applications of new techniques and models in researching gut-microbiota-mediated drug metabolism, with the expectation of providing new insights on how to study drug metabolism by gut microbiota.
Collapse
Affiliation(s)
- Jianling Tan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bingxuan Fu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaojie Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
11
|
Speckmann B, Ehring E, Hu J, Rodriguez Mateos A. Exploring substrate-microbe interactions: a metabiotic approach toward developing targeted synbiotic compositions. Gut Microbes 2024; 16:2305716. [PMID: 38300741 PMCID: PMC10841028 DOI: 10.1080/19490976.2024.2305716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Gut microbiota is an important modulator of human health and contributes to high inter-individual variation in response to food and pharmaceutical ingredients. The clinical outcomes of interventions with prebiotics, probiotics, and synbiotics have been mixed and often unpredictable, arguing for novel approaches for developing microbiome-targeted therapeutics. Here, we review how the gut microbiota determines the fate of and individual responses to dietary and xenobiotic compounds via its immense metabolic potential. We highlight that microbial metabolites play a crucial role as targetable mediators in the microbiota-host health relationship. With this in mind, we expand the concept of synbiotics beyond prebiotics' role in facilitating growth and engraftment of probiotics, by focusing on microbial metabolism as a vital mode of action thereof. Consequently, we discuss synbiotic compositions that enable the guided metabolism of dietary or co-formulated ingredients by specific microbes leading to target molecules with beneficial functions. A workflow to develop novel synbiotics is presented, including the selection of promising target metabolites (e.g. equol, urolithin A, spermidine, indole-3 derivatives), identification of suitable substrates and producer strains applying bioinformatic tools, gut models, and eventually human trials.In conclusion, we propose that discovering and enabling specific substrate-microbe interactions is a valuable strategy to rationally design synbiotics that could establish a new category of hybrid nutra-/pharmaceuticals.
Collapse
Affiliation(s)
| | | | - Jiaying Hu
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Ana Rodriguez Mateos
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| |
Collapse
|
12
|
Ferrer-Márquez M, Frutos Bernal MD, Ruiz de Gordejuela AG, García-Redondo M, Millán M, Sabench Pereferrer F, Tarascó Palomares J. Results of the national registry of patients diagnosed with inflammatory bowel disease candidates for bariatric surgery (ReNacEIBar). Cir Esp 2024; 102:44-52. [PMID: 37952719 DOI: 10.1016/j.cireng.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/28/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Our aim is to carry out a national registry of patients with inflammatory bowel disease (IBD) who underwent bariatric surgery, as well as evaluate the results and management of this type of patients in the usual clinical practice. METHODS National multicentric observational retrospective study, including patients, previously diagnosed with IBD who underwent bariatric surgery from January 2000 to December 2022. RESULTS Forty-one patients have been included: 43,9% previously diagnosed with ulcerative colitis, 57,3% Crohn's disease, and an indeterminate colitis (2,4%). The preoperative BMI was 45.8 ± 6,1 kg/m2. Among the bariatric surgeries, 31 (75,6%) sleeve gastrectomy, 1 (2,4%) gastric bypass and 9 (22%) one anastomosis gastric have been carried out. During the postoperative period, 9.8% complications have been recorded. BMI was 29,5 ± 4,7 kg/m2 and percent total weight lost was 33,9 ± 9,1% at 12 months. CONCLUSIONS Bariatric surgery in patients with inflammatory bowel disease can be considered safe and effective.
Collapse
Affiliation(s)
- Manuel Ferrer-Márquez
- Unidad de Cirugía Bariátrica y Coloproctología, Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Torrecárdenas, Almería; Departamento de Cirugía Bariátrica (Obesidad Almería), Hospital Mediterráneo, Almería.
| | - M Dolores Frutos Bernal
- Servicio de Cirugía General y Aparato Digestivo, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia
| | - Amador García Ruiz de Gordejuela
- Unidad de Cirugía Endocrina, Bariátrica y Metabólica, Servicio de Cirugía General Hospital Universitari de la Vall d'Hebron, Universitat Autónoma, Barcelona
| | - Manuel García-Redondo
- Unidad de Cirugía Bariátrica y Coloproctología, Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Torrecárdenas, Almería
| | - Mónica Millán
- Unidad de Coloproctología, Hospital Universitario y Politécnico La Fe, Valencia
| | | | - Jordi Tarascó Palomares
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitari Germans Trias i Pujol, Badalona
| |
Collapse
|
13
|
Kaźmierczak-Siedlecka K, Bulman N, Ulasiński P, Sobocki BK, Połom K, Marano L, Kalinowski L, Skonieczna-Żydecka K. Pharmacomicrobiomics of cell-cycle specific anti-cancer drugs - is it a new perspective for personalized treatment of cancer patients? Gut Microbes 2023; 15:2281017. [PMID: 37985748 PMCID: PMC10730203 DOI: 10.1080/19490976.2023.2281017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023] Open
Abstract
Intestinal bacteria are equipped with an enzyme apparatus that is involved in the active biotransformation of xenobiotics, including drugs. Pharmacomicrobiomics, a new area of pharmacology, analyses interactions between bacteria and xenobiotics. However, there is another side to the coin. Pharmacotherapeutic agents can significantly modify the microbiota, which consequently affects their efficacy. In this review, we comprehensively gathered scientific evidence on the interplay between anticancer therapies and gut microbes. We also underlined how such interactions might impact the host response to a given therapy. We discuss the possibility of modulating the gut microbiota to increase the effectiveness/decrease the incidence of adverse events during tumor therapy. The anticipation of the future brings new evidence that gut microbiota is a target of interest to increase the efficacy of therapy.
Collapse
Affiliation(s)
- Karolina Kaźmierczak-Siedlecka
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdańsk, Poland
| | - Nikola Bulman
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdańsk, Poland
| | - Paweł Ulasiński
- Unit of Surgery with Unit of Oncological Surgery in Koscierzyna, Kościerzyna, Poland
| | - Bartosz Kamil Sobocki
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdańsk, Poland
| | - Karol Połom
- Academy of Medical and Social Applied Sciences, Elbląg, Poland
| | - Luigi Marano
- Academy of Medical and Social Applied Sciences, Elbląg, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdańsk, Poland
- BioTechMed Centre/Department of Mechanics of Materials and Structures, Gdansk University of Technology, Gdansk, Poland
| | | |
Collapse
|
14
|
Chu XY, Ho PC. Intestinal Microbiome and Its Impact on Metabolism and Safety of Drugs. ORAL BIOAVAILABILITY AND DRUG DELIVERY 2023:483-500. [DOI: 10.1002/9781119660699.ch25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Jin S, Xu J, Zou Y, Li X, Yu B, Han J, Wang X, Zhao L. Microbiome changes involves in mercaptopurine mediated anti-inflammatory response in acute lymphoblastic leukemia mice. Int Immunopharmacol 2023; 123:110782. [PMID: 37573688 DOI: 10.1016/j.intimp.2023.110782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Inflammasome has been reported to play an important role in the pathogenesis and progression of hematologic malignancies. As one of the backbone drugs for treating acute lymphoblastic leukemia (ALL), the anti-inflammatory effect of mercaptopurine (6-MP) and the impact of gut microbiome changes caused by 6-MP on anti-inflammasome remain unclear. OBJECTIVE We aimed to explore the association between 6-MP therapeutic effects and microbiome-involved inflammatory responses in ALL mice models. STUDY DESIGN ALL murine model was built by i.v. injecting murine L1210 cells into DBA/2 mice (model group). Two weeks after cell injections, 6-MP was orally administrated for 14 days (6-MP group). Fecal samples of mice were collected at different time points. Cecum short-chain fatty acids (SCFAs) concentrations were determined by LC-MS/MS method. Serum cytokines were measured using a cytometric bead array. Gut microbiota composition in mice was explored using 16S rRNA gene sequencing. RESULTS The anti-tumor effect of 6-MP was proved in ALL mice models. The levels of pro-inflammatory factors IL-6 and TNFα significantly decreased after the administration of 6-MP. Cecum contents' acetate, propionate, and butyrate levels were negatively correlated with IL-6 (correlation coefficient: acetate, -0.24; propionate, -0.26; butyrate, -0.17) and TNFα (correlation coefficient: acetate, -0.45; propionate, -0.42; butyrate, -0.31) changes. Relative abundance changes of f_Lachnospiraceae.g_ASF356 and f_Peptococcaceae.g_uncultured were in accordance with the changes of butyrate levels and opposite to the changes of pro-inflammatory levels. CONCLUSION The anti-inflammatory response of 6-MP influenced by intestinal microbiota and its metabolites SCFAs, especially butyrate, played an essential role in improving ALL progression.
