1
|
Brazier F, Cornière N, Picard N, Chambrey R, Eladari D. Pendrin: linking acid base to blood pressure. Pflugers Arch 2024; 476:533-543. [PMID: 38110744 DOI: 10.1007/s00424-023-02897-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Pendrin (SLC26A4) is an anion exchanger from the SLC26 transporter family which is mutated in human patients affected by Pendred syndrome, an autosomal recessive disease characterized by sensoneurinal deafness and hypothyroidism. Pendrin is also expressed in the kidney where it mediates the exchange of internal HCO3- for external Cl- at the apical surface of renal type B and non-A non-B-intercalated cells. Studies using pendrin knockout mice have first revealed that pendrin is essential for renal base excretion. However, subsequent studies have demonstrated that pendrin also controls chloride absorption by the distal nephron and that this mechanism is critical for renal NaCl balance. Furthermore, pendrin has been shown to control vascular volume and ultimately blood pressure. This review summarizes the current knowledge about how pendrin is linking renal acid-base regulation to blood pressure control.
Collapse
Affiliation(s)
- François Brazier
- Centre de dépistage et de Médecine de précision des Maladies Rénales, Service de Néphrologie, Centre Hospitalier Universitaire Amiens-Picardie, Université de Picardie Jules Verne, F-80000, Amiens, France
| | - Nicolas Cornière
- Centre de dépistage et de Médecine de précision des Maladies Rénales, Service de Néphrologie, Centre Hospitalier Universitaire Amiens-Picardie, Université de Picardie Jules Verne, F-80000, Amiens, France
| | - Nicolas Picard
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR 5305 CNRS, University Lyon 1, Lyon, France
| | - Régine Chambrey
- Paris Cardiovascular Research Center (PARCC), INSERM U970, F-75015, Paris, France
| | - Dominique Eladari
- Centre de dépistage et de Médecine de précision des Maladies Rénales, Service de Néphrologie, Centre Hospitalier Universitaire Amiens-Picardie, Université de Picardie Jules Verne, F-80000, Amiens, France.
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR 5305 CNRS, University Lyon 1, Lyon, France.
- French Clinical Research Infrastructure Network (F-CRIN): INI-CRCT, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
2
|
Vitzthum H, Meyer-Schwesinger C, Ehmke H. Novel functions of the anion exchanger AE4 (SLC4A9). Pflugers Arch 2024; 476:555-564. [PMID: 38195948 PMCID: PMC11006790 DOI: 10.1007/s00424-023-02899-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024]
Abstract
The kidney plays a crucial role in acid-base homeostasis. In the distal nephron, α-intercalated cells contribute to urinary acid (H+) secretion and β-intercalated cells accomplish urinary base (HCO3-) secretion. β-intercalated cells regulate the acid base status through modulation of the apical Cl-/HCO3- exchanger pendrin (SLC26A4) activity. In this review, we summarize and discuss our current knowledge of the physiological role of the renal transporter AE4 (SLC4A9). The AE4, as cation-dependent Cl-/HCO3- exchanger, is exclusively expressed in the basolateral membrane of β-intercalated cells and is essential for the sensing of metabolic acid-base disturbances in mice, but not for renal sodium reabsorption and plasma volume control. Potential intracellular signaling pathways are discussed that might link basolateral acid-base sensing through the AE4 to apical pendrin activity.
Collapse
Affiliation(s)
- Helga Vitzthum
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Heimo Ehmke
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
3
|
Liberona J, Araos P, Rodríguez M, León P, Stutzin A, Alzamora R, Michea L. Low-Chloride Diet Prevents the Development of Arterial Hypertension and Protects Kidney Function in Angiotensin II-Infused Mice. Kidney Blood Press Res 2024; 49:114-123. [PMID: 38246148 DOI: 10.1159/000535728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024] Open
Abstract
INTRODUCTION A comprehensive pathophysiological mechanism to explain the relationship between high-salt intake and hypertension remains undefined. Evidence suggests that chloride, as the accompanying anion of sodium in dietary salt, is necessary to develop hypertension. We evaluated whether reducing dietary Cl- while keeping a standard Na+ intake modified blood pressure, cardiac hypertrophy, renal function, and vascular contractility after angiotensin II (AngII) infusion. METHODS C56BL/6J mice fed with standard Cl- diet or a low-Cl- diet (equimolar substitution of Cl- by a mixture of Na+ salts, both diets with standard Na+ content) received AngII (infusion of 1.5 mg/kg/day) or vehicle for 14 days. We measured systolic blood pressure (SBP), glomerular filtration rate (GFR), natriuretic response to acute saline load, and contractility of aortic rings from mice infused with vehicle and AngII, in standard and low-Cl- diet. RESULTS The mice fed the standard diet presented increased SBP and cardiac hypertrophy after AngII infusion. In contrast, low-Cl- diet prevented the increase of SBP and cardiac hypertrophy. AngII-infused mice fed a standard diet presented hampered natriuretic response to saline load, meanwhile the low-Cl- diet preserved natriuretic response in AngII-infused mice, without change in GFR. Aortic rings from mice fed with standard diet or low-Cl- diet and infused with AngII presented a similar contractile response. CONCLUSION We conclude that the reduction in dietary Cl- as the accompanying anion of sodium in salt is protective from AngII pro-hypertensive actions due to a beneficial effect on kidney function and preserved natriuresis.
Collapse
Affiliation(s)
- Jessica Liberona
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile,
| | - Patricio Araos
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Marcelo Rodríguez
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo León
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrés Stutzin
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
| | - Rodrigo Alzamora
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Anestesiología y Medicina Perioperatoria, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis Michea
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Medicina Interna Norte, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Xu Z, Wang Y, Feng Y, Yang M, Shi G, Xuan Z, Xu F. Characteristics of sodium and water retention in rats with nephrotic syndrome induced by puromycin aminonucleoside. BMC Nephrol 2023; 24:309. [PMID: 37880610 PMCID: PMC10599035 DOI: 10.1186/s12882-023-03367-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/14/2023] [Indexed: 10/27/2023] Open
Abstract
INTRODUCTION Nephrotic syndrome (NS) is characterized by renal sodium and water retention. The mechanisms are not fully elucidated. METHODS The NS rat model was established by single intraperitoneal injection of 100 mg/kg puromycin aminonucleoside (PAN). The plasma electrolyte level and urinary sodium excretion were monitored dynamically. The changes of some sodium transporters, including epithelial Na+ channel (ENaC), Na+/H+ exchanger 3 (NHE3), Na+-K+-2Cl- cotransporter 2 (NKCC2) and Na+-Cl- cotransporter (NCC) in renal cortex at different time points and the level of peripheral circulation factors were detected. RESULTS The urinary sodium excretion of the model group increased significantly on the first day, then decreased compared with the control group, and there was no significant difference between the model group and the control group on the 12th day. The changes of peripheral circulation factors were not obvious. Some sodium transporters in renal cortex increased in varying degrees, while NKCC2 decreased significantly compared with the control group. CONCLUSIONS The occurrence of NS edema may not be related to the angiotensin system. The decrease of urinary sodium excretion is independent of the development of albuminuria. During the 18 days of observation, it can be divided into three stages: sodium retention, sodium compensation, and simple water retention. The mechanism is related to the increased expression of α-ENaC, γ-ENaC, NHE3 and NCC in a certain period of time, the compensatory decrease of NKCC2 expression and the continuous increase of aquaporin 2 (AQP2) expression.
Collapse
Affiliation(s)
- Zaiping Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Longzihu Road 350, Hefei, Anhui, 230012, China
| | - Yunlai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Longzihu Road 350, Hefei, Anhui, 230012, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, China.
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, China.
| | - Ye Feng
- School of Pharmacy, Anhui University of Chinese Medicine, Longzihu Road 350, Hefei, Anhui, 230012, China
| | - Mo Yang
- Scientific Research and Technology Center, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Gaoxiang Shi
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Zihua Xuan
- School of Pharmacy, Anhui University of Chinese Medicine, Longzihu Road 350, Hefei, Anhui, 230012, China
| | - Fan Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Longzihu Road 350, Hefei, Anhui, 230012, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, China.
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, China.
| |
Collapse
|
5
|
Liu Q, Zhang X, Huang H, Chen Y, Wang F, Hao A, Zhan W, Mao Q, Hu Y, Han L, Sun Y, Zhang M, Liu Z, Li GL, Zhang W, Shu Y, Sun L, Chen Z. Asymmetric pendrin homodimer reveals its molecular mechanism as anion exchanger. Nat Commun 2023; 14:3012. [PMID: 37230976 DOI: 10.1038/s41467-023-38303-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 04/23/2023] [Indexed: 05/27/2023] Open
Abstract
Pendrin (SLC26A4) is an anion exchanger expressed in the apical membranes of selected epithelia. Pendrin ablation causes Pendred syndrome, a genetic disorder associated with sensorineural hearing loss, hypothyroid goiter, and reduced blood pressure. However its molecular structure has remained unknown, limiting our understanding of the structural basis of transport. Here, we determine the cryo-electron microscopy structures of mouse pendrin with symmetric and asymmetric homodimer conformations. The asymmetric homodimer consists of one inward-facing protomer and the other outward-facing protomer, representing coincident uptake and secretion- a unique state of pendrin as an electroneutral exchanger. The multiple conformations presented here provide an inverted alternate-access mechanism for anion exchange. The structural and functional data presented here disclose the properties of an anion exchange cleft and help understand the importance of disease-associated variants, which will shed light on the pendrin exchange mechanism.
Collapse
Affiliation(s)
- Qianying Liu
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiang Zhang
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Hui Huang
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yuxin Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Fang Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Aihua Hao
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Wuqiang Zhan
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Qiyu Mao
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yuxia Hu
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Lin Han
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yifang Sun
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Meng Zhang
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhimin Liu
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Geng-Lin Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Weijia Zhang
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yilai Shu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China.
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Lei Sun
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 200032, China.
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, China.
| | - Zhenguo Chen
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 200032, China.
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, China.
| |
Collapse
|
6
|
Lu YT, Wang L, Hou LL, Zheng PP, Xu Q, Deng DT. SLC26A4 mutation in Pendred syndrome with hypokalemia: A case report. Medicine (Baltimore) 2022; 101:e30253. [PMID: 36107570 PMCID: PMC9439793 DOI: 10.1097/md.0000000000030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Pendred syndrome is an autosomal recessive disorder characterized by sensorineural hearing loss, inner ear malformations, goiter, and abnormal organification of iodide. It is caused by mutations in SLC26A4 gene, which encodes pendrin (a transporter of chloride, bicarbonate, and iodide). Pendred syndrome is a common cause of syndromic deafness, but the metabolic abnormalities it causes are often overlooked. Here, we report the case of a patient diagnosed with Pendred syndrome with hypokalemia. PATIENT CONCERNS A 53-year-old deaf-mute woman was hospitalized due to severe limb asthenia. The emergency examination showed that her blood potassium level was 1.8 mmol/L. DIAGNOSES Through the genetic test, we found a mutation of SLC26A4 gene in NM_000441: c.2027T>A, p.L676Q, as well as the SLC26A4 exon 5-6 deletion. These genetic variations pointed to Pendred syndrome (an autosomal recessive disorder that mainly affects the inner ear, thyroid, and kidney) which is a common cause of syndromic deafness. INTERVENTIONS The patient was treated with potassium supplements and screened for the cause of hypokalemia. OUTCOMES The patient was discharged after her potassium levels rose to the normal range. LESSONS Patients with Pendred syndrome may also have certain metabolic abnormalities; thus, more attention should be paid to them during clinical diagnosis.