Collapse
Affiliation(s)
- Siyao Jin
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Jiamin Xu
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Yaru Zou
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China; Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, China
| | - Xiaona Li
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Boran Yu
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Jiaqi Han
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Xiaoling Wang
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Libo Zhao
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China; Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
16
|
Yan Y, Wang Z, Zhou YL, Gao Z, Ning L, Zhao Y, Xuan B, Ma Y, Tong T, Huang X, Hu M, Fang JY, Cui Z, Chen H, Hong J. Commensal bacteria promote azathioprine therapy failure in inflammatory bowel disease via decreasing 6-mercaptopurine bioavailability. Cell Rep Med 2023; 4:101153. [PMID: 37586320 PMCID: PMC10439275 DOI: 10.1016/j.xcrm.2023.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/07/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
Azathioprine (AZA) therapy failure, though not the primary cause, contributes to disease relapse and progression in inflammatory bowel disease (IBD). However, the role of gut microbiota in AZA therapy failure remains poorly understood. We found a high prevalence of Blautia wexlerae in patients with IBD with AZA therapy failure, associated with shorter disease flare survival time. Colonization of B. wexlerae increased inflammatory macrophages and compromised AZA's therapeutic efficacy in mice with intestinal colitis. B. wexlerae colonization reduced 6-mercaptopurine (6-MP) bioavailability by enhancing selenium-dependent xanthine dehydrogenase (sd-XDH) activity. The enzyme sd-XDH converts 6-MP into its inactive metabolite, 6-thioxanthine (6-TX), thereby impairing its ability to inhibit inflammation in mice. Supplementation with Bacillus (B.) subtilis enriched in hypoxanthine phosphoribosyltransferase (HPRT) effectively mitigated B. wexlerae-induced AZA treatment failure in mice with intestinal colitis. These findings emphasize the need for tailored management strategies based on B. wexlerae levels in patients with IBD.
Collapse
Affiliation(s)
- Yuqing Yan
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Zhenhua Wang
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Yi-Lu Zhou
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Ziyun Gao
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Lijun Ning
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Ying Zhao
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Baoqin Xuan
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Yanru Ma
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Tianying Tong
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Xiaowen Huang
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Muni Hu
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Jing-Yuan Fang
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Zhe Cui
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, Shanghai 200001, China.
| | - Haoyan Chen
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China.
| | - Jie Hong
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China.
| |
Collapse
|
17
|
Mian A, Khan S. Systematic review: Outcomes of bariatric surgery in patients with inflammatory bowel disease and de-novo IBD development after bariatric surgery. Surgeon 2023; 21:e71-e77. [PMID: 35660070 DOI: 10.1016/j.surge.2022.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/09/2021] [Accepted: 04/25/2022] [Indexed: 01/02/2023]
Abstract
A large proportion of patients diagnosed with inflammatory bowel disease are obese. Outcomes of bariatric surgery in patients with IBD and on IBD disease course itself is not clear. Furthermore, there is some evidence that bariatric surgery can precipitate the development of de-novo IBD. Thus, the aim of this systematic review was to summarise the evidence from the literature surrounding these questions. A comprehensive literature review was conducted based on the preferred reporting items for systematic reviews and meta-analysis guidelines (PRISMA). PUBMED, and MEDLINE databases was searched using a combination of keywords and MeSH terms including "gastric bypass", "sleeve gastrectomy", "Roux-en-Y", "Duodenal switch", "RYGB", "bariatric surgery" and "inflammatory bowel disease", "Crohn's disease" ,"Ulcerative colitis". Studies published up to March 2020 were included in this analysis. 22 studies met the inclusion criteria. Studies revealed that bariatric surgery is safe and effective for patients with IBD and resulted in significant weight loss at both the 6-month and 12-month time points. Furthermore, multiple studies reported de-novo IBD development following bariatric surgery in a selection of patients.
Collapse
Affiliation(s)
- Areeb Mian
- Department of Surgery, Imperial College London, South Kensington, London, SW7 2AZ, UK.
| | - Shujhat Khan
- Department of Surgery, Imperial College London, South Kensington, London, SW7 2AZ, UK.
| |
Collapse
|
18
|
Becker HEF, Demers K, Derijks LJJ, Jonkers DMAE, Penders J. Current evidence and clinical relevance of drug-microbiota interactions in inflammatory bowel disease. Front Microbiol 2023; 14:1107976. [PMID: 36910207 PMCID: PMC9996055 DOI: 10.3389/fmicb.2023.1107976] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Background Inflammatory bowel disease (IBD) is a chronic relapsing-remitting disease. An adverse immune reaction toward the intestinal microbiota is involved in the pathophysiology and microbial perturbations are associated with IBD in general and with flares specifically. Although medical drugs are the cornerstone of current treatment, responses vary widely between patients and drugs. The intestinal microbiota can metabolize medical drugs, which may influence IBD drug (non-)response and side effects. Conversely, several drugs can impact the intestinal microbiota and thereby host effects. This review provides a comprehensive overview of current evidence on bidirectional interactions between the microbiota and relevant IBD drugs (pharmacomicrobiomics). Methods Electronic literature searches were conducted in PubMed, Web of Science and Cochrane databases to identify relevant publications. Studies reporting on microbiota composition and/or drug metabolism were included. Results The intestinal microbiota can both enzymatically activate IBD pro-drugs (e.g., in case of thiopurines), but also inactivate certain drugs (e.g., mesalazine by acetylation via N-acetyltransferase 1 and infliximab via IgG-degrading enzymes). Aminosalicylates, corticosteroids, thiopurines, calcineurin inhibitors, anti-tumor necrosis factor biologicals and tofacitinib were all reported to alter the intestinal microbiota composition, including changes in microbial diversity and/or relative abundances of various microbial taxa. Conclusion Various lines of evidence have shown the ability of the intestinal microbiota to interfere with IBD drugs and vice versa. These interactions can influence treatment response, but well-designed clinical studies and combined in vivo and ex vivo models are needed to achieve consistent findings and evaluate clinical relevance.
Collapse
Affiliation(s)
- Heike E. F. Becker
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Karlijn Demers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Luc J. J. Derijks
- Department of Clinical Pharmacy and Pharmacology, Máxima Medical Center, Veldhoven, Netherlands
- Department of Clinical Pharmacy and Toxicology, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Daisy M. A. E. Jonkers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - John Penders
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, CAPHRI School of Public Health and Primary Care, Maastricht University Medical Centre+, Maastricht, Netherlands
| |
Collapse
|
19
|
Nikonorova VG, Chrishtop VV, Mironov VA, Prilepskii AY. Advantages and Potential Benefits of Using Organoids in Nanotoxicology. Cells 2023; 12:cells12040610. [PMID: 36831277 PMCID: PMC9954166 DOI: 10.3390/cells12040610] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Organoids are microtissues that recapitulate the complex structural organization and functions of tissues and organs. Nanoparticles have several specific properties that must be considered when replacing animal models with in vitro studies, such as the formation of a protein corona, accumulation, ability to overcome tissue barriers, and different severities of toxic effects in different cell types. An increase in the number of articles on toxicology research using organoid models is related to an increase in publications on organoids in general but is not related to toxicology-based publications. We demonstrate how the quantitative assessment of toxic changes in the structure of organoids and the state of their cell collections provide more valuable results for toxicological research and provide examples of research methods. The impact of the tested materials on organoids and their differences are also discussed. In conclusion, we highlight the main challenges, the solution of which will allow researchers to approach the replacement of in vivo research with in vitro research: biobanking and standardization of the structural characterization of organoids, and the development of effective screening imaging techniques for 3D organoid cell organization.
Collapse
|
20
|
Fenneman AC, Weidner M, Chen LA, Nieuwdorp M, Blaser MJ. Antibiotics in the pathogenesis of diabetes and inflammatory diseases of the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 2023; 20:81-100. [PMID: 36258032 PMCID: PMC9898198 DOI: 10.1038/s41575-022-00685-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
Antibiotic use is increasing worldwide. However, the use of antibiotics is clearly associated with changes in gut microbiome composition and function, and perturbations have been identified as potential environmental risk factors for chronic inflammatory disorders of the gastrointestinal tract. In this Review, we examine the association between the use of antibiotics and the onset and development of both type 1 and type 2 diabetes, inflammatory bowel disease, including ulcerative colitis and Crohn's disease, as well as coeliac disease and eosinophilic oesophagitis. We discuss the key findings of epidemiological studies, provide mechanistic insights into the pathways by which the gut microbiota might contribute to these diseases, and assess clinical trials investigating the effects of antibiotics. Such studies indicate that antibiotic exposures, varying in type, timing and dosage, could explain differences in disease risk. There seems to be a critical window in early life in which perturbation of the microbiome has a substantial effect on disease development. Identifying the antibiotic-perturbed gut microbiota as a factor that contributes to the pathophysiology of these inflammatory disorders might stimulate new approaches to prevention, diagnosis and treatment.
Collapse
Affiliation(s)
- Aline C Fenneman
- Department of Clinical and Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Melissa Weidner
- Department of Paediatrics, Rutgers University, New Brunswick, NJ, USA
| | - Lea Ann Chen
- Department of Medicine, Rutgers University, New Brunswick, NJ, USA
| | - Max Nieuwdorp
- Department of Clinical and Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Martin J Blaser
- Department of Medicine, Rutgers University, New Brunswick, NJ, USA.