Collapse
Affiliation(s)
- Ya-Ting Lu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Lin Wang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Le-Le Hou
- Department of Endocrinology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province, China
| | - Ping-Ping Zheng
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Qian Xu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Da-Tong Deng
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
7
|
Pham TD, Elengickal AJ, Verlander JW, Al-Qusairi L, Chen C, Abood DC, King SA, Loffing J, Welling PA, Wall SM. Pendrin-null mice develop severe hypokalemia following dietary Na + and K + restriction: role of ENaC. Am J Physiol Renal Physiol 2022; 322:F486-F497. [PMID: 35224991 PMCID: PMC8977139 DOI: 10.1152/ajprenal.00378.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pendrin is an intercalated cell Cl-/[Formula: see text] exchanger thought to participate in K+-sparing NaCl absorption. However, its role in K+ homeostasis has not been clearly defined. We hypothesized that pendrin-null mice will develop hypokalemia with dietary K+ restriction. We further hypothesized that pendrin knockout (KO) mice mitigate urinary K+ loss by downregulating the epithelial Na+ channel (ENaC). Thus, we examined the role of ENaC in Na+ and K+ balance in pendrin KO and wild-type mice following dietary K+ restriction. To do so, we examined the relationship between Na+ and K+ balance and ENaC subunit abundance in K+-restricted pendrin-null and wild-type mice that were NaCl restricted or replete. Following a NaCl-replete, K+-restricted diet, K+ balance and serum K+ were similar in both groups. However, following a Na+, K+, and Cl--deficient diet, pendrin KO mice developed hypokalemia from increased K+ excretion. The fall in serum K+ observed in K+-restricted pendrin KO mice was enhanced with ENaC stimulation but eliminated with ENaC inhibition. The fall in serum K+ observed in K+-restricted pendrin KO mice was enhanced with ENaC stimulation but eliminated with ENaC inhibition. However, reducing ENaC activity also reduced blood pressure and increased apparent intravascular volume contraction, since KO mice had lower serum Na+, higher blood urea nitrogen and hemoglobin, greater weight loss, greater metabolic alkalosis, and greater NaCl excretion. We conclude that dietary Na+ and K+ restriction induces hypokalemia in pendrin KO mice. Pendrin-null mice limit renal K+ loss by downregulating ENaC. However, this ENaC downregulation occurs at the expense of intravascular volume.NEW & NOTEWORTHY Pendrin is an apical Cl-/[Formula: see text] exchanger that provides renal K+-sparing NaCl absorption. The pendrin-null kidney has an inability to fully conserve K+ and limits renal K+ loss by downregulating the epithelial Na+ channel (ENaC). However, with Na+ restriction, the need to reduce ENaC for K+ balance conflicts with the need to stimulate ENaC for intravascular volume. Therefore, NaCl restriction stimulates ENaC less in pendrin-null mice than in wild-type mice, which mitigates their kaliuresis and hypokalemia but exacerbates volume contraction.
Collapse
Affiliation(s)
- Truyen D Pham
- Department of Medicine, Division of Nephrology, Emory University School of Medicine, Atlanta, Georgia
| | - Anthony J Elengickal
- Department of Medicine, Division of Nephrology, Emory University School of Medicine, Atlanta, Georgia
| | - Jill W Verlander
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Lama Al-Qusairi
- Departments of Medicine, Nephrology and Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Chao Chen
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Delaney C Abood
- Department of Medicine, Division of Nephrology, Emory University School of Medicine, Atlanta, Georgia
| | - Spencer A King
- Department of Medicine, Division of Nephrology, Emory University School of Medicine, Atlanta, Georgia
| | - Johannes Loffing
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Paul A Welling
- Departments of Medicine, Nephrology and Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Susan M Wall
- Department of Medicine, Division of Nephrology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
8
|
Wall SM. Regulation of Blood Pressure and Salt Balance By Pendrin-Positive Intercalated Cells: Donald Seldin Lecture 2020. Hypertension 2022; 79:706-716. [PMID: 35109661 PMCID: PMC8918038 DOI: 10.1161/hypertensionaha.121.16492] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intercalated cells make up about a third of all cells within the connecting tubule and the collecting duct and are subclassified as type A, type B and non-A, non-B based on the subcellular distribution of the H+-ATPase, which dictates whether it secretes H+ or HCO3-. Type B intercalated cells mediate Cl- absorption and HCO3- secretion, which occurs largely through the anion exchanger pendrin. Pendrin is stimulated by angiotensin II via the angiotensin type 1a receptor and by aldosterone through MR (mineralocorticoid receptor). Aldosterone stimulates pendrin expression and function, in part, through the alkalosis it generates. Pendrin-mediated HCO3- secretion increases in models of metabolic alkalosis, which attenuates the alkalosis. However, pendrin-positive intercalated cells also regulate blood pressure, at least partly, through pendrin-mediated Cl- absorption and through their indirect effect on the epithelial Na+ channel, ENaC. This aldosterone-induced increase in pendrin secondarily stimulates ENaC, thereby contributing to the aldosterone pressor response. This review describes the contribution of pendrin-positive intercalated cells to Na+, K+, Cl- and acid-base balance.
Collapse
Affiliation(s)
- Susan M. Wall
- Department of Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Pendrin resides on the luminal membrane of type B intercalated cells in the renal collecting tubule system mediating the absorption of chloride in exchange for bicarbonate. In mice or humans lacking pendrin, blood pressure is lower, and pendrin knockout mice are resistant to aldosterone-induced hypertension. Here we discuss recent findings on the regulation of pendrin. RECENT FINDINGS Pendrin activity is stimulated during alkalosis partly mediated by secretin. Also, angiotensin II and aldosterone stimulate pendrin activity requiring the mineralocorticoid receptor in intercalated cells. Angiotensin II induces dephosphorylation of the mineralocorticoid receptor rendering the receptor susceptible for aldosterone binding. In the absence of the mineralocorticoid receptor in intercalated cells, angiotensin II does not stimulate pendrin. The effect of aldosterone on pendrin expression is in part mediated by the development of hypokalemic alkalosis and blunted by K-supplements or amiloride. Part of the blood pressure-increasing effect of pendrin is also mediated by its stimulatory effect on the epithelial Na-channel in neighbouring principal cells. SUMMARY These findings identify pendrin as a critical regulator of renal salt handling and blood pressure along with acid--base balance. A regulatory network of hormones fine-tuning activity is emerging. Drugs blocking pendrin are being developed.
Collapse
|
10
|
Abstract
The Epithelial Na+ Channel, ENaC, comprised of 3 subunits (αβγ, or sometimes δβγENaC), plays a critical role in regulating salt and fluid homeostasis in the body. It regulates fluid reabsorption into the blood stream from the kidney to control blood volume and pressure, fluid absorption in the lung to control alveolar fluid clearance at birth and maintenance of normal airway surface liquid throughout life, and fluid absorption in the distal colon and other epithelial tissues. Moreover, recent studies have also revealed a role for sodium movement via ENaC in nonepithelial cells/tissues, such as endothelial cells in blood vessels and neurons. Over the past 25 years, major advances have been made in our understanding of ENaC structure, function, regulation, and role in human disease. These include the recently solved three-dimensional structure of ENaC, ENaC function in various tissues, and mutations in ENaC that cause a hereditary form of hypertension (Liddle syndrome), salt-wasting hypotension (PHA1), or polymorphism in ENaC that contributes to other diseases (such as cystic fibrosis). Moreover, great strides have been made in deciphering the regulation of ENaC by hormones (e.g., the mineralocorticoid aldosterone, glucocorticoids, vasopressin), ions (e.g., Na+ ), proteins (e.g., the ubiquitin-protein ligase NEDD4-2, the kinases SGK1, AKT, AMPK, WNKs & mTORC2, and proteases), and posttranslational modifications [e.g., (de)ubiquitylation, glycosylation, phosphorylation, acetylation, palmitoylation]. Characterization of ENaC structure, function, regulation, and role in human disease, including using animal models, are described in this article, with a special emphasis on recent advances in the field. © 2021 American Physiological Society. Compr Physiol 11:1-29, 2021.
Collapse
Affiliation(s)
- Daniela Rotin
- The Hospital for Sick Children, and The University of Toronto, Toronto, Canada
| | - Olivier Staub
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Wu A, Wolley MJ, Wu Q, Gordon RD, Fenton RA, Stowasser M. The Cl−/HCO3− exchanger pendrin is downregulated during oral co-administration of exogenous mineralocorticoid and KCl in patients with primary aldosteronism. J Hum Hypertens 2020; 35:837-848. [DOI: 10.1038/s41371-020-00439-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/12/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
|
12
|
Wall SM, Verlander JW, Romero CA. The Renal Physiology of Pendrin-Positive Intercalated Cells. Physiol Rev 2020; 100:1119-1147. [PMID: 32347156 PMCID: PMC7474261 DOI: 10.1152/physrev.00011.2019] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Intercalated cells (ICs) are found in the connecting tubule and the collecting duct. Of the three IC subtypes identified, type B intercalated cells are one of the best characterized and known to mediate Cl- absorption and HCO3- secretion, largely through the anion exchanger pendrin. This exchanger is thought to act in tandem with the Na+-dependent Cl-/HCO3- exchanger, NDCBE, to mediate net NaCl absorption. Pendrin is stimulated by angiotensin II and aldosterone administration via the angiotensin type 1a and the mineralocorticoid receptors, respectively. It is also stimulated in models of metabolic alkalosis, such as with NaHCO3 administration. In some rodent models, pendrin-mediated HCO3- secretion modulates acid-base balance. However, of probably more physiological or clinical significance is the role of these pendrin-positive ICs in blood pressure regulation, which occurs, at least in part, through pendrin-mediated renal Cl- absorption, as well as their effect on the epithelial Na+ channel, ENaC. Aldosterone stimulates ENaC directly through principal cell mineralocorticoid hormone receptor (ligand) binding and also indirectly through its effect on pendrin expression and function. In so doing, pendrin contributes to the aldosterone pressor response. Pendrin may also modulate blood pressure in part through its action in the adrenal medulla, where it modulates the release of catecholamines, or through an indirect effect on vascular contractile force. In addition to its role in Na+ and Cl- balance, pendrin affects the balance of other ions, such as K+ and I-. This review describes how aldosterone and angiotensin II-induced signaling regulate pendrin and the contribution of pendrin-positive ICs in the kidney to distal nephron function and blood pressure.
Collapse
Affiliation(s)
- Susan M Wall
- Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia; and Department of Medicine, University of Florida, Gainesville, Florida
| | - Jill W Verlander
- Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia; and Department of Medicine, University of Florida, Gainesville, Florida
| | - Cesar A Romero
- Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia; and Department of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
13
|
Pham TD, Verlander JW, Wang Y, Romero CA, Yue Q, Chen C, Thumova M, Eaton DC, Lazo-Fernandez Y, Wall SM. Aldosterone Regulates Pendrin and Epithelial Sodium Channel Activity through Intercalated Cell Mineralocorticoid Receptor-Dependent and -Independent Mechanisms over a Wide Range in Serum Potassium. J Am Soc Nephrol 2020; 31:483-499. [PMID: 32054691 DOI: 10.1681/asn.2019050551] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/14/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Aldosterone activates the intercalated cell mineralocorticoid receptor, which is enhanced with hypokalemia. Whether this receptor directly regulates the intercalated cell chloride/bicarbonate exchanger pendrin is unclear, as are potassium's role in this response and the receptor's effect on intercalated and principal cell function in the cortical collecting duct (CCD). METHODS We measured CCD chloride absorption, transepithelial voltage, epithelial sodium channel activity, and pendrin abundance and subcellular distribution in wild-type and intercalated cell-specific mineralocorticoid receptor knockout mice. To determine if the receptor directly regulates pendrin, as well as the effect of serum aldosterone and potassium on this response, we measured pendrin label intensity and subcellular distribution in wild-type mice, knockout mice, and receptor-positive and receptor-negative intercalated cells from the same knockout mice. RESULTS Ablation of the intercalated cell mineralocorticoid receptor in CCDs from aldosterone-treated mice reduced chloride absorption and epithelial sodium channel activity, despite principal cell mineralocorticoid receptor expression in the knockout mice. With high circulating aldosterone, intercalated cell mineralocorticoid receptor gene ablation directly reduced pendrin's relative abundance in the apical membrane region and pendrin abundance per cell whether serum potassium was high or low. Intercalated cell mineralocorticoid receptor ablation blunted, but did not eliminate, aldosterone's effect on pendrin total and apical abundance and subcellular distribution. CONCLUSIONS With high circulating aldosterone, intercalated cell mineralocorticoid receptor ablation reduces chloride absorption in the CCD and indirectly reduces principal cell epithelial sodium channel abundance and function. This receptor directly regulates pendrin's total abundance and its relative abundance in the apical membrane region over a wide range in serum potassium concentration. Aldosterone regulates pendrin through mechanisms both dependent and independent of the IC MR receptor.