- Department of Pathology and Laboratory Medicine, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
21
|
Wang W, Lu G, Wu X, Wen Q, Zhang F. Colonic Transendoscopic Enteral Tubing Is a New Pathway to Microbial Therapy, Colonic Drainage, and Host-Microbiota Interaction Research. J Clin Med 2023; 12:780. [PMID: 36769429 PMCID: PMC9918197 DOI: 10.3390/jcm12030780] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The limitation of traditional delivery methods for fecal microbiota transplantation (FMT) gave birth to colonic transendoscopic enteral tubing (TET) to address the requirement of frequent FMTs. Colonic TET as a novel endoscopic intervention has received increasing attention in practice since 2015 in China. Emerging studies from multiple centers indicate that colonic TET is a promising, safe, and practical delivery method for microbial therapy and administering medication with high patient satisfaction. Intriguingly, colonic TET has been used to rescue endoscopy-related perforations by draining colonic air and fluid through the TET tube. Recent research based on collecting ileocecal samples through a TET tube has contributed to demonstrating community dynamics in the intestine, and it is expected to be a novel delivery of proof-of-concept in host-microbiota interactions and pharmacological research. The present article aims to review the concept and techniques of TET and to explore microbial therapy, colonic drainage, and microbial research based on colonic TET.
Collapse
Affiliation(s)
- Weihong Wang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
| | - Gaochen Lu
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
| | - Xia Wu
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
| | - Quan Wen
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
| | - Faming Zhang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
- Department of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Avenue, Nanjing 211166, China
| |
Collapse
|
22
|
Lazarević S, Đanić M, Pavlović N, Stanimirov B, Mikov M. Biomarker-based thiopurine therapy for inflammatory bowel disease. MAKEDONSKO FARMACEVTSKI BILTEN 2022. [DOI: 10.33320/maced.pharm.bull.2022.68.03.264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Slavica Lazarević
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia ,
| | - Maja Đanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia ,
| | - Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Bojan Stanimirov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia ,
| |
Collapse
|
23
|
Sousa P, Noor NM. Revisiting Drug Development for Older Molecules in IBD. Inflamm Bowel Dis 2022:6759349. [PMID: 36222483 DOI: 10.1093/ibd/izac220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Indexed: 12/09/2022]
Affiliation(s)
- Paula Sousa
- Department of Gastroenterology, Viseu Unit, Tondela-Viseu Hospital Centre, 3504-509 Viseu, Portugal
| | - Nurulamin M Noor
- Department of Gastroenterology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom.,Medical Research Council Clinical Trials Unit, University College London, London, United Kingdom
| |
Collapse
|
24
|
Sharma V, Kedia S, Ahuja V. Personalized medicine to implementation science: Thiopurines set for the leap. JGH Open 2022; 6:651-657. [PMID: 36262539 PMCID: PMC9575323 DOI: 10.1002/jgh3.12829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Vishal Sharma
- Department of GastroenterologyPostgraduate Institute of Medical Education and ResearchChandigarhIndia
| | - Saurabh Kedia
- Department of Gastroenterology and Human NutritionAll India Institute of Medical SciencesDelhiIndia
| | - Vineet Ahuja
- Department of Gastroenterology and Human NutritionAll India Institute of Medical SciencesDelhiIndia
| |
Collapse
|
25
|
Ghiboub M, Penny S, Verburgt CM, Boneh RS, Wine E, Cohen A, Dunn KA, Pinto DM, Benninga MA, de Jonge WJ, Levine A, Van Limbergen JE. Metabolome Changes With Diet-Induced Remission in Pediatric Crohn's Disease. Gastroenterology 2022; 163:922-936.e15. [PMID: 35679949 DOI: 10.1053/j.gastro.2022.05.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS The Crohn's disease (CD) exclusion diet (CDED) plus partial enteral nutrition (PEN) and exclusive enteral nutrition (EEN) both induce remission in pediatric CD. CDED+PEN is better tolerated and able to sustain remission. We characterized the changes in fecal metabolites induced by CDED+PEN and EEN and their relationship with remission. METHODS A total of 216 fecal metabolites were measured in 80 fecal samples at week (W) 0, W6, and W12, of children with mild to moderate CD in a prospective randomized trial comparing CDED+PEN vs EEN. The metabolites were measured using liquid chromatography coupled to mass spectrometry. Metagenome Kyoto Encyclopedia of Genes and Genomes Orthology analysis was performed to investigate the differential functional gene abundance involved in specific metabolic pathways. Data were analyzed according to clinical outcome of remission (W6_rem), no remission (W6_nr), sustained remission (W12_sr), and nonsustained (W12_nsr) remission. RESULTS A decrease in kynurenine and succinate synthesis and an increase in N-α-acetyl-arginine characterized CDED+PEN W6_rem, whereas changes in lipid metabolism characterized EEN W6_rem, especially reflected by lower levels in ceramides. In contrast, fecal metabolites in EEN W6_nr were comparable to baseline/W0 samples. CDED+PEN W6_rem children maintained metabolome changes through W12. In contrast, W12_nsr children in the EEN group, who resumed a free diet after week 6, did not. The metabolome of CDED+PEN differed from EEN in the purine, pyrimidine, and sphingolipid pathways. A significant differential abundance in several genes involved in these pathways was detected. CONCLUSION CDED+PEN- and EEN-induced remission are associated with significant changes in inflammatory bowel disease-associated metabolites such as kynurenine, ceramides, amino acids, and others. Sustained remission with CDED+PEN, but not EEN, was associated with persistent changes in metabolites. CLINICALTRIALS gov, Number NCT01728870.
Collapse
Affiliation(s)
- Mohammed Ghiboub
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Pediatric Gastroenterology and Nutrition, Amsterdam University Medical Centers, Emma Children's Hospital, Amsterdam, the Netherlands
| | - Susanne Penny
- National Research Council Canada, Human Health Therapeutics, Halifax, Canada
| | - Charlotte M Verburgt
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Pediatric Gastroenterology and Nutrition, Amsterdam University Medical Centers, Emma Children's Hospital, Amsterdam, the Netherlands
| | - Rotem Sigall Boneh
- Division of Pediatric Gastroenterology, Wolfson Medical Centre, Holon, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eytan Wine
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Alejandro Cohen
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | | | - Devanand M Pinto
- National Research Council Canada, Human Health Therapeutics, Halifax, Canada
| | - Marc A Benninga
- Department of Pediatric Gastroenterology and Nutrition, Amsterdam University Medical Centers, Emma Children's Hospital, Amsterdam, the Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Surgery, University Hospital of Bonn, Bonn, Germany
| | - Arie Levine
- Division of Pediatric Gastroenterology, Wolfson Medical Centre, Holon, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Johan E Van Limbergen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Pediatric Gastroenterology and Nutrition, Amsterdam University Medical Centers, Emma Children's Hospital, Amsterdam, the Netherlands; Department of Pediatrics, Dalhousie University, Halifax, Canada.
| |
Collapse
|
26
|
Crouwel F, Simsek M, van Doorn AS, Mulder CJJ, Buiter HJC, Barclay ML, Florin TH, de Boer NK. Rectally Administrated Thioguanine for Distal Ulcerative Colitis: A Multicenter Case Series. Inflamm Bowel Dis 2022:6696694. [PMID: 36099056 DOI: 10.1093/ibd/izac195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 01/06/2023]
Affiliation(s)
- Femke Crouwel
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Melek Simsek
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Amarylle S van Doorn
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.,Departments of Gastroenterology & Clinical Pharmacology, Christchurch Hospital, Canterbury District Health Board and University of Otago, Christchurch, New Zealand
| | - Chris J J Mulder
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Hans J C Buiter
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Murray L Barclay
- Departments of Gastroenterology & Clinical Pharmacology, Christchurch Hospital, Canterbury District Health Board and University of Otago, Christchurch, New Zealand
| | - Timothy H Florin
- Inflammatory Bowel Diseases Group, Mater Research Institute, University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Nanne K de Boer
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
27
|
Crouwel F, Buiter HJC, de Boer NK. The Thiopurine Tale: An Unexpected Journey. J Crohns Colitis 2022; 16:1177-1183. [PMID: 35024806 DOI: 10.1093/ecco-jcc/jjac004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/24/2021] [Accepted: 01/11/2022] [Indexed: 01/11/2023]
Abstract
Exactly 70 years ago [1951] mercaptopurine was discovered by Gertrude Elion as a novel treatment option for acute leukaemia. A total of three thiopurines (also thioguanine [1950] and azathioprine [1957]) were developed over time. These immunosuppressive drugs were also successfully introduced a few decades later to prevent rejection of transplanted organs and to treat several autoimmune diseases. For her discovery of thiopurines and other antimetabolite drugs, in 1988 Elion was rewarded, together with George Hitchings and James Black, with the Nobel Prize in Physiology or Medicine. Important steps have been made in recent years to unravel its metabolism, mode of action and pharmacogenetics. Today thiopurine [based] therapy remains an essential immunosuppressive approach in treating patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Femke Crouwel
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, the Netherland
| | - Hans J C Buiter
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Nanne K de Boer
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, the Netherland
| |
Collapse
|
28
|
Ma Y, Liu X, Wang J. Small molecules in the big picture of gut microbiome-host cross-talk. EBioMedicine 2022; 81:104085. [PMID: 35636316 PMCID: PMC9156878 DOI: 10.1016/j.ebiom.2022.104085] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
Research on the gut microbiome and related diseases is rapidly growing with the development of sequencing technologies. An increasing number of studies offer new perspectives on disease development or treatment. Among these, the mechanisms of gut microbial metabolite-mediated effects merit better understanding. In this review, we first summarize the shifts in gut microbial metabolites within complex diseases, in which metabolites have correlational and occasionally causal effects on diseases and discuss the reported mechanisms. We further investigate the interactions between gut microbes and drugs, providing insights for precision medication as well as limitations of current research. Finally, we provide new research directions and research strategies for the development of drugs from gut microbial metabolites. FUNDING STATEMENT: None.