Collapse
Affiliation(s)
| | - Jill W Verlander
- Department of Medicine, University of Florida, Gainesville, Florida
| | | | | | | | - Chao Chen
- Department of Medicine, University of Florida, Gainesville, Florida
| | | | - Douglas C Eaton
- Departments of Medicine and.,Physiology, Emory University School of Medicine, Atlanta, Georgia; and
| | | | - Susan M Wall
- Departments of Medicine and .,Physiology, Emory University School of Medicine, Atlanta, Georgia; and
| |
Collapse
|
14
|
Gonzalez AA, Gallardo M, Cespedes C, Vio CP. Potassium Intake Prevents the Induction of the Renin-Angiotensin System and Increases Medullary ACE2 and COX-2 in the Kidneys of Angiotensin II-Dependent Hypertensive Rats. Front Pharmacol 2019; 10:1212. [PMID: 31680980 PMCID: PMC6804396 DOI: 10.3389/fphar.2019.01212] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/20/2019] [Indexed: 01/13/2023] Open
Abstract
In angiotensin II (Ang II)-dependent hypertensive rats there is an increased expression of proximal tubule angiotensinogen (AGT), collecting duct renin and angiotensin converting enzyme (ACE), which contributes to intratubular Ang II formation. Ang II acts on Ang II type 1 receptors promoting sodium retention and vasoconstriction. However concurrently, the ACE2-Ang-(1–7) axis and the expression of kallikrein and medullary prostaglandins counteract the effects of Ang II, promoting natriuresis and vasodilation. Human studies demonstrate that dietary potassium (K+) intake lowers blood pressure. In this report we evaluate the expression of AGT, ACE, medullary prorenin/renin, ACE2, kallikrein and cyclooxygenase-2 (COX-2) in Ang II-infused rats fed with high K+ diet (2%) for 14 days. Dietary K+ enhances diuresis in non-infused and in Ang II-infused rats. The rise in systolic blood pressure in Ang II-infused rats was attenuated by dietary K+. Ang II-infused rats showed increased renal protein levels of AGT, ACE and medullary prorenin and renin. This effect was attenuated in the Ang II + K+ group. Ang II infusion decreased ACE2 compared to the control group; however, K+ diet prevented this effect in the renal medulla. Furthermore, medullary COX-2 was dramatically induced by K+ diet in non-infused and in Ang II infused rats. Dietary K+ greatly increased kallikrein immunostaining in normotensive rats and in Ang II-hypertensive rats. These results indicate that a high K+ diet attenuates Ang II-dependent hypertension by preventing the induction of ACE, AGT and collecting duct renin and by enhancing medullary COX-2 and ACE2 protein expression in the kidney.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Institute of Chemistry, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Matias Gallardo
- Institute of Chemistry, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Carlos Cespedes
- Department of Physiology, Center for Aging and Regeneration CARE UC, Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Carlos P Vio
- Department of Physiology, Center for Aging and Regeneration CARE UC, Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
15
|
Abstract
The epithelium of the kidney collecting duct (CD) is composed mainly of two different types of cells with distinct and complementary functions. CD principal cells traditionally have been considered to have a major role in Na+ and water regulation, while intercalated cells (ICs) were thought to largely modulate acid-base homeostasis. In recent years, our understanding of IC function has improved significantly owing to new research findings. Thus, we now have a new model for CD transport that integrates mechanisms of salt and water reabsorption, K+ homeostasis, and acid-base status between principal cells and ICs. There are three main types of ICs (type A, type B, and non-A, non-B), which first appear in the late distal convoluted tubule or in the connecting segment in a species-dependent manner. ICs can be detected in CD from cortex to the initial part of the inner medulla, although some transport proteins that are key components of ICs also are present in medullary CD, cells considered inner medullary. Of the three types of ICs, each has a distinct morphology and expresses different complements of membrane transport proteins that translate into very different functions in homeostasis and contributions to CD luminal pro-urine composition. This review includes recent discoveries in IC intracellular and paracrine signaling that contributes to acid-base regulation as well as Na+, Cl-, K+, and Ca2+ homeostasis. Thus, these new findings highlight the potential role of ICs as targets for potential hypertension treatments.
Collapse
Affiliation(s)
- Renee Rao
- University of Southern California/University Kidney Research Organization, Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA
| | - Vivek Bhalla
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Núria M Pastor-Soler
- University of Southern California/University Kidney Research Organization, Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA.
| |
Collapse
|
16
|
Lashhab R, Ullah AS, Cordat E. Renal collecting duct physiology and pathophysiology. Biochem Cell Biol 2019; 97:234-242. [DOI: 10.1139/bcb-2018-0192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Rawad Lashhab
- Department of Physiology and Membrane Protein and Disease Research Group, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Physiology and Membrane Protein and Disease Research Group, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - A.K.M. Shahid Ullah
- Department of Physiology and Membrane Protein and Disease Research Group, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Physiology and Membrane Protein and Disease Research Group, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Emmanuelle Cordat
- Department of Physiology and Membrane Protein and Disease Research Group, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Physiology and Membrane Protein and Disease Research Group, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
17
|
López-Cayuqueo KI, Chavez-Canales M, Pillot A, Houillier P, Jayat M, Baraka-Vidot J, Trepiccione F, Baudrie V, Büsst C, Soukaseum C, Kumai Y, Jeunemaître X, Hadchouel J, Eladari D, Chambrey R. A mouse model of pseudohypoaldosteronism type II reveals a novel mechanism of renal tubular acidosis. Kidney Int 2018; 94:514-523. [PMID: 30146013 DOI: 10.1016/j.kint.2018.05.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/26/2018] [Accepted: 05/03/2018] [Indexed: 02/04/2023]
Abstract
Pseudohypoaldosteronism type II (PHAII) is a genetic disease characterized by association of hyperkalemia, hyperchloremic metabolic acidosis, hypertension, low renin, and high sensitivity to thiazide diuretics. It is caused by mutations in the WNK1, WNK4, KLHL3 or CUL3 gene. There is strong evidence that excessive sodium chloride reabsorption by the sodium chloride cotransporter NCC in the distal convoluted tubule is involved. WNK4 is expressed not only in distal convoluted tubule cells but also in β-intercalated cells of the cortical collecting duct. These latter cells exchange intracellular bicarbonate for external chloride through pendrin, and therefore, account for renal base excretion. However, these cells can also mediate thiazide-sensitive sodium chloride absorption when the pendrin-dependent apical chloride influx is coupled to apical sodium influx by the sodium-driven chloride/bicarbonate exchanger. Here we determine whether this system is involved in the pathogenesis of PHAII. Renal pendrin activity was markedly increased in a mouse model carrying a WNK4 missense mutation (Q562E) previously identified in patients with PHAII. The upregulation of pendrin led to an increase in thiazide-sensitive sodium chloride absorption by the cortical collecting duct, and it caused metabolic acidosis. The function of apical potassium channels was altered in this model, and hyperkalemia was fully corrected by pendrin genetic ablation. Thus, we demonstrate an important contribution of pendrin in renal regulation of sodium chloride, potassium and acid-base homeostasis and in the pathophysiology of PHAII. Furthermore, we identify renal distal bicarbonate secretion as a novel mechanism of renal tubular acidosis.
Collapse
Affiliation(s)
- Karen I López-Cayuqueo
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France; Centro de Estudios Científicos, Valdivia, Chile
| | - Maria Chavez-Canales
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France
| | - Alexia Pillot
- Centre National de la Recherche Scientifique Equipe de Recherche Labelisée 8228, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche_S1138, Centre de Recherche des Cordeliers, Paris, France
| | - Pascal Houillier
- Centre National de la Recherche Scientifique Equipe de Recherche Labelisée 8228, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche_S1138, Centre de Recherche des Cordeliers, Paris, France; Genetics, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Maximilien Jayat
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France
| | - Jennifer Baraka-Vidot
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1188, CYROI, Sainte Clotilde, La Réunion, France
| | - Francesco Trepiccione
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France
| | - Véronique Baudrie
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France; Genetics, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Cara Büsst
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France
| | - Christelle Soukaseum
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France
| | - Yusuke Kumai
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France
| | - Xavier Jeunemaître
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France; Genetics, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Juliette Hadchouel
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France
| | - Dominique Eladari
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France; Service d'Explorations Fonctionnelles Rénales, Hôpital Felix Guyon, CHU de la Réunion, Saint Denis, La Réunion, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1188, CYROI, Sainte Clotilde, La Réunion, France.
| | - Régine Chambrey
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1188, CYROI, Sainte Clotilde, La Réunion, France; Centre National de la Recherche Scientifique, Délégation Paris Michel-Ange, Paris, France.
| |
Collapse
|
18
|
Nanami M, Pham TD, Kim YH, Yang B, Sutliff RL, Staub O, Klein JD, Lopez-Cayuqueo KI, Chambrey R, Park AY, Wang X, Pech V, Verlander JW, Wall SM. The Role of Intercalated Cell Nedd4-2 in BP Regulation, Ion Transport, and Transporter Expression. J Am Soc Nephrol 2018; 29:1706-1719. [PMID: 29773687 DOI: 10.1681/asn.2017080826] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 03/29/2018] [Indexed: 12/23/2022] Open
Abstract
BackgroundNedd4-2 is an E3 ubiquitin-protein ligase that associates with transport proteins, causing their ubiquitylation, and then internalization and degradation. Previous research has suggested a correlation between Nedd4-2 and BP. In this study, we explored the effect of intercalated cell (IC) Nedd4-2 gene ablation on IC transporter abundance and function and on BP.Methods We generated IC Nedd4-2 knockout mice using Cre-lox technology and produced global pendrin/Nedd4-2 null mice by breeding global Nedd4-2 null (Nedd4-2-/- ) mice with global pendrin null (Slc26a4-/- ) mice. Mice ate a diet with 1%-4% NaCl; BP was measured by tail cuff and radiotelemetry. We measured transepithelial transport of Cl- and total CO2 and transepithelial voltage in cortical collecting ducts perfused in vitro Transporter abundance was detected with immunoblots, immunohistochemistry, and immunogold cytochemistry.Results IC Nedd4-2 gene ablation markedly increased electroneutral Cl-/HCO3- exchange in the cortical collecting duct, although benzamil-, thiazide-, and bafilomycin-sensitive ion flux changed very little. IC Nedd4-2 gene ablation did not increase the abundance of type B IC transporters, such as AE4 (Slc4a9), H+-ATPase, barttin, or the Na+-dependent Cl-/HCO3- exchanger (Slc4a8). However, IC Nedd4-2 gene ablation increased CIC-5 total protein abundance, apical plasma membrane pendrin abundance, and the ratio of pendrin expression on the apical membrane to the cytoplasm. IC Nedd4-2 gene ablation increased BP by approximately 10 mm Hg. Moreover, pendrin gene ablation eliminated the increase in BP observed in global Nedd4-2 knockout mice.Conclusions IC Nedd4-2 regulates Cl-/HCO3- exchange in ICs., Nedd4-2 gene ablation increases BP in part through its action in these cells.
Collapse
Affiliation(s)
| | | | | | - Baoli Yang
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, Iowa
| | | | - Olivier Staub
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,National Centre of Competence in Research "Kidney.ch," Zurich, Switzerland
| | | | - Karen I Lopez-Cayuqueo
- Centro de Estudios Cientificos, Valdivia, Chile.,Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France
| | - Regine Chambrey
- Institut National de la Santé et de la Recherche Médicale U1188, Universite de la Reunion, Plateforme Cyclotron Réunion Océan Indien, St. Denis, Ile de la Reunion, France; and
| | | | | | | | - Jill W Verlander
- Renal Division, Department of Medicine, University of Florida at Gainesville, Gainesville, Florida
| | - Susan M Wall
- Renal and .,Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
19
|
Trepiccione F, Soukaseum C, Baudrie V, Kumai Y, Teulon J, Villoutreix B, Cornière N, Wangemann P, Griffith AJ, Byung Choi Y, Hadchouel J, Chambrey R, Eladari D. Acute genetic ablation of pendrin lowers blood pressure in mice. Nephrol Dial Transplant 2018; 32:1137-1145. [PMID: 28064162 DOI: 10.1093/ndt/gfw393] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/02/2016] [Indexed: 11/14/2022] Open
Abstract
Background Pendrin, the chloride/bicarbonate exchanger of β-intercalated cells of the renal connecting tubule and the collecting duct, plays a key role in NaCl reabsorption by the distal nephron. Therefore, pendrin may be important for the control of extracellular fluid volume and blood pressure. Methods Here, we have used a genetic mouse model in which the expression of pendrin can be switched-on in vivo by the administration of doxycycline. Pendrin can also be rapidly removed when doxycycline administration is discontinued. Therefore, our genetic strategy allows us to test selectively the acute effects of loss of pendrin function. Results We show that acute loss of pendrin leads to a significant decrease of blood pressure. In addition, acute ablation of pendrin did not alter significantly the acid-base status or blood K + concentration. Conclusion By using a transgenic mouse model, avoiding off-target effects related to pharmacological compounds, this study suggests that pendrin could be a novel target to treat hypertension.
Collapse
Affiliation(s)
- Francesco Trepiccione
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France
| | - Christelle Soukaseum
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France
| | - Veronique Baudrie
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France.,Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique-Hopitaux de Paris, Paris, France
| | - Yusuke Kumai
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France
| | - Jacques Teulon
- CNRS ERL 8228, INSERM UMRS 1138, Université Pierre et Marie Curie, Centre de Recherche des Cordeliers, Paris, France
| | - Bruno Villoutreix
- INSERM U973, MTi-Bioinformatics; University Paris Diderot, Paris, France
| | - Nicolas Cornière
- Service d'Explorations Fonctionnelles Rénales, Hôpital Felix Guyon, CHU de la Réunion, St Denis, Ile de la Réunion, France
| | - Philine Wangemann
- Anatomy and Physiology Department, Kansas State University, Manhattan, KS, USA
| | - Andrew J Griffith
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Yoon Byung Choi
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Juliette Hadchouel
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France
| | - Regine Chambrey
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France.,Centre National de la Recherche Scientifique, Paris, France
| | - Dominique Eladari
- Service d'Explorations Fonctionnelles Rénales, Hôpital Felix Guyon, CHU de la Réunion, St Denis, Ile de la Réunion, France
| |
Collapse
|
20
|
α-Ketoglutarate drives electroneutral NaCl reabsorption in intercalated cells by activating a G-protein coupled receptor, Oxgr1. Curr Opin Nephrol Hypertens 2018; 26:426-433. [PMID: 28771454 DOI: 10.1097/mnh.0000000000000353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE OF REVIEW This review describes the recent discoveries about a powerful electroneutral NaCl reabsorption mechanism in intercalated cells, and its regulation by an intrarenal metabolite paracrine, α-ketoglutartate, and the G-protein coupled receptor, Oxgr1. RECENT FINDINGS The distal nephron fine-tunes sodium, chloride, potassium, hydrogen, bicarbonate and water transport to maintain electrolyte homeostasis and blood pressure. Intercalated cells have been traditionally viewed as the professional regulators of acid-base balance, but recent studies reveal that a specific population of intercalated cells, identified by the pendrin-transporter, have a surprising role in the regulation of salt balance. The pendrin-positive intercalated cells (PP-ICs) facilitate electroneutral NaCl reabsorption through the cooperative activation of multitransport protein network. α-Ketoglutartate is synthesized and secreted into the proximal tubule lumen in the combined state of metabolic alkalosis and intravascular volume contraction to activate Oxgr1 in PP-IC, which in turn activates the multitransport protein network to drive salt reabsorption and bicarbonate secretion by these cells. SUMMARY Recent studies identify a novel salt transport pathway in intercalated cells that is activated by an intrarenal paracrine system, α-ketoglutartate/Oxgr1. Activation of the paracrine system and transport pathway, particularly during alkalosis and volume contraction, mitigates deleterious salt wasting while restoring acid-base balance.
Collapse
|
21
|
Wall SM. Renal intercalated cells and blood pressure regulation. Kidney Res Clin Pract 2017; 36:305-317. [PMID: 29285423 PMCID: PMC5743040 DOI: 10.23876/j.krcp.2017.36.4.305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022] Open
Abstract
Type B and non-A, non-B intercalated cells are found within the connecting tubule and the cortical collecting duct. Of these cell types, type B intercalated cells are known to mediate Cl- absorption and HCO3- secretion largely through pendrin-dependent Cl-/HCO3- exchange. This exchange is stimulated by angiotensin II administration and is also stimulated in models of metabolic alkalosis, for instance after aldosterone or NaHCO3 administration. In some rodent models, pendrin-mediated HCO3- secretion modulates acid-base balance. However, the role of pendrin in blood pressure regulation is likely of more physiological or clinical significance. Pendrin regulates blood pressure not only by mediating aldosterone-sensitive Cl- absorption, but also by modulating the aldosterone response for epithelial Na+ channel (ENaC)-mediated Na+ absorption. Pendrin regulates ENaC through changes in open channel of probability, channel surface density, and channels subunit total protein abundance. Thus, aldosterone stimulates ENaC activity through both direct and indirect effects, the latter occurring through its stimulation of pendrin expression and function. Therefore, pendrin contributes to the aldosterone pressor response. Pendrin may also modulate blood pressure in part through its action in the adrenal medulla, where it modulates the release of catecholamines, or through an indirect effect on vascular contractile force. This review describes how aldosterone and angiotensin II-induced signaling regulate pendrin and the contributory role of pendrin in distal nephron function and blood pressure.
Collapse
Affiliation(s)
- Susan M. Wall
- Departments of Medicine, Emory University School of Medicine, Atlanta, GA,
USA
- Physiology, Emory University School of Medicine, Atlanta, GA,
USA
| |
Collapse
|
22
|
Hirohama D, Ayuzawa N, Ueda K, Nishimoto M, Kawarazaki W, Watanabe A, Shimosawa T, Marumo T, Shibata S, Fujita T. Aldosterone Is Essential for Angiotensin II-Induced Upregulation of Pendrin. J Am Soc Nephrol 2017; 29:57-68. [PMID: 29021385 DOI: 10.1681/asn.2017030243] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 07/18/2017] [Indexed: 12/17/2022] Open
Abstract
The renin-angiotensin-aldosterone system has an important role in the control of fluid homeostasis and BP during volume depletion. Dietary salt restriction elevates circulating angiotensin II (AngII) and aldosterone levels, increasing levels of the Cl-/HCO3- exchanger pendrin in β-intercalated cells and the Na+-Cl- cotransporter (NCC) in distal convoluted tubules. However, the independent roles of AngII and aldosterone in regulating these levels remain unclear. In C57BL/6J mice receiving a low-salt diet or AngII infusion, we evaluated the membrane protein abundance of pendrin and NCC; assessed the phosphorylation of the mineralocorticoid receptor, which selectively inhibits aldosterone binding in intercalated cells; and measured BP by radiotelemetry in pendrin-knockout and wild-type mice. A low-salt diet or AngII infusion upregulated NCC and pendrin levels, decreased the phosphorylation of mineralocorticoid receptor in β-intercalated cells, and increased plasma aldosterone levels. Notably, a low-salt diet did not alter BP in wild-type mice, but significantly decreased BP in pendrin-knockout mice. To dissect the roles of AngII and aldosterone, we performed adrenalectomies in mice to remove aldosterone from the circulation. In adrenalectomized mice, AngII infusion again upregulated NCC expression, but did not affect pendrin expression despite the decreased phosphorylation of mineralocorticoid receptor. By contrast, AngII and aldosterone coadministration markedly elevated pendrin levels in adrenalectomized mice. Our results indicate that aldosterone is necessary for AngII-induced pendrin upregulation, and suggest that pendrin contributes to the maintenance of normal BP in cooperation with NCC during activation of the renin-angiotensin-aldosterone system by dietary salt restriction.
Collapse
Affiliation(s)
- Daigoro Hirohama
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan;
| | - Nobuhiro Ayuzawa
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kohei Ueda
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Mitsuhiro Nishimoto
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Wakako Kawarazaki
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Atsushi Watanabe
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tatsuo Shimosawa
- Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Takeshi Marumo
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Shigeru Shibata
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Toshiro Fujita
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan; .,CREST, Japan Science and Technology Agency, Tokyo, Japan
| |
Collapse
|
23
|
Edwards A, Crambert G. Versatility of NaCl transport mechanisms in the cortical collecting duct. Am J Physiol Renal Physiol 2017; 313:F1254-F1263. [PMID: 28877883 DOI: 10.1152/ajprenal.00369.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/16/2017] [Accepted: 08/31/2017] [Indexed: 12/16/2022] Open
Abstract
The cortical collecting duct (CCD) forms part of the aldosterone-sensitive distal nephron and plays an essential role in maintaining the NaCl balance and acid-base status. The CCD epithelium comprises principal cells as well as different types of intercalated cells. Until recently, transcellular Na+ transport was thought to be restricted to principal cells, whereas (acid-secreting) type A and (bicarbonate-secreting) type B intercalated cells were associated with the regulation of acid-base homeostasis. This review describes how this traditional view has been upended by several discoveries in the past decade. A series of studies has shown that type B intercalated cells can mediate electroneutral NaCl reabsorption by a mechanism involving Na+-dependent and Na+-independent Cl-/[Formula: see text] exchange, and that is energetically driven by basolateral vacuolar H+-ATPase pumps. Other research indicates that type A intercalated cells can mediate NaCl secretion, through a bumetanide-sensitive pathway that is energized by apical H+,K+-ATPase type 2 pumps operating as Na+/K+ exchangers. We also review recent findings on the contribution of the paracellular route to NaCl transport in the CCD. Last, we describe cross-talk processes, by which one CCD cell type impacts Na+/Cl- transport in another cell type. The mechanisms that have been identified to date demonstrate clearly the interdependence of NaCl and acid-base transport systems in the CCD. They also highlight the remarkable versatility of this nephron segment.
Collapse
Affiliation(s)
- Aurélie Edwards
- Sorbonne Universités, UPMC Univ Paris 06, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMRS 1138, CNRS ERL 8228, Centre de Recherche des Cordeliers, Paris, France; and .,Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Gilles Crambert
- Sorbonne Universités, UPMC Univ Paris 06, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMRS 1138, CNRS ERL 8228, Centre de Recherche des Cordeliers, Paris, France; and
| |
Collapse
|
24
|
Alshahrani S, Soleimani M. Ablation of the Cl-/HCO3- Exchanger Pendrin Enhances Hydrochlorothiazide-Induced Diuresis. Kidney Blood Press Res 2017; 42:444-455. [PMID: 28750403 PMCID: PMC10947751 DOI: 10.1159/000479296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/19/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The Cl-/HCO3- exchanger pendrin and the thiazide-sensitive Na-Cl cotransporter NCC are expressed in the kidney distal nephron and mediate salt absorption. We hypothesized that deletion of pendrin leaves NCC as the major salt absorbing transporter in the distal nephron and therefore enhances salt excretion by hydrochlorothiazide (HCTZ). METHODS Metabolic cage studies were performed in wild type, pendrin KO and NCC KO mice at baseline and following HCTZ treatment. In parallel studies, systemic blood pressure was measured in mice treated with HCTZ with the tail cuff method. RESULTS Urine output, salt excretion and water intake were comparable in all groups under baseline condition. Urine output and water intake increased significantly only in pendrin KO mice in response to HCTZ, but not in WT or NCC KO mice. Sodium and chloride excretion increased in HCTZ-treated pendrin KO mice, but they remained unchanged in WT or NCC KO mice. Pendrin KO mice treated with HCTZ developed volume depletion, as determined by increased expression of renin mRNA and protein. The expression of ENaC and pendrin increased in HCTZ-treated WT mice. HCTZ treatment did not significantly modify blood pressure in any of the experimental group. CONCLUSION The ablation of the Cl-/HCO3- exchanger Pendrin enhances the magnitude of salt wasting by HCTZ.
Collapse
Affiliation(s)
- Saeed Alshahrani
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Manoocher Soleimani
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Medicine, University of Cincinnati and VA Research Services, Cincinnati, Ohio, USA
- Veterans Administration Hospital, Cincinnati, Ohio, USA
| |
Collapse
|
25
|
Xu N, Hirohama D, Ishizawa K, Chang WX, Shimosawa T, Fujita T, Uchida S, Shibata S. Hypokalemia and Pendrin Induction by Aldosterone. Hypertension 2017; 69:855-862. [PMID: 28289181 DOI: 10.1161/hypertensionaha.116.08519] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/18/2016] [Accepted: 02/13/2017] [Indexed: 11/16/2022]
Abstract
Aldosterone plays an important role in regulating Na-Cl reabsorption and blood pressure. Epithelial Na+ channel, Na+-Cl- cotransporter, and Cl-/HCO3- exchanger pendrin are the major mediators of Na-Cl transport in the aldosterone-sensitive distal nephron. Existing evidence also suggests that plasma K+ concentration affects renal Na-Cl handling. In this study, we posited that hypokalemia modulates the effects of aldosterone on pendrin in hyperaldosteronism. Chronic aldosterone infusion in mice increased pendrin levels at the plasma membrane, and correcting hypokalemia in this model almost completely blocked pendrin upregulation. However, hypokalemia induced by a low-K+ diet resulted in pendrin downregulation along with reduced plasma aldosterone levels, indicating that both hypokalemia and aldosterone excess are necessary for pendrin induction. In contrast, decreased plasma K+ levels were sufficient to increase Na+-Cl- cotransporter levels. We found that phosphorylation of mineralocorticoid receptor that prevents aldosterone binding in intercalated cells was suppressed by hypokalemia, which resulted in enhanced pendrin response to aldosterone, explaining the coordinated action of aldosterone and hypokalemia in pendrin regulation. Finally, to address the physiological significance of our observations, we administered aldosterone to mice lacking pendrin. Notably, plasma K+ levels were significantly lower in pendrin knockout mice (2.7±0.1 mmol/L) than in wild-type mice (3.0±0.1 mmol/L) after aldosterone infusion, demonstrating that pendrin alleviates hypokalemia in a state of aldosterone excess. These data indicate that the decreased plasma K+ levels promote pendrin induction by aldosterone, which, in concert with Na+-Cl- cotransporter, counteracts the progression of hypokalemia but promotes hypertension in primary aldosterone excess.