Collapse
Affiliation(s)
- Yue Ma
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
29
|
Lazarević S, Đanic M, Al-Salami H, Mooranian A, Mikov M. Gut Microbiota Metabolism of Azathioprine: A New Hallmark for Personalized Drug-Targeted Therapy of Chronic Inflammatory Bowel Disease. Front Pharmacol 2022; 13:879170. [PMID: 35450035 PMCID: PMC9016117 DOI: 10.3389/fphar.2022.879170] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022] Open
Abstract
Despite the growing number of new drugs approved for the treatment of inflammatory bowel disease (IBD), the long-term clinical use of thiopurine therapy and the well-known properties of conventional drugs including azathioprine have made their place in IBD therapy extremely valuable. Despite the fact that thiopurine S-methyltransferase (TPMT) polymorphism has been recognized as a major cause of the interindividual variability in the azathioprine response, recent evidence suggests that there might be some yet unknown causes which complicate dosing strategies causing either failure of therapy or toxicity. Increasing evidence suggests that gut microbiota, with its ability to release microbial enzymes, affects the pharmacokinetics of numerous drugs and subsequently drastically alters clinical effectiveness. Azathioprine, as an orally administered drug which has a complex metabolic pathway, is the prime illustrative candidate for such microbial metabolism of drugs. Comprehensive databases on microbial drug-metabolizing enzymes have not yet been generated. This study provides insights into the current evidence on microbiota-mediated metabolism of azathioprine and systematically accumulates findings of bacteria that possess enzymes required for the azathioprine biotransformation. Additionally, it proposes concepts for the identification of gut bacteria species responsible for the metabolism of azathioprine that could aid in the prediction of dose-response effects, complementing pharmacogenetic approaches already applied in the optimization of thiopurine therapy of IBD. It would be of great importance to elucidate to what extent microbiota-mediated metabolism of azathioprine contributes to the drug outcomes in IBD patients which could facilitate the clinical implementation of novel tools for personalized thiopurine treatment of IBD.
Collapse
Affiliation(s)
- Slavica Lazarević
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Maja Đanic
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, WA, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
30
|
Giri R, Hoedt EC, Khushi S, Salim AA, Bergot AS, Schreiber V, Thomas R, McGuckin MA, Florin TH, Morrison M, Capon RJ, Ó Cuív P, Begun J. Secreted NF-κB suppressive microbial metabolites modulate gut inflammation. Cell Rep 2022; 39:110646. [PMID: 35417687 DOI: 10.1016/j.celrep.2022.110646] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 01/24/2022] [Accepted: 03/16/2022] [Indexed: 12/27/2022] Open
Abstract
Emerging evidence suggests that microbiome-host crosstalk regulates intestinal immune activity and predisposition to inflammatory bowel disease (IBD). NF-κB is a master regulator of immune function and a validated target for the treatment of IBD. Here, we identify five Clostridium strains that suppress immune-mediated NF-κB activation in epithelial cell lines, PBMCs, and gut epithelial organoids from healthy human subjects and patients with IBD. Cell-free culture supernatant from Clostridium bolteae AHG0001 strain, but not the reference C. bolteae BAA-613 strain, suppresses inflammatory responses and endoplasmic reticulum stress in gut epithelial organoids derived from Winnie mice. The in vivo responses to Clostridium bolteae AHG0001 and BAA-613 mirror the in vitro activity. Thus, using our in vitro screening of bacteria capable of suppressing NF-κB in the context of IBD and using an ex vivo organoid-based approach, we identify a strain capable of alleviating colitis in a relevant pre-clinical animal model of IBD.
Collapse
Affiliation(s)
- Rabina Giri
- Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; Faculty of Medicine, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Emily C Hoedt
- Faculty of Medicine, The University of Queensland, St. Lucia, QLD 4072, Australia; The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Shamsunnahar Khushi
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Angela A Salim
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Anne-Sophie Bergot
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Veronika Schreiber
- Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Ranjeny Thomas
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Michael A McGuckin
- Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; Faculty of Medicine, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Timothy H Florin
- Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Mark Morrison
- Faculty of Medicine, The University of Queensland, St. Lucia, QLD 4072, Australia; The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Robert J Capon
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Páraic Ó Cuív
- Faculty of Medicine, The University of Queensland, St. Lucia, QLD 4072, Australia; The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia.
| | - Jakob Begun
- Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; Faculty of Medicine, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
31
|
Cytotoxicity of Thiopurine Drugs in Patients with Inflammatory Bowel Disease. TOXICS 2022; 10:toxics10040151. [PMID: 35448412 PMCID: PMC9026123 DOI: 10.3390/toxics10040151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023]
Abstract
The effectiveness of thiopurine drugs in inflammatory bowel disease (IBD) was confirmed more than a half-century ago. It was proven that these can be essential immunomodulatory medications. Since then, they have been used routinely to maintain remission of Crohn’s disease (CD) and ulcerative colitis (UC). The cytotoxic properties of thiopurines and the numerous adverse effects of the treatment are controversial. However, the research subject of their pharmacology, therapy monitoring, and the search for predictive markers are still very relevant. In this article, we provide an overview of the current knowledge and findings in the field of thiopurines in IBD, focusing on the aspect of their cytotoxicity. Due to thiopurines’ benefits in IBD therapy, it is expected that they will still constitute an essential part of the CD and UC treatment algorithm. More studies are still required on the modulation of the action of thiopurines in combination therapy and their interaction with the gut microbiota.
Collapse
|
32
|
Dhurjad P, Dhavaliker C, Gupta K, Sonti R. Exploring Drug Metabolism by the Gut Microbiota: Modes of Metabolism and Experimental Approaches. Drug Metab Dispos 2022; 50:224-234. [PMID: 34969660 DOI: 10.1124/dmd.121.000669] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022] Open
Abstract
Increasing evidence uncovers the involvement of gut microbiota in the metabolism of numerous pharmaceutical drugs. The human gut microbiome harbors 10-100 trillion symbiotic gut microbial bacteria that use drugs as substrates for enzymatic processes to alter host metabolism. Thus, microbiota-mediated drug metabolism can change the conventional drug action course and cause inter-individual differences in efficacy and toxicity, making it vital for drug discovery and development. This review focuses on drug biotransformation pathways and discusses different models for evaluating the role of gut microbiota in drug metabolism. SIGNIFICANCE STATEMENT: This review emphasizes the importance of gut microbiota and different modes of drug metabolism mediated by them. It provides information on in vivo, in vitro, ex vivo, in silico and multi-omics approaches for identifying the role of gut microbiota in metabolism. Further, it highlights the significance of gut microbiota-mediated metabolism in the process of new drug discovery and development as a rationale for safe and efficacious drug therapy.
Collapse
Affiliation(s)
- Pooja Dhurjad
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Chinmayi Dhavaliker
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kajal Gupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
33
|
Intestinal Microbiota-Mediated Biotransformations Alter the Pharmacokinetics of the Major Metabolites of Azathioprine in Rats after Oral Administration. Drug Metab Pharmacokinet 2022; 45:100458. [DOI: 10.1016/j.dmpk.2022.100458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 11/22/2022]
|
34
|
Guo X, Huang C, Xu J, Xu H, Liu L, Zhao H, Wang J, Huang W, Peng W, Chen Y, Nie Y, Zhou Y, Zhou Y. Gut Microbiota Is a Potential Biomarker in Inflammatory Bowel Disease. Front Nutr 2022; 8:818902. [PMID: 35127797 PMCID: PMC8814525 DOI: 10.3389/fnut.2021.818902] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD), is characterized by relapse and remission alternately. It remains a great challenge to diagnose and assess disease activity during IBD due to the lack of specific markers. While traditional biomarkers from plasma and stool, such as C-reactive protein (CRP), fecal calprotectin (FC), and S100A12, can be used to measure inflammation, they are not specific to IBD and difficult to determine an effective cut-off value. There is consensus that gut microbiota is crucial for intestinal dysbiosis is closely associated with IBD etiopathology and pathogenesis. Multiple studies have documented differences in the composition of gut microbiota between patients with IBD and healthy individuals, particularly regarding microbial diversity and relative abundance of specific bacteria. Patients with IBD have higher levels of Proteobacteria and lower amounts of Bacteroides, Eubacterium, and Faecalibacterium than healthy individuals. This review summarizes the pros and cons of using traditional and microbiota biomarkers to assess disease severity and treatment outcomes and addresses the possibility of using microbiota-focused interventions during IBD treatment. Understanding the role of microbial biomarkers in the assessment of disease activity and treatment outcomes has the potential to change clinical practice and lead to the development of more personalized therapies.
Collapse
Affiliation(s)
- Xue Guo
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chen Huang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Haoming Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Le Liu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Hailan Zhao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiaqi Wang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wenqi Huang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wu Peng
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ye Chen
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yuqiang Nie
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Youlian Zhou
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
35
|
Wang R, Moniruzzaman M, Wong KY, Wiid P, Harding A, Giri R, Tong W(H, Creagh J, Begun J, McGuckin MA, Hasnain SZ. Gut microbiota shape the inflammatory response in mice with an epithelial defect. Gut Microbes 2022; 13:1-18. [PMID: 33645438 PMCID: PMC7928202 DOI: 10.1080/19490976.2021.1887720] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Intestinal epithelial cell endoplasmic reticulum (ER) stress has been implicated in intestinal inflammation. It remains unclear whether ER stress is an initiator of or a response to inflammation. Winnie mice, carrying a Muc2 gene mutation resulting in intestinal goblet cell ER stress, develop spontaneous colitis with a depleted mucus barrier and increased bacterial translocation. This study aims to determine whether the microbiota was required for the development of Winnie colitis, and whether protein misfolding itself can initiate inflammation directly in absence of the microbiota. To assess the role of microbiota in driving Winnie colitis, WT and Winnie mice on the same background were rederived into the germ-free facility and housed in the Trexler-type soft-sided isolators. The colitis phenotype of these mice was assessed and compared to WT and Winnie mice housed within a specific pathogen-free facility. We found that Winnie colitis was substantially reduced but not abolished under germ-free conditions. Expression of inflammatory cytokine genes was reduced but several chemokines remained elevated in absence of microbiota. Concomitantly, ER stress was also diminished, although mucin misfolding persisted. RNA-Seq revealed that Winnie differentiated colon organoids have decreased expression of the negative regulators of the inflammatory response compared to WT. This data along with the increase in Mip2a chemokine expression, suggests that the epithelial cells in the Winnie mice are more responsive to stimuli. Moreover, the data demonstrate that intestinal epithelial intrinsic protein misfolding can prime an inflammatory response without initiating the unfolded protein response in the absence of the microbiota. However, the microbiota is necessary for the amplification of colitis in Winnie mice. Genetic predisposition to mucin misfolding in secretory cells initiates mild inflammatory signals. However, the inflammatory signal sets a forward-feeding cycle establishing progressive inflammation in the presence of microbiota.Abbreviations: Endoplasmic Reticulum: ER; Mucin-2: Muc-2; GF: Germ-Free; Inflammatory Bowel Disease: IBD.
Collapse
Affiliation(s)
- Ran Wang
- Immunopathology Group, Mater Research Institute – The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Md Moniruzzaman
- Immunopathology Group, Mater Research Institute – The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Kuan Yau Wong
- Immunopathology Group, Mater Research Institute – The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Percival Wiid
- Immunopathology Group, Mater Research Institute – The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Alexa Harding
- Immunopathology Group, Mater Research Institute – The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Rabina Giri
- Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Wendy (Hui) Tong
- Immunopathology Group, Mater Research Institute – The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Jackie Creagh
- Immunopathology Group, Mater Research Institute – The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Jakob Begun
- Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, Australia,Mater Adult Hospital, Mater Health Services, South Brisbane, Australia
| | - Michael A. McGuckin
- Immunopathology Group, Mater Research Institute – The University of Queensland, Translational Research Institute, Brisbane, Australia,Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Australia
| | - Sumaira Z. Hasnain
- Immunopathology Group, Mater Research Institute – The University of Queensland, Translational Research Institute, Brisbane, Australia,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Australia,CONTACT Sumaira Z. Hasnain Mater Research Institute – University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, Qld4102, Australia; Ran Wang Mater Research Institute – University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, Qld 4102, Australia
| |
Collapse
|
36
|
Radhakrishnan ST, Alexander JL, Mullish BH, Gallagher KI, Powell N, Hicks LC, Hart AL, Li JV, Marchesi JR, Williams HRT. Systematic review: the association between the gut microbiota and medical therapies in inflammatory bowel disease. Aliment Pharmacol Ther 2022; 55:26-48. [PMID: 34751954 DOI: 10.1111/apt.16656] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/21/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The gut microbiota has been implicated in the pathogenesis of inflammatory bowel disease (IBD), with Faecalibacterium prausnitizii associated with protection, and certain genera (including Shigella and Escherichia) associated with adverse features. The variability of patient response to medical therapies in IBD is incompletely understood. Given the recognised contribution of the microbiota to treatment efficacy in other conditions, there may be interplay between the gut microbiota, IBD medical therapy and IBD phenotype. AIMS To evaluate the bidirectional relationship between IBD medical therapies and the gut microbiota. METHODS We conducted a systematic search of MEDLINE and EMBASE. All original studies analysing interactions between the gut microbiota and established IBD medical therapies were included. RESULTS We screened 1296 records; 19 studies were eligible. There was heterogeneity in terms of sample analysis, treatment protocols, and outcome reporting. Increased baseline α-diversity was observed in responders versus non-responders treated with exclusive enteral nutrition (EEN), infliximab, ustekinumab or vedolizumab. Higher baseline Faecalibacterium predicted response to infliximab and ustekinumab. A post-treatment increase in Faecalibacterium prausnitzii was noted in responders to aminosalicylates, anti-TNF medications and ustekinumab; conversely, this species decreased in responders to EEN. Escherichia was a consistent marker of unfavourable drug response, and its presence in the gut mucosa correlated with inflammation in aminosalicylate-treated patients. CONCLUSIONS Both gut microbiota diversity and specific taxonomic features (including high abundance of Faecalibacterium) are associated with the efficacy of a range of IBD therapies. These findings hold promise for a potential role for the gut microbiota in explaining the heterogeneity of patient response to IBD treatments.
Collapse
Affiliation(s)
- Shiva T Radhakrishnan
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - James L Alexander
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Benjamin H Mullish
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Kate I Gallagher
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Nick Powell
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Lucy C Hicks
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Ailsa L Hart
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Inflammatory Bowel Disease Unit, St Mark's Hospital, London, UK
| | - Jia V Li
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Horace R T Williams
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
37
|
Becker HEF, Penders J, Jonkers DMAE. Microbial Metabolism of Inflammatory Bowel Disease Drugs: Current Evidence and Clinical Implementations. Gastroenterology 2022; 162:4-8. [PMID: 34508777 DOI: 10.1053/j.gastro.2021.07.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Affiliation(s)
- Heike E F Becker
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - John Penders
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Medical Microbiology, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Daisy M A E Jonkers
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
38
|
Bayoumy AB, Crouwel F, Chanda N, Florin THJ, Buiter HJC, Mulder CJJ, de Boer NKH. Advances in Thiopurine Drug Delivery: The Current State-of-the-Art. Eur J Drug Metab Pharmacokinet 2021; 46:743-758. [PMID: 34487330 PMCID: PMC8599251 DOI: 10.1007/s13318-021-00716-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2021] [Indexed: 02/07/2023]
Abstract
Thiopurines (mercaptopurine, azathioprine and thioguanine) are well-established maintenance treatments for a wide range of diseases such as leukemia, inflammatory bowel disease (IBD), systemic lupus erythematosus (SLE) and other inflammatory and autoimmune diseases in general. Worldwide, millions of patients are treated with thiopurines. The use of thiopurines has been limited because of off-target effects such as myelotoxicity and hepatotoxicity. Therefore, seeking methods to enhance target-based thiopurine-based treatment is relevant, combined with pharmacogenetic testing. Controlled-release formulations for thiopurines have been clinically tested and have shown promising outcomes in inflammatory bowel disease. Latest developments in nano-formulations for thiopurines have shown encouraging pre-clinical results, but further research and development are needed. This review provides an overview of novel drug delivery strategies for thiopurines, reviewing modified release formulations and with a focus on nano-based formulations.