Collapse
Affiliation(s)
- Ning Xu
- From the Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan (N.X., K.I., S.U., S.S.); Department of Nephrology, Tianjin First Central Hospital, China (N.X., W.X.C.); and Division of Clinical Epigenetics, Research Center for Advanced Science and Technology (D.H., T.F., S.S.) and Department of Clinical Laboratory, School of Medicine (T.S.), The University of Tokyo, Japan
| | - Daigoro Hirohama
- From the Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan (N.X., K.I., S.U., S.S.); Department of Nephrology, Tianjin First Central Hospital, China (N.X., W.X.C.); and Division of Clinical Epigenetics, Research Center for Advanced Science and Technology (D.H., T.F., S.S.) and Department of Clinical Laboratory, School of Medicine (T.S.), The University of Tokyo, Japan
| | - Kenichi Ishizawa
- From the Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan (N.X., K.I., S.U., S.S.); Department of Nephrology, Tianjin First Central Hospital, China (N.X., W.X.C.); and Division of Clinical Epigenetics, Research Center for Advanced Science and Technology (D.H., T.F., S.S.) and Department of Clinical Laboratory, School of Medicine (T.S.), The University of Tokyo, Japan
| | - Wen Xiu Chang
- From the Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan (N.X., K.I., S.U., S.S.); Department of Nephrology, Tianjin First Central Hospital, China (N.X., W.X.C.); and Division of Clinical Epigenetics, Research Center for Advanced Science and Technology (D.H., T.F., S.S.) and Department of Clinical Laboratory, School of Medicine (T.S.), The University of Tokyo, Japan
| | - Tatsuo Shimosawa
- From the Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan (N.X., K.I., S.U., S.S.); Department of Nephrology, Tianjin First Central Hospital, China (N.X., W.X.C.); and Division of Clinical Epigenetics, Research Center for Advanced Science and Technology (D.H., T.F., S.S.) and Department of Clinical Laboratory, School of Medicine (T.S.), The University of Tokyo, Japan
| | - Toshiro Fujita
- From the Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan (N.X., K.I., S.U., S.S.); Department of Nephrology, Tianjin First Central Hospital, China (N.X., W.X.C.); and Division of Clinical Epigenetics, Research Center for Advanced Science and Technology (D.H., T.F., S.S.) and Department of Clinical Laboratory, School of Medicine (T.S.), The University of Tokyo, Japan
| | - Shunya Uchida
- From the Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan (N.X., K.I., S.U., S.S.); Department of Nephrology, Tianjin First Central Hospital, China (N.X., W.X.C.); and Division of Clinical Epigenetics, Research Center for Advanced Science and Technology (D.H., T.F., S.S.) and Department of Clinical Laboratory, School of Medicine (T.S.), The University of Tokyo, Japan
| | - Shigeru Shibata
- From the Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan (N.X., K.I., S.U., S.S.); Department of Nephrology, Tianjin First Central Hospital, China (N.X., W.X.C.); and Division of Clinical Epigenetics, Research Center for Advanced Science and Technology (D.H., T.F., S.S.) and Department of Clinical Laboratory, School of Medicine (T.S.), The University of Tokyo, Japan.
| |
Collapse
|
26
|
Alshahrani S, Rapoport RM, Soleimani M. Vascular contractile reactivity in hypotension due to reduced renal reabsorption of Na + and restricted dietary Na . NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2017; 390:321-326. [PMID: 28108829 PMCID: PMC10947747 DOI: 10.1007/s00210-017-1340-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
Abstract
Reduced renal Na+ reabsorption along with restricted dietary Na+ depletes intravascular plasma volume which can then result in hypotension. Whether hypotension occurs and the magnitude of hypotension depends in part on compensatory angiotensin II-mediated increased vascular resistance. We investigated whether the ability of vascular resistance to mitigate the hypotension was compromised by decreased contractile reactivity. In vitro reactivity was investigated in aorta from mouse models of reduced renal Na+ reabsorption and restricted dietary Na+ associated with considerable hypotension and renin-angiotensin system activation: (1) the Na+-Cl--Co-transporter (NCC) knockout (KO) with Na+ restricted diet (0.1%, 2 weeks) and (2) the relatively more severe pendrin (apical chloride/bicarbonate exchanger) and NCC double KO. Contractile sensitivity to KCl, phenylephrine, and/or U46619 remained unaltered in aorta from both models. Maximal KCl and phenylephrine contraction expressed as force/aorta length from NCC KO with Na+-restricted diet remained unaltered, while in pendrin/NCC double KO were reduced to 49 and 64%, respectively. Wet weight of aorta from NCC KO with Na+-restricted diet remained unaltered, while pendrin/NCC double KO was reduced to 67%, consistent with decreased medial width determined with Verhoeff-Van Gieson stain. These findings suggest that hypotension associated with severe intravascular volume depletion, as the result of decreased renal Na+ reabsorption, may in part be due to decreased contractile reactivity as a consequence of reduced vascular hypertrophy.
Collapse
Affiliation(s)
- Saeed Alshahrani
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Robert M Rapoport
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Manoocher Soleimani
- Research Service, Veterans Affairs Medical Center, Cincinnati, OH, 45220, USA
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| |
Collapse
|
27
|
West CA, Sasser JM, Baylis C. The enigma of continual plasma volume expansion in pregnancy: critical role of the renin-angiotensin-aldosterone system. Am J Physiol Renal Physiol 2016; 311:F1125-F1134. [PMID: 27707703 PMCID: PMC6189751 DOI: 10.1152/ajprenal.00129.2016] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 09/29/2016] [Indexed: 12/27/2022] Open
Abstract
Pregnancy is characterized by avid renal sodium retention and plasma volume expansion in the presence of decreased blood pressure. Decreased maternal blood pressure is a consequence of reduced systemic vascular tone, which results from an increased production of vasodilators [nitric oxide (NO), prostaglandins, and relaxin] and decreased vascular responsiveness to the potent vasoconstrictor (angiotensin II). The kidneys participate in this vasodilatory response, resulting in marked increases in renal plasma flow and glomerular filtration rate (GFR) during pregnancy. In women, sodium retention drives plasma volume expansion (∼40%) and is necessary for perfusion of the growing uterus and fetus. For there to be avid sodium retention in the presence of the potent natriuretic influences of increased NO and elevated GFR, there must be modifications of the tubules to prevent salt wasting. The purpose of this review is to summarize these adaptations.
Collapse
Affiliation(s)
- Crystal A West
- Department of Medicine, Georgetown University, Washington, District of Columbia;
| | - Jennifer M Sasser
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Chris Baylis
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| |
Collapse
|
28
|
Elijovich F, Weinberger MH, Anderson CAM, Appel LJ, Bursztyn M, Cook NR, Dart RA, Newton-Cheh CH, Sacks FM, Laffer CL. Salt Sensitivity of Blood Pressure: A Scientific Statement From the American Heart Association. Hypertension 2016; 68:e7-e46. [PMID: 27443572 DOI: 10.1161/hyp.0000000000000047] [Citation(s) in RCA: 354] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Kim BG, Yoo TH, Yoo JE, Seo YJ, Jung J, Choi JY. Resistance to hypertension and high Cl - excretion in humans with SLC26A4 mutations. Clin Genet 2016; 91:448-452. [PMID: 27090054 DOI: 10.1111/cge.12789] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
Pendrin is a membrane transporter encoded by solute carrier family26A4 (SLC26A4). Mutations in this gene are known to cause hearing loss, and recent data from animal studies indicate a link between pendrin expression and hypertension; although, this association in humans is unclear. To clarify this issue, we investigated the influence of pendrin on blood pressure by analyzing demographic and biochemical data - including blood pressure and urinary electrolyte excretion - in patients with bi-allelic SLC26A4 mutations. Systolic and diastolic blood pressure and the left ventricular hypertrophy index were lower in subjects with pendrin mutations than in controls. In addition, fractional excretion of Na+ and Cl- was increased and serum renin, angiotensin I and II levels were higher in subjects with pendrin mutations as compared to controls. Thus, patients with impaired pendrin function are likely to be resistant to high blood pressure due to enhanced urinary Na+ /Cl- excretion. These results suggest that pendrin may regulate blood pressure through increased urinary salt excretion.
Collapse
Affiliation(s)
- B G Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University, College of Medicine, Bucheon, Korea
| | - T-H Yoo
- Department of Internal Medicine, Yonsei University, College of Medicine, Seoul, Korea
| | - J-E Yoo
- Department of Otorhinolaryngology, Yonsei University, College of Medicine, Seoul, Korea
| | - Y J Seo
- Department of Otorhinolaryngology, Yonsei University, WonJu College of Medicine, Wonju, Korea
| | - J Jung
- Department of Otorhinolaryngology, Yonsei University, College of Medicine, Seoul, Korea
| | - J Y Choi
- Department of Otorhinolaryngology, Yonsei University, College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Cil O, Haggie PM, Phuan PW, Tan JA, Verkman AS. Small-Molecule Inhibitors of Pendrin Potentiate the Diuretic Action of Furosemide. J Am Soc Nephrol 2016; 27:3706-3714. [PMID: 27153921 DOI: 10.1681/asn.2015121312] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/18/2016] [Indexed: 11/03/2022] Open
Abstract
Pendrin is a Cl-/HCO3- exchanger expressed in type B and non-A, non-B intercalated cells in the distal nephron, where it facilitates Cl- absorption and is involved in Na+ absorption and acid-base balance. Pendrin-knockout mice show no fluid-electrolyte abnormalities under baseline conditions, although mice with double knockout of pendrin and the Na+/Cl- cotransporter (NCC) manifest profound salt wasting. Thus, pendrin may attenuate diuretic-induced salt loss, but this function remains unconfirmed. To clarify the physiologic role of pendrin under conditions not confounded by gene knockout, and to test the potential utility of pendrin inhibitors for diuretic therapy, we tested in mice a small-molecule pendrin inhibitor identified from a high-throughput screen. In vitro, a pyrazole-thiophenesulfonamide, PDSinh-C01, inhibited Cl-/anion exchange mediated by mouse pendrin with a 50% inhibitory concentration of 1-3 µM, without affecting other major kidney tubule transporters. Administration of PDSinh-C01 to mice at predicted therapeutic doses, determined from serum and urine pharmacokinetics, did not affect urine output, osmolality, salt excretion, or acid-base balance. However, in mice treated acutely with furosemide, administration of PDSinh-C01 produced a 30% increase in urine output, with increased Na+ and Cl- excretion. In mice treated long term with furosemide, in which renal pendrin is upregulated, PDSinh-C01 produced a 60% increase in urine output. Our findings clarify the role of pendrin in kidney function and suggest pendrin inhibition as a novel approach to potentiate the action of loop diuretics. Such combination therapy might enhance diuresis and salt excretion for treatment of hypertension and edema, perhaps including diuretic-resistant edema.
Collapse
Affiliation(s)
- Onur Cil
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, California
| | - Peter M Haggie
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, California
| | - Puay-Wah Phuan
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, California
| | - Joseph-Anthony Tan
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, California
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, California
| |
Collapse
|
31
|
Sinning A, Radionov N, Trepiccione F, López-Cayuqueo KI, Jayat M, Baron S, Cornière N, Alexander RT, Hadchouel J, Eladari D, Hübner CA, Chambrey R. Double Knockout of the Na+-Driven Cl-/HCO3- Exchanger and Na+/Cl- Cotransporter Induces Hypokalemia and Volume Depletion. J Am Soc Nephrol 2016; 28:130-139. [PMID: 27151921 DOI: 10.1681/asn.2015070734] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 03/08/2016] [Indexed: 01/13/2023] Open
Abstract
We recently described a novel thiazide-sensitive electroneutral NaCl transport mechanism resulting from the parallel operation of the Cl-/HCO3- exchanger pendrin and the Na+-driven Cl-/2HCO3- exchanger (NDCBE) in β-intercalated cells of the collecting duct. Although a role for pendrin in maintaining Na+ balance, intravascular volume, and BP is well supported, there is no in vivo evidence for the role of NDCBE in maintaining Na+ balance. Here, we show that deletion of NDCBE in mice caused only subtle perturbations of Na+ homeostasis and provide evidence that the Na+/Cl- cotransporter (NCC) compensated for the inactivation of NDCBE. To unmask the role of NDCBE, we generated Ndcbe/Ncc double-knockout (dKO) mice. On a normal salt diet, dKO and single-knockout mice exhibited similar activation of the renin-angiotensin-aldosterone system, whereas only dKO mice displayed a lower blood K+ concentration. Furthermore, dKO mice displayed upregulation of the epithelial sodium channel (ENaC) and the Ca2+-activated K+ channel BKCa. During NaCl depletion, only dKO mice developed marked intravascular volume contraction, despite dramatically increased renin activity. Notably, the increase in aldosterone levels expected on NaCl depletion was attenuated in dKO mice, and single-knockout and dKO mice had similar blood K+ concentrations under this condition. In conclusion, NDCBE is necessary for maintaining sodium balance and intravascular volume during salt depletion or NCC inactivation in mice. Furthermore, NDCBE has an important role in the prevention of hypokalemia. Because NCC and NDCBE are both thiazide targets, the combined inhibition of NCC and the NDCBE/pendrin system may explain thiazide-induced hypokalemia in some patients.