Collapse
Affiliation(s)
- Ahmed B Bayoumy
- Faculty of Medicine, Amsterdam UMC, Location Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Femke Crouwel
- Department of Gastroenterology and Hepatology, AGEM Research Institute, Amsterdam University Medical Center, Location Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Nripen Chanda
- Micro System Technology Laboratory, CSIR, Central Mechanical Engineering Research Institute, Durgapur, India
| | - Timothy H J Florin
- Inflammatory Bowel Diseases Group, Mater Research Institute, University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Hans J C Buiter
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Location Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Chris J J Mulder
- Department of Gastroenterology and Hepatology, AGEM Research Institute, Amsterdam University Medical Center, Location Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Nanne K H de Boer
- Department of Gastroenterology and Hepatology, AGEM Research Institute, Amsterdam University Medical Center, Location Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Gargallo-Puyuelo CJ, Laredo V, Gomollón F. Thiopurines in Inflammatory Bowel Disease. How to Optimize Thiopurines in the Biologic Era? Front Med (Lausanne) 2021; 8:681907. [PMID: 34336887 PMCID: PMC8322650 DOI: 10.3389/fmed.2021.681907] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/23/2021] [Indexed: 12/18/2022] Open
Abstract
Thiopurines have been a cornerstone in the treatment of inflammatory bowel disease (IBD). Although they have been used for more than 50 years, there are still some unsolved issues about their efficacy and, also, some safety concerns, mainly the risk of myelosuppression and life-threatening lymphoproliferative disorders. Furthermore, the development of biological therapy raises the question whether there is still a role for thiopurines in the IBD treatment algorithm. On the other hand, limited cost and wide availability make thiopurines a reasonable option in settings of limited resources and increasing prevalence of IBD. In fact, there is a growing interest in optimizing thiopurine therapy, since pharmacogenomic findings suggest that a personalized approach based on the genotyping of some molecules involved in its metabolism could be useful to prevent side effects. Polymorphisms of thiopurine methyltransferase enzyme (TPMT) that result in low enzymatic activity have been associated with an increased risk of myelotoxicity, especially in Caucasians; however, in Asians it is assumed that the variants of nudix hydrolase 15 (NUDT15) are more relevant in the development of toxicity. Age is also important, since in elderly patients the risk of complications seems to be increased. Moreover, the primo-infection of Epstein Barr virus and cytomegalovirus under thiopurine treatment has been associated with severe lymphoproliferative disorders. In addition to assessing individual characteristics that may influence thiopurines treatment outcomes, this review also discusses other strategies to optimize the therapy. Low-dose thiopurines combined with allopurinol can be used in hypermethylators and in thiopurine-related hepatotoxicity. The measurement of metabolites could be useful to assess compliance, identify patients at risk of adverse events and also facilitating the management of refractory patients. Thioguanine is also a rescue therapy in patients with toxicity related to conventional thiopurine therapy. Finally, the current indications for thiopurines in monotherapy or in combination with biologics, as well as the optimal duration of treatment, are also reviewed.
Collapse
Affiliation(s)
| | - Viviana Laredo
- Department of Gastroenterology, University Clinic Hospital Lozano Blesa, Zaragoza, Spain
| | - Fernando Gomollón
- Department of Gastroenterology, University Clinic Hospital Lozano Blesa, Zaragoza, Spain.,Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain.,Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain.,Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas, Madrid, Spain
| |
Collapse
|
40
|
Huang X, Chen L, Li Z, Zheng B, Liu N, Fang Q, Jiang J, Rao T, Ouyang D. The efficacy and toxicity of antineoplastic antimetabolites: Role of gut microbiota. Toxicology 2021; 460:152858. [PMID: 34273448 DOI: 10.1016/j.tox.2021.152858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
The incidence and mortality of cancer are rapidly growing all over the world. Nowadays, antineoplastic antimetabolites still play a key role in the chemotherapy of cancer. However, the interindividual variations in the efficacy and toxicity of antineoplastic antimetabolites are nonnegligible challenges to their clinical applications. Although many studies have focused on genetic variation, the reasons for these interindividual variations have still not been fully understood. Gut microbiota is reported to be associated with the efficacy and toxicity of antineoplastic antimetabolites. In this review, we summarize the interaction of antineoplastic antimetabolites on gut microbiota and the influences of shifted gut microbiota profiles on the efficacy and toxicity of antineoplastic antimetabolites. The factors affecting the efficacy and toxicity of antineoplastic antimetabolites via gut microbiota are also discussed. In addition, we present our viewpoints that regulating the gut microbiota may increase the efficacy and decrease the toxicity of antineoplastic antimetabolites. This will help us better understand the new mechanism via gut microbiota and promote individualized use of antineoplastic antimetabolites.
Collapse
Affiliation(s)
- Xinyi Huang
- Institute of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
| | - Lulu Chen
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, 411000, PR China
| | - Zhenyu Li
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, PR China; Department of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China
| | - Binjie Zheng
- Institute of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
| | - Na Liu
- Institute of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
| | - Qing Fang
- Institute of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
| | - Jinsheng Jiang
- Institute of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China; Sanjin Group Hunan Sanjin Pharmaceutical Co., Ltd., 320 Deshan Road, Hunan, 415000, PR China
| | - Tai Rao
- Institute of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China.
| | - Dongsheng Ouyang
- Institute of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China.
| |
Collapse
|
41
|
McCoubrey LE, Elbadawi M, Orlu M, Gaisford S, Basit AW. Machine Learning Uncovers Adverse Drug Effects on Intestinal Bacteria. Pharmaceutics 2021; 13:1026. [PMID: 34371718 PMCID: PMC8308984 DOI: 10.3390/pharmaceutics13071026] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
The human gut microbiome, composed of trillions of microorganisms, plays an essential role in human health. Many factors shape gut microbiome composition over the life span, including changes to diet, lifestyle, and medication use. Though not routinely tested during drug development, drugs can exert profound effects on the gut microbiome, potentially altering its functions and promoting disease. This study develops a machine learning (ML) model to predict whether drugs will impair the growth of 40 gut bacterial strains. Trained on over 18,600 drug-bacteria interactions, 13 distinct ML models are built and compared, including tree-based, ensemble, and artificial neural network techniques. Following hyperparameter tuning and multi-metric evaluation, a lead ML model is selected: a tuned extra trees algorithm with performances of AUROC: 0.857 (±0.014), recall: 0.587 (±0.063), precision: 0.800 (±0.053), and f1: 0.666 (±0.042). This model can be used by the pharmaceutical industry during drug development and could even be adapted for use in clinical settings.
Collapse
Affiliation(s)
| | | | | | | | - Abdul W. Basit
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (L.E.M.); (M.E.); (M.O.); (S.G.)
| |
Collapse
|
42
|
Franzin M, Stefančič K, Lucafò M, Decorti G, Stocco G. Microbiota and Drug Response in Inflammatory Bowel Disease. Pathogens 2021; 10:211. [PMID: 33669168 PMCID: PMC7919657 DOI: 10.3390/pathogens10020211] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
A mutualistic relationship between the composition, function and activity of the gut microbiota (GM) and the host exists, and the alteration of GM, sometimes referred as dysbiosis, is involved in various immune-mediated diseases, including inflammatory bowel disease (IBD). Accumulating evidence suggests that the GM is able to influence the efficacy of the pharmacological therapy of IBD and to predict whether individuals will respond to treatment. Additionally, the drugs used to treat IBD can modualate the microbial composition. The review aims to investigate the impact of the GM on the pharmacological therapy of IBD and vice versa. The GM resulted in an increase or decrease in therapeutic responses to treatment, but also to biotransform drugs to toxic metabolites. In particular, the baseline GM composition can help to predict if patients will respond to the IBD treatment with biologic drugs. On the other hand, drugs can affect the GM by incrementing or reducing its diversity and richness. Therefore, the relationship between the GM and drugs used in the treatment of IBD can be either beneficial or disadvantageous.
Collapse
Affiliation(s)
- Martina Franzin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Katja Stefančič
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (K.S.); (G.S.)
| | - Marianna Lucafò
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy;
| | - Giuliana Decorti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy;
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy;
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (K.S.); (G.S.)
| |
Collapse
|
43
|
Pujara N, Giri R, Wong KY, Qu Z, Rewatkar P, Moniruzzaman M, Begun J, Ross BP, McGuckin M, Popat A. pH - Responsive colloidal carriers assembled from β-lactoglobulin and Epsilon poly-L-lysine for oral drug delivery. J Colloid Interface Sci 2020; 589:45-55. [PMID: 33450459 DOI: 10.1016/j.jcis.2020.12.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
Site specific oral delivery of many biopharmaceutical classification system (BCS) class II and IV drugs is challenging due to their poor solubility, low permeability and degradation in the gastrointestinal tract. Whilst colloidal carriers have been used to improve the bioavailability of such drugs, most nanocarriers based drug delivery systems suffer from multiple disadvantages, including low encapsulation efficiency (liposomes, polymeric nanoparticles), complex synthesis methods (silica, silicon-based materials) and poorly understood biodegradability (inorganic nanoparticles). Herein, a novel pH responsive nanocolloids were self-assembled using natural compounds such as bovine β-lactoglobulin (BLG) and succinylated β-lactoglobulin (succ. BLG) cross-linked with epsilon poly l-lysine (BCEP and BCP), and found to possess high loading capacity, high aqueous solubility and site-specific oral delivery of a poorly soluble nutraceutical (curcumin), improving its physicochemical properties and biological activity in-vitro and ex-vivo. Our optimized synthesis formed colloids of around 200 nm which were capable of encapsulating curcumin with ~100% encapsulation efficiency and ~10% w/w drug loading. By forming nanocomplexes of curcumin with BLG and succ. BLG, the aqueous solubility of curcumin was markedly increased by ~160-fold and ~86-fold, respectively. Encapsulation with BLG increased the solubility, whereas succ. BLG prevent release of encapsulated curcumin when subjected to gastric fluids as it is resistant to breakdown on exposure to pepsin at acidic pH. In conditions mimicking the small intestine, Succ. BLG was more soluble resulting in sustained release of the encapsulated drug at pH 7.4. Additionally, crosslinking succ. BLG with E-PLL significantly enhanced curcumin's permeability in an in-vitro Caco-2 cell monolayer model compared to curcumin solution (dissolved in 1% DMSO), or non-crosslinked BLG/succ. and BLG. In a mouse-derived intestinal epithelial 3D organoid culture stimulated with IL-1β, BLG-CUR and crosslinked BCEP nanoparticles reduced the production of inflammatory cytokines and chemokines such as Tnfα and Cxcl10 more than curcumin solution or suspension while these nanoparticles were non-toxic to organoids. Overall this work demonstrates the promise of nutraceutical-based hybrid self-assembled colloidal system to protect hydrophobic drugs from harsh gastrointestinal conditions and improve their solubility, dissolution, permeability and biological activity.
Collapse
Affiliation(s)
- Naisarg Pujara
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Rabina Giri
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Kuan Yau Wong
- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Zhi Qu
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Prarthana Rewatkar
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Md Moniruzzaman
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Jakob Begun
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Benjamin P Ross
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Michael McGuckin
- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, VIC 3010, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
44
|
Liang W, Peng X, Li Q, Wang P, Lv P, Song Q, She S, Huang S, Chen K, Gong W, Yuan W, Thovarai V, Yoshimura T, O'huigin C, Trinchieri G, Huang J, Lin S, Yao X, Bian X, Kong W, Xi J, Wang JM, Wang Y. FAM3D is essential for colon homeostasis and host defense against inflammation associated carcinogenesis. Nat Commun 2020; 11:5912. [PMID: 33219235 PMCID: PMC7679402 DOI: 10.1038/s41467-020-19691-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
The physiological homeostasis of gut mucosal barrier is maintained by both genetic and environmental factors and its impairment leads to pathogenesis such as inflammatory bowel disease. A cytokine like molecule, FAM3D (mouse Fam3D), is highly expressed in mouse gastrointestinal tract. Here, we demonstrate that deficiency in Fam3D is associated with impaired integrity of colonic mucosa, increased epithelial hyper-proliferation, reduced anti-microbial peptide production and increased sensitivity to chemically induced colitis associated with high incidence of cancer. Pretreatment of Fam3D−/− mice with antibiotics significantly reduces the severity of chemically induced colitis and wild type (WT) mice co-housed with Fam3D−/− mice phenocopy Fam3D-deficiency showing increased sensitivity to colitis and skewed composition of fecal microbiota. An initial equilibrium of microbiota in cohoused WT and Fam3D−/− mice is followed by an increasing divergence of the bacterial composition after separation. These results demonstrate the essential role of Fam3D in colon homeostasis, protection against inflammation associated cancer and normal microbiota composition. The cytokine like protein FAM3D (Fam3D in mice) is highly expressed in the digestive tract with unknown role in colon pathophysiology. Here, by using gene deficient mice, the authors show that Fam3D is critically involved in colon homeostasis, host defense against colitis-associated carcinogenesis, and the balance of microbiota.
Collapse
Affiliation(s)
- Weiwei Liang
- Department of Immunology, School of Basic Medical Sciences and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, P. R. China.,Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Xinjian Peng
- Department of Immunology, School of Basic Medical Sciences and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, P. R. China
| | - Qingqing Li
- Department of Immunology, School of Basic Medical Sciences and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, P. R. China
| | - Pingzhang Wang
- Department of Immunology, School of Basic Medical Sciences and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, P. R. China
| | - Ping Lv
- Department of Immunology, School of Basic Medical Sciences and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, P. R. China
| | - Quansheng Song
- Department of Immunology, School of Basic Medical Sciences and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, P. R. China
| | - Shaoping She
- Department of Immunology, School of Basic Medical Sciences and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, P. R. China
| | - Shiyang Huang
- Department of Immunology, School of Basic Medical Sciences and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, P. R. China
| | - Keqiang Chen
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc, Frederick, MD, 21702, USA
| | - Wuxing Yuan
- Microbiome Sequencing Core, Leidos Biomedical Research, Inc, Frederick, MD, 21702, USA
| | - Vishal Thovarai
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Colm O'huigin
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Jiaqiang Huang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.,Cancer Research Center, Beijing Chest Hospital affiliated to Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China
| | - Shuye Lin
- Cancer Research Center, Beijing Chest Hospital affiliated to Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China
| | - Xiaohong Yao
- Institute of Pathology, South-west Hospital and Cancer Center, Chongqing, P. R. China
| | - Xiuwu Bian
- Institute of Pathology, South-west Hospital and Cancer Center, Chongqing, P. R. China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Jianzhong Xi
- Department of Biomedicine, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, P. R. China.
| |
Collapse
|
45
|
Caenepeel C, Sadat Seyed Tabib N, Vieira-Silva S, Vermeire S. Review article: how the intestinal microbiota may reflect disease activity and influence therapeutic outcome in inflammatory bowel disease. Aliment Pharmacol Ther 2020; 52:1453-1468. [PMID: 32969507 DOI: 10.1111/apt.16096] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/08/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Intestinal bacteria produce metabolites and by-products necessary for homeostasis. Imbalance in this equilibrium is linked to multiple pathologies including inflammatory bowel disease (IBD). The role of the gut microbiota in determining treatment response is becoming apparent, and may act as biomarker for efficacy. AIM To describe knowledge about the intestinal microbiota on disease severity and treatment outcomes in IBD METHODS: Descriptive review using PubMed to identify literature on the intestinal microbiota in IBD RESULTS: Severe IBD has a less diverse microbiota with fewer commensal microbiota communities and more opportunistic pathogenic bacteria originating from the oral cavity or respiratory tract. IBD treatments can alter gut microbiota composition, but in vitro/in vivo studies are needed to prove causation. A diversification of the microbiota is observed during remission. Patients with a more diverse baseline microbiome and higher microbial diversity show better response to anti-tumour necrosis factor-α, vedolizumab and ustekinumab therapy. Higher abundance of short chain fatty acid-producing bacteria, fewer mucus-colonising bacteria and lower abundance of pro-inflammatory bacteria have also been associated with a favourable outcome. Predictive models, based on a combination of microbiota, clinical data and serological markers, have good accuracy for treatment outcome and disease severity. CONCLUSION The intestinal microbiota in IBD carries a set of promising biomarkers of disease activity and prediction of therapeutic outcome. Current insights may also help in designing microbiota modulation strategies to improve outcomes in IBD.
Collapse
Affiliation(s)
| | | | - Sara Vieira-Silva
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, Rega Institute for Medical Research, VIB, KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Department of Chronic Diseases & Metabolism, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
46
|
De Salvo C. The Ugly Duckling of Thiopurines Becomes the Beautiful Swan of Colitis-associated Cancer Management. Cell Mol Gastroenterol Hepatol 2020; 11:297-298. [PMID: 33068529 PMCID: PMC7768556 DOI: 10.1016/j.jcmgh.2020.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Carlo De Salvo
- Correspondence Address correspondence to: Carlo De Salvo, PhD, Case Western Reserve University School of Medicine, 2103 Cornell Road, Room 5404, Cleveland, OH 44106. fax: (216) 368-0494.
| |
Collapse
|
47
|
Crouwel F, Buiter HJC, de Boer NK. Gut microbiota-driven drug metabolism in inflammatory bowel disease. J Crohns Colitis 2020; 15:jjaa143. [PMID: 32652007 PMCID: PMC7904070 DOI: 10.1093/ecco-jcc/jjaa143] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS The gut microbiota plays an important role in the metabolization and modulation of several types of drugs. With this study we aimed to review the literature about microbial drug metabolism of medication prescribed in inflammatory bowel disease practice. METHODS A systematic literature search was performed in Embase and PubMed from inception to October 2019. The search was conducted with predefined MeSH/Emtree and text terms. All studies about drug metabolism by microbiota of medication prescribed in inflammatory bowel disease practice were eligible. A total of 1018 records were encountered and 89 articles were selected for full text reading. RESULTS Intestinal bacterial metabolism or modulation is of influence in four specific drugs used in inflammatory bowel disease (mesalazines, methotrexate, glucocorticoids and thioguanine). The gut microbiota cleaves the azo-bond of sulfasalazine, balsalazide and olsalazine and releases the active moiety 5-aminosalicylic acid. It has an impact on the metabolization and potentially on the response of methotrexate therapy. Especially thioguanine can be converted by intestinal bacteria into the pharmacological active 6-thioguanine nucleotides without the requirement of host metabolism. Glucocorticoid compounds can be prone to bacterial degradation. CONCLUSION The human intestinal microbiota can have a major impact on drug metabolism and efficacy of medication prescribed in inflammatory bowel disease practice. A better understanding of these interactions between microbiota and drugs is needed and should be an integral part of the drug development pathway of new inflammatory bowel disease medication.