Collapse
Affiliation(s)
- Anne Sinning
- Institut für Humangenetik, University Hospital Jena, Friedrich Schiller Universität, Jena, Germany
| | - Nikita Radionov
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France.,Faculty de Medicine, Université Paris-Descartes, Paris, France
| | - Francesco Trepiccione
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France.,Faculty de Medicine, Université Paris-Descartes, Paris, France
| | - Karen I López-Cayuqueo
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France.,Centro de Estudios Científicos (CECs), Valdivia, Chile.,Faculty de Medicine, Université Paris-Descartes, Paris, France
| | - Maximilien Jayat
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France.,Faculty de Medicine, Université Paris-Descartes, Paris, France
| | - Stéphanie Baron
- Department de Physiologie, Hopital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, Paris, France
| | - Nicolas Cornière
- Service de Néphrologie et Transplantation Rénale, Centre Hospitalier Universitaire de La Réunion, St. Denis, France
| | - R Todd Alexander
- Departments of Pediatrics and Physiology, University of Alberta, Edmonton, Alberta, Canada; and
| | - Juliette Hadchouel
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France.,Faculty de Medicine, Université Paris-Descartes, Paris, France
| | - Dominique Eladari
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France.,Faculty de Medicine, Université Paris-Descartes, Paris, France.,Department de Physiologie, Hopital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, Paris, France
| | - Christian A Hübner
- Institut für Humangenetik, University Hospital Jena, Friedrich Schiller Universität, Jena, Germany
| | - Régine Chambrey
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France; .,Faculty de Medicine, Université Paris-Descartes, Paris, France.,Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
32
|
Abstract
Pendrin is a Na(+)-independent Cl(-)/HCO3(-) exchanger found in the apical regions of type B and non-A, non-B intercalated cells within the aldosterone-sensitive region of the nephron, i.e., the distal convoluted tubule (DCT), the connecting tubule (CNT), and the cortical collecting duct (CCD). Type B intercalated cells mediate Cl(-) absorption and HCO3(-) secretion primarily through pendrin-mediated Cl(-)/HCO3(-) exchange. This exchanger is upregulated with angiotensin II administration and in models of metabolic alkalosis, such as following administration of aldosterone or NaHCO3. In the absence of pendrin-mediated HCO3(-) secretion, an enhanced alkalosis is observed following aldosterone or NaHCO3 administration. However, probably of more significance is the role of pendrin in the pressor response to aldosterone. Pendrin mediates Cl(-) absorption and modulates aldosterone-induced Na(+) absorption mediated by the epithelial Na channel (ENaC). Pendrin changes ENaC activity by changing both channel open probability (Po) and surface density (N), at least partly by altering luminal HCO3(-) and ATP concentration. Thus aldosterone and angiotensin II stimulate pendrin expression and function, which stimulates ENaC activity, thereby contributing to the pressor response of these hormones. However, pendrin may modulate blood pressure partly through its extrarenal effects. For example, pendrin is expressed in the adrenal medulla, where it modulates catecholamine release. The increase in catecholamine release observed with pendrin gene ablation likely contributes to the increment in vascular contractile force observed in the pendrin null mouse. This review summarizes the signaling mechanisms that regulate pendrin abundance and function as well as the contribution of pendrin to distal nephron function.
Collapse
Affiliation(s)
- Susan M Wall
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; and Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
33
|
Relative roles of principal and intercalated cells in the regulation of sodium balance and blood pressure. Curr Hypertens Rep 2016; 17:538. [PMID: 25794953 DOI: 10.1007/s11906-015-0538-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The kidney continuously adapts daily renal excretion of NaCl to match dietary intakes in order to maintain the NaCl content of the body, and keep vascular volume constant. Any situation that leads to NaCl retention favors a rise in blood pressure. The aldosterone-sensitive distal nephron, which contains two main types of cells, principal (PC) and intercalated (IC) cells, is an important site for the final regulation of urinary Na(+) excretion. Research over the past 20 years established a paradigm in which PCs are the exclusive site of Na(+) absorption while ICs are solely dedicated to acid-base transport. Recent studies have revealed the unexpected importance of ICs for NaCl reabsorption. Here, we review the mechanisms of Na(+) and Cl(-) transport in the aldosterone-sensitive distal nephron, with emphasis on the role of ICs in maintaining NaCl balance and normal blood pressure.
Collapse
|
34
|
Cornelius RJ, Wang B, Wang-France J, Sansom SC. Maintaining K + balance on the low-Na +, high-K + diet. Am J Physiol Renal Physiol 2016; 310:F581-F595. [PMID: 26739887 DOI: 10.1152/ajprenal.00330.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/29/2015] [Indexed: 02/07/2023] Open
Abstract
A low-Na+, high-K+ diet (LNaHK) is considered a healthier alternative to the "Western" high-Na+ diet. Because the mechanism for K+ secretion involves Na+ reabsorptive exchange for secreted K+ in the distal nephron, it is not understood how K+ is eliminated with such low Na+ intake. Animals on a LNaHK diet produce an alkaline load, high urinary flows, and markedly elevated plasma ANG II and aldosterone levels to maintain their K+ balance. Recent studies have revealed a potential mechanism involving the actions of alkalosis, urinary flow, elevated ANG II, and aldosterone on two types of K+ channels, renal outer medullary K+ and large-conductance K+ channels, located in principal and intercalated cells. Here, we review these recent advances.
Collapse
Affiliation(s)
- Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon; and
| | - Bangchen Wang
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jun Wang-France
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Steven C Sansom
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
35
|
Abstract
Pendrin is a Na(+)-independent Cl(-)/HCO3(-) exchanger that localizes to type B and non-A, non-B intercalated cells, which are expressed within the aldosterone-sensitive region of the nephron, i.e., the distal convoluted tubule, the connecting tubule, and the cortical collecting duct. Type B cells mediate Cl(-) absorption and HCO3(-) secretion primarily through pendrin-mediated Cl(-)/HCO3(-) exchange. At least in some treatment models, pendrin acts in tandem with the Na(+)-dependent Cl(-)/HCO3(-) exchanger (NDCBE) encoded by Slc4a8 to mediate NaCl absorption. The pendrin-mediated Cl(-)/HCO3(-) exchange process is greatly upregulated in models of metabolic alkalosis, such as following aldosterone administration or dietary NaHCO3 loading. It is also upregulated by angiotensin II. In the absence of pendrin [Slc26a4 (-/-) or pendrin null mice], aldosterone-stimulated NaCl absorption is reduced, which lowers the blood pressure response to aldosterone and enhances the alkalosis that follows the administration of this steroid hormone. Pendrin modulates aldosterone-induced Na(+) absorption by changing ENaC abundance and function through a kidney-specific mechanism that does not involve changes in the concentration of a circulating hormone. Instead, pendrin changes ENaC abundance and function at least in part by altering luminal HCO3(-) and ATP concentrations. Thus, aldosterone and angiotensin II also stimulate pendrin expression and function, which likely contributes to the pressor response of these hormones. This review summarizes the contribution of the Cl(-)/HCO3(-) exchanger pendrin in distal nephron function.
Collapse
|
36
|
Lazo-Fernandez Y, Aguilera G, Pham TD, Park AY, Beierwaltes WH, Sutliff RL, Verlander JW, Pacak K, Osunkoya AO, Ellis CL, Kim YH, Shipley GL, Wynne BM, Hoover RS, Sen SK, Plotsky PM, Wall SM. Pendrin localizes to the adrenal medulla and modulates catecholamine release. Am J Physiol Endocrinol Metab 2015; 309:E534-45. [PMID: 26173457 PMCID: PMC4572452 DOI: 10.1152/ajpendo.00035.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 07/09/2015] [Indexed: 02/02/2023]
Abstract
Pendrin (Slc26a4) is a Cl(-)/HCO3 (-) exchanger expressed in renal intercalated cells and mediates renal Cl(-) absorption. With pendrin gene ablation, blood pressure and vascular volume fall, which increases plasma renin concentration. However, serum aldosterone does not significantly increase in pendrin-null mice, suggesting that pendrin regulates adrenal zona glomerulosa aldosterone production. Therefore, we examined pendrin expression in the adrenal gland using PCR, immunoblots, and immunohistochemistry. Pendrin protein was detected in adrenal lysates from wild-type but not pendrin-null mice. However, immunohistochemistry and qPCR of microdissected adrenal zones showed that pendrin was expressed in the adrenal medulla, rather than in cortex. Within the adrenal medulla, pendrin localizes to both epinephrine- and norepinephrine-producing chromaffin cells. Therefore, we examined plasma catecholamine concentration and blood pressure in wild-type and pendrin-null mice under basal conditions and then after 5 and 20 min of immobilization stress. Under basal conditions, blood pressure was lower in the mutant than in the wild-type mice, although epinephrine and norepinephrine concentrations were similar. Catecholamine concentration and blood pressure increased markedly in both groups with stress. With 20 min of immobilization stress, epinephrine and norepinephrine concentrations increased more in pendrin-null than in wild-type mice, although stress produced a similar increase in blood pressure in both groups. We conclude that pendrin is expressed in the adrenal medulla, where it blunts stress-induced catecholamine release.
Collapse
Affiliation(s)
| | - Greti Aguilera
- Section on Endocrine Physiology, Developmental Endocrinology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Truyen D Pham
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Annie Y Park
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - William H Beierwaltes
- Hypertension and Vascular Research Division, Henry Ford Hospital and Wayne State School of Medicine, Detroit, Michigan
| | - Roy L Sutliff
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Atlanta Veterans Affairs Hospital, Atlanta, Georgia
| | - Jill W Verlander
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Karel Pacak
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Adeboye O Osunkoya
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Carla L Ellis
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Young Hee Kim
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Gregory L Shipley
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, Texas
| | - Brandi M Wynne
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Robert S Hoover
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Atlanta Veterans Affairs Hospital, Atlanta, Georgia; Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Shurjo K Sen
- Cardiovascular Disease Section, and National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Paul M Plotsky
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia; and
| | - Susan M Wall
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
37
|
West CA, Verlander JW, Wall SM, Baylis C. The chloride-bicarbonate exchanger pendrin is increased in the kidney of the pregnant rat. Exp Physiol 2015; 100:1177-86. [PMID: 26260990 DOI: 10.1113/ep085396] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/04/2015] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Pregnancy requires a robust plasma volume expansion driven by renal sodium retention. In the late-pregnant kidney, the aldosterone-responsive epithelial Na(+) channel is increased, whereas the sodium-chloride cotransporter is decreased. Pendrin has been shown to support sodium reabsorption in the distal nephron and compensate for loss of the sodium-chloride cotransporter. We investigated the expression and abundance of pendrin in the pregnant kidney. What is the main finding and its importance? Pendrin protein, apical localization and thiazide sensitivity are increased in pregnancy. This implicates a possible role for pendrin in supporting the renal sodium chloride reabsorption and plasma volume expansion of pregnancy. Pregnancy is characterized by cumulative plasma volume expansion as a result of renal sodium retention, driven by activation of aldosterone. We previously reported that the abundance and activity of the aldosterone-responsive epithelial Na(+) channel is increased, whereas the sodium-chloride cotransporter (NCC) is decreased in the kidney of the late-pregnant rat. The chloride-bicarbonate exchanger pendrin is also aldosterone responsive and has been shown to support activity of the aldosterone-responsive epithelial Na(+) channel and compensate for the loss of NCC. Additionally, pendrin coupled to the sodium-dependent chloride-bicarbonate exchanger (NDCBE) mediates thiazide-sensitive sodium reabsorption in the cortical collecting duct. In this study, we investigated pendrin and NDCBE transcript expression, pendrin protein abundance, pendrin cellular localization and thiazide sensitivity in virgin, mid-pregnant and late-pregnant rats to test the hypothesis that increased pendrin activity might occur in pregnancy. By RT-PCR, NDCBE and pendrin mRNA expression was unchanged from virgins, whereas pendrin protein abundance determined by Western blotting was increased in both mid- and late-pregnant rats. The apical localization of pendrin was also increased in late-pregnant rats compared with virgins by immunohistochemistry. Pregnant rats displayed an increased natriuretic response to hydrochlorothiazide compared with virgins. Given that NCC expression is decreased in late pregnancy, an increased thiazide sensitivity may be due to inhibition of upregulated pendrin-NDCBE-coupled sodium reabsorption. Thus, increased pendrin in pregnant rats may compensate for the decreased NCC and aid in the renal sodium chloride reabsorption of pregnancy.