Collapse
Affiliation(s)
- Femke Crouwel
- Department of Gastroenterology and Hepatology, AG&M Research Institute, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Hans J C Buiter
- Department of Clinical Pharmacology and Pharmacy, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Nanne K de Boer
- Department of Gastroenterology and Hepatology, AG&M Research Institute, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
48
|
Braga Neto MB, Gregory MH, Ramos GP, Bazerbachi F, Bruining DH, Abu Dayyeh BK, Kushnir VM, Raffals LE, Ciorba MA, Loftus EV, Deepak P. Impact of Bariatric Surgery on the Long-term Disease Course of Inflammatory Bowel Disease. Inflamm Bowel Dis 2020; 26:1089-1097. [PMID: 31613968 PMCID: PMC7534455 DOI: 10.1093/ibd/izz236] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND An association between inflammatory bowel disease (IBD) and obesity has been observed. Little is known about the effect of weight loss on IBD course. Our aim was to determine the impact of bariatric surgery on long-term clinical course of obese patients with IBD, either Crohn's disease (CD) or ulcerative colitis (UC). METHODS Patients with IBD who underwent bariatric surgery subsequent to IBD diagnosis were identified from 2 tertiary IBD centers. Complications after bariatric surgery were recorded. Patients were matched 1:1 for age, sex, IBD subtype, phenotype, and location to patients with IBD who did not undergo bariatric surgery. Controls started follow-up at a time point in their disease similar to the disease duration in the matched case at the time of bariatric surgery. Inflammatory bowel disease medication usage and disease-related complications (need for corticosteroids, hospitalizations, and surgeries) among cases and controls were compared. RESULTS Forty-seven patients met inclusion criteria. Appropriate matches were found for 25 cases. Median follow-up among cases (after bariatric surgery) and controls was 7.69 and 7.89 years, respectively. Median decrease in body mass index after bariatric surgery was 12.2. Rescue corticosteroid usage and IBD-related surgeries were numerically less common in cases than controls (24% vs 52%; odds ratio [OR], 0.36; 95% confidence interval [CI], 0.08-1.23; 12% vs 28%; OR, 0.2; 95% CI, 0.004-1.79). Two cases and 1 control were able to discontinue biologics during follow-up. CONCLUSIONS Inflammatory bowel disease patients with weight loss after bariatric surgery had fewer IBD-related complications compared with matched controls. This observation requires validation in a prospective study design.
Collapse
Affiliation(s)
- Manuel B Braga Neto
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Martin H Gregory
- Division of Gastroenterology, John T. Milliken Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Guilherme P Ramos
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Fateh Bazerbachi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - David H Bruining
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Barham K Abu Dayyeh
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Vladimir M Kushnir
- Division of Gastroenterology, John T. Milliken Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Laura E Raffals
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew A Ciorba
- Division of Gastroenterology, John T. Milliken Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA,Washington University Inflammatory Bowel Diseases Center, Saint Louis, Missouri, USA
| | - Edward V Loftus
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Parakkal Deepak
- Division of Gastroenterology, John T. Milliken Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA,Washington University Inflammatory Bowel Diseases Center, Saint Louis, Missouri, USA,Address correspondence to: Parakkal Deepak, MBBS, MS, Division of Gastroenterology, John T. Milliken Department of Medicine, Washington University School of Medicine, 600 S. Euclid Avenue, Campus Box 8124, Saint Louis, MO 63110 ()
| |
Collapse
|
49
|
Liwinski T, Casar C, Ruehlemann MC, Bang C, Sebode M, Hohenester S, Denk G, Lieb W, Lohse AW, Franke A, Schramm C. A disease-specific decline of the relative abundance of Bifidobacterium in patients with autoimmune hepatitis. Aliment Pharmacol Ther 2020; 51:1417-1428. [PMID: 32383181 DOI: 10.1111/apt.15754] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 01/26/2020] [Accepted: 04/06/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND The pathogenesis of autoimmune hepatitis (AIH) is poorly understood and little is known about enteric microbiota in AIH. AIM To investigate disease-specific microbiome alterations in AIH. METHODS The V1-V2 variable regions of the 16S rRNA gene were sequenced in faecal samples from 347 patients with AIH and controls (AIH n = 72, healthy controls (HC) n = 95, primary biliary cholangitis (PBC) n = 99 and ulcerative colitis (UC) n = 81). RESULTS Biodiversity (Shannon entropy) was decreased in AIH patients compared to HC (P = 0.016), which was partially reversed by azathioprine (P = 0.011). Regarding between-sample diversity, AIH patients separated from HC, PBC and UC individuals (all P = 0.001). Compared to HC, decreased relative abundance of anaerobic genera such as Faecalibacterium and an increase of Veillonella and the facultative anaerobic genera Streptococcus and Lactobacillus were detected. Importantly, a disease-specific decline of relative abundance of Bifidobacterium was observed in AIH patients. Lack of Bifidobacterium was associated with failure to achieve remission of AIH (P < 0.001). Of potential therapeutic implication, Bifidobacterium abundance correlated with average protein intake (P < 0.001). Random forests classification between AIH and PBC on the microbiome signature yielded an area under receiver operating characteristic curve (AUC) of 0.787 in the training cohort, and an AUC of 0.849 in an external validation cohort. CONCLUSION Disease-specific faecal microbial alterations were identified in patients with AIH. Intestinal dysbiosis in AIH was characterised by a decline of Bifidobacterium, which was associated with increased disease activity. These results point to the contribution of intestinal microbiota to AIH pathogenesis and to novel therapeutic targets.
Collapse
Affiliation(s)
- Timur Liwinski
- 1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,European Reference Network for Hepatological Diseases (ERN-RARE-LIVER), Hamburg, Germany
| | - Christian Casar
- 1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,European Reference Network for Hepatological Diseases (ERN-RARE-LIVER), Hamburg, Germany
| | - Malte C Ruehlemann
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Marcial Sebode
- 1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,European Reference Network for Hepatological Diseases (ERN-RARE-LIVER), Hamburg, Germany
| | - Simon Hohenester
- Department of Medicine II, Liver Center Munich, LMU Munich, University Hospital, Munich, Germany
| | - Gerald Denk
- Department of Medicine II, Liver Center Munich, LMU Munich, University Hospital, Munich, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology, Christian-Albrechts-University of Kiel, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ansgar W Lohse
- 1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,European Reference Network for Hepatological Diseases (ERN-RARE-LIVER), Hamburg, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christoph Schramm
- 1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,European Reference Network for Hepatological Diseases (ERN-RARE-LIVER), Hamburg, Germany.,Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
50
|
A Nucleotide Analog Prevents Colitis-Associated Cancer via Beta-Catenin Independently of Inflammation and Autophagy. Cell Mol Gastroenterol Hepatol 2020; 11:33-53. [PMID: 32497793 PMCID: PMC7593585 DOI: 10.1016/j.jcmgh.2020.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Chronic bowel inflammation increases the risk of colon cancer; colitis-associated cancer (CAC). Thiopurine treatments are associated with a reduction in dysplasia and CAC in inflammatory bowel disease (IBD). Abnormal Wnt/β-catenin signalling is characteristic of >90% of colorectal cancers. Immunosuppression by thiopurines is via Rac1 GTPase, which also affects Wnt/β-catenin signalling. Autophagy is implicated in colonic tumors, and topical delivery of the thiopurine thioguanine (TG) is known to alleviate colitis and augment autophagy. This study investigated the effects of TG in a murine model of CAC and potential mechanisms. METHODS Colonic dysplasia was induced by exposure to azoxymethane (AOM) and dextran sodium sulfate (DSS) in wild-type (WT) mice and mice harboring intestinal epithelial cell-specific deletion of autophagy related 7 gene (Atg7ΔIEC). TG or vehicle was administered intrarectally, and the effect on tumor burden and β-catenin activity was assessed. The mechanisms of action of TG were investigated in vitro and in vivo. RESULTS TG ameliorated DSS colitis in wild-type but not Atg7ΔIEC mice, demonstrating that anti-inflammatory effects of locally delivered TG are autophagy-dependent. However, TG inhibited CAC in both wild-type and Atg7ΔIEC mice. This was associated with decreased β-catenin activation/nuclear translocation demonstrating that TG's inhibition of tumorigenesis occurred independently of anti-inflammatory and pro-autophagic actions. These results were confirmed in cell lines, and the dependency on Rac1 GTPase was demonstrated by siRNA knockdown and overexpression of constitutively active Rac1. CONCLUSIONS Our findings provide evidence for a new mechanism that could be exploited to improve CAC chemoprophylactic approaches.
Collapse
|