Collapse
Affiliation(s)
- Crystal A West
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Jill W Verlander
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Susan M Wall
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Chris Baylis
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA.,Department of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
38
|
Labarca M, Nizar JM, Walczak EM, Dong W, Pao AC, Bhalla V. Harvest and primary culture of the murine aldosterone-sensitive distal nephron. Am J Physiol Renal Physiol 2015; 308:F1306-15. [PMID: 25810438 PMCID: PMC4451330 DOI: 10.1152/ajprenal.00668.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/19/2015] [Indexed: 11/22/2022] Open
Abstract
The aldosterone-sensitive distal nephron (ASDN) exhibits axial heterogeneity in structure and function from the distal convoluted tubule to the medullary collecting duct. Ion and water transport is primarily divided between the cortex and medulla of the ASDN, respectively. Transcellular transport in this segment is highly regulated in health and disease and is integrated across different cell types. We currently lack an inexpensive, high-yield, and tractable technique to harvest and culture cells for the study of gene expression and physiological properties of mouse cortical ASDN. To address this need, we harvested tubules bound to Dolichos biflorus agglutinin lectin-coated magnetic beads from the kidney cortex and characterized these cell preparations. We determined that these cells are enriched for markers of distal convoluted tubule, connecting tubule, and cortical collecting duct, including principal and intercalated cells. In primary culture, these cells develop polarized monolayers with high resistance (1,000-1,500 Ω * cm(2)) and maintain expression and activity of key channels. These cells demonstrate an amiloride-sensitive short-circuit current that can be enhanced with aldosterone and maintain measurable potassium and anion secretion. Our method can be easily adopted to study the biology of the ASDN and to investigate phenotypic differences between wild-type and transgenic mouse models.
Collapse
Affiliation(s)
- Mariana Labarca
- Division of Nephrology, Department of Medicine, Stanford University, Palo Alto, California; and
| | - Jonathan M Nizar
- Division of Nephrology, Department of Medicine, Stanford University, Palo Alto, California; and
| | - Elisabeth M Walczak
- Division of Nephrology, Department of Medicine, Stanford University, Palo Alto, California; and
| | - Wuxing Dong
- Division of Nephrology, Department of Medicine, Stanford University, Palo Alto, California; and
| | - Alan C Pao
- Division of Nephrology, Department of Medicine, Stanford University, Palo Alto, California; and Division of Nephrology, Department of Medicine, Veterans Affairs Palo Alto Healthcare System, Palo Alto, California
| | - Vivek Bhalla
- Division of Nephrology, Department of Medicine, Stanford University, Palo Alto, California; and
| |
Collapse
|
39
|
Nanami M, Pech V, Lazo-Fernandez Y, Weinstein AM, Wall SM. ENaC inhibition stimulates HCl secretion in the mouse cortical collecting duct. II. Bafilomycin-sensitive H+ secretion. Am J Physiol Renal Physiol 2015; 309:F259-68. [PMID: 26017972 DOI: 10.1152/ajprenal.00120.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/26/2015] [Indexed: 11/22/2022] Open
Abstract
Epithelial Na(+) channel (ENaC) blockade stimulates stilbene-sensitive conductive Cl(-) secretion in the mouse cortical collecting duct (CCD). This study's purpose was to determine the co-ion that accompanies benzamil- and DIDS-sensitive Cl(-) flux. Thus transepithelial voltage, VT, as well as total CO2 (tCO2) and Cl(-) flux were measured in CCDs from aldosterone-treated mice consuming a NaCl-replete diet. We reasoned that if stilbene inhibitors (DIDS) reduce conductive anion secretion they should reduce the lumen-negative VT. However, during ENaC blockade (benzamil, 3 μM), DIDS (100 μM) application to the perfusate reduced net H(+) secretion, which increased the lumen-negative VT. Conversely, ENaC blockade alone stimulated H(+) secretion, which reduced the lumen-negative VT. Application of an ENaC inhibitor to the perfusate reduced the lumen-negative VT, increased intercalated cell intracellular pH, and reduced net tCO2 secretion. However, benzamil did not change tCO2 flux during apical H(+)-ATPase blockade (bafilomycin, 5 nM). The increment in H(+) secretion observed with benzamil application contributes to the fall in VT observed with application of this diuretic. As such, ENaC blockade reduces the lumen-negative VT by inhibiting conductive Na(+) absorption and by stimulating H(+) secretion by type A intercalated cells. In conclusion, 1) in CCDs from aldosterone-treated mice, benzamil application stimulates HCl secretion mediated by the apical H(+)-ATPase and a yet to be identified conductive Cl(-) transport pathway; 2) benzamil-induced HCl secretion is reversed with the application of stilbene inhibitors or H(+)-ATPase inhibitors to the perfusate; and 3) benzamil reduces VT not only by inhibiting conductive Na(+) absorption, but also by stimulating H(+) secretion.
Collapse
Affiliation(s)
- Masayoshi Nanami
- Department of Medicine. Emory University School of Medicine, Atlanta, Georgia
| | - Vladimir Pech
- Department of Medicine. Emory University School of Medicine, Atlanta, Georgia
| | | | - Alan M Weinstein
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York; and Department of Medicine, Weill Medical College of Cornell University, New York, New York
| | - Susan M Wall
- Department of Medicine. Emory University School of Medicine, Atlanta, Georgia; Department of Physiology, Emory University School of Medicine, Atlanta, Georgia;
| |
Collapse
|
40
|
Pech V, Wall SM, Nanami M, Bao HF, Kim YH, Lazo-Fernandez Y, Yue Q, Pham TD, Eaton DC, Verlander JW. Pendrin gene ablation alters ENaC subcellular distribution and open probability. Am J Physiol Renal Physiol 2015; 309:F154-63. [PMID: 25972513 DOI: 10.1152/ajprenal.00564.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 05/04/2015] [Indexed: 01/15/2023] Open
Abstract
The present study explored whether the intercalated cell Cl(-)/HCO3(-) exchanger pendrin modulates epithelial Na(+) channel (ENaC) function by changing channel open probability and/or channel density. To do so, we measured ENaC subunit subcellular distribution by immunohistochemistry, single channel recordings in split open cortical collecting ducts (CCDs), as well as transepithelial voltage and Na(+) absorption in CCDs from aldosterone-treated wild-type and pendrin-null mice. Because pendrin gene ablation reduced 70-kDa more than 85-kDa γ-ENaC band density, we asked if pendrin gene ablation interferes with ENaC cleavage. We observed that ENaC-cleaving protease application (trypsin) increased the lumen-negative transepithelial voltage in pendrin-null mice but not in wild-type mice, which raised the possibility that pendrin gene ablation blunts ENaC cleavage, thereby reducing open probability. In mice harboring wild-type ENaC, pendrin gene ablation reduced ENaC-mediated Na(+) absorption by reducing channel open probability as well as by reducing channel density through changes in subunit total protein abundance and subcellular distribution. Further experiments used mice with blunted ENaC endocytosis and degradation (Liddle's syndrome) to explore the significance of pendrin-dependent changes in ENaC open probability. In mouse models of Liddle's syndrome, pendrin gene ablation did not change ENaC subunit total protein abundance, subcellular distribution, or channel density, but markedly reduced channel open probability. We conclude that in mice harboring wild-type ENaC, pendrin modulates ENaC function through changes in subunit abundance, subcellular distribution, and channel open probability. In a mouse model of Liddle's syndrome, however, pendrin gene ablation reduces channel activity mainly through changes in open probability.
Collapse
Affiliation(s)
- Vladimir Pech
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Susan M Wall
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Department of Physiology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Masayoshi Nanami
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Hui-Fang Bao
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Young Hee Kim
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | | | - Qiang Yue
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Truyen D Pham
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Douglas C Eaton
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Jill W Verlander
- Department of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
41
|
Nanami M, Lazo-Fernandez Y, Pech V, Verlander JW, Agazatian D, Weinstein AM, Bao HF, Eaton DC, Wall SM. ENaC inhibition stimulates HCl secretion in the mouse cortical collecting duct. I. Stilbene-sensitive Cl- secretion. Am J Physiol Renal Physiol 2015; 309:F251-8. [PMID: 25925258 DOI: 10.1152/ajprenal.00471.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 04/27/2015] [Indexed: 11/22/2022] Open
Abstract
Inhibition of the epithelial Na(+) channel (ENaC) reduces Cl(-) absorption in cortical collecting ducts (CCDs) from aldosterone-treated rats and mice. Since ENaC does not transport Cl(-), the purpose of the present study was to explore how ENaC modulates Cl(-) absorption in mouse CCDs perfused in vitro. Therefore, we measured transepithelial Cl(-) flux and transepithelial voltage in CCDs perfused in vitro taken from mice that consumed a NaCl-replete diet alone or the diet with aldosterone administered by minipump. We observed that application of an ENaC inhibitor [benzamil (3 μM)] to the luminal fluid unmasks conductive Cl(-) secretion. During ENaC blockade, this Cl(-) secretion fell with the application of a nonselective Cl(-) channel blocker [DIDS (100 μM)] to the perfusate. While single channel recordings of intercalated cell apical membranes in split-open CCDs demonstrated a Cl(-) channel with properties that resemble the ClC family of Cl(-) channels, ClC-5 is not the primary pathway for benzamil-sensitive Cl(-) flux. In conclusion, first, in CCDs from aldosterone-treated mice, most Cl(-) absorption is benzamil sensitive, and, second, benzamil application stimulates stilbene-sensitive conductive Cl(-) secretion, which occurs through a ClC-5-independent pathway.
Collapse
Affiliation(s)
- Masayoshi Nanami
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | | | - Vladimir Pech
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jill W Verlander
- Department of Medicine, The University of Florida, Gainesville, Florida
| | - Diana Agazatian
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Alan M Weinstein
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, Ithaca, New York; Department of Medicine, Weill Medical College of Cornell University, Ithaca, New York; and
| | - Hui-Fang Bao
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Douglas C Eaton
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Susan M Wall
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Department of Physiology, Emory University School of Medicine, Atlanta, Georgia;
| |
Collapse
|
42
|
Grimm PR, Lazo-Fernandez Y, Delpire E, Wall SM, Dorsey SG, Weinman EJ, Coleman R, Wade JB, Welling PA. Integrated compensatory network is activated in the absence of NCC phosphorylation. J Clin Invest 2015; 125:2136-50. [PMID: 25893600 DOI: 10.1172/jci78558] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 02/09/2015] [Indexed: 12/11/2022] Open
Abstract
Thiazide diuretics are used to treat hypertension; however, compensatory processes in the kidney can limit antihypertensive responses to this class of drugs. Here, we evaluated compensatory pathways in SPAK kinase-deficient mice, which are unable to activate the thiazide-sensitive sodium chloride cotransporter NCC (encoded by Slc12a3). Global transcriptional profiling, combined with biochemical, cell biological, and physiological phenotyping, identified the gene expression signature of the response and revealed how it establishes an adaptive physiology. Salt reabsorption pathways were created by the coordinate induction of a multigene transport system, involving solute carriers (encoded by Slc26a4, Slc4a8, and Slc4a9), carbonic anhydrase isoforms, and V-type H⁺-ATPase subunits in pendrin-positive intercalated cells (PP-ICs) and ENaC subunits in principal cells (PCs). A distal nephron remodeling process and induction of jagged 1/NOTCH signaling, which expands the cortical connecting tubule with PCs and replaces acid-secreting α-ICs with PP-ICs, were partly responsible for the compensation. Salt reabsorption was also activated by induction of an α-ketoglutarate (α-KG) paracrine signaling system. Coordinate regulation of a multigene α-KG synthesis and transport pathway resulted in α-KG secretion into pro-urine, as the α-KG-activated GPCR (Oxgr1) increased on the PP-IC apical surface, allowing paracrine delivery of α-KG to stimulate salt transport. Identification of the integrated compensatory NaCl reabsorption mechanisms provides insight into thiazide diuretic efficacy.
Collapse
|
43
|
Roy A, Al-bataineh MM, Pastor-Soler NM. Collecting duct intercalated cell function and regulation. Clin J Am Soc Nephrol 2015; 10:305-24. [PMID: 25632105 DOI: 10.2215/cjn.08880914] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Intercalated cells are kidney tubule epithelial cells with important roles in the regulation of acid-base homeostasis. However, in recent years the understanding of the function of the intercalated cell has become greatly enhanced and has shaped a new model for how the distal segments of the kidney tubule integrate salt and water reabsorption, potassium homeostasis, and acid-base status. These cells appear in the late distal convoluted tubule or in the connecting segment, depending on the species. They are most abundant in the collecting duct, where they can be detected all the way from the cortex to the initial part of the inner medulla. Intercalated cells are interspersed among the more numerous segment-specific principal cells. There are three types of intercalated cells, each having distinct structures and expressing different ensembles of transport proteins that translate into very different functions in the processing of the urine. This review includes recent findings on how intercalated cells regulate their intracellular milieu and contribute to acid-base regulation and sodium, chloride, and potassium homeostasis, thus highlighting their potential role as targets for the treatment of hypertension. Their novel regulation by paracrine signals in the collecting duct is also discussed. Finally, this article addresses their role as part of the innate immune system of the kidney tubule.
Collapse
Affiliation(s)
- Ankita Roy
- Renal-Electrolyte Division, Department of Medicine; and
| | | | - Núria M Pastor-Soler
- Renal-Electrolyte Division, Department of Medicine; and Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania A.R. and M.M.A. contributed equally to this work.
| |
Collapse
|
44
|
Verouti SN, Boscardin E, Hummler E, Frateschi S. Regulation of blood pressure and renal function by NCC and ENaC: lessons from genetically engineered mice. Curr Opin Pharmacol 2015; 21:60-72. [PMID: 25613995 DOI: 10.1016/j.coph.2014.12.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/22/2014] [Accepted: 12/22/2014] [Indexed: 01/01/2023]
Abstract
The activity of the thiazide-sensitive Na(+)/Cl(-) cotransporter (NCC) and of the amiloride-sensitive epithelial Na(+) channel (ENaC) is pivotal for blood pressure regulation. NCC is responsible for Na(+) reabsorption in the distal convoluted tubule (DCT) of the nephron, while ENaC reabsorbs the filtered Na(+) in the late DCT and in the cortical collecting ducts (CCD) providing the final renal adjustment to Na(+) balance. Here, we aim to highlight the recent advances made using transgenic mouse models towards the understanding of the regulation of NCC and ENaC function relevant to the control of sodium balance and blood pressure. We thus like to pave the way for common mechanisms regulating these two sodium-transporting proteins and their potential implication in structural remodeling of the nephron segments and Na(+) and Cl(-) reabsorption.
Collapse
Affiliation(s)
- Sophia N Verouti
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Emilie Boscardin
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Edith Hummler
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.
| | - Simona Frateschi
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
45
|
Zaika O, Mamenko M, Boukelmoune N, Pochynyuk O. IGF-1 and insulin exert opposite actions on ClC-K2 activity in the cortical collecting ducts. Am J Physiol Renal Physiol 2015; 308:F39-F48. [PMID: 25339702 PMCID: PMC4281695 DOI: 10.1152/ajprenal.00545.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/16/2014] [Indexed: 01/07/2023] Open
Abstract
Despite similar stimulatory actions on the epithelial sodium channel (ENaC)-mediated sodium reabsorption in the distal tubule, insulin promotes kaliuresis, whereas insulin-like growth factor-1 (IGF-1) causes a reduction in urinary potassium levels. The factors contributing to this phenomenon remain elusive. Electrogenic distal nephron ENaC-mediated Na(+) transport establishes driving force for Cl(-) reabsorption and K(+) secretion. Using patch-clamp electrophysiology, we document that a Cl(-) channel is highly abundant on the basolateral plasma membrane of intercalated cells in freshly isolated mouse cortical collecting duct (CCD) cells. The channel has characteristics attributable to the ClC-K2: slow gating kinetics, conductance ∼10 pS, voltage independence, Cl(-)>NO3 (-) anion selectivity, and inhibition/activation by low/high pH, respectively. IGF-1 (100 and 500 nM) acutely stimulates ClC-K2 activity in a reversible manner. Inhibition of PI3-kinase (PI3-K) with LY294002 (20 μM) abrogates activation of ClC-K2 by IGF-1. Interestingly, insulin (100 nM) reversibly decreases ClC-K2 activity in CCD cells. This inhibitory action is independent of PI3-K and is mediated by stimulation of a mitogen-activated protein kinase-dependent cascade. We propose that IGF-1, by stimulating ClC-K2 channels, promotes net Na(+) and Cl(-) reabsorption, thus reducing driving force for potassium secretion by the CCD. In contrast, inhibition of ClC-K2 by insulin favors coupling of Na(+) reabsorption with K(+) secretion at the apical membrane contributing to kaliuresis.
Collapse
Affiliation(s)
- Oleg Zaika
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Mykola Mamenko
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Nabila Boukelmoune
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
46
|
The Cap1-claudin-4 regulatory pathway is important for renal chloride reabsorption and blood pressure regulation. Proc Natl Acad Sci U S A 2014; 111:E3766-74. [PMID: 25157135 DOI: 10.1073/pnas.1406741111] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The paracellular pathway through the tight junction provides an important route for transepithelial chloride reabsorption in the kidney, which regulates extracellular salt content and blood pressure. Defects in paracellular chloride reabsorption may in theory cause deregulation of blood pressure. However, there is no evidence to prove this theory or to demonstrate the in vivo role of the paracellular pathway in renal chloride handling. Here, using a tissue-specific KO approach, we have revealed a chloride transport pathway in the kidney that requires the tight junction molecule claudin-4. The collecting duct-specific claudin-4 KO animals developed hypotension, hypochloremia, and metabolic alkalosis due to profound renal wasting of chloride. The claudin-4-mediated chloride conductance can be regulated endogenously by a protease-channel-activating protease 1 (cap1). Mechanistically, cap1 regulates claudin-4 intercellular interaction and membrane stability. A putative cap1 cleavage site has been identified in the second extracellular loop of claudin-4, mutation of which abolished its regulation by cap1. The cap1 effects on paracellular chloride permeation can be extended to other proteases such as trypsin, suggesting a general mechanism may also exist for proteases to regulate the tight junction permeabilities. Together, we have discovered a theory that paracellular chloride permeability is physiologically regulated and essential to renal salt homeostasis and blood pressure control.
Collapse
|
47
|
Sutliff RL, Walp ER, Kim YH, Walker LA, El-Ali AM, Ma J, Bonsall R, Ramosevac S, Eaton DC, Verlander JW, Hansen L, Gleason RLJ, Pham TD, Hong S, Pech V, Wall SM. Contractile force is enhanced in Aortas from pendrin null mice due to stimulation of angiotensin II-dependent signaling. PLoS One 2014; 9:e105101. [PMID: 25148130 PMCID: PMC4141771 DOI: 10.1371/journal.pone.0105101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/20/2014] [Indexed: 11/19/2022] Open
Abstract
Pendrin is a Cl−/HCO3− exchanger expressed in the apical regions of renal intercalated cells. Following pendrin gene ablation, blood pressure falls, in part, from reduced renal NaCl absorption. We asked if pendrin is expressed in vascular tissue and if the lower blood pressure observed in pendrin null mice is accompanied by reduced vascular reactivity. Thus, the contractile responses to KCl and phenylephrine (PE) were examined in isometrically mounted thoracic aortas from wild-type and pendrin null mice. Although pendrin expression was not detected in the aorta, pendrin gene ablation changed contractile protein abundance and increased the maximal contractile response to PE when normalized to cross sectional area (CSA). However, the contractile sensitivity to this agent was unchanged. The increase in contractile force/cross sectional area observed in pendrin null mice was due to reduced cross sectional area of the aorta and not from increased contractile force per vessel. The pendrin-dependent increase in maximal contractile response was endothelium- and nitric oxide-independent and did not occur from changes in Ca2+ sensitivity or chronic changes in catecholamine production. However, application of 100 nM angiotensin II increased force/CSA more in aortas from pendrin null than from wild type mice. Moreover, angiotensin type 1 receptor inhibitor (candesartan) treatment in vivo eliminated the pendrin-dependent changes contractile protein abundance and changes in the contractile force/cross sectional area in response to PE. In conclusion, pendrin gene ablation increases aorta contractile force per cross sectional area in response to angiotensin II and PE due to stimulation of angiotensin type 1 receptor-dependent signaling. The angiotensin type 1 receptor-dependent increase in vascular reactivity may mitigate the fall in blood pressure observed with pendrin gene ablation.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Anion Transport Proteins/deficiency
- Anion Transport Proteins/genetics
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- Calcium/metabolism
- Catecholamines/biosynthesis
- Dose-Response Relationship, Drug
- Gene Expression
- Kidney/metabolism
- Male
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Nitric Oxide/metabolism
- Phenylephrine/pharmacology
- Potassium Chloride/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Angiotensin, Type 1/metabolism
- Signal Transduction/drug effects
- Sulfate Transporters
- Vasoconstriction/drug effects
- Vasoconstriction/genetics
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Roy L. Sutliff
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, United States of America
- Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Erik R. Walp
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, United States of America
- Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Young Hee Kim
- Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Lori A. Walker
- Departments of Medicine and Cardiology, University of Colorado Health Sciences Center, Aurora, Colorado, United States of America
| | - Alexander M. El-Ali
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, United States of America
- Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Jing Ma
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, United States of America
- Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Robert Bonsall
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia, United States of America
| | - Semra Ramosevac
- Department of Physiology, Emory University, Atlanta, Georgia, United States of America
| | - Douglas C. Eaton
- Department of Physiology, Emory University, Atlanta, Georgia, United States of America
| | - Jill W. Verlander
- Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Laura Hansen
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Rudolph L. Jr. Gleason
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Truyen D. Pham
- Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Seongun Hong
- Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Vladimir Pech
- Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Susan M. Wall
- Department of Medicine, Emory University, Atlanta, Georgia, United States of America
- Department of Physiology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
48
|
Eladari D, Chambrey R, Picard N, Hadchouel J. Electroneutral absorption of NaCl by the aldosterone-sensitive distal nephron: implication for normal electrolytes homeostasis and blood pressure regulation. Cell Mol Life Sci 2014; 71:2879-95. [PMID: 24556999 PMCID: PMC11113337 DOI: 10.1007/s00018-014-1585-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/28/2014] [Accepted: 02/05/2014] [Indexed: 01/10/2023]
Abstract
Sodium absorption by the distal part of the nephron, i.e., the distal convoluted tubule, the connecting tubule, and the collecting duct, plays a major role in the control of homeostasis by the kidney. In this part of the nephron, sodium transport can either be electroneutral or electrogenic. The study of electrogenic Na(+) absorption, which is mediated by the epithelial sodium channel (ENaC), has been the focus of considerable interest because of its implication in sodium, potassium, and acid-base homeostasis. However, recent studies have highlighted the crucial role played by electroneutral NaCl absorption in the regulation of the body content of sodium chloride, which in turn controls extracellular fluid volume and blood pressure. Here, we review the identification and characterization of the NaCl cotransporter (NCC), the molecule accounting for the main part of electroneutral NaCl absorption in the distal nephron, and its regulators. We also discuss recent work describing the identification of a novel "NCC-like" transport system mediated by pendrin and the sodium-driven chloride/bicarbonate exchanger (NDCBE) in the β-intercalated cells of the collecting system.
Collapse
Affiliation(s)
- Dominique Eladari
- Department of Physiology, Hopital Européen Georges Pompidou, AP-HP, 56 rue Leblanc, 75015, Paris, France,
| | | | | | | |
Collapse
|
49
|
|
50
|
Büsst CJ. Blood pressure regulation via the epithelial sodium channel: from gene to kidney and beyond. Clin Exp Pharmacol Physiol 2014; 40:495-503. [PMID: 23710770 DOI: 10.1111/1440-1681.12124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 01/11/2023]
Abstract
The epithelial sodium channel (ENaC) has long been recognized as playing a vital role in blood pressure (BP) regulation due to its involvement in fluid balance. The genes encoding the three ENaC subunits are likewise important contributors to hypertension, both in rare monogenic diseases and in the general population. The unusually high numbers of genetic variants associated with complex traits, including BP, that are located in non-coding areas suggest an involvement of these variants in regulatory functions. This may involve differential regulation of expression in different tissues. Emerging evidence indicates that the ENaC plays an important role in BP determination not only via its actions in the kidney, but also in other tissues commonly involved in BP regulation. The ENaC in the central nervous system is proposed to regulate BP via sympathetic nervous system activity. Recent evidence suggests that the ENaC contributes to vascular function and the myogenic response. Additional roles potentially include initiation of the baroreceptor reflex via ENaC in the baroreceptors and driving high salt intake with a 'taste for salt' via ENaC in the tongue. The present review describes the involvement of the ENaC in the determination of BP at a genetic and physiological level, detailing recent evidence for its role in the kidney and in other pertinent tissues.
Collapse
Affiliation(s)
- Cara J Büsst
- Departments of Physiology, The University of Melbourne and Monash University, Melbourne, Vic., Australia.
| |
Collapse
|